
Intertemporal Substitution and Hyperbolic
Discounting∗

Petra M. Geraats†

University of Cambridge

December 2014

Abstract

Evidence from behavioral experiments suggests that intertemporal preferences reflect
hyperbolic rather than exponential discounting. This paper shows that consumers tend
to have a lower elasticity of intertemporal substitution under hyperbolic discount-
ing. Furthermore, in contrast to the standard case of exponential discounting with
iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers
depends on the duration of the change in the intertemporal relative price. In partic-
ular, lasting changes in the real interest rate are likely to generate a smaller degree
of intertemporal substitution in consumption than temporary changes. For plausible
parameter values, the extent of intertemporal substitution is about 20% smaller for a
permanent change than for a temporary change, so the effect is economically signifi-
cant.
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1 Introduction

Temptations are often irresistible. This inclination for immediate gratification reflects a
bias in intertemporal preferences towards present rewards. Behavioral evidence indicates
that intertemporal discount rates decline with the delay in rewards and are well-described
by a hyperbolic discount function. This paper builds on the seminal contributions by Laib-
son (1996, 1997) and shows that hyperbolic discounting fundamentally affects intertem-
poral substitution. In contrast to the familiar result under exponential discounting with
iso-elastic utility, the elasticity of intertemporal substitution for hyperbolic consumers de-
pends on the duration of the change in the intertemporal relative price. This holds for
both sophisticated consumers, who realize that they have dynamically inconsistent pref-
erences and rationally anticipate their future behavior, and naive consumers, who do not
foresee their future self-control problems and corresponding present bias. The result that
the elasticity of intertemporal substitution is sensitive to the duration of the intertemporal
price change is a novel theoretical finding that has important implications for the effects of
macroeconomic policy.

Intuitively, the intertemporal substitution of consumption depends on the difference be-
tween the real interest rate and the (effective) discount rate. With hyperbolic discounting
the discount rate declines as the time horizon increases and the effective discount rate is
a consumption-weighted average of the high short-run and the low long-run discount rate.
For a short change in the interest rate, future intertemporal trade-offs are not affected so the
effective discount rate remains constant. But a lasting interest rate change generally influ-
ences the effective discount rate, which alters the effect of the interest rate on intertemporal
substitution. In particular, when the income effect dominates the substitution effect of a
permanent increase in the real interest rate, the consumption rate rises, which increases the
effective discount rate towards the higher, short-run discount rate. This partially offsets the
increase in the real interest rate and diminishes the degree of intertemporal substitution.

The theoretical literature has identified several ways in which hyperbolic and exponen-
tial consumers differ. Laibson (1998) provides a useful overview. One interesting distinc-
tion is that hyperbolic discounting helps to explain the empirical anomaly that the elasticity
of intertemporal substitution is less than the inverse of the coefficient of relative risk aver-
sion. This was first shown by Laibson (1996) for a permanent change in the real interest
rate with sophisticated consumers in discrete time. The present paper establishes that hy-
perbolic discounting has a more profound effect on intertemporal substitution. In contrast
to exponential discounting with iso-elastic utility, where the length of the change in the
real interest rate is immaterial, the elasticity of intertemporal substitution under hyperbolic
discounting depends on the duration of the intertemporal price change. For plausible levels
of risk aversion, the elasticity of intertemporal substitution is smaller for more persistent
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changes. This result also applies to naive consumers and to exponential utility.
Another interesting new finding of this paper is the possibility of negative elasticity

values for naive hyperbolic consumers with a low degree of self control. Together with the
importance of persistence for intertemporal substitution, this provides a potential explana-
tion for the wide range of estimates of the elasticity of intertemporal substitution in the
empirical literature.

These effects of hyperbolic discounting already hold for the standard infinite-horizon
model with one liquid asset and no financial market imperfections, for which the consump-
tion behavior of hyperbolic and exponential agents is otherwise indistinguishable. The
(quasi-) hyperbolic discrete-time model with sophisticated hyperbolic consumers with iso-
elastic utility and a time-varying interest rate is presented in section 2. The main result
of the paper, namely that the elasticity of intertemporal substitution under hyperbolic dis-
counting is likely to be smaller than under exponential discounting and decreasing in the
duration of the change in the interest rate, is established in section 3. Subsequently, section
4 shows that this result is robust: It also holds for naive consumers and for exponential
utility. It is also relevant for more realistic ‘buffer-stock’ models. The empirical and policy
implications are addressed in the concluding section 5.

2 Hyperbolic Discounting

Intertemporal discounting has been studied extensively in psychology. Experiments re-
garding human (and animal) behavior show that the rate of time preference depends on the
time interval τ between the moment of choice and the actual events (e.g. Ainslie 1992).
Imminent outcomes are discounted at a higher rate than payoffs in the distant future. This
can be described by the generalized hyperbolic discount function φh(τ) = (1 + ατ)−γ/α

(Loewenstein and Prelec 1992). The corresponding discount rate γ/ (1 + ατ) decreases in
the delay τ , which is consistent with behavioral data (e.g. Thaler 1981, Benzion, Rapoport
and Yagil 1989).

Hyperbolic discounting gives rise to time-variant intertemporal preferences that feature
a systematic bias towards immediate gratification.1 Intertemporal choices in the distant
future are evaluated at a lower discount rate than immediate choices, which gives rise to
dynamic inconsistency. Since the currently optimal plan may no longer be optimal in the
future, it is useful to model an individual as distinct ‘temporal selves’ who are each in
control for one period. Generally, the optimal decision for the current self depends on the
anticipated behavior of future selves. A ‘sophisticated’ person has rational expectations of
future behavior, whereas a ‘naive’ person wrongly believes that future selves will act in the

1For a useful introduction to such time-variant preferences, see Rabin (1998, Section 4.D).
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interest of the current self (Strotz 1956, Pollak 1968).
Laibson (1996) analyzes a standard consumption model with a ‘quasi-hyperbolic’ dis-

count function that was first used by Phelps and Pollak (1968) to model imperfect intergen-
erational altruism and that mimics the hyperbolic shape of behavioral discount functions.
In particular, it is assumed that each temporal self t maximizes life-time utility

Ut = u (Ct) + β
∞∑
i=1

δiu (Ct+i) (1)

where u (C) is the instantaneous utility from consumptionC; β is the degree of self-control
which reduces the ‘present bias’ in intertemporal preferences (0 < β ≤ 1);2 and δ is the
intertemporal discount factor (0 < δ < 1). Note that the quasi-hyperbolic specification
conveniently nests exponential discounting as the special case in which the present bias
parameter β = 1.

For analytical convenience utility is assumed to be iso-elastic with constant relative risk
aversion (CRRA):

u (C) =
C1−ρ − 1

1− ρ
(2)

where ρ is the coefficient of relative risk aversion (ρ > 0). Each self s is endowed with life-
time wealth Ws and is in control to choose the consumption level Cs. Each self s is able to
invest in one (liquid) asset and faces no credit market imperfections, so 0 ≤ Cs ≤ Ws. The
subsequent period, self s+ 1 inherits the remaining wealth level

Ws+1 = Rs (Ws − Cs) (3)

where Rs is the gross real interest rate in period s. In contrast to Laibson (1996), who
considers a constant interest rate (Rs = R̄ for all s), this paper allows for a time-varying
(yet deterministic) interest rate to analyze the effect of the duration of interest rate changes
on intertemporal substitution. Finally, it is assumed that each self s is sophisticated and
rationally anticipates the behavior of future selves. Extensions to this basic model are
discussed in section 4.

Without loss of generality, let λs denote the fraction of life-time wealth Ws that is
consumed by self s, so that Cs = λsWs, where 0 ≤ λs ≤ 1. Then, dynamic programming
can be used to derive the intertemporal Euler equation for self s:3

u′ (Cs) = Rs [λs+1βδ + (1− λs+1) δ]u′ (Cs+1) (4)

This resembles the Euler equation under exponential discounting, except that the discount
factor δ is replaced by the effective discount factor δH ≡ λs+1βδ + (1− λs+1) δ. The

2The term ‘present-biased preferences’ was first coined by O’Donoghue and Rabin (1999), who analyzed
whether to do an activity now or later.

3The derivation is in appendix A.1.
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standard exponential case is obtained for β = 1. The hyperbolic Euler equation shows that
the intertemporal substitution of consumption depends on the real interest rate R and the
effective discount rate δH . The latter is a weighted average of the short-run and long-run
discount factors βδ and δ, where the weights are the next period consumption rate and
saving rate, λt+1 and 1− λt+1, respectively.

To find the optimal consumption rate, substitute (2), Cs = λsWs and (3) into (4), and
rearrange to get the following recursion formula for λs:

λs =
λs+1(

R1−ρ
s δ

)1/ρ
[1− (1− β)λs+1]1/ρ + λs+1

(5)

When the horizon of the consumer is finite, the consumption rate λs can be computed re-
cursively for any time pattern of the interest rate Rs using (5) and the fact that λT = 1 in
the final period T . In the infinite-horizon model, (5) can be used to derive the effect of
temporary changes in the interest rate. In particular, suppose there is a one-period change
in rs ≡ lnRs, which is the continuously compounded real interest rate. Then, the fu-
ture consumption rate λs+1 is not affected and the effect on the current consumption rate,
∂λs/∂rs = Rs∂λs/∂Rs, can be found by differentiating (5), which gives after simplifying

∂λs
∂rs

=
ρ− 1

ρ
λs (1− λs) (6)

The effect of the real interest rate on the consumption rate depends on the coefficient of
relative risk aversion ρ. For ρ > 1, an increase in the interest rate raises the consumption
rate (∂λs/∂rs > 0) as the income effect outweighs the intertemporal substitution effect.
For ρ < 1, an interest rate rise reduces the consumption rate (∂λs/∂rs < 0) as the in-
tertemporal substitution effect dominates. For ρ = 0, both effects offset each other and
the consumption rate is independent of the interest rate (∂λs/∂rs = 0). These results hold
regardless of the degree of self-control β. Nevertheless, there is an important difference
between exponential and hyperbolic consumers. It follows from (5) that the present-bias
under hyperbolic discounting (0 < β < 1) causes a higher consumption rate λs for a
given level of λs+1. As a result, the quantitative effect of an interest rate change on the
consumption rate is different under hyperbolic discounting.

Before analyzing interest rate changes of various durations in the next section, it is
useful to consider the special case in which the gross real interest rate remains constant:
Rs = R̄ for all s. Then, the model reduces to the one analyzed by Laibson (1996). With
a constant interest rate, the consumer faces the same infinite-horizon problem for every
period s, so the consumption ratio satisfies λs = λ̄ for all s, where 0 < λ̄ < 1. Substituting
this into (5) and rearranging yields4

λ̄ = 1−
(
R̄1−ρδ

)1/ρ [
1− (1− β) λ̄

]1/ρ (7)

4This expression corresponds to equation (9) in Laibson (1996).
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This implicitly defines a unique optimal consumption rate λ̄, but typically no closed-form
solution exists.5 For β = 1, the outcome under exponential discounting emerges:

λ̄E = 1−
(
R̄1−ρδ

)1/ρ (8)

Since hyperbolic discounters have a lower degree of self-control (β < 1), they consume at
a higher rate than exponential discounters: λ̄ > λE .

Equipped with the expressions for the optimal consumption rate under hyperbolic dis-
counting, the analysis now turns to intertemporal substitution.

3 Intertemporal Substitution

Intertemporal substitution by consumers depends on the intertemporal relative price of cur-
rent consumption, R. The elasticity of intertemporal substitution measures how the in-
tertemporal consumption ratio Ct+1/Ct is affected by the gross real interest rate R:

σ ≡ d (Ct+1/Ct)

dR

R

Ct+1/Ct
=
d ln (Ct+1/Ct)

d lnR

In the case of exponential discounting (β = 1), it is straightforward to use (2) and (4) to
show that σE = 1/ρ. This is the familiar result that for iso-elastic utility, the elasticity
of intertemporal substitution equals the inverse of the coefficient of relative risk aversion
ρ. This result holds regardless of the duration of the change in the interest rate R. Under
exponential discounting, a one-period change and a permanent change in the intertemporal
price R have exactly the same proportional effect on the intertemporal consumption ratio
Ct+1/Ct. However, it turns out that this no longer holds when consumers are hyperbolic
discounters. For hyperbolic consumers, the elasticity of intertemporal substitution gener-
ally depends on the duration of the change in the real interest rate.

Consider the effect of a change in the interest rate Rt for τ periods. Let R denote the
changing gross real interest rate in periods s ∈ {t, t+ 1, ..., t+ τ − 1} and R̄ the con-
stant gross real interest rate in periods s ∈ {t+ τ , t+ τ + 1, ...}. This means that starting
in period t + τ , the consumer faces an infinite-horizon problem with a constant inter-
est rate R̄ so that λs = λ̄ for s ∈ {t+ τ , t+ τ + 1, ...}, where λ̄ is given by (7). For
s ∈ {t, t+ 1, ..., t+ τ − 1}, the optimal consumption rate λs is given by the recursion for-
mula (5) with Rs = R and λt+τ = λ̄. Using (2) and taking logs, the Euler equation (4)
becomes

ln (Ct+1/Ct) =
1

ρ
{lnR + ln δ + ln [1− (1− β)λt+1]} (9)

5An exception is logarithmic utility (ρ = 1), in which case λ̄ = 1−δ
1−(1−β)δ .
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So, the elasticity of intertemporal substitution of sophisticated hyperbolic consumers in
response to a change in the gross real interest rate R is equal to

σS =
d ln (Ct+1/Ct)

dr
=

1

ρ
− 1

ρ

1− β
1− (1− β)λt+1

dλt+1

dr
(10)

where r ≡ lnR denotes the continuously compounded real interest rate. In the case of
exponential discounting (β = 1), this expression reduces to σE = 1/ρ. However, under
hyperbolic discounting (β 6= 1) the elasticity of intertemporal substitution σS depends on
dλt+1/dr, which generally depends on the duration τ of the change in the real interest rate
r. Let σS,τ denote the elasticity of intertemporal substitution of a sophisticated hyperbolic
consumer in response to a change in the real interest rate r of τ periods. There is one special
case in which the elasticity σS is independent of the duration τ . For ρ = 1, the consumption
rate is independent of the interest rate (see (6)), so that σS = 1/ρ = 1, regardless of the
duration of the interest rate change.

First, suppose the change in the interest rate R lasts one period (τ = 1) so that R̄
prevails from period t+1. Then λt+1 = λ̄, which is independent ofR, so dλt+1/dr = 0. As
a result, the elasticity of intertemporal substitution for sophisticated hyperbolic consumers
in response to a one-period change in R is equal to

σS,1 =
1

ρ

This is identical to the outcome under exponential discounting. The reason is that for a
one-period change in the interest rate, the intertemporal Euler equation (4) for hyperbolic
consumers (with effective discount factor δ̄H ≡ λ̄βδ+

(
1− λ̄

)
δ) is observationally equiv-

alent to the one for exponential consumers (with discount factor δ), so that it implies the
same degree of intertemporal substitution.

Now, consider a two-period change in the real interest rate (τ = 2). This means that λt
and λt+1 are given by (5), where λt+2 = λ̄. So, dλt+2/dr = 0 and dλt+1/dr is given by
(6). Substituting this into (10) gives the elasticity of intertemporal substitution

σS,2 =
1

ρ
− ρ− 1

ρ2

1− β
1− (1− β)λt+1

λt+1 (1− λt+1)

This shows that under hyperbolic discounting (0 < β < 1), the elasticity for a two-period
change σS,2 differs from the elasticity for one-period change σS,1, except when ρ = 1. In
particular, σS,2 < σS,1 = 1/ρ for ρ > 1, and σS,2 > σS,1 = 1/ρ for ρ < 1. To understand
the intuition behind this result, consider a two-period increase in the real interest rate Rt.
If the income effect dominates the substitution effect (ρ > 1), the increase in Rt+1 raises
the consumption rate λt+1, which reduces the effective discount factor δH as it puts greater
weight on the short run discount factor βδ. This partially offsets the effect of the increase in
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Rt and thereby diminishes the degree of intertemporal substitution. But, if the substitution
effect dominates (ρ < 1), the consumption rate λt+1 declines, which increases the effective
discount factor δH and reinforces the effect of Rt on intertemporal substitution.

Now, suppose that the change in the real interest rate lasts three periods (τ = 3). This
means that λt, λt+1 and λt+2 are given by (5), where λt+3 = λ̄. Now, dλt+3/dr = 0, so
dλt+1

dr
= ∂λt+1

∂r
+ ∂λt+1

∂λt+2

∂λt+2

∂r
, where ∂λs/∂r is given by (6) for s ∈ {t+ 1, t+ 2}. Substi-

tuting this into (10) yields

σS,3 =
1

ρ
− ρ− 1

ρ2

1− β
1− (1− β)λt+1

[
λt+1 (1− λt+1) + λt+2 (1− λt+2)

∂λt+1

∂λt+2

]
This shows that the elasticity of intertemporal substitution σS,3 is similar to σS,2, except
for the extra term in square brackets. It can be shown that ∂λt+1/∂λt+2 > 0, so that this
extra term is strictly positive (also for β = 1).6 This reflects the fact that a longer change
in the interest rate r has a bigger effect on the consumption rate λt+1. Under hyperbolic
discounting, this induces a larger change in the effective discount factor δH . As a result,
σS,3 < σS,2 < σS,1 = 1/ρ for ρ > 1, and σS,3 > σS,2 > σS,1 = 1/ρ for ρ < 1. In
other words, the deviation of the hyperbolic elasticity σS,τ from the exponential elasticity
σE = 1/ρ is larger for a longer duration τ of the real interest rate change.

This result holds more generally. In fact, it is possible to derive an analytical expression
for σS,τ and show that it is monotonic in τ for ρ 6= 1.

Proposition 1 The elasticity of intertemporal substitution of a sophisticated hyperbolic
consumer with CRRA utility (2) in response to a change in the real interest rate r of τ
periods is equal to

σS,τ =
1

ρ
− ρ− 1

ρ2

1− β
1− (1− β)λt+1

t+τ−1∑
i=t+1

λi (1− λi)
i−1∏
s=t+1

∂λs
∂λs+1

(11)

for τ ∈ {1, 2, 3, ...}, where λs is given by (5) for s ∈ {t+ 1, ..., t+ τ − 1} and λt+τ = λ̄,
with λ̄ determined by (7). The elasticity σS,τ is monotonically decreasing (increasing) in
the duration τ if ρ > 1 (ρ < 1). For ρ = 1, σS,τ = 1 regardless of τ .

The proof of this Proposition is in Appendix A.1. Intuitively, an increase in the real in-
terest rate r raises the consumption rate λ when the income effect dominates the intertem-
poral substitution effect (ρ > 1). A longer interest rate increase causes a larger rise in the
consumption rate. Under hyperbolic discounting, the higher consumption rate λ induces
the consumer to put greater weight on the low, short-run discount factor βδ and less weight
on the high, long-run discount factor δ, which reduces the effective hyperbolic discount

6Differentiating (5) and simplifying gives ∂λs

∂λs+1
= 1

ρ
λs(1−λs)
λs+1

(
ρ+ (1−β)λs+1

1−(1−β)λs+1

)
> 0.

8



factor δH . This reduction in the effective discount factor partially offsets the effect of the
interest rate increase, thereby diminishing intertemporal substitution of consumption. This
effect is stronger for a more persistent increase in the interest rate. Hence, the elasticity
of intertemporal substitution σS,τ is decreasing in the duration τ of the interest rate change
for ρ > 1. Similarly, when the intertemporal substitution effect dominates (ρ < 1), an in-
crease in the real interest rate r reduces the consumption rate λ, which raises the effective
hyperbolic discount factor δH and reinforces the effect of the interest rate increase on the
intertemporal substitution of consumption. Again, this effect is stronger for a more persis-
tent increase in the interest rate, so that σS,τ is increasing in τ for ρ < 1. Since the elasticity
of intertemporal substitution in response to a one-period change in the interest rate σS,1 is
equal to the exponential outcome σE = 1/ρ, the monotonicy result in Proposition 1 implies
that the deviation of the hyperbolic elasticity σS,τ from the exponential elasticity σE is in-
creasing in the duration τ of the real interest rate change: |σS,τ+1 − 1/ρ| ≥ |σS,τ − 1/ρ|,
with strict inequality for ρ 6= 1.

It is useful to consider the limiting case as τ → ∞, which means that the change in
the interest rate is permanent. This case corresponds to the Laibson (1996) model, which
assumes a constant interest rate. The elasticity of intertemporal substitution for a sophis-
ticated hyperbolic consumer in response to a permanent change in the real interest rate
equals7

σ̄S =
1

ρ
− ρ− 1

ρ

(1− β)
(
1− λ̄

)
ρ
[
1− (1− β) λ̄

]
− (1− β)

(
1− λ̄

) (12)

It is possible to show that limτ→∞ σS,τ = σ̄S . Under exponential discounting (β = 1), σ̄S
reduces to σE = 1/ρ. But in a hyperbolic economy (0 < β < 1), σ̄S < 1/ρ if ρ > 1.8

So, the qualitative effect of a permanent change is the same as for temporary changes. But
the deviation from the exponential outcome σE = 1/ρ is larger for a permanent change.
In particular, Proposition 1 implies that for ρ > 1, σ̄S < ... < σS,2 < σS,1 = 1/ρ. This
means that the degree of intertemporal substitution becomes smaller as the persistence of
the real interest rate increases. In other words, a one-period change has the largest effect
on intertemporal substitution. For ρ < 1, the results are reversed and lasting changes are
more effective.

To assess whether the difference between the ‘permanent’ elasticity σ̄S and the ‘one-
period’ elasticity σS,1 could be significant, suppose that the parameters are ρ = 2, R =

1.028, δ = 0.96 and β = 0.7. These values are taken from Laibson, Repetto and Tobacman
(2005), who estimate β and δ with the Method of Simulated Moments, assuming a struc-

7This expression, which corresponds to equation 15 in Laibson (1996), can be derived from (10) by using
λt+1 = λ̄ and R̄ = R, and differentiating (7) to obtain dλ̄/dR̄.

8This is Proposition 5 in Laibson (1996). Or, rewrite (12) to get σ̄S = 1

ρ+(ρ−1)(1−λ̄)(1−β)/β
, so for ρ > 1,

0 < σ̄S < 1/ρ.
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Figure 1: Elasticity of intertemporal substitution for sophisticated hyperbolic consumers.

tural ‘buffer-stock’ consumption model and using US data from the Survey of Consumer
Finances (SCF) and the Panel Study of Income Dynamics (PSID). For these parameter val-
ues, a one-period change in the real interest rate gives σS,1 = 0.5, whereas a permanent
change yields σ̄S = 0.415. This implies that the effect on the intertemporal consump-
tion ratio is 20.5% larger for a one-period change in the interest rate than for a permanent
change. So, the difference between the effect of a temporary and a lasting change on in-
tertemporal substitution could be economically significant.

An interesting question is how long the change in the interest rate needs to last to
move away from the exponential outcome σE and get close to σ̄S . To investigate this,
the effect of τ on σS,τ is analyzed numerically. In particular, σS,τ is computed using the
expression in (11).9 Again, the baseline parameters are ρ = 2, R = 1.028, δ = 0.96

9Alternatively, σS,τ could be approximated by computing the numerical derivative ∆ ln (Ct+1/Ct) /∆r

for small ∆r using (9). For ∆r = 0.0001 (i.e. one basis point), this gives virtually the same numerical
results.
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and β = 0.7, as estimated by Laibson et al. (2005). Figure 1 shows how the elasticity
of intertemporal substution σS,τ for sophisticated hyperbolic consumers depends on the
duration τ of the change in the real interest rate. For τ = 1, the exponential outcome
σE = 1/2 is obtained. As the duration τ of the interest rate change increases, the elasticity
of intertemporal substitution σS,τ becomes smaller and gradually converges to σ̄S = 0.415.
However, very high values of τ are required to get close to σ̄S . In particular, to achieve a
value of σS,τ that bridges half of the gap between σS,1 and σ̄S , a duration τh of about 21
periods (years) is needed.

Using different parameter values gives qualitatively the same results, except for ρ < 1,
when the elasticity σS,τ increases from σE = 1/ρ to σ̄S as τ rises, and for ρ = 1, when
σS,τ = 1 for all τ . But the ‘speed’ of the convergence of σS,τ to σ̄S is sensitive to the
specific parameter values. In particular, higher levels of ρ and δ, and lower levels of r
increase the duration τh required to make up half the difference between σS,1 and σ̄S . For
instance, increasing δ from 0.96 to 0.99 raises τh from 21 to 38 years. Even for the lowest
plausible estimate for δ in the robustness check by Laibson et al. (2005, Table 5), namely
δ = 0.94, τh is still about 17 years. This suggests that a very long duration τ of the interest
rate change is needed to obtain a significant difference between the exponential elasticity
of intertemporal substitution σE and the hyperbolic elasticity σS,τ .

4 Robustness

This section shows the robustness of the result that hyperbolic consumers exhibit an elas-
ticity of intertemporal substitution that depends on the persistence of the interest rate and
is smaller than for exponential consumers. Four variations on the baseline model in section
2 are considered. First, it is plausible that hyperbolic consumers may not be fully sophis-
ticated, so section 4.1 analyzes the model with naive consumers that fail to anticipate their
future self-control problems. Second, section 4.2 analyzes intertemporal substitution of so-
phisticated hyperbolic consumers with CARA utility. Third, section 4.3 discusses a richer,
buffer-stock model with stochastic income and liquidity constraints. In each of these cases,
the main results remain relevant.

4.1 Naive Consumers

Consider the basic consumption model in section 2 with the quasi-hyperbolic discount
function, one liquid asset and no credit market imperfections, but now suppose the con-
sumer is naive and incorrectly believes that future selves will act in the interest of the
current self. More precisely, each self t maximizes life-time utility Ut (1) and thinks that
future selves s ∈ {t+ 1, t+ 2, ...} also maximize Ut (instead of Us). Although the current
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self t knows that it is a hyperbolic discounter with an inclination for immediate gratifica-
tion, it naively believes that future selves do not have present-biased preferences but behave
as exponential discounters (β = 1). The formal analysis of the model with naive hyperbolic
consumers is in Appendix A.2.

The naive self t believes that future selves s ∈ {t+ 1, t+ 2, ...} have the same con-
sumption rate as exponential consumers, so the intended future consumption rate equals

λ̃s =
λ̃s+1(

R1−ρ
s δ

)1/ρ
+ λ̃s+1

(13)

Believing that future selves set λ̃s, the current naive self chooses

λN,t =
λ̃t+1(

R1−ρ
t βδ

)1/ρ
+ λ̃t+1

(14)

This is the actual consumption rate of all naive hyperbolic selves. For β = 1, (14) is equal
to the exponential outcome in (13). A lower degree of self-control (0 < β < 1) increases
the naive consumption rate so that λN,t > λ̃t. This means that the naive hyperbolic con-
sumer is running down life-time wealth faster than an exponential consumer. Besides that
the naive consumption rate λN,t has the familiar property that it is increasing (decreasing)
in the real interest rate Rt for ρ > 1 (ρ < 1), but independent of Rt for ρ = 1.

Suppose, as before, that the gross real interest rate equalsR in periods s ∈ {t, t+ 1, ..., t+ τ − 1}
and R̄ in periods s ∈ {t+ τ , t+ τ + 1, ...}. This means that starting in period t + τ , the
intended consumption rate equals the exponential outcome with a constant interest rate in
(8). So, λ̃s = λ̄E for s ∈ {t+ τ , t+ τ + 1, ...}. For s ∈ {t+ 1, ..., t+ τ − 1}, λ̃s is given
by the recursion formula in (13) with Rs = R. The actual naive consumption rate λN,s is
given by (14) for all selves s.

To analyze intertemporal substitution for naive hyperbolic consumers one can no longer
rely on the intertemporal Euler equation for consumption. The reason is that it merely de-
scribes intended rather than actual intertemporal substitution for naive consumers. Instead,
actual consumption based on (14) needs to be used. This leads to an analytical expression
for the naive hyperbolic elasticity of intertemporal substitution σN,τ , which has the same
monotonicity properties as the sophisticated hyperbolic elasticity σS,τ :

Proposition 2 The elasticity of intertemporal substitution of a naive hyperbolic consumer
with CRRA utility (2) in response to a change in the real interest rate r of τ periods is equal
to

σN,τ =
1

ρ
− ρ− 1

ρ

λN,t+1 − λ̃t+1

1− λ̃t+1

t+τ−1∑
i=t+1

i∏
s=t+1

(
1− λ̃s

)
(15)
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for τ ∈ {1, 2, 3, ...}, where λN,t+1 is given by (14), λ̃s is given by (13) for s ∈ {t+ 1, ..., t+ τ − 1},
and λ̃t+τ = λ̄E in (8). The elasticity σN,τ is monotonically decreasing (increasing) in the
duration τ if ρ > 1 (ρ < 1). For ρ = 1, σN,τ = 1 regardless of τ .

The proof of this Proposition appears in Appendix A.2. In the absence of a present bias
(β = 1), the actual and intended naive consumption rates are equal (λN,s = λ̃s), so (15)
reduces to the exponential outcome σE = 1/ρ. But under hyperbolic discounting (β < 1),
the naive consumption rate exceeds the exponential rate (λN,s > λ̃s). So, σN,τ < 1/ρ

for ρ > 1 and σN,τ > 1/ρ for ρ < 1, similar to the sophisticated case. In addition, the
elasticity of intertemporal substitution σN,τ depends on the duration τ of the interest rate
change. The deviation from the exponential elasticity σE = 1/ρ is again increasing in the
duration τ : |σN,τ+1 − 1/ρ| ≥ |σN,τ − 1/ρ|, with strict inequality for ρ 6= 1.

In the limiting case as τ → ∞, the change in the real interest rate is permanent. For
a constant interest rate R̄, the naive hyperbolic consumption rate follows from substituting
λE in (8) for λ̃t+1 in (14):

λ̄N =
1−

(
R̄1−ρδ

)1/ρ

1−
(

1− β1/ρ
) (
R̄1−ρδ

)1/ρ
(16)

For β = 1 this reduces to the exponential outcome λ̄E = 1−
(
R̄1−ρδ

)1/ρ, which is also the
intended future consumption rate of the naive hyperbolic consumer. But the self-control
problem (β < 1) causes the naive hyperbolic discounter to consume more than intended in
every period (λ̄N > λ̄E).10

The elasticity of intertemporal substitution for a naive hyperbolic consumer in response
to a permanent change in the real interest rate equals

σ̄N =
1

ρ
− ρ− 1

ρ

λ̄N − λ̄E
λ̄E

(17)

This can be derived from (15) as limτ→∞ σN,τ = σ̄N .11 For β = 1, λ̄N = λ̄E so that σ̄N
reduces to σE = 1/ρ. But in a hyperbolic economy (0 < β < 1), λ̄N > λ̄E so σ̄N < 1/ρ

for ρ > 1 and σ̄N > 1/ρ for ρ < 1, just like σN,τ for temporary interest rate changes. The
deviation from the exponential outcome σE = 1/ρ is again largest for a permanent change.
In particular, Proposition 2 implies that for ρ > 1, σ̄N < ... < σN,2 < σN,1 = 1/ρ, while

10The naive consumption rate λ̄N is typically different from the sophisticated rate λ̄. An exception is
logarithmic utility (ρ = 1), when (7) and (16) yield λ̄ = 1−δ

1−(1−β)δ = λ̄N , so that naive and sophisticated
behavior coincide, as was first shown by Pollak (1968).

11Use the fact that limτ→∞ λ̃s = λ̄E and limτ→∞ λN,s = λ̄N . Alternatively, Cs = λ̄NWs and (3) imply
Ct+1/Ct = R̄

(
1− λ̄N

)
, so σ̄N = 1 − 1

1−λ̄N

dλ̄N

dr̄ . Substituting dλ̄N

dr̄ = ρ−1
ρ

λ̄N

λ̄E

(
1− λ̄N

)
from (16), and

rearranging gives (17).
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for ρ < 1, σ̄N > ... > σN,2 > σN,1 = 1/ρ. So, for ρ > 1 a one-period change has the
strongest effect on intertemporal substitution, whereas for ρ < 1 a permanent change is
most effective.

So far, the analysis suggests that the qualitative features of the sophisticated and naive
hyperbolic elasticities σS,τ and σN,τ are exactly the same. However, there is one interesting
difference. The naive elasticity of intertemporal substitution σN,τ could actually be nega-
tive for ρ > 1 and β sufficiently small. A lower degree of self-control β could increase λ̄N
so much that σ̄N < 0 for ρ > 1.12 For example, ρ = 3, β = 0.2, δ = 0.99 and r = 3%

imply σ̄N = −0.122. Intuitively, when the income effect dominates the substitution effect
and the degree of self-control is small enough, an increase in the interest rate could raise
current consumption so much that the net effect on wealth is negative and the intertemporal
consumption ratio Ct+1/Ct actually declines.

There could be a major difference between the one-period elasticity and the permanent
elasticity for naive hyperbolic consumers. In the previous example, σN,1 = 0.333 versus
σ̄N = −0.122. This illustrates that the effect on intertemporal substitution could be both
quantitatively and qualitatively different for a one-period and a permanent interest rate
change when consumers are naive hyperbolic discounters. Using the baseline parameters
ρ = 2, R = 1.028, δ = 0.96 and β = 0.7, estimated by Laibson et al. (2005), the
naive elasticities are positive and the difference is considerably smaller: σN,1 = 0.5 versus
σ̄N = 0.406. Nevertheless, this implies that the effect on the intertemporal consumption
ratio for a one-period change in the interest rate is 23.2% larger than for a permanent
change. So, for plausible parameter values, temporary and lasting interest rate changes
have significantly different effects on the intertemporal substitution of naive hyperbolic
consumers.

The effect of the duration τ of the interest rate change on the naive elasticity of in-
tertemporal substitution σN,τ is very similar to the sophisticated case. For the baseline
parameters ρ = 2, R = 1.028, δ = 0.96 and β = 0.7, the profile of σN,τ is close to the one
depicted in Figure 1. Just like in the sophisticated case, very long interest rate changes are
needed to get close to the permanent elasticity σ̄N . In particular, to bridge the half the gap
between σN,1 and σ̄N again takes about 21 years for the baseline parameters.

This section has shown that the elasticities of intertemporal substitution for naive and
sophisticated hyperbolic consumers display the same qualitative features, with one excep-
tion. Naive hyperbolic consumers could actually have a negative elasticity of intertemporal
substitution when ρ > 1 and β is small. Besides that, intertemporal substitution by naive
and sophisticated hyperbolic consumers is quite similar. Compared to exponential dis-
counting, the elasticity of intertemporal substitution for hyperbolic discounting is generally

12More formally, using (16) and (17) gives limβ→0 σ̄N = 1 − (ρ− 1) /ρλ̄E , so σ̄N < 0 for ρ >

1/
(
1− λ̄E

)
> 1 and β close to 0.
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different, but there are two exceptions. First, for logarithmic utility (ρ = 1) the consump-
tion rate λ is independent of the real interest rate R, so σN,τ = σS,τ = σE = 1. Second,
for a one-period change in the real interest rate, σN,1 = σS,1 = σE = 1/ρ. However, for
ρ 6= 1 and τ 6= 1, Propositions 1 and 2 imply that σN,τ and σS,τ always differ from the
exponential outcome σE = 1/ρ and that they are monotonic in the duration τ of the inter-
est rate change. For the plausible case in which ρ > 1, σN,τ < σE and σS,τ < σE , which
means that there is less intertemporal substitution with hyperbolic than with exponential
discounters.

4.2 CARA Utility

The results so far have been derived for the constant relative risk aversion utility (2) and it
is natural to wonder to what extent the results extend to the constant absolute risk aversion
(CARA) utility function

u (C) = −1

θ
e−θC (18)

where θ is the coefficient of absolute risk aversion (θ > 0). To derive optimal consumption
with CARA utility, postulate that consumption by self s equals Cs = λsWs + κs. Then it
is easy to show that the Euler equation (4) continues to hold. To derive the optimal λs and
κs, substitute (18), Cs = λsWs + κs and (3) into (4), and rearrange to get the following
recursion formulas:

λs =
λs+1Rs

1 + λs+1Rs

(19)

κs =
1

1 + λs+1Rs

κs+1 −
lnRs + ln [λs+1βδ + (1− λs+1) δ]

θ (1 + λs+1Rs)
(20)

This shows that a lower degree of self-control β increases autonomous consumption κs.
In the special case in which the real interest rate remains constant, Rs = R̄ for all s,

the consumer faces the same infinite-horizon problem for every period s, so λs = λ̄ and
κs = κ̄ for all s. Substituting this into (19) and (20) and rearranging yields

λ̄ =
R̄− 1

R̄
and κ̄ = −

ln δ + ln
[(
R̄− 1

)
β + 1

]
θ
(
R̄− 1

) (21)

Thus, with CARA utility there is a closed-form solution for optimal consumption under hy-
perbolic discounting, as first shown by Maliar and Maliar (2004) for a model with stochas-
tic income shocks. For β = 1, the outcome under exponential discounting is obtained with
κ̄E = − ln δ+ln R̄

θ(R̄−1)
. Since hyperbolic discounters have a lower degree of self-control (β < 1),

they have higher autonomous consumption (κ̄ > κ̄E), while their consumption rate is not
affected (λ̄ = λ̄E).

As before, consider a change in the gross real interest rateR at time t for τ periods such
that Rs = R for s ∈ {t, t+ 1, ..., t+ τ − 1} and Rs = R̄ for s ∈ {t+ τ , t+ τ + 1, ...}. To
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determine the effect on intertemporal substitution of consumption, use (18) and rearrange
the Euler equation (4) to get

Ct+1

Ct
=

1

θCt
{lnR + ln δ + ln [1− (1− β)λt+1]}+ 1 (22)

This is very similar to (9), except that the constant coefficient of relative risk aversion ρ
has been replaced by the relative risk aversion measure θCt. Although the term in curly
brackets is the same as for CRRA utility, interest rate changes also affect relative risk aver-
sion θCt under CARA utility, which could result in qualitatively different outcomes, even
with exponential discounting (β = 1). Unfortunately, the fact that relative risk aversion is
no longer constant greatly complicates the derivation of analytical results, so a numerical
analysis is performed instead.

The level of consumption Ct = λtWt+κt can be obtained using the recursion formulas
(19) and (20), with λs = λ̄ and κs = κ̄ for s ∈ {t+ τ , t+ τ + 1, ...}, where λ̄ and κ̄ are
given by (21). The intertemporal consumption ratio Ct+1/Ct follows from (22) and the
elasticity of intertemporal substitution σS,τ for a change in the real interest rate of duration
τ is computed using the numerical derivative ∆ ln (Ct+1/Ct) /∆r for ∆r = 0.0001.13

First, consider the baseline parameters R = 1.028, δ = 0.96 and β = 0.7, use the
normalization W = 100 and take θ = 0.45353, which for a constant interest rate implies a
level of relative risk aversion θCt = 2, using (21). For these baseline settings, the elasticity
of intertemporal substitution σS,τ under CARA utility looks very similar to the CRRA
outcome in Figure 1, with σS,1 = 0.507 but with an asymptotic minimum of 0.308.

However, the outcome for the elasticity of intertemporal substitution σE,τ for exponen-
tial discounters (β = 1) is quite different with CARA utility. In particular, σE,τ is generally
no longer independent of the duration τ of the interest rate change. Intuitively, the dura-
tion τ generally affects consumption Ct, which determines relative risk aversion θCt and
thereby the elasticity of intertemporal substitution. For the baseline settings, σE,τ is non-
monotonic with σE,1 = 0.591, a maximum of σE,17 = 0.598 and an asymptotic minimum
of σ̄E = 0.551. Nevertheless, it is still the case that the elasticity of intertemporal substi-
tution is smaller for sophisticated hyperbolic discounters than for exponential discounters:
σE,τ > σS,τ .

So, for the baseline parameters σS,τ continues to be decreasing in τ , with a larger
range than σE,τ , while being less than σE,τ . To establish whether these results continue
to hold for other reasonable parameter values, a numerical analysis has been conducted
for two different parameter spaces. The ‘full’ parameter space consists of β ∈ [0.5, 0.9],
δ ∈ [0.94, 0.98], R ∈ [1.004, 1.052] and θ ∈ [0.001, 1.555]. The latter amounts to a

13As pointed out in footnote 9, using the numerical derivative with ∆r = 0.0001 to compute σS,τ gives
very accurate results for CRRA utility.
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range for relative risk aversion of [0.77, 5] under the baseline parameters with a constant
interest rate. The range for R implies a real interest rate between 0.40% and 5.1%, and it is
based on a one standard error deviation from the baseline estimate in Laibson et al. (2005).
The ranges for β and δ roughly correspond to the 95% confidence intervals based on the
standard errors estimated by Laibson et al. (2005). The ‘core’ parameter space is defined
by β ∈ [0.6, 0.8], δ ∈ [0.95, 0.97], R ∈ [1.014, 1.040] and θ ∈ [0.0864, 1.1878]. The latter
corresponds to a range for relative risk aversion of [1, 4]. Besides that, the core parameter
space has a lower mean-preserving spread around the baseline parameters for β, δ and R
compared to the full parameter space.

For each parameter space, 100,000 uniform random draws were made of β, δ, R and
θ.14 For each randomly drawn parameter configuration, the elasticities of intertemporal
substitution σS,τ and σE,τ were computed numerically for τ ∈ {1, 2, ..., 500} and it was
checked whether the following three properties hold:15 (a) σS,τ is monotonically decreasing
in τ ; (b) σS,τ has a larger range over τ than σE,τ such that maxτ σS,τ − minτ σS,τ >

maxτ σE,τ −minτ σE,τ ; and (c) σS,τ is smaller than σE,τ (i.e. σE,τ > σS,τ ). This gives rise
to the following findings.

Numerical Result 1 With CARA utility, the elasticity of intertemporal substitution σS,τ in
response to a change in the real interest rate r of τ periods for a sophisticated consumer
with hyperbolic discounting
(a) is monotonically decreasing in τ for 73.3% of the full parameter space and 76.5% of
the core parameter space.
(b) has a larger range over τ than for a consumer with exponential discounting (β = 1) for
70.4% of the full parameter space and 78.4% of the core parameter space.
(c) is smaller than for a consumer with exponential discounting (β = 1) for 99.0% of the
full parameter space and 100% of the core parameter space.

This shows that the three properties frequently hold for the full parameter space and are
even more likely to be satisfied for the core parameter space.

Another interesting finding is that the elasticity of intertemporal substitution could be
negative with CARA utility, for both hyperbolic and exponential consumers. In fact, for
sufficiently large τ , σS,τ < 0 and σE,τ < 0 for 30.1% and 26.2% of the full parameter
space and 14.8% and 7.3% of the core parameter space, respectively. This outcome is

14Since the results in Laibson et al. (2005) suggest a strong negative correlation between the estimates of
β and δ, the numerical analysis was also conducted for uniform random draws of β, δ, R and θ with a perfect
negative correlation between β and δ, but the findings were quite similar.

15Since CARA utility could lead to negative levels of consumption, randomly drawn parameter configura-
tions for which Cs < 0 for any s were discarded. This occurred for only 0.19% of the full and 0% of the core
parameter space.
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more common for lower values of R and θ. The fact that σS,τ < 0 holds more frequently
than σE,τ < 0 is not surprising since generally, σE,τ > σS,τ by Numerical Result 1(c).

To summarize the main findings, the elasticitity of intertemporal substitution σS,τ for
sophisticated hyperbolic consumers with CARA utility is typically declining in the dura-
tion τ for reasonable parameter values. Although the elasticity σE,τ for consumers with
exponential discounting is no longer constant for CARA utility, the range over τ remains
larger for the hyperbolic elasticity σS,τ for a large majority of plausible parameter con-
figurations. The result that the elasticity of intertemporal substitution σS,τ for hyperbolic
discounters is less than for exponential discounters continues to hold for virtually all rea-
sonable parameter values with CARA utility.

4.3 Buffer Stock Model

So far, the paper has considered a deterministic model in which consumers have access to
perfect credit markets. In practice, income is stochastic and consumers face liquidity con-
straints. In particular, suppose that labor income Yt is stochastic and that the consumer can-
not borrow against uncertain future income so that Ct ≤ Xt, where Xt is cash-on-hand in
period t, which satisfies Xt = R (Xt−1 − Ct−1) + Yt. Harris and Laibson (2001) show that
the hyperbolic Euler relation for sophisticated consumers in such a ‘buffer-stock’ model
similar to Carroll (1997) equals:16

u′ (c (Xt)) ≥ EtR [c′ (Xt+1) βδ + (1− c′ (Xt+1) δ)]u′ (c (Xt+1)) (23)

where c (Xt) is the consumption function. For periods in which the liquidity constraint is
non-binding so that c (Xt) < Xt, (23) holds with equality. This resembles the Euler equa-
tion (4), but the fraction of life-time wealth consumed λ is now replaced by the marginal
propensity to consume out of cash-on-hand c′ (Xt+1) because of the borrowing constraint.

Intertemporal substitution in response to a permanent change in the real interest rate is
given by

∂ ln (Ct+1/Ct)

∂r
=

1

ρ
− 1

ρ

(1− β)

1− (1− β) c′ (Xt+1)

∂c′ (Xt+1)

∂r

which is the buffer-stock equivalent of (10). For ρ > 1, the income effect dominates the
substitution effect, so ∂c′ (Xt+1) /∂r > 0 and σ̄S < 1/ρ (Laibson 1998, p. 867). Following
the same approach as in section 3, (23) can be used to find that σS,1 = 1/ρ whenever the
consumer is not liquidity constrained. As a result, the conclusions of section 3 hold more
generally.

16To be precise, this is the ‘strong’ hyperbolic Euler relation formally derived by Harris and Laibson
(2001) and it assumes that the consumption function c (.) is Lipschitz continuous, which holds in a neighbor-
hood of β = 1.
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5 Conclusion

Intertemporal substitution plays a key role in macroeconomics. For instance, it affects
the propagation mechanism in micro-founded business cycle models and it determines the
effectiveness of tax policies. This paper establishes that the elasticity of intertemporal
substitution exhibits novel features when consumers have a hyperbolic instead of an expo-
nential discount function. It is well-known that under exponential discounting the elasticity
of intertemporal substitution equals the inverse of the coefficient of relative risk aversion
for iso-elastic utility. This holds regardless of the length of the change in the intertemporal
price ratio. However, under hyperbolic discounting the intertemporal substitution elasticity
typically depends on the duration of the intertemporal price change.

For a one-period change in the real interest rate, the elasticity of intertemporal substitu-
tion with iso-elastic utility equals the inverse of the coefficient of relative risk aversion for
both exponential and hyperbolic discounters. Essentially, this is the structural preference
parameter that measures the curvature of the intertemporal indifference curves. However,
for a persistent change in the interest rate, the degree of intertemporal substitution is gener-
ally different for hyperbolic consumers because the effective discount rate is affected. The
reason is that a persistent interest rate change typically influences the future consumption
rate, which shifts the weight between the high short-run and the low long-run hyperbolic
discount rate. This adjustment in the effective discount rate alters the effect of a lasting
interest rate change on intertemporal substitution. For plausible values of risk aversion, the
elasticity of intertemporal substitution for hyperbolic consumers is monotonically decreas-
ing in the duration of the change in the real interest rate.

These results hold both for sophisticated hyperbolic discounters, who rationally antici-
pate the dynamic inconsistency of their preferences, and for naive consumers, who do not
realize that the ‘present bias’ in their intertemporal preferences continues to exert itself in
the future. It appears to be a fundamental property of hyperbolic discounting that already
holds for a basic model with a single liquid asset and perfect credit markets. So, it does not
rely on the presence of (partial) commitment devices, such as illiquid assets, that is usually
required to distinguish (sophisticated) hyperbolic from exponential consumers. The result
is also relevant in more realistic ‘buffer-stock’ models that feature stochastic income and
liquidity constraints. Although the focus of the paper is on the intertemporal consump-
tion decision, a similar argument applies to the intertemporal substitution of leisure. It
appears to be a robust feature of hyperbolic discounting that the elasticity of intertemporal
substitution depends on the duration of the intertemporal price change.

There is a large empirical literature on intertemporal substitution, including Mankiw,
Rotemberg and Summers (1985), Hall (1988), Attanasio and Weber (1995) and Mulligan
(2002). Such empirical studies have obtained a remarkably wide range of estimates for
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the elasticity of intertemporal substitution, with a typical parameter value of about 0.3.
Although a large variety of parameter estimates is difficult to reconcile with exponential
discounting, it is natural to get different estimates under hyperbolic discounting, depending
on the persistence of the interest rate in the sample.

In addition, it is not unusual to find empirical elasticity estimates that are negative. This
appears at odds with the standard model of exponential discounting. However, a negative
elasticity of intertemporal substitution is consistent with the behavior of naive hyperbolic
consumers with iso-elastic utility with plausible risk aversion, a sufficiently low degree
of self control and a persistent interest rate change. For exponential utility, a negative
elasticity of intertemporal substitution is more likely to occur with hyperbolic discounting
than exponential discounting.

Thus, this paper shows that hyperbolic discounting could explain empirical findings on
intertemporal substitution that are puzzling under exponential discounting. In addition, the
result that the hyperbolic elasticity of intertemporal substitution depends on the persistence
of the intertemporal price provides a new testable implication of hyperbolic discounting
for iso-elastic utility. Although it appears interesting to pursue this further, calibrations
indicate that a very long duration of the intertemporal price change is required to obtain
a difference with the exponential elasticity of only 0.02, which is much smaller than the
standard errors of typical empirical elasticity estimates. So, an empirical test that exploits
the duration-dependence of the hyperbolic elasticity is probably not practicable.

However, this does not mean that the differences in intertemporal substitution between
exponential and hyperbolic discounting are immaterial. Quite to the contrary. For plausible
parameter values, the effect of a permanent price change on intertemporal consumption
is about 20% larger for exponential discounters than for hyperbolic discounters. This is
also the difference between the effect of a one-period and a permanent price change under
hyperbolic discounting. Clearly, such a magnitude is economically significant.

This has important implications. First, models that assume exponential discounting
overstate the relevance of intertemporal substitution effects when agents are in fact hyper-
bolic. For instance, predictions of the benefits of policy measures such as tax cuts are likely
to be much rosier when they are based on policy models with exponential instead of hyper-
bolic discounting. Second, hyperbolic intertemporal substitution effects are significantly
stronger for temporary policy measures than for permanent ones. This means that empir-
ical estimates based on a temporary (or experimental) policy could seriously overstate the
effectiveness of permanent implementation of the policy.

All in all, this paper finds interesting new results on intertemporal substitution under
hyperbolic discounting.
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A Appendix

This appendix contains the derivation of the basic hyperbolic model with sophisticated
consumers presented in section 2. In addition, it derives the results for naive hyperbolic
consumers in section 4.1.

A.1 Sophisticated Consumers

This section provides a derivation of the quasi-hyperbolic intertemporal Euler equation (4)
for sophisticated consumers, and the proof of Proposition 1.

Derivation of (4):
Each self s faces a similar infinite-horizon optimization problem. Using (1), the optimal
life-time utility of self s can be written as

Us = u (Cs) + βδV (Ws+1; s+ 1) (24)

where

V (Ws+1; s+ 1) =
∞∑

i=s+1

δi−(s+1)u (λiWi)

Using (3), the continuation-value function for selves s = {t, t+ 1, ...} satisfies

V (Ws+1; s+ 1) = u (λs+1Ws+1) + δV (Rs+1 (1− λs+1)Ws+1; s+ 2) (25)

Maximizing (24) with respect to Cs subject to (3) yields the first order condition

u′ (Cs) = RsβδV
′ (Ws+1; s+ 1) (26)

Differentiate (25) and substitute for V ′ (Ws+2; s+ 2) using (26) to get

u′ (Cs) = Rsβδ [λs+1u
′ (Cs+1) +Rs+1 (1− λs+1) δV ′ (Ws+2; s+ 2)]

= Rs [λs+1βδ + (1− λs+1) δ]u′ (Cs+1)

This is the quasi-hyperbolic intertemporal Euler equation (4) for sophisticated consumers.
�

Proof of Proposition 1:
First, for a change in r of duration τ , dλs

dr
= ∂λs

∂r
+ ∂λs

∂λs+1

dλs+1

dr
for s ∈ {t, ..., t+ τ − 1},

where ∂λs
∂rs

is given by (6) and dλt+τ
dr

= 0. So, by recursive substitution one can write

dλt+1

dr
=

∂λt+1

∂r
+
∂λt+1

∂λt+2

∂λt+2

∂r
+
∂λt+1

∂λt+2

∂λt+2

∂λt+3

∂λt+3

∂r
+ ...+

(
∂λt+1

∂λt+2

∗ ... ∗ ∂λt+τ−2

∂λt+τ−1

)
∂λt+τ−1

∂r
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=
ρ− 1

ρ

[
λt+1 (1− λt+1) + λt+2 (1− λt+2)

∂λt+1

∂λt+2

+ λt+3 (1− λt+3)
∂λt+1

∂λt+2

∂λt+2

∂λt+3

+ ...

...+ λt+τ−1 (1− λt+τ−1)

(
∂λt+1

∂λt+2

∗ ... ∗ ∂λt+τ−2

∂λt+τ−1

)]
=

ρ− 1

ρ

[
t+τ−1∑
i=t+1

λi (1− λi)

(
i−1∏
s=t+1

∂λs
∂λs+1

)]

Substituting this into (10) yields (11).
To prove monotonicity, use (11) to write

σS,τ+1 − σS,τ = −ρ− 1

ρ2

1− β
1− (1− β)λt+1

λt+τ (1− λt+τ )
t+τ−1∏
s=t+1

∂λs
∂λs+1

Note that 0 < λt+τ < 1, and differentiate (5) and simplify to get

∂λs
∂λs+1

=
1

ρ

λs (1− λs)
λs+1

[
ρ+

(1− β)λs+1

1− (1− β)λs+1

]
> 0

So, under hyperbolic discounting (0 < β < 1), σS,τ+1 < σS,τ if ρ > 1, and σS,τ+1 > σS,τ

if ρ < 1, for any duration τ ∈ {1, 2, ...}. For ρ = 1, σS,τ+1 = σS,τ = 1 for all τ . �

A.2 Naive Consumers

This section derives the results for naive consumers, which are discussed in section 4.1. In
particular, it provides a derivation of (13) and (14), and the proof of Proposition 2.

Derivation of (13) and (14):
The naive hyperbolic consumer maximizes (1) believing that future selves are exponential
discounters without present-biased preferences. So, the naive self t maximizes Ut in (24),
where V (Wt+1) is now the anticipated continuation-value function for the future self s =

t + 1. All future selves s ∈ {t+ 1, t+ 2, ...} are believed to maximize Us with β =

1. Substituting β = 1 into (5) gives the intended consumption rate λ̃s in (13) for future
selves, which corresponds to the exponential outcome. So, the anticipated continuation-
value function satisfies

V (Ws+1) = u
(
λ̃s+1Ws+1

)
+ δV

(
Rs+1

(
1− λ̃s+1

)
Ws+1; s+ 2

)
(27)

for s ∈ {t, t+ 1, t+ 2, ...}. The first order condition for the current self s = t is still given
by (26). However, for future selves s ∈ {t+ 1, t+ 2, ...}, which are believed to set β = 1,
the anticipated first order condition is

u′ (Cs) = RsδV
′ (Ws+1; s+ 1) (28)
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Differentiating (27) and substituting for V ′ (Wt+2; s+ 2) using (28), (26) yields

u′ (Ct) = Rtβδ
[
λ̃t+1u

′ (Ct+1) +Rt+1

(
1− λ̃t+1

)
δV ′ (Wt+2; t+ 2)

]
= Rtβδu

′ (Ct+1) (29)

To find the naive consumption rate, substitute (2), Ct+1 = λ̃t+1Wt+1 and (3) into (29), and
rearrange to get the recursion formula (14). �

Proof of Proposition 2:
To compute the intertemporal consumption ratio Ct+1/Ct it is no longer possible to rely
on the Euler equation (29), because it only describes intended consumption. To obtain
the actual intertemporal consumption ratio, use Cs = λsWs and (3) to get Ct+1/Ct =

λt+1R (1− λt) /λt. Using (14) to get (1− λt) /λt = (R1−ρβδ)
1/ρ

/λ̃t+1, and taking logs
yields:

ln (Ct+1/Ct) = lnλt+1 − ln λ̃t+1 +
1

ρ
(lnR + ln β + ln δ) (30)

Differentiating with respect to r ≡ lnR gives the elasticity of intertemporal substitution
for naive hyperbolic discounters:

σN =
d ln (Ct+1/Ct)

dr
=

1

ρ
+

1

λt+1

dλt+1

dr
− 1

λ̃t+1

dλ̃t+1

dr
(31)

For a change in the real interest rate r of duration τ , λ̃t+τ = λ̄E , λ̃s is given by (13) for s ∈
{t+ 1, ..., t+ τ − 1}, and λt+1 is given by (14). To derive σN,τ , expressions are needed
for ∂λN,s/dr, ∂λ̃s/dr, ∂λN,t+1/∂λ̃t+2 and ∂λ̃s/∂λ̃s+1 for s ∈ {t+ 1, ..., t+ τ − 1}. Using
(14) and (13), ∂λN,s/dr = ρ−1

ρ
λN,s (1− λN,s) and ∂λ̃s/dr = ρ−1

ρ
λ̃s

(
1− λ̃s

)
, similar

to the sophisticated case in (6). Differentiating (14) and (13) with respect to λ̃s+1 and
simplifying gives

∂λN,t+1

∂λ̃t+2

= (1− λN,t+1)
λN,t+1

λ̃t+2

∂λ̃s

∂λ̃s+1

=
(

1− λ̃s
) λ̃s

λ̃s+1

Substituting these results and simplifying yields:

1

λ̃t+1

dλ̃t+1

dr
=

1

λ̃t+1

[
∂λ̃t+1

∂r
+
∂λ̃t+1

∂λ̃t+2

∂λ̃t+2

∂r
+
∂λ̃t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∂λ̃t+3

∂r
+ ...

...+

(
∂λ̃t+1

∂λ̃t+2

∗ ... ∗ ∂λ̃t+τ−2

∂λ̃t+τ−1

)
∂λ̃t+τ−1

∂r

]
=

ρ− 1

ρ

[(
1− λ̃t+1

)
+
(

1− λ̃t+1

)(
1− λ̃t+2

)
+
(

1− λ̃t+1

)(
1− λ̃t+2

)(
1− λ̃t+3

)
+ ...
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...+
(

1− λ̃t+1

)
∗ ... ∗

(
1− λ̃t+τ−1

)]
=

ρ− 1

ρ

t+τ−1∑
i=t+1

[
i∏

s=t+1

(
1− λ̃s

)]

Similarly,

1

λN,t+1

dλN,t+1

dr
=

1

λN,t+1

[
∂λN,t+1

∂r
+
∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂r
+
∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∂λ̃t+3

∂r
+ ...

...+
∂λN,t+1

∂λ̃t+2

∂λ̃t+2

∂λ̃t+3

∗ ... ∗ ∂λ̃t+τ−2

∂λ̃t+τ−1

∂λ̃t+τ−1

∂r

]
=

ρ− 1

ρ

[
(1− λN,t+1) + (1− λN,t+1)

(
1− λ̃t+2

)
+ ...

...+ (1− λN,t+1) ∗
(

1− λ̃t+2

)
∗ ... ∗

(
1− λ̃t+τ−1

)]
=

ρ− 1

ρ

1− λN,t+1

1− λ̃t+1

t+τ−1∑
i=t+1

[
i∏

s=t+1

(
1− λ̃s

)]

Substituting this into (31) and rearranging:

σN,τ =
1

ρ
− ρ− 1

ρ

[
1− 1− λN,t+1

1− λ̃t+1

] t+τ−1∑
i=t+1

i∏
s=t+1

(
1− λ̃s

)
Simplifying gives the naive elasticity of intertemporal substitution for an interest rate
change of τ periods in (15).

To prove monotonicity, use (15) to write

σS,τ+1 − σS,τ = −ρ− 1

ρ

λN,t+1 − λ̃t+1

1− λ̃t+1

t+τ∏
s=t+1

(
1− λ̃s

)

Note that 0 < λ̃s < 1 for s ∈ {t+ 1, ..., t+ τ}, and use (14) and (13) to see that λN,t+1 >

λ̃t+1 under hyperbolic discounting (0 < β < 1). So, σS,τ+1 < σS,τ if ρ > 1, and σS,τ+1 >

σS,τ if ρ < 1, for any duration τ ∈ {1, 2, ...}. For ρ = 1, σS,τ+1 = σS,τ = 1 for all τ . �
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