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Abstract

We study bilateral trading between two bidders in a divisible double auction. The

bidders (1) submit demand schedules, (2) have interdependent and linearly decreasing

marginal values, and (3) can be asymmetric. Existing models of divisible double auc-

tions typically require at least three bidders for the existence of linear equilibria. In

this paper, we characterize a family of nonlinear ex post equilibria with two bidders,

implicitly given by a solution to an algebraic equation. We show that the equilib-

rium amount of trading is strictly less than that in the ex post efficient allocation. If

marginal values do not decrease with quantity, we solve the family of ex post equilibria

in closed form. Our theory of bilateral trading differs from the bargaining literature

and can serve as a tractable building block to model dynamic trading in decentralized

markets.
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1 Introduction

Trading with demand schedules, in the form of double auctions, is common in many financial

and commodity markets. A large literature is devoted to characterizing the trading behavior

in this mechanism as well as the associated price discovery and allocative efficiency (see, for

example, Kyle (1989), Vives (2011), Rostek and Weretka (2012), and Du and Zhu (2013),

among others). In a typical model of divisible double auctions, bidders simultaneously submit

linear demand schedules (i.e., a set of limit orders, or price-quantity pairs), and trading

occurs at the market-clearing price. A limitation of these models is that the existence of

linear equilibria requires at least three bidders. While the n ≥ 3 assumption is relatively

innocuous for centralized markets, it is restrictive for decentralized, over-the-counter (OTC)

markets, where trades are conducted bilaterally.

In this short paper, we aim to fill this gap by studying the previously unexplored case

of two bidders (bilateral trading) in double auctions. Each bidder in our model receives a

one-dimensional private signal about the asset and values the asset at a weighted average

of his and the other bidder’s signals. That is, values are interdependent. In addition, the

bidder’s marginal value for owning the asset declines linearly in quantity. Moreover, the

bidders can be asymmetric, in the sense that their values can have different weights on each

other’s signals, and that their marginal values can decline at different rates.

We characterize a family of non-linear equilibria in this model. In an equilibrium, each

bidder’s demand schedule is implicitly given by a solution to a non-linear algebraic equa-

tion. We show that these equilibria always lead to a trading quantity that is strictly lower

(in absolute values) than the ex post efficient quantity. This is consistent with the “de-

mand reduction” property commonly seen in multi-unit auctions (see, for example, Ausubel,

Cramton, Pycia, Rostek, and Weretka (2011)). The equilibria that we characterize are ex

post equilibria; that is, the equilibrium strategies remain optimal even if each bidder would

observe the private information of the other bidder. In the special case of constant marginal

values, we obtain a bidder’s equilibrium demand schedule in closed form: it is simply a

constant multiple of a power function of the difference between the bidder’s signal and the

price, where the exponent is decreasing in the weight a bidder assigns on his own signal.

Besides the literature on divisible auctions, our model is also related to the bilateral

bargaining literature. For example, the literature pioneered by Chatterjee and Samuelson

(1983) and Satterthwaite and Williams (1989) studies double auction of an indivisible object

with two bidders. Although the indivisibility of the asset in their models is suitable for

markets like real estates and art, our model of divisible auctions better characterizes the
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markets for financial securities, derivatives, and commodities.

Our equilibria are directly applicable to a sequential bargaining model in which the two

parties go back and forth proposing prices and quantities that they are willing to trade, until

one side accepts the terms proposed by the other. Suppose that the two parties both have

private signals and interdependent values as in our model, and that they have no time dis-

counting during the bargaining process. The final outcome from the sequential proposals of

prices and quantities is equivalent to the outcome from a static double auction in which the

two parties submit demand schedules and trade at the market-clearing price; consequently,

our ex post equilibria become sequential equilibria in this sequential bargaining model. The

application of our equilibria to sequential bargaining is distinct from and complementary to

the sequential bargaining literature pioneered by Rubinstein (1982) for which time discount-

ing plays an important role.1 An advantage of our approach is the robustness of our equilibria

(due to their ex post optimality) to the precise ordering of proposals and counter-proposals

in the sequential bargaining.

In addition to characterizing a single trade between two parties, our model can also

serve as an alternative building block for the analysis of dynamic trading in OTC markets.

Whereas dynamic search models by Duffie, Garleanu, and Pedersen (2005) and extensions

assume private values and symmetric information between the two parties of a trade, our

model allows interdependent values and asymmetric information. Related, Duffie, Malamud,

and Manso (2009) study how dispersed information regarding a common value percolates in a

large OTC markets. They take as given that the two parties exchange their information upon

the pairwise meeting, but abstract away from the mechanism or incentive associated with the

information exchange.2 Our model of divisible auction provides a strategic microfoundation

for such information exchange. For this application, a particular advantage of our equilibria

is that they are ex post optimal, which makes the model more tractable and more robust to

the private information of counterparties.

1Ausubel, Cramton, and Deneckere (2002) summarize the literature on sequential bargaining with private
information. Many sequential bargaining papers focus on the case of one-sided private information; Deneckere
and Liang (2006) is the closest paper from this literature to us, as they study one-sided private information
and interdependent values. We are not aware of any paper that studies sequential bargaining with two-sided
private information and interdependent values.

2In an extension, Duffie, Malamud, and Manso (2013) consider an indivisible double auction in each
pairwise meeting.
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2 Model

There are n = 2 players, whom we call “bidders,” trading a divisible asset. Each bidder i

observes a private signal, si ∈ [s, s] ⊂ R, about the value of the asset. We use j to denote

the bidder other than i. Bidder i’s value for owning the asset is:

vi = αisi + (1− αi)sj, (1)

where α1 ∈ (0, 1] and α2 ∈ (0, 1] are commonly known constants that capture the level of

interdependence in bidders’ valuations. We assume that α1 + α2 > 1.

We further assume that bidder i’s marginal value for owning the asset decreases linearly

in quantity at a commonly known rate λi ≥ 0. Thus, if bidder i acquires quantity qi at the

price p, bidder i has the ex post utility:

Ui(qi, p; vi) = viqi −
λi
2

(qi)
2 − pqi. (2)

By construction, if qi = 0, then Ui = 0.

The trading mechanism is an one-shot divisible double auction. We use xi( · ; si), where

xi( · ; si) : [s, s] → R, to denote the demand schedule that bidder i submits conditional on

his signal si. The demand schedule xi( · ; si) specifies that bidder i wishes to buy a quantity

xi(p; si) of the asset at the price p when xi(p; si) is positive, and that bidder i wishes to sell

a quantity −xi(p; si) of the asset at the price p when xi(p; si) is negative.

Given the submitted demand schedules (x1( · ; s1), x2( · ; s2)), the auctioneer (a human or

a computer algorithm) determines the transaction price p∗ ≡ p∗(s1, s2) from the market-

clearing condition

x1(p
∗; s1) + x2(p

∗; s2) = 0. (3)

After p∗ is determined, bidder i is allocated the quantity xi(p
∗; si) of the asset and pays

xi(p
∗; si)p

∗. If no market-clearing price exists, there is no trade, and each bidder gets a

utility of zero.3

We make no assumption about the distribution of (s1, s2). Therefore, the solution concept

that we use is ex post equilibrium. In an ex post equilibrium, each bidder has no regret—he

would not deviate from his strategy even if he would learn the signal of the other bidder.

Definition 1. An ex post equilibrium is a profile of strategies (x1, x2) such that for every

3If multiple market-clearing prices exist, we can pick one arbitrarily.
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profile of signals (s1, s2) ∈ [s, s]2, every bidder i has no incentive to deviate from xi. That

is, for any alternative strategy x̃i of bidder i,

Ui(xi(p
∗; si), p

∗; vi) ≥ Ui(x̃i(p̃; si), p̃; vi),

where vi is given by (1), p∗ is the market-clearing price given xi and xj, and p̃ is the market-

clearing price given x̃i and xj, j 6= i.

Note that in an ex post equilibrium, a bidder can guarantee a non-negative ex post

utility, since he can earn zero utility by submitting a demand schedule that does not clear

the market (and hence trading zero quantity).

3 Characterize a Family of Ex Post Equilibria

We first define the sign function:

sign(z) =


1 z > 0

0 z = 0

−1 z < 0

. (4)

Proposition 1. Suppose that 1 < α1 + α2 < 2. Let C be any positive constant such that

C ≥ (s− s)2−α1−α2

α2

(
λ2
(
1− α1

2

)
+ λ1

α2

2

α1 + α2 − 1

)α1+α2−1

, and (5)

C ≥ (s− s)2−α1−α2

α1

(
λ1
(
1− α2

2

)
+ λ2

α1

2

α1 + α2 − 1

)α1+α2−1

. (6)

Then, there exists a family (parameterized by C) of ex post equilibria in which:

xi(p; si) = yi(|si − p|) · sign(si − p), i ∈ {1, 2}, (7)

where, for z1, z2 ∈ [0, s− s], y1(z1) and y2(z2) are the smaller solutions to

(2− α1 − α2)z1 = Cα2y1(z1)
α1+α2−1 −

(
λ2

(
1− α1

2

)
+ λ1

α2

2

)
y1(z1), (8)

(2− α1 − α2)z2 = Cα1y2(z2)
α1+α2−1 −

(
λ1

(
1− α2

2

)
+ λ2

α1

2

)
y2(z2). (9)
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The equilibrium price p∗ = p∗(s1, s2) is in between s1 and s2, and satisfies

p∗ =
α1s1 + α2s2
α1 + α2

+
α1λ2 − α2λ1
2(α1 + α2)

x1(p
∗; s1) (10)

Proof. See Section A.1.
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Figure 1: Equilibria from Proposition 1 with α1 = 0.7, α2 = 0.8, λ1 = 0.1, λ2 = 0.2, s = 0, s =
1, s1 = 0.3 and s2 = 0.7. The equilibrium on the left has C = 0.729 and the equilibrium on
the right has C = 1.458.

Figure 1 demonstrates two equilibria of Proposition 1. The primitive parameters are

α1 = 0.7, α2 = 0.8, λ1 = 0.1, λ2 = 0.2, s = 0, and s = 1. The realized signals are s1 = 0.3 and

s2 = 0.7. On the left-hand plot, we show the equilibrium with C = 0.729, which, subject to

conditions (5)–(6), is the equilibrium that maximizes trading volume (hence the most efficient

equilibrium). The equilibrium price is p∗ = 0.5126, bidder 1 gets x1(p
∗; s1) = −0.037, and
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bidder 2 gets x2(p
∗; s2) = 0.037. On the right-hand plot, we show the equilibrium with

C = 1.458. The equilibrium price is p∗ = 0.513, bidder 1 gets x1(p
∗; s1) = −0.009, and

bidder 2 gets x2(p
∗; s2) = 0.009.

While the full proof of Proposition 1 is provided in Section A.1, we briefly discuss its intu-

ition. The conditions (5)–(6) guarantee that the algebraic equations (8)–(9) have solutions.

For example, the right-hand side of Equation (8), rewritten as

f1(y1) ≡ Cα2y
α1+α2−1
1 −

(
λ2

(
1− α1

2

)
+ λ1

α2

2

)
y1, (11)

is clearly a concave function of y1. Condition (5) ensures that the maximum of f1(y1) is

above (2− α1 − α2)(s− s). Hence, by the Intermediate Value Theorem, a solution exists.

Moreover, whenever the inequalities (5)–(6) strict, there always exist two solutions y1(z1):

one before f1(y1) obtains its maximum and the other after. Between the two, we select the

former. It is easy to see that the smaller solution y1(z1) is increasing in z1 because f1(y1) is

increasing in y1 before it obtains its maximum. This means that bidder i’s demand xi(p; si)

is decreasing in p, by (7). The other solution implies an upward-sloping demand schedule

and should be discarded.

In these equilibria, each bidder i buys yi(si − p) units of asset if the price p is below his

signal si; he sells yi(p−si) units if p is above si. The constant C represents the aggressiveness

of the bidding strategy; the smaller is C, the larger is yi(zi), and hence the more aggressive

the bidders bid at each price.4 The most aggressive equilibrium is also the most efficient

one, because it maximizes the amount of trading while obtaining non-negative utilities for

both bidders. On the other hand, as C tends to infinity, yi(zi) tends to zero, and hence the

amount of trading in equilibrium tends to zero. Among this family of ex post equilibria, the

most efficient one, which corresponds to the smallest C satisfying conditions (5)–(6), is a

natural candidate for equilibrium selection.

The equilibrium price in (10) reveals to each bidder the signal of the other bidder. Since

in the double auction each bidder can condition his quantity on the price, each bidder

effectively conditions his trading on the signal of the other bidder. We construct our ex

post equilibria by writing each bidder’s value in terms of the equilibrium price and the

other bidder’s signal; hence each bidder’s ex post optimality condition can be written purely

in terms of the equilibrium price and the other bidder’s demand schedule. This ex post

optimality condition is a first order condition, and hence an ordinary differential equation;

4See Equations (8) and (9): as C gets larger, yi(zi) must become smaller since the left-hand sides of (8)
and (9) are not changing.
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its solution is thus the demand schedule that the other bidder uses in an ex post equilibrium.

3.1 Demand Reduction and Efficiency

In this subsection we work under the condition that λ1 + λ2 > 0.

The ex post efficient allocation is given by:

max
q1∈R

v1q1 −
λ1
2

(q1)
2 + v2(−q1)−

λ2
2

(−q1)2, (12)

where q2 = −q1. Let us denote the efficient allocation by (qe1, q
e
2), where qe1 solves the above

maximization problem, and qe2 = −qe1. We have

v1 − λ1qe1 − (v2 − λ2qe2) = 0, (13)

that is,

qe1 =
v1 − v2
λ1 + λ2

=
(α1 + α2 − 1)(s1 − s2)

λ1 + λ2
. (14)

Let us denote

qe ≡ |qe1| =
(α1 + α2 − 1)|s1 − s2|

λ1 + λ2
, (15)

which is the amount of trading (in absolute value) in the efficient allocation. Note that we

have suppressed the dependence of qe on (s1, s2) for notational simplicity.

Let q∗(C) ≡ |x1(p∗; s1)| be the amount of trading (in absolute value) in an ex post

equilibrium (x1, x2) from Proposition 1, where the constant C satisfies Conditions (5) and

(6). Let us also define

f(y) ≡ C(α1 + α2)y
α1+α2−1 − (λ1 + λ2)y. (16)

In Section A.1 we show that y = q∗(C) is the smaller solution to

f(y) = (2− α1 − α2)|s1 − s2|, (17)

before f(y) reaches its maximum.5

Proposition 2. Suppose that λ1 + λ2 > 0. For every signal profile (s1, s2), the amount of

trading in every ex post equilibrium of Proposition 1 is strictly less than that in the ex post

5It is straightforward to show that given Conditions (5) and (6), there always exist two solutions to (17),
one before and one after f(y) reaches the maximum.
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efficient allocation. That is, q∗(C) < qe for every C satisfying (5) and (6) and for every

(s1, s2) ∈ [s, s]2.

Proof. See Section A.2.

3.2 Special Cases

In this subsection we consider a few special cases of the equilibria of Proposition 1.

3.2.1 Constant Marginal Values

In the special case that λ1 = λ2 = 0, we obtain explicit closed-form solutions.

Corollary 1. Suppose that α1 + α2 > 1 and λ1 = λ2 = 0. There exists a family of ex post

equilibria in which:

xi(p; si) = C|αi(si − p)|
1

α1+α2−1 · sign(si − p), i ∈ {1, 2}, (18)

where C is any positive constant, and the equilibrium price is independent of C and is given

by

p∗(s1, s2) =
α1

α1 + α2

s1 +
α2

α1 + α2

s2. (19)

Corollary 1 shows that if λ1 = λ2 = 0, the equilibrium price p∗(s1, s2) tilts toward the

signal of the bidder who assigns a larger weight on his private signal.

3.2.2 Symmetric Bidders

Corollary 2. Suppose that α1 = α2 ≡ α ∈ (1/2, 1) and λ1 = λ2 ≡ λ. There exists a family

of ex post equilibria in which:

xi(p; si) = y(|si − p|) · sign(si − p), i ∈ {1, 2}, (20)

where y(z) is the smaller solution to

2(1− α)z = Cy(z)2α−1 − λy(z), (21)

for z ∈ [0, s− s], and C is any positive constant such that

C ≥ (s− s)2−2α
(

λ

2α− 1

)2α−1

. (22)
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The equilibrium price is independent of C and is given by

p∗(s1, s2) =
s1 + s2

2
. (23)

3.2.3 Common Value

Corollary 3. Suppose that λ1 + λ2 > 0. As α1 + α2 tends to 1, every ex post equilibrium

(x1, x2) from Proposition 1 implies zero trading:

lim
α1+α2→1

xi(p; si) = 0, (24)

for every i ∈ {1, 2}, si ∈ [s, s], p ∈ [s, s], and C that satisfies Conditions (5) and (6).

3.3 Private Values

Private values correspond to α1 = α2 = 1. Strictly speaking, private values are not covered

by Proposition 1, but one can easily obtain ex post equilibria using the same line of arguments

as in Proposition 1.

Corollary 4. Suppose that α1 = α2 = 1. Let C1 and C2 be positive constants satisfying

C1 − C2 =
λ1 − λ2

2
, (25)

and

Ci ≥
λ1 + λ2

2

(
log

2(s− s)
λ1 + λ2

+ 1

)
, i ∈ {1, 2}. (26)

There exists a family (parameterized by C1 and C2) of ex post equilibria in which:

xi(p; si) = yi(|si − p|) · sign(si − p), i ∈ {1, 2}, (27)

where, for zi ∈ [0, s− s], yi(zi) is the smaller solution to

Ciyi(zi)−
λ1 + λ2

2
yi(zi) log(yi(zi)) = zi. (28)

The equilibrium price p∗ = p∗(s1, s2) is in between s1 and s2, and satisfies

p∗ =
s1 + s2

2
+
λ2 − λ1

4
x1(p

∗; s1). (29)
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Proof. See Section A.3.

Appendix

A Proofs

A.1 Proof of Proposition 1

Step 1: writing the first order conditions as differential equations.

Let (x1, x2) be an ex post equilibrium. The first-order conditions for the ex post opti-

mality are: for every (s1, s2) ∈ [s, s]2, i ∈ {1, 2} and j 6= i,

−xi(p∗; si)− (αisi + (1− αi)sj − p∗ − λixi(p∗; si))
(
−∂xj
∂p

(p∗; sj)

)
= 0,

x1(p
∗; s1) + x2(p

∗; s2) = 0, (30)

where p∗ ≡ p∗(s1, s2) is the market-clearing price.

We first conjecture that the market-clearing price satisfies

s1 − p∗ + µx1(p
∗; s1) = −α2

α1

(s2 − p∗), (31)

where µ is a constant to be determined in Step 2.

Given the conjecture in (31), we have

v1 − p∗ − λ1x1(p∗; s1) = α1(s1 − p∗ + µx1(p
∗; s1)) + (1− α1)(s2 − p∗)− (λ1 + α1µ)x1(p

∗; s1)

= α2(p
∗ − s2) + (1− α1)(s2 − p∗)− (λ1 + α1µ)x1(p

∗; s1)

= (α1 + α2 − 1)(p∗ − s2) + (λ1 + α1µ)x2(p
∗; s2), (32)

and

v2 − p∗ − λ2x2(p∗; s2) = α2(s2 − p∗) + (1− α2)(s1 − p∗)− λ2x2(p∗; s2)

= α1(p
∗ − s1 − µx1(p∗; s1)) + (1− α2)(s1 − p∗)− λ2x2(p∗; s2)

= (α1 + α2 − 1)(p∗ − s1) + (λ2 − α1µ)x1(p
∗; s1). (33)
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Using Equations (32) and (33), we can rewrite the first order condition of bidder i in (30)

as a differential equation that involves only bidder j, j 6= i:

x1(p
∗; s1) = ((α1 + α2 − 1)(p∗ − s1) + (λ2 − α1µ)x1(p

∗; s1))
∂x1
∂p

(p∗; s1), (34)

x2(p
∗; s1) = ((α1 + α2 − 1)(p∗ − s2) + (λ1 + α1µ)x2(p

∗; s1))
∂x2
∂p

(p∗; s2) (35)

To solve Equations (34) and (35), we first solve a simpler system:

y(z) = (ηz − λy(z))y′(z), y(0) = 0, y′(z) > 0 for z > 0. (36)

After solving (36), we obtain a solution to (34) and (35) by setting

xi(p; si) = y(|si − p|) sign(si − p). (37)

Lemma 1. Suppose that 0 < η < 1 and λ > 0. The differential equation

y(z) = (ηz − λy(z))y′(z) (38)

is solved by the implicit solution to:

(1− η)z = Cy(z)η − λy(z), (39)

where C is a positive constant. If

C ≥
(
λ

η

)η
(s− s)1−η, (40)

we can select y(z) that solves (39) such that y(0) = 0, y(z) > 0, y′(z) > 0 and y′′(z) > 0 for

every z ∈ (0, s− s].

Proof of Lemma 1. Suppose that y(z) satisfies (39). We first show that it must also satisfy
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(38). Differentiate (39) with respect to z gives:

1− η = (Cηy(z)η−1 − λ)y′(z)

= (Cy(z)η−1 − λ)y′(z)− C(1− η)y(z)η−1y′(z)

=
(1− η)z

y(z)
y′(z)− C(1− η)y(z)η−1y′(z)

=
(1− η)z − C(1− η)y(z)η

y(z)
y′(z),

i.e.,

1 =
z − Cy(z)η

y(z)
y′(z)

=
z − ((1− η)z + λy(z))

y(z)
y′(z),

which is exactly Equation (38).

Let

f(y) = Cyη − λy. (41)

The function f is clearly strictly concave and obtains its maximum at

y∗ =

(
Cη

λ

) 1
1−η

. (42)

We choose C > 0 so that

f(y∗) = C

(
Cη

λ

) η
1−η

− λ
(
Cη

λ

) 1
1−η

= C
1

1−η

(η
λ

) η
1−η

(1− η) ≥ (1− η)(s− s) (43)

which is equivalent to (40). Given this choice of C, for every z ∈ [0, s−s], by the Intermediate

Value Theorem there is a unique y(z) ∈ [0, y∗] that solves f(y(z)) = (1−η)z. Since f ′(y(z)) >

0 for y(z) ∈ (0, y∗), we have y′(z) = 1−η
f ′(y(z))

> 0 for z ∈ (0, s− s].
Finally, we differentiate both sides of (38) to obtain:

y′(z) = (ηz − λy(z))y′′(z) + (η − λy′(z))y′(z), (44)

i.e.,

(ηz − λy(z))y′′(z) = (1− η)y′(z) + λy′(z)2. (45)
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Since y′(z) > 0 and ηz − λy(z) = y(z)
y′(z)

> 0, we conclude that y′′(z) > 0 for z > 0.

Step 2: deriving the equilibrium strategy.

Given Lemma 1, we let y1(z1) and y2(z2), where z1, z2 ≥ 0, be implicitly defined by

(2− α1 − α2)z1 = C1y1(z1)
α1+α2−1 − (λ2 − α1µ)y1(z1), (46)

(2− α1 − α2)z2 = C2y2(z2)
α1+α2−1 − (λ1 + α1µ)y2(z2), (47)

and let

x1(p; s1) = y1(|s1 − p|) sign(s1 − p), (48)

x2(p; s2) = y2(|s2 − p|) sign(s2 − p). (49)

Clearly, (46) is equivalent to

(2− α1 − α2)(z1 + µy1(z1)) = C1y1(z1)
α1+α2−1 − (λ2 − α1µ− (2− α1 − α2)µ)y1(z1), (50)

so to satisfy conjecture (31), we let

C1 = α2C, C2 = α1C, (51)

for a constant C > 0, and

λ2 − α1µ− (2− α1 − α2)µ =
α2

α1

(λ1 + α1µ), (52)

i.e.,

µ =
1

2

(
λ2 −

α2

α1

λ1

)
. (53)

Substituting (51) and (53) into (46) and (47) gives:

(2− α1 − α2)z1 = Cα2y1(z1)
α1+α2−1 −

(
λ2

(
1− α1

2

)
+ λ1

α2

2

)
y1(z1), (54)

(2− α1 − α2)z2 = Cα1y2(z2)
α1+α2−1 −

(
λ1

(
1− α2

2

)
+ λ2

α1

2

)
y2(z2). (55)

If a market-clearing price p∗ exists, we have sign(s1 − p∗) = − sign(s2 − p∗) and y1(|s1 −
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p∗|) = y2(|s2 − p∗|). Thus, Equations (51) and (52) ensure that from (47) and (50) we have

|s1 − p∗|+ µy1(|s1 − p∗|) =
α2

α1

|s2 − p∗|, (56)

or equivalently

(s1 − p∗) + µx1(p
∗; s1) = −α2

α1

(s2 − p∗), (57)

which is exactly our conjecture in (31).

The following lemma gives conditions that guarantee the existence of market-clearing

price.

Lemma 2. Suppose that

C ≥ (s− s)2−α1−α2

α2

(
λ2
(
1− α1

2

)
+ λ1

α2

2

α1 + α2 − 1

)α1+α2−1

, and (58)

C ≥ (s− s)2−α1−α2

α1

(
λ1
(
1− α2

2

)
+ λ2

α1

2

α1 + α2 − 1

)α1+α2−1

. (59)

Then for every profile (s1, s2) ∈ [s, s]2, there exists a unique p∗ ∈ [s, s] that satisfies x1(p
∗; s1)+

x2(p
∗; s2) = 0.

Proof. By Lemma 1, conditions (58) and (59) give y1 : [0, s−s]→ [0,∞) and y2 : [0, s−s]→
[0,∞), respectively, that are strictly increasing and convex.

Without loss of generality, suppose that s1 < s2. There exists a minimum ȳ > 0 that

solves: 6

(2− α1 − α2)(s2 − s1) = C(α1 + α2)ȳ
α1+α2−1 − (λ1 + λ2) ȳ. (60)

Let z1 satisfies

(2− α1 − α2)z1 = Cα2ȳ
α1+α2−1 −

(
λ2

(
1− α1

2

)
+ λ1

α2

2

)
ȳ, (61)

6By construction, we have

(2− α1 − α2)(s2 − s1) = Cα2y
α1+α2−1 −

(
λ2

(
1− α1

2

)
+ λ1

α2

2

)
y

when y = y1(s2 − s1), and

(2− α1 − α2)(s2 − s1) = Cα1y
α1+α2−1 −

(
λ1

(
1− α2

2

)
+ λ2

α1

2

)
y

when y = y2(s2−s1). Hence, by the Intermediate Value Theorem, there exists a ȳ ≤ min(y1(s2−s1), y2(s2−
s1)) that satisfies Equation (60).
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and let z2 satisfies

(2− α1 − α2)z2 = Cα1ȳ
α1+α2−1 −

(
λ1

(
1− α2

2

)
+ λ2

α1

2

)
ȳ. (62)

Clearly, we have z1 > 0, z2 > 0 and z1 + z2 = s2 − s1. Let p∗ = s1 + z1. Then we have

z1 = p∗ − s1, z2 = s2 − p∗, and y1(z1) = y2(z2) = ȳ, i.e., x1(p
∗; s1) = x2(p

∗; s2).

Finally, the uniqueness of p∗ follows from the fact that both x1(p; s1) and x2(p; s2) are

strictly decreasing in p.

Step 3: verifying ex post optimality.

Finally, we directly verify the ex post optimality of (x1, x2). Let

Πi(p) = (vi − p)(−xj(p; sj))−
λi
2

(−xj(p; sj))2, (63)

for i ∈ {1, 2} and j 6= i. We will show that

Πi(p
∗) ≥ Πi(p), (64)

for every p ∈ [s, s] and every (s1, s2) ∈ [s, s]2.

Without loss of generality, fix i = 1 and s2 < s1. By construction, we have s2 < p∗ < s1,

x1(p
∗; s1) = −x2(p∗; s2) > 0. Since x1(p

∗; s1) > 0, the first order condition (30) implies that

v1 − p∗ − λ1x1(p∗; s1) = v1 − p∗ + λ1x2(p
∗; s2) > 0. (65)

Let p̄ > p∗ be such that

v1 − p̄+ λ1x2(p̄; s2) = 0. (66)

We note that

Π′1(p) = (v1 − p+ λ1x2(p; s2))

(
−∂x2
∂p

(p; s2)

)
+ x2(p; s2) < 0 (67)

for p > p̄.

We have

Π1(p
∗) =

∫ x1(p∗;s1)

0

(v1 − p∗ − λ1q) dq > 0. (68)

On the other hand, when p ≤ s2, we have x2(p; s2) ≥ 0, hence Π1(p) ≤ 0. Thus, Π1(p)

cannot be maximized by p ∈ [s, s2].
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For p ∈ (s2, s], we have x2(p; s2) = −y2(p− s2), and hence:

Π′1(p) =(v1 − p− λ1y2(p− s2))y′2(p− s2)− y2(p− s2) (69)

=(vi − p− λ1y2(p− s2))y′2(p− sj)

− ((α1 + α2 − 1)(p− s2)− (λ1 + α1µ)y2(p− s2))y′2(p− s2)

=(vi − p− (α1 + α2 − 1)(p− s2) + α1µy2(p− s2))y′2(p− s2)

where the second line follows by the differential equation in (35) and (36). Since y′(p−s2) > 0

for p > s2, Π′1(p) = 0 for p > s2 if and only if

vi − p− (α1 + α2 − 1)(p− s2) + α1µy2(p− s2) = 0 (70)

for p > s2.

We distinguish between two cases:

1. When µ ≤ 0, the left-hand side of (70) is strictly decreasing in p, since by Lemma 1

y(p− s2) is strictly increasing in p. Thus, Equation (70) has only one solution: p = p∗

(by the construction in Step 1 and 2, we have Π′1(p
∗) = 0).

2. When µ > 0, the left-hand side of (70) is strictly convex in p, since by Lemma 1

y(p − s2) is strictly convex in p. Thus, Equation (70) has at most two solutions (one

of the solutions is p = p∗). However, we know that for any p > p̄, the left-hand side of

the (70) is negative (see Equation (67)). Therefore, p = p∗ is the only solution to (70).

Therefore, Equation (70) has only one solution on (s2, s]: p = p∗. This implies that

Π′1(p) = 0 has only one solution on (s2, s]: p = p∗. Since the maximum point of Πi(p) over

[s, s] cannot be in [s, s2] or in [p̄, s], it must be in (s2, p̄) and satisfies Π′i(p) = 0. We thus

conclude that p = p∗ maximizes Πi(p) over all p ∈ [s, s].

A.2 Proof of Proposition 2

We show that f(qe) > (2 − α1 − α2)|s1 − s2|, where f is defined in Equation (16). Since

y = q∗(C) is the smaller solution to f(y) = (2− α1 − α2)|s1 − s2|, we must have q∗(C) < qe.

Clearly, f(qe) > (2− α1 − α2)|s1 − s2| is equivalent to:

C >
|s1 − s2|2−α1−α2

α1 + α2

(
λ1 + λ2

α1 + α2 − 1

)α1+α2−1

. (71)
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Let us define:

C1 ≡
(s− s)2−α1−α2

α2

(
λ2
(
1− α1

2

)
+ λ1

α2

2

α1 + α2 − 1

)α1+α2−1

, (72)

C2 ≡
(s− s)2−α1−α2

α1

(
λ1
(
1− α2

2

)
+ λ2

α1

2

α1 + α2 − 1

)α1+α2−1

, (73)

C ≡ (s− s)2−α1−α2

α1 + α2

(
λ1 + λ2

α1 + α2 − 1

)α1+α2−1

. (74)

We claim that max(C1, C2) > C. For the sake of contradiction, suppose max(C1, C2) ≤ C;
this implies: (

λ2
(
1− α1

2

)
+ λ1

α2

2

λ1 + λ2

)α1+α2−1

≤ α2

α1 + α2(
λ1
(
1− α2

2

)
+ λ2

α1

2

λ1 + λ2

)α1+α2−1

≤ α1

α1 + α2

,

which implies(
λ2
(
1− α1

2

)
+ λ1

α2

2

λ1 + λ2

)α1+α2−1

+

(
λ1
(
1− α2

2

)
+ λ2

α1

2

λ1 + λ2

)α1+α2−1

≤ 1,

which is clearly false given 0 < α1 + α2 − 1 < 1.

Hence Conditions (5) and (6), which state that C ≥ max(C1, C2), imply that C > C,
which implies (71).

A.3 Proof of Corollary 4

The proof of Corollary 4 follows the exact same steps as that of Proposition 1; the only

difference is solving the differential equation (c.f. Lemma 1):

(z − λy(z))y′(z) = y(z), (75)

whose solution is given by the implicit equation

Cy(z)− λy(z) log(y(z)) = z, (76)
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where C is a constant.
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