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Abstract

We measure “good” and “bad” variance premia that capture risk compensations for the

realized variation in positive and negative market returns, respectively. The two variance

premium components jointly predict excess returns over the next 1 and 2 years with statisti-

cally significant negative (positive) coefficients on the good (bad) component. The R2s reach

about 10% for aggregate equity and portfolio returns and about 20% for corporate bond

returns. We show that an asset pricing model that features distinct time variation in posi-

tive and negative shocks to fundamentals can explain the good and bad variance premium

evidence in the data.
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1 Introduction

An important challenge in finance is to link expected asset returns in excess of the risk-free rate

to measures of the financial market risk. Using statistical estimates of return variance to measure

risk, the early asset pricing literature has generally produced inconclusive evidence for the risk

and return relationship.1 A more recent strand of this literature relies on the information in

option prices to gauge and quantify time-varying risk compensations in the data. In particular,

the variance premium, defined as the difference between the model-free implied and realized return

variation, has been shown to be a robust predictor of asset returns at maturities of 3 to 6 months.

Because of its significant predictive power for short-term asset returns, the variance premium is

often viewed as a measure of transient risk in financial markets.

In this paper, we show that the variance premium is driven by two distinct factors that can

jointly predict future returns at long horizons of up to two years. Specifically, we decompose

the variance premium into “good” and “bad” components that capture the risk premium for the

realized variation in positive and negative market returns, respectively. Our proxies for the good

and bad variance premia correspond to the differences between the good and bad implied and

realized variance of returns. Good (bad) implied variance measures the conditional risk-neutral

expectation of the 1-month squared positive (negative) log equity return, computed from option

prices as in Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003). We also compute

the good and bad realized variance measures using the high-frequency return data, following

Barndorff-Nielsen, Kinnebrock, and Shephard (2010). The good variance premium is negative, on

average, while the bad variance premium is positive most of the time. The two variance premium

components have a lower correlation compared to the good and bad variance measures, and both

significantly contribute to the variation in the total variance premium.

Our variance premium measures are straightforward to compute and have significant implica-

tions for expected asset returns. The good and bad variance premia jointly predict excess equity

market returns with statistically significant coefficients at the 1- and 2-year horizons with R2 val-

1See French, Schwert, and Stambaugh (1987), Campbell and Hentschel (1992), Glosten, Jagannathan, and
Runkle (1993), and Whitelaw (1994).
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ues of 7% and 9%, respectively. In contrast, the predictive power of the total variance premium

at horizons longer than 6 months is essentially zero. Notably, both the good and bad components

of the variance premium need to be incorporated to obtain high return predictability: using the

individual components of the variance premium leads to results similar to those for the total vari-

ance premium alone. In particular, this suggests that both upward and downward risks play an

important role in capturing time variation in the asset risk premium.2 The predictive coefficient

on the good variance premium is negative, while it is positive for the bad variance premium.

Because the good and bad variance premia drive the total variance premium in the same direc-

tion but predicted returns in the opposite direction, the variance premium decomposition helps

uncover long-horizon return predictability, absent when the total variance premium itself is used

as a predictor. This pattern holds across various markets, including aggregate equity, corporate

bonds, and the cross-section of equity portfolios.

To provide an explanation for our empirical findings, we start with an affine no-arbitrage

framework with exogenously specified equity price and state-price density processes.3 The equity

price and state-price densities are driven by upward (“good”) and downward (“bad”) jumps whose

time-varying intensities capture the variation in good and bad variances. We show that if all good

(bad) shocks to equity carry a positive (negative) market price of risk, the equity premium is

increasing in both good and bad jump intensities. At the same time, the good variance premium

is decreasing in good jump intensity, while the bad variance premium is increasing in bad jump

intensity. Therefore, in the return predictability regressions, the predictive coefficient for the good

variance premium is negative, while it is positive for the bad variance premium.

To quantify the model, we consider a general equilibrium framework that maps directly into

the no-arbitrage model specification. The economic model features upward and downward jumps

to consumption, and the recursive utility of the representative agent. In this equilibrium model,

equity exposures and market prices of risk are pinned down by the model and preference param-

eters. In particular, good (bad) consumption jumps increase (decrease) the equity prices and the

2See Ang, Chen, and Xing (2006) and Lettau, Maggiori, and Weber (2014), who emphasize the importance of
the downside market risk for the cross-section of asset returns.

3See Singleton (2009) for a textbook review of the no-arbitrage asset-pricing models.
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state-price density, consistent with the assumptions of the no-arbitrage model. Using numeri-

cal calibrations, we show that the model can capture novel evidence of return predictability by

the variance premium measures, alongside standard aggregate asset pricing and macroeconomic

moments.

Our paper is related to the literature that links the variance premium to uncertainty about

economic fundamentals. Bollerslev, Tauchen, and Zhou (2009) show a strong short-horizon pre-

dictive power of the variance premium for aggregate equity returns.4 In their model, the variance

premium is related to the time-varying volatility of conditional consumption variance.5 Drech-

sler and Yaron (2011) extend the long-run risk model of Bansal and Yaron (2004) by allowing

for multiple volatility factors and incorporating jumps in the expected growth and variance of

consumption. The variance premium in this model becomes a proxy for the variance factor with

the lowest persistence. Eraker (2008) studies the implications of volatility jumps for the variance

premium. The empirical evidence in our paper suggests that the variance premium is driven by at

least two factors that are related to long-horizon expected returns. Our economic model accounts

for this two-factor structure by linking the components of the variance premium to the good and

bad intensities of consumption jumps.

Our paper is also related to the recent literature that highlights the variation in positive and

negative shocks to fundamentals. Segal, Shaliastovich, and Yaron (2015) study the implications of

time variation in good and bad uncertainty, measured from macroeconomic data, for real growth

and asset valuations. Bekaert and Engstrom (2009) consider a habit formation model with distinct

variation in the volatilities of positive and negative Gamma shocks to fundamentals to address

several stylized asset pricing puzzles, including the predictability of returns by the total variance

premium. Tsai and Wachter (2014) construct a model with distinct time variation in the prob-

abilities of rare booms and disasters to explain the value premium. Our model integrates the

economic channels used in this literature in a parsimonious way, focusing on the novel empirical

4For long-horizon predictors of equity and corporate bond returns, see Keim and Stambaugh (1986), Campbell
and Shiller (1988), Fama and French (1989), Cochrane (2008), among others.

5Short-horizon stock return predictability results using the variance premium have been extended since then.
See Zhou (2009), Han and Zhou (2012), Bollerslev, Marrone, Xu, and Zhou (2014), and Bali and Zhou (2014),
among others.
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evidence for a link between the good and bad variance premia and expected returns.

Our paper also contributes to a voluminous literature that shows that asset returns are pre-

dictable by volatility and jump risk factors.6 Bollerslev, Todorov, and Xu (Forthcoming) statisti-

cally disentangle the diffusive and jump components of the variance premium and show that this

decomposition leads to stronger return predictability than previously shown, driven by the varia-

tion in the left jump tail. Guo, Wang, and Zhou (2014) find that realized positive and negative

jump volatilities jointly predict short-horizon excess stock returns and economic fundamentals,

while total jump variation has no significant predictive power. Feunou, Jahan-Parvar, and Okou

(2014) study the empirical implications of decomposing the VIX index into the components com-

puted using call and put options and find that most of the variance premium is related to downside

risk. In our paper, we consider an alternative decomposition of the variance premium into the

components associated with “good” and “bad” events and provide an economic model to explain

our empirical findings.

Finally, our paper is related to the recent literature that highlights the importance of sep-

arating upside and downside market volatilities. Feunou, Jahan-Parvar, and Tédongap (2013),

Patton and Sheppard (2013), and Bekaert, Engstrom, and Ermolov (2015) identify fluctuations

in these volatility components using historical return data and consider their implications for the

dynamics of equity returns. In our paper, we utilize option data and construct variance premium

measures, which we show can help to better isolate separate variations in the negative and positive

components of the return distribution, related to the expected excess returns.

The paper is organized as follows. Section 2 describes the empirical analysis, along with several

robustness tests for predictability regressions. Section 3 discusses the model and its quantitative

implications. Section 4 concludes.

6The literature that highlights jumps in prices includes Bakshi, Cao, and Chen (1997), Duffie, Pan, and Singleton
(2000), Pan (2002), Andersen, Benzoni, and Lund (2002), Eraker, Johannes, and Polson (2003), Eraker (2004),
Broadie, Chernov, and Johannes (2007), Santa-Clara and Yan (2010).
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2 Empirical analysis

In this section, we develop measures of the good and bad variance premia and provide empirical

evidence for their relation to expected returns. Below, we describe the construction of the bench-

mark variance measures and provide a discussion of our findings, followed by various robustness

checks.

2.1 Good and bad implied variances

Our goal is to construct intuitive measures that separately characterize the variation in the positive

and negative components of the conditional aggregate equity return distribution. For this purpose,

we utilize the method developed by Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan

(2003) to infer the moments of the risk-neutral return distribution from the cross-section of option

prices in a model-free way.

We consider the price of a volatility contract that pays off the squared log return at time t + 1.

Let st denote the natural logarithm of the price, St, of the underlying market index at time t. The

payoff of the contract is r2
t+1 ≡ (st+1 − st)

2. We define total implied variance, ivt, as the price of

the contract:

ivt ≡ e−r
f
t E

Q
t

[

r2
t+1

]

, (1)

where E
Q
t denotes the expectation under the risk-neutral measure conditional on time-t infor-

mation, and rf
t is the risk-free rate. Bakshi, Kapadia, and Madan (2003) show that ivt can be

calculated using prices of OTM call and put options:

ivt =
∫ ∞

St

2(1 − log(K/St))

K2
C(t, t + 1, K) dK +

∫ St

0

2(1 + log(St/K))

K2
P (t, t + 1, K) dK, (2)

where C(t, t + 1, K) and P (t, t + 1, K) denote the time-t prices of call and put contracts with a

time-to-maturity of one period and a strike price of K.

We can write the payoff of the volatility contract as a sum of the two components associated
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with the positive and negative returns, respectively,7

r2
t+1 = r2

t+1 I(rt+1 > 0) + r2
t+1 I(rt+1 ≤ 0). (3)

Following this decomposition, we define the good and bad implied variances, ivg
t and ivb

t , as the

prices of the positive and negative payoff components, respectively,

ivg
t ≡ e−r

f
t E

Q
t

[

r2
t+1 I(rt+1 > 0)

]

,

ivb
t ≡ e−r

f
t E

Q
t

[

r2
t+1 I(rt+1 ≤ 0)

]

.

(4)

Because the good and bad components of the payoff add to the total payoff of the volatility

contract, we have ivt = ivg
t + ivb

t by no-arbitrage.

Similar to the total volatility contract, the prices of its good and bad components can also

be computed in a model-free way from the cross-section of option prices. Indeed, Appendix A.1

shows that ivg
t and ivb

t correspond to the first and second integrals in (2), respectively,

ivg
t =

∫ ∞

St

2(1 − log(K/St))

K2
C(t, t + 1, K) dK,

ivb
t =

∫ St

0

2(1 + log(St/K))

K2
P (t, t + 1, K) dK.

(5)

This result is intuitive. Total implied variance ivt is the weighted sum of the option prices, and

the variance components are identified by claims that have payoffs contingent on the sign and

magnitude of the realized return. Good implied variance is identified by call options that pay off

only in case the return realization is positive, and bad implied variance is characterized by put

options that pay off only if a negative return is realized.

We compute the implied variance measures at a monthly frequency using the S&P 500 index

options data from OptionMetrics from January 1996 to August 2014. We use the averages of the

bid and ask quotes for each option contract and eliminate the options with a mid quote lower

7One can consider thresholds different than zero for the decomposition. We opt for an intuitive measure of good
and bad events in the stock market and characterize them by positive and negative returns.
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than $ 3/8. Options with zero trading volume, with a time-to-maturity lower than 7 days, and

those that violate standard no-arbitrage conditions are also filtered out. For each option contract,

we compute moneyness as the strike price divided by the current value of the S&P 500 index,

K/St. As (5) indicates, we use only OTM options, namely, calls with K/St > 1 and puts with

K/St < 1. The range of available moneyness in the data highly varies over time. We use options in

the moneyness range from 0.85 to 1.15 in our benchmark analysis. This ensures that our implied

variance measures capture similar economic content throughout the time series and are not driven

by deep OTM options at moneyness levels that are not available most of the time. The integrals

in (5) are calculated using a cubic spline across implied volatilities because a continuum of strike

prices is not available. If the lowest (highest) available moneyness is higher than 0.85 (lower than

1.15), we use the implied volatility of the lowest (highest) moneyness level for implied volatilities

outside the available range in the data. We then compute the option prices from the implied

volatilities on the grid of spline. We linearly interpolate across available maturities to compute

one-month implied variances. We report the robustness of our results to various alternative choices

of the moneyness range in Section 2.5.

Figure 1 plots the time series of total, good, and bad implied variances.8 The implied variance

measures are volatile and spike in bad economic times, such as the Russian financial crisis in 1998,

leading to the failure of LTCM, the burst of the dot-com bubble in 2002, and the Great Recession

period in 2008 and 2009. Total implied variance behaves very similarly to the traditional measure of

return volatility, namely, V IX. Indeed, the correlation between ivt and V IX2 is 99.24% in levels,

and 97.33% in first differences. Table 1 provides summary statistics for the variance measures, and

Table 2 provides a correlation matrix. Both tables report statistics for the sample from January

1996 to August 2014, and a subsample excluding the Great Recession from December 2007 to June

2009. ivb
t is higher than ivg

t , both on average and throughout the sample. Good and bad implied

variances are highly correlated with a correlation coefficient of 0.97 and are both fairly persistent

with AR(1) coefficients of 0.81.

8Following Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011), and Zhou (2009), we report
variances in units of volatility in percent, squared, and divided by 12 for comparability with the existing literature.
As a result, all variance measures have the same units as V IX2/12.
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2.2 Good and bad realized variances

In addition to the risk-neutral variance measures, we construct measures of the realized variances

using high-frequency data. Following Barndorff-Nielsen and Shephard (2004), realized variance,

rvt, is defined as the sum of squared high-frequency returns, rt,i, within each period:

rvt =
Ht∑

i=1

r2
t,i, (6)

where Ht is the number of high-frequency intervals in period t.

Following Barndorff-Nielsen, Kinnebrock, and Shephard (2010), we decompose the realized

variance, rvt, into good and bad realized variances, rvg
t and rvb

t , as

rvg
t =

Ht∑

i=1

r2
t,i I(rt,i > 0), rvb

t =
Ht∑

i=1

r2
t,i I(rt,i ≤ 0). (7)

Intuitively, the good and bad realized variance measures capture information about time variation

in the positive and negative components of the physical distributions of returns. Indeed, Barndorff-

Nielsen, Kinnebrock, and Shephard (2010) show that, as Ht → ∞, rvg
t and rvb

t converge to

half of the Gaussian diffusion in the returns and positive and negative quadratic jump variation,

respectively.

We use 5-minute S&P 500 futures returns from TICKDATA to construct the realized variance

measures at a monthly frequency.9 As shown in Table 1, the total, good, and bad realized variance

measures have similar statistical properties and are more volatile and less persistent than their

implied counterparts. Figure 2 plots the time series of total, good, and bad realized variances. All

of the realized variances move closely with each other, consistent with the correlation evidence in

Table 2. The realized variances spike in bad economic times, especially in October 2008, following

the Lehman crash. This corresponds to the month with the lowest aggregate equity return in our

sample. In terms of the difference between good and bad realized variances, bad variance tends

9Liu, Patton, and Sheppard (2012) show that 5-minute sampling frequency achieves the optimal trade-off be-
tween the precision of the estimators and the impact of the microstructure noise. We treat returns from the close
of a trading day to the open of the next trading day as a 5-minute interval.
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to rise above good variance in several periods of variance spikes, such as the Great Recession.

Another large deviation of rvb
t from rvg

t occurs in September 2001. This is due to one data point:

stock exchanges were closed from September 10, 2001 to September 17, 2001. At the opening of

the market on September 17, the S&P 500 futures price fell by 5.5%, leading to a large increase

in bad, relative to good, realized variance.

2.3 The good and bad variance premia

The variance premium is defined as the difference between the risk-neutral and physical expectation

of quadratic return variation. Using the measures of implied and realized variance above, we define

our proxy for the variance premium vpt as the difference between ivt and rvt:
10

vpt = ivt − rvt, (8)

and the good and bad variance premia, vpg
t and vpb

t , as the difference between corresponding

implied and realized variances

vpg
t = ivg

t − rvg
t , vpb

t = ivb
t − rvb

t . (9)

Figure 3 plots the time series of the total, good, and bad variance premia, and Table 1 reports

summary statistics. Total implied variance is higher than realized variance most of the time, so

that vpt is positive on average. Similarly, the bad variance premium is also positive throughout

most of the sample. Notably, vpb
t is larger than vpt on average. On the other hand, good implied

variance tends to be lower than good realized variance, so that that our estimate of the average

good variance premium is negative.

10The empirical measures for the variance premium are only proxies for the actual variance risk premia, as they
rely on the statistical estimates of the conditional variance. Our definition of the variance premium corresponds to
the one in Bollerslev, Tauchen, and Zhou (2009), who assume rvt ≈ Et[rvt+1]. For robustness, we also entertain
a forward-looking measure of expected quadratic variation as discussed in Section 2.5. Alternatively, Bakshi and
Kapadia (2003) identify the variance premium from delta-hedged option gains, and Carr and Wu (2009) develop a
model-free empirical strategy for identification of the variance premium as the price minus the payoff of a contract
that pays off realized variance.
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Table 2 shows that in the benchmark sample, the correlation between the good and bad variance

premia is 87%. A significant portion of this correlation, however, is driven by a sharp drop in

October 2008, caused by a large jump in all the realized variances in this month. Removing

this data point, the correlation drops to 59%. Notably, the correlation between the good and

bad variance premium measures is significantly smaller than those between the good and bad

variances themselves. Indeed, the correlations between the good and bad realized or implied

variances exceed 97% in the full sample and are above 93%, excluding the Great Recession. Thus,

using the variance premium rather than variance measures helps isolate separate variations in the

negative and positive components of the distribution.

The signs and magnitudes of the good and bad variance premia suggest that investors are

willing to pay a positive premium for an asset that pays off when bad variance is high. The

magnitude of this premium is quantitatively large and higher than the premium for an asset that

pays off when total variance is high. On other hand, the average risk compensation to hedge good

variance risk is negative. The distinct properties of vpg
t and vpb

t suggest that they can potentially

contain more information and help identify separate risk factors compared to vpt alone.

2.4 Predicting returns with good and bad variance premia

In this section, we analyze the predictability of future returns by the variance premium measures.

As shown in the literature (see Bollerslev, Tauchen, and Zhou (2009)), the total variance premium

has a significant predictive power for aggregate equity market returns at short horizons of 3 to 6

months. We show that good and bad components of the variance premium, vpg
t and vpb

t , jointly

predict excess returns with statistically significant coefficients at horizons longer than 6 months, up

to 24 months with increasing R2 values in horizon. In multivariate predictability regressions, the

coefficient on vpg
t is negative, while it is positive and larger than that of vpt for vpb

t . This evidence

also holds in corporate bond markets and a cross-section of equity portfolios and is robust to

alternative specifications of the benchmark predictability regressions.
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All predictability regressions presented in this section have the following form:

12

h

h∑

i=1

(rt+i − rf
t+i−1) = β0,h + β ′

hXt + ǫt+h, (10)

where h is the horizon of the regression, rt+1 denotes a monthly log return, and rf
t is the monthly

log risk-free rate. The vector Xt contains the predictor variables.

To evaluate the statistical significance of our predictors, we report two types of standard errors

and the associated p-values. The first are the Newey-West standard errors computed using three

more lags than the predictability horizon. However, Newey-West standard errors are known to be

biased downward in finite samples with overlapping returns (Hodrick (1992)). Another concern is

that both the returns and variance premia deviate substantially from the average values during

periods of high economic stress, such as during the Great Recession. Because both dependent and

independent variables take extreme values, in small samples, this can make standard asymptotic

inference unreliable. To alleviate these concerns, we adopt a bootstrap approach that relies on the

empirical distribution of returns to compute standard errors. The series are simulated under the

null hypothesis of no predictability, preserving the heteroskedasticity of the original return sample

in the data, and the same relation between extreme values of predictors and volatility of future

returns. This allows us to characterize the small-sample distribution of predictive coefficients

and compute corresponding standard errors. Appendix A.2 provides details about the bootstrap

approach. Because the small sample distributions are not Normal, we directly report the p-values,

rather than t-statistics, for the hypothesis tests.

Our economic model implies that the good variance premium should predict aggregate equity

returns with a negative sign, while the coefficient on the bad variance premium is positive. To

assess the plausibility of these economic restrictions in the data, we report the p-values for the one-

sided tests. Specifically, the p-value for the good (bad) variance premium coefficient is computed

under the null hypothesis of no return predictability against an alternative hypothesis that the

slope coefficient is negative (positive). For consistency, we also rely on the one-sided p-values to

test return predictability by the total variance premium. For equity returns, we test whether the
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coefficient on vpt is positive, consistent with the literature and our economic model. For other

assets, such as corporate bonds, the signs of the coefficients do not follow directly from the theory.

In this case, we follow a rule that if a predictive coefficient is positive (negative) at the 12-month

horizon in our benchmark analysis in Table 3, the p-value corresponds to the probability of a

higher (lower) value for the coefficient under the null of no predictability.

Predictability evidence

Panel A of Table 3 reports the results of predictive regressions for excess aggregate equity returns

by vpt, as well as vpg
t and vpb

t , jointly. We find that our proxy for the total variance premium,

vpt, predicts returns with a positive sign, and the predictive coefficient is statistically significant

at 1- and 3-month horizons.11 The goodness of fit peaks at a 3-month horizon with an R2 of 6%.12

The predictive coefficient is not statistically different from zero for the horizons of 6 months and

above under the bootstrap standard errors and for 12 months and above using the Newey-West

standard errors. At these horizons, the R2 values are essentially zero.13

Next, we turn to the multivariate predictability regressions using vpg
t and vpb

t . At short hori-

zons, the predictive power of the two variance premia is comparable to that of vpt alone. However,

at longer horizons, the evidence suggests that the two variance premia contain additional, econom-

ically and statistically significant information about the expected returns. First, the coefficient

on vpg
t is negative at all horizons, starting from 3 months. It is statistically significant under the

Newey-West standard errors from 6 months, and under the bootstrap standard errors from 12

months. The coefficient on the bad variance premium is always positive, and is significant for

the horizons of 3 months and above. Notably, the coefficient on the bad variance premium in

the multivariate setting is significantly larger than that on the total variance premium in univari-

ate regressions: it is about twice as large, even at a 1-month horizon. Finally, the multivariate

11We refer to coefficients with bootstrap p-values smaller than or equal to 5% as statistically significant unless
stated otherwise.

12All reported R2 values are adjusted.
13Our findings are comparable to those in the literature that rely on V IX, rather than implied variance, to

compute variance premium (see Bollerslev, Tauchen, and Zhou (2009)). In this case, the coefficient on total
variance premium is significant up to 12 months, and the adjusted R2 values at 1-, 3-, 6-, 12-, 18-, and 24-month
horizons are 5%, 8%, 4%, 1%, 0%, and 0%, respectively.
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regression delivers a significantly higher goodness of fit, with R2 values of 7% at the 12-month

and 9% at the 24-month horizons, while there is no evidence of significant predictive power by

vpt alone at these horizons. Notably, we find that it is important to include both of the variance

premium measures to predict future returns. Indeed, when only one of these variables is used in

the regressions, the R2s drop to values similar to those for the total variance premium alone. This

highlights the importance of the upside and downside variations in capturing the fluctuations in

expected returns.

Panels B and C of Table 3 show predictability evidence for high-yield and investment-grade

bond returns from Barclay’s bond indexes. Corporate bonds are risky securities that are claims on

firms’ assets, so we use them as alternative test portfolios to expand the predictability evidence.

At horizons of 1 and 2 years, the total variance premium can predict future excess returns with

an R2 of 4% for high-yield portfolios and 6% for investment-grade portfolios. Interestingly, the

signs of the coefficients on vpt are negative at these horizons and statistically significant. Sim-

ilar to aggregate equity results, decomposing the total variance premium into its good and bad

components substantially magnifies bond return predictability. At the horizons of 1 and 2 years,

the R2s in multivariate regressions range from 18% to 24% for high-yield and investment-grade

bond returns. The coefficients on the good variance premium are all negative, and those on the

bad variance premium are positive. Nearly all of the coefficients are significant under both the

Newey-West and bootstrap standard errors. Notably, compared with equity returns, the coeffi-

cients on the good variance premium are often larger, in absolute value, than those on the bad

variance premium, which can help explain the negative coefficient on the total variance premium

in univariate regressions.

Figure 4 plots the predicted 12-month excess equity returns, implied by our regressions. The

predicted excess equity returns implied by the multivariate regression stay at low levels in moderate

periods, such as from 2003 to 2007, and spike in periods of distress, such as during the Great

Recession period in 2008 and 2009. For comparison, we also show the predicted 12-month excess

returns from the univariate regression based on the total variance premium. The implied risk

premium is much less volatile and does not capture pronounced increases in risk in periods of high

13



economic stress. The correlation between the implied equity premium extracted from univariate

and multivariate projections is quite low, and is equal to 15%. We also verify that the results are

similar for bond returns. The predicted bond returns implied by the univariate regression are less

volatile than those based on the multivariate specification, and the correlations between the two

are quite low.

Finally, we expand the set of the test assets to include the cross-section of equity portfolio

returns. This allows us not only to assess the predictability evidence at the level of individual

portfolios but also to run a joint test that predictability coefficients across all of the portfolios on

the good (bad) variance premium are negative (positive).14 Table 4 summarizes the results for ten

size, book-to-market, and industry portfolios. The cross-sectional results support and strengthen

our evidence for the aggregate returns. At a 3-month horizon, the total variance premium is a

significant predictor in the cross-section of book-to-market portfolios, with a joint p-value of 1%,

and is marginally significant for size and industry portfolios with p-values of 8%. The median R2s

vary from 3% for industry to 6% for book-to-market portfolios. There is, however, no significant

evidence of predictability at long horizons: the p-values are above 40% at the 1-year horizon and

60% at the 2-year horizon, and all the R2 are below 1%. On the other hand, the coefficients on

the good and bad variance premia are statistically significant, in joint tests, at these horizons,

with p-values of 4% and below. The median R2 increases from 8% at a 1-year to 19% at a 2-year

horizon for size portfolios, from 3% to 9% for book-to-market, and from 5% to 8% for industry

portfolios.

Our evidence suggests that the variance premium is driven by at least two factors that have

opposite association with long-horizon excess returns. This can account for a weaker predictive

power of vpt alone compared to vpg
t and vpb

t , jointly. Once the two factors of the variance premium

are uncovered, predictability becomes stronger at longer horizons, suggesting that the variance

premium contains information about persistent risk factors in financial markets.

14Appendix A.2 describes the computation of p-values for this exercise.
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2.5 Robustness tests

In this section we show that our empirical evidence is robust to different sample periods, alternative

specifications for the predictive regressions, construction of the variance premium measures, and

including higher-order moments of returns in predictability regressions.

Different sample periods

The Great Recession (December 2007 - June 2009) was a period of high equity market volatility,

as shown in Figures 1 and 2, which translates into the extreme values for the variance premium

measures (see Figure 3). We perform several robustness checks to assess whether these observations

play a significant role in our results.

First, we exclude the Great Recession period from our analysis. The predictability results

for the sample excluding December 2007 - June 2009 are reported in Table 5. For aggregate

equity returns, the results are similar to those based on the entire sample, both in terms of the

magnitude and sign of coefficients and an increase in predictive power in multivariate regressions.

In this restricted sample, vpt predicts returns with a positive coefficient, which is statistically

significant at all horizons as opposed to the full sample, where the predictive coefficients are not

significant at long horizons. However, the goodness of fit tends to be quite low, and the R2s do

not exceed 2%. In multivariate regressions, the signs on the good (bad) variance premium are all

negative (positive), in line with the full sample evidence. While the coefficient on vpb
t is significant

at all horizons above 3 months, the significance of the coefficient on vpg
t is weaker compared to

the full sample regressions. The bootstrap p-values are 8% and 5% at 12- and 24-month horizons,

respectively, whereas the Newey-West p-values are below 4%. For corporate bonds, we find no

evidence of return predictability by vpt at any horizon, and the R2 values are essentially zero. At

the same time, the joint predictive power of vpg
t and vpb

t increases with horizon, and signs are

in line with the full sample. At 1- and 2-year horizons, the R2s are 6% and 7% for high-yield

bonds, and 2% and 5% for investment-grade bonds, respectively. The coefficients are significant

for high-yield bonds at most horizons, while they are significant for investment-grade bonds at a
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3-month horizon, and marginally significant at a 2-year horizon.

We also test the robustness of the predictability results for the cross-section of equity portfolios

to the exclusion of the Great Recession period and find similar results. For all three groups of

portfolios considered in Section 2.4, the predictive coefficient on the total variance premium is

significant at 3-, 12-, and 24-month horizons, however, with moderate R2 values that do not exceed

3% at any of the horizons considered for any of the portfolios. In multivariate regressions, the

coefficients on the good (bad) variance premium are significantly negative (positive) with p-values

below 2% at 3-, 12-, and 24-month horizons. The predictive power in multivariate regressions is

stronger, in line with the full sample evidence.

Finally, we also verify the robustness of our results to outliers by running a robust predictability

regression. In this approach, we exclude any observation with a Cook’s distance greater than one

and use Huber (1964) weights to determine the coefficients. The results are consistent with the

benchmark findings and are omitted for brevity.

Our benchmark sample covers the period from January 1996 to August 2014, given the avail-

ability of options data from OptionMetrics. To provide further robustness checks to our main

results, we extend the sample using options data from CBOE from January 1988 to December

1995.15 The options in this data set are not as liquid as those in the OptionMetrics sample from

January 1996, and the range of available moneyness is significantly narrower. Because of these

data issues, we choose to use these data in the robustness checks and focus on a more standard

data set from OptionMetrics in the benchmark analysis.

As shown in Table 6, the empirical results based on the extended sample are quite similar to

the benchmark sample. In univariate regressions, the total variance premium is a significant and

positive predictor of future equity returns at all horizons from 3 months, while we do not find any

evidence for predictability of future bond returns. The R2s do not exceed 3% in equity return

regressions and are zero for bond returns. In multivariate regressions, a high good (bad) variance

premium predicts lower (higher) future asset returns across all of the maturities. The significance

15This data set is also used in Ait-Sahalia, Wang, and Yared (2001) and Eraker (2004), among others. We thank
Bjorn Eraker for providing this data set to us. We follow the OptionMetrics procedure to compute dividend yields
and the zero-coupon yield curve for this data set.
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of the coefficients is comparable to that in the full sample. The R2s are 11%, 14% and 6% for

stock, high-yield and investment-grade bond returns, respectively, at the 1-year horizon, all of

which are substantially above those for the total variance premium alone.

Notably, our main findings are not driven solely by the benchmark sample, which starts in 1996,

and they hold even in the restricted sample from 1988 to 1995. Indeed, in this subsample, the

1-year predictive coefficients on the good and bad variance premia are -0.25 and 0.42, respectively,

so that the good (bad) variance premium predicts future equity returns with a negative (positive)

sign. Results are similar for the bond returns.

Constrained predictability regressions

Our benchmark estimate of the implied equity premium, obtained from a linear regression of future

12-month returns on the two variance premia, occasionally takes negative values, as can be seen

from Figure 4. Our economic model, however, suggests that the conditional equity premium should

always be positive. To assess the role of the negative estimates for the implied equity premium

for the predictability evidence, we follow Pettenuzzo, Timmermann, and Valkanov (2014) and

consider a constrained regression approach in which the linear regression coefficients are estimated

subject to the constraint that the fitted values are positive at each point in the sample.

Notably, the largest observed negative equity premium corresponds to September 2001. As

discussed in Section 2.2, this is due to the stock market interruption for a week following September

11, and a mechanically inflated value for the realized bad variance, which treats the realized weekly

return as a 5-minute return. Although this measurement outlier does not affect our benchmark

results, it impacts constrained regressions, which are sensitive to extreme observations. Because

this observation is primarily caused by statistical issues in measurements of the realized variance,

rather than economic considerations, we exclude it from the constrained regression specification.16

Table 7 reports the predictability results for the constrained specification, and Figure 4 plots the

16Specifically, bad realized variance is 74.37 in September 2001. Almost half of this value, 32.02, is attributable
to the week when markets were closed. If we assume that the weekly price drop occurred in 5, 10, or 400 intervals
(there are around 400 5-minute observations during the week), the contribution to bad realized variance would be
6.40, 3.20, or 0.08 instead of 32.02. All of these values lead to a positive fitted value for the excess return.
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predicted series from multivariate regressions. In univariate regressions, the constrained approach

tries to address the negativity of the implied equity premium in October 2008 by increasing

the constant of the regression and lowering the coefficient on vpt to virtually zero. As a result,

in the constrained estimation there is no significant evidence of stock return predictability by

total variance risk premium at all horizons. The predicted excess return is also negative in the

multivariate setting in this period. However, because the coefficients on vpg
t and vpb

t are of the

opposite sign, and both variance premium measures drop sharply in this period, the required

adjustment on the coefficients is much smaller. Overall, the predicted values from constrained

and unconstrained regressions closely track each other as shown in Figure 4. The statistical

predictability evidence also remains very similar to the benchmark setting, as shown in Table 7.

Relation to higher-order moments

Intuitively, measures of good and bad variance and variance premia are related to the higher-order

conditional moments of the return distribution. For example, the price of the cubic contract in

Bakshi, Kapadia, and Madan (2003) is positively related to the call option prices used to calculate

ivg
t and negatively related to the put option prices used to calculate ivb

t . We therefore assess

whether the information in the good and bad variance premia can be fully subsumed by the

measures of the higher-order conditional moments of returns.

We construct the implied skewness measure skew following Bakshi, Kapadia, and Madan

(2003) and also compute realized skewness using the high-frequency return data as in Amaya,

Christoffersen, Jacobs, and Vasquez (2013). We refer to the difference between skew and realized

skewness as the skewness risk premium, srp.17 Tables C.6 and C.7 show that adding either skew

or srp to the good and bad variance premium measures does not affect our benchmark evidence

for the relation between the variance premium and the future returns. In fact, the significance of

the coefficients on the variance premia tends to improve when we control for measures of skewness.

17Chang, Christoffersen, and Jacobs (2013) show evidence of a skewness risk premium in the cross-section of
returns, and Conrad, Dittmar, and Ghysels (2013) find that inidividual stocks’ skewness is strongly related to
future returns. Kozhan, Neuberger, and Schneider (2013) find that a skewness premium can explain most of the
implied volatility skew for index options.
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The coefficients on skewness tend to be negative for equity and positive for bonds, but are quite

imprecisely estimated.

We also consider regression specifications that incorporate the estimates of the implied kurtosis.

Similar to skewness regressions, the inclusion of measures of kurtosis does not materially affect

our results for the signs and magnitudes of the variance risk premium coefficients. These results

are not reported for brevity. In all, the evidence suggests that higher moments of the return

distribution do not fully subsume the predictive content in the good and bad variance premia.

Alternative implied and realized variance measures

Finally, we check the robustness of our results against a number of alternative measurements of

the implied and realized variance measures and report our findings in Appendix C. For implied

variances, we consider extending the range of the cubic spline to 0 - 3 (Table C.1), using options

in the moneyness range 0.8 - 1.2 (Table C.2) and 0.9 - 1.1 (Table C.3). We also compute realized

variances using 5-minute returns of S&P 500 E-Mini futures (Table C.4) and use expected, rather

than realized, variances to construct the variance premium measures (Table C.5). Overall, our

key results remain robust to all these alternative specifications.

3 Model

Motivated by our empirical evidence, we develop a no-arbitrage asset pricing model that takes

an exogenous specification for the equity price process, St, and the state-price density, πt. We

use this model to analytically derive a relation between the equity premium and the good and

bad components of the variance premium, and discuss the conditions under which the model can

help explain the empirical findings in the data. In Section 3.2, we consider a general equilibrium

environment that maps directly into the no-arbitrage model specification and provides economic

justification for the reduced-form assumptions.
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3.1 No-arbitrage framework

3.1.1 Model dynamics

We assume that the aggregate equity price follows the process

dSt

St−

= µS,t dt +
∑

i=g,b

βi,σσi,λ

√

λi,t dBi,t +
∑

i=g,b

(

eβi,cZi,c,t − 1
)

dNi,t +
∑

i=g,b

(

eβi,λZi,λ,t − 1
)

dNλ
i,t, (11)

where µS,t is the drift, Bi,t is a standard Brownian motion, and Ni,t and Nλ
i,t are Poisson processes.

We consider “good” and “bad” shocks to the equity price, and therefore i = g and i = b for each

type of shock. The intensity of Ni,t is time varying and follows the jump-diffusion process:

dλi,t = κi(λ̄i − λi,t) + σi,λ

√

λi,t dBi,t + Zi,λ,t dNλ
i,t, (12)

where i = g, b. For parsimony, the intensity of Nλ
i,t is equal to λi,t. Instantaneous shocks dBi,t,

dNi,t, and dNλ
i,t are independent, conditional on λi,t. Finally, we assume that jump sizes Zi,c,t and

Zi,λ,t take nonnegative values and have time-invariant distributions that are independent of Bi,t,

Ni,t, and Nλ
i,t.

In our framework, the aggregate equity price is driven by good and bad Brownian motion

shocks dBi,t, fundamental jumps dNi,t, and intensity jumps dNλ
i,t. The exposures of the equity

price to these shocks are given by βi,σ, βi,c, and βi,λ, respectively. If a fundamental jump occurs,

the log stock price moves by βi,cZi,c,t.
18 Because Zi,c,t takes only nonnegative values, the sign of

βi,c determines whether a fundamental jump moves the equity price upward or downward. To

bring economic content to the notion of good and bad jumps, we assume that βg,c is positive, and

βb,c is negative.

18Ito’s lemma implies

d log St = µlog
S,t dt +

∑

i=g,b

βi,σσi,λ

√

λi,t dBi,t +
∑

i=g,b

βi,cZi,c,t dNi,t +
∑

i=g,b

βi,λZi,λ,t dNλ
i,t,

where

µlog
S,t = µS,t −

1

2

∑

i=g,b

β2
i,σσ2

i,λλi,t.
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The specification of the price dynamics in (11) and (12) allows for a correlation between price

and intensity processes through common Brownian motion shocks dBi,t and intensity jumps dNλ
i,t.

Hence, stock prices move not only due to the fundamental jump realizations but also due to the

perceived changes in the probability of jumps. Under the assumption that a higher probability of

a price increase (decrease) has a direct positive (negative) impact on prices, we have βg,σ, βg,λ ≥ 0,

and βb,σ, βb,λ ≤ 0.

Finally, we assume that the state-price density follows the process

dπt

πt−

= µπ,t dt −
∑

i=g,b

Λi,σσi,λ

√

λi,t dBi,t

+
∑

i=g,b

(

e−Λi,cZi,c,t − 1
)

dNi,t +
∑

i=g,b

(

e−Λi,λZi,λ,t − 1
)

dNλ
i,t,

(13)

which implies that it is affected by all shocks that also impact the equity price St. The exposures

Λi,σ, Λi,c, and Λi,λ, are the market prices of each risk. The state-price density proxies for the

marginal utility of agents and high marginal utility states correspond to “bad” times under concave

utility functions (Breeden and Litzenberger (1978)). In our no-arbitrage setup, we assume that

states with high (low) equity price correspond to low (high) marginal utility, so that Λg,c > 0 and

Λb,c < 0 for fundamental shocks, and Λg,σ, Λg,λ ≥ 0, Λb,σ, Λb,λ ≤ 0 for intensity shocks.

3.1.2 The equity premium

The comovement of the price process with the state-price density gives rise to the equity pre-

mium. In our specification, the instantaneous equity premium captures compensation for good

and bad diffusive, fundamental jump, and intensity jump risks. As shown in Appendix B.1.1, the

21



instantaneous equity premium can be written as

re
t − rf

t =
∑

i=g,b

βσ,iΛσ,iσ
2
i,λ

︸ ︷︷ ︸

diffusion

λi,t

+
∑

i=g,b

E

[(

e−Λi,cZi,c,t − 1
) (

1 − eβi,cZi,c,t

)]

︸ ︷︷ ︸

fundamental jump

λi,t

+
∑

i=g,b

E

[(

e−Λi,λZi,λ,t − 1
) (

1 − eβi,λZi,λ,t

)]

︸ ︷︷ ︸

intensity jump

λi,t,

(14)

where re
t is the instantaneous expected equity return, re

t = 1
dt

Et−

(
dSt

S
t−

+ Dt

St

)

, Dt

St
is the dividend

yield, and rf
t is the instantaneous risk-free rate.

In Section 3.1.1, we assumed that the equity exposures and the market prices of good shocks

are all positive, and they are all negative for bad shocks. Indeed, a positive good diffusive shock

increases the price of equity (βσ,g > 0) and decreases marginal utility (Λσ,i > 0). Similarly, good

jumps decrease marginal utility, (e−ΛgZg − 1) < 0 and increase the equity price (eβgZg − 1) > 0.

The opposite is true for bad shocks. Because equity prices are low in adverse economic states

associated with high marginal utility, the equity premium is positive. Further, the conditional

equity premium increases in both good and bad jump intensities. When jump intensities rise, the

quantity of risk that investors face increases, and the required risk compensations increase.

3.1.3 Dynamics under the risk-neutral measure

Given the specification of the state-price density and the price process under the physical measure,

we can write the corresponding price dynamics under the risk-neutral measure, Q, as follows:

dSt

St−

= µQ
S,t dt+

∑

i=g,b

βi,σσi,λ

√

λi,t dBQ
i,t+

∑

i=g,b

(

eβi,cZ
Q
i,c,t − 1

)

dNQ
i,t+

∑

i=g,b

(

eβi,λZ
Q

i,λ,t − 1
)

dNλ,Q
i,t , (15)

where BQ
i,t is again a standard Brownian motion, NQ

i,t is a Poisson process with intensity λc,Q
i,t , and

Nλ,Q
i,t is a Poisson process with intensity λλ,Q

i,t . The risk-neutral measure is absolutely continuous
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with respect to the physical measure which implies ZQ
i,c,t ≥ 0 and ZQ

i,λ,t ≥ 0.

The risk-neutral drift of the price process is given by the risk-free rate minus the dividend yield.

The adjustment for the diffusive risk is also standard and takes into account the risk compensation

for the Brownian motion, given by the product of the market price and quantity of the diffusive

risk:

dBQ
i,t = dBi,t + Λi,σσi,λ

√

λi,t. (16)

Jump sizes and jump intensities also change under the risk-neutral measure, and the direction of

the change depends on the sign of the market price of the jump risk. Indeed, the risk-neutral jump

intensities and jump distributions satisfy19

λc,Q
i,t = λi,t E

[

e−Λi,cZi,c,t

]

, λλ,Q
i,t = λi,t E

[

e−Λi,λZi,λ,t

]

,

E
Q
[

eβi,cZi,c,t

]

=
E

[

e(βi,c−Λi,c)Zi,c,t

]

E [e−Λi,cZi,c,t ]
, E

Q
[

eβi,λZi,λ,t

]

=
E

[

e(βi,λ−Λi,λ)Zi,λ,t

]

E [e−Λi,λZi,λ,t ]
.

(17)

Overall, the risk-neutral measure is more “pessimistic” regarding all shocks: it amplifies bad

events and downweights good events relative to the physical measure. Specifically, the intensities

of good jumps are lower under the risk-neutral measure, namely, λc,Q
g,t < λg,t and λλ,Q

g,t ≤ λg,t,

because these shocks have a positive market price of risk. Furthermore, the distributions of good

jumps are twisted by factors e−ΛgZg,t

E[e−ΛgZg,t ]
, leading to higher probabilities for lower values of Zg,t

under the risk-neutral measure. As a result, the means of good jump size distributions are lower

under the risk-neutral measure. Analogously, because they have negative market prices of risk,

bad jumps have a higher intensity under the risk-neutral measure and their distributions are tilted

toward larger values.20

19
E

Q denotes expectation under the risk-neutral measure, while E without a superscript is expectation under the
physical measure.

20Another way to see the adjustment of mean jump sizes is the definition of the risk-neutral measure:

E
Q [Z] = E

[

Z
e−ΛZ

E [e−ΛZ ]

]

= E [Z] + cov

(

Z,
e−ΛZ

E [e−ΛZ ]

)

,
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3.1.4 Quadratic variation and the variance premium

The instantaneous quadratic variation in log equity price can be defined as21

Vt,t+dt ≡ d[log S, log S]t =
∑

i=g,b

β2
i,σσ2

i,λλi,tdt +
∑

i=g,b

β2
i,cZ

2
i,c,t dNi,t +

∑

i=g,b

β2
i,λZ2

i,λ,t dNλ
i,t. (18)

Therefore, the expected instantaneous quadratic variation under the physical and the risk-neutral

measure is given by22

1

dt
Et− [Vt,t+dt] =

∑

i=g,b

β2
i,σσ2

i,λλi,t +
∑

i=g,b

β2
i,c E

[

Z2
i,c,t

]

λi,t +
∑

i=g,b

β2
i,λ E

[

Z2
i,λ,t

]

λi,t,

1

dt
E

Q

t− [Vt,t+dt] =
∑

i=g,b

β2
i,σσ2

i,λλi,t +
∑

i=g,b

β2
i,c E

Q
[

Z2
i,c,t

]

λc,Q
i,t +

∑

i=g,b

β2
i,λ E

Q
[

Z2
i,λ,t

]

λλ,Q
i,t .

(19)

The instantaneous quadratic variation has three components. The first component comes from

the diffusive dynamics of the equity price process and is equal under both measures. The next

two components capture the variation from fundamental jumps and intensity jumps, respectively,

which are the sources of non-Normality in the distribution of returns.

We define the instantaneous variance premium as the difference between expected quadratic

variation under the risk-neutral and physical measures. Using the transformation of jump inten-

sities in (17), the variance premium can be written as

V Pt,t+dt =
1

dt

(

E
Q

t− [Vt,t+dt] − Et− [Vt,t+dt]
)

=
∑

i=g,b

β2
i,c

(

E
Q
[

Z2
i,c,t

]

E

[

e−Λi,cZi,c,t

]

− E

[

Z2
i,c,t

])

λi,t

+
∑

i=g,b

β2
i,λ

(

E
Q
[

Z2
i,λ,t

]

E

[

e−Λi,λZi,λ,t

]

− E

[

Z2
i,λ,t

])

λi,t.

(20)

where the covariance term is negative (positive) for good (bad) jumps.
21To simplify the exposition, we focus on instantaneous return variation. Appendix B.1.2 discusses quadratic

variation computed over a discrete time interval from t to t+τ and shows that for τ = 1 it is approximately equal to
the instantaneous one. In the quantitative assessment of the model in Section 3.3, we find that the approximation
is extremely accurate.

22The expected instantaneous quadratic variation is equivalent to the instantaneous variance.
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The compensation for jump risk in equity price gives rise to the variance premium in the model.

Indeed, because good jumps have positive market prices of risk, the risk-neutral distributions of

good jumps are tilted toward lower values, as discussed in Section 3.1.3, which implies EQ
[

Z2
g,c,t

]

<

E

[

Z2
g,c,t

]

and E
Q
[

Z2
g,λ,t

]

≤ E

[

Z2
g,λ,t

]

. Further, good jumps are also less frequent under the risk-

neutral measure
(

E

[

e−Λg,cZg,c,t

]

< 1 and E

[

e−Λg,λZg,λ,t

]

≤ 1
)

. Hence, while an increase in good

jump intensity, λg,t, raises the expected quadratic variations, the increase is smaller under the

risk-neutral measure, so that the variance premium is decreasing in good jump intensity, λg,t. To

the contrary, the effect of an increase in bad jump intensity is magnified under the risk-neutral

measure, which causes the variance premium to be increasing in bad jump intensity, λb,t.

We can summarize model implications for the equity premium and the variance premium as

follows:

re
t − rf

t = βep
g λg,t + βep

b λb,t,

V Pt,t+dt = βvp
g λg,t + βvp

b λb,t.

(21)

The equity premium is increasing in both good and bad jump intensities implying βep
g , βep

b > 0,

as shown in Section 3.1.2. This section shows that the variance premium is decreasing in good

jump intensity and increasing in bad jump intensity, leading to βvp
g < 0, βvp

b > 0. In the univariate

regressions of instantaneous excess returns on the variance premium, the regression coefficient is

given by

β =
cov(re

t − rf
t , V Pt,t+dt)

var(V Pt,t+dt)
=

βep
g βvp

g var(λg,t) + βep
b βvp

b var(λb,t)

(βvp
g )2 var(λg,t) + (βvp

b )2 var(λb,t)
. (22)

Empirical evidence in the literature starting from Bollerslev, Tauchen, and Zhou (2009) finds that

β is positive, in line with our findings for aggregate equity returns in Section 2. This suggests that

the contribution of the bad jumps (βep
b βvp

b var(λb,t)) to the regression coefficient is larger than that

of the good ones
(

|βep
g βvp

g var(λg,t)|
)

. However, in our model, the total variance premium does not

fully capture fluctuations in the equity premium. Indeed, the two factors that drive the variance

premium actually have an opposite effect on the equity premium. This motivates our decom-
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position of the variance premium into good and bad components, thereby helping to separately

identify movements in good and bad jump intensity and their link to the equity premium.

3.1.5 Good and bad variance premia

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that if the log price follows a right

continuous jump-diffusion process with left limits, then the sum of squared positive (negative)

returns converge to the sum of half of the diffusive variation and the sum of squared positive

(negative) jumps as the sampling frequency increases. Therefore, following Barndorff-Nielsen,

Kinnebrock, and Shephard (2010), we define good and bad instantaneous quadratic variation as

V i
t,t+dt ≡

1

2




∑

i=g,b

β2
i,σσ2

i,λλi,tdt



+ β2
i,cZ

2
i,c,t dNi,t + β2

i,λZ2
i,λ,t dNλ

i,t, (23)

where i = g, b. Expected good and bad quadratic variations under the physical and risk-neutral

variance are then given by

1

dt
Et−

[

V i
t,t+dt

]

=
1

2
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=
1

2
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i,t + β2

i,λ E
Q
[

Z2
i,λ,t

]

λλ,Q
i,t .

(24)

Good and bad variances share a common component driven by the diffusive volatility of the equity

price. On the other hand, the jump component of the good (bad) variance depends on only the

good (bad) jump intensity.

We define the good and bad variance premia as the difference between the corresponding
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expected quadratic variations under the risk-neutral and the physical measure:

V P i
t,t+dt =

1

dt

(

E
Q
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[

V i
t,t+dt

]

− Et−

[

V i
t,t+dt

])

= β2
i,c

(

E
Q
[

Z2
i,c,t

]

E
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− E
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[

e−Λi,λZi,λ,t
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− E

[

Z2
i,λ,t
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λi,t,

(25)

which implies V Pt = V P g
t + V P b

t . Similar to the total variance premium, the good and bad

variance premia arise due to the compensation for the jump risk in equity prices. Indeed, they

exactly correspond to the components of the total variance premium associated with λg,t and λb,t:

V P g
t,t+dt = βvp

g λg,t, V P b
t,t+dt = βvp

b λb,t. (26)

In our benchmark model, the two jump intensities are uncorrelated, so that the good and bad

variance premia represent two independent factors that drive the total variance premium. Recall

that the good and bad variances share a common diffusive component and thus are correlated.

This motivates our choice for the variance premia as cleaner measures of the equity jump risk

compensation and is consistent with the empirical finding that measures of good and bad variances

have a much higher correlation than the good and bad variance premia, as shown in Section 2.

Following our discussion in Section 3.1.4, the good variance premium is decreasing in good jump

intensity (βvp
g < 0), while the bad variance premium increases in bad jump intensity (βvp

b > 0).

This implies that the covariance of the equity premium with good variance premium is negative,

and it is positive with the bad variance premium. Hence, in multivariate regressions of future

excess returns on the good and bad variance premia, the coefficient on the good variance premium

(βep
g /βvp

g ) is negative, while the coefficient on the bad variance premium (βep
b /βvp

b ) is positive. In

particular, the coefficient on the bad variance premium in multivariate regressions is larger than

the one on the total variance premium in the univariate setting. These model implications are

qualitatively in line with the empirical evidence in Section 2. In the next section, we consider
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quantitative implications of the model and show that they are also consistent with the data.

3.2 General equilibrium

In this section, we consider a parsimonious general equilibrium model that can give rise to the

reduced-form, no-arbitrage framework in Section 3.1. The economic model links equity exposures

and market prices of risk to investor’s preferences and dynamics of the fundamentals and provides

a discipline on the signs and magnitudes of the model parameters. We show that the general equi-

librium model can quantitatively explain the empirical patterns of the variance premia presented

in Section 2, while accounting for the key features of the macroeconomic and equity market data.

3.2.1 Consumption dynamics

We consider a Lucas tree endowment economy. Aggregate consumption, which is equal to aggre-

gate endowment, is given by

dCt

Ct−

= µ dt +
(

eZg,c,t − 1
)

dNg,t +
(

e−Zb,c,t − 1
)

dNb,t, (27)

where Ng,t and Nb,t are Poisson processes with jump intensities λg,t and λb,t, respectively. Each

intensity follows a jump-diffusion process

dλi,t = κi(λ̄i − λi,t) + σi,λ

√

λi,t dBi,t + Zi,λ,t dNλ
i,t, (28)

where i = g, b. As in Section 3.1, the intensity of Nλ
i,t is also given by λi,t. Instantaneous shocks

dBi,t, dNi,t, and dNλ
i,t are assumed to be independent, conditional on λi,t. All jump sizes Z take

nonnegative values and have time-invariant distributions. Specifically, in the calibration analysis,

we assume that the jump size distribution is Gamma, Zi,j,t ∼ Γ
(

ki,j,
µi,j

ki,j

)

for i = g, b and j = c, λ,

where k is the shape parameter, and µ corresponds to the mean of the distribution.

In our economic model, we use upward and downward jumps as a convenient way to model

positive and negative movements to economic fundamentals. We view these jumps as capturing
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regular dynamics of aggregate endowment in normal times, implying that jumps are small and

frequent. The probabilities of good and bad jumps vary over time and are driven by distinct

processes. Our specification of consumption dynamics is related to Segal, Shaliastovich, and

Yaron (2015) and Tsai and Wachter (2014), who also use Poisson jumps with separate intensities

to isolate the variation in upward and downward moves in the fundamentals. It is also closely

related to the good and bad environments specification of Bekaert and Engstrom (2009). In their

setup, positive and negative Gamma-distributed shocks drive movements in realized and expected

consumption, consumption volatility, and the habit level.

Notably, because jumps are not compensated, jump intensities directly affect the conditional

means of the processes. Expected consumption growth increases at times of good jump inten-

sity and decreases when bad intensity is high. Segal, Shaliastovich, and Yaron (2015) provide

direct empirical evidence for the feedback from macroeconomic volatilities on future real growth,

consistent with this model assumption.

3.2.2 State-price density

We adopt the continuous-time analog of the recursive utility function defined by Epstein and Zin

(1989) and Weil (1990) with an elasticity of intertemporal substitution (EIS) equal to one. Duffie

and Epstein (1992) show that, in this case, the continuation utility of the representative agent is

given by

Vt = Et

∫ ∞

t
f(Cs, Vs)ds, (29)

where

f(C, V ) = β(1 − γ)V

(

log C −
1

1 − γ
log((1 − γ)V )

)

. (30)

The parameter β is the rate of time preference and γ is a coefficient of the relative risk aversion.

As γ approaches one, the utility function converges to logarithmic utility. Recursive preferences
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allow for a preference for the timing of the resolution of uncertainty. Specifically, the agent prefers

early resolution of uncertainty if relative risk aversion is greater than the inverse of the EIS, which

corresponds to γ > 1 in this model. The analysis in this section focuses on this case.

Given the dynamics of the consumption process, we can characterize the equilibrium solution

for the value function (see Appendix B.2.1 for the details):

Vt =
C1−γ

t

1 − γ
ea+bgλg,t+bbλb,t , (31)

where a, bg, and bb are constants that depend on the model and preference parameters. Perceived

jump probabilities directly impact the utility of the agent. Specifically, when γ > 1, an increase in

good jump intensity increases the utility of the representative agent, and an increase in bad jump

intensity lowers the utility: bg < 0 and bb > 0, as shown in Appendix B.2.1.

The state-price density represents the marginal utility of the representative agent. As shown

in Duffie and Skiadas (1994), the state-price density takes on the following form:

πt = exp

{
∫ t

0

∂

∂V
f(Cs, Vs) ds

}

∂

∂C
f(Ct, Vt). (32)

It follows from the Ito’s lemma that in our equilibrium model, the state-price density satisfies the

following stochastic differential equation:

dπt

πt−

= µπ,t dt + bgσg,λ

√

λg,t dBg,t + bbσb,λ

√

λb,t dBb,t

+
(

e−γZg,c,t − 1
)

dNg,t +
(

eγZb,c,t − 1
)

dNb,t

+
(

ebgZg,λ,t − 1
)

dNλ
g,t +

(

ebbZb,λ,t − 1
)

dNλ
b,t.

(33)

The state-price process in the general equilibrium model can be directly mapped into the no-

arbitrage specification Section 3.1. Indeed, the market prices of risk in the two models are related

as follows:

Λg,c = γ, Λb,c = −γ, Λg,σ = Λg,λ = −bg, Λb,σ = Λb,λ = −bb. (34)
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The size of the impact of fundamental consumption shocks on marginal utility is equal to the risk

aversion parameter γ > 0. It immediately follows that good (bad) jumps in consumption lead to a

decrease (increase) in marginal utility: Λg,c > 0, Λb,c < 0. Furthermore, if risk aversion is greater

than one, positive shocks to good (bad) jump intensity result in a decrease (increase) in marginal

utility (bg < 0 and bb > 0). Hence, the market prices of good intensity risks are positive, while they

are negative for bad intensity risks : Λg,σ = Λg,λ > 0, Λb,σ = Λb,λ < 0. The general equilibrium

model implications for the signs of the market prices of risks are in line with our reduced-form

assumptions in Section 3.1.

3.2.3 Pricing of aggregate equity

In the data, consumption is different from dividends: equity dividends are much smaller than

aggregate consumption and are more volatile. To introduce dividends in a parsimonious way, we

follow Abel (1999) and specify the aggregate dividend as a levered consumption process:23

dDt

Dt−

= µd dt +
(

eφZg,c − 1
)

dNg,t +
(

e−φZb,c − 1
)

dNb,t. (35)

Notably, dividends are exposed to the underlying consumption jumps and the dividend exposure

is governed by the dividend leverage parameter φ > 1. For simplicity, we assume that the dividend

exposure is the same for good and bad jump risks and there is no other idiosyncratic dividend

risk.

Equity represents a claim on future dividends. Appendix B.2.2 shows that, in equilibrium, the

price of aggregate equity satisfies:

dSt

St−

= µS,t dt + b∗
dgσg,λ

√

λg,t dBg,t + b∗
dbσb,λ

√

λb,t dBb,t

+
(

eφZg,c,t − 1
)

dNg,t +
(

e−φZb,c,t − 1
)

dNb,t

+
(

eb∗

dg
Zg,c,t − 1

)

dNλ
g,t +

(

eb∗

db
Zg,b,t − 1

)

dNλ
b,t,

(36)

23This is in line with the empirical evidence in Longstaff and Piazzesi (2004) and the modeling approaches in
Campbell and Cochrane (1999) and Bansal and Yaron (2004).
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where b∗
dg and b∗

db are the loadings of the log price-dividend ratio on λg,t and λb,t.

The equity price process in the general equilibrium model can be directly mapped into the

no-arbitrage specification Section 3.1. Indeed, the equity exposures in the two models are related

as follows:

βg,c = φ, βb,c = −φ, βg,σ = βg,λ = b∗
dg, βb,σ = βb,λ = b∗

db, (37)

Equity prices are exposed to fundamental consumption and jump intensity risks. The equity expo-

sures to good and bad consumption jumps are equal to the leverage parameter φ. It thus follows

that equity prices increase with good consumption jumps and decrease with bad consumption

jumps: βg,c > 0, βb,c < 0. Similar to our discussion of the value function, for γ > 1 and φ > 1, an

increase in good (bad) jump intensity is good (bad) news for equity prices, b∗
dg > 0 and b∗

db < 0.

Therefore, the equity exposure to the good jump intensity is positive and that to bad jump in-

tensity is negative: βg,σ = βg,λ ≥ 0, βb,σ = βb,λ ≤ 0. These model implications are in line with the

reduced-form assumptions in Section 3.1.

3.3 Quantitative model implications

3.3.1 Model calibration

We calibrate the model at a monthly frequency. The model parameter values are summarized in

Table 8.

For parsimony, we use the same parameter values for the good and bad consumption jump

distributions and jump intensities. In this case, the unconditional consumption growth distribution

is symmetric, and all the asymmetry in returns arises endogenously in the model. Specifically,

the jump sizes follow Gamma distribution, Zi,j,t ∼ Γ
(

ki,j,
µi,j

ki,j

)

for i = g, b and j = c, λ, where

k is the shape parameter, and µ corresponds to the mean of the distribution. The average jump

in consumption, µi,c, is 0.0015. Notably, consumption jumps are much smaller than the typical

calibrations entertained in the disaster literature (see Barro (2006)). The scale parameter ki,c
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is 0.05, which implies that the jump distribution is quite volatile. This helps generate sizable

risk premia for the instantaneous consumption jump risk, while maintaining reasonable levels of

consumption growth volatility.

The intensities of good and bad jumps vary over time. The average frequency of good or bad

consumption jumps is about once every 2 months, helping the model generate reasonable values

for the mean and volatility of consumption and dividend growth. We calibrate the mean reversion

parameter κi to match the AR(1) coefficient of 0.81 of the implied variances in the data. The im-

plied variances, arguably, are less prone to measurement errors relative to other variance measures.

We calibrate the intensity jump distribution parameters µc, ki,λ and the diffusive volatility σi,λ to

match the level and the volatility of the implied and physical return volatility and the variance

premium.

We set the risk aversion coefficient, γ, to 10, which is similar to the traditional values in the

literature. The time-rate of preference, β, is set to 0.00001 to keep the risk-free rate at a low level.

Finally, we set the mean consumption and dividend growth rates to 1.93%, annualized, and the

dividend leverage parameter φ to 5 to target the volatility of dividends in the data.

Table 9 shows that our model delivers a good fit to the standard moments of consumption

and dividend growth in the data. In the table we show the population values from the model,

computed from a long simulation of 50,000 years, as well as small-sample statistics based on 10,000

samples with a length of 18 years each. The monthly model output is time-aggregated to an annual

horizon. The volatilities of consumption and dividend growth rates are 2.38% and 11.97% in the

model, which are quite close to 1.58% and 9.83%, respectively, in the data.24 The means of

consumption and dividend growth are about 2% in the model. It is 1.74% for consumption growth

and is slightly higher in our sample for the dividends. All of the data values are well within the

small-sample 90% confidence interval of the model. Recall that our consumption calibration does

not feature large consumption disasters. Indeed, the probability of an annual consumption drop

by more than 15% is 0.12% in simulated data.

24All model moments in the text refer to the median from small sample distributions unless stated otherwise.
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3.3.2 Asset pricing implications

Table 9 shows model implications for equity returns and the risk-free rate. In the model, the

average excess equity return is 5.33% and the return volatility is 16.06%, both of which are in

line with the evidence in the data. The equity premium represents risk compensation for the

“fundamental jump” risk in realized consumption growth, and the diffusive and jump risk in

jump intensities (see equation (14)). Both channels contribute about equally to the total risk

compensation. The average model risk-free rate is 1.35% and is quite smooth, as in the data.

Table 10 reports model output for the implied and realized variances and variance premia.25

The model matches the average levels of the variance variables quite well. For example, average

good implied variance is 13.60 in the data, relative to 12.11 in the model. Bad implied variances

are 25.82 and 23.01, on average, in the data and in the model. The model nearly exactly captures

the negative good variance premium of -2.60, and matches the level of the bad variance premium

of 9.43 in the data quite well. Notably, the good variance premium is lower, in absolute value,

than the bad variance premium. Due to the concavity of the utility function, investors are more

sensitive to bad events than to good events, so that the market prices and the equity exposures

to good jump risks are smaller, in absolute values, than to bad jumps.

The model implications for the volatilities of variance measures are broadly in line with the

data. For instance, bad variances, implied and realized, are more volatile than good variances in the

data. The model can account for this empirical finding due to the endogenous differences in equity

exposures and market prices of risk as discussed above. Quantitatively, while many of the data

statistics are within the confidence interval of the model, there are some noticeable discrepancies

between the data and the model. The model tends to overshoot volatilities of the implied variances

and underestimate the variation in the variance premium. Recall that the model volatilities are

driven by just two components, good and bad jump intensities, which share the same parameter

values. Extending the framework to incorporate the additional volatility factors as suggested in

25In the model, the implied variance of 1-month squared log returns is very similar to the expected quadratic
variation of high-frequency returns over the month. The two have comparable average values, and their correlation
is above 99%.
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Bates (2000) and Andersen, Fusari, and Todorov (Forthcoming) or to allow for asymmetry in good

and bad jump calibration can help the model to better account for the dynamics of the volatility

measures.

Next, we assess quantitative model implications for return predictability by the variance pre-

mium. Specifically, we regress future excess equity returns on total variance premium and on

good and bad variance premia, and report the results in Table 11. Similar to Drechsler and Yaron

(2011), total variance premium predicts excess returns with a positive coefficient with magnitudes

declining with horizon. However, small-sample regression coefficients and R2 values have wide

confidence bands. The median R2s are below 4% in small samples, and they are virtually zero

in the population. Once we decompose the variance premium into good and bad components,

the predictive coefficient on the good (bad) variance premium is negative (positive), while the

confidence bands for the bad variance premium are narrower. Furthermore, the goodness of fit

improves significantly in multivariate regressions, and the R2 values more than double: they are

equal to 9% at the 12-month horizon and 8% at the 24-month horizon. The predictive power and

signs of coefficients are in line with the empirical evidence in Section 2.

To further assess the empirical plausibility of the model structure, we use the calibrated model

to infer the conditional equity premium and relate it to the constrained equity premium estimates

in the data. Specifically, we infer the implied values of λg,t and λb,t, period by period, from

the empirical time series of the good and bad variance premia using the economic restrictions

of the model in equation (25). Then we compute the model-implied conditional equity premium

following equation (14). We plot the model equity premium along with the predicted 12-month

excess returns from the constrained regression approach in Figure 5. Quite remarkably, the model

tracks the observed estimate of the equity premium in the data very well. Indeed, the correlation

between the model-implied equity premium and the predicted 12-month excess returns is 92% in

levels, and 85% in first differences. The model-implied equity premium predicts 12-month (24-

month) excess returns with an R̄2 of 5.3% (9.4%). Notably, while both the model and the data rely

on the good and bad variance premia as predictors of future returns, the good fit of the model is

by no means mechanical, and is supportive of the primitive model channels, which allow mapping

35



of the components of the variance premium into the equity premium.

3.3.3 The importance of model ingredients

Our benchmark model features separate fluctuations in good and bad jump intensities, and recur-

sive utility of the representative agent. Below, we discuss the importance of these model ingredients

for the quantitative results in the model.

Our model incorporates the good and bad jumps, whose intensities are time varying and

driven by separate processes. These model ingredients are important to explain the predictability

of future excess returns by the components of the variance premia in the data. If we only entertain

downward jumps in the fundamentals, then the good variance premium is zero. Alternatively, if

we have the same underlying intensity process for the good and bad jumps, then the good and bad

variance premia become perfectly correlated. In both cases, the total variance premium contains

the same information as the bad variance premium, so decomposing total variance premium into

the good and bad components should not make any difference for return predictability. This

is contrary to our findings in the data that the good variance premium contains risk premium

information above and beyond the bad variance premium.

To highlight the role of recursive utility, we also consider the case of a standard time-separable

power utility specification. The state-price density, implied by these preferences, is given by

πt = e−βtC−γ
t . (38)

In this case, only the fundamental consumption risks are priced, Λg,c = γ, Λb,c = −γ, and investors

are not concerned with the good and bad jump intensity risks: Λg,σ = Λg,λ = 0, Λb,σ = Λb,λ = 0.

The equity returns remain risky with respect to the good and bad fundamental jumps (βg,c = φ,

βb,c = −φ). However, compared with the benchmark model, for φ < γ, equity prices fall at

times of high good jump intensity and increase when bad jump intensity is high. This is a

direct consequence of a low EIS, which, in the power utility model, is equal to the reciprocal of

the risk aversion coefficient γ. With this restriction, good return jumps are now caused by good
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fundamental jumps in consumption and jumps in bad intensity, making an economic interpretation

of a good return jump less clear.

Power utility restriction has a significant effect on quantitative model results. The power utility

model implies a low equity premium of 1.9%, which reflects the compensation only for the realized

consumption jump risk. The risk-free rate increases to an unrealistically high level of 15.5%, which

is typical for power utility models. We further check whether the power utility model can still

account for the levels and movements of the in-sample risk premium. Similar to the exercise in the

benchmark model, we extract the implied equity premium using the observed time series of the

good and bad variance premia in the data under the restrictions of the power utility model. We

find that the model-implied in-sample equity premium is too low, and it co-moves much less with

the estimate in the data: the correlation of the model-implied equity premium with the predicted

12-month excess equity return in the data drops to 44% in levels and -3% in the first difference.

The power utility model fails to account for the conditional movements in the equity premium

even at larger levels of risk aversion, which are required to match the average risk premium in the

data.

In a related environment with good and bad Gamma-distributed consumption shocks, Bekaert

and Engstrom (2009) extend the power utility model to allow for movements in expected growth

rates and the external habits. In their model, total variance premium also has a two-factor

structure, and under the estimated parameter values, it decreases (increases) at times of good

(bad) consumption volatility. They show that the model can account for the standard moments

of the consumption and asset-market dynamics and capture predictability of returns by the total

variance premium, but they do not consider the decomposition of the variance premium into the

two components. We leave the analysis of this model along these dimensions for future research.

4 Conclusion

In this paper, we show that the variance premium is driven by “good” and “bad” components,

which separately capture the time-varying risk compensations for the realized variation in positive
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and negative market returns. The good and bad variance premia contain distinct information

about future excess returns on equity and corporate bonds, especially at long horizons of 1 and

2 years. Indeed, in multivariate predictability regressions, the predictive coefficients on the good

variance premium are negative, while they are all positive for the bad variance premium, and the

R2s reach about 10% for equity and 20% for corporate bond returns. In contrast, the predictive

coefficients on the variance premium itself are insignificant at these horizons, and its predictive

power is essentially zero.

To rationalize the empirical evidence in the data, we consider a model that features upward

(good) and downward (bad) equity jumps with time-varying intensities. We show that when

good (bad) jump shocks carry a positive (negative) market price of risk, the equity premium is

increasing in good and bad jump intensities, while the variance premium is decreasing in good and

increasing in bad jump intensity. Therefore, the good variance premium predicts future returns

with a negative sign, while the bad variance premium predicts them with a positive sign, consistent

with the data. We quantify the magnitudes of these effects by imposing the restrictions of a general

equilibrium model. Using numerical calibrations, we show that the model can capture the novel

evidence of return predictability by the variance premium measures, alongside standard aggregate

asset pricing and macroeconomic moments.

There are several extensions of our paper that would be interesting to address in future work.

On the empirical side, we consider the predictability of the U.S. equity and corporate bond re-

turns. It would be useful to extend our analysis for international asset returns, as in Bollerslev,

Marrone, Xu, and Zhou (2014), and for other asset classes, such as government bonds, currencies,

and commodities. Further, while our variance premium measures capture volatility risks in aggre-

gate equity markets, one can use similar methods to compute the good and bad variance premia in

other asset markets.26 On the model side, our specification can be extended to allow for separate

sources of risk in the expected growth or consumption volatility, as in Bansal and Yaron (2004),

including Poisson jump risk as in Drechsler and Yaron (2011), or time-varying skew-normal risk as

26See Londono and Zhou (2014) and Prokopczuk and Wese Simen (2014), who compute the total variance
premium for currency and commodity markets, respectively.
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in Colacito, Ghysels, and Meng (2013). One can also enrich the model by separating volatility and

jump risk factors, consistent with the findings in Santa-Clara and Yan (2010), and incorporating

additional volatility-related factors, such as the long-run volatility (see Duffie, Pan, and Singleton

(2000)), or volatility of volatility (see Bollerslev, Tauchen, and Zhou (2009)). Further, for sim-

plicity, the two jump intensities are assumed to be uncorrelated in our framework. In the data,

the good and bad volatility of returns have a more complex dynamic dependency, as discussed in

Patton and Sheppard (2013), and the model can be extended to take this into account. Finally,

we entertain the endowment economy, in which intensities of the good and bad jumps are specified

exogenously. It would be interesting to provide a deeper foundation for jump and volatility risks

using more primitive economic models with production and investment.
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Appendix

A Empirical analysis

A.1 Good and bad implied variances

Let S be the price of the underlying security at time t+1 and H(S) a twice differentiable payoff function.

Bakshi, Kapadia, and Madan (2003) show that H(S) can be spanned as

H(S) = H(S̄) + (P − S̄)HP (S̄) +

∫ ∞

S̄
HSS(K) (S − K)+ dK +

∫ S̄

0
HSS(K) (K − S)+ dK, (A.1)

where subscripts represent derivatives and S̄ is a constant. The payoff of the volatility contract is given

by H(S) =
(

log
(

S
St

))2
. The definition of the volatility contract payoff along with (A.1) implies

H(S) =

∫ ∞

St

2(1 − log(K/St))

K2
(S − K)+ dK +

∫ S̄

0

2(1 + log(St/K))

K2
(K − S)+ dK. (A.2)

Note that the price of the volatility contract is ivt = e−r
f
t E

Q
t [H(S)], while the price of a call option is

C(t, t + 1, K) = e−r
f
t E

Q
t

[
(S − K)+

]
and the put price is P (t, t + 1, K) = e−r

f
t E

Q
t

[
(K − S)+

]
. Equation

(A.2) along with these definitions implies (2).

Now consider the “good” volatility contract with price ivg
t = e−r

f
t E

Q
t

[

r2
t+1 I(rt+1 > 0)

]

. The payoff

can be written as Hg(S) =
(

log
(

S
St

))2
I(S > St). Although HSS is not continuous at S = St, we can

write

Hg(S) = lim
T ↓St

∫ ∞

T
HSS(K) (S − K)+ dK + lim

T ↑St

∫ T

0
HSS(K) (K − S)+ dK,

=

∫ ∞

St

2

S2

(

1 − log

(
S

St

))

(S − K)+ dK.

(A.3)

The computation of good implied variance in (5) follows from (A.3) and the definition of a call option.

The computation is analogous for implied bad variance.

A.2 Bootstrap approach

To bootstrap standard errors, we first standardize excess returns, rt+1 − rf
t , by subtracting the uncon-

ditional mean and dividing by ivt. We draw a random sample with replacement from this distribution

with the same length as the return series in the data. Simulated returns then correspond to standardized
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returns scaled up by the observations of ivt. We run the return predictability regressions in the simulated

samples on the variance premium measures in the data. We repeat this procedure 10,000 times to con-

struct a small-sample distribution of regression coefficients, which we use to compute standard errors and

p-values. In this approach, the time series of predictor variables, as well as heteroskedasticity of returns,

remain the same as in the data, while there is no predictability of returns under the null.

We further consider the joint evidence for return predictability across multiple equity portfolios,

namely, ten portfolios formed on size and book-to-market and ten industry portfolios from Kenneth

French’s website. Following MacKinnon (2009), we compute p-values that summarize the statistical

significance of portfolio return predictability within each of the three groups. We standardize all excess

portfolio returns by their unconditional mean and ivt as described above. From the standardized sample,

we draw a random sample of ten returns with replacement with the same length as in the data, and

we compute simulated returns using the unconditional average portfolio return and the time series of

ivt. This preserves the dependence of portfolio returns in the cross-section and the heteroskedasticity in

the time series. For a predictor variable that predicts aggregate equity market returns with a positive

(negative) sign, we choose the maximum (minimum) of the ten predictive coefficients as the critical

value. Following this approach, we construct 10,000 cross-sections of returns that have the same size as

the original data and create a small-sample distribution of minimum (maximum) coefficient values. The

p-value is the probability that the minimum (maximum) predictive coefficient is smaller (larger) than its

empirical counterpart in simulated samples.

B Model

B.1 No-arbitrage framework

B.1.1 Equity premium

The no-arbitrage assumption implies

St = Et−

[∫ ∞

t

πs

πt
Ds ds

]

, (B.1)
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where Dt denotes the dividend. Multiplying both sides of (B.1) by πt, we have

πtSt = Et−

[∫ ∞

t
πsDs ds

]

, (B.2)

which implies

πtSt = Et−

[

πsSs +

∫ s

t
πuDu du

]

(B.3)

for s > t. Adding
∫ t

0 πuDu du to both sides of (B.3), we have

πtSt +

∫ t

0
πuDu du = Et−

[

πsSs +

∫ s

0
πuDu du

]

, (B.4)

which implies that πtSt +
∫ t

0 πuDu du is a martingale. Therefore, the sum of the drift and instantaneous

mean of the jump term in d(πtSt)
πtSt

+ Dt

St
dt is zero.

Applying Ito’s lemma using the stochastic differential equations (11) and (13), the mean of d(πtSt)
πtSt

+

Dt

St
dt becomes

0 = µS,t + µπ,t −
∑

i=g,b

βσ,iΛσ,iσ
2
i,λλi,t +

Dt

St

+
∑

i=g,b

E

[

e(βi,c−Λi,c)Zi,c,t − 1
]

λi,t +
∑

i=g,b

E

[

e(βi,λ−Λi,λ)Zi,λ,t − 1
]

λi,t.

(B.5)

We can define the instantaneous expected return as

re
t = µS,t +

Dt

St

+
∑

i=g,b

Et

[

eβi,cZi,c,t − 1
]

λi,t +
∑

i=g,b

Et

[

eβi,λZi,λ,t − 1
]

λi,t. (B.6)

The instantaneous risk-free rate in the economy is given by

rf
t = −µπ,t −

∑

i=g,b

E

[

e−Λi,cZi,c,t + e−Λi,λZi,λ,t − 2
]

λi,t. (B.7)

Combining the solutions to the risk-free rate above and the expected return in (B.6) leads to the

expression for the equity premium.
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B.1.2 Quadratic variation

Here, we examine the properties of quadratic variation from t to t + τ , which is defined as

Vt,t+τ =

∫ t+τ

t
d[log S, log S]s

=
∑

i=g,b

β2
i,σσ2

i,λ

∫ t+τ

t
λi,s ds +

∑

i=g,b

β2
i,cZ

2
i,c,t

∫ t+τ

t
dNi,s +

∑

i=g,b

β2
i,λZ2

i,λ,t

∫ t+τ

t
dNλ

i,s.

(B.8)

The expected quadratic variation from t to t + τ is then given by

Et− [Vt,t+τ ] =
∑

i=g,b

(

β2
i,σσ2

i,λ + β2
i,c E

[

Z2
i,c,t

]

+ β2
i,λ E

[

Z2
i,λ,t

])

Et−

[∫ t+τ

t
λi,s ds

]

. (B.9)

From (B.9), we can see that it is crucial to compute the quantity Et

[∫ t+τ
t λi,s ds

]

. Nowotny (2011) and

Li and Zinna (2014) show that the conditional expectation Et [λi,s] is given by

Et− [λi,s] = e−(κi−E[Zi,λ,t])(s−t) λt +
(

1 − e−(κi−E[Zi,λ,t])(s−t)
) κiλ̄i

κi − E[Zi,λ,t]
, (B.10)

where s > t. We can compute the integral of Et[λi,s] from t to t + τ , and obtain

Et−

[∫ t+τ

t
λi,s ds

]

=
κiλ̄iτ

κi − E[Zi,λ,t]
−

κiλ̄i

(

1 − e−(κi−E[Zi,λ,t])τ
)

(κi − E[Zi,λ,t])
2 + λi,t

1 − e−(κi−E[Zi,λ,t])τ

κi − E[Zi,λ,t]
, (B.11)

which is affine in λi,t. For small values of τ , we can use the approximation 1 − e−(κi−E[Zi,λ,t])τ ≈

(κi − E[Zi,λ,t]) τ , which implies

Et−

[∫ t+τ

t
λi,s ds

]

≈ λi,t τ. (B.12)

Using the approximation, the expected quadratic variation in (B.9) becomes

Et− [Vt,t+τ ] ≈
∑

i=g,b

(

β2
i,σσ2

i,λ + β2
i,c E

[

Z2
i,c,t

]

+ β2
i,λ E

[

Z2
i,λ,t

])

λi,t τ, (B.13)

which is equal to Et [Vt,t+dt] in (19) if τ = 1.

Note that this approximation has two dimensions. The first is the elimination of the nonlinearity in τ

for small values of τ . The second is the elimination of the so-called “drift difference” in the computation

of the variance premium that arises from the differences in the mean reversion parameter κi and E[Zi,λ,t],

leading to different levels of persistence under the risk-neutral and physical measures (Drechsler and Yaron

(2011)). We compute the exact and approximate values of Et−

[∫ t+τ
t λi,s ds

]

in our monthly calibration

and find that the approximation is highly accurate for τ = 1 (which is the relevant case for this paper),
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while the discrepancy between the exact and approximate values starts to increase for higher values of τ .

B.2 General equilibrium

B.2.1 The value function and the state-price density

The conjecture in equation (31), along with the definition of the value function in (29) and (30), implies

f(C, V ) = −βV (a + bgλg + bbλb). (B.14)

Furthermore, Duffie and Epstein (1992) show that, under the optimal consumption path, Vt+
∫ t

0 f(Cs, Vs)ds

is a martingale, which implies Et [dVt + f(Ct, Vt)] = 0. From the process of the value function that can

be computed applying Ito’s lemma to Vt = V (Ct, λg,t, λb,t), we obtain27

0 = (1 − γ)µ + bgκgλ̄g + bbκbλ̄b − βa
︸ ︷︷ ︸

=0

+ λg,t

[

−bgκg +
1

2
b2

gσ2
g,λ + E

[

e(1−γ)Zg,c,t − 1
]

+ E

[

ebgZg,λ,t − 1
]

− βbg

]

︸ ︷︷ ︸

=0

+ λb,t

[

−bbκb +
1

2
b2

bσ2
b,λ + E

[

e−(1−γ)Zg,b,t − 1
]

+ E

[

ebbZb,λ,t − 1
]

− βbb

]

︸ ︷︷ ︸

=0

.

(B.15)

It follows from (B.15) that a, bg, and bb solve the equations

a =
1

β

(

(1 − γ)µ + bgκgλ̄g + bbκbλ̄b

)

,

0 =
1

2
b2

gσ2
g,λ − bg(κg + β) + E

[

ebgZg,λ,t − 1
]

+ E

[

e(1−γ)Zg,c,t − 1
]

,

0 =
1

2
b2

bσ2
b,λ − bb(κb + β) + E

[

ebbZb,λ,t − 1
]

+ E

[

e−(1−γ)Zb,c,t − 1
]

.

(B.16)

The equations for bg and bb both have two solutions. We choose the solution that satisfies bi = 0 if

Zi,c,t = 0 for i = g, b. This implies that we choose the negative solution for bg for γ > 1. Both solutions

for bb are positive, and the smaller one satisfies bi = 0 if Zi,c,t = 0 for i = g, b. Note that, for γ = 1, this

corresponds to bg = bb = 0.

We can do a second-order approximation of the exponential function that brings the equation (B.16)

27See Seo and Wachter (2015) for further details.
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into quadratic form:

ebiZi,λ,t ≈ 1 + bgZi,λ,t +
1

2
b2

gZ2
i,λ,t. (B.17)

Solving the quadratic equation results in28

bg ≈
κg − E [Zg,λ,t] + β

E

[

Z2
g,λ,t

]

+ σ2
g,λ

−

√
√
√
√
√

(κg − E [Zg,λ,t] + β)2

(

E

[

Z2
g,λ,t

]

+ σ2
g,λ

)2 − 2
E
[
e(1−γ)Zg,c,t

]
− 1

E

[

Z2
g,λ,t

]

+ σ2
g,λ

,

bb ≈
κb − E [Zb,λ,t] + β

E

[

Z2
b,λ,t

]

+ σ2
b,λ

−

√
√
√
√
√
√

(κb − E [Zb,λ,t] + β)2

(

E

[

Z2
b,λ,t

]

+ σ2
b,λ

)2 − 2
E

[

e−(1−γ)Zb,c,t

]

− 1

E

[

Z2
b,λ,t

]

+ σ2
b,λ

.

(B.18)

As economic intuition suggests, we choose the root of the quadratic equation that satisfies bi = 0 if

Zi,c,t = 0 for i = g, b is analogous to the exact solutions to (B.16).

Note that β > 0 and κi −E [Zi,λ,t] > 0 are standing assumptions. We assume that the terms inside the

square roots are nonnegative so that a real solution exists. This places a joint restriction on preference

parameters and the riskiness in the economy. For example, a higher value for γ and a lower value for κi

make it harder to satisfy this constraint, restricting the risk aversion of the representative agent and the

persistence of state variables.

The drift of the state-price density in (33) is given by

µπ,t = −β − µ − λg,t

(

E

[

e(1−γ)Zg,c,t − 1
]

+ E

[

ebgZg,λ,t − 1
])

− λb,t

(

E

[

e−(1−γ)Zg,c,t − 1
]

+ E

[

ebgZg,λ,t − 1
])

.

(B.19)

B.2.2 Price of equity

Let Ht,s−t be the time-t price of a claim on the dividend at s:

Ht,s−t = H(Dt, λg,t, λb,t, s − t) = Et−

[
πs

πt
Ds

]

, (B.20)

so that the price of aggregate equity becomes

St =

∫ ∞

0
Ht,τ dτ. (B.21)

28We use the exact solutions for a, bg, and bb in the numerical simulations and verify that the approximate values
deviate less than 1% from the exact values.
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Multiplying both sides of (B.20) by πt, we have πtHt,s−t = Et− [πsDs]. Conjecture that

Ht,τ = Dte
ad(τ)+bdg(τ)λg,t+bdb(τ)λb,t . (B.22)

Applying Ito’s lemma to πt and Ht,τ , we derive the process
d(πtHt,τ )

πtHt,τ
. Because πtHt,τ is a martingale, the

sum of the drift and expected jumps, which is affine in λg,t and λb,t, must be equal to zero. Setting the

constant and the coefficients on λg,t and λb,t to zero results in the following system of ordinary differential

equations (ODE) that ad(τ), bdg(τ), and bdb(τ) solve

a′
d(τ) = −β − µ + µd + κgλ̄gbdg(τ) + κbλ̄bbdb(τ),

b′
dg(τ) =

1

2
b2

dg(τ)σ2
g,λ + (bgσ2

g,λ − κg)bdg(τ)

+ E

[

e(φ−γ)Zg,c,t

]

− E

[

e(1−γ)Zg,c,t

]

+ E

[

e(bg+bdg(τ))Zg,λ,t − ebgZg,λ,t

]

,

b′
db(τ) =

1

2
b2

db(τ)σ2
b,λ + (bbσ

2
b,λ − κb)bdb(τ)

+ E

[

e−(φ−γ)Zb,c,t

]

− E

[

e−(1−γ)Zb,c,t

]

+ E

[

e(bb+bdb(τ))Zb,λ,t − ebbZb,λ,t

]

.

(B.23)

The no-arbitrage relation, Ds = Hs,0, implies the initial conditions ad(0) = 0, bdg(0) = 0, and bdb(0) = 0.

If dividends are not levered (φ = 1), then we have bdg(τ) = bdb(τ) = 0. In this case, equity is a claim

on aggregate consumption and its price only changes due to realized consumption shocks. Furthermore,

we have ad(τ) = −βτ in the case of µd = µ and φ = 1, which implies the result in Weil (1990) that the

wealth-consumption ratio is constant and equal to 1/β if the EIS is equal to one.

While we use the exact solution of this system of ODEs in (B.23) in our calibration, the follow-

ing approximation (which we verify to be numerically very accurate) is helpful to obtain closed-form

expressions:

ebdi(τ)Zi,λ,t ≈ 1 + bdi(τ)Zi,λ,t +
1

2
bdi(τ)2Z2

i,λ,t, (B.24)

where i = g, b. Plugging in (B.24) into (B.23), the ODE’s for bdg(τ), and bdb(τ) become Ricatti equations

with the following solution:

bdi(τ) =
2(1 − e−ηiτ )l0,i

2ηi − (l1,i + ηi)(1 − e−ηiτ )
, (B.25)

where

ηi =
√

l21,i − 4l0,il2,i, (B.26)
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for i = g, b.29 The terms in bdi(τ) are given by

l0,g = E

[

e(φ−γ)Zg,c,t

]

− E

[

e(1−γ)Zg,c,t

]

, l0,b = E

[

e−(φ−γ)Zb,c,t

]

− E

[

e−(1−γ)Zb,c,t

]

,

l1,g = bgσ2
g,λ − κg + E

[

ebgZg,λ,tZg,λ,t

]

, l1,b = bbσ
2
b,λ − κb + E

[

ebbZb,λ,tZb,λ,t

]

,

l2,g =
1

2

(

σ2
g,λ + E

[

ebgZg,λ,tZ2
g,λ,t

])

, l2,b =
1

2

(

σ2
b,λ + E

[

ebbZb,λ,tZ2
b,λ,t

])

.

(B.27)

The approximation preserves the property that bdg(τ) = bdb(τ) = 0 for φ = 1. Note that 1 − e−ηiτ ≤ 1. If

φ > 1, we have l0,g > 0, implying a positive numerator for bdg(τ). Furthermore, bg < 0 and κg −E[Zg,λ,t] >

0 imply l1,g < 0. Because l2,g > 0, we have ηg < |l1,g| ≤ −l1,g. This implies that the denominator of

bdg(τ) is also positive. Hence, bdg(τ) > 0 for φ > 1. An analogous argument implies bdb(τ) < 0 for φ > 1.

Equation (B.25) implies that bdg(τ) and bdb(τ) have finite limits, while a′
d(τ) converges to a negative

value, resulting in finite prices.

Finally, we use a continuous-time version of the classic Campbell and Shiller (1988) approximation as

is standard in the literature. Let G(λg,t, λb,t) denote the price-dividend ratio of equity which is given by

G(λg,t, λb,t) =
St

Dt
=

∫ ∞

0
ead(τ)+bdg(τ)λg,t+bdb(τ)λb,t dτ. (B.28)

Let gt = log(G(λg,t, λb,t)). The Taylor approximation for λ∗
g and λ∗

b implies

gt ≈ g(λ∗
g , λ∗

b) +
∂g

∂λg
(λ∗

g, λ∗
b)(λg,t − λ∗

g) +
∂g

∂λb

(λ∗
g, λ∗

b)(λb,t − λ∗
b). (B.29)

The partial derivatives of the log price-dividend ratio are given by

b∗
di =

∂g

∂λi

(λ∗
g, λ∗

b) =
1

G(λ∗
g, λ∗

b)

∫ ∞

0
bd,i(τ)ead(τ)+bdg(τ)λ∗

g+bdb(τ)λ∗

b dτ. (B.30)

This implies that the signs of b∗
di and bd,i(τ) are identical for i = g, b. We can write the log price-dividend

ratio as

g(λg,t, λb,t) = a∗
d + b∗

dgλg,t + b∗
dbλb,t, (B.31)

where

a∗
d = g(λ∗

g, λ∗
b) − b∗

dgλ∗
g − b∗

dbλ
∗
b . (B.32)

Equity price can be written as

St = Dte
a∗

d
+b∗

dg
λg,t+b∗

db
λb,t . (B.33)

29Note that the solution requires l2
1,i − 4l0,il2,i > 0.
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Applying Ito’s lemma to (B.33) implies (36), where

µS,t = µd + b∗
dgκg(λ̄g − λg,t) + b∗

dbκb(λ̄b − λb,t) +
1

2
(b∗

dg)2σ2
g,λλg,t +

1

2
(b∗

db)
2σ2

b,λλb,t. (B.34)

We set λ∗
i = E[λi,t] for i = g, b in the numerical model solution.

B.2.3 Model with power utility

We use the same solution methodology as in Section B.2.2 and find that bdg(τ) and bdb(τ) solve the

following ODEs:

b′
dg(τ) =

1

2
b2

dg(τ)σ2
g,λ − bdg(τ)κg + E

[

e(φ−γ)Zg,c,t + ebdg(τ)Zg,λ,t − 2
]

,

b′
db(τ) =

1

2
b2

db(τ)σ2
b,λ − bdb(τ)κb + E

[

e−(φ−γ)Zb,c,t + ebdb(τ)Zb,λ,t − 2
]

.

(B.35)

Using the approximation in (B.24), bdg(τ) and bdb(τ) take the form (B.25) with

l0,g = E

[

e(φ−γ)Zg,c,t

]

− 1, l0,b = E

[

e−(φ−γ)Zb,c,t

]

− 1,

l1,g = − (κg − E [Zg,λ,t]) , l1,b = − (κb − E [Zb,λ,t]) ,

l2,g =
1

2

(

σ2
g,λ + E

[

Z2
g,λ,t

])

, l2,b =
1

2

(

σ2
b,λ + E

[

Z2
b,λ,t

])

.

(B.36)

Standing assumptions imply that bdg(τ) > 0 and bdb(τ) < 0 if and only if φ > γ. Note that the

denominator in (B.25) is positive because l1,i < 0 for i = g, b for power utility. Therefore, the sign of l0,i

determines the sign of bdi(τ). If φ > γ, then l0,g > 0 and l0,b < 0. If φ < γ, then l0,g < 0 and l0,b > 0.

This is equivalent to the result in Bansal and Yaron (2004) that prices are increasing in expected

growth only if the leverage parameter is greater the inverse of EIS. For power utility, EIS is equal to 1/γ.

C Additional tables
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Table C.1: Predicting Excess Returns with Variance Premium Using Extended Spline

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.42 0.09 0.00 0.04 0.32 0.06 0.00 0.07 0.16 0.05 0.00 0.03 0.06 0.04 0.08 0.00 0.04 0.04 0.20 0.00 0.04 0.04 0.18 0.00

0.28 0.08 0.16 0.03 0.11 0.07 0.06 0.18 0.05 0.22 0.04 0.18

vp
g
t 0.22 0.28 0.78 0.04 -0.04 0.24 0.44 0.09 -0.28 0.13 0.01 0.08 -0.35 0.11 0.00 0.09 -0.32 0.09 0.00 0.09 -0.32 0.10 0.00 0.11

0.58 0.66 0.45 0.48 0.35 0.21 0.24 0.07 0.19 0.05 0.16 0.03

vpb
t 0.66 0.38 0.04 0.76 0.30 0.01 0.70 0.19 0.00 0.56 0.15 0.00 0.47 0.13 0.00 0.46 0.15 0.00

0.57 0.12 0.40 0.02 0.32 0.01 0.25 0.01 0.21 0.01 0.19 0.01

Panel B: High-Yield Bond Returns

vpt 0.26 0.10 1.00 0.05 0.07 0.05 0.90 0.00 -0.01 0.05 0.42 0.00 -0.05 0.04 0.08 0.01 -0.04 0.03 0.09 0.01 -0.04 0.03 0.08 0.01

0.14 0.95 0.08 0.81 0.06 0.45 0.03 0.06 0.03 0.04 0.02 0.03

vp
g
t -0.05 0.29 0.44 0.06 -0.47 0.15 0.00 0.11 -0.57 0.15 0.00 0.18 -0.48 0.13 0.00 0.24 -0.39 0.10 0.00 0.23 -0.35 0.09 0.00 0.26

0.30 0.44 0.23 0.01 0.18 0.00 0.12 0.00 0.10 0.00 0.09 0.00

vpb
t 0.64 0.29 0.01 0.73 0.24 0.00 0.67 0.24 0.00 0.48 0.20 0.01 0.38 0.15 0.01 0.35 0.14 0.01

0.29 0.01 0.21 0.00 0.16 0.00 0.13 0.00 0.11 0.00 0.10 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.08 0.04 0.01 0.01 -0.06 0.04 0.06 0.02 -0.03 0.02 0.07 0.01 -0.04 0.02 0.02 0.03 -0.03 0.01 0.02 0.03 -0.03 0.01 0.03 0.03

0.11 0.20 0.06 0.16 0.04 0.23 0.02 0.05 0.02 0.04 0.01 0.03

vp
g
t -0.37 0.11 0.00 0.05 -0.36 0.07 0.00 0.13 -0.26 0.08 0.00 0.15 -0.23 0.08 0.00 0.20 -0.18 0.06 0.00 0.20 -0.17 0.05 0.00 0.23

0.22 0.02 0.17 0.01 0.13 0.01 0.09 0.00 0.07 0.00 0.06 0.00

vpb
t 0.27 0.13 0.02 0.30 0.10 0.00 0.26 0.12 0.02 0.19 0.11 0.04 0.16 0.09 0.04 0.15 0.07 0.02

0.21 0.07 0.15 0.01 0.12 0.01 0.09 0.01 0.08 0.02 0.07 0.02

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. Implied variance measures are computed using a cubic spline as in the benchmark case. Moneyness levels are extended to 0-3 using the implied volatility of
the lowest (>0.85) or highest (<1.15) moneyness. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the
table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance premium vpt, and a multivariate regression
with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than
the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for
one-sided tests as described in Section 2.4.
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Table C.2: Predicting Excess Returns with Variance Premium Using Moneyness Range 0.8-1.2

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.38 0.08 0.00 0.04 0.30 0.06 0.00 0.07 0.14 0.05 0.00 0.03 0.05 0.04 0.12 0.00 0.03 0.04 0.25 0.00 0.03 0.03 0.23 0.00

0.25 0.08 0.15 0.03 0.10 0.09 0.06 0.22 0.05 0.27 0.04 0.24

vp
g
t 0.16 0.31 0.70 0.04 -0.13 0.25 0.29 0.09 -0.34 0.15 0.01 0.07 -0.38 0.13 0.00 0.07 -0.34 0.11 0.00 0.08 -0.34 0.12 0.00 0.10

0.56 0.62 0.44 0.39 0.35 0.16 0.24 0.06 0.20 0.04 0.17 0.02

vpb
t 0.63 0.36 0.04 0.77 0.28 0.00 0.67 0.18 0.00 0.52 0.15 0.00 0.44 0.13 0.00 0.44 0.15 0.00

0.55 0.12 0.38 0.02 0.30 0.01 0.23 0.01 0.21 0.02 0.19 0.01

Panel B: High-Yield Bond Returns

vpt 0.24 0.09 1.00 0.05 0.05 0.04 0.86 0.00 -0.03 0.04 0.24 0.00 -0.06 0.03 0.02 0.02 -0.05 0.03 0.03 0.02 -0.04 0.02 0.03 0.02

0.13 0.96 0.08 0.77 0.05 0.33 0.03 0.02 0.02 0.02 0.02 0.01

vp
g
t -0.09 0.32 0.39 0.06 -0.50 0.19 0.00 0.09 -0.58 0.19 0.00 0.15 -0.49 0.17 0.00 0.21 -0.39 0.13 0.00 0.20 -0.36 0.12 0.00 0.23

0.29 0.39 0.23 0.01 0.18 0.00 0.13 0.00 0.10 0.00 0.09 0.00

vpb
t 0.59 0.30 0.03 0.66 0.26 0.01 0.59 0.26 0.01 0.42 0.21 0.03 0.33 0.17 0.03 0.31 0.16 0.03

0.29 0.01 0.20 0.00 0.16 0.00 0.12 0.00 0.11 0.00 0.10 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.08 0.04 0.01 0.01 -0.06 0.03 0.03 0.02 -0.03 0.02 0.02 0.01 -0.04 0.02 0.00 0.04 -0.03 0.01 0.00 0.04 -0.03 0.01 0.01 0.04

0.09 0.17 0.06 0.13 0.04 0.17 0.02 0.03 0.02 0.02 0.01 0.01

vp
g
t -0.40 0.11 0.00 0.05 -0.38 0.08 0.00 0.13 -0.28 0.10 0.00 0.14 -0.23 0.10 0.01 0.18 -0.19 0.08 0.01 0.18 -0.17 0.07 0.00 0.21

0.21 0.01 0.17 0.00 0.13 0.01 0.09 0.00 0.08 0.00 0.07 0.00

vpb
t 0.28 0.12 0.01 0.29 0.11 0.00 0.23 0.13 0.04 0.17 0.12 0.08 0.14 0.10 0.09 0.13 0.08 0.05

0.21 0.07 0.15 0.01 0.11 0.01 0.09 0.02 0.08 0.03 0.07 0.03

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. Implied variance measures are computed using options in the moneyness range from 0.8 to 1.2. The dependent variable is the annualized log excess return
over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability
regression with the variance premium vpt, and a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first
line reports the Newey-West standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the
p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table C.3: Predicting Excess Returns with Variance Premium Using Moneyness Range 0.9-1.1

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.30 0.06 0.00 0.03 0.21 0.04 0.00 0.04 0.07 0.03 0.00 0.01 0.01 0.03 0.41 0.00 -0.01 0.02 0.60 0.00 -0.01 0.02 0.68 0.00

0.20 0.08 0.13 0.07 0.10 0.22 0.06 0.44 0.04 0.54 0.04 0.58

vp
g
t -0.04 0.63 0.47 0.03 -0.35 0.55 0.26 0.05 -0.53 0.33 0.06 0.02 -0.71 0.19 0.00 0.05 -0.60 0.17 0.00 0.05 -0.58 0.22 0.00 0.06

0.78 0.48 0.54 0.26 0.44 0.11 0.34 0.02 0.30 0.02 0.27 0.02

vpb
t 0.65 0.63 0.15 0.80 0.58 0.08 0.70 0.36 0.03 0.75 0.20 0.00 0.62 0.19 0.00 0.59 0.23 0.00

0.81 0.21 0.48 0.04 0.38 0.03 0.32 0.01 0.29 0.02 0.27 0.01

Panel B: High-Yield Bond Returns

vpt 0.18 0.09 0.97 0.03 -0.01 0.02 0.27 0.00 -0.08 0.02 0.00 0.02 -0.09 0.02 0.00 0.07 -0.07 0.01 0.00 0.07 -0.06 0.01 0.00 0.07

0.10 0.94 0.07 0.45 0.05 0.05 0.03 0.00 0.02 0.00 0.02 0.00

vp
g
t -0.67 0.57 0.12 0.06 -0.75 0.35 0.02 0.04 -0.81 0.32 0.01 0.10 -0.69 0.24 0.00 0.17 -0.53 0.21 0.00 0.16 -0.51 0.21 0.01 0.19

0.40 0.04 0.28 0.00 0.23 0.00 0.18 0.00 0.16 0.00 0.14 0.00

vpb
t 1.06 0.52 0.02 0.75 0.36 0.02 0.69 0.33 0.02 0.53 0.24 0.01 0.41 0.21 0.02 0.40 0.21 0.03

0.42 0.01 0.25 0.00 0.20 0.00 0.17 0.00 0.15 0.00 0.14 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.1 0.02 0.00 0.03 -0.08 0.01 0.00 0.06 -0.05 0.01 0.00 0.05 -0.06 0.01 0.00 0.10 -0.04 0.01 0.00 0.10 -0.04 0.01 0.00 0.09

0.08 0.07 0.05 0.03 0.04 0.06 0.02 0.00 0.02 0.00 0.01 0.00

vp
g
t -0.50 0.28 0.04 0.04 -0.50 0.15 0.00 0.11 -0.37 0.16 0.01 0.11 -0.28 0.15 0.04 0.15 -0.22 0.13 0.05 0.15 -0.23 0.12 0.03 0.18

0.29 0.03 0.20 0.00 0.17 0.01 0.13 0.01 0.11 0.02 0.10 0.01

vpb
t 0.32 0.28 0.13 0.36 0.16 0.01 0.28 0.16 0.04 0.18 0.15 0.12 0.14 0.13 0.15 0.16 0.12 0.09

0.31 0.13 0.18 0.02 0.15 0.02 0.12 0.06 0.11 0.09 0.10 0.05

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. Implied variance measures are computed using options in the moneyness range from 0.9 to 1.1. The dependent variable is the annualized log excess return
over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability
regression with the variance premium vpt, and a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first
line reports the Newey-West standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the
p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table C.4: Predicting Excess Returns with Variance Premium Using E-Mini Futures

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.37 0.08 0.00 0.04 0.27 0.05 0.00 0.05 0.12 0.04 0.00 0.01 0.03 0.04 0.20 0.00 0.01 0.04 0.37 0.00 0.01 0.03 0.36 0.00

0.24 0.08 0.16 0.05 0.11 0.14 0.06 0.30 0.05 0.39 0.04 0.37

vp
g
t -0.06 0.49 0.45 0.04 -0.30 0.41 0.24 0.07 -0.53 0.22 0.01 0.07 -0.64 0.15 0.00 0.11 -0.58 0.12 0.00 0.12 -0.59 0.15 0.00 0.16

0.63 0.48 0.49 0.28 0.40 0.09 0.29 0.01 0.24 0.01 0.21 0.00

vpb
t 0.82 0.51 0.06 0.86 0.45 0.03 0.81 0.26 0.00 0.75 0.16 0.00 0.64 0.15 0.00 0.65 0.17 0.00

0.65 0.10 0.43 0.02 0.34 0.01 0.27 0.00 0.24 0.00 0.22 0.00

Panel B: High-Yield Bond Returns

vpt 0.23 0.09 0.99 0.04 0.03 0.04 0.76 0.00 -0.05 0.03 0.07 0.00 -0.07 0.03 0.01 0.03 -0.06 0.02 0.01 0.03 -0.05 0.02 0.00 0.03

0.13 0.95 0.08 0.65 0.06 0.20 0.03 0.01 0.03 0.01 0.02 0.00

vp
g
t -0.51 0.41 0.11 0.08 -0.70 0.23 0.00 0.08 -0.80 0.25 0.00 0.16 -0.66 0.22 0.00 0.22 -0.52 0.17 0.00 0.21 -0.47 0.16 0.00 0.24

0.34 0.05 0.27 0.00 0.21 0.00 0.15 0.00 0.13 0.00 0.11 0.00

vpb
t 1.02 0.37 0.00 0.80 0.28 0.00 0.76 0.27 0.00 0.55 0.21 0.00 0.43 0.17 0.01 0.40 0.16 0.01

0.35 0.00 0.23 0.00 0.18 0.00 0.14 0.00 0.13 0.00 0.12 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.10 0.03 0.00 0.02 -0.08 0.03 0.00 0.04 -0.04 0.01 0.00 0.02 -0.05 0.02 0.00 0.05 -0.04 0.01 0.00 0.05 -0.03 0.01 0.00 0.05

0.09 0.10 0.06 0.07 0.04 0.12 0.02 0.01 0.02 0.01 0.01 0.01

vp
g
t -0.46 0.18 0.01 0.05 -0.44 0.12 0.00 0.12 -0.35 0.13 0.00 0.13 -0.28 0.13 0.02 0.17 -0.23 0.11 0.02 0.17 -0.21 0.09 0.01 0.20

0.23 0.01 0.18 0.00 0.15 0.00 0.11 0.00 0.09 0.00 0.08 0.00

vpb
t 0.28 0.18 0.06 0.31 0.13 0.01 0.28 0.14 0.02 0.20 0.13 0.06 0.17 0.11 0.06 0.16 0.09 0.04

0.24 0.10 0.16 0.01 0.13 0.01 0.10 0.02 0.09 0.02 0.08 0.02

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from October
1997 to August 2014. Realized variance measures are computed using 5-minute frequency data for S&P 500 E-Mini futures prices. The dependent variable is the annualized log
excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate
predictability regression with the variance premium vpt, and a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each
coefficient, the first line reports the Newey-West standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second line reports the
standard error and the p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table C.5: Predicting Excess Returns with Variance Premium Using Expected Variance

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.42 0.15 0.00 0.08 0.25 0.04 0.00 0.07 0.20 0.03 0.00 0.08 0.06 0.03 0.01 0.01 0.03 0.03 0.11 0.00 0.03 0.02 0.06 0.00

0.16 0.01 0.13 0.04 0.08 0.01 0.05 0.11 0.04 0.20 0.03 0.14

vp
g
t -0.57 0.63 0.18 0.10 -0.45 0.46 0.16 0.10 -0.48 0.21 0.01 0.14 -0.48 0.17 0.00 0.08 -0.48 0.14 0.00 0.09 -0.46 0.15 0.00 0.11

0.68 0.21 0.52 0.20 0.42 0.12 0.30 0.05 0.25 0.03 0.22 0.02

vpb
t 1.35 0.61 0.01 0.91 0.40 0.01 0.84 0.18 0.00 0.58 0.16 0.00 0.51 0.14 0.00 0.50 0.15 0.00

0.61 0.01 0.42 0.01 0.33 0.00 0.24 0.01 0.21 0.01 0.19 0.00

Panel B: High-Yield Bond Returns

vpt 0.41 0.07 1.00 0.23 0.17 0.03 1.00 0.08 0.08 0.02 1.00 0.03 -0.01 0.02 0.25 0.00 -0.02 0.01 0.10 0.00 -0.02 0.01 0.07 0.00

0.08 1.00 0.07 0.99 0.04 0.97 0.03 0.34 0.02 0.16 0.02 0.12

vp
g
t 0.14 0.39 0.64 0.23 -0.54 0.25 0.01 0.17 -0.63 0.23 0.00 0.17 -0.56 0.21 0.00 0.17 -0.48 0.17 0.00 0.19 -0.44 0.15 0.00 0.21

0.35 0.67 0.27 0.01 0.22 0.00 0.16 0.00 0.13 0.00 0.11 0.00

vpb
t 0.67 0.29 0.01 0.85 0.20 0.00 0.76 0.23 0.00 0.51 0.21 0.01 0.42 0.17 0.01 0.38 0.16 0.01

0.31 0.01 0.22 0.00 0.17 0.00 0.13 0.00 0.11 0.00 0.10 0.00

Panel C: Investment-Grade Bond Returns

vpt 0.13 0.05 1.00 0.06 -0.03 0.01 0.02 0.00 0.00 0.01 0.53 0.00 -0.03 0.01 0.00 0.03 -0.02 0.01 0.00 0.02 -0.02 0.01 0.00 0.03

0.06 0.97 0.05 0.27 0.03 0.51 0.02 0.05 0.01 0.05 0.01 0.02

vp
g
t -0.24 0.17 0.08 0.09 -0.44 0.12 0.00 0.10 -0.29 0.13 0.01 0.10 -0.27 0.12 0.02 0.15 -0.22 0.10 0.02 0.15 -0.21 0.09 0.01 0.19

0.25 0.13 0.20 0.01 0.16 0.02 0.11 0.00 0.10 0.01 0.08 0.00

vpb
t 0.48 0.17 0.00 0.36 0.11 0.00 0.27 0.13 0.02 0.20 0.12 0.05 0.17 0.11 0.06 0.15 0.09 0.04

0.23 0.01 0.16 0.01 0.12 0.01 0.09 0.01 0.08 0.01 0.07 0.01

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. The variance premia are computed using predicted values from the 12-month rolling regressions of the corresponding realized variance measure on lagged
good and bad implied and realized variances. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table
shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance premium vpt, and a multivariate regression
with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than
the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for
one-sided tests as described in Section 2.4.
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Table C.6: Predicting Excess Returns with Variance Premium and Implied Skewness

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vp
g
t -0.02 0.44 0.49 0.03 -0.38 0.37 0.15 0.07 -0.60 0.25 0.01 0.06 -0.71 0.20 0.00 0.10 -0.57 0.17 0.00 0.08 -0.53 0.19 0.00 0.10

0.64 0.51 0.49 0.22 0.39 0.06 0.29 0.01 0.26 0.01 0.23 0.01

vpb
t 0.74 0.48 0.06 0.94 0.42 0.01 0.87 0.28 0.00 0.81 0.20 0.00 0.63 0.18 0.00 0.59 0.21 0.00

0.67 0.13 0.45 0.02 0.36 0.01 0.30 0.00 0.27 0.01 0.25 0.01

skewt -2.79 8.27 0.37 -5.25 7.95 0.25 -6.68 7.09 0.17 -9.91 5.91 0.05 -5.74 6.20 0.18 -3.24 5.50 0.28

8.68 0.37 7.40 0.23 7.25 0.17 6.66 0.07 5.99 0.17 5.50 0.28

Panel B: High-Yield Bond Returns

vp
g
t -0.35 0.36 0.17 0.06 -0.63 0.22 0.00 0.08 -0.69 0.22 0.00 0.14 -0.57 0.18 0.00 0.21 -0.41 0.14 0.00 0.23 -0.38 0.14 0.00 0.27

0.33 0.13 0.25 0.00 0.20 0.00 0.15 0.00 0.14 0.00 0.12 0.00

vpb
t 0.85 0.35 0.01 0.75 0.26 0.00 0.67 0.26 0.00 0.48 0.20 0.01 0.35 0.16 0.02 0.33 0.16 0.02

0.35 0.01 0.23 0.00 0.19 0.00 0.16 0.00 0.14 0.01 0.13 0.01

skewt 0.45 5.24 0.53 2.57 5.55 0.68 2.86 4.24 0.75 2.39 3.46 0.76 4.64 3.49 0.91 4.50 2.99 0.93

4.46 0.55 3.79 0.77 3.71 0.79 3.42 0.77 3.07 0.94 2.81 0.95

Panel C: Investment-Grade Bond Returns

vp
g
t -0.42 0.19 0.01 0.04 -0.43 0.11 0.00 0.12 -0.31 0.12 0.00 0.14 -0.22 0.11 0.02 0.22 -0.15 0.09 0.04 0.27 -0.15 0.08 0.02 0.31

0.25 0.03 0.18 0.00 0.15 0.01 0.11 0.02 0.10 0.05 0.09 0.04

vpb
t 0.28 0.19 0.08 0.33 0.13 0.00 0.26 0.13 0.03 0.15 0.12 0.10 0.10 0.10 0.15 0.12 0.09 0.09

0.26 0.12 0.17 0.02 0.13 0.02 0.11 0.08 0.10 0.14 0.09 0.10

skewt 1.45 3.64 0.65 0.87 2.76 0.62 1.75 2.14 0.79 3.21 1.74 0.97 4.18 1.70 0.99 3.49 1.44 0.99

3.25 0.71 2.76 0.67 2.71 0.78 2.49 0.92 2.23 0.98 2.05 0.96

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient
(Coef), the standard errors (SE), and p-values for a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , and risk-neutral skewness, skew, as predictor
variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second
line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table C.7: Predicting Excess Returns with Variance Premium and Skewness Risk Premium

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vp
g
t -0.01 0.43 0.49 0.03 -0.31 0.36 0.19 0.07 -0.49 0.22 0.01 0.05 -0.56 0.17 0.00 0.07 -0.50 0.15 0.00 0.08 -0.50 0.17 0.00 0.10

0.62 0.50 0.49 0.26 0.40 0.11 0.30 0.03 0.26 0.02 0.23 0.01

vpb
t 0.73 0.49 0.07 0.88 0.42 0.02 0.76 0.27 0.00 0.66 0.19 0.00 0.56 0.17 0.00 0.56 0.19 0.00

0.65 0.13 0.44 0.02 0.35 0.01 0.29 0.01 0.26 0.01 0.24 0.01

srpt -2.46 1.96 0.10 -2.08 1.71 0.11 -1.09 1.70 0.26 -1.86 1.45 0.10 -1.69 1.15 0.07 -1.54 0.95 0.05

3.00 0.21 2.05 0.15 1.68 0.25 1.48 0.10 1.28 0.09 1.71 0.18

Panel B: High-Yield Bond Returns

vp
g
t -0.37 0.39 0.17 0.06 -0.69 0.24 0.00 0.07 -0.73 0.24 0.00 0.14 -0.61 0.20 0.00 0.20 -0.49 0.16 0.00 0.20 -0.45 0.15 0.00 0.23

0.33 0.11 0.26 0.00 0.21 0.00 0.16 0.00 0.13 0.00 0.12 0.00

vpb
t 0.86 0.37 0.01 0.80 0.30 0.00 0.71 0.28 0.01 0.52 0.22 0.01 0.42 0.18 0.01 0.40 0.17 0.01

0.34 0.01 0.23 0.00 0.18 0.00 0.15 0.00 0.14 0.00 0.13 0.00

srpt -0.39 1.25 0.38 -0.16 1.29 0.45 0.77 0.99 0.78 0.30 0.83 0.64 0.39 0.74 0.70 0.29 0.66 0.67

1.57 0.43 1.07 0.46 0.88 0.82 0.77 0.66 0.67 0.73 0.89 0.64

4.46 0.55 3.79 0.77 3.71 0.79 3.42 0.77 3.07 0.94 2.81 0.95

Panel C: Investment-Grade Bond Returns

vp
g
t -0.44 0.18 0.01 0.04 -0.45 0.11 0.00 0.12 -0.33 0.12 0.00 0.13 -0.27 0.12 0.01 0.18 -0.22 0.10 0.01 0.18 -0.21 0.08 0.01 0.22

0.24 0.02 0.18 0.00 0.15 0.01 0.11 0.00 0.10 0.01 0.09 0.01

vpb
t 0.30 0.18 0.05 0.35 0.13 0.00 0.28 0.14 0.02 0.20 0.13 0.06 0.17 0.11 0.07 0.17 0.09 0.04

0.25 0.09 0.16 0.01 0.13 0.01 0.11 0.03 0.10 0.04 0.09 0.03

srpt 0.44 0.79 0.71 -0.09 0.62 0.44 0.56 0.51 0.86 0.45 0.49 0.82 0.42 0.50 0.80 0.25 0.44 0.72

1.12 0.68 0.77 0.49 0.63 0.84 0.55 0.82 0.48 0.84 0.64 0.68

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient
(Coef), the standard errors (SE), and p-values for a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , and the difference between risk-neutral and
realized skewness measures, srp, as predictor variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than the forecast horizon
h, and the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for one-sided tests as
described in Section 2.4.
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Figure 1: Implied Variance
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This figure shows the time series of implied variance measures from January 1996 to August 2014.
The top panel plots the total implied variance, and the bottom panel depicts good (solid line)
and bad (dashed line) implied variances. Measures of implied variance are in units of volatility in
percent squared divided by 12.
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Figure 2: Realized Variance
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This figure shows the time series of realized variance measures from January 1996 to August 2014.
The top panel plots the total realized variance, and the bottom panel depicts good (solid line)
and bad (dashed line) realized variances. Measures of realized variance are in units of volatility in
percent squared divided by 12.
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Figure 3: Variance Premium
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This figure shows the time series of variance premium measures from January 1996 to August 2014.
The top panel plots the total variance premium, and the bottom panel depicts good (solid line)
and bad (dashed line) variance premia. Measures of variance premium are equal to the difference
between the corresponding implied and realized variance measures.
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Figure 4: Predicted 1-Year Excess Returns in the Data
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This figure plots the predicted one-year excess aggregate equity returns implied by the predic-
tive regressions. The solid line (ER1) corresponds to a univariate specification using the total
variance premium. The dotted line (ER2) corresponds to a multivariate specification using the
good and bad variance premia jointly. The dashed line (ER3) corresponds to the multivariate
constrained predictability regression using the good and bad variance premia. The values are in
annual percentage terms.
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Figure 5: Predicted Excess Returns in the Data and Equity Premium in the Model
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This figure plots the predicted one-year excess aggregate equity returns implied by the constrained
regression on the good and bad variance premia (data) and the equity premium implied by the
model given the observed good and bad variance premia (model). The values are in annual
percentage terms.
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Table 1: Summary Statistics for Variance Variables

Mean SD AR(1)

Panel A: Full Sample

rvg
t 16.19 25.08 0.62

ivg
t 13.59 10.74 0.81

vpg
t -2.60 17.83 0.35

rvb
t 16.39 26.64 0.57

ivb
t 25.82 19.06 0.81

vpb
t 9.43 16.20 0.16

rvt 32.58 51.47 0.60

ivt 39.41 29.60 0.81

vpt 6.83 32.87 0.24

Panel B: Excluding the Crisis

rvg
t 12.80 12.12 0.57

ivg
t 12.00 7.63 0.76

vpg
t -0.79 8.39 0.02

rvb
t 12.76 12.86 0.54

ivb
t 23.04 14.04 0.75

vpb
t 10.28 8.97 0.14

rvt 25.56 24.51 0.58

ivt 35.05 21.37 0.75

vpt 9.49 15.58 -0.04

This table shows the summary statistics for realized and implied variance measures, variance
premium, and their good and bad components. Panel A presents the results for the benchmark
sample from January 1996 to August 2014. Panel B omits the Great Recession period (from
December 2007 to June 2009). Measures of implied variance are in units of volatility in percent
squared divided by 12.
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Table 2: Correlation Matrix of Variance Variables

ivg
t rvg

t vpg
t ivb

t rvb
t vpb

t ivt rvt

Panel A: Full Sample

rvg
t 0.79

vpg
t -0.51 -0.93

ivb
t 0.97 0.78 -0.52

rvb
t 0.80 0.98 -0.90 0.80

vpb
t -0.18 -0.69 0.87 -0.14 -0.71

ivt 0.99 0.79 -0.52 0.99 0.80 -0.15

rvt 0.80 0.99 -0.92 0.80 0.99 -0.70 0.80

vpt -0.37 -0.84 0.97 -0.35 -0.83 0.96 -0.36 -0.84

Panel B: Excluding the Crisis

rvg
t 0.73

vpg
t -0.14 -0.78

ivb
t 0.95 0.72 -0.18

rvb
t 0.79 0.93 -0.62 0.78

vpb
t 0.35 -0.20 0.61 0.44 -0.21

ivt 0.98 0.73 -0.17 0.99 0.79 0.41

rvt 0.77 0.98 -0.71 0.77 0.98 -0.21 0.78

vpt 0.12 -0.54 0.89 0.16 -0.46 0.90 0.15 -0.51

This table shows the correlations between the realized and implied variance measures, variance
premium, and their good and bad components. Panel A presents the results for the benchmark
sample from January 1996 to August 2014. Panel B omits the Great Recession period (from
December 2007 to June 2009). Measures of implied variance are in units of volatility in percent
squared divided by 12.
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Table 3: Predicting Aggregate Returns with Variance Premium

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.35 0.07 0.00 0.04 0.26 0.05 0.00 0.06 0.11 0.04 0.00 0.01 0.03 0.03 0.21 0.00 0.01 0.03 0.38 0.00 0.01 0.03 0.37 0.00

0.23 0.08 0.15 0.05 0.10 0.14 0.06 0.31 0.04 0.39 0.04 0.38

vp
g
t 0.04 0.44 0.54 0.04 -0.27 0.37 0.23 0.07 -0.47 0.23 0.02 0.05 -0.52 0.16 0.00 0.07 -0.47 0.14 0.00 0.07 -0.47 0.17 0.00 0.09

0.63 0.54 0.50 0.30 0.40 0.12 0.30 0.04 0.26 0.03 0.23 0.02

vpb
t 0.69 0.49 0.08 0.85 0.42 0.02 0.75 0.27 0.00 0.64 0.18 0.00 0.54 0.16 0.00 0.54 0.19 0.00

0.66 0.14 0.44 0.03 0.35 0.02 0.29 0.01 0.26 0.02 0.24 0.01

Panel B: High-Yield Bond Returns

vpt 0.22 0.09 0.99 0.04 0.02 0.03 0.74 0.00 -0.05 0.03 0.03 0.00 -0.07 0.02 0.00 0.04 -0.06 0.02 0.00 0.04 -0.05 0.02 0.00 0.04

0.12 0.95 0.08 0.64 0.05 0.16 0.03 0.01 0.02 0.00 0.02 0.00

vp
g
t -0.36 0.40 0.18 0.07 -0.68 0.26 0.00 0.08 -0.75 0.25 0.00 0.14 -0.61 0.21 0.00 0.20 -0.49 0.17 0.00 0.20 -0.46 0.15 0.00 0.24

0.33 0.11 0.26 0.00 0.21 0.00 0.16 0.00 0.13 0.00 0.12 0.00

vpb
t 0.86 0.37 0.01 0.80 0.30 0.00 0.72 0.29 0.01 0.52 0.23 0.01 0.42 0.18 0.01 0.40 0.17 0.01

0.34 0.00 0.23 0.00 0.19 0.00 0.15 0.00 0.14 0.00 0.12 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.09 0.03 0.00 0.02 -0.07 0.02 0.00 0.04 -0.04 0.01 0.00 0.02 -0.05 0.01 0.00 0.06 -0.04 0.01 0.00 0.06 -0.03 0.01 0.00 0.06

0.09 0.11 0.06 0.07 0.04 0.11 0.02 0.01 0.02 0.01 0.01 0.00

vp
g
t -0.45 0.18 0.01 0.05 -0.45 0.11 0.00 0.12 -0.34 0.13 0.00 0.13 -0.28 0.12 0.01 0.18 -0.23 0.10 0.01 0.18 -0.22 0.09 0.01 0.22

0.24 0.02 0.19 0.00 0.15 0.01 0.11 0.00 0.10 0.01 0.09 0.00

vpb
t 0.30 0.18 0.05 0.35 0.14 0.00 0.29 0.15 0.02 0.21 0.13 0.06 0.17 0.11 0.06 0.17 0.09 0.04

0.25 0.09 0.16 0.01 0.13 0.01 0.11 0.02 0.10 0.03 0.09 0.02

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient
(Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance premium vpt, and a multivariate regression with the good and bad
variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than the forecast horizon h, and
the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described
in Section 2.4.
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Table 4: Predictability in the Cross-Section of Portfolios

Size Book-to-Market Industry

3 12 24 3 12 24 3 12 24

Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2 Coef R̄2

vpt Min 0.23 0.03 0.00 0.00 -0.01 0.00 0.18 0.03 -0.01 0.00 -0.01 0.00 0.12 0.01 -0.01 0.00 -0.05 0.00

Med 0.28 0.04 0.02 0.00 0.00 0.00 0.28 0.06 0.02 0.00 0.00 0.00 0.21 0.03 0.02 0.00 0.01 0.00

Max 0.33 0.06 0.03 0.00 0.01 0.00 0.48 0.16 0.05 0.00 0.02 0.00 0.43 0.11 0.04 0.00 0.02 0.00

p-val 0.08 0.52 0.62 0.01 0.42 0.61 0.08 0.71 0.81

vpg
t Min -0.31 0.04 -0.81 0.05 -0.72 0.07 -0.71 0.04 -0.74 0.01 -0.59 0.06 -1.05 0.01 -1.14 0.00 -0.84 0.02

Med -0.24 0.05 -0.63 0.08 -0.63 0.19 0.02 0.07 -0.37 0.03 -0.43 0.09 -0.16 0.06 -0.40 0.05 -0.44 0.08

Max -0.19 0.08 -0.48 0.10 -0.42 0.23 0.54 0.15 -0.20 0.10 -0.34 0.15 0.43 0.11 0.02 0.11 -0.22 0.15

p-val 0.47 0.04 0.02 0.20 0.04 0.03 0.19 0.02 0.03

vpb
t Min 0.77 0.57 0.49 0.34 0.30 0.40 -0.07 0.03 0.29

Med 0.83 0.74 0.69 0.62 0.45 0.50 0.63 0.48 0.48

Max 0.94 0.91 0.80 1.25 0.86 0.65 1.63 1.30 0.82

p-val 0.09 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.04

This table presents predictability regression evidence for a cross-section of equity returns from January 1996 to August 2014. The dependent variable
is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). The table shows the minimum, median, and maximum values of
the coefficient (Coef) and the joint p-values for a univariate predictability regression with the variance premium vpt, and a multivariate regression with
the good and bad variance premia, vpg

t and vpb
t , as predictor variables among ten size, book-to-market, and industry portfolios. The joint p-values are

computed as described in Appendix A.2.
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Table 5: Predicting Excess Returns with Variance Premium Excluding the Great Recession

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.39 0.29 0.09 0.01 0.28 0.14 0.02 0.02 0.20 0.10 0.02 0.02 0.14 0.07 0.03 0.01 0.13 0.08 0.06 0.01 0.12 0.07 0.04 0.01

0.31 0.11 0.16 0.04 0.11 0.04 0.08 0.04 0.06 0.01 0.06 0.02

vp
g
t -0.01 0.65 0.49 0.01 -0.50 0.43 0.13 0.05 -0.33 0.27 0.11 0.05 -0.37 0.14 0.00 0.06 -0.34 0.17 0.02 0.06 -0.33 0.19 0.04 0.07

0.70 0.49 0.51 0.15 0.39 0.18 0.28 0.08 0.24 0.07 0.21 0.05

vpb
t 0.76 0.45 0.05 1.00 0.36 0.00 0.69 0.27 0.01 0.61 0.19 0.00 0.57 0.19 0.00 0.53 0.23 0.01

0.64 0.11 0.47 0.01 0.39 0.03 0.33 0.03 0.29 0.02 0.26 0.02

Panel B: High-Yield Bond Returns

vpt -0.03 0.16 0.42 0.00 0.07 0.07 0.83 0.00 0.02 0.07 0.61 0.00 0.01 0.05 0.54 0.00 0.02 0.05 0.67 0.00 0.02 0.04 0.67 0.00

0.15 0.42 0.08 0.83 0.05 0.64 0.04 0.56 0.03 0.78 0.03 0.73

vp
g
t -0.44 0.28 0.06 0.01 -0.44 0.14 0.00 0.06 -0.40 0.17 0.01 0.07 -0.31 0.18 0.04 0.06 -0.24 0.17 0.08 0.04 -0.26 0.16 0.05 0.07

0.33 0.08 0.24 0.02 0.19 0.01 0.14 0.01 0.12 0.02 0.10 0.00

vpb
t 0.34 0.25 0.09 0.54 0.21 0.01 0.40 0.19 0.02 0.30 0.18 0.05 0.26 0.17 0.06 0.28 0.18 0.07

0.31 0.12 0.23 0.01 0.18 0.01 0.16 0.03 0.14 0.03 0.13 0.01

Panel C: Investment-Grade Bond Returns

vpt -0.06 0.07 0.22 0.00 -0.02 0.03 0.32 0.00 -0.03 0.03 0.18 0.00 0.00 0.02 0.49 -0.01 0.00 0.02 0.45 -0.01 0.01 0.02 0.63 0.00

0.11 0.33 0.06 0.40 0.04 0.27 0.03 0.49 0.02 0.44 0.02 0.63

vp
g
t -0.32 0.20 0.05 0.01 -0.31 0.11 0.00 0.05 -0.20 0.13 0.06 0.04 -0.11 0.12 0.18 0.02 -0.09 0.10 0.18 0.02 -0.12 0.09 0.09 0.05

0.25 0.09 0.18 0.03 0.14 0.06 0.10 0.13 0.09 0.13 0.08 0.06

vpb
t 0.18 0.19 0.16 0.25 0.12 0.02 0.14 0.11 0.11 0.10 0.12 0.21 0.08 0.11 0.23 0.12 0.10 0.12

0.23 0.19 0.17 0.05 0.14 0.15 0.12 0.19 0.11 0.22 0.10 0.10

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014, omitting the Great Recession (from December 2007 to June 2009). The dependent variable is the annualized log excess return over the next h months
(h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance
premium vpt, and a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West
standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap
approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table 6: Predicting Excess Returns with Variance Premium in a Longer Sample

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.42 0.29 0.07 0.01 0.34 0.15 0.01 0.03 0.24 0.10 0.01 0.03 0.15 0.08 0.03 0.02 0.13 0.09 0.07 0.02 0.11 0.07 0.07 0.01

0.33 0.10 0.17 0.02 0.12 0.02 0.09 0.04 0.07 0.03 0.06 0.04

vp
g
t -0.19 0.65 0.38 0.01 -0.75 0.41 0.03 0.10 -0.56 0.27 0.02 0.11 -0.47 0.16 0.00 0.11 -0.35 0.14 0.01 0.10 -0.25 0.14 0.04 0.06

0.76 0.40 0.53 0.07 0.39 0.07 0.27 0.03 0.22 0.05 0.19 0.09

vpb
t 0.98 0.49 0.02 1.36 0.40 0.00 0.98 0.31 0.00 0.73 0.23 0.00 0.59 0.21 0.00 0.44 0.21 0.02

0.70 0.07 0.52 0.00 0.40 0.00 0.33 0.01 0.30 0.02 0.26 0.04

Panel B: High-Yield Bond Returns

vpt -0.04 0.16 0.41 0.00 0.12 0.09 0.92 0.01 0.06 0.08 0.76 0.00 0.03 0.06 0.68 0.00 0.03 0.06 0.72 0.00 0.02 0.04 0.68 0.00

0.16 0.42 0.08 0.93 0.06 0.85 0.04 0.76 0.03 0.85 0.03 0.75

vp
g
t -0.75 0.44 0.04 0.03 -0.77 0.27 0.00 0.16 -0.65 0.25 0.00 0.16 -0.46 0.19 0.01 0.14 -0.31 0.16 0.03 0.10 -0.26 0.14 0.03 0.08

0.37 0.02 0.26 0.00 0.19 0.00 0.13 0.00 0.11 0.00 0.09 0.00

vpb
t 0.63 0.38 0.05 0.95 0.36 0.00 0.72 0.31 0.01 0.48 0.23 0.02 0.36 0.19 0.03 0.29 0.17 0.05

0.35 0.03 0.26 0.00 0.20 0.00 0.16 0.00 0.14 0.01 0.13 0.01

Panel C: Investment-Grade Bond Returns

vpt -0.06 0.08 0.22 0.00 0.00 0.04 0.49 -0.01 -0.01 0.04 0.38 0.00 0.01 0.03 0.60 0.00 0.00 0.02 0.50 -0.01 0.01 0.02 0.62 -0.01

0.11 0.31 0.06 0.49 0.04 0.39 0.03 0.60 0.02 0.49 0.02 0.62

vp
g
t -0.36 0.21 0.04 0.01 -0.40 0.15 0.00 0.09 -0.30 0.17 0.04 0.09 -0.16 0.13 0.11 0.06 -0.12 0.12 0.14 0.04 -0.11 0.09 0.11 0.05

0.26 0.07 0.18 0.01 0.13 0.01 0.09 0.03 0.08 0.05 0.06 0.05

vpb
t 0.22 0.21 0.14 0.37 0.17 0.01 0.26 0.18 0.07 0.17 0.16 0.14 0.12 0.13 0.19 0.11 0.11 0.15

0.24 0.16 0.18 0.01 0.14 0.02 0.11 0.07 0.10 0.12 0.09 0.10

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1988 to August 2014. The dependent variable is the annualized log excess return over the next h months (h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient
(Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance premium vpt, and a multivariate regression with the good and bad
variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West standard error with three more lags than the forecast horizon h, and
the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap approach. The p-values are calculated for one-sided tests as described
in Section 2.4.
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Table 7: Predicting Excess Returns with Variance Premium with Constrained Regression

Forecast Horizon h

1 3 6 12 18 24

Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2 Coef SE p-val R̄2

Panel A: Equity Returns

vpt 0.02 0.24 0.47 0.00 0.02 0.17 0.46 0.00 0.01 0.05 0.39 0.00 0.01 0.03 0.30 0.00 0.01 0.03 0.40 0.00 0.01 0.03 0.37 0.00

0.08 0.18 0.07 0.17 0.05 0.18 0.04 0.17 0.03 0.28 0.02 0.26

vp
g
t -0.37 0.67 0.29 0.00 -0.53 0.54 0.17 0.03 -0.50 0.24 0.02 0.05 -0.44 0.18 0.01 0.06 -0.41 0.16 0.01 0.06 -0.39 0.19 0.02 0.09

0.34 0.33 0.30 0.14 0.26 0.11 0.21 0.07 0.19 0.06 0.17 0.04

vpb
t 0.45 0.46 0.16 0.63 0.38 0.05 0.59 0.28 0.02 0.52 0.21 0.01 0.48 0.19 0.00 0.46 0.22 0.02

0.33 0.17 0.28 0.05 0.24 0.03 0.21 0.03 0.20 0.03 0.19 0.02

Panel B: High-Yield Bond Returns

vpt 0.01 0.22 0.52 0.00 0.01 0.03 0.66 0.00 -0.05 0.03 0.04 0.00 -0.08 0.02 0.00 0.04 -0.06 0.02 0.00 0.04 -0.05 0.02 0.00 0.04

0.05 0.87 0.04 0.86 0.03 0.16 0.02 0.00 0.02 0.00 0.01 0.00

vp
g
t -0.46 0.49 0.17 0.03 -0.48 0.28 0.04 0.07 -0.52 0.30 0.04 0.13 -0.48 0.25 0.03 0.19 -0.44 0.18 0.01 0.21 -0.42 0.17 0.01 0.25

0.20 0.05 0.16 0.02 0.14 0.00 0.11 0.00 0.10 0.00 0.09 0.00

vpb
t 0.55 0.41 0.09 0.56 0.33 0.04 0.48 0.33 0.07 0.38 0.27 0.08 0.36 0.20 0.04 0.36 0.19 0.03

0.20 0.01 0.16 0.00 0.14 0.00 0.12 0.00 0.11 0.00 0.10 0.00

Panel C: Investment-Grade Bond Returns

vpt -0.08 0.03 0.01 0.02 -0.07 0.02 0.00 0.04 -0.04 0.01 0.00 0.03 -0.05 0.01 0.00 0.06 -0.04 0.01 0.00 0.06 -0.03 0.01 0.00 0.06

0.03 0.06 0.03 0.03 0.02 0.09 0.01 0.01 0.01 0.01 0.01 0.00

vp
g
t -0.39 0.17 0.01 0.05 -0.37 0.12 0.00 0.12 -0.33 0.14 0.01 0.13 -0.30 0.13 0.01 0.19 -0.25 0.10 0.01 0.20 -0.24 0.09 0.00 0.24

0.13 0.02 0.11 0.01 0.10 0.01 0.08 0.00 0.07 0.00 0.06 0.00

vpb
t 0.24 0.17 0.08 0.27 0.15 0.03 0.28 0.16 0.04 0.23 0.14 0.04 0.20 0.12 0.05 0.20 0.09 0.02

0.13 0.08 0.11 0.03 0.09 0.01 0.08 0.01 0.08 0.02 0.07 0.01

This table presents predictability regression evidence for equity returns (Panel A), high-yield bond returns (Panel B), and investment-grade bond returns (Panel C) from January
1996 to August 2014 using the constrained regression approach described in Section 2.5. The dependent variable is the annualized log excess return over the next h months
(h = 1, 3, 6, 12, 18, 24). For each asset, the table shows the coefficient (Coef), the standard errors (SE), and the p-values for a univariate predictability regression with the variance
premium vpt, and a multivariate regression with the good and bad variance premia, vp

g
t and vpb

t , as predictor variables. For each coefficient, the first line reports the Newey-West
standard error with three more lags than the forecast horizon h, and the corresponding p-value. The second line reports the standard error and the p-value from the bootstrap
approach. The p-values are calculated for one-sided tests as described in Section 2.4.
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Table 8: Calibration

Parameter Values

γ 10

β 0.00001

µ 0.0016

ki,c 0.05

µi,c 0.0015

κi 0.36

ki,λ 0.1

µi,λ 0.12

σi,λ 1.07

µd 0.0016

φ 5

Statistics for λi

E[λi] 0.58

σ(λi) 1.26

AR(1) 0.81

This table shows the parameter values for the benchmark calibration of the model. The parameter
values are expressed at a monthly frequency. The calibration parameters for good and bad jumps,
i = g, b, are identical. The bottom panel shows the mean, volatility, and an AR(1) coefficient for
the good and bad jump intensities implied by the model calibration.
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Table 9: Macroeconomic and Equity Market Moments in the Data and Model

E[∆c] σ(∆c) E[∆d] σ(∆d) E[r − rf ] σ(r) E[rf ] σ(rf)

Data 1.74 1.58 3.86 9.83 5.62 19.74 0.24 1.92

(0.55) (0.33) (2.13) (1.39) (4.39) (3.05) (0.71) (0.21)

50% 1.93 2.38 1.97 11.97 5.33 16.06 1.35 2.08

5% 0.34 0.97 -5.98 4.85 -1.35 7.49 -0.19 0.95

95% 3.46 5.05 9.61 25.26 12.14 31.20 2.35 4.62

Population 1.91 2.99 1.88 14.98 5.36 18.87 1.25 2.65

This table shows the moments of the consumption, dividend, equity return, and risk-free rate in
the data and in the model. Data moments correspond to annual observations from 1996 to 2014.
Standard errors are Newey-West adjusted with three lags. Model output is computed from a long
simulation of the model (population), and using 10,000 samples with length of 18 years each. The
model is simulated at a monthly frequency and time-aggregated to an annual frequency. The
values are in percentage terms.
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Table 10: Variance Moments in the Data and Model

E[rvg] E[ivg] E[vpg] E[rvb] E[ivb] E[vpb] E[rv] E[iv] E[vp]

Data 16.19 13.60 -2.60 16.39 25.82 9.43 32.58 39.41 6.83

(3.27) (1.83) (1.67) (3.45) (3.22) (1.37) (6.71) (5.00) (2.70)

50% 14.85 12.11 -2.60 15.90 23.01 7.12 30.98 35.21 4.41

5% 8.77 7.09 -5.45 8.12 11.55 3,44 17.85 19.41 -0.07

95% 25.32 20.75 -1.25 32.47 47.60 15.04 56.02 67.56 12.53

Population 15.67 12.80 -2.87 17.49 25.37 7.89 33.15 38.17 5.02

σ(rvg) σ(ivg) σ(vpg) σ(rvb) σ(ivb) σ(vpb) σ(rv) σ(iv) σ(vp)

Data 25.08 10.74 17.83 26.64 19.06 16.20 51.47 29.60 32.87

(8.80) (2.30) (6.57) (9.34) (3.82) (5.38) (18.20) (6.15) (12.16)

50% 21.27 17.46 5.09 29.22 43.13 13.92 47.19 58.21 15.38

5% 12.41 10.13 2.47 14.30 21.02 6.76 26.09 30.18 8.40

95% 37.54 31.64 10.57 61.55 90.90 29.35 92.16 119.86 30.03

Population 24.22 20.16 6.26 36.33 53.61 17.30 56.48 71.54 18.41

This table shows the moments of the realized and implied variance measures and the variance
premia, and their good and bad components in the data and in the model. Data moments corre-
spond to monthly observations from 1996 to 2014. Standard errors are Newey-West adjusted with
ten lags. Model output is computed from a long simulation of the model (population), and using
10,000 samples with length of 18 years each. The model is simulated at a monthly frequency and
time-aggregated to an annual frequency. Measures of variance are in units of volatility in percent
squared divided by 12.
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Table 11: Predictability Regressions in the Model

Forecast Horizon h

1 3 6 12 18 24

Panel A: Univariate Predictability

vp 50% 0.38 0.32 0.25 0.16 0.12 0.10

5% -0.49 -0.45 -0.38 -0.28 -0.22 -0.18

95% 1.35 0.98 0.68 0.42 0.32 0.27

Population 0.17 0.14 0.10 0.06 0.05 0.04

R2 50% 0.01 0.03 0.04 0.04 0.04 0.04

5% 0.00 0.00 0.00 0.00 0.00 0.00

95% 0.10 0.21 0.28 0.29 0.29 0.28

Population 0.00 0.00 0.01 0.00 0.00 0.00

Panel B: Multivariate Predictability

vpg 50% -0.39 -0.27 -0.16 -0.07 -0.04 -0.01

5% -2.74 -2.20 -1.70 -1.14 -0.86 -0.69

95% 1.93 1.51 1.17 0.81 0.66 0.58

Population -0.72 -0.59 -0.46 -0.29 -0.21 -0.16

vpb 50% 0.62 0.50 0.37 0.23 0.16 0.12

5% -0.29 -0.26 -0.23 -0.17 -0.14 -0.12

95% 1.79 1.24 0.83 0.51 0.39 0.33

Population 0.29 0.23 0.18 0.11 0.08 0.06

R2 50% 0.04 0.08 0.10 0.09 0.08 0.08

5% 0.00 0.01 0.01 0.01 0.01 0.01

95% 0.14 0.28 0.34 0.36 0.34 0.33

Population 0.01 0.02 0.03 0.02 0.02 0.02

This table shows the model-implied slope coefficients and the R2s in the regressions of future excess
equity returns at horizons from 1 month to 2 years on the total variance premium (Panel A) and
the good and bad variance premia (Panel B). Model output is computed from a long simulation
of the model (population), and using 10,000 samples with length of 18 years each. The model is
simulated at a monthly frequency and time-aggregated to an annual horizon.
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