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Abstract

We characterize dependence and tail dependence in corporate credit using a new class
of dynamic copula models which can capture dynamic dependence and asymmetry in
large samples of firms. We also document important differences between the depen-
dence dynamics for credit spreads and equity returns. Modeling a decade of weekly
CDS spreads for 215 firms, we find that copula correlations are highly time-varying and
persistent, and that they increase significantly in the financial crisis and have remained
high since. Perhaps most importantly, tail dependence of CDS spreads increases even
more than copula correlations during the crisis and remains high as well. The most
important shocks to credit dependence occur in August of 2007 and in August of 2011,
but interestingly these dates are not associated with significant changes to median credit
spreads. The decrease in diversification potential caused by the increase in dependence
and tail dependence is large. Finally, we find that the CDS volatility, correlation and
tail dependence measures that we have constructed using the dynamic copula model are
important determinants of credit spreads over time.
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1 Introduction

Characterizing the dependence between credit-risky securities is of great interest for portfolio

management and risk management, but not necessarily straightforward because multivariate

modeling is notoriously diffi cult for large cross-sections of securities. In existing work, com-

putationally straightforward techniques such as factor models or constant copulas are often

used to model correlations for large portfolios of credit-risky securities; alternatively, simple

rolling correlations or exponential smoothers are used.

We instead use multivariate econometric models for the purpose of modeling credit correla-

tion and dependence. We use genuinely dynamic copula techniques that can capture univariate

and multivariate deviations from normality, including multivariate asymmetries. We demon-

strate that by using recently proposed econometric innovations, it is possible to apply copula

models on a large scale that is essential for effective credit risk management. We perform

our empirical analysis using data on a large cross-section of credit risky securities, namely

5-year Credit Default Swap (CDS) contracts for 215 constituents of the first 18 series of the

CDX North American investment grade index. We use a long time series of weekly data for

the period January 1, 2001 to August 22, 2012. The 215 firms enter and leave the sample at

different time points, but this can easily be accommodated by the estimation methodology we

employ. We investigate the dependence between CDS spreads as well as the tail dependence.

We also analyze dependence in the underlying equity for comparison. Interestingly, the credit

and equity return dynamics differ in important aspects.

We document several important stylized facts, and substantial differences between credit

and equity dependence. Copula correlations in CDS spreads vary substantially over our sam-

ple, with a significant increase following the financial crisis in 2007. Equity correlations also

increase in the financial crisis, but somewhat later, and the increase is less significant and not

as persistent. Our estimates indicate fat tails in the univariate credit distributions, but also

multivariate non-normalities for CDS spreads. Multivariate asymmetries seem to be less im-

portant for credit than for equity returns, confirming the results from threshold correlations.

While equity volatility is more persistent than credit volatility, credit copula correlations are

more persistent than equity copula correlations. This greatly affects how major events such

as the Quant Meltdown, the Lehman bankruptcy, and the U.S. sovereign debt downgrade

affect subsequent dependence in credit and equity markets. Tail dependence for credit and

equity increases significantly during our sample, more so than copula correlations. Surpris-

ingly, the Lehman bankruptcy affects equity (tail) dependence more strongly than credit (tail)

dependence. The US sovereign downgrade in mid 2011 is an important credit event, but this

is more apparent when analyzing tail dependence, somewhat less so when analyzing copula

correlations.
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The increase in cross-sectional dependence is clearly important for the management of

portfolio credit risk. We use our estimates to compute time-varying diversification benefits

from selling credit protection. We find that the increase in cross-sectional dependence fol-

lowing the financial crisis has substantially reduced diversification benefits, similar to what

happened in equity markets. When computing diversification benefits, taking non-normality

into account is more important for credit than for equity. Our results also have implications

for the management of counterparty risk and the relative pricing of structured products such

as CDOs, with tranches that are affected differently by changes in correlation patterns.

Identifying financial and macroeconomic variables that can capture the clustering in de-

faults and cross-firm default dependence is of great interest for the purpose of modeling port-

folio credit risk, but there is no guidance from theory regarding the economic determinants

of credit dependence and tail dependence. We use a regression analysis to identify financial

and macroeconomic determinants of the time-series variation in credit dependence. Copula

correlations increase with the VIX, the overall level of credit spreads, and inflation, and de-

crease with the level of interest rates and S&P 500 returns. The effect from VIX is robust

when including lagged correlations in the regressions. We also perform a regression analysis

to investigate if dependence and tail dependence help explain the variation in credit spreads,

and we find that this is the case, even after controlling for well-established determinants of

credit spreads at the firm level, such as equity volatility, interest rates, and leverage.

We proceed in three steps. The two first steps are univariate. In the first, we remove the

short-run dynamics from the raw data by estimating firm-by-firm ARMA models on weekly

log-differences. In a second step, we estimate firm-by-firm variance dynamics on the residuals

from the first step. We use an asymmetric NGARCH model with an asymmetric standardized

t-distribution following Hansen (1994).1 Finally, in a third step we provide a multivariate

analysis using the copula implied by the skewed t-distribution in DeMarta and McNeil (2005).

Dynamic copula correlations are modeled based on the linear correlation techniques developed

by Engle (2002) and Tse and Tsui (2002).2 Dynamic tail dependence depends on time-

varying correlations and degrees-of-freedom, which we capture using a smooth exponential

spline function (see Engle and Rangel, 2008). To alleviate the computational burden, we

rely on the composite likelihood technique of Engle, Shephard, and Sheppard (2008) and the

moment matching from Engle and Mezrich (1996). See Patton (2012) for a recent survey of

copula models.

The remainder of the paper is structured as follows. In Section 2 we briefly discuss CDS

markets and document stylized facts in our sample. We also discuss existing techniques for

1Engle (1982) and Bollerslev (1986) developed the first ARCH and GARCH models. Bollerslev (1990) first
combined the GARCH model with a t-distribution.

2See Engle and Kroner (1995) for an early multivariate GARCH model and Engle and Kelly (2012) for a
simplified dynamic correlation model.
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modeling credit dependence. Section 3 reports the estimation results from the dynamic models

for expected credit spread and volatility that we apply. Section 4 introduces the dynamic

copula models and presents the estimation results as well as the key threshold dependence and

credit diversification dynamics. Section 5 contains a regression analysis of the determinants

of the time-series variation in the copula correlations. Section 6 investigates if the estimated

dependence measures help explain time-series variation in credit spreads in our sample. Section

7 concludes.

2 CDS Markets, Models and Stylized Facts

We discuss CDSmarkets and stylized facts characterizing the sample of CDS data we use in our

empirical work. We also briefly discuss existing techniques for modeling default dependence.

2.1 CDS Markets

A CDS is essentially an insurance contract, where the insurance event is defined as default by

an underlying entity such as a corporation or a sovereign country. Which events constitute

default is a matter of some debate, but for the purpose of this paper it is not of great impor-

tance. The insurance buyer pays the insurance provider a fixed periodical amount, expressed

as a “spread”which is converted into dollar payments using the notional principal—the size of

the contract.3 In case of default, the insurance provider compensates the insurance buyer for

his loss.

The CDS market exploded in size between 2000 and 2007, standing at over 55 Trillion $US

in notional principal in late 2007, according to the Bank for International Settlements. While

the CDS market has subsequently been reduced to approximately 27 Trillion $US in notional

principal as of June 2012, market size seems to have stabilized over the last two years after

a sharp drop during the financial crisis. Also, the decline in CDS market size is much less

dramatic than the decline for more complex credit derivatives, in particular structured credit

products. This suggests that CDS markets have survived the financial crisis, highlighting the

importance of a market for single-name default insurance.

Reflecting the growth in market activity, in April 2009 the CDS markets underwent a

number of changes. First, the CDS contract has been changed to formalize the auction

mechanism for CDS following a credit event. Previously, participants in the CDS market had

to sign up for a separate protocol for each auction. Second, committees are now formed to

make binding determinations of whether credit and succession events have occurred as well

3Recent changes in the CDS market have made the upfront fee the pricing parameter. However, our data
source (Markit) provides us with the spreads.
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as the terms of any auction. Third, the effective date for all CDS contract has been changed

to current-day less 60 days for credit events and to current-day less 90 days for succession

events. Fourth, the North American single-name CDS contracts that we investigate in this

paper began trading with a fixed coupon of either 100 basis points or 500 basis points with

up-front payments exchanged. Finally, the buyer now has to make a full coupon payment on

the first payment date regardless of the date of the trade, and the seller of CDS protection

makes an accrual rebate payment to the protection buyer at the time of the trade. See Markit

(2009) for the details.

2.2 Credit Default Models

Measuring default dependence has always been a problem of interest in the credit risk litera-

ture. For instance, a bank that manages a portfolio of loans is interested in how the borrowers’

creditworthiness fluctuates with the business cycle. While the change in the probability of

default for an individual borrower is of interest, the most important question is how the busi-

ness cycle affects the value of the overall portfolio, and this depends on default dependence.

An investment company or hedge fund that invests in a portfolio of corporate bonds faces a

similar problem. Over the last decade, the measurement of default dependence has taken on

added significance because of the emergence of new portfolio and structured credit products,

and as a result new methods to measure correlation and dependence have been developed.

Different techniques are used to estimate default dependence. The oldest and most obvious

way to estimate default correlation is the use of historical default data. In order to reliably

estimate default probabilities and correlations, typically a large number of historical obser-

vations are needed which are not often available. See for instance deServigny and Renault

(2002).

The alternative to historical default data is the combination of a factor model with a model

that extracts default intensities or default probabilities. For each of these two tasks, different

models have proven especially useful.

For publicly traded corporates, a Merton (1974) type structural model is often used to

link equity returns or the prices of credit-risky securities to the underlying asset returns and

extract default probabilities.4 This approach is usually combined with a one-factor model for

the underlying equity return to model the default dependence in credit portfolios. Clearly

the reliability of the default dependence estimate is determined by the quality of the factor

model.
4The structural approach goes back to Merton (1974). See Black and Cox (1976), Leland (1994) and Leland

and Toft (1996) for extensions. See Zhou (2001) for a discussion of default correlation in the context of the
Merton model.
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Alternatively, to model default intensities reduced-form or intensity-based models have be-

come very popular in the academic credit risk literature over the last decade.5 This approach

typically models the default intensity using a jump diffusion, and is also sometimes referred to

as the reduced-form approach. Within this class of models, there are different approaches to

modeling default dependence. One class of models, referred to as conditionally independent

models or doubly stochastic models, assumes that cross-firm default dependence associated

with observable factors determining conditional default probabilities is suffi cient for charac-

terizing the clustering in defaults. See Duffee (1999) for an example of this approach. Das,

Duffi e, Kapadia and Saita (2007) provide a test of this approach and find that this assumption

is violated. Other intensity-based models consider joint credit events that can cause multiple

issuers to default simultaneously, or they model contagion or learning effects, whereby default

of one entity affects the defaults of others. See for example Davis and Lo (2001) and Jarrow

and Yu (2001). Jorion and Zhang (2007) investigate contagion using CDS data.

This paper instead uses copula methods to model default dependence. See Joe (1997)

and Patton (2009a, 2009b, 2012) for excellent overviews of copula modeling. Copulas have

been used extensively for modeling default dependence, especially among practitioners and

for the purpose of CDO modeling. The advantage of the copula approach is its flexibility,

because the parameters characterizing the multivariate default distribution, and hence the

correlation between the default probabilities, can be modeled in a second stage, after the uni-

variate distributions have been calibrated. In many cases the copulas are also parsimoniously

parameterized and computationally straightforward, which facilitates calibration. Calibra-

tion of the correlation structure is mostly performed using CDO data. The simple one-factor

Gaussian copula is often used in the literature, but extensions to multiple factors (Hull and

White (2010)), stochastic recovery rates (Hull and White (2006)), and non-Gaussian copulas

provide a better fit.

In contrast to existing static approaches, in our analysis of default dependence the em-

phasis is on the modeling of dynamic dependence. Our approach also allows for multivariate

asymmetries.6 Several existing papers use copulas from the Archimedean family to capture

dependence asymmetries (see Patton (2004, 2006b) and Xu and Li (2009)), but this approach

is diffi cult to generalize to higher dimensions, and our focus is on the analysis of a large port-

folio of underlying credits. To capture time variation in dependence, some existing papers use

regime switching models. See Chollete, Heinen, and Valdesogo (2009), Garcia and Tsafack

(2011), Hong, Tu, and Zhou (2007), and Okimoto (2008) for examples. We instead follow the

autoregressive approach of Christoffersen and Langlois (2013), Christoffersen, Errunza, Ja-

5See Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), Duffee (1999), and Duffi e and
Singleton (1999) for early examples of the reduced form approach. See Lando (2004) and Duffi e and Singleton
(2003) for surveys.

6Jondeau and Rockinger (2006) analyze dynamic dependence using symmetric copulas.
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cobs, and Langlois (2012), and De Lira Salvatierra and Patton (2013). In independent work,

Oh and Patton (2013) also use an autoregressive approach to analyze dynamic dependence

for a large portfolio of underlying credits.

2.3 CDS Data

One element of the success and resilience of CDS markets has been the creation of market

indexes consisting of CDSs, such as the CDX index in North America and the iTraxx index

in Europe. Using data from Markit, we consider 5-year CDS contracts on all firms included

in the first 18 series of the North American investment grade CDX.NA.IG index. We use the

longest possible sample available from Markit for all these firms, starting on January 1, 2001,

and ending on August 22, 2012. Many firms do not have CDS quotes available for every day of

this sample period. Fortunately, as pointed out by Patton (2006a), the dynamic multivariate

modeling approach we employ in our empirical work allows for individual series to begin (and

end) at different time points. We make full use of this and include a firm if it has at least one

year of consecutive weekly data points. The resulting list of 215 firms is provided in Table 1.

We construct weekly data by using one day each week. We use Wednesdays, which is the

weekday that is least likely to be a holiday. We obtain equity data on the sample firms from

CRSP. Out of the 215 firms, 12 firms do not have at least a consecutive 52-week history of

equity prices, and those are dropped from the sample.7

An analysis of dependence can focus on CDS spreads or default intensities. In our empirical

work we focus on log-differences in CDS spreads because they are econometrically tractable.

For most models, the time series properties of default intensities are very similar. We verified

this for our sample by extracting default intensities at each point in time using an assump-

tion of constant default intensity. The conclusions from the dependence analysis on default

intensities were very similar to those on spreads, and we therefore do not report the results

here.

The solid black line in Panel A of Figure 1 plots the time series of the median CDS spread

across firms, and the grey areas represent the interquartile range. Panel B presents the median

and interquartile range for the CDS spread volatilities.

Panels C and D of Figure 1 replicate Panels A and B using the equity data. The equity

price in Panel C is normalized to one for each firm at the start of the sample.

The vertical lines in Figure 1 denote eight major events during our sample period:

• The WorldCom bankruptcy. July 2002.
7The twelve firms are: AT&T Mobility LLC, Bombardier Capital Inc., Bombardier Inc., Cingular Wireless

LLC, Capital One Bank USA National Association, Comcast Cable Communication LLC, General Motors
Acceptance Corp., Intelsat Limited, International Lease Finance Corp., National Rural Utilities Coop Financial
Corp., Residential Capital Corp., and Verizon Global Funding Corp.
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• The Ford and GM downgrades to junk. May 2005.

• The Delphi bankruptcy. October 8 2005.

• The Bear Stearns subprime funds collapse and quant meltdown. July/August 2007.
Henceforth referred to simply as the quant meltdown.

• The Bear Stearns bankruptcy. March 2008.

• The Lehman bankruptcy. September 2008.

• The stock market bottom and CDS Big Bang. March/April 2009. Henceforth referred

to simply as the stock market bottom.

• The U.S. sovereign debt downgrade. August 2011.

2.4 Stylized Facts

Figure 1 illustrates some important stylized facts regarding the trends in credit risk in our

sample period.

Panel A of Figure 1 indicates that the time series of the median CDS spread and the

interquartile range reach their maximums during the peak of the financial crisis in 2008. Less

dramatic turbulence is also evident during the dot-com bust in 2002 and the US sovereign

debt downgrade in 2011.

Panel D of Figure 1 indicates that the time series pattern for equity volatility is similar

to that for credit spreads. The relationship between credit spreads and equity volatility is of

course suggested by structural credit risk models such as Merton (1974). Panels A and D also

suggest that CDS spreads and equity volatility are highly persistent over time.

The interquartile ranges in the four panels of Figure 1 also contain valuable insights into

credit and equity dependence. The cross-sectional range of spreads is much wider during the

financial crisis compared to the pre-crisis years. This effect lingers on to some extent in the

post-crisis period. The high post-crisis range in spreads suggests that investors may be able to

at least partly diversify credit risk which is a key topic of interest for us. We observe a similar

increase in the cross-sectional range of spreads during the financial crisis for equity volatility

in Panel D, but in the post-crisis period the widening of the range is less pronounced. For

spread volatility in Panel B, the cross-sectional range widens during the financial crisis, but

not significantly more than during other crisis periods that barely show up in spread levels.

Dynamics in credit spread levels and credit spread volatility thus seem to differ substantially.

Figure 2 plots the median CDS spread in each industry. The 215 firms in our sample are

distributed along the following 10 GIC sectors: Energy (12 firms), Materials (14), Industrials
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(25), Consumer Discretionary (64), Consumer Staples (16), Health Care (13), Financials (34),

Information Technology (15), Telecommunications Services (14), and Utilities (8). For ease of

exposition in Figure 2 we combine the energy and utility sectors which each have few firms.

The impact of the financial crisis is obvious in Figure 2, but interestingly the crisis affected

different industries quite differently. Some industries, Information Technology and Telecom-

munication Services in particular, were affected as much or even more by the 2001-2003

upheaval versus the 2007-2009 crisis.

When examining the time series plots of the 215 individual CDS names (not reported), the

magnitude of the firm-specific variation across the sample period is quite remarkable. This

should bode well for the potential diversification benefits of investors exposed to corporate

credit risk.

In Table 2 we report sample averages across firms for CDS spreads and equity prices. Panel

A of Table 2 shows the first four sample moments of weekly log-differences in CDS spreads

along with the IQR for each moment. We also report the Jarque-Bera tests for normality as

well as the first two autocorrelation coeffi cients. Note the strong evidence of non-normality as

well as some evidence of dynamics in the weekly returns. We will model both of these features

below.

In Panel B we report the median sample correlations between log-differences in spreads

and equity prices. On the diagonal we report the median and IQR across the correlations

between each firm and all other firms. On the off-diagonal we report the median and IQR of

the correlation between the CDS spreads and equity returns for the same firm. The relatively

high and robust negative correlation between weekly equity returns and weekly spreads is

expected. Note that the log-difference in spreads can be viewed as the return on buying credit

protection and thus reducing credit risk. The negative correlation between spreads and equity

returns is thus evidence of a positive correlation between the exposure to credit and equity

risk.

Below, we will work solely with the weekly log-differences in CDS spreads and stock prices.

For simplicity we will refer to them generically as returns and denote them by Rt.

In order to further explore the dependence across firms we compute threshold correlations,

following Ang and Chen (2002) and Patton (2004) for example. We define the threshold

correlation ρ̄ij(x) with respect to deviations of standardized returns Ri and Rj from their

means as

ρ̄ij(x) =

{
Corr(Ri, Rj | Ri < x,Rj < x) when x < 0

Corr(Ri, Rj | Ri ≥ x,Rj ≥ x) when x ≥ 0,

where we use returns that are standardized by their sample mean and standard deviation,

and thus measure x as the number of standard deviations from the mean. The threshold

correlation reports the linear correlation between two assets for the subset of observations
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lying in the bottom-left or top-right quadrant. In the case of the bivariate normal distribution

the threshold correlation approaches zero when the threshold, x, goes to plus or minus infinity.

Panels A and C of Figure 3 report the median and IQR of the bivariate threshold correla-

tions computed across all possible pairs of firms. Panel A shows that the CDS spread threshold

correlations are high and almost symmetric. The equity threshold correlations in Panel C are

also high but show some evidence of asymmetry: Large downward moves are more highly

correlated than large upward moves. Panels A and C in Figure 3 show strong evidence of

multivariate non-normality. This is evidenced by the large deviations of the solid line (empir-

ics) from the dashed lines (normal distribution). Adequately capturing these non-normalities

motivates the non-normal copula approach below.

3 Dynamic Models of Credit Spreads

Our dynamic model development proceeds in three steps. In the first step, we model the mean

dynamics on the univariate time series of each CDS spread and stock return. In the second

step, we model the variance dynamics and the distribution of the time-series residual for each

firm. In the third step, we develop dynamic copula models for CDS and equity returns using

all the firms in our sample. The first two steps are covered in this section and the third in the

subsequent section.

3.1 Mean Dynamics

The log-differencing on the raw data is partly done to remove long memory in the data.

However, the weekly data we analyze contain short-run dynamics as well. In order to obtain

white-noise innovations required for consistent modeling of correlation dynamics, we fit uni-

variate ARMA-NGARCH models to the weekly log-differenced time series. We first fit each

of the possible ARMA specifications with AR and MA orders up to two. The ARMA order

for each time series is then chosen using the finite sample corrected Akaike criterion.

To be specific, in a first step, we use Gaussian quasi-maximum likelihood (QMLE) to

estimate nine models nested within the ARMA(2, 2) model on the weekly log-differences in

CDS spreads and equity prices for each firm

Rt = µ+ φ1Rt−1 + φ2Rt−2 + θ1εt−1 + θ2εt−2 + εt (3.1)

where εt is assumed to be uncorrelated with Rs for s < t. The conditional mean for Rt

constructed at the end of week t− 1 is then simply

µt = µ+ φ1Rt−1 + φ2Rt−2 + θ1εt−1 + θ2εt−2
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3.2 Variance Dynamics

In a second step we fit the Engle and Ng (1993) NGARCH(1, 1) model to the ARMA filtered

residuals εt

εt = σtzt

σ2
t = (1− α− β)σ2 + α (εt−1 − γσt−1)2 + βσ2

t−1 (3.2)

zt ∼ i.i.d. ast(z;λ, ν)

where we constrain α > 0, β > 0, and α + β < 1, and set the unconditional variance, σ2,

equal to the sample variance of εt. The i.i.d. return residuals, zt, are assumed to follow the

asymmetric standardized t distribution from Hansen (1994) which we denote ast(z;λ, ν). The

skewness and kurtosis of the distribution are nonlinear functions of the parameters λ and ν.

When λ = 0 the symmetric standardized t distribution is obtained. When λ = 0 and 1/ν = 0,

we get the normal distribution. The corresponding cumulative return probabilities are now

given by

ηt ≡ Prt−1 (R < Rt) = σ−1
t

∫ σ−1t (Rt−µt)

−∞
ast(z;λ, ν)dz. (3.3)

Note that the individual return-residual distributions are constant through time but the in-

dividual return distributions do vary through time because the return mean and variance are

dynamic.

Using time series observations on εt, the parameters α, β, γ, λ and ν are estimated using

a likelihood function based on (3.2) and ast(z;λ, ν). For each firm we again estimate two sets

of parameters, one based on spreads and one based on equity returns.

3.3 Estimates of Mean and Variance Dynamics

Panel A of Table 3 reports for credit spreads and equity the percentage of firms for which

each of the nine estimated ARMA(p, q) models were favored by the Akaike criterion. The

percentages are quite similar across the nine possible models. The ARMA(2, 2) is the single-

most selected model, suggesting that perhaps higher lags should be considered. Panel A also

shows the median and interquartile range across firms of each ARMA coeffi cient estimate.

The parameter values vary considerably across firms. The Ljung-Box test on the zt residuals

show that the test do not reject the null that the residuals are serially uncorrelated 99% of the

time for CDS spreads, and 90% of the time for equity returns. This suggests that the ARMA

models are able to adequately capture conditional mean dynamics across firms and markets.

Panel B in Table 3 shows the median and interquartile range across firms for each of the

three NGARCH parameters as well as the two parameters in the asymmetric t distribution.
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Weekly volatility persistence, defined by (α (1 + γ2) + β), is fairly tightly distributed around

the median values of 0.950 for CDS spreads and 0.980 for equity returns. Volatility is clearly

highly persistent in both spreads and equity returns. The γ parameter captures the asym-

metric volatility response to positive and negative return residuals. For equities, the median

γ value is 1.230 and the interquartile range is entirely positive. For CDS spreads the γ is neg-

ative and smaller in magnitude. Recall that the CDS spreads capture the returns to buying

credit protection.

The Ljung-Box test of serial correlation in the z2
t shows that the NGARCH model is able

to adequately capture variance dynamics. Equity returns, which have the highest volatility

persistence, have 13% of NGARCH models rejected by Ljung-Box at the 5% level, which is

clearly not drastically above the size of the test.

The ν parameter has medians of 3.72 (CDS spreads) and 6.56 (equity returns), indicating

fat tails in the conditional distribution. The asymmetry parameter, λ, is generally negative

for equities and positive for CDS spreads and roughly equal in magnitude for the two. Recall

again that the CDS spreads capture the returns to buying credit protection.

As discussed above, panel B of Figure 1 shows the time paths for the median and interquar-

tile range of CDS spread volatilities. The differences between the path of CDS volatility in

Panel B and the path of equity volatility in Panel D are interesting. While the time paths

of the medians are clearly moving together, the median path for the CDS spread volatility

contains many more sharp peaks. This is also the case for the path of the interquartile range.

Note that the relationship between equity volatility and CDS spreads has been extensively

studied because of the Merton (1974) model. The relation between equity returns and equity

volatility has also been extensively analyzed in the empirical literature. Panel C of Figure

1 confirms that equity returns are negatively related to equity volatilities in Panel D. This

stylized fact is usually referred to as the leverage effect, and it leads to negative skewness in the

return distribution. However, little is known about the relation between CDS spread volatility

and spreads. Visual inspection of Panels A and B suggests a positive relation. However, Panel

B indicates that while most of the spikes in CDS spread volatility match the spikes in spread

levels in Panel A, this is not always the case. Note for example that one of the highest peaks

in CDS spread volatility occur at the time of the quant meltdown in August 2007, which

coincides with only a minor uptick in spreads in Figure 1. We analyze this relation in more

detail in the empirical work below.

Finally, note that the volatility patterns in spreads in Panel B of Figure 1 are somewhat

different from the volatility in equity in Panel D. An obvious example is May 2005, around

the time of the Ford and GM downgrade, when equity volatility in Panel D does not spike up,

but median CDS spread volatility sharply increases.

Figure 4 plots the median of the weekly NGARCH dynamic in CDS spreads for the nine
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industries from Figure 2. Spread volatility clearly does not seem to be a simple deterministic

function of the spreads themselves. The variation of spread volatility across industries is quite

dramatic. The high level of CDS spread volatility in the financial crisis is apparent.

Panel A of Table 4 contains descriptive statistics of the ARMA-NGARCH model residuals.

Skewness and kurtosis are still present after standardizing by the NGARCH model, which

motivated the use of the asymmetric standardized t innovations. As expected, the residual

correlations between CDS spreads and equity prices are not materially different from the raw

return correlations in Panel C of Table 2.

Finally, Panels B and D of Figure 3 plot the median and IQR threshold correlations on

the weekly ARMA-NGARCH residuals. Comparing with the threshold correlations on raw

returns in Panels A and C, we see that the median threshold correlations in residuals are

often lower, but still higher than the bivariate Gaussian distribution (dashed lines) would

suggest. Overall Figure 3 indicates that the ARMA-NGARCH models by removing univariate

non-normality from the data are also able to remove some of the multivariate non-normality

from the data. Modeling the remaining multivariate non-normality is the task to which we

now turn.

4 Dynamic Dependence and Diversification

In this section we first introduce the copula functions that we apply to credit spreads and stock

returns. We then discuss the dynamic copula correlation estimates, and report on model-based

measures of threshold dependence. Finally, we compute measures of conditional diversification

benefits for credit and equity portfolios.

4.1 Dynamic Copula Functions

From Patton (2006b), who builds on Sklar (1959), we can decompose the conditional multi-

variate density function of a vector of returns for N firms, ft (Rt), into a conditional copula

density function, ct, and the product of the conditional marginal distributions fi,t (Ri,t) as

follows

ft (Rt) = ct (F1,t (R1,t) , F2,t (R2,t) , ..., FN,t (RN,t))

N∏
i=1

fi,t (Ri,t)

= ct
(
η1,t, η2,t, ..., ηN,t

) N∏
i=1

fi,t (Ri,t) , (4.1)

where Rt is now a vector of N returns at time t, fi,t is the density and Fi,t is the cumulative

distribution function of Ri,t.
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Following Christoffersen, Errunza, Jacobs, and Langlois (2012), and Christoffersen and

Langlois (2013) we allow for dependence across the return residuals using the copula implied

by the skewed t distribution discussed in Demarta and McNeil (2005). The skewed t copula

cumulative distribution function, Ct, for N firms can be written as

Ct(η1,t, η2,t, ..., ηN,t; Ψ, λC , νC,t) = tΨ,λC ,νC,t(t
−1
λC ,νC,t

(η1,t), t
−1
λC ,νC,t

(η2,t), ..., t
−1
λC ,νC,t

(ηN,t)), (4.2)

where λC is a copula asymmetry parameter, νC,t is a time-varying copula degree of free-

dom parameter, tΨ,λC ,νC,t is the multivariate skewed t density with correlation matrix Ψ, and

t−1
λC ,νC,t

is the inverse cumulative distribution function of the corresponding univariate skewed

t distribution.

Note that the copula correlation matrix Ψ is defined using the correlation of the copula

residuals z∗i,t ≡ t−1
λC ,νC,t

(ηi,t) and not of the return residuals zi,t. If the marginal distribution in

(3.3) is close to the copula tλC ,νC,t distribution, then z
∗
t will be close to zt.

We now build on the linear correlation techniques developed by Engle (2002) and Tse and

Tsui (2002) to model dynamic copula correlations. We use the copula residuals z∗i,t ≡ t−1
λ,ν(ηi,t)

as the model’s building block instead of the return residuals zi,t. In the case of non-normal

copulas, the fractiles do not have zero mean and unit variance, and we therefore standardize

the z∗i before proceeding.

The copula correlation dynamic is driven by

Γt = (1− βC − αC)Ω + βCΓt−1 + αC z̄
∗
t−1z̄

∗>
t−1 (4.3)

where βC and αC are scalars, and z̄
∗
t is an N -dimensional vector with typical element z̄

∗
i,t =

z∗i,t
√

Γii,t. The conditional copula correlations are defined via the normalization

Ψij,t = Γij,t/
√

Γii,tΓjj,t.

To allow for general patterns in tail dependence, we allow for slowly-moving trends in the

degrees of freedom. Following Engle and Rangel (2008), who model the trend in volatility, we

define the degree of freedom at time t, νC,t, using an exponential quadratic spline

νC,t = νC + δC,0 exp

(
δC,1t+

k∑
j=1

δC,j+1 max(t− tj−1, 0)2

)
(4.4)

where νC is the lower bound for the degrees of freedom, which is equal to four for the skewed

t copula, δC,0, ..., δC,k+1 are scalar parameters to be estimated, and {t0 = 0, t1, ..., tk = T}
denotes a partition of the sample in k segments of equal length. The exponential form ensures
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that the degrees of freedom are positive and above their lower bound at all times. The k

different segments allows us to capture periods of positive and negative trends in the degrees

of freedom. Note that we model degree-of-freedom dynamics using splines and not lagged

returns, because—unlike for variance and correlation—it is not obvious what the functional

form of the lagged return should be when updating the degree-of-freedom process.

In the next section we investigate the time-variation in both correlations and tail depen-

dence. Whereas correlation at time t is driven by the dynamic in Equation (4.3), tail depen-

dence is determined by both the time-varying correlation and the degrees of freedom. Hence,

our model allows for changes in tail dependence that are separate from those in correlation.

Below we refer to the model using (4.2) and (4.3) as the Dynamic Asymmetric Copula

(DAC) model. The special case where λC = 0 we denote by the Dynamic Symmetric Copula

(DSC). In this case the lower bound for the degree of freedom is νC = 2. When we additionally

impose 1/νC = 0 we obtain the Dynamic Normal Copula (DNC).

Following Engle, Shephard and Sheppard (2008), we estimate the copula parameters αC ,

βC , λC , and νC using the composite likelihood (CL) function defined by

CL(αC , βC , λC , νC) =
T∑
t=1

N∑
i=1

∑
j>i

ln ct(ηi,t, ηj,t;αC , βC , λC , νC), (4.5)

where ct is the copula density from (4.1). Note that the CL function is built from the bivariate

likelihoods so that the inversion of large-scale correlation matrices is avoided. In a sample as

large as ours, relying on the composite likelihood approach is imperative. The unconditional

correlations are estimated by unconditional moment matching (See Engle and Mezrich, 1996)

Ω̂i,j =
1

T

T∑
t=1

z̄∗i,tz̄
∗
j,t (4.6)

which is another crucial element in the feasible estimation of large-scale dynamic models.

As discussed above, the estimation of dynamic dependence models using long time series

and large cross-sections is computationally intensive. In our case, estimating the dynamic

copula models for 215 firms in possible only because we implement unconditional moment

matching and the composite likelihood approach. An additional advantage of the composite

likelihood approach is that we can use the longest time span available for each firm-pair when

estimating the model parameters, thus making the best possible use of a cross-section of CDS

time series of unequal length.
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4.2 Copula Correlation and Tail Dependence Estimates

Panel B of Table 4 contains the Dynamic Asymmetric Copula (DAC) parameter estimates

and composite likelihoods from fitting a single model to the 215 firms in our sample. We

again present separate results for models estimated on the weekly residuals in CDS spread and

equity log-differences. The copula correlation persistence is higher for CDS spreads (0.98) and

considerably lower at 0.94 in the case of equity prices. Comparing with volatility persistence in

Table 3, it is interesting to note that equities have relatively higher volatility persistence and

lower correlation persistence when compared with credit spreads. This finding demonstrates

the importance of modeling separate dynamics for volatility and correlation.

Panel C in Table 4 reports the parameter estimates for the Dynamic Symmetric Copula

model where λC = 0 and Panel D reports on the Dynamic Normal Copula where we also

impose 1/νC,t = 0. While we do not have asymptotic distribution results available for testing

differences in composite likelihoods, the results suggest that the improvements in fit are largest

when going from the normal copula in Panel D to the symmetric t copula in Panel C. When

going from the symmetric t copula in Panel C to the asymmetric t copula in Panel B, the

improvement in fit seems to be largest for equities. This result matches the patterns in the

threshold correlations in Figure 3 which show the strongest degree of bivariate asymmetry for

equities.

We estimate a model with a simple time trend for the degrees of freedom. The estimates in

the third and fourth columns of Panel B indicate that degrees of freedom have been trending

down for both CDS and equity. In unreported results, we allow for more complex shapes in

degrees of freedom by increasing the number of splines in Equation (4.4), and find that the

decreasing time trend is robust.

Figure 5 plots the median and IQR of the DAC copula correlations for CDS spreads and

stock returns. The level of the CDS spread correlation is higher than that of equity correlation

throughout the sample. Credit correlations in Panel A show a pronounced and persistent

uptick in 2007 around the time of the Quant Meltdown, and a pronounced but less persistent

uptick in mid 2011 following the US sovereign downgrade. The equity correlations in Panel

B show less persistent upticks in late 2008 following the Lehman bankruptcy, and again in

mid 2011 following the US sovereign downgrade. The differences in persistence following these

major events are of course related to the differences in copula correlation persistence between

credit and equity mentioned earlier.

Figure 6 plots the median and IQR of the DAC copula tail dependence for CDS spreads

and stock returns. For equity we plot lower tail dependence, because it is economically the

most interesting of the two tails. This corresponds to upper tail dependence for CDS spreads.

Lower (upper) tail dependence measures the probability that two returns will both be below
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(above) a small (high) quantile.8 Several very interesting conclusions obtain. First, equity

and credit tail dependence increase much more over the sample than copula correlations in

Figure 5. Second, similar to the pattern in correlations in Figure 5, CDS tail dependence

increases earlier than equity tail dependence. Third, in the first part of the sample equity

tail dependence is higher than credit tail dependence, but this changes in the second part

of the sample. Fourth, the impact of credit events on tail dependence is sometimes more

dramatic than their impact on correlations. The most obvious example is the US sovereign

downgrade in mid 2011, which shifts credit tail dependence up significantly for the remainder

of the sample, whereas in Figure 5 the correlations revert back quicker to the earlier levels.

These findings have important implications for portfolio diversification.

In Figure 7 we plot the median DAC correlation of CDS spreads and equity returns for

the nine industries in Figure 2. Figure 8 does the same for the tail dependence of credit and

equity. While the uptick in credit correlation during 2007 is evident for most industries, the

variation across industries is large. The time paths of credit and equity (tail) dependence are

clearly different from each other and are fairly similar across industries because they all share

the same trend in degrees of freedom.

4.3 Conditional Diversification Benefits

Consider an equal-weighted portfolio of the constituents of the on-the-run CDX investment

grade index in any given week. We want to assess the diversification benefits of the portfolio

using the dynamic, non-normal copula model developed above. As in Christoffersen, Errunza,

Jacobs and Langlois (2012), we define the conditional diversification benefit by

CDBt(p) ≡
ESt (p)− ESt(p)
ESt(p)− ESt(p)

, (4.7)

where ESt(p) denotes the expected shortfall with probability threshold p of the portfolio

at hand, ESt(p) denotes the average of the ES across firms, which is an upper bound on

the portfolio ES, and ESt(p) is the portfolio V aR, which is a lower bound on the portfolio

ES. The CDBt(p) measure takes values on the [0, 1] interval, and is increasing in the level

of diversification benefit. Note that by construction CDB does not depend on the level of

expected returns. Expected shortfall is additive in the conditional mean which thus cancels

out in the numerator and denominator in (4.7).

The CDB measure depends on the threshold probability p. Below we consider p = 5% and

p = 50%. The CDB measure is not available in closed form for our dynamic copula model

8Tail dependence is formally defined as the probability limit as the quantile goes to 0 or 1. We obtain an
approximation by simulating from our model, and using the quantile 0.001 for lower and 0.999 for upper tail
dependence.
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and so we compute it using Monte Carlo simulations. We also report on a volatility-based

measure which is defined by

V olCDBt = 1−
√
1>Σt1

1>σt
, (4.8)

where 1 denotes a vector of ones, and where Σt denotes the usual matrix of linear correlations

computed in our case via simulation from the DAC model. One can show that under con-

ditional normality, V olCDBt will coincide with CDBt(50%) so that the difference between

these two measures indicates the degree of non-normality from a diversification perspective.

Each week t we form an equally weighted portfolio of the 125 companies currently in the

CDX.NA.IG index. We use the longest available history of returns up to week t−1 to estimate

the unconditional correlation matrix for the 125 firms, and then compute the conditional

correlations from our DAC model. In order to have suffi cient historical data available, we

keep only firms with at least two years of data, and start on September 22, 2004, which is the

first day of Series 3 of the index.

The solid black line in Figure 9 shows the CDB(5%) measure for an equal-weighted port-

folio selling credit protection as well as for an equal-weighted portfolio of equity returns. First

consider Panel A: Diversification benefits for CDS have declined from above 70% at the end

of 2003 to below 50% at the end of our sample. The majority of the decline took place during

the mid 2007 to mid 2008 period and was relatively gradual. Panel B shows that the decline

in diversification benefits in equity markets has been smaller in magnitude, from just over

70% in 2007 to just above 60% at the end of our sample. The majority of the decline in equity

market diversification benefits took place from early 2007 to early 2009 and it was relatively

gradual as well.

Figure 9 also depicts the average volatilities (in grey, on the right-hand axis) and the

average correlations (the dashed line, on the left-hand axis). Intuitively, changes in the di-

versification measure should be related to changes in correlation, which captures risk that

is more systematic in nature, and changes in average volatility, which proxies for whatever

idiosyncratic risk is left in the portfolio. For the equity portfolio in Panel B, the time series for

average correlation and average volatility are highly correlated, and the drops in diversification

benefits in 2008 and 2011 could be due to either measure. For the credit portfolio in Panel A,

the conclusions are very different. On the one hand, at certain times the changes in average

volatilities and correlations are highly related, for instance in August 2011 at the time of the

U.S. sovereign debt downgrade, when correlations and volatilities increase and diversification

benefits decrease. On the other hand, there are long periods of time during which the changes

in average volatilities are not related to the changes in diversification benefits, for instance

between 2008 and mid-2011. Overall diversification benefits seem much more highly related

to average correlations.
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It is also interesting to relate diversification benefits in Panel A to equity volatilities in

Panel B. The average volatilities in Panel B are highly correlated with the VIX and with other

indicators of turmoil in equity markets. Clearly the majority of the decline in diversification

benefits in credit markets took place well before the peak in equity market volatility. The

credit market CDB actually increased a bit during late 2008 and early 2009 when the equity

market turmoil was most intense. We conclude that while the data confirm the relationship

between the level of credit spreads and equity volatility predicted by Merton-type structural

models (see Figure 1), credit diversification benefits are more tightly linked with correlations

in credit markets.

In Figure 10 we plot the CDB(50%) and V olCDB measures for CDS spreads in Panel A

and for equities in Panel B. Comparing Figures 9 and 10 (note the scales are different) we

see that the dynamic patterns are broadly similar, which is not surprising. Panel A suggests

that non-normality plays a large role in a well-diversified credit portfolio, and that relying

on V olCDB would exaggerate the benefits from credit diversification. Comparing Panels A

and B, the differences between the CDB(50%) and V olCDB are a bit larger for the credit

portfolio than for the equity portfolio.

5 Economic Determinants of Credit Dependence

Are our new dynamic measures of credit dependence related to traditional economic determi-

nants of credit risk? To answer this question, we now consider regressions of copula correlations

on various economic and financial determinants. Another important objective of this exercise

is to reflect on variable selection in factor models of credit risk.

As discussed in Section 2.2, an important class of credit default models uses observable

macroeconomic factors to characterize the clustering in defaults and cross-firm default depen-

dence. We have obtained estimates of default dependence without relying on such observable

factors, and it is useful to investigate how closely our estimates are related to economic vari-

ables that are commonly used as factors. We focus on explaining median dependence because

our first concern is to verify if the macroeconomic variables can explain the time-variation

in the dependence measures. The cross-sectional variation in dependence and the loadings

of different firms on the dependence measures are also of interest, but we leave this topic for

future work.

There is no acknowledged theory on the selection of economic and financial factors that can

capture cross-firm default dependence; perhaps as a result the existing empirical literature is

very extensive, and many different economic variables have been used as factors. Duffi e, Saita,

and Wang (2007) provide an excellent discussion of the existing literature, and choose one-year

trailing S&P 500 returns and interest rates as macro variables to capture default dependence

19



in their own empirical implementation. Duan and Van Laere (2012) also use index stock

returns and interest rates, and Collin-Dufresne, Goldstein, and Martin (2001) use S&P 500

returns, interest rates, and the VIX. Campbell, Hilscher, and Szilagyi (2005) use S&P 500

returns to normalize firm returns in their analysis of default and credit risk. Doshi, Ericsson,

Jacobs, and Turnbull (2013) use term structure variables and the VIX, and the latent model

in Duffee (1999) uses interest rate factors to capture the dependence in credit spreads. See

Blume and Keim (1991), Fons (1991), Helwege and Kleiman (1997), Hillegeist, Keating, Cram,

and Lundstedt (2004), Jonsson and Fridson (1996), Keenan, Sobehart, and Hamilton (1999),

McDonald and Van de Gucht (1999), and Pesaran, Schuermann, Treutler, and Weiner (2006)

for examples of other macroeconomic variables that are useful for explaining and forecasting

credit spreads and default. See Pospisil, Patel, and Levy (2012) for a list of macroeconomic

variables used by Moody’s Analytics for dependence modeling.

In our regressions we limit ourselves to macroeconomic variables that are available at the

weekly frequency because we have modeled dependence at the weekly frequency, and we want

to capture as much of the time series variation as possible. An analysis of lower frequency

macroeconomic variables would be interesting but we keep it for future work. In the absence

of explanatory variables suggested by theory, we therefore consider economy-wide measures

of risk in equity and default insurance markets, risk-free (government) term structures, and

other macro variables that are reasonable additional metrics of the state of the economy, and

that have explanatory power for credit spreads documented by the papers cited above. More

precisely we use the following regressors:

• The log of the CDX North American investment grade index level is used to proxy for
the overall level of risk in credit markets.

• The log of the VIX index represents equity market risk.

• The return on the S&P 500 captures the changes in stock market capitalization. We use
the one-week return as well as a trailing one-year return.

• The term structure is captured by a level variable, the 3-month US Constant Maturity

Treasury (CMT) index, and a slope variable, the 10 year CMT index minus the 3-month

CMT.

• The difference between the interest rate on interbank loans and on short-term govern-

ment debt, that is the TED spread.9

9The TED spread is an indicator of liquidity in fixed income markets. The funding liquidity variable in
Fontaine and Garcia (2012) provides an alternative liquidity indicator, but is not available at the weekly
frequency.
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• The log of crude oil price as measured by the West Texas Intermediate Cushing Crude
Oil Spot Price.

• The breakeven inflation level implied by Treasury Inflation Protected Securities. Unlike
standard inflation measures, this series is available at the weekly frequency.

• The Aruoba-Diebold-Scotti (ADS) business condition index from the Federal Reserve

Bank of Philadelphia.

Table 5 presents the regression results. For the CDX, VIX, S&P 500 returns, and term

structure variables, Panel A reports on univariate regressions in columns (i)-(vi). Column

(vii) presents the results of a multivariate regression including all variables. In Panel B we

include the lagged median correlation as a regressor in all the specifications. All regressors

are lagged one week and all results are obtained using OLS with Newey-West standard errors

using T 1/4 ≈ 5 lags, where T is sample size.

In the univariate regressions in Panel A of Table 5, the higher the level of risk in the

credit market, as measured by the CDX index, the higher the CDS-based copula correlations.

The higher the level of risk in the equity markets, as measured by the VIX, the greater the

CDS-based correlations. We present results for two measures of stock market returns: the

one-week S&P 500 return as well as the one-year trailing S&P 500 return. Both measures

have been used in the literature. Collin-Dufresne, Goldstein, and Martin (2001) use the

monthly S&P 500 return in their study of monthly changes in credit spreads. Duffi e, Saita,

and Wang (2007) and Duan and Van Laere (2012) use the one-year trailing S&P 500 return.

The univariate regressions for both measures indicate the a priori expected negative sign, but

only the one-year trailing return is statistically significant, and the R-squares clearly indicate

that the one-year trailing return has more explanatory power. Interestingly, while the weekly

S&P 500 return is weakly negatively correlated with the VIX in our sample, the correlation

between the VIX and the one-year trailing return is very strong, at −0.60. Regression (v) in

Panel A indicates that the loading on the interest rate level has the expected negative sign

and is statistically significant. Finally, the yield curve slope in (vi) also gives a statistically

significant result.

We conclude that the univariate regressions in Panel A all provide intuitively plausible

results: when times are bad and the economy experiences negative shocks, the CDX and the

VIX are high, stock returns and interest rates are low, and this poor economic environment

is associated with higher dependence and fewer diversification opportunities. However, the

R-squares indicate that stock market returns explain much less of the time-series variation

in copula correlations than term structure variables. Even more strikingly, the VIX explains

more of the variation in dependence than the two S&P 500 returns. Finally, the R-square in
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regression (i) indicates that the level of credit risk, represented by the CDX index, is a prime

candidate for explaining dependence in credit markets. While this may seem self-evident,

note that the existing literature mainly relies on equity market indexes for capturing credit

dependence. Perhaps the literature has ignored the use of credit indexes because until recently

they were not available at high frequencies.

The strong persistence of the median correlation is of course a concern when assessing

its relationship with other variables. In Panel B we therefore include the lagged median

correlation as a regressor in all the specifications. As expected, the coeffi cient on lagged

median correlation is close to one in the univariate specifications (i)-(vi). Interestingly, while

their significance is of course lower now, the sign of all the coeffi cients remain as in Panel

A. Perhaps the most important conclusion from Panel B is that VIX is the most significant

driver of credit correlations once lagged correlations are controlled for. Note that the one-

year trailing S&P 500 return has lost its significance, presumably because it is picking up the

stochastic trend in correlations now captured by the lagged median correlation. The weekly

S&P 500 return, however, is now significant in picking up what is effectively weekly changes

in credit correlation. The CDX index retains some of its significance from Panel A as well.

Finally, the yield curve level and slope are no longer significant, presumably again because

they are mainly picking up the stochastic trend in correlations in Panel A.

So far we have separately analyzed each individual coeffi cient which may thus be influenced

by omitted variables bias. In specification (vii) in Panels A and B we therefore include all

the variables simultaneously. The results from these multivariate regressions are interesting.

Note first that while the lagged median correlation is highly significant in Panel B it is lower

than in the univariate specifications which suggests that the economic variables overall have

explanatory power. Surprisingly, in Panel A, the stock market returns have a positive sign but

this is not the case in Panel B. The interest rate level remains statistically significant in Panel

A but not in Panel B. Our most robust finding is that the VIX turns out to be important for

explaining credit dependence, in spite of the fact that volatilities do not always co-move with

credit correlations, as documented in Figure 9 and Section 4.3. In fact, somewhat surprisingly,

in Panel B the estimated coeffi cient on VIX is significant but the coeffi cient on CDX is not.

The insignificance of CDX is partly due to the smaller point estimate of the coeffi cient—which

is still positive—and partly due to the larger standard deviation on the coeffi cient when all

variables are included.

It may prove interesting to extend these time-series results by investigating the loadings

of different firms on these candidate factors. Additionally, one could study how incorporating

firm-specific variables helps explain the cross-section of credit correlations. We keep these

topics for future work.
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6 Economic Determinants of Credit Spreads

We now investigate if our new dynamic credit risk measures drive credit spreads when con-

trolling for the usual economic drivers of credit spreads. The determinants of credit spreads

have been extensively studied both theoretically and empirically. Most notably, following the

analysis of Merton (1974), structural models of credit risk have established volatility, interest

rates, and leverage as prime candidates to explain credit spreads.

Partly based on these theories, there is an extensive empirical literature regarding the

determinants of credit spreads, both using bond data and CDS data. This literature provides

some support for structural models of credit risk, and has also documented other macro-

economic and firm-specific determinants of credit risk. See Collin-Dufresne, Goldstein, and

Martin (2001), Campbell and Taksler (2003), Cremers, Driessen, Maenhout, and Weinbaum

(2008), and Ericsson, Jacobs, and Oviedo (2009) for existing evidence.

The existing literature and the ongoing debate on the determinants of credit risk spreads

motivate our empirical approach as well as our selection of regressors. First, existing the-

ory specifies some firm-specific determinants of credit spreads and therefore it is important

to specify regressions using firm-specific measures of credit spreads, and not median credit

spreads as in Section 5. Second, when testing the ability of new variables to explain credit

spreads, it is important to investigate if their explanatory power is robust to the presence of

variables suggested by theory in the regression.

We want to investigate if our dependence measures can help explain credit spreads. We

therefore present results for univariate regressions of credit spreads on the average copula

correlation and tail dependence for each firm with all other firms, but we also present results

for multivariate regressions where these dependence measures are added to equity volatility,

term structure variables, and leverage, the determinants of credit risk according to the Merton

(1974) model. Several studies have specifically questioned the ability of regressors suggested by

theory to explain time-series variation in spreads (see Collin-Dufresne, Goldstein, and Martin

(2001)), so we focus on time-series regressions. We include lagged spreads as regressors because

of the persistence in the spreads. The signs of the estimated coeffi cients do not change when

lagged spreads are not included (not reported).

The results are presented in Table 6. We run firm-by-firm time-series regressions and

we report the average point estimates across firms and statistical significance based on the

estimated time-series coeffi cients. A first important conclusion is that overall the results

support the theory underlying structural credit risk models. Credit spreads increase with

equity volatility. Leverage is mostly estimated with a positive sign, but it is usually not

statistically significant.

We are interested in whether the CDS risk measures in our analysis, credit correlation and
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tail dependence, help explain credit spreads. We also analyze the impact of CDS volatility

on credit spreads. In regressions (ii), (iii), and (iv), we see that CDS volatility, correlation,

and tail dependence are positively related to credit spreads. When we include other variables

in regressions (vi) and (vii), the relationship between CDS spreads and CDS volatility, CDS

correlation and tail dependence is still significantly positive.

We conclude that the CDS volatility, correlation and tail dependence measures that we

have constructed using the dynamic copula model are important determinants of the time

series dynamics in credit spreads.

7 Conclusion

This paper documents cross-sectional dependence in CDS spreads, and compares it with de-

pendence in equity returns. Our results are complementary to existing correlation and de-

pendence estimates, which are typically based on historical default rates or factor models of

equity returns, and to existing intensity-based studies, which characterize observable macro

variables that induce realistic correlation patterns in default probabilities (see Duffee (1999)

and Duffi e, Saita and Wang (2007)). Importantly, we use econometric techniques that allow

us to estimate a model with multivariate asymmetries and time-varying dependence using a

long time series and a large cross-section of CDS spreads.

We document six important stylized facts. First, copula correlations in CDS spreads vary

substantially over our sample and increase significantly following the financial crisis in 2007.

Equity correlations also increase in the financial crisis, but somewhat later, and the increase is

less significant and not as persistent. Second, our estimates indicate fat tails in the univariate

distributions, but also multivariate non-normalities. Multivariate asymmetries seem to be less

important for credit than they are for equities. Third, credit dependence is more persistent

than equity persistence, and this greatly affects howmajor events such as the Quant Meltdown,

the Lehman bankruptcy, and the U.S. sovereign debt downgrade affect subsequent dependence

in credit and equity markets. Fourth, tail dependence increases more significantly than do

copula correlations. Fifth, VIX is an important driver of credit correlations over time. Sixth,

the dependence and tail dependence measures are related to the time-series variation in credit

spreads, even after accounting for other well-known firm-level determinants of spreads.

These stylized facts, and the increase in cross-sectional dependence in particular, have

important implications for the management of portfolio credit risk. We illustrate these impli-

cations by computing the diversification benefits from selling credit protection. The increase

in cross-sectional dependence following the financial crisis has reduced diversification benefits,

not unlike what happened in equity markets. When computing diversification benefits, taking

non-normalities into account is more important for credit than for equity.
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Several other important implications of our results deserve further study. First, given

the richness and complexity of the equity and credit dependence, it may prove interesting to

explore the implications for the pricing of structured products. In particular, following Berd,

Engle, and Voronov (2007), it would be interesting to investigate if the CDO pricing model

suggested by the estimated dynamics removes the observed correlation smile in CDO tranches.

Second, our estimates can be used to manage a portfolio of counterparty risks. Third, our

approach can be used to integrate credit and equity dependence dynamics in a single model

that allows for diversification across asset classes. Finally, a possible extension is to investigate

alternative measures of credit portfolio risk building on Vasicek (1991, 2002).
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Figure 1. Quantiles of CDS Spreads, Equity Prices and their Volatilities
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Notes to Figure: We plot weekly quantiles across the 215 firms listed in Table 1 for CDS

spreads, equity prices, and their volatilities from GARCH models. In each panel, the black

line reports the median across firms for each week, and the grey area shows the interquartile

range across firms. The vertical lines indicate the major events during the sample period listed

in Section 2.3.
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Figure 2. Median CDS Spread by Industry
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Notes to Figure: We report the weekly median CDS spread by industry using the GIC sectors

in Table 1. We combine the energy and utility sectors. Each panel title indicates the total

number of firms available for each industry throughout the sample. Note that the scale differs

across industries.
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Figure 3. Threshold Correlations for Weekly Log-Differences and ARMA-NGARCH

Residuals: CDS Spreads and Equity Returns

1 0.5 0 0.5 1
0

0.25

0.5
Panel A: CDS Returns

M
ed

ia
n

th
re

sh
ol

d
co

rr
el

at
io

n

1 0.5 0 0.5 1
0

0.25

0.5
Panel B: CDS Residuals

1 0.5 0 0.5 1
0

0.25

0.5

Standard deviat ions
from the mean

Panel C: Equity Returns

M
ed

ia
n

th
re

sh
ol

d
co

rr
el

at
io

n

1 0.5 0 0.5 1
0

0.25

0.5

Standard deviat ions
from the mean

Panel D: Equity Residuals

DAC: Median
DAC: IQ Range
Gaussian

Notes to Figure: For each pair of firms we compute threshold correlations on a grid of thresh-

olds defined using the standard deviation from the mean for each firm (horizontal axis). The

solid lines show the median threshold correlations across firm pairs, the gray areas mark the

interquartile (IQ) ranges and the dashed lines show the threshold correlations from a bivariate

Gaussian distribution with correlation equal to the average for all pairs of firms.
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Figure 4. Median Conditional Volatility of CDS Spreads by Industry
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Notes to Figure: We report the weekly median conditional volatility of CDS spreads by

industry using the GIC sectors in Table 1. Conditional volatility is estimated using an ARMA-

GARCH model for each firm. We combine the energy and utility sectors. Each panel title

indicates the total number of firms available for each industry throughout the sample.
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Figure 5. Quantiles of Copula Correlations:

CDS Spreads and Equity Returns
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Notes to Figure: Using all available pairs of firms we report the weekly median (black line),

and interquartile range (grey area) of the dynamic correlations from the dynamic asymmetric

(DAC) copula model.
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Figure 6. Quantiles of Tail Dependence:

CDS Spreads and Equity Returns
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Notes to Figure: Using all available pairs of firms we report the median (black line), and

interquartile range (grey area), of the dynamic tail dependence from the dynamic asymmetric

copula (DAC) model.
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Figure 7. Median Copula Correlations within Nine Industries:

CDS Spreads and Equity Returns
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Notes to Figure: We report the median dynamic copula correlation by industry using the

GIC sectors in Table 1. The black line shows CDS and the gray line equity correlations. We

combine the energy and utility sectors.
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Figure 8. Median Tail Dependence within Nine Industries:

CDS Spreads and Equity Returns
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Notes to Figure: We report the median tail dependence by industry using the GIC sectors in

Table 1. The black line shows CDS and the gray line equity correlations. We combine the

energy and utility sectors.
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Figure 9. Conditional Diversification Benefits.

Credit and Equity Portfolios. 5% Tail.
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Notes to Figure: Using equally weighted portfolios of available on-the-run CDX firms in a

given week, we compute the 5% conditional diversification benefit (CDB) using the DAC

model for CDS spreads (Panel A) and equity returns (Panel B). The credit portfolio sells

credit protection by shorting CDS contracts. The dashed line shows the average correlation

(on the left-hand axis) and the gray line shows the average volatility (on the right-hand axis).

We use the first-two years of the sample to estimate the unconditional correlation matrix, and

thus plot CDB starting in 2004.
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Figure 10. Conditional Diversification Benefits.

Credit and Equity Portfolios. 50% CDB and Volatility CDB Measures
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Notes to Figure: Using equally weighted portfolios of available on-the-run CDX firms in a given

week, we compute the 50% conditional diversification benefit (CDB) using the DAC model for

CDS spreads and equity returns. We also show the volatility-based VolCDB measure, which

only takes volatilities and linear correlations into account. The credit portfolio sells credit

protection by shorting CDS contracts.
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Energy Consumer Discretionary Consumer Discretionary (Cont.) Financials (Cont.)
Amerada Hess Corp. American Axle & Manufacturing Viacom Inc. Loews Corp.
Anadarko Petroleum Corp. Autozone Inc. Visteon Corp. MBIA Insurance Corp.
Canadian Natural Resources Ltd Belo Corp. Walt Disney Co MBNA Corp.
ConocoPhillips Black & Decker Corp. Wendy's International Inc. Marsh & Mclennan Co Inc.
Devon Energy Corp. Brunswick Corp. Whirlpool Corp. MetLife Inc.
Halliburton Co CBS Corp. YUM! Brands Inc. National Rural Utilities Coop 
KerrMcGee Corp. CENTEX Corp. Radian Group Inc.
Kinder Morgan Energy LP Carnival Corp. Consumer Staples Residential Capital Corp.
Nabors Industries Inc. Clear Channel Comms Inc. Albertsons Inc. SLM Corp.
Transocean Inc. Comcast Cable Comm. LLC Altria Group Inc. Simon Property Group Inc.
Valero Energy Corp. Comcast Corp. Beam Inc. Vornado Realty LP
XTO Energy Inc. Cox Communications Inc. CVS Caremark Corp. Washington Mutual Inc.

DIRECTV Holdings LLC Campbell Soup Co Wells Fargo & Co
Materials Darden Restaurants Inc. ConAgra Foods Inc. Weyerhaeuser Co
Alcan Inc. Delphi Corp. General Mills Inc. XLIT Limited
Alcoa Inc. Eastman Kodak Co H. J. Heinz Co iStar Financial Inc.
Barrick Gold Corp. Expedia Inc. Kraft Foods Inc.
Dow Chemical Co Ford Motor Credit Co Kroger Co Information Technology
E. I. du Pont de Nemours & Co GAP Inc. Reynolds American Inc. 1st Data Corp.
Eastman Chemical Co Gannett Co Inc. Safeway Inc. Arrow Electronics Inc.
Freeport McMoran Inc. Harrah's Operating Co Inc. Sara Lee Corp. Avnet Inc.
International Paper Co Hilton Hotels Corp. Supervalu Inc. CA Inc.
MeadWestvaco Corp. Home Depot Inc. Tyson Foods Inc. Cisco Systems Inc.
Olin Corp. J. C. Penney Co Inc. Wal Mart Stores Inc. Computer Sciences Corp.
Rio Tinto Alcan Inc. Johnson Controls Inc. Dell Inc.
Rohm & Haas Co Jones Apparel Group Inc. Health Care Electronic Data System Corp.
Sherwin Williams Co Knight-Ridder Inc. Aetna Inc. Hewlett Packard Co
Temple-Inland Inc. Kohls Corp. Amgen Inc. IAC InterActive Corp.

Lear Corp. Baxter International Inc. IBM Corp.
Industrials Lennar Corp. Boston Scientific Corp. Motorola Inc.
Boeing Capital Corp. Liberty Media Corp. Bristol Myers Squibb Co Sabre Holdings Corp.
Bombardier Capital Inc. Limited Brands Inc. Cardinal Health Inc. Sun Microsystems Inc.
Bombardier Inc. Liz Claiborne Inc. Cigna Corp. Xerox Corp.
Burlington Northern Santa Fe Lowe's Companies Inc. McKesson Corp.
CSX Corp. M.D.C. Holdings Inc. Pfizer Inc. Telecommunication Services
Caterpillar Inc. Macy's Inc. Quest Diagnostics Inc. ALLTEL Corp.
Cendant Corp. Marriott International Inc. UnitedHealth Group Inc. AT&T Corp.
Deere & Co May Department Stores Co Universal Health Services Inc. AT&T Inc.
GATX Corp. Maytag Corp. Wyeth AT&T Mobility LLC
General Electric Capital Corp. McDonald's Corp. AT&T Wireless Services Inc.
Goodrich Corp. Mohawk Industries Inc. Financials BellSouth Corp.
Honeywell International Inc. NY Times Co ACE Limited CenturyLink Inc.
Ingersoll Rand Co Newell Rubbermaid Inc. Allstate Corp. Cingular Wireless LLC
Lockheed Martin Corp. News America Inc. American Express Co Citizens Communication Co
Masco Corp. Nordstrom Inc. American International Group Inc. Embarq Corp.
Norfolk Southern Corp. Omnicom Group Inc. Berkshire Hathaway Inc. Intelsat Limited
Northrop Grumman Corp. Pulte Homes Inc. Boston Properties LP Sprint Corp.
Pitney Bowes Inc. RadioShack Corp. CIT Group Inc. Verizon Communications Inc.
R. R. Donnelley & Sons Co Sears Roebuck Acceptance Corp. Capital One Bank Verizon Global Funding Corp.
Raytheon Co Staples Inc. Capital One Financial Corp.
Ryder System Inc. Starwood Hotels & Resorts Inc. Chubb Corp. Utilities
Southwest Airlines Co TJX Companies Inc. Countrywide Home Loans Inc. American Electric Power Co Inc.
Textron Financial Corp. Target Corp. EOP Operating LP Constellation Energy Group Inc.
Union Pacific Corp. Time Warner Cable Inc. ERP Operating LP Dominion Resources Inc.
United Parcel Services Inc. Time Warner Inc. Freddie Mac Duke Energy Carolinas LLC

Toll Brothers Inc. Fannie Mae Exelon Corp.
Toys "R" Us Inc. General Motors Acceptance Corp. FirstEnergy Corp.
Tribune Co Hartford Financial Progress Energy Inc.

International Lease Finance Corp. Sempra Energy

Table 1: Company Names and Industry Classifications

Notes to Table: Using data from Markit, we consider all firms included in the first 18 series of the CDX North American investment grade index dating 
from January 1, 2001 to August 22, 2012. Our sample consists of 215 firms. Firms are ordered alphabetically within each GIC sector.



Annualized 
Average (%)

Annualized 
Standard 

Deviation (%) Skewness Kurtosis
Jarque-Bera   

p-value
AR(1) 

Coefficient
AR(2) 

Coefficient

CDS Spreads
Median 4.08 66.71 0.86 9.75 0.00 0.09 0.05
Interquartile Range [-4.48, 13.19] [60.98, 72.98] [0.48, 1.38] [7.51, 14.72] [0.00, 0.00] [0.06, 0.14] [0.02, 0.09]

Equity Prices
Median 4.17 34.83 -0.48 7.91 0.00 -0.03 -0.02
Interquartile Range [-1.72, 8.60] [28.38, 43.46] [-0.86, -0.17] [6.27, 12.05] [0.00, 0.00] [-0.06, 0.01] [-0.06, 0.02]

CDS Spreads Equity Prices

CDS Spreads
Median 0.39 -0.33
Interquartile Range [0.30, 0.47] [-0.42, -0.24]

Equity Prices
Median 0.32
Interquartile Range [0.25, 0.41]

Table 2: Descriptive Statistics on CDS Spreads, Default Intensities and Equity Prices

Panel A: Sample Moments on Weekly Log-Differences

Panel B: Correlations of Weekly Log-Differences

Notes to Table: We report sample moments on weekly CDS spreads and equity prices across available firms. Panel A reports sample moments
computed on the weekly log-differences of spreads and equity prices. Panel B reports average sample correlations across firms using weekly
log-differences. On the diagonal we report the median and IQR across the correlations between each firm and all other firms. On the off-
diagonal we report the median and IQR of the correlation between spreads and equity prices for the same firm. 



Model Chosen by AICC Criterion CDS Spreads Equity Prices
ARMA(0,0) 8% 12%
ARMA(0,1) 12% 7%
ARMA(0,2) 10% 9%
ARMA(1,0) 15% 5%
ARMA(1,1) 13% 6%
ARMA(1,2) 5% 6%
ARMA(2,0) 10% 8%
ARMA(2,1) 4% 10%
ARMA(2,2) 23% 36%

Parameter Estimates 
 Median 0.0000 0.0000

Interquartile Range [-0.00, 0.00] [-0.00, 0.00]
AR(1) Median 0.100 -0.040

Interquartile Range [-0.27, 0.59] [-0.84, 0.48]
AR(2) Median -0.280 -0.620

Interquartile Range [-0.80, 0.10] [-0.84, -0.10]
MA(1) Median 0.080 -0.030

Interquartile Range [-0.52, 0.38] [-0.48, 0.79]
MA(2) Median 0.290 0.630

Interquartile Range [0.07, 0.85] [0.07, 0.87]
L-B(4) p-value > 5% Proportion 99% 90%

Parameter Estimates CDS Spreads Equity Prices
 Median 0.780 0.800

Interquartile Range [0.68, 0.85] [0.71, 0.86]
 Median 0.130 0.050

Interquartile Range [0.09, 0.19] [0.03, 0.09]
 Median -0.200 1.230

Interquartile Range [-0.45, 0.02] [0.79, 2.05]
Volatility Persistence Median 0.950 0.980

Interquartile Range [0.89, 0.98] [0.96, 0.99]
 Median 3.720 6.560

Interquartile Range [3.30, 4.31] [5.02, 8.13]
 Median 0.100 -0.110

Interquartile Range [0.07, 0.14] [-0.16, -0.07]

L-B(4) p-value z2 > 5% Proportion 98% 87%

Table 3: Summary of ARMA-NGARCH Estimation on Weekly Log-Differences

Panel A: Conditional Mean Dynamics

Panel B: Conditional Volatility Dynamics and Return Distributions

Notes to Table: For each firm we estimate an ARMA(p,q)-NGARCH(1,1) model where the p and q are chosen by the
AICC criterion. The residual distribution is asymmetric t with parameters  and . L-B(4) denotes a Ljung-Box test that
the residuals (Panel A) or squared residuals (Panel B) are serially uncorrelated.



Skewness Kurtosis Cross-firm Correlation
Cross-Instrument 

Correlation

CDS Spreads Median 0.91 9.29 0.39 -0.33
Interquartile Range [0.44, 1.65] [6.44, 16.13] [0.30, 0.47] [-0.42, -0.24]

Equity Prices Median -0.45 5.40 0.32
Interquartile Range [-0.75, -0.24] [4.33, 7.26] [0.25, 0.41]

CDS Spreads Equity Prices CDS Spreads Equity Prices
C 0.96 0.92 0.96 0.92

C 0.02 0.02 0.02 0.02
Correlation Persistence 0.98 0.94 0.98 0.94
C,0 6.12 7.52 37.19 18.79

C,1 0.00 0.00

C 0.08 -0.23 0.00 -0.33
Composite Log-likelihood 1,142,150 696,454 1,144,583 697,187

CDS Spreads Equity Prices CDS Spreads Equity Prices
C 0.96 0.92 0.96 0.92

C 0.02 0.02 0.02 0.02
Correlation Persistence 0.98 0.94 0.98 0.94
C,0 10.06 10.81 37.19 18.78

C,1 0.00 0.00
Composite Log-likelihood 1,138,394 686,403 1,144,583 688,493

CDS Spreads Equity Prices
C 0.959 0.913

C 0.020 0.019
Correlation Persistence 0.979 0.933
Composite Log-likelihood 1,087,840 651,622

Model I: c(t) = 2 + c,0 Model II: c(t) = 2 + c,0 exp( c,1 t )

Panel D: Dynamic Normal Copula Estimation

Notes to Table: We report sample statistics on ARMA-NGARCH residuals and estimation results for different copula models. Using the
ARMA-NGARCH residuals, z, we compute in Panel A the median and interquartile range of the skewness, kurtosis, correlations for each pair
of firms, and correlations between CDS and equity for each firm. We estimate the dynamic asymmetric copula (DAC) and the dynamic
symmetric copula (DSC) with and without at time trend for the degree-of-freedom, and the dynamic normal copula (DNC) models on the 215
firms in our sample. Each of the models is estimated on ARMA-NGARCH residuals from weekly log-differences on CDS spreads and equity
prices.

Table 4: ARMA-NGARCH Residual Statistics and Dynamic Copula Parameter Estimation

Panel A: Residual Sample Moments

Panel B: Dynamic Asymmetric Copula Estimation

Model I: c(t) = 4 + c,0 Model II: c(t) = 4 + c,0 exp( c,1 t )

Panel C: Dynamic Symmetric Copula Estimation



(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.918 ** 0.431 4.556 ** 4.607 ** 5.154 ** 3.792 ** -2.702 **

CDX 1.253 ** 0.870 **

VIX 1.390 ** 0.375 **

S&P 500 return -1.159 1.571 *

S&P 500 one-year return -1.320 ** 0.393

Interest rate level -0.316 ** -0.113 *

Yield curve slope 0.426 ** -0.117

TED spread 0.000

Crude oil price 0.494 **

Business conditions index 0.024

Breakeven inflation 0.238

Adjusted R2
0.801 0.610 -0.001 0.102 0.683 0.533 0.880

(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.050 -0.037 0.047 0.052 * 0.089 0.058 * -0.355 *

First lag 0.951 ** 0.957 ** 0.991 ** 0.990 ** 0.983 ** 0.987 ** 0.923 **

CDX 0.064 * 0.055

VIX 0.080 ** 0.091 **

S&P 500 return -0.647 * -0.325

S&P 500 one-year return -0.019 0.054

Interest rate level -0.004 -0.003

Yield curve slope 0.004 -0.009

TED spread 0.000

Crude oil price 0.038

Business conditions index 0.011

Breakeven inflation 0.024

Adjusted R2
0.988 0.989 0.988 0.988 0.988 0.988 0.989

Panel B: Regressions for Median CDS Correlation With Lagged CDS Correlation

Notes to Table: In Panel A, we regress the weekly DAC median CDS correlation on the CDX North American investment grade 
index, the CBOE implied volatility index, the weekly return and the one-year trailing return on the S&P 500, the 3-month constant 
maturity U.S. Treasury rate,  the difference between the 10-year and the 3-month constant maturity U.S. Treasury rates,  the TED 
spread, the West Texas Intermediate cushing spot crude oil price, the Aruoba-Diebold-Scotti business conditions index, the U.S. 
breakeven inflation rate. All regressors are lagged, and the first lag of the regressand is included in Panel B. We compute Newey-
West standard errors, and significance for regression coefficients at 5% and 1% are denoted by * and **. All regression estimates 
are multiplied by 10 for ease of exposition, except for the first lag of the regressand.

Table 5: Regressions for Median CDS Correlation

Panel A: Regressions for Median CDS Correlation Without Lagged CDS Correlation



(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.138 ** -0.034 ** -0.113 ** -0.094 ** -0.161 ** -0.198 ** -0.168 **

Lagged CDS 0.960 ** 0.986 ** 0.983 ** 0.983 ** 0.955 ** 0.953 ** 0.951 **

Leverage 0.030 0.059 * 0.010 -0.013
S&P 500 return -0.421 ** -0.430 ** -0.434 ** -0.439 **

S&P 500 1yr return 0.018 ** 0.018 ** 0.012 * 0.009
Interest rate level 0.002 0.001 0.004 0.006 *

Yield curve slope 0.007 ** 0.007 ** 0.010 ** 0.013 **

TED spread 0.009 ** 0.008 * 0.005 0.005
Equity volatility 0.033 ** 0.030 ** 0.037 ** 0.038 **

CDS volatility 0.014 ** 0.012 **
CDS correlation 0.070 ** 0.101 **
CDS tail dependence 0.098 ** 0.236 **

Average Adj. R2 0.975 0.977 0.976 0.976 0.976 0.975 0.975

Table 6: Average Coefficients from Predictive Regressions for CDS Spreads

Notes to Table: We report average coefficients and adjusted R2 from firm-specific time series regressions. The
left hand side variable is the weekly CDS spreads for each firm. Right hand side variables include the firm’s
leverage ratio, the weekly and one-year trailing return on the S&P 500 index, the 3-month constant maturity U.S.
Treasury rate, the difference between the 10-year and the 3-month constant maturity U.S. Treasury rates, the
TED spread, the firm-level equity GARCH volatility, the firm-level CDS GARCH volatility, the average CDS
correlation with all other firms, and the average CDS tail dependence with all other firms. All regressors are
lagged, and we also include the first lag of the regressand. We run time-series regressions and then average
coefficients across firms. We compute Newey-West standard errors, and significance for regression coefficients
at 5% and 1% are denoted by * and **. Estimates for the TED spreads are multiplied by 100 for ease of
exposition.


