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Abstract

Science, Technology, Engineering, and Mathematics (STEM) workers are funda-

mental inputs for innovation, the main driver of productivity growth. We identify the

long-run effect of STEM employment growth on outcomes for native workers across 219

U.S. cities from 1990 to 2010. We use the 1980 distribution of foreign-born STEM work-

ers and variation in the H-1B visa program to identify supply-driven STEM increases

across cities. Increases in STEM workers are associated with significant wage gains for

college-educated natives. Gains for non-college-educated natives are smaller but still

significant. Our results imply that foreign STEM increased total factor productivity

growth in US cities.
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1 Introduction

Science, technology, engineering, and mathematics (STEM) workers are the primary con-

tributors to the creation and adoption of technological innovation, the fundamental driver of

sustained economic growth. The importance of STEM innovations has long been recognized

by growth economists. Griliches (1992) and Jones (1995), for example, have used measures

of scientists and engineers to identify research & development (R&D) contributions to idea-

production, with the latter study arguing that scientists and engineers are responsible for

50% of long-run U.S. productivity growth. A related literature (e.g., Katz and Murphy

(1992), Acemoglu (2002), and Autor, Katz, and Kearney (2006)) has noted that technolog-

ical innovation during the past 30 years has not increased the productivity of all workers

equally. The development of new technologies — especially Information and Communication

Technologies (ICT) — significantly increased the productivity and wages of college-educated

workers. They had a much smaller effect on the demand for non-college-educated workers,

which has remained rather stagnant.

Importantly, while technological and scientific knowledge is footloose and spreads across

regions and countries, STEM workers are less mobile. Tacit knowledge and face-to-face

interactions influence the speed at which new ideas are locally adopted. Several studies (e.g.

Moretti (2004a, 2004b), Iranzo and Peri (2009)) have illustrated that concentrations of college

educated workers spur local productivity. Others have shown the tendency for innovation-

and idea- intensive industries to agglomerate (Ellison and Glaeser (1999), Glaeser (2011),

Moretti (2012)) and for ideas to remain local generators of virtuous innovation cycles (Jaffe,

Trajtenberg, and Henderson (1993), Saxenian (2002)).

This paper sits at the intersection of these literatures. We quantify the long-run effect

of increased city-level STEM employment on labor market outcomes for STEM, college-

educated, and non-college-educated native-born workers. Sections 2 and 3 describe our

empirical specification and data. The challenge of the exercise is to identify variation in the

growth of STEM workers across U.S. metropolitan statistical areas (MSAs, or cities) that is

supply-driven and hence exogenous to other factors that affect local wages, employment, and

productivity. We do this by exploiting the introduction of the H-1B visa in 1990 and the dif-

ferential effect that these visas had in bringing foreign-born college-educated workers (mostly

STEM workers) to 219 U.S. cities from 1990 to 2010. H-1B policy changes were national

in scope but had differentiated local effects because foreign STEM workers were unevenly

distributed across U.S. cities before the inception of the H-1B visa program. Migrant pref-

erences and the availability of information spread by ethnic networks led subsequent inflows

of H-1B workers to concentrate in areas with a large pre-existing foreign STEM presence.

Our identification strategy is rooted in methods used by Altonji and Card (1991), Card

(2001), and Kerr and Lincoln (2010). First, we measure foreign STEM workers as a share

of employment in each MSA in 1980. This share exhibits large variation. Next, we predict

the number of new foreign STEM workers in each city by allocating the H-1B visas to 14

foreign nationality groups in proportion to their city-level presence in 1980. This H-1B-

driven imputation of future foreign STEM is a good predictor of the actual increase of both

foreign STEM and overall STEM workers in a city over subsequent decades. Thus, we use

this prediction as an instrument for the actual growth of foreign STEM workers in order to

obtain causal estimates of the impact of STEM growth on the wages and employment of
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college and non-college-educated native-born workers.

The 1980 distribution of foreign STEM and the overall inflow of H-1B workers between

1990 and 2010 could be correlated with unobservable city-specific shocks that affect employ-

ment and wage growth, so Section 4 explores the power and validity of our instrumental

variable strategy. We check that the initial industrial structure of the metropolitan area,

the 1980 distribution of other types of foreign-born workers (e.g., less educated and manual

workers), and the subsequent inflow of non-STEM immigrants do not predict foreign STEM

employment growth. We also show that the trends of native outcomes prior to the inception

of the H-1B program (1970-1980) were uncorrelated with the H-1B-driven growth in STEM

workers from 1990 to 2010. Finally, our demanding regression specifications always include

both city and period fixed effects while relying upon changes in growth rates of H-1B-driven

STEM workers within MSAs over time for identification.

The main regression estimates are in Section 5. Our preferred specifications reveal that

a rise in foreign STEM growth by one percentage point of total employment increases wage

growth of college-educated natives by 7-8 percentage points. The same change had a smaller

but usually significant effect on non-college-educated native wage growth equal to 3-4 per-

centage points. We find no statistically significant effects for native employment growth.

Section 6 closes the analysis by introducing a simple model of city-level production and

combining it with our estimated parameters to simulate the effect of STEM on total factor

productivity (TFP) and skill-biased productivity (SBP). Aggregating at the national level,

inflows of foreign STEM workers explain between 30 and 50% of the aggregate productivity

growth that took place in the U.S. between 1990 and 2010. This range is consistent with

Jones’s (2002) analysis of science and engineering contributions to productivity growth. We

also find that foreign STEM inflows account for a more modest 4 to 8% of U.S. skill-biased

technological change.

2 Empirical Framework

Our empirical analysis uses variation in foreign-born STEM workers across U.S. cities ()

and time-periods () to estimate their impact on native wages and employment. We discuss

identification and its challenges in Section 4. The basic specifications we estimate in Section

5 take the form,



 =  +  +  · ∆






+ 3 ·  +  (1)

The variable 

 is the period-change in outcome  (either employment or average

weekly wages) for the sub-group of natives with skill  (either STEM workers, college-

educated workers, or non-college-educated workers), standardized by the initial year outcome

level. The term  captures period fixed effects, while  captures city fixed effects. The

variable
∆





is the change of foreign STEM over a period, standardized by a city’s

initial total employment (). The term  includes other city-specific controls, and

 is a zero-mean idiosyncratic random error. The specification implies that identification

relies on variation in the growth of foreign STEM workers within cities over time-periods.
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Our analysis spans 1990-2010, and we choose to partition these two decades into three

specific time-periods: 1990-2000, 2000-2005, and 2005-2010. This enables us to exploit the

large variation in national H-1B policy that occurred between 2000 to 2005 relative to the

other periods. Additionally, this facilitates (unreported) robustness checks that remove the

2005-2010 period to avoid influence from the Great Recession.1

The coefficient  , captures the elasticity of outcome  for worker group  to an ex-

ogenous increase in STEM workers. Interpreting these estimates as causal requires changes

in 

 that are exogenous to productivity shocks and other unobservable determi-

nants of city-level wage and employment changes. Before turning attention to this challenge,

we describe our data, STEM employment measures, the construction of the H-1B-driven

foreign STEM instrument, and our instrument’s power.

3 Data: STEM Workers in U.S. Cities

We develop two separate methods of defining STEM occupations. Each method also uses

both a more inclusive and a more restrictive STEM identification criterion, resulting in

four possible STEM definitions. The first method is based on skills that workers use in

their occupations. We use the U.S. Department of Labor’s (2012) O*NET database, which

measures the occupation-specific importance of several dozen skills required to perform the

job. We select four O*NET skills that involve STEM use — namely, “Mathematics in Problem

Solving,” “Science in Problem Solving,” “Technology Design,” and “Programming.” We

then compute the average score of each occupation across the four skills and rank the 331

occupations consistently identified in the Census 1980-2010 according to the average STEM

skill value defined above.2 We classify STEM occupations as those employing the top 4%

(strict definition) or 8% (broad definition) of workers in that ranking in the year 2010.

O*NET 4% (or 8%) STEM workers are the individuals with these occupations.

Our second method for identifying STEM occupations is based on the skills workers pos-

sess before employment — the college majors found among workers within occupations. The

U.S. State Department recognizes a list of STEM majors for the purpose of granting foreign

students extended time to work under the Optional Practical Training (OPT) program.3

We rank occupations based on the 2010 ACS share of individuals with a college degree in a

STEM major. We then classify STEM occupations as those employing the top 4% (strict)

or 8% (broad) of workers following that ranking in 2010. Major-based 4% (or 8%) STEM

workers are the individuals within those occupations. Both the O*NET and Major-based

strict definitions include mainly Census occupations with “scientist” or “engineer” in the

title. Major-based STEM occupations largely coincide with O*NET STEM occupations.

1Estimates are robust to removing the Great Recession. Similarly, they remain robust when constructing

variables over 1990-2000 and 2000-2010. Results are available upon request.
2We make small refinements to the Census Occupational Classification in order to ensure complete time-

consistency in the availability of occupations over the 1980-2010 period. A detailed description of both of

our STEM definitions, as well as the refinement of occupations, is available in the Online Appendix.
3There is no direct crosswalk between majors listed under the OPT STEM classification and major

categories in the 2010 ACS. Thus, our list is consistent with, but not identical to, OPT STEM degree fields.
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3.1 H-1B Visa Policy Changes

Our analysis exploits large shifts in national H-1B visa policy between 1990 and 2010 as an

exogenous source of variation in the inflow of foreign STEM workers across U.S. cities to

identify the effect of STEM workers on the wages and employment of native-born workers.

The H-1B visa, introduced in 1990, provides temporary permits for college-educated foreign

“specialty” workers. The visa has been a crucial channel of admission for many college-

educated foreign-born workers employed in STEM occupations.4 Set initially at 65,000

H-1B visas annually, the cap rose to 115,000 for fiscal years 1999 and 2000, and then to

195,000 per year for 2001, 2002, and 2003. It reverted back to the original 65,000 beginning

in 2004. Though the limit officially remains at 65,000, the first 20,000 H-1B visas issued

to individuals who have obtained a graduate degree in the U.S. became exempt from H-1B

limits beginning in 2005, effectively raising the cap to 85,000.5

Not only has the size of the H-1B program varied greatly since its inception, but the

ensuing inflow of foreign STEM workers has been heterogeneously distributed across U.S.

cities as well. Part of these cross-city differences were certainly due to varying economic con-

ditions, industrial structures, and labor demand influencing wage and employment growth.

Importantly, however, a portion of this variation was due to persistent immigrant preferences

to locate in cities with historical communities of past immigration. The 1980 distribution

of STEM workers by nationality proxies for these historical settlements. Our analysis needs

to capture only the heterogeneity in foreign STEM created by this differential initial pres-

ence (in 1980) of foreign enclaves by nationality that are exogenous to other determinants

of future city-level native wage and employment growth. To do this we construct an H-1B

driven instrument that retains only the portion of growth in foreign STEM attributable to

national policy fluctuations, and our regressions account for city-specific factors that may

have attracted foreign STEM and native workers alike.

3.2 The H-1B-Driven Increase in STEM

Our data on the occupations, employment, wages, age, and education of individuals comes

from the Ruggles et al. (2010) IPUMS 5% Census files for 1980, 1990, and 2000, the 1%

American Community Survey (ACS) sample for 2005, and the 2008-2010 3% merged ACS

sample for 2010. We only use data on 219 MSAs consistently identified from 1980 through

2010. These span a range of U.S. metropolitan sizes, including all the largest cities in the

U.S. down to MSAs with close to 200,000 people (Danville, VA; Decatur, IL; Sharon, PA;

Waterbury, CT; Muncie, IN; and Alexandria, PA are the six smallest). Data on aggregate

H-1B flows by nationality and year is publicly available from the U.S. Department of State.

We construct our “H-1B-driven increase in STEMworkers” variable for each city between

1990 and 2010. This captures supply-driven variation in the growth of foreign STEMworkers,

4Lowell (2000) notes that 70% of H-1B visas have been awarded to people employed as Computer Analysts,

Programmers, Electrical Engineers, University Professors, Accountants, Other Engineers, and Architects.

Similarly, U.S. Citizenship and Immigration Services reports that for all years between 2004 and 2011,

more than 85% of new H-1B visa holders worked in Computer, Health Science, Accounting, Architecture,

Engineering, and Mathematics.
5Kerr and Lincoln (2010) and Kato and Sparber (2013) provide more discussion on the H-1B visa and its

economic effects.
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which we use as an instrumental variable to estimate Equation (1). To create this instrument,

we first impute the number of foreign STEM workers in city  and year :

\
 =

14X
=1


1980

Ã
\




1980

!
(2)

The term 
1980 is the number of foreign STEM workers of nationality  in city

 in 1980.6 The growth factor of all foreign STEM workers for each nationality in the U.S.

between 1980 and year  is represented by
\





1980

. This is calculated by adding the inflow

of STEM workers from each nationality between 1980 and  to its initial 1980 level. For the

period 1980-1990 we simply add the net increase in STEM workers from nationality  as

recorded in the U.S. Census
¡
∆

1980−1990
¢
. For later periods we use the cumulative

H-1B visas allocated to each nationality
¡
#1

1990−
¢
.7 The imputed growth factor for

STEM workers for each foreign nationality in year is therefore:

\



1980

=


1980 +∆
1980−1990 +#1


1990−


1980

(3)

The H-1B-driven change in foreign STEM workers that we use as our instrument is

the time-period change in \
 standardized by the initial imputed city employment³c

´
.8

Our identification strategy is closely related to those used by Altonji and Card (1991)

and Card (2001), who exploit the initial distribution of foreign workers across U.S. cities. We

use the initial distribution of foreign STEM workers across cities, rather than all immigrants.

In this regard, our methodology is more similar to Kerr and Lincoln’s (2010) examination of

the impact of H-1B flows on innovation. We distinguish our approach by using the foreign

6We aggregate to 14 nationality groups: Canada, Mexico, Rest of Americas (excluding the USA), Western

Europe, Eastern Europe, China, Japan, Korea, Philippines, India, Rest of Asia, Africa, Oceania, and Other.

We choose 1980 as the base year in the imputation of foreign STEM for three reasons. First, it is the earliest

Census that allows the identification of 219 metropolitan areas. Second, it occurs well before the creation of

the H-1B visa and hence does not reflect the distribution of foreign STEM workers affected by the policy.

Third, it pre-dates most of the ICT revolution so that the distribution of STEM workers was hardly affected

by the geographic location of the computer and software industries.
7Data on visas issued by nationality begin in 1997. While we know the total number of H-1B visas issued

in each year from 1990, we must estimate the total number of visas issued by nationality between 1990 and

1997, as:

#[11990− = #11990−

µ
#11997−2010
#11997−2010

¶
where

#11997−2010
#11997−2010

is the share of visas issued to nationality group  among the total visas issued

from 1997 to 2010. For  larger than 1997 we have the actual number of yearly visas by nationality.
8To avoid endogenous changes in total employment at the city level we also impute city employment

by augmenting employment by nativity and skill level in 1980 by the corresponding growth factor in total

national employment. Hence,d
 = 

1980 ∗ (
 


1980), where  = native college-educated workers, native

non-college-educated workers, foreign college-educated workers, and foreign non-college-educated workers.

Thus,d =
P


c, and the instrument is

∆ \
 .
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STEM presence in 1980, rather than in 1990, and by further differentiating immigrant groups

by nationality, instead of using aggregate immigrants. We also use a more demanding panel

specification, measuring variables in growth rates while including both city and time-period

effects. Before discussing the validity of our instrumental variables approach in detail, we

present descriptive statistics that illustrate the significance of foreign-born STEM workers

and the importance of the H-1B program in transforming the U.S. STEM workforce.

3.3 Foreign STEM Summary Statistics

Foreign-born individuals have been persistently over-represented in STEM occupations and

have contributed substantially to the aggregate growth of STEM jobs in the U.S.9 Table 1

displays the foreign-born share of four different employment groups. Columns (1) through (4)

represent the foreign-born percentage among total employment, college educated workers,

STEM occupations, and college-educated STEM workers—all calculated for the aggregate

of 219 MSAs that we analyze. While foreign-born individuals represented about 16% of

total U.S. employment in 2010, they counted for more than 27% of college-educated STEM

workers in the MSAs we analyze. This percentage has more than doubled since 1980.

Columns (1) and (2) of Table 2 show that college-educated STEM workers have increased

from 1.7% of total employment in 1980 to 3.2% in 2010. The share of college-educated foreign

STEM workers has grown from 0.2% to 0.87%. Of the 0.78 point increase in college-educated

STEM as a percentage of employment between 1990 and 2010, 0.53 percentage points (two

thirds of the total) was due to foreigners.

Columns (3)-(5) display changes in STEM employment and H-1B visas between periods.

Column (3) reports the net total increase in college-educated STEM workers in the U.S. over

the periods, and Column (4) displays the rise in college-educated foreign STEM workers.

While only one fifth of the net increase in STEM workers between 1980 and 1990 was driven

by foreigners, they were responsible for 77% of the net STEM growth between 1990 and 2000,

and for more than the total growth from 2000-2010. Column (5) displays the cumulative

number of H-1B visas issued between periods. It is clear that enough H-1B visas were issued

to cover the whole growth in college-educated foreign STEMworkers in the U.S. Remarkably,

H-1B issuances were three to four times as large as the net increase in college-educated STEM

between 2000-2005 and 2005-2010. This implies that many foreign STEM workers, including

H-1B recipients, have left the U.S.10 Overall, Table 2 highlights the importance of foreign

workers within STEM jobs and confirms that the scope of the H-1B program was large

enough to substantially contribute toward foreign STEM growth since 1990.

9In the summary statistics and in the empirical analysis we mainly use the O*NET 4% STEM definition

unless we note otherwise.
10Depew, Norlander, and Sorensen (2013) provide a detailed analysis of quit and return rates for temporary

skilled employees of six large Indian ICT firms. Twenty-nine percent of their sample returned to India during

the course of the survey period (2003-2011).
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4 Identification: Power and Validity of the Instruments

Our identification strategy relies on the H-1B supply-driven instrument. Its validity is based,

in large part, upon the assumption that the 1980 employment share of foreign STEMworkers

varied across cities due to factors related to the persistent agglomeration of foreign commu-

nities in some localities. These historical differences — after controlling for an array of other

city characteristics and shocks — affected the change in the supply of foreign STEM work-

ers but were unrelated to shocks affecting city-level native wage and employment growth.

Though our modeling choices aim to reduce the risk of correlation between the instrument

and unobserved determinants of wage and employment growth, such confounding factors are

of great concern. For example, the initial distribution of foreign STEM may be correlated

with persistent city factors that influenced future labor market outcomes, resulting in omit-

ted variables bias. Alternatively, aggregate inflows of H-1B workers might have been driven

by a few specific cities. The presence of measurement error, more likely in cities with small

populations, could lead to attenuation bias. This section tests our instrument’s validity and

addresses key challenges to our identification strategy.

The following first-stage regression (4) provides a framework to explore these issues:

∆




=  +  +  · ∆
\

c

+  (4)

The coefficient  measures the impact of H-1B-driven STEM inflows—our instrument—on

the measured increase in foreign STEM workers, the explanatory variable in our second-

stage regression (1). This coefficient and its power are the main objects of interest for causal

interpretation. The terms  and  capture period and MSA fixed effects. Changes refer

to the periods 1990-2000, 2000-2005, and 2005-2010. The zero-mean random error () is
uncorrelated with the explanatory variable.

4.1 Basic Specifications and Checks

We tackle several threats to the identification assumptions and begin by showing that the

1980 presence of foreign STEM workers in cities did not always mirror the presence of native

STEM workers. Table 3 shows the estimated coefficient () and the partial F-statistic from

first stage regression Equation (4). The coefficients reported in the first and the second row

are the  and the F-statistics of the instrument when using the O*NET STEM definition

for both the endogenous variable and the instrument. Those in the third and fourth row are

the corresponding statistics when using the Major-based STEM definition.

Column (1) includes period effects, state effects, and the 1980 employment share of native

STEM. Imputed H-1B-driven STEM growth has a highly significant impact on foreign STEM

growth. This implies that even controlling for the initial native STEM share, the foreign

STEM share has significant explanatory power.11

11One reason for the power of foreign STEM after controlling for native STEM is that cities with large

native STEM shares in 1980 were associated with traditional sectors that attracted scientists and engineers

in the 1970s but did not predict the presence of information technology and computer sectors that dominated

R&D in the 1990s and 2000s.
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The next two columns introduce MSA fixed effects to control for all other initial city-

specific conditions so that our identification relies only on deviations in MSA growth rates

from MSA-specific trends. We include city fixed effects in all subsequent specifications.

Column (2) uses the narrow 4% (STEM or Major-Based) definitions for both the endogenous

variable and the instrument, whereas Column (3) uses the broader 8% definitions. The power

of the instrument in these specifications is stronger than in Column (1). F-statistics are close

to or above 10, emphasizing that our H-1B-based instrument is good at capturing changes

in the inflow of STEM workers within cities over time. Moreover, we find that the two

definitions of STEM produce similar results, though some small differences exist.

Columns (4) and (5) of Table 3 address two important concerns. The first is that the

correlation between the instrument and the actual change in foreign STEM could be driven

by the large high-tech boom in a few large MSAs, rather than by the exogenous initial

distribution of immigrants. If large metropolitan areas drove most of the country’s R&D

and produced a large increase in demand for foreign H-1B visas and STEM workers, the

instrument and the endogenous variable for large R&D-intensive cities could be spuriously

correlated. Alternatively, the presence of a few particular industries (e.g., the ICT sector)

might have attracted particular types of immigrants whose growth simply proxies for the

success of those industries. The current population of foreign STEM workers from India, for

example, is strongly associated with information technology since most of them are employed

in computer, software, and electrical engineering occupations. Moreover, Indians have always

accounted for at least 40% of H-1B visas.

Column (4) excludes the five metro areas with the largest number of STEM workers in

1980.12 Column (5) excludes Indian STEM workers from the calculations of the instrument.

The coefficients are still highly significant (although somewhat reduced in Column (4) for

O*NET STEM), indicating that the correlation between H-1B-driven STEM growth and

a city’s actual foreign STEM growth is not driven by top STEM cities or by a specific

nationality group.

An alternative way to ensure that the predictive power of our instrument is not driven

by individual nationality groups—whose location preferences may be affected by specific

industries—is to remove the nationality dimension. We construct an instrument similar to the

one used by Kerr and Lincoln (2010) by only exploiting variation in the aggregate number of

H-1B visas over time, interacted with the initial overall presence of foreign STEM workers.

First stage results using this instrument are shown in Column (6). The estimates remain

similar and F-statistics confirm that the instrument retains its power.

Column (7) accounts for another potential weakness of our instrument. The use of 1 to

5% population samples may introduce measurement error. Aydemir and Borjas (2011) show

how measurement error can produce attenuation bias when estimating the causal effect

of immigrants on native outcomes. Small Census and ACS samples might fail to record

small foreign STEM communities in small cities. In order to see whether this measurement

error affects the power of our instrument, Column (7) shows the first-stage estimates when

eliminating all metropolitan areas with fewer than 400,000 people. This cut-off eliminates

all cities from our sample that have a measured zero foreign STEM (or imputed foreign

12New York, Los Angeles, Chicago, San Jose, and San Francisco account for 24% of STEM workers in our

sample.
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STEM) employment share. Although we only retain 118 of the 219 cities, the coefficient

estimates remain significant and stable, while the instrument is still reasonably powerful

(more so for the O*NET STEM definition). While we will discuss the potential impact of

measurement error on attenuation bias when presenting the second-stage estimates (in Table

5), it is reassuring that the exclusion of the cities in which measurement error is most likely

hardly affects the power of the instrument and the first-stage coefficient estimate.

4.2 Confounding Shocks

Two types of shocks at the MSA level might be correlated with the inflow of STEM workers,

wages, and employment, thereby creating omitted variable bias. The first is a change in the

skill distribution of workers related to the inflow of non-STEM immigrants. The second is

an industry-driven change in productivity affecting native employment and wages. Directly

controlling for such shocks would introduce endogeneity. Instead, we include predicted values

formed by interacting the 1980 immigrant and industry distributions with national immigrant

and industry shocks, respectively.

As STEM immigrants usually earned a college degree, we introduce a control for the

imputed number of non-college-educated immigrants \( ) based on their 1980 dis-
tribution, by nationality, across metropolitan areas

¡
1980

¢
and their subsequent

aggregate growth in the U.S.
³




1980

´
. Using notation similar to (2), we use Equation

(5) to calculate \ , and then construct our control by taking the change over time

relative to total initial imputed employment

µ
∆ \

¶
.

\ =
X

=114

1980

µ



1980

¶
(5)

To control for shocks driven by a city’s industrial structure, we construct Bartik in-

struments (from Bartik (1991)) that predict the wage and employment growth of college

and non-college-educated workers based upon each city’s industrial composition in 1980.

Specifically, let 1980 denote the share of total city employment in each three-digit census

industry classification sector ( = 1 2212) in 1980. Then let ∆

 


 be the real growth

of  = {} over the decade for group  = {} in sector
. We define our sector-driven Bartik variables as:µ

∆



¶−



=
212X
=1

Ã
1980

∆







!
(6)

Column (8) of Table 3 adds the imputed growth of non-college-educated immigrants to

the basic first-stage regression of Column (2). Cities with large communities of less-educated

immigrants might also have large communities of highly educated immigrants, although usu-

ally from different nationalities. Controlling for these flows will also be important to account

for complementarities between college and non-college-educated workers and their possible

effect on wages in the second-stage regressions. Nonetheless, the imputed H-1B driven in-

strument retains its power when controlling for the imputed number of non-college-educated
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immigrants. Column (9) further adds the employment and the wage Bartik instruments.

This still leaves the H-1B imputed STEM growth instrument with significant, albeit some-

what reduced explanatory power, especially when using the O*NET definition.

4.3 Falsification and Extensions

Our instrument is predicated on two assumptions. First, from the perspective of each

metropolitan area, the H-1B visa policy significantly and exogenously affected the inflow

of foreign STEM workers to the U.S. from 1990 to 2010. Second, the initial distribution of

foreign STEMwas crucial in determining the subsequent city-level inflow of H-1B immigrants

and was uncorrelated with other city-level shocks affecting native wages and employment.

Columns (1)-(4) of Table 4 test these assumptions.

The aggregate inflow of H-1B workers in the U.S. could simply be a proxy for aggregate

labor demand growth and not policy-driven supply changes. This could induce a positive

correlation between the instrument and the explanatory variable even in the presence of city

and period effects. Note, however, that this scenario would also imply a positive correlation

between the explanatory variable and a falsified instrument constructed by substituting non-

H-1B immigrant flows (or non-college-educated immigrant flows) for H-1B flows. Columns

(1) and (2) show the first-stage point estimates are insignificant and close to zero when we

impute foreign STEM growth by interacting the 1980 distribution of foreign STEM with

subsequent non-college immigrant flows (Column (1)) or with aggregate immigrant flows net

of H-1B flows (Column (2)). Hence, the aggregate variation of H-1B visas over time is crucial

for predicting subsequent STEM variation across cities. The two "falsified instruments"

used in these specification therefore, do not covary with foreign STEM changes because they

do not incorporate the variation in H1B aggregate visas. Column (3) similarly finds no

evidence of correlation when we substitute the initial presence of foreign workers in manual-

intensive jobs (rather than in STEM) across metropolitan areas in the construction of the

instrument. Therefore, less skilled immigration — though possibly correlated with STEM

immigration — did not drive the explanatory power of the instrument. These results reassure

that our preferred policy-driven instrument is not simply reflecting aggregate labor demand

or aggregate migration.13

Column (4) tests the correlation between the instrument—calculated for the 1990-2000

decade—and the pre-existing growth in native college wages from 1970-1980. Reassuringly

there is no correlation between the H-1B imputed STEM growth after 1980 and pre-1980

native wage growth despite, as will be seen in Section 5, the strong relationship between

increased STEM during the 1990s and 2000s and concurrent wage growth. This test ensures

that the pre-H1B (pre-1980) outcomes across MSA were not correlated with the post 1990

H1B driven STEM growth.

As a final check in this section, we explore how H-1B policy affects the total number of

STEMworkers, and specifically, whether metropolitan areas with large foreign STEM inflows

substitute foreign STEM for native STEM, or instead increase the overall STEM labor force.

If the latter is true, we can consider the H-1B policy as an exogenous shock to assess the

impact of total STEM on native wages, employment, and productivity. Columns (5) and (6)

13The Online Appendix details the construction of these falsified instruments.
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examine this by regressing native plus foreign STEM worker growth on the H-1B-predicted

inflow of foreign STEM (the instrument). The estimated coefficient is even larger than in

the basic specification, implying, as we will see below, a positive response of native STEM

to foreign inflows. In Column (5) we use the stricter 4% STEM definition (based on O*NET

in the top rows and on college major in the two lower rows) for both the endogenous and

instrumental variable. In Column (6) we use the broader 8% definition of STEM for the

endogenous and instrumental variables. The power of the instrument is relatively strong in

most cases.

Overall the specifications and falsifications shown in this section demonstrate that our

H-1B imputed instrument has significant power in predicting foreign STEM and total STEM

growth, which is not driven by top cities, one ethnic group, or labor demand, and survives the

inclusion of city effects and controls for industrial composition and low-skilled immigration.

The instrument’s predictive power is crucially driven by the H-1B program and by the initial

distribution of STEM immigrants across cities.

5 The Effect of STEM on Native Outcomes

5.1 Basic Results

The empirical specifications estimated in this section follow the regression described in Equa-

tion (1) to identify the impact of STEMworkers on native labor market outcomes
³




´
by group  (STEM, college-educated, or non-college-educated) in city . Outcomes measure

either growth in average weekly wages or in employment. The explanatory variable in each

regression is the change in foreign STEM relative to the initial level of total employment,
∆





. All two stage least squares (2SLS) regressions use the H-1B driven change in

foreign STEM relative to initial imputed employment

µ
∆ \


¶
as an instrument for

the actual change.

Each of the six columns of Table 5 reports the  coefficient of interest, as defined in

Equation (1), corresponding to the differing outcome variables. The basic specification in-

cludes time-period effects, 219 MSA fixed-effects, and the Bartik instruments for the relevant

wage and employment changes. We always cluster standard errors at the MSA level.

In Columns (1)-(3), the dependent variable is the percentage change of the weekly wage³
∆



´
paid to STEM, college-educated, and non-college-educated native-born workers,

respectively.14 We define college-educated workers as individuals who completed four years

of college, while non-college-educated are those who did not. Columns (4)-(6) show the effect

of STEM on the employment change of these native-born groups as a percent of total city

employment (respectively
∆





∆




 and

∆


).

The different rows of Table 5 represent different specifications to test the robustness

14Weekly wages are defined as yearly wage income divided by the number of weeks worked. Employment

includes all individual between 18 and 65 years old who have worked at least one week during the previous

year and do not live in group-quarters. We convert all wages to current 2010 prices using the BLS Inflation

Calculator. See the Online Appendix for full details on the sample selection process.
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of the estimates, mirroring in large part the first-stage in Table 3. Row (a), the baseline

specification, shows the results when the O*NET 4% definition of STEM workers is used

both for the explanatory variable and the instrument. Row (b) instead uses the Major-based

4% definition of STEMworkers and Row (c) uses the broader O*NET 8% definition. Row (d)

omits the top five metropolitan areas in terms of STEM employment but is otherwise identical

to the specification in Row (a). Row (e) adds the growth of imputed non-college-educated

immigrants, defined in (5), as a control to the baseline specification. Row (f) excludes

MSAs with populations below 400,000. Row (g) excludes Indian STEM workers from the

construction of the instrument. Row (h) uses the instrument constructed using aggregate H-

1B flows and the initial foreign STEM distribution, thus removing the nationality dimension.

Row (i) controls for growth in native college-educated employment by including a shift-share

instrument for the growth of college-educated natives, constructed by interacting the 1980

number of college-educated natives in each city with the national growth of college-educated

natives. Finally, Row (j) shows the ordinary least squares (OLS) estimates of the basic

specification.

The main results are relatively consistent across specifications. First, there is a large,

positive, and significant effect of foreign STEM workers on wages paid to college-educated

natives. The estimated effect is significantly different from zero at the 5% significance level

in all specifications, and is significant at the 1% level in most. The point estimates from the

2SLS specifications are mostly between 5.6 and 9.3 with some larger values. This implies

that a rise in foreign STEM growth by one percentage point of initial employment increases

college-educated native wage growth between 5.6 and 9.3 percentage points.15

Second, the estimates of the effects on native STEM wages are comparable to, but less

precisely estimated than, the effects on native college-educated wages. While we can never

rule out the hypothesis that the estimated effects for the two groups are equal,16 the native

STEM wage effect is only occasionally different from zero at the 5% significance level. As

there are fewer STEM natives (about 4% of employment) than college-educated natives

(about 25% of employment), measurement error in the average wage of the first group reduces

the precision of the estimates.

The third regularity of Table 5 is that foreign STEM workers had a positive and usually

significant effect on wages paid to non-college-educated natives. Point estimates are mostly

between 2.4 and 4.3 — results that are both smaller and less significant than those for college-

educated natives. This implies that STEM workers generate a productivity effect that is

skill-biased. Foreign STEM workers are closer substitutes for college educated natives than

for non-college-educated natives, yet they generate a larger increase in the wages paid to

college-educated natives.

Fourth, the inflow of STEM workers did not significantly affect the employment of any

native group. The point estimates are mainly positive for native STEM and college-educated

workers, and mainly negative for non-college-educated natives. However, they are usually

15Note that 1 percentage point of employment is a very large increase of STEM workers, comparable to

the increase over the whole 1990-2010 period, as shown in Table 2.
16For instance, a formal test that the estimated coefficient on STEM wages in Row (a) is equal to 8.03

(the point estimate for the effect on college educated) has a p-value of 0.76. At no level of confidence can

we reject the hypothesis that they are equal. Similarly for the other specifications, we can never reject the

hypothesis of equality at the 10% confidence level.
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not significant, even at the 10% level. Given the mobility of college-educated natives and

their city-level wage gain from STEM flows, this weak employment response is somewhat

surprising and suggests the potential existence of additional adjustment mechanisms for

college-educated workers at the metropolitan area level. In section 5.4 of the working paper

version of this study (Peri, Shih, and Sparber, 2014) we argue that STEM flows are also

associated with increased housing rents for college-educated natives, and that this increase

in non-tradables prices might absorb up to 50% of the college-educated native wage gain.

This might help explain the small employment response while cautioning against interpreting

the wage gains of Table 5 as full increases in total purchasing power.

5.2 Robustness Checks

We now comment on the robustness checks performed in Table 5. To mitigate endogeneity

concerns discussed earlier, Row (d) omits the top five STEM-dependent cities and Row (g)

removes Indian workers. The estimated effects of STEM on native wages remain stable

and even increase in some cases, albeit at the cost of larger standard errors. On one hand,

this suggests that the fixed effects, instrumental variable strategy, and Bartik controls in the

baseline model largely address endogeneity bias. On the other hand, the increase in standard

errors indicates that the omitted cities, when included in regressions, afford precision in the

estimates due to larger data variation.

Row (e) adds a control for imputed low-skilled immigrants. As above, this also results

in minimal changes in the coefficient estimates when compared to Row (a). The estimated

STEM effect on college-educated wages is somewhat smaller (down to 7.00 from 8.03), and

the coefficient for non-college educated wages is somewhat larger (up to 4.95 from 3.78). This

could indicate that the inflow of less-educated immigrants, as predicted by the 1980 MSA

distribution, was slightly correlated with foreign STEM and that less-educated labor inflows

complemented college-educated natives but substituted for non-college-educated ones. Ex-

plicitly controlling for such imputed inflows helps to isolate the effect of STEM, and identifies

more balanced productivity effects for college and non-college-educated natives.

Similarly, a large initial share of foreign STEM in a city might proxy for high initial edu-

cation levels. If such cities also experienced wage and employment growth during periods of

sizable foreign STEM inflows, it would generate spurious regression results. Row (i) includes

a shift-share predictor of college-educated native growth to help address this issue. The

estimated STEM impact on wages paid to college-educated natives remains quantitatively

similar to baseline estimates and is still statistically significant.

Row (f) omits small cities to examine measurement error issues. The point estimates are

similar to those in Row (e), but the standard errors decrease. Hence, measurement error

does not seem to bias the coefficients, but the focus on large MSAs reduces measurement

error and improves precision.

Finally, it is worth commenting on the difference between the OLS estimates in Row (j)

and the corresponding 2SLS results in Row (e). Interestingly, while the estimated employ-

ment effects have an upward bias in OLS relative to 2SLS, the wage effects have a downward

bias. This may be due to the correlation between unobserved shocks and the inflow of

foreign STEM. It is likely that foreign STEM inflows are positively correlated with employ-

ment growth and a city’s openness to new workers. Hence, the cities endogenously attracting
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foreign STEM workers could be those with fast inflows of workers in general, which could

moderate wage growth. Thus, the correlation between STEM growth and omitted employ-

ment determinants could be positive, and the correlation between openness and wage growth

could be negative, thereby resulting in the observed biases.

Before extending the findings, we provide a sense of the magnitude of the estimated

effects. Foreign STEM growth, measured as a percentage of total initial employment in

aggregate, was only about 0.53% between 1990 and 2010. Applying the 7.00 2SLS estimates

of Row (e) to the national growth in foreign STEM implies that the foreign-driven net

growth in STEM increased real wages of college-educated natives by around 3.71 percentage

points (=7.00 x 0.53) during this period. For reference, Census data suggests that the

cumulative growth of college-educated wages in this period equaled about 13 percentage

points. Thus, almost one third of that growth can be attributed to the increased presence

of foreign STEM workers. We return to these implications in Section 6 when we analyze the

implied productivity and skill-bias effects of STEM.

5.3 Extensions

As shown in the first-stage results in Columns (5) and (6) of Table 4, our H1B-driven

increase in STEM instrument raises overall STEM employment, not just foreign STEM.

Table 6 generalizes the main second-stage results by replacing the foreign STEM growth

explanatory variable with total STEM growth. The estimates confirm that STEM workers

generate wage gains for college-educated and non-college-educated natives. More specifically,

using the estimates in row (a) of Table 6, a one percentage point increase in STEM as a

share of employment caused a 4 percentage point increase in college-educated native wage

growth, and about a 2.4 percentage point wage growth for non-college natives. There is no

evidence that either group experiences an employment effect.

These results are robust to using the Major-based definition of STEM (Row b), using

the broad (8%) definition of STEM (Row c), and omitting top STEM cities (Row d). Also,

the OLS estimates continue to exhibit a positive bias (relative to the 2SLS results) for

employment effects and a negative one for wage effects. Overall our estimates confirm that

STEM workers raise the demand for college-educated and non-college natives, with a smaller

effect for the latter group.

A lot of heterogeneity exists among non-college-educated workers. Table 7 explores

whether the wage and employment effects of foreign STEM workers are different for natives

without a high school diploma (high school dropouts) and those with a high school degree

(high school graduates). The table presents foreign STEM effects for wages (Columns (1)

and (2)) and employment (Columns (3) and (4)). Rows (a)-(d) present several specifications

of the 2SLS regression mirroring those in the corresponding rows of Tables 5 and 6. Row (e)

reports the coefficients when using total STEM as explanatory variable.

By separating high school graduates from high school dropouts, we can check whether

these two groups exhibit different complementarities with foreign STEM labor. On the

one hand, STEM-generated innovation could be skill-biased, complementing educational

attainment (see Acemoglu (1998, 2002)). If so, then foreign STEM would generate the

largest positive effects for college-educated workers, followed by high school graduates, and

lastly by high school dropouts. On the other hand, it could be polarizing, substituting for
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intermediate skills but complementing low and high end skills (see Autor (2010) or Autor

et al. (2006)). If so, then foreign STEM would generate the largest positive effects at the

high and low ends of the educational spectrum at the expense of intermediate-level levels of

schooling.

Table 7 shows that STEM effects are only significant for high school graduates, while

point estimates for dropouts are smaller but insignificant. Neither group had significant

employment effects. The basic specification in Row (a) shows that each percentage point

increase in foreign STEM employment raised native high school graduate wage growth by

5.54 percentage points. This can be interpreted as evidence that STEM-driven technological

progress has been skill (or schooling) biased rather than polarizing. The difference between

the effects on high school graduates and dropouts is not usually significant, however, due to

the lack of precision in estimating the effects for dropouts.

6 Simulated Productivity and Skill-Bias Effects

We close our analysis by estimating the long-run effect of STEM on total factor productivity

(TFP) and skill biased productivity (SBP). More specifically, we assume a basic structural

model of production and substitute parameter values from our analysis, observed data, and

other sources, and then simulate the TFP and SBP effects that can be explained by growth

in foreign STEM workers. The advantage of this approach is that we have an intuitive and

standard definition of TFP and SBP based on a city-specific production function. The limi-

tation is its dependence on the assumed nature of productive interactions between different

types of labor inherent to the specific production structure.

A full model and derivation are available in the Online Appendix. Here, we provide just

a simple production function and the intuition of the exercise. Suppose a city () produces

a homogeneous, tradable, numeraire product () in year . The economy employs three

types of labor: non-college educated (), college-educated non-STEM (), and STEM
workers (). Production occurs according to the long-run production function in (7).

 =

∙
()

µ
()

−1


 + (1− ())
−1




¶¸ 
−1

(7)

Input  is a composite factor combining college-educated and STEM workers such that:

 =

µ


−1


 +

−1




¶ 
−1

(8)

The parameter   1 captures the elasticity of substitution between non-college and college-
educated labor. Similarly,   1 is the elasticity of substitution between college-educated
and STEM workers.

A long literature has recognized STEM workers as the key inputs in developing and

adopting new technologies. Equation (7) captures this by allowing the level of total factor

productivity, ()


−1  0 to be an increasing function of the number of STEM workers

in a city. It also allows for STEM workers to potentially raise skill-biased productivity,

() ∈ [0 1]. Note that our model assumes that STEM workers are uniquely capable of
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generating ideas, innovation, and externalities that benefit productivity even if STEM and

college-educated workers are close substitutes in production itself (i.e., if  ≈ ∞).
We assume labor is paid its marginal product and then calculate the total logarithmic

(percentage) change in wages for each group in response to a change in supply of STEM

workers. After normalizing the resulting demand conditions by the exogenous change of

STEM workers expressed as a percentage of total employment, we derive three linear con-

ditions relating the elasticity of each group’s wage and employment to STEM (i.e., the 
coefficients estimated from Equation (1)). Remaining parameters in the demand functions

(including  , , and wage and employment shares) come from prior studies, our analysis,

or census data. By combining them, we can estimate our values of interest:  =
∆

∆
 the

elasticity of TFP to changes in STEM (relative to initial employment); and  =
∆

∆
 the

analogous elasticity of SBP.17

Table 8 displays the simulated TFP (Column (1)) and SBP (Column (2)) changes from

1990 to 2010. We set  =∞ since our regression estimates of 1 are never significantly

different from zero and the elasticity of college-educated wages and STEM wages to STEM

supply are always very close to each other (implying high substitutability). Ciccone and

Peri’s (2005) review of  estimates suggests a value between 1.5 and 2.5. We assume a

 value of 2 in our basic simulation, and use values of 1.75 and 2.25 in robustness checks.

U.S. Census data on wages and employment implies a  value equal to 0.57, a share of

STEM workers equal to 0.05 in total employment and 0.09 in the total wage bill, and a

college-educated share of the wage bill equal to 0.46. Fernald (2009) measures annual TFP

growth equal to 0.89%. Our Census calculations measure annual SBP growth equal to 1.75%.

Foreign STEM increased by 0.04% of total employment each year.

Values for the elasticity of outcome  for group  to STEM workers come from our

regression estimates. The first row of Table 8 reports the simulated effects when we use

coefficients from the basic specification in Table 5, Row (a). Row (2) uses the estimates

from Table 5, Row (f), in which we control for imputed unskilled immigrants and reduce the

attenuation bias by including only large cities in the regression. We label this row “Conser-

vative Estimates” because the underlying regression leads to somewhat smaller estimates of

the STEM effect on native wages. Row (3) uses the estimates from Table 6, Row (a) that

adopt total STEM as the explanatory variable. These tend to be 40-50% smaller than those

obtained with foreign STEM.18 Rows (4) and (5) are the same as Row (1), but illustrate the

robustness of the simulations to changes in values of the parameter  .

Our simulations imply that foreign STEM growth explained only a modest 5 to 8%
of skill-biased productivity growth from 1990 to 2010. In contrast, foreign STEM growth

explained between 1
3
and 1

2
of the average total factor productivity growth during the period.

While this result might appear to be very high, it is more plausible when assessed in context

with two additional figures. First, foreign labor accounted for about two thirds of the net

growth in STEM workers in our dataset. Second, STEM workers are the primary source of

sustained economic growth. Jones (2002), for example, argued that 50% of long-run U.S.

17Note that we can calculate these effects without specifying the labor supply-side of the model as long as

we have the Table 5 and 6 equilibrium employment elasticity estimates for each factor.
18We also use the elasticity of college-educated wages (3.96) for STEM since the model implies that the

elasticity of college-educated wages to foreign STEM cannot be smaller than that of native STEM wages.
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productivity growth in recent decades is attributable to growth in scientists and engineers

as a share of employment. The 33% TFP growth implied by combining Jones’s (2002) figure

with our calculation of the foreign contribution to STEM growth aligns with the simulated

results presented in Table 8.

In income terms, the average annual TFP effect in Table 8, Column 1, translates to

about 0.47 percentage points per year, implying that native income per capita in 2010

was 9.8% larger than it would have been without the growth contributions from foreign

STEM. This would be impossible to justify based upon the foreign-born increase in skilled

labor supply alone, but when considered as a source of technological innovation, foreign

STEM workers may credibly generate large productivity and wage increases. Nonetheless,

we concede that our simulated results are based on strong assumptions. In particular, we

apply parameters that were estimated across cities to simulate national foreign STEM effects.

This will overstate productivity effects if the wage coefficients from the underlying regressions

are related to the selection of natives. On the other hand, since our regressions only capture

within-city productivity effects, and ignore spillovers to other cities, we could also be under-

estimating national productivity gains.

7 Conclusions

This paper uses the inflow of foreign science, technology, engineering, and mathematics

(STEM) workers, made possible by the H-1B visa program, to estimate the impact of STEM

workers on the productivity of college and non-college-educated American workers between

1990 and 2010. The uneven distribution of foreign STEM workers across cities in 1980 —

a decade before the introduction of the H-1B visa — and the high correlation between the

pre-existing presence of foreign-born workers and subsequent immigration flows allows us

to use the variation in foreign STEM as a supply-driven increase in STEM workers across

metropolitan areas.

We find that a one percentage point increase in the foreign STEM share of a city’s

total employment increased the wage growth of native college-educated labor by about 7-8

percentage points and the wage growth of non-college educated natives by 3-4 percentage

points. We find insignificant effects on the employment of those two groups. These results

indicate that STEM workers spur economic growth by increasing productivity, especially

that of college-educated workers.
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Table 1: 
Summary Statistics: Percentage of Foreign-Born by Group, 219 MSAs 

 
 (1) 

% in Total 
Employment  

(2) 
% Among College 

Educated 
Employment  

(3) 
% Employment in 
STEM Occupations  

(4) 
% Among College 

Educated Employment 
in STEM Occupations  

1980 6.15 6.81 8.14 11.09 
1990 8.82 8.95 10.98 14.24 
2000 13.31 12.80 17.47 22.69 
2005 15.37 14.81 20.03 25.76 
2010 16.37 15.46 21.19 27.15 

 
Note: The figures are obtained by the authors’ calculations using IPUMS Census data from 1980-2010. The relevant 
population includes only non-institutionalized individuals between age 18 and 65, who have worked at least one week in the 
previous year and report identified occupations. The statistics exclude those with unknown, unreported, or military 
occupations, and individuals without a clearly identified birthplace who do not possess U.S. citizenship through parents with 
U.S. citizenship. STEM occupations are defined according to the O*NET 4% definition. College educated workers have a 
bachelor degree or higher. The sample is comprised of 219 consistently identified MSAs from 1980-2010.   
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Table 2: Shares and Absolute net Changes in STEM Employment, 219 Metropolitan Areas 
 

  Share of Employment (%) Net Absolute Change from Previous Period (1000s) 
  (1) (2) (3) (4) (5) 

Period  
College-

Educated Total 
STEM 

College-
Educated 

Foreign STEM 

College-
Educated Total 

STEM 

College-
Educated 

Foreign STEM 

H-1B Visas 
Issued 

1980 1.76 0.19       
1990 2.42 0.34 915 218 0 
2000 2.99 0.68 670 518 574 
2005 3.01 0.77 109 208 659 
2010 3.20 0.87 164 146 653 

 
 

Note: The figures in columns (1)-(4) are obtained by the authors’ calculations on data from 219 consistently identified MSAs 
in IPUMS Census data from 1980-2010. The relevant population includes only non-institutionalized individuals between age 
18 and 65, who have worked at least one week in the previous year and report identified occupations. The statistics exclude 
those with unknown, unreported, or military occupations, and individuals without a clearly identified birthplace who do not 
possess U.S. citizenship through parents with U.S. citizenship. STEM occupations are defined according to the O*NET 4% 
definition. College educated workers have a bachelor degree or higher. Data on the total number of H-1B & TN visas issued 
(column 5) are from the Department of State (2010). H-1B numbers also include TN visas and are relative to the whole US. 
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Table 3: 
First Stage: Power and Validity of H-1B-Driven STEM as an IV 

 
Note: Each cell shows the coefficient from a different regression. The dependent variable is the growth in foreign STEM as percentage of the labor force. The units of 
observations are 219 U.S. metropolitan areas over the periods 1990-2000, 2000-2005, 2005-2010.  The explanatory variable is the H-1B-driven growth of foreign-STEM jobs, 
as a percentage of initial employment. Top 2 rows use the O*NET based definition of STEM occupations; Rows 3 and 4 use Major-based STEM definitions. Baseline models 
use the narrow (4%) definition of STEM. Column (1) also controls for a city’s native STEM employment in 1980. Standard errors (in parentheses) are always clustered at the 
metro area level. 
***, **,*= significant at 1%, 5% and 10% level respectively. 

 

  

Explanatory 
Variable 

Coefficient (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Specification  Strict (4%) 
Definition 
of STEM  

(with State 
Fixed 

Effects) 

Baseline:  
Strict (4%) 
Definition 
of STEM  

(with City 
Fixed 

Effects) 

Broad (8%) 
Definition 
of STEM 
both for 

endogenous 
variable and 
Instrument  

As (2), 
Excluding 

the 5 Cities 
with largest 
number of 

STEM 
workers 

As (2), 
Excluding 

STEM from 
India  

As (2), 
Imputation 

Using 
Aggregate 
H-1B Visas 

(Not by 
Nationality)

As (2), 
Excluding 
Cities with 
Population 
<=400,000 

As (2), 
Controlling 

for 
Imputed 

Non-
College 

Educated 
Immigrants 

As (8), 
Controlling 
for Bartik 

Employment 
and Wage 

Growth  

H-1B Driven 
Growth in 
Foreign-
STEM,  O*Net 

Coefficient 
(Standard 
Error) 

0.48*** 
(0.18) 

2.56*** 
(0.88) 

4.06*** 
(1.29) 

1.82** 
(0.83) 

3.53*** 
(0.91) 

3.02*** 
(0.75) 

3.22*** 
(0.86) 

2.48*** 
(0.90) 

2.34*** 
(0.92) 

F-statistic 6.57 8.51 9.95 4.86 15.09 16.43 14.04 7.59 6.46 

H-1B Driven 
Growth in 
Foreign-
STEM,   
Major-based 

Coefficient 
(Standard 
Error) 

0.44*** 
(0.16) 

2.83*** 
(0.84) 

4.23*** 
(0.93) 

2.13*** 
(0.63) 

3.59*** 
(1.00) 

3.26*** 
(1.04) 

3.34*** 
(1.08) 

2.79*** 
(0.86) 

2.42** 
(0.88) 

F-statistic 7.73 11.32 20.53 11.27 12.91 9.86 9.48 10.64 7.50 

Fixed Effects:  State & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

City & 
Period 

Number of 
Observations: 
Metro areas: 

 657 
 

219 

657 
 

219 

657 
 

219 

642 
 

214 

657 
 

219 

657 
 

219 

354 
 

118 

657 
 

219 

657 
 

219 
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Table 4:  
First Stage: Falsification and Extensions 

Note: Each cell shows the coefficient from a different regression and below it the F-test of significance. The units of observations are 219 U.S. metropolitan areas over the 
periods 1990-2000, 2000-2005, 2005-2010.  The dependent variable is the growth in foreign STEM in columns (1)-(3), the growth in native college educated wage 1970-
1980 in column (4), and total STEM growth in columns (5) and (6). The explanatory variables are described at the beginning of the row. Standard errors (in parentheses) 
are always clustered at the metro area level.***, **,*= significant at 1%, 5% and 10% level respectively. 
 

Explanatory Variable Coefficient (1) 
Falsification:  
Endogenous 
Variable is 
Growth of 

foreign STEM 
O*NET 4% 

(2) 
Falsification:   
Endogenous 
Variable is 
Growth of 

foreign STEM 
O*NET 4% 

(3) 
Falsification:  
Endogenous 
Variable is 
Growth of 

foreign STEM 
Major-based 

4%  

(4) 
Dependent 

Variable 1970-1980 
College educated 

Native Wages; 
Explanatory 

Variable 1990-2000 

(5) 
Dependent 

Variable: Total  
STEM Growth 

(Native + 
Immigrant), 4% 
STEM Definition 

(6) 
Dependent 

Variable: Total 
STEM Growth, 

8% STEM 
Definition 

Predicted Foreign-STEM,  
O*NET definition 

Coefficient 
(Standard Error) 

   -1.66 
(1.02) 

5.03*** 
(1.81) 

8.50** 
(4.40) 

 F-statistics    2.62 7.70 3.65 
Predicted Foreign-STEM,  
Major-based definition 

Coefficient 
(Standard Error) 

   -1.12 
(1.10) 

5.29*** 
(1.71) 

9.63*** 
(2.56) 

F-statistics    1.05 9.54 14.05 
Predicted Growth in 
Foreign STEM using Flows 
of Non-College Immigrants 

Coefficient 
(Standard Error) 

0.04 
(0.03) 

     

F-statistics 2.24      
Predicted  Growth in  
Foreign STEM using Flows 
of Total Immigrants minus  
H-1B 

Coefficient 
(Standard Error) 

 0.043 
(0.024) 

    

F-statistics  3.08     

Predicted  Growth in 
Foreign STEM using 1980 
Distribution of Manual 
Immigrants 

Coefficient 
(Standard Error) 

  0.41 
(0.27) 

   

F-statistics   2.42    

Number of Observations: 
Metro areas: 

 657 
 

219 

657 
 

219 

657 
 

219 

116 
 

116 

657 
 

219 

657 
 

219 
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Table 5: The Effects of Foreign STEM on Native Wages and Employment 

Explanatory Variable: 
Growth Rate of  Foreign–
STEM 
Instrument: H-1B 
Imputed Growth of 
Foreign-STEM 

(1) 
Weekly Wage, 
Native STEM 

(2) 
Weekly Wage, 
Native College 

Educated 

(3) 
Weekly Wage, 

Native Non-
College 

Educated 

(4) 
Employment, 
Native STEM 

(5) 
Employment, 
Native College 

Educated 

(6) 
Employment, 
Native Non-

College 
Educated 

(a) Baseline 2SLS; O*NET 
4% Definition 

6.65 
(4.53) 

8.03*** 
(3.03) 

3.78** 
(1.75) 

0.53 
(0.56) 

2.48 
(4.69) 

-5.17 
(4.20) 

(b) 2SLS; Major-based  
4% Definition 

6.64 
(5.08) 

10.95** 
(4.34) 

3.22** 
(1.67) 

0.60 
(0.63) 

1.05 
(3.99) 

-7.82 
(4.90) 

(c) 2SLS; O*NET 8% 
Definition 

7.23** 
(3.52) 

5.64*** 
(1.95) 

2.55** 
(1.08) 

0.53 
(0.75) 

1.85 
(3.21) 

-4.14 
(3.32) 

(d) Omitting Top 5 STEM 
Cities 

11.35 
(8.63) 

12.78*** 
(4.99) 

5.03 
(3.42) 

1.65*** 
(0.53) 

8.46 
(7.04) 

-2.51 
(7.46) 

(e) Controlling for 
Imputed Non-College 
Immigrants 

7.94 
(5.38) 

7.00** 
(2.98) 

4.95** 
(2.09) 

0.76 
(0.61) 

3.29 
(4.85) 

-3.39 
(4.15) 

(f) Dropping Small Cities 
(pop<400,000) 

5.70 
(3.51) 

7.18*** 
(2.61) 

4.28*** 
(1.45) 

0.34 
(0.58) 

-0.60 
(1.51) 

-5.20 
(3.18) 

(g) Dropping Indians 
from the IV 

3.48 
(5.07) 

9.38** 
(4.37) 

3.46* 
(2.08) 

0.47 
(0.51) 

1.31 
(3.61) 

-6.44* 
(3.54) 

(h) Aggregate H-1B IV 5.76 
(4.05) 

6.04** 
(2.75) 

4.13*** 
(1.34) 

0.31 
(0.48) 

1.64 
(4.20) 

-5.56 
(3.63) 

(i) Controlling for 
Imputed College Natives 

2.72 
(4.68) 

7.58** 
(3.78) 

2.39 
(2.00) 

-0.32 
(0.47) 

-0.62 
(4.19) 

-7.29 
(5.15) 

(j) OLS Version of 
Specification (e) 

3.32 
(2.99) 

4.10*** 
(1.86) 

1.16 
(1.24) 

0.92** 
(0.34) 

4.97 
(3.69) 

2.11 
(2.51) 

 
Note: Each cell shows the estimate of the coefficient on the growth in foreign STEM (relative to employment) when the dependent variable is the one described at the 
top of the column. Each regression includes period effects, metropolitan area effects, and the Bartik for employment or wage of the relevant group. Rows (a) and (d)-(h) 
are 2SLS regressions using the O*NET 4% definition of STEM. Rows (b) and (c) use alternative definitions of STEM. Row (j) shows the OLS estimates. Standard errors (in 
parentheses) are clustered at the metro area level. Unit of observations are 219 metro areas over 3 periods, 1990-2000, 2000-2005 and 2005-2010.  
***, **,*= significant at 1%, 5% and 10% level respectively. 
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Table 6: The Effects of Total STEM on Native Wages and Employment 

Explanatory Variable: 
Growth Rate of  Total 
STEM 
Instrument: H-1B 
Imputed Growth of 
Foreign-STEM 

(1) 
Weekly Wage, 
Native STEM 

(2) 
Weekly Wage, 
Native College 

educated 

(3) 
Weekly Wage, 

Native Non-
College 

educated 

(5) 
Employment, 
Native College 

educated 

(6) 
Employment, 
Native Non-

College educated 

(a) 2SLS; O*NET 4% 
Definition 

4.50 
(2.94) 

3.97*** 
(1.42) 

2.44** 
(1.02) 

1.86 
(2.31) 

-1.67 
(2.34) 

(b) 2SLS; Major-based  
4% Definition 

4.90 
(3.41) 

5.68** 
(2.42) 

2.40** 
(1.00) 

1.15 
(2.10) 

-2.92 
(2.82) 

(c) 2SLS; O*NET, 8% 
Definition 

4.55 
(3.01) 

2.64* 
(1.43) 

1.67** 
(0.76) 

1.46 
(1.25) 

-1.23 
(1.79) 

(d) Same as (a), but 
omitting Top 5 STEM 
Cities 

4.50 
(3.39) 

4.03** 
(1.74) 

1.97* 
(1.12) 

3.23 
(2.38) 

-0.28 
(2.33) 

(e) OLS; O*NET 4% 
Definition 

0.37 
(1.08) 

0.73 
(0.54) 

0.75* 
(0.40) 

2.72*** 
(0.77) 

4.60*** 
(0.79) 

 
Note: Each cell shows the estimate of the coefficient on the growth in total STEM (relative to employment) when the dependent variable is the one 
described at the top of the column and the instrument is the H-1B driven STEM growth. Each regression includes period effects, metropolitan area 
effects, the Bartik for employment and wage of the relevant group, and the imputed growth of non-college educated immigrants. Standard errors (in 
parentheses) are clustered at the metro area level. Unit of observations are 219 metro areas over 3 periods, 1990-2000, 2000-2005 and 2005-2010.  
***, **,*= significant at 1%, 5% and 10% level respectively. 
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Table 7: The Effect of Foreign STEM on Non College Educated Natives 

Explanatory Variable: 
Growth Rate of  Total STEM 
Instrument: H-1B Imputed Growth 
of Foreign-STEM 

(1) 
Weekly Wage, 

Native HS 
Graduates 

(2) 
Weekly Wage, 

Native HS 
Dropouts 

(3) 
Employment, 

Native HS 
Graduates 

(4) 
Employment, 

Native HS 
Dropouts 

(a) 2SLS; O*NET 4% Definition 5.54** 
(2.33) 

3.30 
(4.26) 

-3.36 
(3.72) 

-0.03 
(0.55) 

(b) 2SLS; Major-based  4% 
Definition 

4.87** 
(2.10) 

5.97 
(4.67) 

-5.12 
(4.08) 

-0.50 
(0.66) 

(c) 2SLS; O*NET, 8% Definition 4.10** 
(1.70) 

2.45 
(3.01) 

-2.48 
(2.88) 

-0.02 
(0.40) 

(d) Same as (a), but Dropping Top 5 
STEM Cities 

7.05* 
(4.29) 

6.28 
(7.58) 

-1.38 
(6.65) 

0.50 
(0.96) 

(e)  Explanatory Variable: Total 
STEM, O*NET 4% 

2.73** 
(1.15) 

1.63 
(1.99) 

-1.65 
(2.12) 

-0.02 
(0.27) 

 
Note: Each cell in rows (a)-(d) shows the estimate of the coefficient on the growth in foreign STEM (relative to employment) when 
the dependent variable is the one described at the top of the column. Row (e) shows the estimate of the coefficient on the growth in 
total STEM (relative to employment) as explanatory variable, still instrumented with H-1B Imputed Growth of Foreign-STEM. Each 
regression includes period effects, metropolitan area effects, the Bartik for employment and wage of the relevant group, and the 
imputed growth of non-college educated immigrants. Standard errors (in parentheses) are clustered at the metro area level. Unit of 
observations are 219 metro areas over 3 periods, 1990-2000, 2000-2005 and 2005-2010.  
***, **,*= significant at 1%, 5% and 10% level respectively 
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Table 8: Simulated Foreign-STEM effects on Yearly Average TFP Growth and SBP Change 

 

 

 

 

 

 

 

 

 

Note: The table uses the formulas in the Appendix to calculate the implied elasticity φA and φ�. We then use the growth of US foreign-STEM workers as a share 
of employment to calculate the implied effects on TFP. The average TFP growth 1990-2010 is taken from Fernald (2010) and the average skill biased growth is 
calculated using the average U.S. values for the wages and employment (in hours) of college educated and non-college educated workers from the Census 
1990 and 2010. Unless otherwise noted, the elasticity of substitution between college and non-college educated workers is σΗ=2. The STEM share of 
employment is 0.05, the STEM share of wages 0.09, and the college educated share of wages 0.46. These values are calculated from the 2000 US Census.  

 

 

 

 

 (1) 
Simulated 

Foreign STEM 
Effect on TFP 

Growth  
 

(2) 
Simulated 

Foreign STEM  
Effect on Skill-
Biased Growth 

(3) 
Average U.S. 
TFP Growth 
1990-2010 

(4) 
Average Change 

in Skill-Biased 
Productivity 
1990-2010  

(3)/(1) 
TFP Growth 
Explained by 
Foreign STEM 

 

(4)/(2) 
Skill Bias 
Growth 

Explained by 
Foreign STEM 

 

(1) Basic Estimates 0.47% 0.13% 0.89% 1.75% 0.53 0.07 
(2) Conservative 
Estimates 

0.41% 0.08% 0.89% 1.75% 0.47 0.05 

(3) Based on Total 
STEM 

0.27% 0.04% 0.89% 1.75% 0.30 0.04 

(4) σΗ=1.75 0.54% 0.13% 0.89% 1.75% 0.61 0.08 
(5)  σΗ =2.25 0.43% 0.12% 0.89% 1.75% 0.48 0.07 


