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Abstract

Robust experimental evidence of expected utility violations establishes that individuals

overweight utility from low probability gains and losses. These findings motivated develop-

ment of rank dependent utility (RDU). We characterize optimal RDU portfolio choice when

facing dynamic, binomial returns. Our calibration shows optimal terminal wealth has sig-

nificant downside protection, upside exposure, and a lottery component. Optimal dynamic

trades require higher risky share after good returns and, possibly, nonparticipation when

returns are poor. RDU portfolios counterfactually exhibit both excessive elasticity of risky

share to wealth and momentum rebalancing. Our results suggest a puzzling inconsistency

between behavior inside and outside the laboratory.
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1 Introduction

The expected utility (EU) revolution in economics was set in motion by von Neumann

and Morgenstern’s (1944) influential book, and even today most models in finance utilize this

framework.1An ongoing debate on the shortcomings of EU as a theory of choice, however, dates

back nearly as far as the book’s publication.2 A major challenge to the empirical relevance of

EU comes in the form of the deceivingly simple paradoxes proposed by Allais (1953). In the

common ratio problem, for example, Allais predicted that most people will prefer a certain gain

of $1 million to an 80% chance of a $5 million gain, but the same people will also tend to prefer

a 4% probability of a $5 million gain to a 5% chance of a $1 million gain.3 Allais’ paradoxes

formed the basis of later experimental work that rejected EU as a model of behavior in the lab,

and deeper investigation led to the hypothesis that individuals weight outcome utilities using

decision weights that are different from outcome probabilities. Robust experimental evidence

suggests decision weights that overemphasize small probability gains and losses are common,4

and to model this behavior without violating stochastic dominance Quiggin (1982) introduced

the concept of a probability weighting function that transforms the cumulative distribution of

risky payouts to produce decision weights. This rank dependent utility (RDU) model generalizes

EU and can be constructed to describe choices consistent with the common-ratio effect of Allais

(Prelec (1998)). Preferences that incorporate probability weighting as in RDU have emerged

as the dominant tool for experimental design and interpretation in laboratory settings studying

choice under uncertainty.5

1A growing literature explores the implications of alternative preferences for asset pricing, corporate finance,
and macroeconomics. For current reviews, see Barberis (2013), Baker and Wurgler (2011), and Backus, Routledge,
and Zin (2005).

2Early work questioning whether EU is a valid model for decision making even in simple settings with objective
risks are Preston and Baratta (1948) and Allais (1953). See Camerer (1995) for a more comprehensive history.

3EU applied to the first choice implies v(w+ 1)− 0.8v(w+ 5)− .2v(w) > 0, where w is initial wealth (millions)
and v is the cardinal felicity function. Linearity of EU in probability implies that the bet with the $1 million
payoff should also be selected in the second choice because 0.05v(w + 1) + .95v(w) − 0.04v(w + 5) − .96v(w) =
1
20

(v(w + 1) − .8v(w + 5) − .2v(w)) > 0. Hence, typical behavior when faced with the common ratio problem
violates EU.

4See, for example, MacCrimmon and Larsson (1979), Gonzalez and Wu (1999), and Abdellaoui, Vossmann,
and Weber (2005). The reviews of Camerer (1995) and Starmer (2000) summarize other supporting evidence.

5Tversky and Kahneman (1992) utilize probability weighting similar to Quiggin’s in their cumulative prospect
theory (CPT), a generalization of prospect theory that accommodates choice in settings with non-binary outcomes.
Yaari’s (1987) dual theory of choice is a special case of RDU with a linear felicity function.
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Financial economists have nonetheless been reluctant to model preferences with probability

weights, perhaps owing to skepticism about whether findings from the stylized environments

necessary for controlled experiments can be applied in general settings. Our paper takes an

important step toward understanding the implications of probability weighting outside the lab

by formulating explicit predictions for optimal asset allocation decisions of individuals with

RDU.6 We focus on theoretical predictions that we can compare directly to recent empirical

findings from new, extensive microeconomic datasets on household investment decisions, such

as those constructed and investigated by Brunnermeier and Nagel (2008), Calvet, Campbell,

and Sodini (2007, 2009), Calvet and Sodini (2013) and Chiappori and Paiella (2011). Our novel

theoretical framework proves to be a useful tool for linking lab and field observations, allowing

the direct use of experimental subject preference parameter estimates to predict quantitatively

the determinants of fractional holdings of risky assets in household portfolios. Our main finding

is that calibrations of preferences suggested in the prior literature to best explain experimental

data imply portfolio risky shares that respond far more strongly to changes in wealth than can

be justified by household level data. The experimental evidence on probability weighting is very

robust, thus our paper points out a puzzling inconsistency between the lab and micro evidence.

The theory we develop applies to investors wishing to save for consumption at some future

date by trading in a stock and bond. The information structure is binomial with independent

and identically distributed returns, hence markets are dynamically complete. In the solution to

this problem under EU an investor with constant relative risk aversion should place a constant

fraction of wealth in the stock at every decision point, and the resulting optimal terminal loga-

rithmic wealth is linear in the stock return. We solve a generalized version of this problem for

investors with RDU, providing new methods for determining the optimal terminal wealth and

the trading strategy that replicates it.

In the portfolio choice context, modifying the utility function to incorporate probability

weights complicates the analysis considerably. Alternative portfolio weights give rise to different

6Our work follows prior studies of probability weighting in financial applications by Barberis and Huang
(2008), Barberis (2012), Chapman and Polkovnichenko (2009), Epstein and Zin (1990), Polkovnichenko (2005),
and Polkovnichenko and Zhao (2013).
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rankings of state-contingent payoffs and consequently to the decision weights associated with

the states. This effectively makes the investor’s objective an endogenous function of the choice

variables. In our binomial context, the number of possible state-payoff rankings when investing

for T periods is 2T !, which grows at an extraordinary rate (faster than exponential), giving rise

to a considerable computational challenge. Interestingly, the problem becomes more tractable

when the one period stock return is calibrated to produce equi-probable payouts, in which case

we show that optimal terminal wealth is nonincreasing in the state price. This observation allows

us to reformulate the problem of choosing optimal terminal wealth to a constrained optimization

problem with 2T constraints, corresponding to the budget constraint and the weak ranking of

consumption across states. The remaining challenge is to identify the binding constraints. We

show that a separation principle allows us to solve this problem in two stages: First, using

information only on state prices and probability weights, states for which optimal wealth will be

distinct and states for which optimal wealth will be equal can be identified. Second, a standard

portfolio choice problem is solved on a redefined state space, where all states with equal terminal

wealth are merged. Exploiting the structure of the binomial model in this manner allows us to

solve for optimal terminal wealth and the underlying portfolio strategy for practically relevant

investing horizons with a variety of interesting parameterizations of the model.

We calibrate our model to provide advice for investing in a stock index and a bond over a

10-year horizon. Under RDU, decision weights are defined as the increments of a probability

weighting function, and to be consistent with common evidence that individuals overweight rare

gains and losses we model an inverse-S probability weighting function. The specific form that

we choose, suggested by Prelec (1998), has broad experimental support and we parameterize

this function using the estimates provided by Abdellaoui, Baillon, Placido, and Wakker (2011).

The optimal return on wealth for an EU investor is linear in the return on the stock; by contrast

we find that the return on wealth of the RDU investor is highly convex. Optimal terminal RDU

wealth is constant in nearly all states for which the stock return is negative. On the other hand,

terminal wealth is highly exposed to the stock market in states for which stock returns are

high. Approximations to the optimal RDU payout can be provided by a strategy that invests a
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constant fraction in the stock, combined with at-the-money puts and out-of-the-money calls on

the stock. Interestingly, structured products are commonly offered that promise such returns.

We also find that RDU investors desire distinct wealth levels in high return states with the

same state prices, which they can achieve by creating long-short positions of Arrow-Debreu

securities. This portfolio payout in high return states can be interpreted as gambling and to the

best of our knowledge this optimizing behavior has not been previously identified.7 To provide

an economically meaningful metric of the difference between the optimal EU and RDU wealth

choices, we calculate that an RDU investor would be willing to forgo 9% of wealth in order to

switch from the EU to the RDU payoff.

In our calibrated model, the trading strategy that replicates optimal EU wealth requires

that a constant 50% of wealth be invested in stock irrespective of the historical stock returns.

Implementing this policy requires the EU investor to sell stock following positive returns and

buy stock following negative returns. The fraction of wealth invested in stock by the RDU

investor is also about to 50% initially but then varies depending on the evolution of the stock

return. The optimal risky share increases along paths with good news, achieving levels as high

as 400%, and decreases along paths with bad news, reaching levels as low as zero.8

An active, recent empirical literature on portfolio choice provides important evidence for

evaluating the plausibility of our model and, as a consequence, for the hypothesis that investor

preferences incorporate probability weights. The Survey of Consumer Finances (SCF) collects

disaggregated data that forms the basis of several influential studies documenting investing

behavior of U.S. households. Campbell (2006) summarizes prior findings that are based on this

information and provides new evidence on wealth, participation in financial markets, and asset

allocation from the 2001 SCF. He documents that the poorest U.S. households hold virtually

no financial assets, and even at the 80th percentile of wealth almost 20% of households hold

no public equity. Strong wealth effects are also present in the cross section of asset allocation

7In support of this prediction, Kumar (2009) provides empirical evidence of demand for stocks with lottery
features.

8Our baseline calibration produces nonparticipation at low wealth levels due to exit from risky positions.
We show, however, that the RDU model cannot explain the occurrence of entry into risky positions when the
probability weighting function has the commonly parameterized inverse-S shape.
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decisions, consistent with prior findings that the wealthiest households bear significantly greater

risk. Other studies utilizing the SCF show a lack of diversification in typical household portfolios

(e.g., Polkovnichenko (2005)).

Panel data from a variety of sources has been instrumental for providing further insights

into investor behavior. Brunnermeier and Nagel (2008) use the Panel Study of Income Dynam-

ics survey data to investigate portfolio risky share dynamics. They find little evidence that

individual household portfolio risky share responds to changes in wealth. In addition, they

document strong inertia in household portfolios whereby exogenous changes in financial wealth

are not offset by active trading in asset markets. In a series of papers utilizing high-resolution

Swedish data, Calvet, Campbell, and Sodini (2007, 2009) and Calvet and Sodini (2013) find evi-

dence of nonparticipation in risky asset markets, a positive elasticity of risky share with respect

to wealth, lack of diversification, and active trading that partially offsets portfolio imbalances

caused by past returns. Using the Survey of Household Income and Wealth from the Bank of

Italy, Chiappori and Paiella (2011) find the elasticity of the risky asset share to wealth to be

small. Grinblatt and Keloharju (2000, 2001) use Finnish data to show that domestic investors

employ contrarian investing styles, confirming prior evidence of a disposition effect (e.g., Shefrin

and Statman (1985) and Odean (1998)).

We simulate both cross-sectional and panel data from our calibrated model and focus pri-

marily on the magnitude of the elasticity of risky share to wealth consistent with RDU investor

behavior. Using regression specifications from the empirical literature, we find that estimates

of elasticities in our simulated samples are counterfactually high. The upper bound on wealth

elasticity in the actual data is on the order of 0.25, meaning that a 10% increase in wealth will

cause an increase in the risky share from, say, 50% to 51.25%. Our simulated data produces an

elasticity of about 1.5, six times the highest estimate from the field data. As another indication

of the strong response of RDU investors to the return on wealth, we find that in our calibration

investors optimally purchase the risky asset after good market returns and sell following poor

returns, indicating a momentum style of rebalancing. This trading behavior is inconsistent with

the inertia documented by Brunnermeier and Nagel (2008) and the evidence in Calvet, Camp-
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bell, and Sodini (2009) that households offset about half the passive change in their asset mix

with active (contrarian) trading. To reconcile the simulated and actual data requires that we

practically eliminate the distinction between probabilities and decision weights in our model.

We therefore document an inconsistency between the importance of probability weights in the

experimental and household finance data.

The theoretical literature on the implications of RDU for portfolio choice is surprisingly

recent. Polkovnichenko (2005) solves for optimal portfolios of RDU investors in a single pe-

riod, three security, incomplete market setting and shows that investors choose underdiversified

portfolios.9 An important distinction between Polkovnichenko (2005) and our paper is that our

quantitative results originate purely from our preference structure and not from the particular

assumptions regarding market structure. For example, he provides an analysis of nonparticipa-

tion due to RDU, a result we show does not generalize to the complete markets setting. Carlier

and Dana (2011) solve for optimal consumption in a static, complete market setting when the

state space admits a continuous distribution. Relative to Carlier and Dana (2011), our solution

method is constructive and employs an economically intuitive concavification technique. No

prior work exists in a finite state setting, and our mathematical generalization is useful for pro-

viding new economic insights. For example, we establish that investors with RDU preferences

express a demand for gambling and this economic motive is not present in the continuous state

setting. Probability weighting is an integral component of Tversky and Kahneman’s (1992)

CPT, and recent work by Barberis (2012) and Jin and Zhou (2008) examines the consequences

of probability weighting in this context for gambling behavior and portfolio choice.

Asset pricing contributions that incorporate probability weighting are more numerous. Ep-

stein and Zin (1990) study risk premia in an endowment economy with a representative agent

whose preferences are recursive. Atemporal preference in their utility specification is RDU rather

than CRRA, and this device elevates risk premia. Chapman and Polkovnichenko (2009) also

solve a consumption based asset pricing model with heterogenous RDU investors and show that,

9In a related setting, Shefrin and Statman (2000) model portfolio choices of investors with Yaari (1987)
preferences modified to accommodate Roy’s (1952) safety first constraint and show the optimality of undiversified
portfolios.
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due to endogenous nonparticipation by one investor type, asset prices and dynamics are incon-

sistent with those produced by a representative RDU agent. Within the extensive literature

on asset pricing and portfolio choice under CPT few models incorporate probability weighting.

Notable exceptions are Benartzi and Thaler (1995) and Barberis and Huang (2008). We do not

contribute directly to the asset pricing literature but our results on portfolio choice problem are

useful for building intuition for general equilibrium results.

Our paper is conceptually similar to many other papers which quantitatively evaluate the

impact of nonstandard preferences on portfolio choice. The literature includes, Ang, Bekaert,

and Liu (2005) who study portfolio choice under disappointment aversion, Barberis and Xiong

(2009) who show when the disposition effect can be induced by loss aversion, Barberis and Xiong

(2012) and Ingersoll and Jin (2013) who analyze the impact of realization utility on portfolio

choice.

2 The Portfolio Choice Model with Probability Weighting Func-

tions

In this section, we formally describe the optimal portfolio choice problem of an RDU investor.

2.1 Securities and Information Structure

We model trade in a bond and stock in a frictionless market at T dates, t = 0, · · · , T − 1.

The riskfree bond produces the constant return R = er each period. Stock returns ρt between

dates t− 1 and t are independent Bernoulli distributed, where

ρt =

 u = e
µ+

√
p

1−pσ with probability p

d = e
µ−

√
1−p
p
σ

with probability 1− p.
(1)

This specification implies that the mean and standard deviation of logarithmic one-period stock

returns are µ and σ. Trading strategies with risky share πt−1 of wealth in stock produce portfolio
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returns Rt = πt−1(ρt −R) +R.

Markets are dynamically complete in this setting, and our return processes allow for the

creation at each date of two short-lived Arrow-Debreu (AD) securities. One pays a unit of

wealth when the stock return is ρt = u and zero otherwise, with price denoted ξu, and the other

pays one minus this payout, with price denoted ξd. These securities can be replicated using the

bond and the stock and their no-arbitrage prices are given by

ξu =
R− d

R(u− d)
, ξd =

u−R
R(u− d)

. (2)

The state space Ω is the set of M = 2T T -tuples ω = (ω1, · · · , ωT ) with ωt ∈ {u, d}. We

associate each state with a unique index m chosen from the set M = {1, · · · ,M}. Define the

random variable km that assigns to each state m the number of down returns in the state. The

probability of occurrence of state m is then given by pm = pT−km(1 − p)km . At time-0, long-

lived AD claims on each of the terminal states can be created from sequences of short-lived AD

securities. To preclude arbitrage, these prices must be given by

ψm = ξT−kmu ξkmd . (3)

2.2 Investor Preferences

We consider preferences over state contingent date-T wealth X :M→ R. We associate to

each occurrence of the terminal wealth Xm the power cardinal felicity function v(Xm) = X1−γ
m
1−γ ,

where γ > 0. We choose the power form of felicity to eliminate direct dependence of risky share

on wealth levels in portfolio choice decisions.

We first present the standard definition of RDU which operates on the N ≤ M distinct

outcomes x1 > x2 > · · · > xN of terminal wealth X (e.g., Wakker (2010), Ch. 6). In our

finite state setting, the cumulative distribution function (CDF) associated with X is a non-

decreasing step function F . The value of the decumulative distribution function (DDF) 1−F (xi)

can be interpreted as the rank of outcome xi, where low values of 1 − F (xi) indicate highly
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ranked outcomes xi. To complete the RDU specification, a non-decreasing probability weighting

function H is defined which operates on the DDF, normalized without loss of generality so that

H(0) = 0 and H(1) = 1.10 Decision weights wi are calculated from increments of the probability

weighting function

wi =

 H(1− F (xi+1))−H(1− F (xi)) for i = 1, · · · , N − 1

1−H(1− F (xN )) for i = N.
(4)

Utility of risky terminal wealth is then given by

U(X) =
N∑
i=1

wiv(xi). (5)

This formulation makes it clear that RDU is law invariant, meaning that utility depends only

on the CDF of terminal wealth. For example, in a setting with equally probable states, the

distribution of terminal wealth Y constructed by permuting the state-contingent wealth levels

Xm of terminal wealth X produces two distinct wealth allocations with the same CDF. Equations

(4) and (5) imply U(X) = U(Y ).

For the portfolio choice problem, in which the budget constraint acts directly on the state-

contingent payouts Xm but only indirectly on the outcomes xi, it is convenient to derive an

equivalent representation of RDU preference. Consider any of the M ! orderings of the states

θ : M → M and the associated permutation of the states λ = θ−1. Using this notation, θm

denotes the (weak) rank of state m and λj denotes the state with unique rank j. Define

hj =

 H
(∑j

i=1 pλi

)
−H

(∑j−1
i=1 pλi

)
for j = 2, · · · ,M

H(pλ1) for j = 1,
(6)

where, for example,
∑j−1

i=1 pλi is the probability of states with strictly higher rank than state λj .

The utility associated with any terminal wealth allocation satisfying Xλ1 ≥ · · · ≥ XλM is then

10This is possible because the cardinal felicity function is unique only up to an affine transform.

9



given by

U(X) =
M∑
m=1

hθmv(Xm). (7)

The equivalence of equations (5) and (7) when Xλ1 > · · · > XλM follows by defining xi = Xλi

and verifying from equations (4) and (6) that wi = hi for i = 1, · · · ,M . The equivalence is more

general, however, and applies to arbitrary ranked wealth.11

2.3 The Portfolio Choice Problem

We formally state the portfolio choice problem by first characterizing the optimal terminal

wealth.

Problem 1. The agent chooses ordering θ (equivalently, permutation λ) and terminal wealth

X to solve

sup
θ,X

M∑
m=1

hθmv(Xm) (8)

subject to the budget constraint

X0 =

M∑
m=1

ψmXm, (9)

and the M − 1 constraints ensuring wealth obeys the ranking implied by the ordering θ:

Xλ1 ≥ · · · ≥ XλM . (10)

This formulation of the RDU agent’s optimal choice breaks the problem into stages. First, a

possible ordering θ of states is considered. This defines a particular objective function (8) that

applies to any terminal wealth obeying the constraints (10). The agent selects the best choice

Xθ among candidate solutions that also satisfy the budget constraint (9). The global optimal

choice is the best of the candidate solutions Xθ among all of the M ! possible orderings.

11To see this, assume a sequence of states with Xλj−1 > Xλj = · · · = Xλj+n > Xλj+n+1 . Summing the terms
hj + · · · + hj+n gives H(1 − F (Xλj+n+1)) − H(1 − F (Xλj )). There exists an index i such that xi = Xλj and
xi+1 = Xλj+n+1, with an associated decision weight wi = H(1− F (xi+1))−H(1− F (xi)). Mapping to decision
weights in such a manner for states with equal wealth allows us to establish that the two utility representations
in equations (5) and (7) are equivalent.
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The dependence of the objective function (8) on the ordering θ does not arise when investors

have EU preferences. To understand this, note that the probability weighting function H is the

identity function under EU. Equation (6) then simplifies to hj = pλj , meaning that the decision

weight associated with the outcome of rank j equals the probability of the state λj . Since the

outcome in state λj is Xλj , the utility associated with terminal wealth satisfying the ordering

(10) is then given by
M∑
j=1

pλjv(Xλj ) =

M∑
m=1

pmv(Xm). (11)

The ordering θ therefore has no impact on the objective function (8). Since the order can be

arbitrarily chosen, the constraints (10) are irrelevant and Problem 1 collapses to the standard

EU portfolio choice problem.

To determine the optimal portfolio at every date t, we apply standard replicating techniques.

This defines a unique adapted trading strategy πt for t = 0, ..., T − 1. We consider only the

case where the agent can pre-commit to a trading strategy formulated at the initial date or,

equivalently, to a buy-and-hold a portfolio of long-lived AD securities.

3 A Theoretical Characterization of the Optimal RDU Portfolio

The RDU portfolio choice problem is intractable except when the number of dates T is very

small (i.e., T ≤ 2). In order to make progress when T is large, in the remainder of the paper we

adopt the assumption that p = 1
2 . We do not view this assumption as empirically limiting since

distributions typically proposed for risky returns can be approximated by appropriate sequences

of uniformly distributed single period returns.12 We also do not consider the assumption limiting

for the purposes of the theory, since it is usually possible to transform a model with a non-uniform

distribution into a model with a uniform distribution by allowing side-bets.13 As we show in

12For example, it is common to model independent single period logarithmic returns having mean µ and standard
deviation σ using equation (1) with p = 1

2
.

13For example, a one-period model with two states with probabilities 1/3 and 2/3 can be transformed into an
equi-probable three-state model by allowing investors to undertake a binary, uniformly distributed, fair bet in the
higher probability state.
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this section, by exploiting the structure of the uniform model we can circumvent the difficulties

associated with the brute force approach to solving Problem 1.

We assume that the stock investment provides a risk premium, E(ρt) > R, implying that

ξd > ξu. It is also convenient to, without loss of generality, consider an indexation of the states

with the property that state prices form a non-decreasing sequence:14

ψ1 ≤ · · · ≤ ψM . (12)

3.1 The Expected Utility Benchmark

As shown in Section 2.3, Problem 1 is a standard constrained optimization problem when the

investor’s preferences can be represented by EU. The solution to this problem is well understood,

and we provide it as a benchmark against which to compare the optimal RDU solution.

Proposition 1. Optimal state-contingent terminal wealth X for an expected utility investor is

given by

Xm =

(
ξu
ξd

) km
γ

X, (13)

where

X = X0

(
ξTu

T∑
n=0

(
T

n

)(
ξu
ξd

) 1−γ
γ
n
)−1

(14)

is the highest consumption level, achieved only in state m = 1. The optimal portfolio is constant

over time and the optimal risky share is

π∗ =
R

u−R

(
ξu
ξd

)−1/γ
− 1

1 +
(
ξu
ξd

)1−1/γ . (15)

Equation (13) shows that the terminal wealth of EU investors is a decreasing function of the

14It is possible to do this as follows: The state for which ωt = u for all t is assigned the index m = 1 and the
state for which ωt = d for all t is assigned the index M . Beginning with the subset of states for which only one
down stock return occurs, randomly assign the indices from m = 2 to m = 1 + n1, where n1 =

(
T
1

)
is the number

of states in that subset. Next, we consider the subset of states with two down returns and randomly assign indices
m = 2 + n1 to m = 1 + n1 + n2 where n2 =

(
T
2

)
. We proceed in this manner until all of the states are assigned.
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number of down returns km in state m. This implies that the optimal ordering of states is the

identity θm = m and that it is optimal to equalize wealth across states if and only if they share

a common state price.

3.2 The RDU Solution with Arbitrary Probability Weights

We now solve Problem 1 in the general case, assuming a nonlinear probability weighting

function. The following proposition, which is closely related to a result of Dybvig (1988), dra-

matically simplifies this task.

Proposition 2. Any optimal terminal wealth solving Problem 1 must be nonincreasing in the

state index

m1 < m2 =⇒ Xm1 ≥ Xm2 .

State prices are nondecreasing in the state index m, therefore this proposition implies that

states with higher state prices have (weakly) less terminal wealth than states with lower state

prices. To understand why this is true, suppose that the state price ψm1 is lower than the state

price ψm2 but wealth in state m1 is lower than wealth in state m2. Switching wealth between

states produces a new terminal wealth that is less costly but has the same distribution. RDU

preferences are law invariant, therefore this change has no effect on the investor’s utility and

allows the investor to purchase additional AD securities.

Proposition 2 allows us to restrict our attention to the ordering θm = m when solving

Problem 1. Each state can then be assigned the following pre-determined decision weight

hm = H
(m
M

)
−H

(
m− 1

M

)
,

and solving Problem 1 is equivalent to solving the following problem:
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Problem 2. The agent chooses random terminal wealth X to solve

sup
X

M∑
m=1

hmv(Xm), (16)

subject to the budget constraint

X0 ≤
M∑
m=1

ψmXm, (17)

and the M − 1 constraints ensuring the state-by-state wealth rank:

X1 ≥ · · · ≥ XM . (18)

Unlike Problem 1, this new problem has only one objective function (16) to consider. Formally,

it is a portfolio choice problem with M − 1 nonstandard constraints that ensure greater wealth

in states with lower state prices.

We now focus our attention on the challenge of determining which of the inequalities in (18)

bind. To start, we construct securities which pay one unit of wealth in all states up to and

including state m for m = 1, · · · ,M . These securities are natural to consider for our problem

because portfolios of these securities with nonnegative weights will satisfy the constraints (18).

The no-arbitrage price of these claims is given by φm =
∑m

i=1 ψi, and for convenience we also

define φ0 = 0. Notice that φM is the bond price R−T . We denote denote the set of these prices

by Φ = {φ0, · · · , φM}. It is natural to also consider the decision weights associated with adding

a constant amount of wealth to any state up to and including state m. These decision weights

Hm =
∑m

i=1 hi are identical to the probability weights Hm = H(mM ). We additionally let H0 = 0

and define the set H = {H0 · · · , HM}. Notice that HM = 1.

We define the function G : Φ→ H by G(φm) = Hm. For m > 0, at any point (φm, Hm) the

“left slope” of the function is

Hm −Hm−1
φm − φm−1

=
hm
ψm

.

The nonlinearity of the function H and the convexity of the function φ may produce a sequence of
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left slopes that is nonmonotonic, thus the function G may not be concave. The concavification

of the function G is the smallest concave function G∗ : M → [0, 1] that dominates it. This

concavification can be fully characterized using the vertices of G∗, i.e., the minimal set of points

on the graph of G∗ that, along with linear interpolation between adjacent vertices, can be used

to construct G∗. Let the set of N + 1 ≤ M + 1 vertices be denoted G∗ = {(φi, Hi) : i ∈ MV =

{m0 = 0,m1, · · · ,mN = M}}, where 0 < m1 < · · · < mN−1 < M is an increasing sequence.

It is important to notice that concavity of the function G∗ implies that the left slopes

Hmi −Hmi−1

φmi − φmi−1

=

∑mi
m=mi−1+1 hj∑mi
m=mi−1+1 ψj

. (19)

are descending along the sequence MV . Moreover, because G∗ is the unique smallest concave

function dominating the function G, adding any other point (φm, Hm), m ∈ M \MV to the

graph of G∗ cannot generate another sequence of slopes that descends at every point.

The vertices of the graph of G∗ can be used to form a partition of the state space M:

S∗ = {S∗1 , · · · , S∗N} where S∗i = {mi−1 + 1, · · · ,mi} for i = 1, · · · , N . The following proposition

shows that with this partition, the solution to Problem 2 can be found by solving a standard

portfolio choice problem in which only the budget constraint is binding.

Proposition 3. Consider the solution x1, · · · , xN to the unconstrained optimization problem

sup
x1,··· ,xN

N∑
i=1

h∗i v(xi), (20)

subject to the budget constraint

X0 ≤
N∑
i=1

ψ∗i xi, (21)

where h∗i =
∑

m∈S∗i
hm and where ψ∗i =

∑
m∈S∗i

ψm. The solution satisfies x1 > x2 > · · · > xN ,

and the terminal wealth X defined by Xm = xi for any m ∈ S∗i is a solution to Problem 2.

This proposition formalizes a two-step procedure for determining optimal terminal wealth for

an RDU investor. In the first step, no information regarding the felicity function v is required,
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and the partition S∗ is determined based solely on the properties of the state prices and the

probability weighting function. The partition defines sets of states where wealth is equalized

within each set and is distinct across sets. In the second step, standard portfolio choice pro-

cedures apply to determine the optimal allocation of wealth across the events of the partition,

with decision weights h∗i playing the role of probability of the event Si and the prices ψ∗i playing

the role of state prices in the budget constraint.

For an EU investor, equation (13) in Proposition 1 shows that the optimal partition consists

of T + 1 sets S∗i each containing all states with a given state price ψ = ξT−iu ξid for i = 0, · · · , T .

For general probability weighting functions, the sets S∗i may contain states with the same state

prices, states with different state prices, or a single state. When S∗i contains states with different

state prices, terminal wealth will be identical for all states in that set. This “packing” of states

gives the appearance of extreme risk aversion at certain wealth levels and causes nonparticipation

in the stock market as wealth evolves towards this region. On the other hand, when S∗i contains

single states, states with the same state price will have different terminal wealth levels. This

“unpacking” of states gives the appearance of risk seeking at certain wealth levels and gives

rise to gambling-like behavior. This behavior occurs regardless of the felicity function. The

simultaneous purchase of insurance and participation in lotteries does not occur for EU investors.

It is well-known that RDU preferences can produce such behavior and our formulation of the

optimal wealth choice clarifies the mechanism underlying these optimal choices.

It is instructive to decompose optimal terminal wealth into two components. Let X = Y +Xg

where Y = E(X|k) is the expected terminal wealth conditional on number of down movements

k in a stock return history, and Xg = X − Y is the residual. The component Xg is initially

mean zero and costless.15 We thus interpret Xg as a collection of fair gambles that are optimally

added by the RDU investor to the component of wealth Y . Since adding Xg to Y results in

a second-order stochastically dominated payoff, any EU investor would choose to set Xg = 0.

Optimal choice of second-order stochastically dominated payoffs by RDU investors has not been

15Recall that since ψ(T ) is a function of k, E[ψ(T )Xg] = E[E(ψ(T )Xg|k)] = E[ψ(T )E(Xg|k)] = 0 where the
final equality follows from E(Xg|k) = 0.
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previously pointed out, to the best of our knowledge, and might explain demand for fair lotteries

that otherwise seems irrational.

3.3 Implications for Dynamic Portfolio Choice

Optimal terminal wealth X can be produced by the appropriate purchases of AD securities,

but this static implementation has limited empirical relevance. We now provide some general

properties of the unique dynamic replicating strategy for terminal wealth X, which is formally

a process of shares of stock ∆X(t) and units of bond BX(t) for t = 0, · · · , T − 1.

Proposition 3 implies that if G∗ is linear then optimal terminal wealth is a constant and when

G∗ is nonlinear at least two distinct sets of states exist for which optimal terminal wealth is

different. The monotonicity result in Proposition 2 shows that whenever wealth is distinct across

states, states with lower state prices will optimally have higher wealth. A direct consequence of

this monotonicity is that ∆X is non-negative, as formalized in the following proposition.

Proposition 4. In the dynamic replicating strategy for X, it is never optimal to short the stock

(i.e., ∆X(t) ≥ 0 for all t). Nonparticipation at the initial date ∆X(0) = 0 occurs only when the

function G∗ is linear.

RDU has been associated with “first-order risk aversion” and, as a consequence, nonparticipation

in equity markets (e.g., Epstein and Zin (1990)). This proposition shows that non-participation

by RDU investors is a special case. In fact, as we show in the next section, common probability

weighting functions and state price specifications interact to form a nonlinear function G∗ that

induces positive initial demand for stock. Nonetheless, we will show in the next section that

even when G∗ is nonlinear, the replicating strategy may involve selling all stock along certain

paths.

We finally consider the cross-section of portfolio holdings within a population of identical

RDU investors. We assume each investor independently chooses identically distributed terminal

wealth Xi, where the component of wealth associated with gambling Xg
i does not necessarily
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agree state-by-state with the gambling component Xg
j of investor j 6= i. The following proposi-

tion shows that when investors independently implement portfolio trading strategies that repli-

cate optimal terminal wealth, the gambling components have no impact on aggregate terminal

wealth or aggregate stock holdings.

Proposition 5. If investors independently choose terminal wealth, aggregate terminal wealth is

given by X = Y and the dynamics of aggregate holdings of stock are given by ∆Y , the process

for the share of stock in the replicating strategy for Y . At any date t, aggregate risky share is

equal to π(t) = ∆Y (t)/Y (t).

This proposition shows that in a large cross-section, the share of aggregate wealth invested

in stock is exactly the share associated with the replicating strategy for the non-gambling part of

optimal wealth. Equivalently, the wealth-weighted portfolio holdings of all investors is given by

∆Y (t)/Y (t). This result allows formulation of quantitatively relevant empirical predictions for

dynamic trading strategies in large cross-sections, such as those we explore in the next section.

4 RDU Household Behavior in a Calibrated Model

To quantify wealth and risky share dynamics, we calibrate our RDU model and solve the

optimal investment problem. We then simulate household wealth and portfolio dynamics to

produce a synthetic panel dataset from which we generate empirically relevant moments that

we compare to estimates from Brunnermeier and Nagel (2008), Calvet and Sodini (2013), and

other prior literature.

4.1 Calibration

Our solution technique can be applied in a broad variety of applications. Important settings

to develop quantitative guidelines for asset allocation are saving for retirement, a dependent’s

education, or the purchase of a first home. All of these applications require a significant fraction

of wealth to be appropriately invested. We consider an investor with a 10 year investing horizon
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who rebalances his portfolio annually, which we feel is relevant for many applications. This

specification produces M = 210 states, significantly more than could be managed without our

theoretical insights. We have confirmed that the qualitative conclusions from our calibration

are relevant for other horizons and rebalancing frequencies.

To proceed in this setting requires that we specify the investor’s subjective belief, represented

by a probability distribution of future stock and bond returns. Although a large literature

documents errors in judgment in settings such as ours (see, e.g., Camerer (1995)), we make

the strong but common assumption that subjective beliefs are consistent with learning based

on historical data (see, e.g., Wachter and Yogo (2010)). We choose an annual riskfree bond

return of r = 0.25%, roughly equal to the current yield on one-year T-bills.16 Guided by Fama

and French (2002), who estimate an equity risk premium of 4.32%, substantially lower than the

historical average excess market return they compute (7.43%), we set the stock risk premium

E (ρt − er) = 5%. The volatility of the stock, σ = 0.20, is chosen to match the historical

standard deviation of the CRSP value weighted index (e.g., Bansal and Yaron (2004)).

A variety of functional forms describing probability weighting have been proposed in the

prior literature. The inverse-S probability weighting function, which gives rise to the common

ratio and common consequence behavior proposed by Allais (1953), is a robust finding, including

in studies where it is not necessary to parameterize the functional form of the preference repre-

sentation (Wu and Gonzales (1996, 1999), Abdellaoui (2000)). Probability weights are known

to be “source dependent,” whereby the departure from the identity function is less extreme the

more knowledgable is the decision maker about the source of uncertainty (Heath and Tversky

(1991)). Abdellaoui, Baillon, Placido, and Wakker (2011) estimate probability weights for sub-

jects presented with prospects from sources with known probabilities (drawing from an urn of

known composition) and unknown probabilities (draws from an urn of unknown composition,

a day’s temperature in Paris, or the change on a given day of the CAC40 French stock index).

To parameterize our weighting function for choice in our setting with subjective rather than

objective beliefs, we make use of their findings from experiments with unknown probabilities.

16The exact choice of the riskfree rate has little impact on the results we present.
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Prelec (1998) axiomatizes choice consistent with the common ratio effect and derives a pref-

erence representation with the weighting function

H(t) = exp (−β[−ln(t)]α) , (22)

where the parameter α controls whether the function H is inverse-S shaped (α < 1) or S shaped

(α > 1) and the parameter β controls the location of the inflexion point separating the convex

region of H from the concave region of H. Abdellaoui, Baillon, Placido, and Wakker (2011)

show that the parameters α = 0.65 and β = 1 lead to the best fit to the aggregated data from

their study of individuals chosing among draws from an urn of unknown composition. We utilize

the Prelec weighting function with these parameter estimates as our best candidate, based on

the prior literagure, for a weighting function in our setting.

Expected utility investors with a risk aversion parameter of γ = 2.4 choose to hold 50%

of their wealth in stock under our calibration of stock and bond returns. This risky share is

consistent with data from Brunnermeier and Nagel (2008) and Calvet and Sodini (2013) on

fractional holdings of liquid assets (cash, bonds, stocks and mutual funds) in risky assets. To

estimate the parameter γ for the RDU investor, notice that probability weighting functions

interact with the parameter γ to induce higher or lower aversion to risks. To control for this

interaction, we determine certainty equivalents of EU and RDU investors to a 100% one-year

investment in the stock. These certainty equivalents are equal when γ = 1.5 in the RDU felicity

function, therefore in the results that follow, we set γ = 2.4 for the EU investor and γ = 1.5 for

the RDU investor.17

17Abdellaoui, Baillon, Placido, and Wakker (2011) estimate that their experimental data from small-stakes
gambles are best approximated when their felicity function is approximately linear in gains. The finding of risk
neutrality in such settings is to be expected when subjects exhibit declining marginal utility of wealth (Rabin
(2000)). Our felicity function operates on wealth, not gains, and we choose to rely on evidence from the field
data, where the impact of declining marginal utility of wealth gives rise to measurable effects on investor choice,
to calibrate the parameter γ.
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4.2 Optimal Household Investment and Wealth

We follow the two-step procedure outlined in Section 3.2 to solve the portfolio choice problem.

In the first step, we undertake the concavification procedure to identify optimal groups of states

within which terminal wealth will be equal. Figure 1 shows the function G (blue points),

mapping the cumulative state prices Φ to probability weights H, and the concavification of

this function G∗ (solid red line). Vertices of G∗, three examples of which are indicated in the

figure, define the optimal partition S∗ of the state space, and within each subset S∗i of this

partition the RDU investor’s terminal wealth will be equalized. States with high state prices are

assigned high values of the cumulative state price density and are thus located on the right in

the figure. The concavification G∗ is above G when state prices are high, indicating that optimal

terminal wealth is equalized between these states. For example, wealth for all states associated

with points on the graph G between the vertices A and B will be identical, as will wealth for

states associated with the points between the vertices B and C. Unlike for the expected utility

solution, the vertices A and B group states for which optimal wealth will be equal even though

state prices are different. On the other hand, the two functions coincide when state prices are

low, in the left region of the figure, indicating distinct wealth allocations among these states.

The vertices of G∗ in this region identify states for which state prices are equal but optimal

terminal wealth is distinct, again contrasting with the expected utility solution in which wealth

is a strictly decreasing function of the state price.

With the optimal partition of states in hand, we now proceed to the second step of the

solution technique in which we apply Proposition 3 to solve for optimal terminal wealth using

standard techniques for portfolio choice on a state space redefined by the partition S∗. Figure

2 plots the relationships between optimal terminal wealth for an RDU investor (green ‘+’) or

an EU investor (red ‘*’) and logarithmic 10-year stock returns. Consistent with Proposition 1,

we observe that logarithmic payoffs chosen by the EU investor are upward sloping and linear

in the logarithmic stock return. By comparison, the logarithmic payoff of an RDU investor is

distinctly convex in the logarithmic stock return. When stock returns are low, wealth levels
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Figure 1: This figure presents the functions G and G∗ which are used in the first stage of our
solution technique to partition the state space into sets that optimally contain constant but
distinct terminal wealth.

are higher than those chosen by the EU agent and are independent of the stock return. This

constant payoff can be obtained by purchasing downside protection using a put option on the

stock. The figure shows that under our baseline calibration, downside protection is present in

almost all losing states. When stock returns are high, wealth levels are higher than those chosen

by the EU agent. This performance-sensitive payoff can be achieved by purchasing out-of-the-

money call options on the stock and can produce high wealth levels relative to those chosen

by the EU agent. For example, at the highest stock return level, produced when no down

return materializes during the 10 year investing horizon, the RDU agent’s wealth increases by

a factor of more than e4 ≈ 55 times, whereas the EU agent’s payoff increases by about e1.3 ≈ 4

times. To achieve maximum utility, Figure 2 shows that the RDU investor alters the optimal

portfolio of the EU investor by selling AD securities from states that produce mid-range stock

returns and buying AD securities in states that produce extreme stock returns. This demand for
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downside protection and upside opportunities is a robust implication of the inverse-S probability

weighting function which leads to U-shaped decision weights. The RDU investor places more

emphasis on winning and losing states when constructing the optimal portfolio than is justified

by the probabilities. Interestingly, the optimal terminal wealth could be produced by structured

products commonly offered by financial institutions to retail investors that offer market exposure

with limited loss.18
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Figure 2: The logarithm of optimal terminal wealth versus the logarithm of the terminal stock
return, for EU (red ‘*’) and RDEU (green ‘+’) investors. Average terminal wealth of the RDEU
investor, conditional on the T period stock return, are also identified (blue ‘o’).

Figure 2 also shows that, unlike for an EU investor, stock returns do not uniquely deter-

mine terminal RDU wealth. This can be seen in the figure for high stock returns, where single

realizations of the terminal stock price may be associated with multiple payoffs from the RDU

portfolio. For example, at the second-highest logarithmic stock return level of about 2, achieved

18J.P.Morgan Chase currently offers a set of products that provide various participation levels (leverage) when
an index increases in value while simultaneously providing a downside buffer as limited insurance against a drop
in the value of the index. See, for example, their “5yr SPX Contingent Buffer Return Enhanced Note, at least
100% participation, 50.00% European protection, Uncapped” product (CUSIP 48125UBC5).
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in the 10 states m = 2, 3, · · · , 11 for which 9 out of 10 one-period returns are “up,” the logarith-

mic payoff of the RDU portfolio varies from about 2.2 to 3.0. This implies that optimal RDU

wealth depends not only on the terminal stock price, as is the case for the optimal wealth of the

EU investor, but also on the exact sequence of 10 single period stock returns. To understand

this result, consider a portfolio that produces a constant payoff x in states m = 2, · · · , 11. Such

a payoff can be achieved by holding an equal amount of each of the 10 state AD securities. Note

that AD security prices depend only on the number of down returns in a state, thus each of these

AD securities has the same price. Suppose that the RDU investor uses two of these securities to

transfer a small amount of wealth from state m = 3 to state m = 2. This results in an increase

in utility of approximately (h2 − h3)v′(x) per unit of wealth transferred, and strict concavity

of G∗ in this region, as is the case under our baseline calibration, implies that the difference

h2−h3 > 0. This implies that the RDU investor will prefer an non-constant payout across these

states, which can be interpreted as a preference to gamble with the proceeds x within these

states.

The terminal wealth of each investor can be decomposed into two economically distinct

parts: 1) a component for which wealth is constant when conditioning on the terminal stock

price, chosen to achieve an optimal risk/reward tradeoff, and 2) a component due to demand

for gambling using fair bets, present because the RDU investor overweights small probability

winning outcomes. To visualize this decomposition, Figure 2 plots the conditional wealth levels

(blue ‘o’), and deviation of optimal terminal wealth from this first component of terminal wealth

(i.e, the difference between the green ‘+’ and the blue ‘o’) represents the gambling component.

The figure shows that the gambling component of wealth is only relevant following high stock

returns. If we assume a continuum of investors with identical initial wealth and preferences, the

first component of wealth will be identical in the cross section. The gambling component, how-

ever, depends on how investors match states and gambling outcomes and is not uniquely defined.

For example, among the 10 states with only one down stock return, labeled m = 2, · · · , 11, the

utility of an investor that chooses a gamble resulting in lower wealth in state m = 2 and higher

wealth in state m = 3 is identical to the utility of an investor with an otherwise identical terminal
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wealth but permutes these two state-contingent wealth levels. This creates endogenous hetero-

geneity in portfolio holdings, an empirically relevant implication of our model.19 We choose

to focus on implications for average per-capital risky share, possibly conditioned on observable

quantities like wealth and age, because this quantity is directly comparable to values reported

in existing large-scale empirical studies. For a continuum of investors who are equally likely to

choose any one of the gambling portfolios, we show in Proposition 5 that trading associated with

the gambling component of terminal wealth has no impact on aggregate or average per-capita

risky share. We therefore focus our analysis on the stock holdings used to implement the first

component of terminal wealth.

We compute that our calibrated model implies an RDU investor would be willing to pay

approximately 9% of initial wealth in order to exchange EU optimal terminal wealth for RDU

optimal terminal wealth. This is an economically significant amount that provides a meaningful

metric for the distance between the RDU and EU wealth profiles presented in Figure 2. The

value implies that introduction of a structured product that approximates the RDU optimal

terminal wealth could charge fees of up to 9% and still attract investors who would otherwise

hold EU optimal wealth.

The blue curve in Figure 2 represents the terminal payout that results from a completely

passive strategy in which the investor initially purchase $0.50 of stock and bond and then does

no further trading. The terminal wealth produced by this strategy is intermediate between

the optimal EU and RDU payoffs. Interestingly, the RDU investor would prefer this portfolio

strategy to the constant weight portfolio: we calculate that our RDU investor would only pay

about 5% of initial wealth in order to swap the passive payout for the optimal payout. This

finding suggests that in our calibrated model, RDU preferences provide a partial rationale for

infrequent portfolio rebalancing.

Figure 3 presents a graphical description of the unique dynamic trading strategy in stocks

19This is fundamentally due to the fact that multiple state-conditional terminal wealth allocations produce the
same payoff distribution and, due to law invariance of RDU preference, produce the same utility. Although it is
possible to further explore this implication, which to the best of our knowledge has not been studied empirically,
we restrict our attention to other previously reported empirical regularities.
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Figure 3: The figure depicts the optimal portfolio weight π along the nine periods binomial
tree assuming that the terminal wealth is equal to the average of outcomes conditional on the
terminal stock price. This portfolio will produce the optimal level of utility when combined with
a pre-committed randomization strategy at each terminal node. The red line horizontal line at
π = 0.50 depicts the optimal EU portfolio, which is the solution in the special case of RDU with
a linear probability weighting function H.

and bonds, with annual rebalancing, that replicates the first component of the optimal terminal

wealth (i.e., the mean optimal terminal wealth conditional on the stock return). Each point

represents the portfolio share in stock as a function of time and the history of stock returns

prior to that date. This trading strategy is contrasted with the optimal risky share of an EU

investor (red horizontal line). The figure shows that initial risky share is approximately equal

for RDU and EU investors, not surprising given our calibration strategy for the parameter γ.

Unlike the expected utility case where the optimal portfolio share in stock is constant, however,

the portfolio share in stock of the RDU investor is history dependent. Following poor markets

returns, investors hold a lower fraction of wealth in stock whereas following good market returns,

investors increase their proportional stock holdings. Non-participation can occur following poor
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stock performance. For example, following five consecutive down return years, investor stock

holdings are negligible, a strategy required to provide constant payoffs in the states where the

10-year stock return is low. Following good stock performance, achieving convexity in terminal

wealth requires substantial increases in stock holding. For example, following five up stock

returns investors choose to place about 220% of their wealth in stock.
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Figure 4: The figure depicts the evolution of wealth along the nine periods binomial tree assuming
that the terminal wealth is equal to the average of outcomes conditional on the terminal stock
price.

Figure 4 shows the process for average RDU investor wealth resulting from the optimal

trading strategy. By construction, the endpoints in the wealth tree correspond to the blue ‘o’

state-contingent wealths in Figure 2. Comparing Figures 3 and 4 shows that a wealth effect

should be apparent from a time series of individual investor wealth and risky share, a result that

we explore in detail below.
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4.3 The Empirical Relevance of the RDU Calibration

Empirical research on household portfolio choice examines the determinants of stock market

participation, the risky share conditional on participation, and portfolio rebalancing. In this

subsection, we compare moments of data simulated from our calibrated model to this prior

evidence.

We utilize an overlapping generations framework to provide simulated data. Every year

{0, · · · , 9} cohorts of identical investors initiate the optimal dynamic trading strategy presented

in Figure 3. We assume that each generation has identical initial wealth that we normalize

to X0 = 1. This normalization is without loss of generality for portfolio choice because with

the power felicity function, portfolio share dynamics are independent of wealth. Ten generations

exist as of date-nine, with the youngest generation just beginning their investing program and the

oldest generation entering the last year of their investing timespan. We utilize this framework to

generate both cross-sectional datasets, for example by sampling wealth and risky share from each

generation as of date-nine, and panel datasets, for example by sampling from each generation

at dates six to nine.

Calvet, Campbell, and Sodini (2007, 2009) and Calvet and Sodini (2013) utilize a Swedish

panel spanning the end of the calendar years 1999-2002. We use these dates to produce an

annual time series of market returns from 1993-2002, coding ρt = u, d according to whether the

market return exceeds the median return, conditional on the level of the riskfree return. The

resulting sequence, using US market returns, is (u, d, u, u, u, u, u, d, d, d). This return sequence

is used to create a time-series of wealth and risky share for the oldest generation i = 0 by

sampling from the appropriate subset of nodes at the first ten dates from Figures 3 and 4. For

each younger generation i, we discard the first i ≤ 10 elemets of the market return sequence

and sampling from the relevant subset of nodes at the first 10 − i dates. Our balanced panel

samples from the last four-year history of each generation (dates 6-9 for the oldest generation,

5-8 for the next oldest, etc.), thus each cohort plays the role of an individual in our dynamic

panel sample. To simulate a twin dataset comparable to Calvet and Sodini (2013), we form all
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possible pairings of cohorts and treat each such pair as a twin. This dataset is consistent with

each twin independently, with probability 1/10, beginning his or her investing program at date

0− 9.

4.3.1 Implications of RDU in the Cross-section

Cross-sectional studies provide strong evidence of a positive correlation between wealth and

risky share.20 Figure 5, which summarizes information from our 2002 cross-section (solid line)

in manner that can be directly compared to Figure 1 of Calvet, Campbell, and Sodini (2007)

(dashed line), shows that our simulated data is qualitatively consistent with a wealth effect.

The figure also shows that although the riskfree holdings are generally lower in the simulated

data, the difference in holdings of the richest and poorest households is comparable to that of

Swedish households in 2002. This result must be interpreted with caution, however, since the

cross-sectional variation of wealth in the simulated data is counterfactually low, implying that

wealth variation has a much stronger impact on risky share in the simulated data than in the

Swedish data.21

The prior literature proposes a number of explanations for the cross-sectional evidence that

the portfolio share in the riskfree asset decreases when wealth increases. Theoretical explanations

rely on an explicit dependence of risk aversion on wealth as captured by the felicity function

v(XT ), (e.g., as in a constant absolute risk aversion preference specification) or on a dependence

of utility on other state variables (e.g., as in subsistence and habit models). Our calibrated

model shows that investors with rank dependent utility optimally increase their risky share

when wealth increases and that this behavior can produce cross-sectional data in which wealth

effects will be detected.

20See, for example, Cohn, Lewellen, Lease, and Schlarbaum (1975), Morin and Suarez (1983), Blake (1996),
and Carroll (2000).

21Figure A.1 in the appendix of Calvet, Campbell, and Sodini (2007) shows that the 80th percentile household
has approximately 1, 000 times the wealth of the 20th percentile household. The comparable figure in our simulated
data is 1.3. Wealth dispersion in the Swedish data is due to economic forces that are not present in our model.
The only force at play for wealth distribution in our model is due to the fact that different cohorts experience
different return histories. Our results show that the difference in portfolio holdings alone are not sufficient to
produce the wealth dispersion that we observe in the Swedish sample.
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Figure 5: The figure illustrates the correlation between wealth and riskfree share. The blue line
maps the percentile of wealth to the riskfree share in the simulated sample of households. The
red line maps the percentile of wealth to riskfree share for the Swedish Data (reported from
Calvet, Campbell, and Sodini (2007)).

4.3.2 Implications of RDU in Panel Data

The evidence from the cross-section is difficult to interpret when considering how wealth and

risky share are endogenously determined. Several explanations for between-individual correla-

tion have been considered in settings where there is no within-individual wealth effect: Trans-

action costs make the participation decision non-trivial, and if this selection mechanism causes

wealth to be positively correlated with the participation decision then the data may give rise to

the appearance of higher risky shares among the wealthy even though there is no variation in

risky share when conditioning on participation (Tracy and Schneider (2001), Vissing-Jorgensen

(2002)). Heterogeneity in risk aversion among individuals with CRRA preferences can give rise

to reverse causality, since when more risk tolerant investors hold more stock in rising markets,

they will be relatively more wealthy following positive return realizations (Chiappori and Paiella
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(2011)).22 The risk characteristics of non-financial wealth, including real estate, entrepreneurial

wealth, and labor income, may lead investors to select a mix of liquid assets, such as stocks

and bonds, that give the appearance of a wealth effect due to unobservable variation in the

composition of non-financial wealth (Heaton and Lucas (2000)).

In light of these challenges, recent empirical studies utilize panel data and instrumentation

to explore determinants of portfolio choice (see, for example, Brunnermeier and Nagel (2008),

Calvet, Campbell, and Sodini (2007, 2009), Chiappori and Paiella (2011), and Calvet and Sodini

(2013)). Panel data allows the study of within-individual variation in wealth and risky share

using a variety of empirical techniques. We will consider two empirical specifications. First, the

dynamic panel model accounts for unobservable variation due to individual and time effects:

yit = ai + at + βxit + εit, (23)

where xit = ln(Xit) is the logarithm of wealth of cohort i at date t and the independent variable

is either the corresponding portfolio share yit = πit, as in Brunnermeier and Nagel (2008), or

its logarithm yit = ln(πit), as in Calvet, Campbell, and Sodini (2009). Calvet and Sodini (2013)

create a panel of twin investors from their Swedish dataset and estimate the model

ln(π1kt) = ak + at + βx1kt + ε1kt (24)

ln(π2kt) = ak + at + βx2kt + ε2kt, (25)

where the index k identifies a twin pair. The regression coefficient on wealth can be identified

by differencing the twin observations and running a linear regression with a time fixed effects.

We now quantify the wealth effect in the context of our RDU model. Figure 6 plots the

logarithm of risky share and wealth realizations for each individual in our simulated dataset.

The figure confirms that risky share and wealth are positively correlated in the pooled sample.

In addition, the relationship is strongly concave, indicating that the slope, which corresponds

22See, however, Carroll (2000) who argues that other features of the cross-section are inconsistent with this
source of endogeniety.
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Figure 6: Each sign ’+’ represents the log wealth and the log risky share for a cohort at a given
time during the four years from which we sample our balanced panel.

to the wealth elasticities of risky share, decreases markedly when wealth increases. This feature

of our simulated data is qualitatively consistent with the findings reported in Table V of Calvet

and Sodini (2013) who document that in subsamples of individuals from the lowest and highest

wealth quartiles, the risky share elasticities decrease from 0.289 to 0.101.

Table 1 presents estimates of the sensitivity of portfolio risky share to wealth, both from our

simulated data and from the recent empirical literature (Brunnermeier and Nagel (2008), Calvet,

Campbell, and Sodini (2009), Chiappori and Paiella (2011), and Calvet and Sodini (2013)).

Panel A presents results from regressions run in data on levels (e.g., estimating equation (23)

using fixed effects) and Panel B presents results from regressions of first differences, in time

for each individual, of the dependent and independent variables (i.e., by estimating the time

differenced equation (23)). In Panel A, the row labeled “Simulated” shows that portfolios of

RDU investors in the simulated data respond strongly to changes in wealth. For example, the

coefficient from the pooled regression (1) indicates that a 10% increase in wealth leads to a
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14.57% increase in portfolio share (e.g., a risky share of 50% would increase to 57%). The

finding of a strong elasticity is robust to specifications that add individual effects (2) and twin

effects (3). The top row in Panel B provides results from the simulated data when accounting

for individual fixed effects by first differencing the data. Regression (4) confirms the findings

in Panel A, showing that a 10% increase in wealth leads to an increase in risky share of 0.1522

(e.g., a risky share of 50% would increase to 65%). The elasticity is negative in regression (6).

This result follows from an endogeniety in the simulated data created by the strong concavity of

the wealth-risky share relationship (Figure 6), as we now explain. First, note that the elasticity

of the risky share decreases when wealth increases. Second, in the simulated data, where a

sequence of three down returns are realized, changes in log wealth are negatively correlated with

the level of wealth.23 The net effect of these correlations with log wealth produces a strong

negative bias in the estimated coefficient in regression (6). The concavity of the relationship

between risky share (in levels) and log wealth is much weaker, thus this effect does not create a

bias in regression specification (4). The positive coefficient in regression (2) of Panel A, which

provides an alternative estimate to the slope coefficient in equation (23) using standard fixed

effects estimation and would be comparable to the coefficient in regression (6) if the underlying

relation were linear, confirms that in our simulated data increases in wealth lead to higher

portfolio shares even when accounting for individual fixed effects.

Table 1 shows that the RDU model produces counterfactually high portfolio share elasticities.

For example, Panel A shows that even the highest estimate from the actual data, extracted from

Table II of Calvet and Sodini (2013), indicates only a 2.31% increase in risky share when wealth

increases by 10%. Measurement error would have to account for an enormous fraction of the

variance in wealth or wealth changes in order to produce a downward bias sufficient to explain

the results in the table.24 We can reconcile the findings from the simulated data in Panel

23This follows from the fact that 1) the risky share is small, on average, when wealth is low, and 2) the decrease
in log wealth is smaller when the risky share is low.

24Denoting the ratio of unbiased to biased regression coefficients by βU/βB and the measurement error by εx,
standard results imply βU/βB = 1 + var(εx)/var(x). Comparing simulated coefficients to empirical estimates in
Table 1 then indicates that the variance of measurement error must be at least six times the variance of the level
or change in log wealth. This amount of measurement error is not consistent with empirical findings from the
prior literature that explicitly account for measurement error by instrumenting for the dependent variables.
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Table 1. Risky share elasticities with respect to wealth.

A. Regressions in Levels (log π)
(1) (2) (3)

Simulated 1.457 1.398 1.639

Actual

(CS II) 0.231∗ (CS II) 0.223∗

(CP 2) 0.036∗

(CP 5) 0.114∗

(CP 7) 0.070∗

Fixed Effects
Individual n y n
Twin n n y

B. Regressions in First Differences
∆π ∆ log π

OLS IV OLS IV
(4) (5) (6) (7)

Simulated 1.522 -0.067

Actual

(CCS A5) −0.100∗ (CCS A5) 0.32∗ (CS IA.XXXII) 0.225∗

(BN 4) 0.017 (BN 4) −0.136 (CP 3) 0.017 (CP 3) 0.019
(BN 5) −0.103∗ (BN 5) −0.355∗ (CP 5) 0.077∗ (BN A.2) 0.017

(CP 7) 0.047∗ (BN A.3) −0.165∗

A by setting α = 0.96 (coefficients not reported). To completely eliminate the wealth effect,

consistent with the empirical evidence in Brunnermeier and Nagel (2008) and Chiappori and

Paiella (2011) (see Panel B of Table 1), would require that we remove probability weights from

the preference specification (i.e., set α = 1). Table 1 thus illustrates that generalizing behavior

based on measurements of probability weights in the lab is problematic in the portfolio choice

context since the inverse-S probability weighting elicited from the lab experiments exhibits more

curvature than is required to match risky share wealth elasticities measured in the field data.

4.3.3 Portfolio Rebalancing

In order to determine the trading activity associated with the optimal RDU portfolio, we

calculate the difference between active and passive portfolio weights for all stock return histories.

Specifically, following Calvet, Campbell, and Sodini (2009), we define the passive weight as

πPt =
πt−1ρt

πt−1ρt + (1− πt−1)R
. (26)
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The difference πt − πPt between the active and passive weights provides information on trading

activity; positive differences indicate that investors must purchase stock in order to rebalance

to optimal weights after a return realization and negative differences imply stock sales. Figure

7 plots the active-passive difference as a function of lagged stock return for every possible stock

return history generated by the portfolio weights in Figure 3. The figure shows that for our

baseline calibration, RDU investors purchase stock following positive returns and sell following

negative returns. This implies that RDU investors implement a momentum-style investing

strategy, opposite to the contrarian investing strategy required to rebalance to constant weights

employed by EU investors. Our model can be recalibrated so that the RDU investor undertakes

more contrarian trades by increasing the parameter α and flattening the probability weighting

function. This will have the effect of also reducing the wealth effect illustrated in Table 1.
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Figure 7: The figure illustrates the difference between active and passive portfolio weights at
each node in the binomial tree as a function of past one-period return. RDU rebalancing (blue
‘+’) is consistent with momentum-style investing whereas EU rebalancing (red ‘*’) is contrarian.

Empirical studies of portfolio rebalancing by households documents a strong effect of pas-
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sive returns on portfolio active share. Calvet, Campbell, and Sodini (2009) find that Swedish

investors trades are contrarian, whereby approximately half of passive risky share changes are

offset through active rebalancing. Brunnermeier and Nagel (2008) find that US investor port-

folio weights are almost entirely explained by passive returns, indicating no active trade. The

momentum-style trading of RDU investors in our calibrated model, which is to be expected

given the excessive wealth effects documented in Section 4.3.2, is not found in either of these

empirical studies. This again suggests that extrapolating evidence on probability weighting from

the experimental setting predicts investing behavior that is inconsistent with the field data.

5 Conclusion

Our paper provides a new methodology for determining optimal asset allocation of investors

with RDU that leads to precise and novel empirical predictions. Existing empirical evidence of

household investing behavior confirms many of implications of a calibrated version of the model.

The optimal dynamic trading strategies of RDU investors gives rise to higher participation

in stock investments and higher risky share along paths where investors relatively rich. This

dynamic portfolio gives rise to a convex relationship between stock return and terminal wealth,

and there is anecdotal evidence of demand for structured products that produce such returns.

Investors also optimally demand lottery-like payoffs which have been shown to be an important

component of household wealth. Cross sectional data from such investors drawn from different

cohorts has the potential to reconcile with empirical evidence. Our calibrated model produces

momentum-style rebalancing trades, however, inconsistent with evidence on contrarian-style

household rebalancing. Our model is also not able to produce portfolio dynamics in which

investors switch from a safe to risky portfolio.

Our calibrated model makes several empirically relevant predictions. In a cross-section of

investors from different birth cohorts: 1) Wealth and risky share are positively correlated, and

2) A fraction of investors may hold no stock. Our model also predicts that risky share for all

RDU investors will increase following good stock returns and that RDU investors implement
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trading strategies consistent with a momentum style. As mentioned previously, investors who

do not wish to trade dynamically, perhaps because of transaction costs, will find structured

products that offer downside protection and upside market exposure to be attractive relative

to structured products that implement constant market exposure. The model implies demand

for gambling conditional on the terminal stock price or, alternatively, heterogeneity in portfolio

holdings among individual investors to produce differentiated payouts among states with the

same stock return.

It is, perhaps, unfair to attribute the successes and failures of the model to our assumptions

regarding preferences alone. Several auxiliary assumptions are present in the benchmark models

of investing behavior: Dynamically complete markets with independent one-period Bernoulli

distributed return, perfectly tradeable investor wealth, frictionless trade, and power felicity. Our

model has purposefully been constructed to allow us to understand the pure effect of deviating

from the traditional EU-based portfolio choice model along only the preference dimension. Our

solution technique can be easily modified to accommodate relaxation of many of the other

assumptions as long as markets remain complete. For example, if expected stock returns are

predictable, the prices of contingent claims against terminal wealth will change but our two-

stage solution technique still produce the exact form of optimal wealth and replicating portfolio

strategies. Our paper therefore provides a framework for understanding RDU portfolio choice

in more elaborate settings that more closely approximate reality.

One critical assumption underlying our model is that investors pre-commit to their trading

strategy. This is not an issue when investors have EU, since the independence axiom implies

dynamic consistency. RDU relaxes independence and a byproduct is that preferences are dy-

namically inconsistent. An alternative approach to the one we adopt is to solve the problem by

backward recursion in which the decision maker’s current choice takes as given future decisions

(Strotz (1955)).25 Either assumption might be viewed as valid and our paper does not address

the possibility that empirical regularities may be better explained by combining RDU with a

25For recent work dealing with this issue, which is at the forefront of research on non-standard preference, see
Barberis (2012).
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different dynamic preference structure. We speculate that even in this framework, however, the

methods and intuition we have developed will be useful for moving forward.
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Appendix

Proof of Proposition 1 The formulas for Xm follow from direct application of standard

constrained convex optimization techniques. The portfolio weight formula follows from the

explicit calculation of the stock share in the replicating portfolio. See, for example, Dybvig and

Rogers (1997).

Proof of Proposition 2 We begin the proof with the following Lemma.

Lemma 1. Consider terminal wealth X satisfying the budget constraint (9) with equality. As-

sume that wealth in state m1 is strictly less than wealth in state m2 for two state indices m1 < m2.

Suppose that, in addition, the state price in state m1 is strictly lower than the state price in state

m2: ψm1 < ψm2. Then there exists an alternative terminal wealth X̂ that provides the same

level of utility at strictly lower cost. This terminal wealth can be obtained by exchanging wealth

between the states m1 and m2:

X̂m1 = Xm2

X̂m2 = Xm1

X̂m = Xm otherwise.

Furthermore, there exists a terminal wealth X̃ with the same cost as X that provides strictly

higher utility: U(X̃) > U(X).

Proof of Lemma: Given that the distribution of states is uniform, switching outcomes of the

terminal wealth X across state does not affect the distribution of X. Law invariance of RDU

implies that U(X̂) = U(X). The cost of terminal wealth X is strictly larger than the cost of

terminal wealth X̂:

Γ =
M∑
m=1

ψmXm −
M∑
m=1

ψmX̂m = (ψm1 − ψm2)(Xm1 −Xm2) > 0

which completes the proof of the first statement in the proposition.
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Consider the terminal wealth X̃ = X̂ + ΓRT . Its cost is

M∑
m=1

ψmX̂m +
M∑
m=1

ψmΓRT = X0 − Γ + Γ

= X0

and since X̃m > X̂m for every state m, U(X̃) > U(X̂) = U(X).

We now complete the proof of the proposition. State prices are weakly increasing in the index

m. Proposition 2 implies a contradiction to the optimality of wealth plan X if Xm1 < Xm2 and

ψm1 < ψm2 . If ψm1 = ψm2 then exchanging wealth in states m1 and m2 will not affect the cost

or the distribution (hence utility) of the allocation.

Proof of Proposition 3 Consider an optimal terminal wealthX solving Problem 2. This wealth

allocation induces a partition S = {S1, S2, · · · , Sn} of contiguous states, where the realization of

wealth is constant within each set: i.e., there exists a sequence of distinct wealths {x1, · · · , xn}

such that Xm = xi for all m ∈ Si. Proposition 2 implies that this sequence must satisfy

x1 > · · · > xn, since for all i, every set m ∈ Si has a lower index than states in the set Si+1. In

order to offset the incentives to shift small increments of wealth across the events Si, marginal

felicity across sets in S must satisfy

v′(xi)

v′(xi+1)
=

(
xi
xi+1

)−γ
=
hi+1/ψi+1

hi/ψi
(27)

where hi =
∑

m∈Si hm and ψi =
∑

m∈Si ψm. To be consistent with a decreasing sequence of

wealth realizations xi > xi+1, the first-order conditions (27) imply

hi+1

ψi+1

<
hi

ψi
(28)

for i = 1, · · · , n− 1.

We now give a geometric characterization of inequality (28). Let mi denote the maximal

element of set Si for i = 1, · · · , n. The collection of these points, augmented with the element
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{0}, defines the set MS = {0,m1, · · · ,mn = M}. Define the function GS : Φ → [0, 1] by

GS(φmi) = Hmi for all mi ∈MS . For points in M\MS the function GS is defined by linearly

interpolating between consecutive points of the set GS = {(φm, Hm) : m ∈ MS}. For any two

consecutive points of the set GS characterized by the indices mi and mi+1, the left slope of the

function GS is

Hmi+1 −Hmi

φmi+1 − φmi
=

∑mi+1

m=mi+1 hm∑mi+1

m=mi+1 ψm
=

∑
m∈Si+1

hm∑
m∈Si+1

ψm
=
hi+1

ψi+1

. (29)

Inequalities (28) says that the left slope of the function GS form a decreasing sequence and this

implies that the function GS is concave. The next lemma shows that in fact, the function GS is

the concavification of the function G. This result concludes the proof because the proposition

characterizes the optimal policies by making use of the unique concavification of the function G.

Lemma 2. The function GS is the concavification of the function G: GS = G∗.

Proof. First, we show that GS dominates G. Assume that there exists m̂ ∈ M such that

GS(φm̂) < G(φm̂). Notice that since by construction GS and G coincide on MS , we must have

m̂ ∈M\MS . Assume for example that m̂ is an element of the set Sj for a given j ∈ {1, · · · , n}.

Define the function ĜS mapping Φ into [0, 1] by linearly interpolating between consecutive points

of the set {(φm, Hm) : m ∈ MS ∪ {m̂}}. The function ĜS coincides with the function GS on

all the events (Si)i 6=j . We also have ĜS(φmj−1) = GS(φmj−1) and ĜS(φmj ) = GS(φmj ) and

ĜS(φm̂) = G(φm̂) > GS(φm̂). Since φmj−1 < φm̂ < φmj and GS is linear on the interval

[φmj−1 , φmj ], the function ĜS must be concave at the point φm̂, that is

Hm̂ −Hmj−1

φm̂ − φmj
>
Hmj −Hm̂

φmj − φm̂
. (30)

We will proceed by contradiction and construct a wealth process that satisfies the budget

constraint and generates a larger utility than the wealth process X. Construct the wealth process

X̂ as follow
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X̂m =


Xm for m ∈M \ Sj

xj + η for m = mj−1 + 1, · · · , m̂

xj − ε for m = m̂+ 1, · · · ,mj

where ε > 0 is a small number and where η is set so that the wealth X̂ satisfies the budget

constraint (17) with equality, that is

η = ε
φmj − φm̂
φm̂ − φmj−1

. (31)

If the marginal change ε is small enough and when i 6= j, the decision weight attributed to

each outcome xi when calculating the utility of the wealth X̂ is identical to the decision weight

attributed to the same outcome when calculating the utility of the wealth X. Therefore the

difference in utilities can be summarized

U(X̂)− U(X) = (Hm̂ −Hmj−1)v(xj + η) + (Hmj −Hm̂)v(xj − ε)− (Hmj −Hmj−1)v(xj)

which can be approximated for small ε by

U(X̂)− U(X) = v′(xj)
(
(Hm̂ −Hmj−1)η − (Hmj −Hm̂)ε

)
and using the expression for (31), we get

U(X̂)− U(X) = εv′(xj)(φmj − φm̂)

(
Hm̂ −Hmj−1

φm̂ − φmj
−
Hmj −Hm̂

φmj − φm̂

)
> 0

where the last inequality follows from (30). We thus conclude that GS dominates G.

We now show that GS is the smallest concave function that dominates G. To this end,

assume to the contrary that there exists a concave function G̃S satisfying

G(φm) ≤ G̃S(φm) ≤ GS(φm)
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for m = 0, · · · ,M . Notice that G(φm) = G̃S(φm) = GS(φm) for all m ∈ MS . In particular,

for any j = 1, · · · , n, we have G̃S(φmj−1) = GS(φmj−1) and G̃S(φmj ) = GS(φmj ). If there exist

m̂ ∈ {mj−1 + 1, · · · ,mj − 1} such that G̃S(φm̂) < GS(φm̂) then the function G̃S cannot be

concave: On the interval [φmj−1 , φmj ] the function G̃S is a continuous piecewise linear function

and dominated from above by the linear function GS and so it must admit at least one point at

which it is convex.

Proof of Proposition 4: Let the initial stock price be P (0) = 1, in which case the stock

price at date-t is P (t) = ρ1ρ2 · · · ρt. The bond price is similarly initialized to B(0) = 1 and at

date-t must be B(t) = Rt. Let M(Ft,u) (resp. M(Ft,d)) denote the subset of M that contains

all the states m = (ρ1, · · · , ρt, u, ωt+2, · · · , ωT ) (resp. m′ = (ρ1, · · · , ρt, d, ωt+2, · · · , ωT )). The

independence of one-period returns implies that the conditional state price for state m at date

t + 1 is ψt+1,T,m = ξ
T−t−1−km(t+1)
u ξ

km(t+1)
d , where km(t + 1) is the number of down returns

in the subsequence (ωt+2 · · · , ωT ) of state m. For terminal wealth X, the replicating strategy

(∆X , BX) must solve

∆X(t)Ptu+BX(t)Rt+1 =
∑
M(Ft,u)

ψt+1,T,mXm

∆X(t)Ptd+BX(t)Rt+1 =
∑
M(Ft,d)

ψt+1,T,mXm,

for t = 0, · · · , T − 1. The final two equations imply

∆X(t)Pt(u− d) =
∑
M(Ft,u)

ψt+1,T,mXm −
∑
M(Ft,d)

ψt+1,T,mXm, (32)

showing that long stock positions in the replicating portfolio are necessary whenever wealth is

higher following an “up” stock return than following a “down” stock return.

Notice that the two sets M(Ft,u) and M(Ft,d) have the same cardinality and that each state

indexed by m in the setM(Ft,u) can be matched with a unique state m′ in the setM(Ft,d) that
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differs only by the value of ωt+1. Equation (3) implies that ψm < ψm′ , and from Proposition 2,

which shows that optimal wealth is nonincreasing in state price, we can infer that Xm′ = Xm−εm

where εm ≥ 0. Finally, note that independence of one-period stock returns implies that the

conditional state prices for payoffs in states m and m′ are equal. This implies

∑
M(Ft,u)

ψt+1,T,mXm −
∑
M(Ft,d)

ψt+1,T,mXm =
∑
M(Ft,u)

ψt+1,T,mεm ≥ 0.

We now prove the second statement of the proposition. When G
∗

is linear, the partition

of states is the singleton M, and by Proposition 3 terminal wealth will be optimally equalized

across all states. The only way to duplicate such a payoff when bond returns are riskless, as

assumed, is to invest all wealth in the bond.

Proof of Proposition 5: We consider sequences of economies where initial wealth X0 is split

evenly among I identical investors. Applying Proposition 3, let the optimal aggregate wealth in

a single investor economy be denoted X = Y + Xg and define the following family of random

variables associated with Xg: Xg,k = Xg
1kω=k for k = 0, · · · , T . Each of these random variables

is zero everywhere except on a finite number of states mk, · · · ,mk + nk where the state price

is ψ = ξT−ku ξkd . Assume that each investor in the I-investor economy is endowed with initial

wealth X0/I. We define the random variables Xg,k
i in the following way:

Xg,k
i,m =

 Xg,k
θk(m) if k(m) = k

0 if k(m) 6= k,
(33)

where for each k, θk is a permutation of the set mk, · · · ,mk + nk. The terminal wealth Xi =

Y/I +Xg
i /I, where Xg

i =
∑

kX
g,k
i , has the same distribution as X/I and by the law invariance

of RDU and the absence of wealth effects implied by the power felicity v, Xi must be optimal

for investor i.26

Assume every investor independently applies the previous procedure to choose their optimal

26Equality in distribution of X and Xi follows because Xi is constructed from X by permuting the Xgk across
equally likely states conditional on each occurrence of kω.
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terminal wealth. In any terminal state with k(m) = k, the distribution across individuals i

of Xg,k
i will equal the distribution of Xg,k across states with k(ω) = k, a consequence of the

uniform distribution of m. In particular, the mean of this cross-sectional distribution is zero.

Aggregate investment is given by

∑
i

Xi =
∑
i

Y/I +
∑
i

Xg
i /I (34)

= Y +
∑
i

∑
k

Xg,k
i /I (35)

= Y +
∑
k

∑
i

Xg,k
i /I. (36)

By the strong law of large numbers, as the number of investors increases to infinity,
∑

iX
g,k/I →

0 and aggregate wealth approaches X = Y .

We now prove the second statement in the proposition. Denote the replicating strategies for

each permutation Xi of X by (∆i, Bi). Since the distributions of Xi across investors are inde-

pendent and uniform with finite support, the distributions of the supporting dynamic strategies

(∆i, Bi) across individual investors are also independent and uniform with finite support. By

the strong law of large numbers,
∑

i ∆i must converge to E(∆i) and
∑

iBi must converge to

E(Bi). The trading strategy (
∑

i ∆i,
∑

iBi) → (E(∆i),E(B)) must replicate
∑

iXi → Y , and

by uniqueness of the replicating strategy for Y , (E(∆i),E(B)) = (∆Y , BY ).
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time t
horizon T
bond return (log, gross) r, R
stock return (gross) ρt, t = 1, · · · , T
realized stock returns u, d
probability of stock return u p
mean log stock return µ
std dev of log stock return σ
portfolio return Rt, t = 0, · · · , T − 1
risky share πt, t = 0, · · · , T − 1
short-lived AD prices ξu, ξd
state space Ω or M
state ω or m
number of states M
number of down returns in state m km
long-lived AD prices ψm
terminal wealth X
felicity of wealth Xm v(Xm)
power utility parameter γ
wealth outcome xi
number of distinct wealth outcomes N
CDF of terminal wealth F
probability weighting function H
payoff rank j
decision weight wi and hj
utility of wealth X U(X)
state rank and permutation θ, λ
Prelec parameters α, β
cumulative state price φm ∈ Φ
cumulative decision weight HV

set of probability weights H
weight vs state price function G
graph of G G
concavification of G G∗

states index of vertices of G∗ MV

optimal partition of Ω S∗
elements of S∗ S∗i
price of payoff in S∗i ψ∗i
decision weight for S∗i h∗i
optimal payoff components Y, Xg

optimal trading strategy (∆i, Bi)
free variables i, n

Table of notation
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