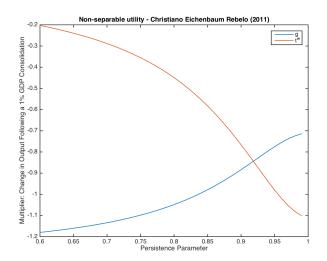
The Macroeconomic Effects of Fiscal Adjustment Plans: Disaggregating Taxes and Spending

Alberto Alesina, Omar Barbiero, Carlo Favero, Francesco Giavazzi, Matteo Paradisi

IGIER, Bocconi University


ASSA Meetings, San Francisco, January 2016

Research question

- 1. Does the composition of a fiscal adjustment make a difference? How much of a difference?
 - cuts in current and capital spending
 - cuts in transfers
 - hikes in direct taxes
 - hikes in indirect taxes
- 2. Are these differences consistent with a theoretical macro model with tax distortions?
 - results from a new-keynesian DSGE model

Fiscal multipliers and the persistence of fiscal shocks

Istantaneous output multipliers to shifts in G and τ_n in Christiano, Eichenbaum and Rebelo (2011) for varying level of shocks persistence

Empirical Results: methodology and data

- ▶ Plans, rather than isolated shifts in fiscal variables
- Country-specific styles: extent to which plans are
 - announced in advance
 - consistent over time
- Narrative identification from a reconstruction and an extension of the Devries et al (2011) IMF dataset ("exogenous" fiscal consolidations in 14 OECD countries over 40 years)

Plans vs the existing literature

$$e_t: \left\{ e_t^u, e_{t-i,t}^a, e_{t,t+i}^a \right\}$$

$$\mathbf{e}_{t}^{u}:\left\{ \tau_{t}^{u},\ \mathbf{g}_{t}^{u}\right\} \quad \mathbf{e}_{t-i,t}^{a}:\left\{ \tau_{t-i,t}^{a},\ \mathbf{g}_{t-i,t}^{a}\right\} \quad \mathbf{e}_{t,t+i}^{a}:\left\{ \tau_{t,t+i}^{a},\ \mathbf{g}_{t,t+i}^{a}\right\}$$

Romer and Romer (2010)

$$e_t^{R\&R} = \tau_t^u + \tau_{t,t+i}^a$$

Mertens and Ravn (2011)

$$e_t^{\textit{M\&R}} = \left\{\tau_t^\textit{u}, \ \tau_{t,t+i}^\textit{a}\right\}$$

Jordà and Taylor (2013)

$$e_t^{J\&T} = e_t^u + e_{t-i,t}^a$$

 \Rightarrow i.e. $e_t^{J\&T}$ is predictable

Pooling data from different countries allowing for two sources of heterogeneity

- within country heterogeneity with respect to the type of fiscal adjustments
 - plans mostly based on
 - hikes in Direct Taxes
 - hikes in Indirect Taxes
 - cuts in Transfers
 - cuts in Government Spending
- between country heterogeneity in the way fiscal policy is conducted over time: persistence

$$e_{i,t,t+j}^{a} = \varphi_{i,j} e_{i,t}^{u} + v_{i,t+j}$$

 \implies Note that when the model contains announcements, the effect of an unanticipated shift in a fiscal variable can only be simulated using estimates of the $\varphi's$

Styles of fiscal adjustments (persistence of plans)

	AUS	AUT	BEL	CAN	DEU	DNK	ESP
$\overline{\varphi_1}$	0.48	0.36	0.14	1.34	-0.10	0.48	0.27
	(0.19)	(0.08)	(0.14)	(0.17)	(0.12)	(0.13)	(0.06)
φ_2	-0.23	0	0.11	0.51	-0.03	-0.02	0.06
	(0.14)	(0.04)	(0.03)	(0.11)	(0.07)	(0.08)	(0.02)
	FRA	GBR	IRL	ITA	JPN	PRT	USA
$\overline{\varphi_1}$	FRA 0.46	GBR 0.35	IRL 0.21	ITA -0.26	JPN 0.25	PRT 0.89	USA 0.47
$\overline{\varphi_1}$					·		
φ_1 φ_2	0.46	0.35	0.21	-0.26	0.25	0.89	0.47

Constructing plans and extending the data

- ▶ We go back to the original Devries&al sources and
 - separate out unanticipated, anticipated and implemented (but previously announced) shifts in taxes and spending
 - organize the data into plans
 - extend the data and construct plans that cover the period 2010-2014
 - disaggregate expenditure in government consumption and investments and transfers, and revenues in direct and indirect taxes
 - while doing this we double check the Devries&al identification

Disaggregation

Taxes

- Direct Taxes: taxes on net income of individuals, on profits of corporations and enterprises, on capital gains and taxes on individual and corporate properties
- Indirect Taxes: taxes on transactions, goods and services (e.g. VAT, excise duties, stamp duty, services tax)

Spending

- ▶ Government consumption and investment: current expenditures for consumption of goods and services, public sector salaries, costs of state provided services (e.g. public education and health) plus all government fixed capital formation expenditures
- ➤ **Transfers**: money transferred by the government to households (e.g. pensions and unemployment benefits) and corporations (without expecting an economic gain, e.g. subsidies)

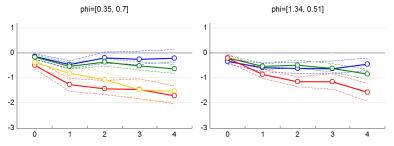
Labelling of plans

We define 4 types of plans. Plans mostly based on

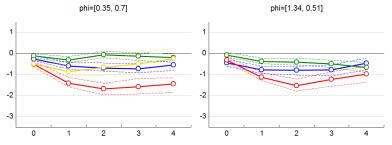
- Direct Taxes
- Indirect Taxes
- Government consumption and investment
- Transfers

We label plans in two steps

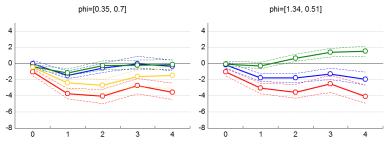
- we evaluate whether the plan mainly consists of spending measures (EB) or tax measures (TB)
 - if the plan is EB, we assess whether it consists mostly of consumption and investment or transfers measures
 - If TB whether direct or indirect taxes prevail


Average plans

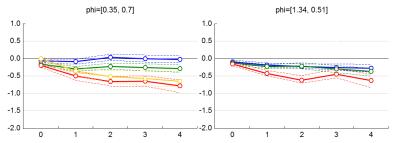
4 components - (1981-2014)


	Number of plans	Average composition (% of GDP)					
		Plan	Direct	Indirect	Consumption	Transfer	
Direct Tax Based	38	1.67	0.73	0.22	0.31	0.18	
		(0.25)	(0.06)	(0.05)	(80.0)	(0.06)	
Indirect Tax Based	20	1.52	0.28	0.82	0.15	0.03	
		(0.31)	(0.09)	(0.05)	(0.10)	(0.08)	
Consumption Based	58	1.81	0.20	0.20	0.90	0.31	
		(0.16)	(0.05)	(0.04)	(0.05)	(0.05)	
Transfer Based	43	1.20	0.30	0.20	0.40	0.81	
		(0.20)	(0.06)	(0.04)	(0.07)	(0.04)	

▶ How IRFs are computed


4-level disaggregation: output growth

4-level disaggregation: private consumption growth



4-level disaggregation: fixed capital formation

4-level disaggregation: ESI business confidence

Consumption Based (Blue), Transfer Based (Green), Direct Based (Red) and Indirect Based (Yellow) Adjustments

▶ Negative phi

Fiscal plans in a NK framework (extending Chistiano, Eichenbaum and Rebelo, 2011)

- Representative household:
 - ▶ Infinitely lived with $U_t(C_t, G_t, N_t) = \frac{(C_t + a_g G_t)^{1-\sigma}}{1-\sigma} + \frac{N^{1+\psi}}{1+\psi}$
 - ▶ Invests in two types of assets: capital *K_t* and risk free government bonds *B_t*
 - Subject to adjustment costs on investments
 - Receives lump sum transfer T_t and pays payroll tax τ_t^d and private consumption tax τ_t^c
- Production side: monopolistic competition among intermediary firms with Calvo price rigidity, flexible wages and constant returns to scale
- Government
 - 4 instruments: τ^d , τ^c , T (lump sum transfers), G

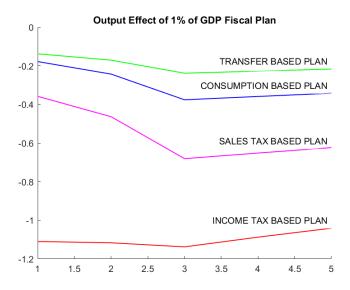
$$G_t + T_t + (1 + i_t) \frac{B_t}{P_t} = \tau_t^d w_t N_t + \tau_t^c C_t + \frac{B_{t+1}}{P_t}$$

Monetary policy: Taylor rule

Introducing plans

$$G_{t} = (1 - \rho_{G})G_{ss} + \rho_{G}G_{t-1} + e_{t}^{u,G} + \sum_{s=1}^{3} e_{t-s,t}^{a,G}$$

$$T_{t} = (1 - \rho_{T})T_{ss} + \rho_{T}T_{t-1} + e_{t}^{u,T} + \sum_{s=1}^{3} e_{t-s,t}^{a,T}$$


$$\tau_{t}^{d} = (1 - \rho_{\tau^{d}})\tau_{ss}^{d} + \rho_{\tau^{d}}\tau_{t-1}^{d} + e_{t}^{u,\tau^{d}} + \sum_{s=1}^{3} e_{t-s,t}^{a,\tau^{d}}$$

$$\tau_{t}^{c} = (1 - \rho_{\tau^{c}})\tau_{ss}^{c} + \rho_{\tau^{c}}\tau_{t-1}^{c} + e_{t}^{u,\tau^{c}} + \sum_{s=1}^{3} e_{t-s,t}^{a,\tau^{c}}$$

Note that each movement in $e^{u,f}_t$, $f \in \{\mathit{G},\mathit{T},\tau^d,\tau^c\}$, is accompanied by

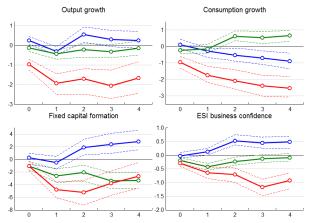
- ▶ announcements: $e_{t,t+s}^{a,f} = \varphi_s e_t^{u,f}$, $s \in \{1, 2, 3\}$
- contemporaneous changes in fiscal variables other than f
 - e.g. the composition of the average *CB plan* is 50% *G*, 17%, *T* and 12% each τ_t^d and τ_t^c (see slide 11)

Calibration as in CER. Plans: phi1=0.35, phi2=0.7, phi3=0

Conclusions

- Empirical results
 - ► Tax-based plans (both based on Direct and Indirect Taxes) are the most recessionary
 - Plans based on cuts in Spending are the least recessionary
 - Transfers-based plans are not very different from Spending-based plans
- This heterogeneity is consistent with the predictions of a simple NK model with tax distortions and standard calibration

Computing impulse responses


- ▶ Heterogeneity in styles implies that an initial correction of 1% of GDP will generate plans of different size across countries
- ▶ We normalize plans, computing impulse responses to a plan of the size of 1% of GDP, while traditional impulse responses are computed with respect to a shock of 1% of GDP

$$e^{u}_{i,t} + e^{a}_{i,t,t+1} + e^{a}_{i,t,t+2} = 1$$
 $e^{a}_{i,t,t+j} = \phi^{\wedge}_{i,j} e^{u}_{i,t} \quad ext{for} \quad j = 1, 2$ $e^{u}_{i,t} = rac{1}{1 + \phi^{\wedge}_{i,1} + \phi^{\wedge}_{i,2}}$

as an example for Italy, where $\overset{\wedge}{\phi_1}=-0.24$ and $\overset{\wedge}{\phi_2}=0$ we simulate $e^u_t=1.32,~e^s_{t,t+1}=-0.32,~e^s_{t,t+2}=0$

Negative phi

