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ABSTRACT 

Real estate data exhibit autocorrelation and heterogeneity across both space 

and time.  The literature is beginning to advance methods that account for 

the four components.  This article accordingly introduces the Bayesian 

Maximum Entropy (BME) method to real estate analysis.  In addition to 

controlling for spatiotemporal autocorrelation and heterogeneity, BME 

allows for probabilistic and missing data and does not require a known 

distribution as assumed by linear and log-likelihood techniques.  We apply 

BME to a dataset of house prices, which illustrates the use of the technique 

for developing a price index on a small geographical area. 
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1.  Introduction 

Over the last two decades, the spatial literature investigating real property assets 

has exhibited a growing interest in incorporating the temporal vector.  Most papers in the 

real estate literature use a form of the general spatial linear model with a spatiotemporal 

proximity or weight matrix as the mechanism to model time and separation distance (see 

Appendix A for introduction to the general spatial linear model). 1,2  The techniques are 

extensions of the standard spatial weight matrix in specifications like the spatial 

autoregressive model (SAR) or the spatial error model (SEM).3  Modeling both space and 

time is welcomed innovation given the development of better georeferenced datasets that 

include longer times series of variables of interest. 

But recent literature by Pinkse and Slade (2010), McMillen (2012) and Gibbons 

and Overman (2012) effectively argue that the standard spatial linear models have 

significant issues, which are not mitigating by incorporating the temporal component in a 

weight matrix.  McMillen (2012) explains how the use of a spatially lagged dependent 

variable is a form of linear smoothing and it would be surprising not to find a spatial 

1 Papers that use the spatiotemporal weight matrix include the first studies by Can and Megbolugbe (1997) 

and Pace, et al. (1998, 2000) as well as extensions and applications by Tu, Yu, and Sun (2004), Sun, Tu, and 

Yu (2005), LeSage and Pace (2009), Smith and Wu (2009), Nappi-Choulet and Maury (2009), Alberto et al. 

(2010), and Huang, Wu, and Barry (2010).  Nappi-Choulet and Maury (2011) is a notable extension that 

considers autocorrelation and heterogeneity across both space and time. 
2 Another strand of literature considers space and time in dynamic spatial panel data models  See Elhorst 

(2012) for a review of this literature.  These models are not typically helpful for real property studies because 

datasets are generally not longitudinal thus multiple selling prices of an individual property are not collected 

over a period of time.  A repeat sales dataset could build a panel but the literature seems reluctant to employ 

repeat sales datasets outside of price index construction.  Lastly, Dube and Legros (2013a, 2013b) are careful 

to model real estate prices as a pooled dataset, also using the spatiotemporal weight matrix. 
3 The notable exceptions are Gelfand et al. (1998, 2003). 
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relation using the standard spatial linear models. Gibbons and Overman (2012) note that 

the spatial econometric methods are not well suited for causal analysis.  Pinkse and Slade 

(2010) describe the many issues with the spatial autoregressive model, which include the 

implausible normality assumption, endogeneity, and nonlinearity.  They also note that 

modeling of the entire dependence structure of a spatial dataset is improbable using linear 

methods.  

To address these issues and others, this article introduces the Bayesian Maximum 

Entropy (BME) method.  Over the past fifteen years, BME has been employed in the 

physical sciences as a multidisciplinary technique examining studies sponsored by the 

National Institutes of Health and National Science Foundation.  BME applications include 

ambient air pollution, arsenic mitigation, air pollutants, and the risk of cognitive disorders 

in the elderly.  We consider its application to housing data. 

BME offers many benefits that are not found in regression-based models.  The first 

is that BME does not require any assumption regarding the shape of the underlying 

probability distribution and, accordingly, does away with the normality assumption.  

Further, the distribution–whether Gaussian or not–is often unknown to the econometrician; 

otherwise there is not a need for a spatial weight matrix.  Common estimation procedures 

like log-likelihood functions still require that the researcher knows what distribution to 

apply to the data.  But as McMillian (2012) and Gibbons and Overman (2012) point out, 

uncertainty about functional forms and lack of information on the true spatial weights 
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means alternative strategies are more appropriate.  The paradox is that the use of the general 

spatial model is to explain the model structure.4   

Another notable benefit of BME is that it can incorporate all possible relevant 

informative sources about a phenomenon without being limited to observed data. Such 

secondary data can be soft intervals or data provided as probabilistic distributions that 

cannot otherwise be used by other methods.  A further useful result of this feature is that 

BME can reach beyond the estimation of determinant factors in hedonic models or use 

information from hedonic mode as an input. 

We demonstrate the employment of secondary data by using tax assessment values 

to supplement transaction prices in building a housing price index.  Assessment values 

provide much more coverage as they generally are available for every property within a 

geographical area of interest.  However, assessment values measure transaction prices with 

error.  The BME method can properly account for the uncertainty.  And the granularity can 

be at any level, such as a submarket or neighborhood level.  The limitation is only set by 

the available data. 

A third advantage to BME is mitigation of the Modifiable Areal Unit Problem 

(MAUP) cited in the regional economics and the economic geography literature 

(Openshaw and Taylor 1979).  The MAUP is a statistical bias due to the shape, size, and 

position of the areal unit when point-based measures of spatial phenomena are aggregated 

into clusters.  Some current methods assume a particular cluster shape of the data but the 

4 The GMM estimator of Kelejian and Prucha (1999) also does not require any distribution assumption.  

However, they still use the spatial weight matrix, which assumes that the spatial weight matrix is known.  

The standard use of the spatial weight matrix is to estimate the marginal effects of exogenous explanatory 

variables.    Also, the explanatory variables are assumed to be exogenous and fixed across time. 
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literature is quickly showing that geographical functions are not limited to boundaries.  

BME mitigates the MAUP because it dynamically measures separation of distance and 

time. 

Another benefit is in the geostatistical nature of the BME method that enables us to 

model both macroscopic and microscopic data.  Cressie (1993) and Pace and Gilley (1997) 

recognize that spatial patterns can be large-scale and small-scale.  That is, certain effects 

are macroscopic that manifest as mean surface trends in space-time, while others are 

microscopic, which can be modeled as residuals that sit on top of mean trends.  The dual 

aspects are certainly true for real estate, which functions in both a market that has, for 

instance, mortgage rates set nationally as well as a local employment market. 

The logical structure of this study is as follows.  We briefly describe the BME 

method and stochastic framework in the next two sections.  We detail the data and empirical 

design of our study in Section 4.  The results of our study are in Section 5, which includes 

comparison to ordinary kriging.  Section 6 provides summary discussion. 

2.  A Brief Overview of BME 

BME integrates multi-sourced types of information in three consecutive stages 

known as the structural (or prior) stage, the specificatory stage, and the posterior (or 

integration) stage.  In the prior stage, one considers all relevant available general 

knowledge bases G-KB which comprise theoretical and empirical expressions of the 𝑋𝑋(𝒑𝒑) 

characteristics.  An example of G-KB is a surface trend, denoted by the S-TRF expectation 

𝑚𝑚𝑥𝑥(𝒑𝒑) = 𝑋𝑋(𝒑𝒑)�������, which represents systematic spatiotemporal patterns at scales larger than 

the study scale.  Another example of G-KB is expressing spatiotemporal variability 

between attribute points via the 2-point statistic of covariance between pairs of attribute 
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points; for a pair of transaction price space-time points 𝒑𝒑  and 𝒑𝒑′  their covariance is 

𝑐𝑐𝑥𝑥(𝒑𝒑,𝒑𝒑′) = [𝑋𝑋(𝒑𝒑) −𝑚𝑚𝑥𝑥(𝒑𝒑)][𝑋𝑋(𝒑𝒑′) −𝑚𝑚𝑥𝑥(𝒑𝒑′)]������������������������������������������� .  The surface trend and covariance 

function express the first- and second-order statistical moments of an S-TRF.  The BME 

framework provides solid foundation to account for knowledge of higher order moments 

and multipoint statistics, too (Christakos, 2000).  A different example of G-KB can be a 

physical law or an empirical model that is applicable to the phenomenon under study 

(Kolovos, 2002; Christakos et al., 2004; Kolovos et al., 2013).  On the basis of the G-KB, 

the BME prior stage results in a map of probability density functions (PDFs) that quantify 

the distributions 𝑓𝑓𝐺𝐺  of the prior probabilities.  By designating an individual S-TRF 

realization as χ, the prior PDF is defined by 

𝑓𝑓𝐺𝐺(𝜒𝜒,𝒑𝒑)𝑑𝑑𝜒𝜒 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝜒𝜒 ≤ 𝑋𝑋(𝒑𝒑) ≤ 𝜒𝜒 + 𝑑𝑑𝜒𝜒] 

A concise description of the prior stage is given by the first fundamental BME equation: 

 ∫ 𝑑𝑑𝜒𝜒(𝑔𝑔 − �̅�𝑔)𝑒𝑒𝝁𝝁𝑇𝑇𝑔𝑔 = 0 , (1) 

where 𝑔𝑔 is a vector of 𝑁𝑁𝑐𝑐 𝑔𝑔𝛼𝛼-functions, 𝛼𝛼 = 1, 2, … ,𝑁𝑁𝑐𝑐, that represents the G-KB, and 𝝁𝝁 

is a vector of 𝜇𝜇𝛼𝛼-coefficients that depends on the space-time coordinates and associates 

with 𝑔𝑔.  These coefficients express the relative significance of each 𝑔𝑔𝛼𝛼-function, and the 

prior PDF 𝑓𝑓𝐺𝐺  is fully defined by solving Equation (1) with respect to 𝜇𝜇𝛼𝛼, 𝛼𝛼 = 1, 2, … ,𝑁𝑁. 

The specificatory stage is an assessment of the observed data, 𝝌𝝌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  The  𝝌𝝌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

values are recorded at a given set of 𝑚𝑚  space-time points 𝒑𝒑𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 , and they 

constitute the specificatory knowledge bases (S-KB).   The S-KB might consist of hard data 

𝝌𝝌ℎ𝑑𝑑𝑎𝑎𝑑𝑑, soft data 𝝌𝝌𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑, or a combination of both as in the present study.  
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In the final BME stage of integration, the S-KB updates the G-KB.  Blending the 

two types of knowledge bases yields the total given information 𝐾𝐾 = 𝐺𝐺 ∪ 𝑆𝑆  about the 

stochastic process.  The second fundamental BME equation illustrates the blending as 

 ∫ 𝑑𝑑𝜒𝜒𝜉𝜉𝑠𝑠𝑒𝑒𝝁𝝁
𝑇𝑇𝑔𝑔 − 𝐴𝐴𝑓𝑓𝐾𝐾(𝒑𝒑) = 0, (2) 

where 𝜉𝜉𝑠𝑠 is an operator that represents the S-KB,  𝐴𝐴 is a normalization parameter, and 𝑓𝑓𝐾𝐾 

is the posterior PDF at each spatiotemporal point 𝒑𝒑  where prediction is sought.  The 

subscript in 𝑓𝑓𝐾𝐾  indicates that the posterior PDF is computed on the basis of the total 

information 𝐾𝐾.  𝑓𝑓𝐾𝐾 is computed through Equation (2) and provides a complete stochastic 

description of the variable(s) of interest at a series of specified prediction locations 𝒑𝒑.  A 

variety of predicted attribute measures can be extracted from 𝑓𝑓𝐾𝐾 to match the goals of the 

intended study, such as the distribution mean or mode.  Equation (2) shows that BME uses 

a nonlinear predictor, which in the absence of soft data reduces to the kriging predictor 

(Christakos, 2000).  In our housing transaction prices study that follows, we predict the 

BME mean and compare it to the corresponding ordinary kriging prediction. 

3.  Housing Prices Stochastic Framework 

We use a stochastic representation of the housing transaction prices evolution in 

space 𝑆𝑆  and time 𝑇𝑇 , which enables us to account for uncertainty that can stem from 

ontological (or aleatoric) causes and epistemic limitations.  In our analysis, the transaction 

prices are represented as a spatiotemporal random field (S-TRF; Christakos, 1991) 𝑋𝑋(𝒑𝒑), 

where 𝒑𝒑 = (𝒔𝒔, 𝑡𝑡), 𝒔𝒔 = (𝑠𝑠1, 𝑠𝑠2) is the spatial location vector with coordinates 𝑠𝑠1 and 𝑠𝑠2, and 

𝑡𝑡  is the time variable.  Price uncertainty manifests as an ensemble of all possible 

realizations of 𝑋𝑋(𝒑𝒑) values across space-time points 𝒑𝒑.  The S-TRF assigns to each of these 

realizations a probability that depends on 𝒑𝒑, and is fully defined when the distribution of 
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the transaction price random variable 𝑥𝑥(𝒑𝒑)  is known at all locations 𝒑𝒑  in the 

spatiotemporal continuum ℰ = 𝑆𝑆 × 𝑇𝑇 (e.g., Christakos, 1992; Christakos and Hristopulos, 

1998).  In the S-TRF context, inter-point distances in ℰ are defined on the basis of a joint 

space-time metric 𝑑𝑑𝒑𝒑.  For a spatial distance |𝑑𝑑𝒔𝒔| and a time interval 𝑑𝑑𝑡𝑡, the segment 

length |𝑑𝑑𝒑𝒑| between two spatiotemporal locations 𝒑𝒑1 and 𝒑𝒑2 = 𝒑𝒑1 + 𝑑𝑑𝒑𝒑 on the Euclidian 

plane is 

|𝑑𝑑𝒑𝒑| = �𝑑𝑑𝒔𝒔2 + (𝑣𝑣 𝑑𝑑𝑡𝑡)2, 

where 𝑣𝑣 is a spatiotemporal metric coefficient (Christakos et al., 2000).  The kriging and 

the BME methodologies are used to predict unknown values 𝝌𝝌𝑘𝑘 of the transaction prices 

S-TRF at k selected space-time locations. 

4. Empirical Design 

We model house transaction prices from a portion of Tarrant County in Texas.  The 

study area is northeast of the Fort Worth central business district and measures 4,600 m by 

9,000 m.  Our sample period extends from January 2009 to December 2012.  The observed 

transaction prices are the hard data of our study.  We consider a temporal resolution of 1 

month, hence all transactions that occur within a given calendar month are assigned as data 

attributed to this month. 

Apart from the hard data, we also use tax assessed values that are publicly available 

for almost every property in the US.  Our test method accounts for the fact that most market 

participants do not have access to proprietary data from local realtor databases but can 

obtain tax valuations from local county assessor offices.  To obtain the soft data 

observations used in the subsequent BME analysis, we regress transaction prices against 

the assessed values and other property characteristics that are public information in the tax 

 8 



assessor’s database.  Appendix B provides variable definitions and Table 1 presents the 

parameter estimates and heteroscedasticity-consistent errors.  The model statistics indicate 

a strong fit, primarily due to the close relationship between the tax-assessed values relative 

to transaction prices.  Figure 1 shows the observed prices compared to the predicted values. 

The tax assessed estimates are not hard data because the model produces values 

with nontrivial uncertainty.  We use the uncertainty in the estimated tax assessed values to 

define an additional knowledge base of interval soft data that are used by BME to 

complement the hard data set and improve prediction.  Specifically, after fitting the model, 

we compute the upper and lower 95 percent confidence interval for an individual estimation.  

As compared to the 95 percent interval for the expected mean value of the dependent 

variable, the individual estimation interval is more conservative because it includes both 

the variance of the error as well as the variance of the parameter estimates.  We then 

compute the mean of the both the lower and upper confidence interval and use it to specify 

the price model uncertainty as a percentage of the model estimates values.  For each model-

estimated value this percentage determines the lower and upper bound of this value.  The 

bounds constitute an interval soft datum where the transaction price variable can take any 

value within this range. 

Tarrant County makes new assessments values publicly available around the end 

of each calendar year.  Our study considers realistically that a given year’s worth of tax 

assessed values are only available to BME in the January of the following year.  Hence, in 

our analysis between 2009 and 2012 we use soft data that reflect tax assessment records 

from years 2008 through 2011.  Practically, this reflects in our study as having soft data 

available only in the month of January every year.  This is a sensible modeling perspective 
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for the current analysis, because it reflects our understanding that the same data are also 

being made available to the entire housing market at the same time and no earlier.  In turn, 

one can plausibly expect transaction prices in the following months to be affected and 

adjusted on the basis of the newly released information every January.  Therefore, by 

considering the soft data of an entire year to be associated with the following January, our 

model accounts for this real-life constraint about tax assessed data availability in the 

process that governs housing transaction prices. 

In our spatial area of interest, a total of 1,901 homes have both transaction and 

assessed prices.  Figure 2 shows this area in context within the entire Tarrant County, Texas.  

The study area is highlighted by the aggregate hard data sample of transaction prices that 

appears as a collection of points in a rectangular towards the northeastern part of the county.  

Our study examines three different scenarios: 

Case A: The sample includes all transaction prices within our initial focus area plus an 

extensive number of tax assessment values.  So that our results generalize to the 

more typical market, we initially restrict transaction prices to a low of $50,000 

and a high of nearly $1 million.  The data sample for this case includes all 

transactions without regard for property specifics. 

Case B: Using the same spatial grid as in Case A, we account for market stratification to 

perform a more sensible analysis in a market sample that exhibits less variability.  

Specifically, a home with 2 bedrooms, 1 bathroom, and no garage is in a different 

market stratum than a home with 4 bedrooms, 3 bathrooms, and a 3-car garage.  

In Case B we refine the sample to observations in the range between the 25th and 

90th percentile of transaction prices.  Homes in the Case B sample consequently 
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have 2-3 bathrooms, 3-4 bedrooms, 1-2 garage spaces, and 1,600 – 2,600 square 

feet, and transaction prices range from $100,000 to $250,000.  

Case C: Goodman (1977) defines neighborhoods as “small urban areas with... a common 

set of socioeconomic effects”.  Beyond the boundaries of neighborhoods and 

subdivisions, homes can vary considerably.  Given some of the new urbanism 

development in the marketplace, there can exist material variability even within 

a subdivision or neighborhood.  Case C investigates transaction price at the 

neighborhood scale by using the same focused market segment observations as 

Case B; the difference between Cases B and C is that the latter concentrates on a 

smaller scale where the grid is twice as dense as in Cases A and B. 

In spatiotemporal prediction, the existence of surface trends can obscure underlying 

spatial and temporal correlations in the current scale of analysis (Chilès and Delfiner, 1999).  

Specific to our data, the notion of surface trend refers to a base price component of house 

values as well as macroscopic economic conditions.  We initially remove the trend 

components and use the subsequent residual prices for the prediction process.  To obtain 

the residuals, we employ a moving window exponential filter that leaves transaction price 

fluctuations around 0.  This filter uses ranges that extend spatially to approximately a 

quarter of the size of the spatial domain and temporally to roughly 12 months to account 

for price evolution in the market.  For illustration, the descriptive statistics tables in each 

case report the part of the total variability in the data which can be linked to the surface 

trend; this is quantified by the percentage 𝑉𝑉𝑑𝑑𝑎𝑎 = (1 − 𝑉𝑉𝑅𝑅
𝑉𝑉𝑇𝑇

) where 𝑉𝑉𝑇𝑇 is the total variance 

prior to trend removal, and 𝑉𝑉𝑅𝑅 is the residual variance for each of the examined cases in 

our analysis.  We retain the spatiotemporal trend values until the end of the prediction 
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process and then restore them to obtain the actual transaction price at all space-time 

locations. 

The residuals are used to yield empirical estimates of the spatiotemporal covariance 

function that reveals the underlying structure of the transaction price residual S-TRF.  A 

covariance model is then fitted to the empirical estimate via the efficient Bound 

Optimization By Quadratic Approximation method (Powell, 2009).  The fitted model 

provides our assessment of the underlying correlation structure to use at the prediction 

stage.  Covariance models must adhere to permissibility conditions (Christakos, 1992) and 

can be simple functions in single or nested structures, or even more elaborate algebraic 

constructs derived from general principles or relevant physical-based models (Kolovos et 

al., 2004). 

For the prediction analysis we combine the modeled spatiotemporal covariance 

with the transaction price data.  Both BME and ordinary kriging consider the same G-KB 

that comprises of the transaction price surface mean trend and covariances.  However, only 

BME can account for soft data rigorously, when available.  Kriging has been shown to 

handle uncertain information inefficiently (e.g., Savelyeva et al., 2010), and to this end our 

kriging analysis uses only the hard data observations.  Kriging yields predicted transaction 

price residuals, whereas BME produces their posterior PDF.  For mapping purposes, we 

illustrate the BME mean.  We restore the formerly removed surface trends onto the 

predicted transaction price residuals to create transaction price maps across the study 

domain for every month in the study period.  The outcome is a complete series of predicted 

residential transaction price values on predefined grid nodes.  Animation of the complete 
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series of monthly predicted transaction prices over a four-year period is available upon 

request. 

We compare the performance of BME and kriging methods by computing 

validation statistics for 2012, which is the most recent year in the study period.  Typically, 

predicted values depend on neighboring data.  In the time domain, temporal neighbors can 

contribute from both past and future instances.  To make our validation test realistic in the 

context of the housing market, where prices depend only on past instances, prediction relies 

only on past temporal neighbors.  We assess performance by means of three measures: (i) 

mean absolute error (MAE) defined as 1
𝑁𝑁
∑ |𝜒𝜒𝑖𝑖 − 𝜒𝜒𝚤𝚤� |𝑁𝑁
𝑖𝑖=1 , (ii) mean relative error (MRE) 

defined as 1
𝑁𝑁
∑ 𝜒𝜒𝑖𝑖−𝜒𝜒𝚤𝚤�

𝜒𝜒𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , and (iii) absolute relative error (ARE) defined as �𝜒𝜒𝑖𝑖−𝜒𝜒𝚤𝚤�

𝜒𝜒𝑖𝑖
�.  In the 

preceding expressions, N predicted values 𝜒𝜒𝚤𝚤�  are compared to the corresponding observed 

values 𝜒𝜒𝑖𝑖.  In addition, we provide visual assessment of the methods via plots of the relative 

error count at the validation locations throughout 2012. 

5. Analysis and Results 

5.1. Case A: Larger Data Sample with Increased Price Variability 

The Case A sample uses all of the transactions within the study time period without 

regard for property size, quality, or amenities.  The study area covers a rectangular domain 

where Easting ranges within [715,150 m, 719,750 m] and Northing ranges within 

[2,127,400 m, 2,136,400 m] in the Texas north-central State Plane coordinate system.  In 

this focus area there are 2,420 transactions from 2009 to 2012.  The hard data for the kriging 

analysis range from 25 to 83 observations per month.  According to the empirical rules for 

geostatistical prediction by Chilès and Delfiner (1999), this sample size is adequate for 
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prediction when considering the existence of temporal neighbors, too.  Table 2 presents 

descriptive statistics for Case A.  In addition to the larger price variability, the present 

sample prices are unevenly distributed and exhibit strong positive skewness.  For example, 

only a fraction of the houses have prices close to $1 million, as illustrated in the left 

histogram of Figure 3.  For this reason, the analysis in Case A is performed in the log 

transaction price scale to approximate normality (Banerjee et al., 2004).  For both BME 

and kriging, we predict log transaction prices on a rectangular spatial grid of 47 × 91 nodes 

across 48 months, which is a spatiotemporal grid of 205,296 nodes.  The nodes are 

equidistant in the horizontal and vertical directions at 100 m, which is approximately the 

distance of a city block. 

The soft data consists of tax assessed values for 66,908 homes.  The regression 

model for this larger sample specifies an interval of ±22.5% uncertainty.  As detailed in 

the previous section, this percentage is applied to each model estimate to construct the Case 

A soft data.  Given the voluminous soft data, we preserved computational resources by 

considering 40% of the sample.  We randomly select 26,226 of the original assessed soft 

data along with the 2,420 hard data and we call this sample BME40.  Table 2 provides the 

descriptive statistics for the BME40 data.  For illustration, Figure 4 shows the locations of 

the BME40 soft and hard data in January 2010.  The figure shows vividly how the soft data 

outline the housing subdivisions and neighborhoods, in addition to the dwarfing effect the 

soft data have on the hard data.  Given that the BME40 sample still has over 25,000 soft 

data, we also analyze a subset of just 20%, or 14,772 soft data, and refer to this sample as 

BME20.  The purpose of BME20 is to examine potential effects of selecting significantly 

fewer soft data in the present BME analysis. 
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Applying BME and kriging to the respective samples yields the covariance models 

in Table 3 and the plots in Figure 5.  The BME40 covariance plot displays a longer lasting 

temporal correlation compared to kriging.  This effect can be clearly attributed to the 

additional data used by BME, which help reveal more detailed information about the 

underlying correlation in space-time than the comparatively limited knowledge resources 

of kriging.  The BME covariance model is expected to have some noise due to the 

uncertainty in the included soft data, in addition to the uncertainty in the empirical 

estimation process.  Our study follows the existing literature paradigm and does not 

examine empirical covariance uncertainty.  The BME20 covariance model, not shown here, 

has a comparable plot to BME40 and similar considerations apply. 

In general, the prediction results from the two methodologies produce relatively 

similar maps of housing values and similar standard errors across the 48 months of the 

study period from 2009 to 2012.  A closer look shows that the BME maps provide more 

spatial structure detail than kriging, particularly in areas with lower hard data density.  This 

meets with our prior based upon more input information from the soft data.  To illustrate, 

Figure 6 provides April and May 2009 results.  We note the multiple levels of color and 

greater detail in Figure 6A using BME, compared to the corresponding kriging prediction 

plots in Figure 6B.  The BME method also appears to pick up some “hot spots” in the center 

zone of the spatial domain in Figure 6A.  These suggest local non-stationarities in the price 

function over the spatial domain. 

  Table 4 provides numerical validation of the three samples.  Panel A details the 

MAE and MRE errors measures.  The results are mixed across the months in 2012.  In 

January, the BME error is clearly influenced by the uncertainty in the soft data base, 
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whereas kriging remains unaffected.  One might expect the additional benefit of using soft 

data to markedly reduce the error metrics, yet the large variability of transaction prices 

makes it challenging for both techniques to provide consistently good prediction accuracy 

throughout the validation period.  Although BME and kriging might each perform better 

in different months, their errors exhibit rather small fluctuations and both techniques appear 

to be overall equally good performers. 

Panel B of Table 4 reports the percentage of validation points within ARE 

categories.  Aggregating the two categories that total 10% error or less, we find that BME40 

performs best with 58.38% of all validation points versus 54.49% for BME20 and 50.03% 

for kriging.  This finding suggests an approximate 8% benefit in predicting accuracy with 

each incremental usage of additional soft data on top of the hard data.  At the same time, 

this benefit comes at a nontrivial computational cost.  Processing times were found to be 

almost proportional to the size of the data sample.  Specifically, the BME20 data set is 

roughly 10 times larger than the kriging one, and BME20 analysis took about 10 times 

longer to complete prediction than its kriging counterpart.  Subsequently, by doubling the 

amount of soft data, BME40 took about twice as much time to perform prediction than 

BME20.  Figure 7 plots the count of validation points at each relative error level.  Thinner 

and taller curves centered at zero designate better performers, because they indicate that 

more validation relative errors are around zero.  The emerging shapes for the different 

techniques are largely similar.  There is a rather increased error bias of kriging towards the 

positive errors around zero, and this explains the aforementioned accuracy edge of BME.  

Figure 7 also illustrates the incremental improvement in the performance of BME20 over 

kriging, and BME40 over BME20.  The plot suggests these are measurable, if rather 
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unimpressive, performance improvements in the present Case A.  Given the kriging lower 

computational burden detailed earlier, the kriging prediction accuracy can be considered 

comparatively adequate and competitive to BME.  We next consider a more practical 

example. 

5.2. Case B: Data Sample with Moderate Price Variability 

The Case B sample has 718 hard data observations across the period 2009-2012.  The study 

area, time span, and prediction grid in Case B are identical to those of Case A.  However, 

the reduced data variability compared to the preceding Case A led the regression model to 

reduced mean estimation error that corresponds to an uncertainty interval of ±15%.  This 

percentage was applied to each model estimate to construct the Case B soft data, as detailed 

in Section 3 earlier. 

Narrowing the house type enables us to perform a focused analysis and also 

produces results that are of more practical use.  The sample in Case B offers fewer observed 

transaction prices than Case A.  Consequently, kriging uses between 6 and 29 hard data 

observations each month.  The sample also has 24,294 soft intervals.  Table 5 provides the 

descriptive statistics and Table 6 details the Case B covariance models.  The BME model 

is similar to the Case A covariance model, which meets with our priors since both cases 

operate in the same space-time domain and there is again an abundance of soft data for the 

covariance analysis.  Further justification is that one might reasonably expect the 

underlying data generating mechanisms that correlate the observed values to be quite 

similar in these two cases.  The kriging covariance model is a relatively simple single 

nesting in space and in time. 
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Figure 8 details the Case B predicted transaction prices using BME and kriging at 

selected time instances.  Due to the reduced variability in transaction prices, log 

transformation is not necessary in Case B.  BME prediction leads to maps of similarly 

detailed texture as in Case A.  In contrast, the kriging results are coarser and feature a 

smoother prediction surface where the data locations are rather more distinguishable 

throughout the domain than in the BME maps.  Although kriging can carry out predictions 

across the domain, the results demonstrate that hard data alone produce lower quality 

inference compared to BME.  Prediction errors reflects this finding, with BME prediction 

PDFs standard deviation ranging up to $14,427, and the corresponding kriging prediction 

error reaching up to $18,963.  One might reasonably expect the soft data uncertainty to 

contribute to higher BME prediction error.  However, the performance suggests that the 

relatively low soft data uncertainty level of 15% in Case B works synergistically with the 

abundance of soft data to result in lower prediction error levels for BME. 

Table 7 and Figure 9 detail further performance information and error metrics.  In 

Panel A of Table 7, the MAEs and MREs are generally balanced, if slightly overall lower 

for BME.  Panel B of Table 7 provides the error levels as a percentage of validation points.  

BME achieves AREs that are equal to or less than 10% error for 83.72% of the total 

validation points.  The corresponding kriging score is 66.69%, or about at 4/5 of the BME 

performance.  Figure 9 illustrates the validation error distribution.  In Case B, BME’s 

increased accuracy is more apparent through the contrast between the thinner and taller 

BME curve against a rather flatter and broader kriging curve.  In addition, the plot suggests 

that kriging exhibits a slight negative prediction bias, i.e., its prediction tends to exceed the 

observed value. 
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In a realistic scenario where market participants can focus on a price index for their 

particular house type, the Case B results demonstrate the primary conclusion that available 

public data greatly enhance the analysis and are necessary to make valid inferences in the 

absence of hard data. 

5.3. Case C: Neighborhood Scale Data Sample 

In Case C we investigate a smaller spatial domain within a square spatial field of size 2,500 

m × 2,500 m.  The spatial grid consists of 51 × 51 nodes and spans across 48 months, thus 

giving a total of 124,848 nodes in space-time.  Compared to Cases A and B, the grid is 

twice as dense with separation distances of 50 m between nodes in both of the Easting and 

Northing directions. 

By targeting our analysis at the same sample used in Case B, we find that only 111 

properties transact within the smaller focus area over the 4-year study period.  These data 

are insufficient to conduct a kriging analysis.  In contrast, tax assessment data exist for 

4,193 homes in the Case C area, which is abundant information for BME prediction.  Table 

8 provides the descriptive statistics of the hard and soft data. 

Using again year 2012, Table 9 details the error metrics for Case C.  Since kriging 

is unavailable for comparison, we contrast Case C with the larger-area Case B findings.  

The denser grid in Case C means that prediction is downscaled compared to Case B.  The 

high density of input data enables this downscaling by preserving the same BME prediction 

characteristics in both Cases B and C.  Therefore in principle, a similarity in the results of 

both cases is rather expected.  We observe a reduction in MAEs for four months and a 

comparatively larger increase in the February, June and July MAEs.  There are no statistics 

for the months April and November when no observed data are available.  The percentage 
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of validation points at or below 10% error in Panel B of Table 9 is 84.85%, which is 

practically equivalent to the corresponding percentage 83.72% of Case B.  Figure 10 

portrays maps of BME mean predicted transaction values for Case C at selected time 

instances. 

Overall, the map and statistics being similar to Case B are encouraging results 

because the Case C resolution is quite high for the real estate research context.  This means 

that BME enables conducting valid space-time analysis at the neighborhood level by using 

a data set that nearly entirely comprises of soft data, as opposed to kriging that has 

insufficient input in this scale to perform any analysis. 

6. Discussion 

Space and time form jointly the space-time continuum rather than existing as 

separate dimensions.  In the scientific analysis of attributes like real estate prices that exist 

in both vectors, it is imperative to correctly account for the spatiotemporal geometry.  

Otherwise, separate consideration of the spatial and temporal components can lead to 

insufficient representation and specious interpretation of space-time phenomena.  Whereas 

the majority of the existing real estate literature has made no advances in dynamic 

modeling of both the space and time vectors, we use geostatistical methodologies to 

implement the above perspective and introduce pure spatiotemporal analysis to that field. 

Our analysis examines a series of cases.  Namely, a general case with increased 

data variability across the spectrum of transaction prices and two other cases of higher 

practical interest that include centering on a focused market category and analyzing prices 

at a more detailed neighborhood level.  Our findings demonstrate housing transaction 

prices prediction in the space-time continuum across the spatial domains of interest and at 
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a series of temporal instances.  In addition, our results highlight BME as a valuable tool for 

determining housing price indices on the basis of its capability to integrate rigorously soft 

data that contain nontrivial levels of uncertainty.  Compared to classical geostatistical 

prediction, BME prediction was found to perform slightly more accurately in environments 

of increased price variability.  In such cases, classical geostatistical prediction might be a 

preferable alternative because processing reduced information carries a lower 

computational burden compared to BME analysis.  However, BME displays noticeably 

more accurate performance in price conditions with less variability.  Finally, we illustrate 

that BME can also exhibit the same accurate predictive behavior at neighborhood-level 

analysis in the presence of almost entirely soft information. 

We believe that our work makes a useful contribution to the communities of spatial 

and spatiotemporal statistics and the real estate researchers alike.  Our work extends for the 

first time recent and established space-time prediction methodologies into the real estate 

domain of application, and showcases additional case-specific benefits from the advanced 

features of BME analysis.  Namely, the present work demonstrates the strength of 

spatiotemporal prediction as a tool for assessing house transaction prices in specific 

practical instances of interest to real estate experts, as summarized above.  We also 

illustrate how geostatistics can help understand the spatiotemporal transaction price 

variability and its characteristics by translating the analysis outcome into informative maps.  

Transaction price maps reveal the local market behavior as it evolves across space and time, 

and can be valuable tools for assessment, analysis, planning and management for both real 

estate researchers and laypeople in housing markets. 
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Appendix A 

Much of the spatiotemporial literature in real estate uses the general spatial model.  

The specification is 

 𝒚𝒚 = 𝜌𝜌𝑾𝑾1𝒚𝒚 + 𝑿𝑿𝛣𝛣 + 𝒖𝒖 

𝒖𝒖 = 𝜃𝜃𝑾𝑾2𝒖𝒖 + 𝜖𝜖 

𝜖𝜖~𝑁𝑁(0,𝜎𝜎2𝐼𝐼𝑛𝑛), 

(A1) 

where 𝒚𝒚 is an 𝑛𝑛 𝑥𝑥 1 vector of dependent variables and 𝑿𝑿 is an 𝑛𝑛 𝑥𝑥 𝑘𝑘 matrix of explanatory 

variables.  𝑾𝑾1 and 𝑾𝑾2 are 𝑛𝑛 𝑥𝑥 𝑛𝑛 nonnegative spatial weight matrices. 

The weight matrices describe the spatial arrangement of the sample observations.  

The diagonal elements are set to zero since no spatial unit is a neighbor to itself.  Procedures 

to determine the elements of the weight matrix vary, one simple method is to define  𝑤𝑤𝑖𝑖,𝑗𝑗 =

𝑚𝑚𝑚𝑚𝑥𝑥 �1 − 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

, 0� where 𝑑𝑑𝑖𝑖,𝑗𝑗 is the separation distance converted from the latitude and 

longitude for each observation.  The weight matrix is then row normalized bounding the 

eigenvalues between -1 and 1.5  When 𝑾𝑾1 = 0 and 𝑾𝑾2 captures the spatial relation, the 

specification is the familiar SEM in which the vector of residuals 𝒖𝒖 addresses spatial 

dependence or autocorrelation.  When 𝑾𝑾2 = 0 and the spatial relationships form 𝑾𝑾1the 

specification is the typical SAR, which assumes the spatial autocorrelation is a spatial lag 

of the dependent variable.6  𝜌𝜌 is a scalar measuring the average influence of neighboring 

5 Lee (2004), LeSage and Pace (2009), and Elhorst (2012) discuss more advanced topics such as stationarity, 

the need for characteristics roots to lie in the unit circle, and the fact that complex eigenvalues can exist.  Tu, 

Yu, and Sun (2004) illustrate a different method to determine the matrix elements using a modified distance-

decay weighting scheme as in McMillian (1996). 
6 Alternative specifications of the general spatial model include the spatial Durbin model and spatial lags on 

the explanatory variables.  The spatial Durbin model assumes a spatial structure in the dependent variable as 
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observations of the dependent variable on the regressand.  Note that 𝜌𝜌 is not dynamic and 

imposes a single model structure a priori on the data.  The same is true for 𝜃𝜃.7  That one 

parameter can account for the entire spatial dependence structure is a considerable 

expectation.  

McMillian (2012) notes that it is not surprising that 𝜌𝜌 is often significant.  Instead 

of 𝑾𝑾1𝒚𝒚 having a casual effect on 𝒚𝒚 due to nearby dependent-variable levels, 𝑾𝑾1𝒚𝒚  is a set 

of predicted values of the regressand and thus just a form of linear smoothing.  Accordingly, 

the spatial econometrician should expect 𝜌𝜌 to be significant.  Of course the major issue is 

that this model misspecification produces significant estimates of 𝜌𝜌 and 𝜃𝜃 when the true 

values are zero. 

In addition to 𝜌𝜌  and 𝜃𝜃  imposing a single model structure and potentially being 

spurious, most prior real estate applications make the assumption that the regression 

coefficients 𝑿𝑿 in Equation (A1) are constant across the region of study.  However, this is 

not correct if the sample exhibits spatial or temporal heterogeneity.  Spatial heterogeneity 

occurs when there is structural instability or nonstationarity of economic relationships over 

the study region.8  The problem is further compounded by the quality characteristics of 

well as the explanatory variables but no spatial structure in the residuals, 𝒚𝒚 = 𝜌𝜌𝑾𝑾1𝒚𝒚 + 𝑿𝑿𝛣𝛣 + 𝑾𝑾1𝑿𝑿𝛾𝛾 + 𝒖𝒖 and 

𝑾𝑾2 = 0.  An alternative is to drop the assumption of a spatial lag on the dependent variable and instead 

assume that the regressand is a function of spatial lags of the explanatory variable only i.e., 𝒚𝒚 = 𝑿𝑿𝛣𝛣 +

𝑾𝑾1𝑿𝑿𝛾𝛾 + 𝒖𝒖 and 𝑾𝑾2 = 0.  Since these evolve from the general spatial model, the issues we discussion pertain 

equally to these specifications. 
7 Unless 𝑾𝑾𝟏𝟏 or 𝑾𝑾2 are markedly different, which is suspicious in its own right, estimation of both 𝜌𝜌 and 𝜃𝜃 

will cause an identification problem and thus is not done. 
8 This is not spatial heterogeneity due to heteroscedasticity, when spatial units exhibit different error variance, 

which can be addressed Bayesian heteroscedasticity robustness procedure as in Gweke (1993) and Tu, Yu, 

and Sun (2004). 
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properties change over time.  For instance, Munneke and Slade (2001) find intertemporal 

variation in the regression coefficients and that the conventional time dummy approach 

does not represent the pure-price effect of time. 
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Appendix B 

Our study uses a regression model to estimate tax assessed transaction values that 

regresses transaction prices against the tax assessed values as well as property 

characteristics that are public information in the tax assessor’s database.  This regression 

model is an ordinary least squares specification that controls for fixed effects across five 

realtor-defined areas.  The dependent variable is the observed transaction prices.  The 

independent variables come from the public records database and include measures of 

home size, age, and quality.  The following are the variable definitions: 

Sales prices: The dependent variable and the observed prices at which the property 

recently transacted. 

Appraised values: The prices the local tax assessor’s office values the properties. 

# of bedrooms:  The number of bedrooms in each home; a measure of size and quality. 

# of bathrooms:  The number of bathrooms in each home; a measure of size and quality. 

Home age: The age of the home. 

Living area: The amount of living area in the home; a measure of size and quality. 

Garage capacity: The number of garage spaces, which can indicate size but typically 

denotes more of a quality measure. 

Areas 126–130: Five subareas within our sample space, which are defined and named by 

the local Board of Realtors.  
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Table 1:  Transaction Price model ($) using an ordinary least squares fixed-effect model 

Variable Parameter Estimate p-value 
Appraised value 1.04 0.00 
Living area -3.34 0.12 
Number of bedrooms -628.63 0.49 
Number of bathrooms 858.65 0.48 
Garage capacity 6,088.86 0.00 
Home age -112.07 0.02 
Realtor-defined area 127 913.00 0.62 
Realtor-defined area 128 -2,661.31 0.14 
Realtor-defined area 129 -2,248.32 0.53 
Realtor-defined area 130 -125.54 0.95 
Intercept -11,072 0.02 

Number of observations 1,901  
F statistic 6,264.56  
Adjusted R2 0.97  

 

 

 

Table 2:  Case A descriptive statistics 

 
Full Sample 
for Kriging BME40 BME20 

Sample size 2,420 28,646 17,192 
Minimum ($) 50,000 50,000 50,000 
Maximum ($) 400,000 998,880 989,531 
Mean ($) 117,832 118,669 118,742 
Standard Deviation ($) 53,338 62,232 62,863 
Skewness 1.79 5.69 5.58 
Kurtosis 7.32 55.77 53.97 
Median ($) 105,000 104,800 104,600 
𝑉𝑉𝑑𝑑𝑎𝑎 (%) 57,00 55.84 52,05 
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Table 3:  Case A covariance models (𝑃𝑃 and 𝑡𝑡 indicate spatial and temporal distances, 
respectively) 

  

Analysis 
Technique 

Nested 
Model 

Spatial 
Structure 

Temporal 
Structure 

Sill 
𝑐𝑐 ($2) 

Spatial Range 
𝜌𝜌 (m) 

Temporal Range 
𝜏𝜏 (months) 

BME40 

1 Nugget Spherical 0.022  81.42 

2 Exponential Spherical 0.034 75.01 255.00 

𝐶𝐶(𝑃𝑃, 𝜏𝜏) = 𝑐𝑐1 �1 −
3|𝑡𝑡|
2𝜏𝜏1

+
|𝑡𝑡|3

2𝜏𝜏13
�+𝑐𝑐2 exp �−

𝑃𝑃
𝜌𝜌2
� �1 −

3|𝑡𝑡|
2𝜏𝜏2

+
|𝑡𝑡|3

2𝜏𝜏23
� 

BME20 

1 Nugget Spherical 0.019  48.71 

2 Exponential Spherical 0.044 134.93 170.00 

𝐶𝐶(𝑃𝑃, 𝜏𝜏) = 𝑐𝑐1 �1 −
3|𝑡𝑡|
2𝜏𝜏1

+
|𝑡𝑡|3

2𝜏𝜏13
�+𝑐𝑐2 exp �−

𝑃𝑃
𝜌𝜌2
� �1 −

3|𝑡𝑡|
2𝜏𝜏2

+
|𝑡𝑡|3

2𝜏𝜏23
� 

Kriging 

1 Gaussian Gaussian 0.026 74.89 11.85 

2 Exponential Spherical 0.042 359.08 127.50 

𝐶𝐶(𝑃𝑃, 𝜏𝜏) = 𝑐𝑐1exp�−
𝑃𝑃2

𝜌𝜌12
� exp�−

𝑡𝑡2

𝜏𝜏12
� + 𝑐𝑐2 exp �−

𝑃𝑃
𝜌𝜌2
� �1 −

3|𝑡𝑡|
2𝜏𝜏2

+
|𝑡𝑡|3

2𝜏𝜏23
� 
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Table 4: Case A error metrics 
 

 

Panel A: Mean Absolute Errors and Mean Relative Errors 

Month MAE ($) MRE (%) 
BME40 BME20 Kriging BME40 BME20 Kriging 

January 34,116.56 35,775.70 33,776.71 -4.85 -4.69 -0.60 
February 27,748.26 29,919.14 25,647.09 -2.80 -3.77 -3.40 
March 18,281.60 22,607.56 22,685.04 -4.50 -2.92 -2.85 
April 20,717.20 23,547.85 24,571.37 -1.19 -1.31 -3.36 
May 20,898.61 21,403.51 21,806.01 -3.58 -1.80 -3.66 
June 15,784.03 16,045.08 17,414.79 -6.07 -5.33 -4.29 
July 18,603.97 17,111.56 21,358.81 1.75 1.18 2.03 
August 18,081.09 19,421.99 20,057.93 -1.45 -1.50 -5.85 
September 30,221.98 27,194.93 33,012.39 0.88 2.67 0.37 
October 26,715.39 26,928.89 24,646.65 2.91 2.11 0.80 
November 20,195.03 22,157.77 21,625.46 0.81 -1.47 -2.14 
December 21,905.61 21,348.34 22,233.24 3.08 3.01 -1.60 

Panel B: Percentage of Validation Points 
ARE Categories BME40 BME20 Kriging 
Less than 5% 20.05 19.08 16.93 
Between 5% and 10% 38.33 35.41 33.10 
Greater than 100% 1.54 1.77 1.07 
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Table 5:  Case B descriptive statistics 
 
 

 

 

 

 

 

 

Table 6: Case B covariance models (𝑃𝑃 and 𝑡𝑡 indicate spatial and temporal distances, 
respectively) 

 
 

Analysis 
Technique 

Nested 
Model 

Spatial 
Structure 

Temporal 
Structure 

Sill 
𝑐𝑐 ($2) 

Spatial Range 
𝜌𝜌 (m) 

Temporal Range 
𝜏𝜏 (months) 

BME 

1 Nugget Spherical 1.0e8  99.30 

2 Exponential Spherical 1.0e8 78.32 155.00 

𝐶𝐶(𝑃𝑃, 𝜏𝜏) = 𝑐𝑐1 �1 −
3|𝑡𝑡|
2𝜏𝜏1

+
|𝑡𝑡|3

2𝜏𝜏13
�+𝑐𝑐2 exp �−

𝑃𝑃
𝜌𝜌2
� �1 −

3|𝑡𝑡|
2𝜏𝜏2

+
|𝑡𝑡|3

2𝜏𝜏23
� 

Kriging 
1 Exponential Spherical 3.6e8 180.02 15.17 

𝐶𝐶(𝑃𝑃, 𝜏𝜏) = 𝑐𝑐1 exp �−
𝑃𝑃
𝜌𝜌
� �1 −

3|𝑡𝑡|
2𝜏𝜏

+
|𝑡𝑡|3

2𝜏𝜏3
� 

 
  

 BME Kriging 
Sample size 25,012 718 
Minimum ($) 79,140 100,000 
Maximum ($) 249,623 245,000 
Mean ($) 135,278 141,424 
Standard Deviation ($) 23,000 27,604 
Skewness 1.02 1.14 
Kurtosis 4.56 4.69 
Median ($) 131,200 136,950 
𝑉𝑉𝑑𝑑𝑎𝑎 (%) 60.65 52.74 
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Table 7: Case B error metrics 
 

 
Panel A: Mean Absolute Errors and Mean Relative Errors 

Month MAE ($) MRE (%) 
BME Kriging BME Kriging 

January 17,108.86 19,113.75 -1.65 -7.43 
February 8,844.30 7,205.73 1.61 -1.56 
March 16,194.10 15,802.41 -0.44 -1.72 
April 14,835.48 11,890.95 2.28 1.99 
May 13,915.95 13,190.73 2.78 -0.39 
June 9,040.79 14,586.61 -1.26 -4.87 
July 11,924.45 15,621.73 3.72 -0.35 
August 13,344.60 14,246.72 0.76 -0.85 
September 17,224.21 14,824.04 2.69 -1.38 
October 15,360.89 16,312.42 -0.77 -3.32 
November 12,388.27 12,476.14 0.73 0.51 
December 13,823.62 13,251.16 -0.59 -5.60 

Panel B: Percentage of Validation Points 
ARE Categories BME Kriging 
Less than 5% 29.43 22.78 
Between 5% and 10% 54.29 44.31 
Greater than 100% 0.07 0 
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Table 8: Case C BME descriptive statistics 
 
 

 

 

 

 
Table 9: Case C error metrics 

 
 

Panel A: Mean Absolute Errors and Mean Relative Errors 

Month MAE ($) MRE (%) 
January 15,594.78 -13.92 
February 31,215.24 -28.38 
March 13,377.30 -10.65 
April N/A N/A 
May 15,769.40 4.00 
June 13,808.65 -1.09 
July 23,940.64 9.35 
August 14,262.87 -2.71 
September 15,935.84 -14.49 
October 15,277.72 4.63 
November N/A N/A 
December 14,083.59 4.95 

Panel B 
ARE Categories Percentage of Validation Points 
Less than 5% 27.27 
Between 5% and 10% 57.58 
Greater than 100% 0 

 
  

Sample size 4,304 
Minimum ($) 100,000 
Maximum ($) 249,800 
Mean ($) 137,809 
Standard Deviation ($) 26,676 
Skewness 1.58 
Kurtosis 5.85 
Median ($) 130,350 
𝑉𝑉𝑑𝑑𝑎𝑎 (%) 66.20 
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Figure 1:  Predicted values of Transaction Prices (shown as variable Sale_prices) versus 
the observed values using the ordinary least squares model detailed in Table 1. 
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Figure 2:  Domain of a sample of residential Transaction Prices in Tarrant County, Texas. 
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Figure 3:  Histogram of observations for Case A in original (left) and log Transaction Price 
space (right). 

  

 38 



 
 
 
 

 
 
 
Figure 4:  Locations of tax assessed (soft data) values and Transaction Prices (hard data) 
in January 2010. 
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Figure 5:  Case A empirical and fitted covariance plots for (1) BME40, and (2) Kriging. 
Covariance values are plotted against temporal and spatial lags. 
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Figure 6:  Predicted log Transaction Price at selected time instances for Case A:  Figure 
(6A) shows BME40 prediction for (A1) April 2009, and (A2) May 2009.  Figure (6B) 
shows kriging prediction for (B1) April 2009, and (B2) May 2009. 
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Figure 7:  Count of validation points in relative error bins using Case A approaches. 
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Figure 8:  Predicted Transaction Price at selected time instances for Case B: Figure (8A) 
shows BME prediction for (A1) April 2009, and (A2) May 2009.  Figure (8B) shows 
Kriging prediction for (B1) April 2009, and (B2) May 2009. 
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Figure 9:  Count of validation points in relative error bins using Case B approaches. 

 
 
 

 
 

Figure 10:  Predicted Transaction Price at selected time instances for Case C:  Plots show 
BME prediction for (1) April 2009, and (2) May 2009. 
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