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1. Introduction

Asset prices have significant reactions to monetary policy announcements (See, e.g. Jensen and

Johnson (1995), Kuttner (2001), Rigobon and Sack (2004), Bernanke and Kuttner (2005), Hanson

and Stein (2015), and Chava and Hsu (2015)). Bernanke and Kuttner (2005) attribute much

of this price reaction to news of tighter monetary policy, such as unexpectedly high increases in

Federal funds rates, increasing expected excess returns on stocks. Similarly, Gertler and Karadi

(2015) and Hanson and Stein (2015) find that this news increases bond term and credit premia.

Taken together, this evidence suggests that surprise changes in the Federal funds rate positively

correlate with changes in the expected excess market return, and should therefore earn a positive

risk premium in the cross-section of returns (see, e.g., Merton (1973)). However, several recent

studies (see, e.g., Thorbecke (1997), Maio and Santa-Clara (2015), and Lioui and Maio (2014)) find

that monthly or quarterly innovations in the Federal funds rate earn a negative risk premium.1 In

this paper, I attempt to reconcile these findings.

Most of the variation in the Federal funds rate is driven by the systematic response of the Federal

Reserve to changes in the output gap and inflation, as prescribed by the rule of Taylor (1993), for

example. Hence, Federal funds innovations capture both the systematic response of the Federal

Reserve to innovations in economic conditions, as well as policy shocks, which are unexpected

deviations from this systematic response. The systematic response of the Federal funds rate to

innovations in economic conditions could earn a negative risk premium because the output gap and

expected inflation negatively forecast returns and therefore investment opportunities (See, e.g.,

Fama (1975), Campbell (1996), Ang and Bekaert (2007), Cooper and Priestley (2009).). Federal

funds policy shocks, which are unanticipated deviations of the Federal Reserve from its policy rule

may command a positive risk premium, but be dwarfed by innovations in the business cycle and

inflation.2 Precisely identifying Federal funds policy shocks is therefore crucial to estimate their

risk premium. This is important because identifying how monetary policy shocks impact asset

1The literature generally estimates a negative risk premium associated with innovations in other short-term interest
rates as well. See, e.g., Brennan, Wang and Xia (2004) and Petkova (2006).

2Instead of “monetary policy shock”, I use the term “Federal funds policy shock” to emphasize that they are
derived from the Federal funds rate as opposed to a monetary aggregate like M0, M1, or M2. In particular, this
makes a contractionary policy shock positive as opposed to negative.
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prices is fundamental to understanding how monetary policy impacts the real economy.

Changes in Federal funds futures rates on days of Federal Open Market Committee (FOMC)

announcements provide a precise measure of Federal funds policy shocks (see, e.g., Piazzesi and

Swanson (2008)). Event studies, such as Kuttner (2001) and Bernanke and Kuttner (2005) use these

to identify whether monetary policy shocks impact stock prices. I take advantage of this identi-

fication and relate these time-series impacts to the cross-section of returns via the Intertemporal

Capital Asset Pricing Model (ICAPM. See, e.g., Merton (1973)). To do this, I form a mimicking

portfolio, FFED, for the changes in the Federal funds futures rate relative to the day before FOMC

announcements. If Federal funds policy shocks positively vary with investment opportunities, then

this portfolio should earn a positive risk premium in the cross-section of returns. The use of a mim-

icking portfolio is necessary as these shocks are irregularly spaced around eight FOMC meetings

per year. Using standard GMM stochastic discount factor methods, I test the power of a two-factor

ICAPM with the market excess return (MKT ) and FFED to explain the average returns on the

Fama-French 25 portfolios formed on size and book-to-market, and the 25 portfolios formed on size

and momentum return.

My key results can be summarized as follows. FFED earns a significant positive risk premium.

Then, the two-factor ICAPM explains the returns on the 50 Fama-French portfolios with the same

R2 and lower mean absolute pricing error than the benchmark Fama-French-Carhart four-factor

model. In a five-factor model with the Fama-French-Carhart four factors and FFED, only FFED

loads significantly in the discount factor, suggesting that the size, value and momentum factors

do not add significant asset pricing power to FFED. In time-series regressions, controlling for

exposure to FFED eliminates the alphas earned by the value and momentum factors. Next, I find

that the Federal funds rate no longer significantly forecasts stock returns (negatively) or volatility

(positively) when controlling for the business cycle, as proxied by the output gap of Cooper and

Priestley (2009), and inflation. Hence, innovations in the Federal funds rate that simply capture

the systematic response of the Federal Reserve to changing economic conditions should command

a negative risk premium. In particular, this can explain the negative risk premium on monthly

or quarterly changes in the level of the Federal funds rate found by prior studies. Conversely,
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Federal funds policy shocks command a positive risk premium, consistent with prior evidence that

expansionary monetary policy shocks adversely shift the investment opportunity set by lowering

aggregate expected returns.

My study supports prior evidence that tighter monetary policy increases aggregate risk premia

by empirically confirming the resulting cross-sectional implication from the ICAPM. My ICAPM

approach allows for the precise identification of monetary policy shocks, while still testing whether

they represent discount-rate or cash-flow news. In contrast, Bernanke and Kuttner (2005) and

others frequently use vector autoregressions and Campbell and Shiller (1988)-type identities to

decompose returns into cash-flow and discount-rate news. These decompositions lose the precise

identification of FOMC announcement-day shocks by requiring regular time series that are only

available at lower frequencies, such as monthly or quarterly. These decompositions also tend to

produce unreliable estimates (see, e.g. Chen and Zhao (2009) and Maio (2014)). A second benefit

to my approach is that it results in a single factor related to time-varying investment opportunities

that explains both value and momentum returns, a novel result relative to the literature that tries

to explain the cross-section of returns with the ICAPM.(See, e.g., Vassalou (2003), Brennan et al.

(2004), Campbell and Vuolteenaho (2004), Petkova (2006), and Maio and Santa-Clara (2015).)

A third benefit to my approach is that it identifies a risk premium on Federal funds policy shocks,

and the sign of this premium has implications for monetary policy. The Federal Reserve may try

to increase aggregate demand via an expansionary monetary policy shock (see, e.g., Ludvigson,

Steindel and Lettau (2002)). This shock may raise wealth by raising asset prices and present

values, which would increase the consumption portion of aggregate demand, all else equal. However,

estimating a positive risk premium on Federal funds policy shocks is evidence that the expansionary

monetary policy shock also deteriorates the investment opportunity set, which, by definition, would

decrease consumption per unit of wealth. The net result is an ambiguous impact of Federal funds

policy shocks on consumption.

Several studies find noteworthy behavior of equity prices around FOMC and other macroeco-

nomic announcements. Savor and Wilson (2014), for example, find that the CAPM prices a number

of test assets well, but only on days of macroeconomic announcements including those from the
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FOMC. My results are distinct from theirs in at least two ways. First, their CAPM results do not

explain momentum returns, even on important announcement days. In contrast, my two-factor

model does explain such returns. Second, my asset pricing results do not hold only on macroeco-

nomic announcement days. Rather, my results are consistent with (i) investment opportunity set

risk explaining value and momentum returns, and (ii) FOMC annoucements being an important

(though not exclusive) source of news about investment opportunities. Lucca and Moench (2015)

document that since 1994, over 80% of the equity premium is earned in the 24 hours prior to

scheduled FOMC announcements. However, they find these pre-FOMC returns do not correlate

with the Federal funds policy shocks that I study and conclude this phenomenon is distinct from

the exposure of stocks to policy announcements. Cieslak, Morse and Vissing-Jorgensen (2014) find

that since 1994, the entire equity risk premium is earned in weeks 0, 2, 4, and 6 relative to FOMC

meetings.3 They argue that this likely reflects a risk premium associated with information coming

from the Federal Reserve, though it is not explained by the content of FOMC announcements, the

shocks from which are the focus of this paper.

This paper is also related to the literature on financial intermediaries and asset prices. In the

models of Drechsler, Savov and Schnabl (2014) and He and Krishnamurthy (2013), a reduction in

the Federal funds rate can lower borrowing costs for relatively risk-tolerant financial intermediaries.

This in turn allows intermediaries to bid up asset prices, lowering risk premia and Sharpe ratios.

Adrian, Etula and Muir (2014) construct a mimicking portfolio, LMP , for intermediary leverage,

arguing that intermediary leverage summarizes the pricing kernel of intermediaries. Given that

monetary policy a↵ects asset prices at least in part through intermediaries, I investigate whether

intermediary leverage explains the returns on FFED. In a three factor model with MKT , LMP

and FFED, all three factors significantly help to price assets. Hence, intermediary leverage alone

does not seem to fully explain the e↵ects of monetary policy shocks.

The remainder of the paper proceeds as follows. Section 2 describes my measures of monetary

policy surprises and other data sources. Section 3 performs the core asset pricing tests with the

futures-based Federal funds innovations. Section 4 discusses the contrast of my results and those

3The FOMC meets about every 6 weeks. Week 0 starts the day before an FOMC meeting.
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from the previous literature. Section 5 presents several important robustness checks. Section 6

concludes.

2. Federal funds policy shocks and other data

2.1. Federal funds policy shocks

To make precise the meaning of “Federal funds policy shock”, suppose the FOMC sets the Federal

funds rate (FF ) according to the rule of Taylor (1993):

FFt = ↵+ �GAPt + �Et(⇡t+1

) + ut. (1)

The output gap (GAP ) equals the di↵erence between real and potential real GDP, a common

proxy for the state of the real business cycle, Et(⇡t+1

) denotes expected inflation, and ut denotes

a policy deviation from the rule. Eq. (1) captures the Federal Reserve’s statutory dual mandate

of maximum employment and stable prices. A “monetary policy shock”, or “Federal funds policy

shock”, ✏FF
t , is an innovation in ut, that is ✏FF

t = ut � Et�1

ut, where Et denotes expectation with

respect to publicly available information. Christiano, Eichenbaum and Evans (2005) among others

generalize the Taylor rule in Eq. (1) to include other variables, however, the definition of monetary

policy shocks remains the same and the simple rule given by Eq. (1) is su�cient for illustration

purposes.

Since October 1988, the Chicago Mercantile Exchange has listed futures contracts, “Federal

funds futures”, that make a payment based on the Federal funds rate in a delivery month. Changes

in these futures prices on days of FOMC announcements provide a very precise measure of Fed-

eral funds policy shocks because the futures market e�ciently incorporates current macroeconomic

conditions (see, e.g., Kuttner (2001), Cochrane and Piazzesi (2002), Bernanke and Kuttner (2005),

Piazzesi and Swanson (2008)). The primary alternative to using futures contracts to isolate mon-

etary policy shocks is relying on some form of structural-identification-scheme in a vector autore-

gression (VAR) (see e.g., Christiano et al. (2005), or Christiano, Eichenbaum and Evans (1999) for

a survey). Unfortunately, the choice of VAR specification tends to lead to qualitatively di↵erent
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responses of macroeconomic aggregates and asset prices to Federal funds policy shocks (see e.g.,

Cochrane and Piazzesi (2002), Uhlig (2005)). Survey expectations are also available for the Federal

funds rate from sources such as Bloomberg, but they tend to have a limited history and a weekly

timing that is somewhat inconvenient for asset pricing tests and prohibits the high-frequency iden-

tification associated with changes in Federal funds futures prices on FOMC days (see, e.g., Gilbert

(2011)).

Federal funds futures make a payment equal to the interest on a notional amount of $5 million,

where the interest rate is given by the average (calendar) daily Federal funds rate over the delivery

month. At any given time, there are 36 contracts outstanding, one for delivery in the current

month, and one for delivery in each of the following 35 months. The price Pn
m,d on day d, of month

m for the contract with delivery in month m+ n is quoted as:

Pn
m,d = $100� fn

m,d, (2)

where fn
m,d denotes the futures rate. In this paper, I use the contracts with delivery in the current

month (n = 0), and the following month (n = 1).

For a policy announcement on day d of month m, it is standard to isolate the policy shock from

the change in the current-month futures rate, f0

m,d. Federal funds futures prices equal the average

Federal funds rate in the delivery month, so the change in the futures rate must be scaled up by

a factor related to the number of days in the month a↵ected by the change. As such, for all but

the first calendar day of the month and last three calendar days of the month, I define the surprise

change in the Federal funds rate on day d of month m by:

�rum,d , Dm

Dm � d

�
f0

m,d � f0

m,d�1

�
, (3)

where Dm denotes the number of calendar days in month m. For the first day of the month, the

surprise equals the di↵erence between the current-month futures rate and the one-month-ahead

futures rate from the last day of the previous month �rum,1 , f0

m,1 � f1

m�1,Dm�1
. For changes

occurring in the last three days of the month, �rum,d , f1

m,d�f1

m,d�1

, the change in the one-month-
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ahead futures rate.4

The set of Federal funds policy events consists of the union of regularly-scheduled FOMC meet-

ings and any days of changes in the Federal funds target rate between regularly scheduled meetings.

Regularly-scheduled meetings are not held in response to economic conditions, precluding endo-

geneity concerns for identifying policy shocks ex ante. Conversely, this is not necessarily the case

for meetings that occur irregularly. However, stock prices fall in response to positive Federal funds

announcement surprises on days of unscheduled FOMC announcements (see, e.g., Bernanke and

Kuttner (2005)). As noted by Bernanke and Kuttner (2005), this mitigates endogeneity concerns

that the futures based “policy shocks” represent news about economic conditions instead of true

policy shocks because the FOMC would only raise the Federal funds rate in the presence of good

news, which would raise stock prices in the absence of a policy shock.

To construct the sample, I start with the list of times when the outcome of policy events became

known to financial markets from Kenneth Kuttner’s website.5 This set of events spans June 1989

through June 2008. I then extend this set through December 2008. The remainder of 2008 includes

four regularly scheduled FOMC meetings with announcements made before closing time in the

futures market. Finally, on October 7th, 2008, the FOMC decided to lower the Federal funds

target by 50 basis point in a 5:30pm conference call, after the futures market had closed. Hence, I

consider the change in futures price from October 7th to October 8th to derive the surprise. I do

not measure policy shocks post-December 2008 as the Federal funds rate has been kept close to 0

since then.

2.2. Factor mimicking portfolio of policy shocks

The FOMC announcements are irregularly spaced so it is necessary to use a factor-mimicking

portfolio to obtain a regular time series that has the same important risk characteristics as the

announcement surprises. A mimicking portfolio is simply a regression of a factor onto a set of

4See Kuttner (2001) for a more detailed explanation of the precise construction of �rum,d.
5http://econ.williams.edu/people/knk1. Note that this sample includes an announcement on October 15, 1998

that occurred after the futures market closed. Following Bernanke and Kuttner (2005), I use the change in futures
price from the close on the 15th to the open of the 16th to measure the surprise. Also, I obtained futures data from
Bloomberg, however this study can be replicated using the futures-based data directly from Kuttner’s website.
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test asset returns. The slopes on the test assets correspond to weights in a portfolio with the

same asset pricing information as the original factor, but the portfolio can be sampled at any

frequency and in general will be more precisely measured than the factor itself (see, e.g., Cochrane

(2005)). A tempting alternative approach to constructing a regular time series based on Federal

funds policy shocks is to form a series that is 0 on non-announcement days and equal to the

Federal funds policy shock on announcement days. This factor would be problematic in an ICAPM

because investors care about the investment opportunity set that the Federal Reserve a↵ects, not

just FOMC announcements per se. There can be other news about the dimension of investment

opportunities the Federal Reserve a↵ects that can come at any time. Moreover, this alternative

construction would impose the counterfactual assumption that there is no news about monetary

policy on non-announcement days (see, e.g., Cieslak et al. (2014)).

As test assets, I use the 25 Fama-French size and book-to-market sorted portfolios and the

Fama-French 25 size and momentum sorted portfolios, obtained from Kenneth French’s website. A

number of prior studies in the ICAPM literature use mimicking portfolios for macroeconomic factors

to price the 25 size and book-to-market portfolios (see, e.g., Lettau and Ludvigson (2001), Vassalou

(2003), Brennan et al. (2004) and Petkova (2006)). However, Lewellen, Nagel and Shanken (2010)

find that these test assets are too easily priced by multi-factor models and recommend adding other

test assets, such as those based on momentum sorts. A further reason to adding momentum-based

assets to the 25 size and book-to-market portfolios is that Maio and Santa-Clara (2012) find that

the Fama and French (1993) and Carhart (1997) size, value, and momentum factors most plausibly

correspond to innovations in investment opportunities relative to other common factor models. This

in turn suggests that spreads in size, value, and momentum most plausibly result from a spread in

exposure to time-varying investment opportunities and therefore generate good sets of test assets

to test an ICAPM model.

To form a mimicking portfolio for Federal funds surprises, I follow Breeden, Gibbons and Litzen-

berger (1989), Vassalou (2003), Ang, Hodrick, Xing and Zhang (2006), and Adrian et al. (2014)

among others, and project the Federal funds policy shocks �rud onto a subset of eight base assets

that summarize all 50 returns well. The eight base assets consist of the four “corners” from the 25
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Fama-French size and book-to-market portfolios and the four “corners” from the Fama-French 25

size and momentum portfolios. These eight assets are highly representative of the 50 portfolios. In

untabulated tests, the average correlation between the excess returns on the 50 portfolios chosen

and their projections onto the eight base assets is over 0.95.

To be precise, let szbmijt (szmijt) denote the excess return on the portfolio in the ith size

quintile and the jth book-to-market (momentum) quintile on day or month t. I first estimate the

regression:

�rud = a+Xd · b+ ✏d, (4)

where Xd = (szbm
11

, szbm
15

, szbm
51

, szbm
55

, szm
11

, szm
15

, szm
51

, szm
55

)0d. Then, for convenient

scaling, I normalize the vector b̂ to have length 1 so that the return on the mimicking portfolio,

FFEDm, in month m is given by:

FFEDm = Xm · b̂

kb̂k
. (5)

The precise weights for the mimicking portfolio are given by (t-statistics below in parentheses):

b̂

kb̂k
=

0

BBBB@

szbm
11

szbm
15

szbm
51

szbm
55

szm
11

szm
15

szm
51

szm
55

0.05, 0.85, �0.09, 0.01, �0.48, �0.16, 0.09, �0.07

(0.21) (3.11) (�0.46) (0.09) (�2.50) (�0.59) (0.53) (�0.84)

1

CCCCA

0

(6)

FFED takes a large long position in small-value (szbm
15

) and a relatively large short position in

the small loser portfolio (szm
11

). The correlation between FFEDd and �rud is 0.38.6 Moreover, a

heteroskedasticity-robust Wald test rejects the null that b = 0 with a p-value of 0.002.

I sample FFED over two time periods. The first period, 1989:1-2008:12, is the sampling period

of the policy shocks. Then, I follow Campbell and Ammer (1993), Brennan et al. (2004), and

other interest rate-based asset pricing studies and consider the longer sample period of 1952:1-

2013:12. This is e↵ectively the largest sample that follows the Treasury-Fed Accord of 1951, which

re-established the independence of the Federal Reserve following the second World War. I extend

6The analogous correlation for a similar portfolio used in Adrian et al. (2014) is 0.37, for example.
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FFED out-of-sample over this entire long period using the weights given by Eq. (6).

2.3. Other data and descriptive statistics

Table 1 lists the main variables used in this paper along with their definitions and their respective

sources.

Insert Table 1 about here

Table 2 presents summary statistics of the important variables in the paper over two sample

periods. The first sample period covers the existence of �ru, 1989:1-2008:12 (n=240). The second

sample period covers the entire post-Treasury-Fed accord sample 1952:1-2013:12 (n=744). The

future twelve-month inflation limits the sample for ⇡t+1,t+12

to 1951:1-2012:12, and the monthly

Federal funds rate availability limits FF to 1954:7-2013:12.

Insert Table 2 about here

In both sample periods, FFED earned a positive risk premium, 77 basis points per month

over 1989-2008 and 72 basis points per month over 1952-2013. The Federal funds policy shocks

themselves were about -4 basis points on average during this sample period, consistent with a

(potentially unexpected) general decline in the Federal funds rate during this period. Figure 1

presents a plot of the Federal funds policy shocks.

Insert Figure 1 about here

Most of the shocks are close to zero consistent with relatively predictable monetary policy, however

there are more negative surprises than positive ones. The largest surprise decrease of -74 basis

points occured after an unscheduled meeting on January 21, 2008. The largest positive policy

shock was 17 basis points, occuring on March 3, 2008, when the Fed failed to lower the target

Federal funds rate as much as expected.

Other noteworthy features of the summary statistics include the average returns on the tradable

risk factors. Over the 1989-2008 sample, the market excess return (MKT ), the value factor (HML),

and the momentum factor (MOM), earned average returns of about of 42, 29, and 97 basis points
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per month, respectively. Over the longer 1952-2013 sample, however, MKT , HML, and MOM

earned average returns of 59, 36, and 75 basis points per month, respectively. SMB earned a

relatively small 11 basis points in the shorter sample and 19 basis points per month in the longer

sample.

3. Monetary policy shocks and asset prices

In this section, I present my main asset pricing results. Given the evidence that Federal funds

policy shocks impact the market risk premium, and thus, the investment opportunity set, I use the

framework of the ICAPM, expressed as the following discrete-time model of expected returns for

an asset i (see, e.g., Cochrane (2005)):

E
�
Re

i,t+1

�
= �iW�W + �0

i�zt�z. (7)

Re
i,t denotes the excess return on asset i, �iW denotes the beta of asset i with respect to the

excess return on the aggregate wealth portfolio, and �i�zt represents a vector of �s with respect to

innovations in the state vector zt. �W denotes the risk premium of the market portfolio, and �z

denotes the vector of risk premia for each state variable.

To be of any hedging concern to investors, the state variables zt must forecast returns or volatility

of returns on the wealth portfolio (see, e.g., Maio and Santa-Clara (2012)). Long-lived investors will

demand a premium in the form of higher expected returns to hold a security whose lowest returns

coincide with adverse innovations in the state variables. Hence, if a state variable zjt positively

forecasts returns on the wealth portfolio, or negatively forecasts volatility, the risk premium, �zj

will be positive. I test the implication, based on the evidence that policy shocks postively correlate

with changes in expected returns on the market, that FFED commands a positive risk premium

in a model of the form Eq. (7).
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3.1. Time-series relationship of other asset pricing factors and FFED

Before presenting my main cross-sectional results, I follow Vassalou (2003) and investigate the cor-

relation between FFED and SMB, HML, and MOM , which are factors constructed to price

portfolios formed on size, book-to-market and momentum as opposed to capture a particular eco-

nomic factor. To do so, I estimate the following time-series regressions:

Xt = ↵X + �X,FFEDFFEDt + ✏t, X = SMB, HML, MOM. (8)

Table 3, Panels A and B presents the estimates of Eq. (8) for the 1989:1-2008:12 and 1952:1-2013:12

sample periods, respectively. In addition to assessing correlation, FFED is a tradable excess return

so I can test whether FFED explains these factors by testing whether the intercepts are zero (see,

e.g., Fama and French (1993), Cochrane (2005)). In order to test FFED on factors that are

not constructed from size and book-to-market and size and momentum portfolios, I also estimate

Eq. (8) for the Fama and French (2015) investment and profitability factors (CMA and RMW ,

respectively).7

Insert Table 3 about here

The FFED slopes of SMB, HML and UMD are relatively stable, positive and statistically

significant in both sample periods. The most noteworthy result from Table 3 is that exposure to

FFED e↵ectively eliminates the ↵ earned byHML andMOM in both samples. Then, surprisingly,

FFED also seems to eliminate the significance of the ↵ earned by the investment factor (CMA)

in spite of the fact that CMA is constructed from totally di↵erent base assets as FFED.

One may suspect that these strong results could simply be attributable to forming FFED from

the particular eight base assets used. Given that the eight base assets used to make FFED span the

space of size, value and momentum returns, some combination of the base assets will price HML

and UMD because the ex-post mean-variance e�cient portfolio will always price every asset from

this space in sample. However, what is interesting is that the weights on the base assets to make

FFED were not chosen to make it mean-variance e�cient, they were chosen to have a maximum

7CMA and RMW come from the website of Kenneth French
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correlation with Federal funds policy shocks. This economic content is what gives FFED its asset

pricing power (see, e.g., Breeden et al. (1989), Cochrane (2005)), not the choice of base assets.

In fact, random combinations of the base assets used to construct FFED would fail to deliver

this performance. In the Internet Appendix, I consider a simulation experiment to determine

the likelihood that a randomly generated portfolio of the eight base assets used in FFED would

generate such strong results. Zero out of 10,000 simulated factors generate ↵s that are jointly

as small or smaller than those on HML and MOM in Table 3. Hence, it is extremely unlikely

that FFED explains the returns on HML and MOM purely by chance. Overall, the time-series

evidence presents a strong case that FFED explains much of the risk premium associated with

HML and MOM . In the next section, I consider the extent to which exposures to these two factors

explain the cross-section of average stock returns.

3.2. GMM Results with FFED

Linear factor models such as Eq. (7) are equivalent (see, e.g., Brennan et al. (2004), Cochrane

(2005)) to linear discount factor models of the form:

E (mtR
e
t ) = 0 (9)

mt = 1 + b0ft.

Re
t = (Re

1t, ..., R
e
nt)

0 denotes a vector of excess returns and f denotes a mean-0 vector of innovations

in the market return and state variables. I test the canonical moment condition given by equation

(9) via generalized method of moments (GMM) following Cochrane (2005).

Table 4 presents my main GMM tests with FFED. To estimate the discount factor coe�cients

(b), I use a one-step GMM estimation that equally weights pricing errors as my focus is explaining

the variation in the size and book-to-market and size and momentum portfolios per se. The alter-

natives are multi-step procedures that give more weight to explaining returns on more statistically

informative combinations of the underlying test assets. This leads to smaller asymptotic standard

errors, but the results can be less-robust in sample (see, e.g. Cochrane (2005)). The risk premiums
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are implied by the discount-factor coe�cients (see, e.g. Cochrane (2005), p. 108) and I compute

standard errors for the risk premiums via the delta method.

Insert Table 4 about here

Following Cochrane (1996), Cochrane (2005), and Lioui and Maio (2014), among others I present

three measures of overall model fit. First, I present mean absolute pricing errors for each model

(|↵|) based on the one-step estimation. The mean absolute pricing error is given by:

|↵| = N�1

NX

i=1

|↵i|, (10)

where N is the number of assets and ↵i denotes the pricing error of the ith asset. The pricing error

(↵i) can be interpreted as the di↵erence between the average excess return on portfolio i (R̄e
i ), and

that implied by the estimated model (�CovT (mt, Re
it)):

↵i =

 
T�1

TX

t=1

m̂tR
e
it

!
=

 
T�1

TX

t=1

Re
it

!
� (�CovT (m̂t, R

e
it)), (11)

where CovT denotes sample covariance.

As a second measure of model fit, I also present an OLS R2 measure from a simple regression

of average returns on factor �s with no constant:

R̄e
i = �0

i�+ ⌘i (12)

I define:

R2

OLS = 1�VarN (⌘i)/VarN (R̄e
i ), (13)

where V arN (xi) denotes the cross-sectional variance of xi. Note that using the variance instead of

the second moment of Re
i in Eq. (13) allows the R2

OLS to be negative in the absence of a constant

from the regression in Eq. (12). A negative R2

OLS would indicate that the asset pricing model

explains less of the cross-sectional variation of returns than a simple constant, and vice versa.

As a third measure of model fit, I also present the Hansen (1982) J test of the null that the
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pricing errors are jointly equal to 0 (over-identifying restrictions). The J statistic is given by:

J = T↵0
2SŜ

�1↵
2S ⇠ �2(N �K), (14)

where K is the number of factors, Ŝ is the estimated covariance matrix of the average pricing errors

(the “spectral density matrix”), and ↵
2S are the pricing errors from a two-step “e�cient” GMM

estimation where Ŝ�1 is the weighting matrix.

In Panels A and B, I compare the four factor model consisting of the Fama-French three factors

and the Carhart momentum factor with the two-factor ICAPM consisting of MKT and FFED. In

Panel A, I use the 1989:1-2008:12 sample period of the Federal funds futures market surprises. As

expected, the Fama-French-Carhart model explains much of the cross-sectional variation in average

returns over this sample with an R2

OLS of 0.74 and a mean absolute pricing error (|↵|) of 1.67% per

annum. Further, MKT , HML, and MOM all have significant discount factor coe�cients though

the sample period seems too short to estimate statistically significant risk premiums.

Over the same sample period, the two-factor ICAPM achieves an R2

OLS of 0.76, higher than that

of the Fama-French-Carhart model, and has a lower |↵| of 1.57% per annum. The risk premium

on FFED is positive and significant as well. Overall, over 1989:1-2008:12, the two-factor ICAPM

explains the spread in average returns on the 50 size and book-to-market and size and momentum

portfolios about as well as the Fama-French-Carhart model. This conclusion is confirmed by the

statistically indistinguishable J statistics across models. As is common in asset pricing models, the

J statistic wildly rejects all models statistically.

Panel B also presents estimations of the Fama-French-Carhart model and the two-factor ICAPM,

but over the 1952:1-2013:12 sample. The results appear similar to those in Panel A, but the longer

sample period results in less noisy average returns and subsequently, more precise estimates. The

Fama-French-Carhart model earns an R2 of 0.81 and an |↵| of 1.17% per annum, whereas the

two-factor ICAPM earns a very similar R2 of 0.81 and a similar |↵| of 1.09% per annum. FFED

also earns a positive risk premium and a negative discount factor coe�cient that are significant at

the 1% level.

Panels A and B of Figure 2 present a plot of average returns versus those predicted by the
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GMM estimates for the the two-factor ICAPM and Fama-French-Carhart models, respectively.

These corresponds to the estimates in Panel B of Table 4. The two figures look very similar,

although the two-factor ICAPM seems to have slightly smaller pricing errors in the non-extreme

portfolios whereas the Fama-French-Carhart model seems to have smaller pricing errors on the

smaller extreme growth portfolios szbm
21

and szbm
11

.

Insert Figure 2 about here

FFED was constructed from portfolios formed on size and book-to-market and size and mo-

mentum return. A natural question is whether the two-factor ICAPM prices just the size and

book-to-market portfolios, or just the size and momentum portfolios, as well as the four factor

model. Hence, Panels C and D of Figure 2 show plots of the average excess returns over 1952:1-

2013:12 on the size and book-to-market portfolios versus those predicted by a one-step GMM

estimation analogous to those from Table 4. The two-factor ICAPM explains the size and book-

to-market with a lower R2 of 0.61 versus 0.75 for the Fama-French-Carhart model. The two-factor

ICAPM also has a larger pricing error on the small-growth portfolio, resulting in slightly higher

|↵| of 1.08% per annum versus 0.98 for the Fama-French-Carhart model. Panels E and F of Fig-

ure 2 repeat the same exercise as Panels C and D, but with the size and momentum portfolios

instead of the size and book-to-market portfolios. The two-factor model has lower pricing errors

on most portfolios. The two-factor ICAPM earns a slightly higher R2 of 0.92 versus 0.90 for the

Fama-French-Carhart model, and a slightly lower |↵| of 0.97% per annum versus 1.13% per annum

for the Fama-French-Carhart model. Overall, the two-factor ICAPM prices both sets of test assets

well.

Panel C of Table 4 presents GMM estimates of equation (9) for the five-factor model with

MKT, SMB, HML, MOM, and FFED. All of the discount factor coe�cients besides that of

FFED are insignificant at the 10% level, whereas the coe�cient for FFED is still significant at

the 1% level. Further, a �2-test fails to reject the hypothesis that the discount factor coe�cients

on SMB, HML, and MOM are jointly zero, at the 10% level. Overall, this is consistent with the

Fama-French-Carhart factors not adding significant asset pricing information to FFED.

It is worth noting that every estimate of �FFED from the GMM estimations in Table 4 are
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within one standard error of the time series averages of FFED in Table 2.8 This helps to validate

the point estimates in Table 4 by verifying that the cross-sectional model does not price the test

assets only at the expense of deviating too far from the ex-post risk premiums (see, e.g. Cochrane

(2005)) of the factors.

Given these strong results, I again investigate whether the choice of base assets used in FFED

drives the results. In the Internet Appendix, I present results from a simulation of factors based on

the projection of random noise on the eight base assets I used to make FFED. In only 13 out of

10,000 (0.13%) such simulations do the simulated noise factors generate a t-statistic that is as great

or greater than that on FFED and t-statistics on SMB, HML and MOM that are less than or

equal to those on MKT , SMB, HML and MOM presented in Panel E of Table 4. Similarly, only

25 out of 10,000 simulations generate factors that jointly have as high of R2

OLS and as low of an

|↵| as FFED. The simulations imply that FFED almost certainly does not explain returns just

by randomly choosing a lucky combination of the base assets. Rather, FFED appears to derive

its asset pricing power by reflecting the risk associated with Federal funds policy announcements.

Moreover, many simulated FFEDs even have a negative R2

OLS . That is, they perform worse than

a constant even though they are constructed from the extreme size and book-to-market and size

and momentum portfolios.

Overall, the evidence in Tables 3-4 indicate that Federal funds policy shocks command a positive

risk premium in equities and that FFED explains returns on portfolios formed on size, value and

momentum well. The Appendix also presents estimated �FFEDs for the test assets. The �FFEDs

decrease with size, and increase with value and momentum return. Thus, given the positive risk

premium from Table 4, one can visualize how the size, value and momentum premiums can be

interpreted as compensation for exposure to the risk captured by FFED.

4. Contrast with prior literature

The evidence above indicates that Federal funds policy shocks have a positive risk premium. In

this section, I investigate ICAPM-based explanations for why prior literature finds a negative risk

8This can be seen by inverting the t-statistics in Table 4
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premium on monthly or quarterly innovations in the Federal funds rate. The level of the Federal

funds rate negatively forecasts market returns and positively forecasts volatility, so its innovations

should earn a negative risk premium in the cross-section of returns, all else equal. However, if

the FOMC sets the Federal funds rate according to the rule given by Eq. (1), then the Federal

funds rate could simply inherit its negative forecasting power for returns from the business cycle

and inflation. If this is the case, then monthly or quarterly Federal funds innovations could simply

proxy for innovations in the business cycle and inflation, which dominate the policy shock portion of

the innovation, earning a negative risk premium as a result. Hence, I test whether the the business

cycle and inflation explains the forecasting relationship between the Federal funds rate and the

investment opportunity set.

To do this, Table 5 presents forecasting regressions of the form:

rt+1,t+h = ↵+ �0Xt + ✏t+1,t+h, (15)

where rt+1,t+h denotes the log excess returns on the CRSP value-weighted index over months t+1

through t+h. In Panel A, Xt includes FF and log(D/P ), the Federal funds rate and log dividend-

price ratio on the CRSP value weighted stock index, respectively. I include log(D/P ) following

Ang and Bekaert (2007) as I find in untabulated tests that the Federal funds rate has at most

marginally significant forecasting power without controlling for the dividend yield. In Panel B, Xt

also includes GAP and ⇡t�12,t, the output gap of Cooper and Priestley (2009)9 and log-inflation over

the 12 months ending in month t, respectively. Following Ang and Bekaert (2007) and Brogaard

and Detzel (2015), I use Hodrick (1992) standard errors.

Insert Table 5 about here

Panel A shows that the Federal funds rate is a significant, negative forecaster of returns. However,

Panel B shows that adding GAP and ⇡t�12,t eliminates the significance of the Federal funds rate in

forecasting returns. Though insignificant, the slope on FF remains negative. This should not be

considered evidence that policy shocks negatively forecast returns. GAP and ⇡t�12,t are imprecisely

9GAP denotes log industrial production with a quadratic time-trend removed. Monthly measures of output
generally rely on Industrial Production as GDP is only available quarterly.
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measured proxies of the variables in the monetary policy rule given by Eq. (1). Hence, GAP and

⇡t�12,t will not perfectly capture all of the variation in the precisely measured, market-based FF .

Moreover, any other business cycle and inflation measures that the Federal Reserve responds that

are absent from the Taylor rule specified in Eq. (1) further exacerbate this problem.

The Federal funds rate may also relate to another important dimension of investment opportu-

nities, the volatility of the market return (see, e.g., Maio and Santa-Clara (2012)). Hence, following

Maio and Santa-Clara (2012) I consider similar tests as those in Table 5, but with the variance of

the market return as the dependent variable. Table 6 presents the variance forecasting regressions,

which take the form:

V ARt+1,t+h = ↵+ �0Xt + ✏t+1,t+h, (16)

where V ARt+1,t+h = V ARt+1

+ ... + V ARt+h and V ARt is the variance of daily returns on the

CRSP value-weighted index in month t.

Insert Table 6 about here

Panel A shows that the Federal funds rate is a significant predictor of variance at the 12-month hori-

zon. However, Panel B shows that, like returns, adding GAP and ⇡t�12,t eliminates the significance

of the Federal funds rate in forecasting return variance.

Overall, the evidence from Tables 5 and 6 is consistent with business cycle and inflation driving

the relationship between the level of the Federal funds rate and the investment opportunity set.

Hence, if innovations in the Federal funds rate earn a negative risk premium, they seem to do so

because they capture innovations in the business cycle or inflation as opposed to policy shocks.

5. Robustness

In this section I discuss the robustness of my main results that Federal funds policy shocks command

a positive risk premium and price sorts on size, value and momentum.
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5.1. Federal funds risk during the zero lower bound period

FFED was formed using all available policy shocks over the 1989-2008 sample. During this sample

and the extended 1952:1-2013:12 sample, FFED prices assets well, suggesting that the asset pricing

power of FFED is stable. However, one may seek reassurance of the stability of the relationship

between FFED and the asset pricing news captured by monetary policy shocks. A recent quasi-

experiment provides at least some opportunity for such reassurance. In December 2008, the Federal

Reserve replaced the single Federal funds target rate with a range of 0 to 25 basis points. This so-

called “zero lower bound” remains through the end of the sample. During this period, risk associated

with large changes in the Federal funds rate, particularly decreases, was minimal. Hence, the risk

premium earned by FFED should be less during this period.

To investigate, I compare the returns on FFED over the 60 zero-lower-bound months of the

sample (2009:1-2013:12) to those from the 60 months leading up to this period. Table 7 presents

estimations of two CAPMs with FFED as the dependent excess return. Controlling for just the

market factor as the CAPM does leaves the average return attributable to the hedging risk portion

of the ICAPM (the �0
i,�z�z portion of Eq. (7)). In Column (1) the sample is the 60 months prior

to the institution of the zero lower bound (2004:1-2008:12) and in Column (2) the sample is the 60

zero-lower-bound months (2009:1-2013:12).

Insert Table 7 about here

In the 60 months prior to the institution of the zero lower bound, FFED earned a sizable CAPM

↵ of about 50 basis points per month (6% p.a.). However, in the 60 zero-lower-bound months

FFED e↵ectively earned a CAPM ↵ of zero. A standard robust Wald test (untabulated) rejects

at the 5% level the null that CAPM ↵ of FFED was not greater prior to the zero-lower-bound

period.10 These patterns are consistent with FFED capturing low Federal funds risk during the

out-of-sample zero-lower-bound period and earning a commensurate risk premium of 0.

10This is a one-sided test. The corresponding test with a two-sided alternative is significant at the 10% level.
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5.2. FFED and factors related to Federal funds rate

The forecasting regressions in Tables 5 and 6 indicate, via the ICAPM, that the negative risk

premium on innovations in the Federal funds rate comes from the business cycle and inflation

rather than policy shocks. Rather than only rely on this ICAPM implication, I directly verify that

monthly innovations in the Federal funds rate and related factors do not explain the asset pricing

power of FFED in the cross-section of returns. I do this by forming mimicking portfolios for

factors related to monetary policy shocks, constructed from the same set of base assets as FFED,

and investigating whether they can explain the asset pricing results in Section 3. This has the

additional benefit of providing further evidence that the asset pricing power of FFED does not

simply come from the choice of base assets used in its construction.

I generate the mimicking portfolios for the several factors related to the Federal funds rate by

estimating the following:

�rrt = arr +Xt · brr +�rr,t�1

· crr + ✏rrt (17)

�BILLt = aBILL +Xt · bBILL +�BILLt�1

· cBILL + ✏BILL
t (18)

�FF t = aFF +Xt · bFF +�FFt�1

· cFF + ✏FF
t (19)

⇡t+1,t+12

= a⇡ +Xt · b⇡ + ⇡t�12,t�1

· c⇡ + ✏⇡t (20)

Xt denotes the same set of test assets as in Eq. (4) but at the monthly frequency. The lagged

macro variables in Eqs. (17)-(20) control for predictable variation in the macro variable allowing

the loadings on the base assets to more cleanly reflect innovations in the variables (see, e.g. Vassalou

(2003)). To get the most precise estimates on the b’s, the sample period for equations (17)-(20)

span 1952:1 through 2013:12 unless limited by data constraints. ⇡t+1,t+12

limits the sample period

to end in 2012:12 in equation (20) and FF limits the sample period to start in July 1954 in equation

(19). The four respective mimicking portfolios are given by:

FZ,t = Xt · b̂Z , Z = rr, BILL, FF,⇡t+1,t+12

(21)
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Panels A and B of Table 8 present one-step and two-step GMM estimates, respectively, of the model

given by Eq. (9) with factors MKT , FFED, FBILL, FFF , Frr , and F⇡. The test assets include all

50 size and book-to-market and size and momentum portfolios.

Insert Table 8 about here

The replicating portfolios for the changes in BILL and FF earn a negative risk premium, consistent

with the aforementioned prior literature. F⇡ does as well. However, the real interest rate replicating

portfolio earns a positive risk premium, consistent with the ICAPM but in contrast with the negative

risk premium found by Brennan et al. (2004). Most importantly, the interest rate and inflation

factors do not subsume the explanatory power of FFED as none of the discount factor coe�cients

besides FFED’s are significant in one-step or two-step estimation.

5.3. Signaling and uncertainty

Federal funds policy shocks could command a positive risk premium because they reflect a signal

that the Fed has more optimistic expectations about the future path of the economy than does

the market. This is consistent with Romer and Romer (2000) who find that the Federal Reserve

possesses a private forecast of inflation and output that is not subsumed by commercially available

forecasts. However, this view is hard to reconcile with the fact that stock prices fall in response

to positive Federal funds policy shocks. Boyd, Hu and Jagannathan (2005) argue that stocks can

fall in response to good news, because this news increases expectations of future interest rates.

However, Bernanke and Kuttner (2005) find a very small impact of monetary policy shocks on

expected future interest rates.

Bekaert, Hoerova and Lo Duca (2013) find that Federal funds policy shocks positively correlate

with uncertainty, proxied by the VIX index. Increasing risk could explain why Bernanke and

Kuttner (2005) find that positive Federal funds shocks increase the equity risk premium. However,

VIX commands a negative risk premium (see, e.g., Ang et al. (2006)) as risk and uncertainty

adversely a↵ect the investment opportunity set. If tighter monetary policy increases the equity

risk premium only by increasing the quantity of risk, then Federal funds policy shocks should

command a negative risk premium, counter to my results. Rather, my results are consistent with
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tighter monetary policy increasing the market Sharpe ratio via increasing expected returns on the

market. Similarly, Pástor and Veronesi (2013) shows that policy uncertainty can increase the equity

risk premium. Hence, positive Federal funds policy shocks could correlate with increased policy

uncertainty as well. However, policy uncertainty also commands a negative price of risk (see, e.g.,

Brogaard and Detzel (2015)). Hence, the e↵ect of monetary policy shocks on stock prices does not

appear to come from e↵ects on risk or uncertainty.

5.4. Intermediaries

Monetary policy works directly through financial intermediaries in executing its open market opera-

tions. Hence, one likely explanation for my results comes from the recent literature on intermediary

based asset pricing that posits a relationship between monetary policy and aggregate expected re-

turns. He and Krishnamurthy (2013) and Drechsler et al. (2014) present models in which a reduction

of the Federal funds rate increases the ability of relatively risk tolerant financial intermediaries to

bid up asset prices, lowering risk premia and Sharpe ratios.

Adrian et al. (2014) argue that the leverage of the intermediary sector should be a state variable

that describes the pricing kernel of intermediaries. They construct a mimicking portfolio, LMP

for intermediary leverage in a comparable fashion as FFED. The two factors have qualitative

di↵erences in their loadings on the base assets. FFED is dominated by positions in small-cap

portfolios whereas LMP does not have a strong size tilt. Further, LMP has a large negative weight

in growth stocks whereas FFED does not have a significant position in growth.11 Nonetheless,

given the likely relationship of Federal funds risk with the intermediary channel, I test whether

LMP explains the asset pricing power of FFED. Panels A and B of Table 9 present one-step and

two-step GMM estimates, respectively, of the models with factors MKT and LMP , and MKT ,

FFED, and LMP .

Insert Table 9 about here

11They only use the momentum factor as opposed to four size momentum portfolios, and use the 6 size and book-
to-market portfolios, as opposed to the four extreme portfolios from the 25 size-value portfolios, slightly limiting the
comparison. However, in untabulated results I verify that the comparison I make still holds if I construct FFED with
the same portfolios they use.
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MKT and LMP alone explain 57% of the variation in average returns on the 50 portfolios, with

LMP earning a significant risk premium. Adding FFED increases the R2 further to 0.85 and

reduces the mean absolute pricing error from 1.78% per annum to 1.00%.12 In one-step estimation

LMP does not have a significant discount factor coe�cient in the presence of FFED, but in

two step estimation, both factors have significant discount factor coe�cients, suggesting that both

factors help to price assets. In particular, Table 9 is evidence against the null that intermediary

leverage explains the returns associated with Federal funds policy risk. Hence, the intermediary

channel does not yet appear to fully explain the risk premium of FFED.

5.5. Additional results in the Internet Appendix

Aside from the simulations and factor loadings described in Section 3, the Internet Appendix

contains two additional robustness results and a detailed review of related literature.

The first of the two robustness checks verifies that there is a positive risk premium on the

monthly frequency measure (BK) that Bernanke and Kuttner (2005) uses to relate monetary

policy to expected returns. I perform this check via sorting common stocks into portfolios based

on estimated exposure to BK and observing that average returns as well as CAPM and Fama and

French (1993)-three factor alphas increase monotonically with exposure to BK. This is consistent

with my evidence of a positive risk premium on Federal funds policy shocks. However, BK su↵ers

from several sources of noise and endogenous variation, discussed further in the Internet Appendix,

so I do not rely on it for my main results.

The second robustness check shows how vector autoregression (VAR)-based identification can

fail to produce Federal funds policy shocks that are truly independent of business cycle and inflation

shocks, even if they are all mutually orthogonal in sample. Thorbecke (1997) uses a structural VAR

to isolate monthly Federal funds policy shocks that are orthogonalized with respect to industrial

production and inflation shocks and finds a negative risk premium on the Federal funds shocks.

However, I estimate several ICAPMs and find that these Federal funds shocks only have a negative

risk premium in the absence of the industrial production shocks. That is, these Federal funds

12In untabulated tests, the results are qualitatively similar when I construct FFED with exactly the same base
assets as used for LMP .
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shocks seem to inherit a negative risk premium from production shocks in spite of the in-sample

orthogonalization.

6. Conclusion

Monetary policy has a large impact on asset prices, though the asset pricing implications of exposure

to monetary policy are not completely understood. I use futures contracts to isolate Federal funds

policy shocks and find that, contrary to the existing evidence, these shocks command a positive risk

premium in the cross-section of stock returns. Moreover, a two-factor model with the market excess

return and a portfolio that mimics Federal funds policy shocks prices the cross section of returns

well. This evidence is consistent with that of Bernanke and Kuttner (2005) that expansionary

Federal funds policy shocks decrease aggregate expected excess returns, adversely impacting the

investment opportunity set. I also find that the level of the Federal funds rate negatively relates to

investment opportunities, but only because it captures the business cycle and inflation, which the

Federal Reserve reacts to. As a result, previously used measures of Federal funds innovations seem

to earn a negative risk premium because they capture changes in economic conditions, not shocks

to monetary policy.

This evidence has consequences for monetary policy. In the standard textbook treatment (see,

e.g., Mankiw (2016)), the Federal Reserve attempts to use expansionary monetary policy to increase

aggregate demand. The Federal Reserve may increase wealth via an expansionary monetary policy

shock that raises asset prices. By itself, this would increase the consumption portion of aggregate

demand. However, the evidence in this work indicates that even if an expansionary monetary policy

shock increases wealth, it also adversely a↵ects the investment opportunity set for this wealth, which

has a countervailing e↵ect on consumption. It then follows that the net e↵ect of a monetary policy

shock on consumption is ambiguous.

There is still an unanswered question of how monetary policy a↵ects the equity risk premium.

The positive risk premium I estimate on Federal funds policy shocks is inconsistent with tighter

monetary policy simply increasing risk through such channels as weakening balance sheets of firms

(see, e.g., Bernanke and Gertler (1995)) or increasing policy uncertainty. The more likely possibility
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is that Federal funds policy a↵ects risk premia through the financial intermediary channel. In

these models (see, e.g., Drechsler et al. (2014) and He and Krishnamurthy (2013)), a reduction

in the Federal funds rate allows relatively risk tolerant intermediaries to increase their leverage

and bid up asset prices, lowering risk premia and Sharpe Ratios, adversely a↵ecting investment

opportunities. This is consistent with the positive risk premium I estimate on Federal funds policy

shocks. However, I find that a mimicking portfolio for intermediary leverage, a key state variable

in intermediary asset pricing (see, e.g., Adrian et al. (2014)) fails to explain the returns on my

Federal funds policy shock portfolio. Thus, intermediary asset pricing currently provides at most

an incomplete theory of how monetary policy a↵ects risk premia. Future research is needed to

furnish such a complete theory.
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Figure 1: Federal funds policy shocks.
This figure depicts the 182 Federal funds policy shocks (�ru) based on changes in Federal funds
futures rates on days of FOMC announcements from Jun 5, 1989 through December 16, 2008.
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Figure 2: Predicted vs. actual average excess returns from one-step GMM estimations of two
linear pricing kernel models for three di↵erent sets of assets.
In the left panels, the factors are MKT, FFED and in the right panels they are MKT, SMB,
HML, MOM . Panels (A) and (B) show results for the 25 size and book-to-market and 25 size
and momentum portfolios. Panels (C) and (D) ((E) and (F)) show estimates form just the size and
book-to-market (size and momentum portfolios) portfolios.
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Table 1: Variable definitions

Name Definition Source

szbmij Excess return on the portfolio in the ith size quintile and jth Book-to-Market

quintile from the Fama French 25 Size and Book-to-Market Sorted Portfolios

Kenneth French Website

szmij Excess return on the portfolio in the ith size quintile and jth Momentum

quintile from the Fama French 25 Size and Momentum Sorted Portfolios

Kenneth French Website

MKT Excess Return on the CRSP Value-Weighted Index Wharton Research Data Ser-

vices (WRDS)

SMB Fama and French (1993) size factor WRDS

HML Fama and French (1993) value factor WRDS

MOM Carhart (1997) momentum factor WRDS

CPI Consumer Price Index (CPI) St Louis Federal Reserve

Website (FRED)

⇡t+1,t+12 Change in log CPI over months t+ 1 to t+ 12 FRED

rr Real 1-month bill rate: log one-month Treasury bill yield minus the first dif-

ference in log(CPI)
WRDS and FRED

BILL Yield on the 3-month treasury bill FRED

FF E↵ective federal funds rate (Note that the monthly frequency FF on FRED is

the average calender daily e↵ective federal funds rate)

FRED

GAP Monthly output gap of Cooper and Priestley (2009) formed by removing a

quadratic time trend from the natural log of the Industrial Production Index

FRED
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Table 2: Summary statistics

This table presents means, standard deviations, minimums and maximums of the variables used
in the paper. MKT denotes the excess return on the CRSP value-weighted index, SMB and
HML are the Fama French size and value factors, MOM denotes the Carhart (1997) momentum
factor. �rud denotes the federal funds policy shock on day d. rr denotes the real log 1-month
bill rate. ⇡ denotes the one-month change in log(CPI) and ⇡t+1,t+12

denotes the change in
log(CPI) over the following 12 months. FF denotes the e↵ective federal funds rate (APR).
The frequency of all variables is monthly, except for �rud , which has 182 daily observations.
In Panel A, the sample is 1989:1-2008:12 (n = 240). In Panel B, the sample is 1952:1-2013:12
(n = 744 months), with one exception. The sample for which ⇡t+1,t+12

is available is 1952:1-2012:12.

Panel A: 1989-2008

Mean Std. Dev. Min Max

MKT 0.42% 4.28% -17.23% 10.83%
SMB 0.11% 3.49% -16.39% 22.00%
HML 0.29% 3.19% -12.60% 13.84%
MOM 0.97% 4.63% -24.97% 18.39%
FFED 0.77% 2.39% -15.79% 9.02%
FF 4.50% 2.14% 0.16% 9.85%
�rud -0.04% 0.11% -0.74% 0.17%
rr 0.11% 0.29% -1.08% 1.82%
⇡ 0.24% 0.28% -1.79% 1.37%

Panel B: 1952-2013

Mean Std. Dev. Min Max

MKT 0.59% 4.33% -23.24% 16.10%
SMB 0.19% 2.90% -16.39% 22.02%
HML 0.36% 2.71% -12.68% 13.87%
MOM 0.74% 3.97% -34.72% 18.39%
FFED 0.72% 2.06% -15.79% 10.81%
BILL 4.58% 3.02% 0.01% 16.30%
FF 5.16% 3.54% 0.07% 19.10%
rr 0.08% 0.28% -1.09% 1.82%
⇡ 0.29% 0.31% -1.79% 1.79%
⇡t+1,t+12

3.52% 3.65% -20.51% 19.73%
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Table 3: Size, value, momentum, investment, and profitability returns controlling for FFED

This table presents estimates from time-series regressions of the form: rit = ↵i + �iFFEDt + ✏it.
Each i denotes one of the following: SMB, HML, MOM , CMA, or RMW . In Panel A, the
sample spans 1989:1-2008:12 (n=240). In Panel B, the sample is 1952:1-2013:12 (n=744), except
for CMA and RMW , which are only available since 1963. Parentheses below the estimates present
OLS t-statistics. The constant term is in units of % per month. *, ** and *** denote significance
at the 10%, 5% and 1% level respectively.

Panel A: 1989:1-2008:12

SMB HML MOM CMA RMW

↵ -0.03 -0.15 0.07 0.06 0.28
(2.12) (-0.77) (0.27) (0.39) (1.51)

FFED 0.19** 0.57*** 1.18*** 0.34*** 0.21***
(2.08) (7.24) (11.90) (6.21) (2.77)

N 240 240 240 240 240
R2 0.02 0.18 0.37 0.14 0.03

Panel B: 1952:1-2013:12

SMB HML MOM CMA RMW

↵ -0.07 0.01 0.00 0.11 0.23**
(-0.67) (0.09) (0.03) (1.33) (2.43)

FFED 0.36*** 0.48*** 1.02*** 0.29*** 0.04
(7.28) (10.73) (16.89) (8.26) (1.04)

N 744 744 744 606 606
R2 0.07 0.13 0.28 0.10 0.00

34



Table 4: GMM tests with FFED

This table presents one-step GMM estimations of several linear pricing kernel models. The test assets are the excess
returns on the Fama French 25 portfolios formed on size and book-to-market and the 25 portfolios formed on size
and momentum. In Panels A and B, the first five columns present estimates with factors MKT , SMB, HML,
and MOM , and the last three columns present estimates with factors MKT and FFED. In Panel C, the factors
are MKT, SMB, HML, MOM, and FFED. b and � denote the discount factor coe�cients and risk premiums,
respectively, for each factor. R2

OLS denotes the R2 from the OLS cross-sectional regression of average returns on
�s defined in section 3, and |↵| denotes the mean absolute pricing errors per annum. J denotes the Hansen (1982)
J test statistic and p-values are next to the Js in parentheses. �2 (bsmb, bhml, bumd) and p�2 denote the �2-test
statistic and p-value, respectively, of the test that the discount factor coe�cients on SMB, HML and MOM are
jointly 0. In Panel A, the sample is 1989:1-2008:12. In Panels B and C, the sample is 1952:1-2013:12. Newey and
West (1987) t-statistics based on three lags of serial correlation are in parentheses.

Panel A: 1989:1-2008:12

MKT SMB HML MOM MKT FFED

b -0.06 -0.02 -0.09 -0.06 b -0.03 -0.16
t(b) (-2.50) (-0.83) (-2.94) (-2.72) t(b) (-1.41) (-3.22)
� 0.44 0.13 0.37 0.99 � 0.40 0.86
t� (1.17) (0.45) (1.62) (2.19) t� (0.89) (3.02)

R2
OLS =0.74, |↵| =1.67, J =153(0.00) R2

OLS =0.76, |↵| =1.57, J =113(0.00)

Panel B: 1952:1-2013:12

MKT SMB HML MOM MKT FFED

b -0.05 -0.02 -0.10 -0.07 b -0.02 -0.19
t(b) (-4.36) (-1.35) (-5.19) (-4.28) t(b) (-1.41) (-4.58)
� 0.62 0.17 0.42 0.82 � 0.56 0.81
t� (2.84) (1.19) (3.44) (3.33) t� (2.14) (4.80)

R2
OLS =0.81, |↵| =1.17, J =218(0.00) R2

OLS =0.81, |↵| =1.09, J =158(0.00)

Panel C: 1952:1-2013:12

MKT SMB HML MOM FFED

b -0.02 0.04 0.04 0.03 -0.28
t(b) (-1.05) (1.30) (1.12) (1.32) (-3.42)
� 0.63 0.24 0.35 0.77 0.93
t� (2.67) (1.58) (2.74) (2.41) (4.72)

R2
OLS =0.87, |↵| =0.91, J =147(0.00)

�2 (bSMB , bHML, bMOM )=2.15, p�2 = 0.54
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Table 5: Forecasts of log excess returns on the stock market with the Federal funds rate: with
and without output gap and inflation

This table presents forecasting regressions of the form: rt+1,t+h = ↵ + �0Xt + ✏t+1,t+h, where
rt+1,t+h denotes the log excess return on the CRSP value-weighted index over months t+1 through
t+ h. In Panel A, Xt includes FF and log(D/P ), the Fed funds rate and log dividend-price ratio
on the CRSP value weighted stock index, respectively. In Panel B, Xt also includes GAP and
⇡t�12,t, the output gap of Cooper and Priestley (2009) and log-inflation over the 12 months ending
in month t, respectively. The sample period is 1954:8-2013:12. t-statistics based on Hodrick (1992)
standard errors are in parentheses. *, **, and *** denote significance at the 10%, 5% and 1%
levels, respectively.

Panel A: Forecasts with FF and log(D/P )

h=1 h=3 h=6 h=12

FF -0.12** -0.51*** -0.86*** -1.43**
(-2.21) (-3.05) (-2.67) (-2.32)

log(D/P ) 1.63*** 4.62*** 8.38*** 14.40**
(3.08) (2.93) (2.70) (2.34)

N 713 711 708 702
adj-R2 0.01 0.05 0.08 0.11

Panel B: Forecasts with FF , log(D/P ), GAP , and ⇡t�12,t

h=1 h=3 h=6 h=12

FF -0.04 -0.27 -0.40 -0.97
(-0.51) (-1.19) (-0.90) (-1.16)

log(D/P ) 1.23** 3.15* 5.15 7.25
(2.07) (1.81) (1.51) (1.09)

GAP -5.08* -17.62** -37.71** -75.85**
(-1.86) (-2.19) (-2.33) (-2.36)

⇡t�12,t -9.48 -22.75 -38.47 7.94
(-0.86) (-0.71) (-0.62) (0.07)

N 713 711 708 702
adj-R2 0.02 0.07 0.12 0.18
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Table 6: Forecasts of the variance of excess returns on the stock market with the Federal funds
rate: with and without output gap and inflation.

This table presents forecasting regressions of the form: V ARt+1,t+h = ↵ + �0Xt + ✏t+1,t+h, where
V ARt+1,t+h = V ARt+1

+ ... + V ARt+h and V ARt is the variance of daily returns on the CRSP
value-weighted index in month t. In Panel A, Xt includes FF and log(D/P ), the Fed funds rate
and log dividend-price ratio on the CRSP value weighted stock index, respectively. In Panel B, Xt

also includes GAP and ⇡t�12,t, the output gap of Cooper and Priestley (2009) and log-inflation over
the 12 months ending in month t, respectively. The sample period is 1954:8-2013:12. t-statistics
based on Hodrick (1992) standard errors are in parentheses. *, **, and *** denote significance at
the 10%, 5% and 1% levels, respectively.

Panel A: Forecasts with FF and log(D/P )

h=1 h=3 h=6 h=12

FF 0.00 0.00 0.01 0.04**
(0.16) (0.62) (1.12) (2.32)

log(D/P ) -0.11*** -0.37*** -0.80*** -1.74***
(-6.72) (-6.95) (-7.11) (-7.02)

N 713 711 708 702
adj-R2 0.04 0.06 0.09 0.15

Panel B: Forecasts with FF , log(D/P ), GAP , and ⇡t�12,t

h=1 h=3 h=6 h=12

FF -0.01 -0.02 -0.04 -0.04
(-1.33) (-1.41) (-1.37) (-0.81)

log(D/P ) -0.16*** -0.52*** -1.05*** -2.04***
(-7.33) (-6.94) (-7.14) (-7.24)

GAP -0.40*** -1.15*** -1.79*** -1.85*
(-3.76) (-3.45) (-3.07) (-1.74)

⇡t�12,t 1.56*** 5.60*** 11.45*** 17.00***
(3.16) (3.13) (3.14) (2.85)

N 713 711 708 702
adj-R2 0.05 0.10 0.14 0.18
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Table 7: Returns on FFED prior to and during the zero lower bound

This table presents two time series regressions of FFED on the market excess return. In column
(1), the sample period is the last 60 months before the FOMC instituted the zero lower bound
(2004:1-2008:12). In column (2), the sample period is the last 60 months of the sample during
which the federal funds rate is at the “zero lower bound” (2009:1-2013:12). Units are percent
per month so that 0.01 denotes one basis point. Heteroskedasticity-robust t-statistics are in
parentheses. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively.

(1) (2)

MKT 0.133** 0.087
(2.10) (0.74)

↵ 0.515** -0.004
(2.53) (-0.01)

N 60 60
adj-R2 0.077 0.002
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Table 8: GMM tests with FFED and related factors

This table presents estimated discount factor coe�cients and risk premiums from GMM esti-
mations of the linear pricing kernel model with factors MKT , FFED, FFF , FBILL, Frr, and
F⇡. The test assets are the monthly excess returns on the Fama French 25 portfolios formed on
size and book-to-market and the 25 portfolios formed on size and momentum. Panel A and B
present one-step and two-step GMM estimates, respectively. R2

OLS denotes the R2 from the OLS
cross-sectional regression of average returns on �s defined in section 3, and |↵| denotes the mean
absolute pricing errors expressed per annum. J denotes the Hansen (1982) J test statistic and
p-values are next to the Js in parentheses. The sample is 1952:1-2013:12. Newey and West (1987)
t-statistics based on three lags of serial correlation are in parentheses.

Panel A: (One-Step) MKT, FFED, FFF , FBILL, Frr, F⇡

MKT FFED FFF FBILL Frr F⇡

b -0.02 -0.20 -0.05 0.04 0.00 0.07
t(b) (-0.97) (-2.98) (-0.36) (0.35) (-0.04) (0.98)
� 0.62 0.89 -0.72 -0.66 0.28 -0.30
t� (2.60) (4.24) (-3.77) (-3.00) (1.85) (-2.66)
R2

OLS =0.88, |↵| =0.88

Panel B: (Two-Step) MKT, FFED, FFF , FBILL, Frr, F⇡

MKT FFED FFF FBILL Frr F⇡

b -0.01 -0.19 0.09 -0.02 -0.02 0.02
t(b) (-0.40) (-5.67) (0.89) (-0.21) (-0.57) (0.33)
� 0.94 0.98 -1.19 -1.18 0.40 -0.37
t� (4.48) (8.87) (-8.56) (-7.54) (3.80) (-5.05)
J =152.43(0.00)

39



Table 9: GMM tests with FFED and the intermediary leverage mimicking portfolio

This table presents estimated discount factor coe�cients and risk premiums from GMM estima-
tions of several linear pricing kernel models. The test assets are the monthly excess returns on the
union of the Fama French 25 portfolios formed on size and book-to-market and the 25 portfolios
formed on size and momentum. The first three columns present estimates from the model with
factors MKT and LMP and the last four columns present estimates with FFED as well. Panel
A uses one-step GMM and Panel B uses two-step GMM. b and � denote the discount factor
coe�cients and risk premiums, respectively, for each factor. R2

OLS denotes the R2 from the OLS
cross-sectional regression of average returns on �s defined in section 3, and |↵| denotes the mean
absolute pricing errors expressed per annum. J denotes the Hansen (1982) J test statistic and
p-values are next to the Js in parentheses. The sample is 1952:1-2013:12. Newey and West (1987)
t-statistics based on three lags of serial correlation are in parentheses.

Panel A: (One-Step) MKT, LMP , FFED

MKT LMP MKT FFED LMP

b 0.00 -0.11 b -0.01 -0.14 -0.04
t(b) (-0.30) (-4.78) t(b) (-0.78) (-2.81) (-1.07)
� 0.64 1.21 � 0.58 0.78 1.11
t� (2.65) (5.61) t� (2.24) (4.70) (4.64)
R2

OLS =0.57, |↵| =1.78 R2

OLS =0.85, |↵| =1.00

Panel B: (Two-Step) MKT , LMP , FFED

MKT LMP MKT FFED LMP

b 0.01 -0.12 b -0.01 -0.19 -0.05
t(b) (0.61) (-8.78) t(b) (-1.17) (-7.2) (-2.83)
� 0.53 1.35 � 0.68 1.03 1.45
t� (2.92) (9.18) t� (3.47) (9.98) (8.76)
J =235(0.00) J =164(0.00)
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Internet Appendix to Monetary Policy Surprises,

Investment Opportunities, and Asset Prices

December 14, 2015

This Internet Appendix includes supplemental results to augment those in the paper. Section 1

presents simulations to validate the construction of FFED. Section 2 presents asset pricing results

with the monthly frequency measure of Federal funds policy shocks used by Bernanke and Kuttner

(2005). Section 3 discusses a vector autoregression-based measure of Federal funds policy shocks.

Section 4 presents estimated �FFEDs for the 50 size and book-to-market and size and momentum

portfolios to explain how FFED prices these assets. Finally, section 5 presents a review of related

literature.

1. Simulations

Here I present simulation evidence that picking a “lucky” combination of the base assets does not

generate my main asset pricing results with FFED. I form ten thousand random “FFED”s by

regressing i.i.d. normal noise onto the eight base assets that I used to make FFED over the monthly

sample period 1952:1-2013:12. I then simulate some of the important test statistics that I generate

in this paper and consider the null hypothesis that my results are simply due to randomly picking

a particularly powerful combination of the base assets.

More specifically, I generate (n=744) random sequences of i.i.d. standard normal random vari-

ables, denoted zi,t, i = 1, ..., 10, 000, t = 1, ..., 744. t = 1 through t = 744 corresponds to each

month from January 1952 through December 2013. I then estimate the same regressions as for
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FFED for each i:

zi,t = ai + (szbm11, szbm15, szbm51, szbm55, szm11, szm15, szm51, szm55)t · bi + ✏it, (1)

I normalize the vector b̂i to have length 1 so that the simulated value of the mimicking portfolio,

FFEDSIM
it , in month t is given by:

FFEDSIM
it = (szbm11, szbm15, szbm51, szbm55, szm11, szm15, szm51, szm55)t ·

b̂i

kb̂ik
. (2)

Note that the simulated FFEDSIM
it s keep the same one historical sample of szbm11, szbm15,

szbm51, szbm55, szm11, szm15, szm51, and szm55, but I generate random noise to project onto

this one history of base assets. Hence, the simulations address the likelihood of whether a randomly

drawn “FFED” would produce as strong or stronger results as those reported in the paper, simply

by choosing the right combination of the base assets by chance.

Figure A1 Panels A, B and C plot distributions of the estimated intercepts from the time-series

regressions of SMB, HML and MOM on each of the 10,000 randomly generated FFEDSIM
i s.

The observations between the red line correspond to intercepts that are as small, or smaller, in

absolute value, to corresponding intercepts reported in Table 3. Beneath the x-axis are the empirical

frequencies of observations bound between the red lines. Panel D presents a scatter plot with of

the intercepts from the regressions of HML and MOM on each of the ten-thousand randomly

generated “FFED”s. The red lines cross through pairs of intercepts with the same absolute values

as those from the corresponding regression reported in Table 3 Panel B Right. The yellow dots

correspond to pairs of intercepts where both intercepts are less-than or equal to those reported by

Table 3. Beneath the x-axis is the empirical probability that one of the dots depicted is yellow.

None of the ten-thousand randomly generated FFEDSIM s generates ↵s on HML and MOM in

the estimation of (8) that are as small or smaller in absolute value as those reported in Table 3.

In short, it is extremely unlikely that a random combination of the base assets would generate a

factor that generates the same powerful time-series results as FFED.

Then, Figure A2 Panels A and B present histograms of mean absolute pricing errors |↵|s and
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cross-sectional R2
OLSs (defined in Section 3) for the GMM tests in table 4, for each of the ten-

thousand simulated “FFED”s. The vertical red lines denote the corresponding quantity reported

in Table 4. Beneath the x-axis in Panel A is the empirical probability that a random FFEDSIM

would have an |↵| that is less than or equal to that earned by the model MKT,FFED in Table

4. Panel B reports a similar probability that a cross-sectional R2
OLS on a randomly generated

FFEDSIM would be greater than or equal to that earned by the model MKT,FFED in Table 4.

Panel C presents a scatter of simulated cross-sectional R2
OLSs and |↵|s. The two red lines intersect

at the corresponding |↵| and R2
OLS reported in Table 4. Yellow dots denote combinations of |↵| and

R2
OLSs where |↵| is no greater and the R2

OLS is no less than the corresponding numbers in Table 4.

Beneath the x-axis in Panel (C) is the empirical probability that a dot is yellow.

Only 25 out of 10,000 randomly generated factors combine with the market excess return to

yield both a mean absolute pricing error that is less than or equal to that reported in Table 4 and

a cross-sectional R2
OLS that is as large or larger than that reported in Table 4. For each simulated

FFEDSIM
i , let ti,SMB, ti,HML and ti,MOM and tFFEDSIM

i
denote the t-statistics corresponding to

the test that bSMB, bHML, bMOM and bFFEDSIM
i

are significantly di↵erent than 0 from the one-step

GMM estimation of the factor model given by f = (MKT,SMB,HML,MOM,FFEDSIM
i ). This

is analogous to the test in Panel E of Table 4. I perform the following two computations:

• 0.25 % of the 10,000 simulated ti,SMB, ti,HML, ti,MOM and tFFEDSIM
i

fail to reject the null

that bSMB, bHML and bMOM are 0 at the 10% level while rejecting the null that bFFEDSIM
i

= 0

at the 5% level. That is, 0.25 % of the simulated FFEDSIM
i s satisfied:

|ti,SMB| >= ��1(0.95), |ti,HML| >= ��1(0.95), |ti,MOM | >= ��1(0.95), and (3)

|tFFEDSIM
i

| < ��1(0.975),

where � denotes the standard normal CDF.

• 0.13 % of the 10,000 simulated ti,SMB, ti,HML, ti,MOM were as small or smaller as those

reported in Table 4 while tFFEDSIM
i

was as large or larger. That is, 0.13 % of the simulated
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FFEDSIM
i s satisfied:

|ti,SMB|  1.30, |ti,HML|  1.12, |ti,MOM |  1.32, and (4)

|tFFEDSIM
i

| >= 3.42.

Overall, the empirical probabilities from the simulations allow me to reject the null hypothesis,

at the 1% level, that I would observe time-series or cross-sectional asset pricing results that are as

strong as those of FFED, simply by randomly generating mimicking portfolios from the history of

szbm11, szbm15, szbm51, szbm55, szm11, szm15, szm51, and szm55.

2. Supplemental tests with monthly Federal funds policy shocks

My study is motivated largely from the ICAPM implications of the evidence from Bernanke and

Kuttner (2005) that the impacts of monetary policy on stock prices comes largely through news

about expected returns. They do this using a monthly frequency proxy of Federal funds policy

shocks in order to use a Campbell and Shiller (1988)-type decomposition. In particular, they do

not use the more precisely measured daily policy shocks that my study takes advantage of. In this

section I perform additional analysis to determine if the monthly frequency measure of Bernanke

and Kuttner (2005) also commands a positive risk premium. This has at least two benefits. The first

is to verify that my study is well-founded. A negative risk premium on the monthly Bernanke and

Kuttner (2005) Federal funds policy shock measure would cast doubt on the ICAPM implication

that I use to explain the positive risk premium on my Federal funds announcement surprise portfolio

(FFED). The second benefit of testing the monthly Bernanke and Kuttner (2005) measure is that

it is already regularly spaced and can be used in asset pricing tests directly without the use of a

mimicking portfolio. This provides further evidence of the robustness of the positive risk premium

on Federal funds policy shocks.
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2.1. Construction and properties of the monthly measure

Letting Dm denote the number of calendar days in month m, the average daily Federal funds rate

implied by the one-month ahead Federal funds futures contract on the last day of month m� 1 is

given by:

f1
m�1,Dm�1

= $100� P 1
m�1,Dm�1

, (5)

where P 1
m�1,Dm�1

denotes the settlement price of the one-month-ahead futures contract on the last

day of month m�1. To get a sense of how well f1
m�1,Dm�1

forecasts one-month-ahead Federal funds

rates, Figure A3 presents a plot of three monthly-frequency time series. The first is the average

daily Federal funds rate each month, FFm. The second is the average daily target Federal funds

rate, FFTm. The third is the lagged one-month-ahead futures rate, f1
m�1,Dm�1

. The series nearly

lay on top of each other with only a small amount of noise separating the average daily Federal

funds rate from the other two series. In particular, the futures contracts appear to be an accurate

predictor of any of the two ex-post rates in the plot, consistent with the now-outdated evidence of

Krueger and Kuttner (1996) who find that fm�1,Dm�1 yields a rational and e�cient forecast of the

Federal funds rate at the one-month and two-month horizon.

I formally test this forecasting power as follows. Following, Kuttner (2001), Bernanke and

Kuttner (2005) and others, I define the “expected” change in the futures rate in month m to be

the di↵erence between the futures rate at the end of the previous month and the target rate at the

end of the previous month: f1
m�1,Dm�1

� FFTm�1. Then, I estimate forecasting regressions of the

form:

�Xm = a+ b
⇣
f1
m�1,Dm�1

� FFTm�1

⌘
+ ✏m, (6)

where Xm denotes the average daily e↵ective federal funds rate or target federal funds rate, in

month m. Table A1 presents the results.

Insert Table A1 about here

Table A1 also includes the F statistics for the hypothesis that b = 1. The F test fails to reject the

hypothesis that b = 1 in all four specifications. This is equivalent to failing to reject the null of a

time-varying forecast error. Further, the futures rate seems to over predict the changes in federal
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funds rate by a constant 5 or 6 base points per annum, which is small. Hence, at the one-month

horizon Federal funds futures contracts predict changes in the Federal funds rate with a small,

seemingly constant error.

Following Krueger and Kuttner (1996), Kuttner (2001), Bernanke and Kuttner (2005) and

others, I define the month-m surprise change in the target Federal funds rate by:

�̄rum =
1

Dm

X

d2m
FFTd � f1

m�1,Dm�1
. (7)

FFTd denotes the target Federal funds rate on day d of month m. The measure is available from

January 1989 through November 2008 when the Federal Reserve quit publishing a single target

rate. Starting December 16, 2008 the Federal Reserve began publishing a target range of Federal

funds rates. In December 2008, I replace the target Federal funds rate with the average daily

e↵ective Federal funds rate in equation (7) because the Federal Reserve ceased to publish a single

Federal funds target rate mid-month. I do not continue to construct �̄ru with the e↵ective rate

after December 2008 because the FOMC kept the Federal funds rate close to 0, and adopted so-

called unconventional monetary policy, which makes the Federal funds rate a questionable proxy

for monetary policy. Following the literature, I construct �̄ru using the average daily target rate

in month m as opposed to the average e↵ective rate over month m. One reason for doing this is

that the spread between the average daily e↵ective Federal funds rate represents high frequency

fluctuations in the demand for Federal funds that is hard to forecast and does not reflect monetary

policy (see, e.g., Bernanke and Blinder (1992)). To get a sense of how much of the variation in the

Federal funds rate comes from �̄ru, note that the correlation between �̄ru and �FF t is 0.24.

2.2. Asset Pricing Tests with �̄ru

To estimate a risk premium on �̄ru, I sort stocks based on their estimated exposures to past Federal

funds surprises. Each month, I estimate the following model:

rit � rft = ↵+ �(rmt � rft) + �$�̄rut + ✏it, (8)
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over the previous 60 months, for each common stock i in CRSP with at least 36 months of returns.

I then sort these stocks into 5 value-weighted quintiles excluding those stocks with share prices

below $5 following Asparouhova, Bessembinder and Kalcheva (2013). I denote the excess return on

the i-th quintile in month t as FEDit and the top-minus-bottom-��̄ru-quintile spread as FED5�1,t.

That is:

FED5�1,t , FED5t � FED1t (9)

The series begins 1994:1, 60 months after �̄ru becomes available and lasts through 2008:12 (n=180).

In Panels A through C of Table A2, I estimate several models of the form:

rpt � rft = ↵p + �0
pXt + ✏pt, (10)

where p = FEDi, i = 1, 2, 3, 4, 5 or p = 5� 1. Panel A presents average returns, Panel B presents

CAPM estimations (Xt = MKTt), and Panel C presents Fama-French 3-factor model estimations

(Xt = (MKT,SMB,HML)0).

Insert Table A2 about here

Average returns increase monotonically from the lowest to highest quintile portfolio. The top-minus-

bottom quintile di↵erence is economically significant at 58 base points per month, or equivalently

6.96% per annum. Similarly, the ↵s with respect to the CAPM model also increase monotonically

from the bottom to the top quintile. The CAPM ↵ on FED5�1 is 61 base points per month (7.32%

per annum). In Panel C, the three-factor ↵s increase monotonically from the bottom to top quintile

portfolios, with the spread FED5�1 earning a Fama-French three factor ↵ of 72 base points per

month (8.64% per annum). The three-factor abnormal return is also significant at the 5% level.

Furthermore, the loading on the market return is negative in Panels B and C as well, consistent

with FED5�1 acting as a mimicking portfolio for Federal funds innovations which are negatively

correlated with market returns.

Panel D of Table A2 presents post-ranking ��̄rus and �FFEDs from the following model:

rept = ↵+ �pMKTt + �X,pXt + ✏t, X = �̄ru, FFED. (11)
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The post-ranking ��̄rus increase monotonically from FED2 to FED4 though the point estimates

are not precisely estimated and the top and bottom quintiles both have negative, though in-

significant post-ranking ��̄rus. The ��̄ru of FED5�1 is -0.61% with an insignificant t-statistic

of t = �0.17. This level of imprecision in post-ranking betas for risk factors is not uncommon

in post-ranking samples this length (see e.g., Pástor and Stambaugh (2003) Table 7). Hence, this

evidence does not serve to reject a risk-based explanation for the relationship between ranking ��̄ru

and returns, just makes it less convincing. It is interesting to note, however, that the post-ranking

�FFEDs follow a similar pattern as those on �̄ru, increasing monotonically from quintile 1 to 4 but

falling to an insignificant level in quintile 5.

Overall, the evidence from Table A2 suggests that the monthly innovations in the Federal

funds rate (�̄ru) earns a positive risk premium. Further, this risk premium is not subsumed by

several common portfolio based risk factors, MKT , SMB and HML. The positive risk premium

is consistent with the �̄ru improving investment opportunities. Unfortunately, the weak spread in

post-ranking �̄ru �s precludes strong conclusions about the economic importance of the �̄ru risk

premium.

2.2.1. Discussion of �̄r

Unfortunately, the measure �̄ru also su↵ers from several conceptual drawbacks. First, the existence

of the futures contracts limits the measure to the 1989 through 2008 time period. Second, �̄ru

could reflect the endogenous response of the Fed to changes in the economy during month m, as

opposed to shocks to monetary policy. As noted by Bernanke and Kuttner (2005), this endogeneity

would tend to attenuate the measured sensitivity of returns to Federal funds surprises because the

Fed would, if anything, lower rates in response to a decrease in stock prices or bad news about the

economy. However, Bernanke and Kuttner also find that �̄rum is negatively correlated with returns

on the market, which is hard to reconcile with any explanation other than the market negatively

reacting to shocks in the stance of Federal funds policy.

A second problem is that the Federal funds futures rate only equals the expected future Federal

funds rate if investors are risk neutral. Rather, the futures rate is driven by the so-called “risk-
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neutral” expected future Federal funds rate. That is:

f1
m�1,Dm�1

= EQ
m�1[r̄m] = Em�1[r̄m] + �m�1. (12)

r̄m denotes the average daily Federal funds rate in monthm. EQ
m�1[·] and Em�1[·] denote risk neutral

and physical expectations, respectively. The risk-neutral expectation di↵ers from the physical

expectation by a risk premium �m�1. The risk premium may also be specific to futures contracts. In

a form of market segmentation modeled early on by Hirshleifer (1988), returns on futures contracts

reflect “hedging pressure” in which asymmetric hedging demand skews futures prices. In the context

of Federal funds futures, Piazzesi and Swanson (2008) argue that banks create a tremendous hedging

demand for protection against increases in Federal funds rates, driving down �̄ru.

Finally, �̄rus also su↵ers from a time-aggregation issue due to the fact that Federal funds futures

make a payment based on the average daily Federal funds rate. The construction of �̄ru will give

less weight to equally informative policy news that comes out later in the month because fewer

days worth of Federal funds rates will reflect the news. Without making assumptions about when

relevant news comes out in a given month, this time aggregation issue does not have a simple

fix. In spite of the attenuation from this source of noise, empirical results that use �̄ru are still

strong. As such, Kuttner (2001) and Bernanke and Kuttner (2005), among others, simply accept

this limitation in their analyses.

3. Vector autoregression-based innovations

The Monetary Policy literatures relies heavily on structural vector autoregressions (VARs) to iden-

tify regular time series of monetary policy shocks from the Federal funds Rate. (see e.g., Christiano,

Eichenbaum and Evans (2005), or Christiano, Eichenbaum and Evans (1999) for a survey). Un-

fortunately, di↵erent VAR structural identification schemes tend to result in qualitatively di↵erent

results, at least with the response of output and inflation to Federal funds shocks (see e.g., Uhlig

(2005)).
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Thorbecke (1997) uses this identified-VAR approach to construct monthly Federal funds policy

shocks and estimates a negative risk premium on them. These Federal funds policy shocks are

only orthogonalized ex post, and only with respect to industrial production and monthly inflation,

which are themselves proxies for the business cycle and current and expected inflation. This or-

thogonalization can not perfectly isolate Federal funds policy shocks in real time given the richer

information set that the market has in addition to just one measure of industrial production and

inflation. It is therefore likely that the VAR-based Federal funds shocks still contain business cycle

and inflation news that a↵ects how these shocks impact asset prices. Hence, I replicate the policy

shocks of Thorbecke (1997) and consider them in an ICAPM-type model with and without business

cycle and inflation shocks. This allows me to test whether the risk premium on the Federal funds

shocks are really driven by shocks to the business cycle and inflation as opposed to monetary policy

shocks, consistent with my argument in Section 4 of the main body of the paper.

Following Thorbecke (1997), I estimate Federal funds policy shocks, denoted ✏?FF , as the or-

thogonalized innovations in the Federal funds rate from a 6-lag VAR. The recursive causal ordering

used to identify the ✏?FF is given by the order in which I list the variables in the VAR, which are:

1. Log industrial production growth (IP )

2. Log year-over-year inflation (⇡t�12,t)

3. Log producers price index (PPI)

4. The Federal funds rate (FF )

5. Log non-borrowed reserves (NBR)

6. Log total reserves (TR)

The macro variables all come from the Federal Reserve website.

To test whether ✏?FF still captures exposure to the business cycle and inflation, I estimate two

ICAPM-type models, one with MKT and ✏?FF , and one that also adds the business cycle and

inflation innovations ✏?IP , ✏
?
PPI , and ✏?⇡ . I use similar test assets as Thorbecke (1997), the union of

the ten CRSP size-decile portfolios and the Fama-French 17 industry portfolios.1 I present estimates

with two-step GMM as no coe�cients are significant with one-step GMM. These estimates are in

Table A3.
1Thorbecke (1997) formed 20 industry portfolios to pair with 10 size portfolios.
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Insert Table A3 about here

✏?FF commands a negative risk premium. However, this risk premium becomes insignificant after

adding the business cycle innovation ✏?IP , which earns a significant negative risk premium. This is

consistent with the ✏?FF earning a negative risk premium because it captures changes in the business

cycle that the Fed responds to, in spite of the in sample orthogonalization.

4. Economic significance of �FFED and robustness

To determine the spread in returns accounted for by exposure to FFED, I estimate the �FFED

for each of the 50 portfolios via the model:

rept = ↵p + �p,MKTMKTt + �p,FFEDFFEDt + ✏pt. (13)

Table A4 presents the estimates. The spread between the average �FFED of top book-to-market-

quintile portfolios (szbm15 through szbm55) and the bottom book-to-market-quintile portfolios

(szbm11 through szbm51) is 0.556. The risk premium on FFED from Table 4 panel B is 0.81.

This corresponds to a contribution of 0.556 ⇤ 0.81 ⇤ 12 = 6.05% per annum in a spread in average

returns between the extreme growth and value portfolios. Similarly, the spread in average �FFEDs

between the smallest size-quintile portfolios and the largest size-quintile portfolios is 0.433. This

contributes to the average portfolio in the smallest quintile earning 0.433 ⇤ 0.81 ⇤ 12 = 4.21% per

annum in average returns higher than the average top quintile portfolio.

Insert Table A4 about here

Finally, the average top momentum-quintile portfolio �FFED is 0.586 and the average bottom

momentum quintile portfolio �FFED is -0.674, a spread of 1.26. This corresponds to a relatively

large spread in returns of 1.26⇤0.81⇤12 = 12.25% per annum between the average top and bottom

momentum-quintile portfolios. Overall, the risk premiums earned by FFED seem economically

significant and accounting for exposure to FFED accounts for a good deal of spread in returns

related to size, value and momentum.
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5. Related literature

Several recent studies consider the impact of monetary policy shocks on the risk premia of bonds.

Hanson and Stein (2015) and Gertler and Karadi (2015) find that news of tighter monetary policy

increases term premia and credit spreads, respectively. This evidence is analogous to that of

Bernanke and Kuttner (2005) in the sense that they all suggest that tighter monetary policy raises

aggregate expected excess returns. My evidence is consistent with the cross-sectional ICAPM

implication of all three studies and extends them by showing how risk associated with monetary

policy shocks helps to explain anomalies in the cross-section of stock returns.

The literature on monetary policy and stock returns has focused primarily on the time-series of

returns whereas my paper contributes to the empirical evidence of monetary policy and the cross-

section of stock returns. Early cross-sectional evidence comes from Thorbecke (1997) who isolates

innovations in Federal funds rate using a vector auto-regression following Christiano, Eichenbaum

and Evans (1996). Thorbecke focuses on the time-series e↵ects of monetary policy shocks on broad

stock market indices but also estimates an arbitrage pricing theory factor model with Federal funds

innovations and other macroeconomic factors. Thorbecke estimates a negative risk premium for

Federal funds innovations over the sample period 1967-1990. As shown above, I replicate Thor-

becke’s Federal funds innovations and estimate an ICAPM model with the market excess return,

the Federal funds innovations and business cycle and inflation innovations. Consistent with my

time-series results, I find that the Federal funds innovations risk premium is insignificant control-

ling for innovations in inflation and the business cycle. In particular, the VAR-based identification

of Thorbecke (1997) seems to not capture Federal funds policy shocks.

More recently, Maio and Santa-Clara (2015) estimate a 3-factor model that includes the first

di↵erence in the federal funds rate and a market factor whose beta varies linearly with the lagged

federal funds rate. Using portfolios sorted on book-to-market, long-term-reversal, asset growth,

investment-to-assets and market value as test assets, they estimate a negative risk premium on

the federal funds factor. Based on my results, the first-di↵erence of the Federal funds rate would

earn a negative risk premium because it primarily captures negatively priced innovations in the

business cycle and inflation expectiations that the Fed responds to. Lioui and Maio (2014) also
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consider a measure that is very similar to the first di↵erence in the Federal funds rate and find

that it commands a negative risk premium in the stock portfolios formed on size and book-to-

market along with the portfolios formed on size and long-term reversal. Their measure involves

log-di↵erencing a scaled federal funds rate as opposed to the simple first-di↵erence used by Maio

and Santa-Clara (2015). However, the two measures captures similar business cycle and inflation

e↵ects that carry a negative risk premium.

Relative to the cross-section, more evidence exists pertaining to the time-series relationship

between innovations in Federal funds policy and asset prices. Jensen, Mercer and Johnson (1996)

find that the stance of monetary policy impacts the average stock market returns and the degree of

stock-market predictability with common forecasters such as the log dividend yield and default and

term spreads. A large event study literature generally finds the positive Federal funds policy shocks

lowers stock and bond prices (see, e.g., Kuttner (2001), Rigobon and Sack (2004), Bernanke and

Kuttner (2005), Bjørnland and Leitemo (2009)). Further event studies include Chen (2007) who

finds that the reaction of the stock market to federal funds shocks varies over the business cycle and

Ammer, Vega and Wongswan (2010) finds that the the impacts of monetary policy announcements

on stock prices vary by industry, with more cyclical industries experiencing greater impacts of

Federal funds shocks. Related, Boyd, Hu and Jagannathan (2005) posit that the reaction of stocks

to unemployment news varies over the business cycle because in good times lower unemployment

increases expected futures interest rates, likely due to the Federal reserve reaction, lowering stock

prices.

Kuttner (2001) and Bernanke and Kuttner (2005) find that stock and bond prices both respond

negatively to monthly-frequency futures based proxies of Federal funds policy shocks. Using a

Campbell and Shiller (1988)-type cash flow - discount rate news decomposition following Campbell

and Ammer (1993), Bernanke and Kuttner (2005) attributes most of the impact of monetary policy

on stocks to a positive relationship between Federal funds surprises and the equity risk premium.

Unfortunately, the results of Bernanke and Kuttner (2005) have at least two large concerns. The

first is that the cash-flow discount rate decomposition relies on the monthly measure of Federal

funds policy shocks, which means it is contaminated with business cycle and inflation changes that
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the Fed responds to. Second, VAR-based decompositions are extremely unreliable (see, e.g., Chen

and Zhao (2009)). Using a mimicking portfolio allows me to capture the precision of the futures-

based FOMC announcement shocks and then use the sign of the risk premium on the mimciking

portfolio to makes similar inferences as the Campbell and Shiller (1988) decomposition.

Buraschi, Carnelli and Whelan (2014) also form a monthly frequency measure of monetary

policy shocks. They focus on shocks to the expected future path of monetary policy based on a

combination of survey data and a Taylor (1993) rule. They find these shocks have a strong impact

on the expected returns on treasury bonds. They also find that among the Fama French 100 size &

book-to-market portfolios, the ten portfolios with the highest sensitivities to these path shocks earn

higher average returns than the ten portfolios with the lowest sensitivities to these path shocks.

This is an interesting contrast to my results as their path-shock proxy negatively correlates with

my measures of Federal funds policy shocks, yet still commands a positive risk premium.

The negative risk premium earned by most monthly-frequency Federal funds innovations is

related to the results of Brennan, Wang and Xia (2004) and Petkova (2006) who estimate a negative

risk premium on short-term real and nominal bill rates, respectively. Ang and Bekaert (2007) and

Campbell (1996) find that these short-term interest rates negatively forecast returns so innovations

in short-term interest rates should command a negative risk premium, similar to the Federal funds

rate.

Most recent studies focus on the Federal funds rate as a proxy for monetary policy. However,

some studies consider the related asset-pricing e↵ects of money. Balvers and Huang (2009) find

that a Consumption CAPM with real money growth, measured by growth in price-deflated M2,

helps to explain the value premium. Furthermore, they estimate a positive risk premium on money

growth. Chan, Foresi and Lang (1996) consider the inside money portion of M2 and M3 growth as

risk factors. They also estimate a positive risk premium on money growth, which is analogous to a

negative risk premium on the Federal funds rate. In enforcing its Federal funds rate target via open

market operations, the Federal Reserve controls the monetary base. However, the money supply,

generally measured by M2 or M3, depends not only on the monetary base, but also aggregate

demand for money, which covaries strongly with the business cycle and inflation. Thus, these
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studies capture di↵erent e↵ects than I do as I study shocks to monetary policy as opposed to the

business cycle and inflation.

This paper also adds novel results to a growing literature on the noteworthy behavior of equity

prices around FOMC announcements. Savor and Wilson (2014), for example, find that the un-

conditional CAPM prices a number of test assets well on days of macroeconomic announcements

including FOMC announcements, but not on other days. My results are distinct from theirs in at

least two ways. First, their CAPM results do not explain momentum returns, even on important

announcement days. In contrast, my two-factor model does explain such returns. Second, my asset

pricing results do not hold only on announcement days. Rather, my results are consistent with (i)

investment opportunity set risk explaining value and momentum returns, and (ii) Federal funds an-

noucements being an important source of news about investment opportunities. Lucca and Moench

(2015) document that since 1994 over 80% of the equity premium is earned in the 24 hours prior

to scheduled FOMC meeting announcements. However, they find these pre-FOMC returns do not

correlate with the Federal funds surprises that I use and conclude this phenomenon is presumably

distinct from the exposure of stocks to policy announcements, which I study. Cieslak, Morse and

Vissing-Jorgensen (2014) find that since 1994, the entire equity risk premium is earned in weeks

0, 2, 4, and 6 relative to FOMC meetings.2 They argue that this likely reflects a risk premium

associated with information coming from the Federal Reserve, though it is not explained by the

content of FOMC announcements, the shocks from which are the focus of this paper.

My paper is also related to a growing literature on financial intermediaries and asset prices. In

the models of Drechsler, Savov and Schnabl (2014) and He and Krishnamurthy (2013), a reduction in

the Federal funds rate can lower borrowing costs for relatively risk-tolerant financial intermediaries.

This in turn allows intermediaries to bid up asset prices, lowering risk premia and Sharpe ratios.

Adrian, Etula and Muir (2014) construct a mimicking portfolio, LMP , for intermediary leverage,

arguing that intermediary leverage summarizes the pricing kernel of intermediaries. Given that

monetary policy a↵ects asset prices at least in part through intermediaries, I investigate whether

intermediary leverage explains the returns on FFED. In a three factor model with MKT , LMP

2The FOMC meets about every 6 weeks. Week 0 starts the day before an FOMC meeting.
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and FFED, all three factors significantly help to price assets. Hence, intermediary leverage alone

does not seem to fully explain the e↵ects of monetary policy shocks.
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Figure A1: Intercepts from regressions of SMB, HML and MOM on simulated “FFED”s.
Panels A, B and C plot distributions of the estimated intercepts from the time-series regressions of SMB, HML
and MOM on each of the 10,000 randomly generated FFEDSIM

i s. The observations between the vertical red lines
correspond to intercepts that are as small, or smaller, in absolute value, to corresponding intercepts reported in
Table 3. Beneath the x-axis are the empirical frequencies of observations between the red lines. Panel D presents a
scatter plot with of the intercepts from the regressions of HML and MOM on each of the ten-thousand randomly
generated “FFED”s. The yellow dots correspond to pairs of intercepts where both intercepts are less-than or equal
to those reported by Table 3. Beneath the x-axis is the empirical probability that one of the dots depicted is yellow.
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Figure A2: Cross-sectional R2
OLSs and mean absolute pricing errors for two-factor models with

MKT and the simulated “FFED”s.
Panels A and B present histograms of mean absolute pricing errors |↵|s and cross-sectional R2

OLSs (defined in section
3) for the GMM tests in table 4, for each of the ten-thousand simulated “FFED”s. The vertical red lines denote
the corresponding quantity reported in Table 4. Beneath the x-axis in Panel A is the empirical probability that a
random FFEDSIM would have an |↵| that is less than or equal to that earned by the model MKT,FFED in Table
4. Panel B has a similar probability that a cross-sectional R2

OLS on a randomly generated FFEDSIM would be
greater than or equal to that earned by the model MKT,FFED in Table 4. Panel C presents a scatter of simulated
cross-sectional R2

OLSs and |↵|s. The two red lines intersect at the corresponding |↵| and R2
OLS reported in Table

4. Yellow dots denote combinations of |↵| and R2
OLSs where |↵| is no greater and the R2

OLS is no less than the
corresponding numbers in table 4. Beneath the x-axis in Panel (C) is the empirical probability that a dot is yellow.
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Figure A3: This figure depicts three monthly time series. The first two are the monthly averages
of the e↵ective (blue) and target (red) federal funds rates, respectively. The third time series is
the futures rate from the one-month ahead futures contract at the end of the previous month
(green). This series is the futures-based “expected” average daily federal funds rate for the current
month. The futures rate series spans 1989:1-2008:12 December 2008 and the other three series span
1982:9-2008:12. Units are % per annum.
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Figure A4: This figure depicts the monthly-frequency measure of federal funds surprises �̄rut .
The sample is 1989:1-2008:12. Units are basis points per annum.
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Table A1: Forecasts of Monthly Changes in Fed Funds Rates with Expected Changes from Futures
Contracts

This table presents estimates of one-month ahead futures forecasting regressions of the form:

�Xm = a + b
⇣
f1
m�1,Dm�1

� FFTm�1

⌘
+ ✏m. f1

m�1,Dm�1
denotes the one-month ahead futures rate

on the last day of month m � 1 and FFTm�1 denotes the target federal funds rate on the last day of
month m � 1. In columns 1 and 2, Xm denotes the average daily e↵ective federal funds rate and target
federal funds rate, respectively, in month m. Units are APR’s so that 0.01 denotes one basis point per
annum. F denotes the F statistic from a Wald test of the hypothesis that b = 1 for each regression and
pF is the corresponding p-value. The sample is 1989:1-2008:12. Heteroskedasticity-robust t-statistics are in
parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level, respectively.

�FFm �FFTm

b 0.98*** 0.95***
(7.45) (6.40)

a -0.05*** -0.05***
(-4.64) (-4.27)

R2 0.32 0.33
F 0.02 0.10
pF 0.88 0.75
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Table A2: Quintile portfolios sorted on exposure to �̄ru

Each month, I sort common stocks in CRSP into five value-weighted quintiles based on their estimate �r from the
following regression estimated over the previous 60 months: rit � rft = ↵+ �(rmt � rft) + �r�r̃ut + ✏it. Panels A, B
and C report average returns, CAPM estimates, and Fama French three factor model estimates, respectively, for each
of the quintile portfolios and the top-minus-bottom quintile portfolio FED5�1. In each panel, column (i) presents
estimates for quintile (i) with column (5� 1) presenting estimates for FED5�1. Panel D presents post-ranking betas
of each portfolio from the following regressions: rept = ↵+ �pMKTt + �X,pXt + ✏t, where X = �rut , or FFED and
rept denotes the excess return on portfolio p. The post-ranking sample is 1994:1-2008:12 (n=180). t-statistics are in
parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

Panel A: Average Returns

(1) (2) (3) (4) (5) (5 - 1)

Avg 0.06 0.29 0.34 0.46 0.64 0.58**
(0.13) (0.87) (1.12) (1.49) (1.50) (2.07)

Panel B: CAPM Factors Estimation

↵ -0.33* 0.00 0.08 0.19* 0.29 0.61**
(-1.78) (0.01) (0.69) (1.88) (1.52) (2.19)

MKT 1.27*** 0.94*** 0.83*** 0.88*** 1.16*** -0.11*
(30.71) (36.69) (31.20) (38.25) (27.41) (-1.69)

N 180 180 180 180 180 180
adj. R2 0.840 0.883 0.845 0.891 0.807 0.010

Panel C: Fama French 3 Factors Estimation

↵ -0.39** -0.02 0.00 0.17* 0.33* 0.72**
(-2.22) (-0.19) (0.02) (1.87) (1.76) (2.57)

MKT 1.26*** 1.00*** 0.93*** 0.93*** 1.10*** -0.16**
(28.84) (40.07) (39.38) (40.63) (23.97) (-2.24)

SMB 0.24*** -0.16*** -0.13*** -0.13*** 0.10* -0.14*
(4.61) (-5.57) (-4.64) (-4.94) (1.75) (-1.74)

HML 0.10 0.09** 0.22*** 0.08** -0.12* -0.22**
(1.55) (2.42) (6.47) (2.35) (-1.81) (-2.18)

N 180 180 180 180 180 180
adj. R2 0.856 0.911 0.902 0.913 0.817 0.030

Panel D: Post-ranking �s

��̄ru -0.59 -1.61 1.93 2.98** -1.20 -0.61
(-0.25) (-1.10) (1.27) (2.30) (-0.49) (-0.17)

FFED -20.67*** -11.70*** 1.81 12.06*** -0.18 20.50*
(-2.95) (-2.67) (0.39) (3.10) (-0.02) (1.89)
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Table A3: GMM with Thorbecke (1997) Fed funds innovations

This table presents estimates from two-step GMM estimations of two linear pricing kernel models. The test assets are
the monthly excess returns on Fama-French 17 industry portfolios and the 10 CRSP size portfolios. The first three
columns present estimates with factors MKT , and ✏?FF , and the last three columns present estimates with factors
MKT , ✏?FF , ✏

?
IP , ✏

?
PPI , and ✏?⇡ . b and � denote the discount factor coe�cients and risk premiums, respectively, for

each factor. J denotes the Hansen (1982) J test statistic and p-values are next to the Js in parentheses. The sample
is 1967:1-1990:12. Newey and West (1987) t-statistics based on three lags of serial correlation are in parentheses.

MKT ✏?FF MKT ✏?FF ✏?IP F?
⇡ F?

PPI

b 0.01 0.01 b 0.03 0.01 0.01 0.00 0.00
t(b) (0.63) (2.27) t(b) (1.06) (1.29) (2.83) (0.30) (-0.63)
� 0.27 -59.55 � -0.07 -47.88 -116.65 -7.09 18.66
t� (0.80) (-2.29) t� (-0.15) (-1.26) (-2.83) (-0.22) (0.62)
J =59(0.00) J =26(0.25)
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Table A4: FFED Beta Estimates for the 25 Size and Book-to-Market Sorted Portfolios and 25
Size and Momentum Sorted Portfolios: January 1952 to December 2013

This table presents estimates of �FFED and the corresponding t-statistics from the model
rept = ↵p + �p,MKTMKTt + �p,FFEDFFEDt + ✏pt. Panel A presents the estimates for the 25 size
and book-to-market portfolios. Panel B presents the estimates for the 25 size and momentum
portfolios.

Panel A: �FFED for 25 Size and Book-to-Market Portfolios

Book-to-Market Book-to-Market

Size Low 2 3 4 High Low 2 3 4 High

�FFED t(�FFED)

Small 0.05 0.33 0.48 0.60 0.85 0.55 4.65 8.32 11.17 15.12
2 -0.02 0.28 0.44 0.54 0.70 -0.26 5.66 10.06 12.58 13.43
3 -0.05 0.22 0.33 0.45 0.57 -0.94 5.61 8.99 11.61 11.67
4 -0.09 0.12 0.23 0.37 0.44 -2.31 3.78 6.46 9.77 8.79

Big -0.22 0.02 0.01 0.19 0.22 -8.51 0.78 0.39 4.64 4.06

Panel B: �FFED for 25 Size and Momentum Portfolios

Momentum Momentum

Low 2 3 4 High Low 2 3 4 High

�FFED t(�FFED)

Small -0.53 0.23 0.44 0.57 0.64 -6.07 3.82 8.38 11.20 9.91
2 -0.53 0.08 0.35 0.50 0.65 -7.17 1.42 8.03 12.22 11.88
3 -0.64 -0.03 0.19 0.44 0.61 -9.51 -0.74 4.80 12.92 12.55
4 -0.77 -0.19 0.07 0.30 0.61 -11.88 -4.44 2.21 10.54 13.95

Big -0.90 -0.39 -0.11 0.16 0.42 -15.65 -9.68 -3.70 5.47 10.22
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