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Abstract

We consider consistent estimation of parameters in a structural model by Indirect Infer-
ence (II) when the exogenous variables can be missing at random (MAR) endogenously.
We demonstrate that II procedures which simply discard sample units with missing ob-
servations can yield inconsistent estimates of the true structural parameters. By inverse
probability weighting (IPW) the “complete case” observations, i.e., sample units with no
missing variables for the observed and simulated samples, we propose a new method of
II consistently estimates the structural parameters of interest. Asymptotic properties of
the new estimator are discussed. An illustration is provided based on a multinomial pro-
bit model. A small scale Monte-Carlo study in this model demonstrates the severe bias
incurred by existing II estimators, and its subsequent correction by our new II estimator.
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1 Introduction

Since the seminal work of Smith (1990, 1993), Gourieroux et al. (1993) and Gallant and Tauchen
(1996), Indirect Inference (II) has been used for estimation in a variety of structural models where
direct computation of likelihood functions is difficult but simulation based on the structural
model is relatively straightforward. Altonji et al. (2013) have recently remarked that in some
circumstances “accommodating missing data in II is straightforward: after generating a complete
set of simulated data, one simply omits observations in the same way they are omitted in the
observed data”. Our focus of interest in this paper is precisely a case where this argument
is invalid due to the impossibility of simulating data with a mechanism for missing data that
properly mimicks the actual missing data mechanism in the Data Generating Process (DGP). As
stressed by Jiang and Turnbull (2004) (Section 3.4), when data are not “Missing Completely At
Random” (MCAR), the key tool of II, namely the bridge relationship (resp. binding function)
in Jiang and Turnbull (resp. Gourieroux et al.) terminology, may be impossible to infer from
simulations.

Generally speaking, II sets the focus on estimation of structural parameters θ ∈ Θ ⊂ Rdθ

through an intermediate or auxiliary statistic that consistently estimates the true unknown value
β0 of some auxiliary parameters β ∈ B ⊂ Rdβ , dβ ≥ dθ. For sake of expositional simplicity, we
always define the true unknown value β0 as the unique solution of some moment conditions

E[m(W,X, β)] = 0, (1)

where W and X are random vectors. The vectorial function m(., ., .) is known and can be
assumed without loss of generality to be of dimension dβ.

Let {Wi, Xi}Ni=1 stand for an i.i.d. sample drawn from the distribution of (W,X). The vector
Wi (resp. Xi) could include components corresponding to different time points for the i-th sample
unit, and in this sense our setup allows for panel data (large N, small T). However, for simplicity
we will not pursue this aspect further.

We are interested in the case where the statistician does not observe (Wi, Xi) for all N sample
units, with the particular structure of the missingness being characterized by observing only a
subsequence of the complete sequence {Xi}Ni=1. Following common practice, it is useful to define
a binary random variable Di with Di = 1 when the vector Xi is observed. In other words, the
statistician knows the random subset of indices i ∈ {1, 2, ..., N} for which Xi is missing, which
corresponds to the set of indices such that Di = 0.

We maintain throughout the assumption that data are “Missing at Random” (MAR). Fol-
lowing Rubin (1976), data are MAR when “the conditional probability of the observed pattern
of missing data, given the missing data and the value of the observed data, is the same for all
possible values of the missing data”. With our notations, we enforce this condition by assuming
that almost surely

Pr[D = 1 |W,X] = Pr[D = 1 |W ] > 0. (2)

Note that Wooldridge (2007) stresses the relevance of an extension of assumption (2) (see
Wooldridge’s Assumption 3.1. (iv) p 1283) to also allow some components of the vector Wi

to be unobserved whenever Di = 0. In the context of II, this extension is immaterial as long as
the components of W impacted by the missing data mechanism are only endogenous variables.
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Generally speaking, if the above missing data mechanism only pertains to endogenous variables
then the sanguine statement of Altonji et al. (2013) quoted above regarding the easy treatment
of missing data in II is valid.

The focus of interest in this paper is a case where the solution put forward by Altonji et
al. (2013) does not work, precisely because the missing data mechanism pertains to exogenous
variables that we denote by X and which we are not keen to simulate (see Section two for a more
precise discussion). To emphasize our focus on missing exogenous variables, albeit endogenously
missing since they are not MCAR, we will dub throughout the maintained assumption (2) the
MAR-X property.

Under MAR-X, the missing data problem is that sample counterparts of the moment condi-
tions (1) can only be deduced from the “observed” or “complete case” units {Di·m(Wi, Xi, β)}Ni=1;
i.e., when Xi is not observed, all we know is that it is unobserved (Di = 0) and we cannot compute
m(Wi, Xi, β). Then, revisiting the moment conditions (1) as the following “observed” moment
conditions

E[Dm(W,X, β)] = 0 (3)

would obviously lead to the textbook issue of selection bias. However, the issue with the use of
(3) for II differs from the textbook presentation (see, e.g., Little and Rubin, 2002 and Wooldridge,
2005 ) in at least two respects.

First, our focus of interest is not direct estimation of β but rather indirect estimation of
structural parameters θ through auxiliary parameters β. Second, unlike direct inference with
missing data, the key necessary condition for validity of II is the ability of the simulated data
to mimic the estimates of the auxiliary model obtained from the observed data, irrespective of
what this model is. In this respect the important issue for simulation based inference is not the
difference between conditions (1) and (3), but to what extent this difference can be accounted
for in our simulation-based inference procedure.

While it may be possible to accommodate the consequences due to the differences between
(1) and (3), see Section two for specific details, our main goal is to modify the “observed”
moment conditions (3) into moment conditions, that are “observed” and conformable to the
initial moment conditions in equation (1). To do so, the key idea is to use the maintained
MAR-X assumption to revisit (3) as (possibly misspecified) conditional moment restrictions
given W and to resort to a well chosen instrumental variable h(W ), leading to the “observed”
moment conditions

E[Dh(W )m(W,X, β)] = 0. (4)

Defining the true unknown propensity score as p0(W ) = Pr[D = 1 |W ], equation (4) will be
conformable to the initial moment conditions of interest that define β0 if, for all β ∈ B,

E[Dh(W )m(W,X, β)] = E[p0(W )h(W )m(W,X, β)] = E[m(W,X, β)],

where the first equality follows from the Law of Iterated Expectations (LIE) and MAR-X.
Equivalence between moment conditions (1) and (4) then requires, by the LIE, for all β ∈ B,

E [{1− p0(W )h(W )}E[m(W,X, β) |W ]] = 0. (5)

The identity in (5) encapsulates the two main cases of interest. First, following Wooldridge
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(2007) (see Assumption 4.1 page 1288), one may maintain the assumption of “exogenous selec-
tion”, meaning that at β0, the solution to (1), actually satisfies

E[m(W,X, β0) |W ] = 0. (6)

Our focus of interest is precisely the case where selection is not exogenous. In addition, it should
be noted that this “exogenous selection” assumption amounts to a structural assumption on the
auxiliary model used in II, which is somewhat logically inconsistent with the idea of an auxiliary
model:1 When performing II one has in mind indirect estimation of a structural model through
a purely instrumental auxiliary model that is not endowed with any kind of structural belief.

Second, if the exogeneity assumption is not maintained, the conditional expectation computed
in (6) may be any function of W since we do not want to maintain any restrictive assumption
about the probability distribution of the exogenous variables X. As a result, the only way to
get the identity in equation (5) is to choose the “instrument” h(W ) inversely proportional to the
propensity score p0(W ) := Pr[D = 1|W ]; that is, to rewrite our auxiliary model in (1) as the
moment conditions

E

[
D

p0(W )
m(W,X, β)

]
= 0. (7)

The equivalence between moment conditions (1) and (7) is precisely due to the (assumed) validity
of the MAR-X assumption.

While IPW has a long history in statistical inference with missing data, see, e.g., Horvitz and
Thompson (1952) and Robins et al. (1994), this paper constitutes, to the best of our knowledge,
the first use of IPW within simulation based inference with endogenously missing exogenous
variables. While seemingly different from its historical use, the IPW strategy in this research is
underpinned by the maintained MAR-X hypothesis that has found recent use in economics and
econometrics. See, among others, Hirano et al. (2003), Chen et al. (2005), Chen et al. (2008),
Graham et al. (2012) for cases where the missingness pattern is similar to ours, while Cattaneo
(2010) and Chaudhuri and Guilkey (2014) consider more involved patterns of missingness. All
of the above papers use some form of MAR-X to correct for the selection bias in moment
conditions used within estimation, as is done herein.

However, unlike missing data in direct inference, because II can only conditionally simulate
data given all exogenous variables, the simulation step of II induces dependence between the
simulated endogenous variables and the missingness indicator that is not present in the observed
data. As a direct consequence, the standard IPW-based arguments for direct inference outlined
above is not valid for the simulated counterpart. However, we detail a novel identification
argument (see Section two) that uses IPW, along with the MAR-X assumption and a particular
simulation design, to (jointly) identify the auxiliary parameters based on the simulated data.
Together, these two IPW-based steps allow us to identify the structural parameters of interest.

The paper is organized as follows. Our preferred II strategy with MAR-X exogenous vari-
ables as well as possible alternative strategies are discussed in Section two. Section three details
implementation of this new II strategy, states the asymptotic theory of our II estimator and pro-

1The “exogenous selection” assumption in (6) actually extends Wooldridge’s (2007) definition for M-estimators
to the case of general estimating equations, which could correspond to the first order conditions of some M-
estimator.
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poses an alternative implementation of our approach based on the generalized indirect inference
(GII) approach of Keane and Smith (2005). In Section four, we illustrate our new approach in
a multinomial probit model similar to Section nine of Gourieroux et al. (1993) and model four
of Keane and Smith (2005). However, due to the missing data problem, we carefully revisit
identification of the structural parameters. Section four also contains a small scale Monte Carlo
experiment illustrating the performance of our approach in a multinomial probit model. Given
the non-smoothness of the binding function in the multinomial probit model, we also consider
a GII implementation of our approach. The Monte Carlo results provide compelling evidence
on the performance of our II strategy and its GII implementation. Section five concludes and
proofs of the theoretical results are collected in the appendix.

2 II with MAR Exogenous Variables

We sketch in Section 2.1 the general problem of II in the presence of missing data. The usefulness
of the MAR-X assumption for performing II is made explicit in Section 2.2. Since Section 2.1
simply sketches the different possibilities, precise definitions of certain terms are only provided
in Section 2.2.

2.1 Indirect Inference with Missing Data

To fix ideas, we focus on the simple structural model

Y = r(Z,X, ε; θ), (8)

where r(.) is a vector valued function known up to the finite dimensional parameter θ ∈ Θ ⊂ Rdθ .
ε is the unobserved stochastic error whose probability distribution is assumed (without loss of
generality) to be known. Y denotes the endogenous variables while the variables X and Z are
independent of ε and treated as exogenous. We maintain that it is not desirable to assume that
the distribution of X and Z (conditional or unconditional on Y ) is known. Let θ0 ∈ Θ be the
true value of θ in our population of interest.

Let us first consider simulation of data from the structural model (8) when there is no
missingness. Let ε̃ be a random variable drawn from the distribution of ε and independent of
W = (Y ′, Z ′)′ and X. For the given θ ∈ Θ, consider the variables Y (θ) simulated from equation
(8): Y (θ) = r(Z,X, ε̃; θ).

For a given value θ ∈ Θ used to simulate the endogenous variable Y (θ), II defines the binding
function β0(θ) as the solution, in β, to the simulated counterpart of moment conditions (1):

E [m(Y (θ), Z,X, β)] = 0. (9)

If θ 7→ β0(θ) is injective, θ0 is the unique θ ∈ Θ satisfying β0 = β0(θ). Implementation of II is
generally based on the finite sample counterparts of equations (1) and (9) obtained as sample
averages of the observed and simulated data.

As mentioned in the introduction, it may sometimes be argued that missing data is immaterial
for II, since it is always possible to purposefully omit observations in the simulated sample in
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the same way they are missing in the observed data. In other words, selection bias introduced
when using the observed moment conditions

E[Dm(Y, Z,X, β)] = 0

may be inconsequential, since after all, if all variables Y, Z,X,D can be simulated, where, with
an abuse of notation we let θ denote all unknown parameters governing the simulation process,
we can define the binding function θ 7→ β̃(θ) as the solution of the simulated counterpart

E[D(θ) ·m(Y (θ), Z(θ), X(θ), β)] = 0.

However, our focus of interest in this paper renders the above solution infeasible for several
reasons.

First, since we are unwilling to assume a distribution for the exogenous variables X,Z,
obtaining simulated counterparts X(θ), Z(θ) of X,Z is not feasible. As alluded to above, it
is somewhat logically inconsistent to specify a probability distribution for exogenous variables.
Moreover, as shown by Gourieroux at al. (1993), there is an efficiency gain to use for II a
simulated path in which, along with simulated endogenous variables, we keep exogenous variables
at their observed values in the actual data set. It is precisely this exogeneity property that makes
this practice valid.

Second, when the endogenous variables are missing but the exogenous variables are not
missing, if one fixed the exogenous variables at their observed values, the binding function for II
could be defined as the solution to

E[D(θ)m(Y (θ), Z,X, β)] = 0,

where θ again denotes all unknown parameters governing the simulated process. Such a practice
would only be accurate if we were to treat both Y and D as endogenous, with Y (θ) and D(θ)
simulated according to an augmented analog of the structural model in (8). However, simulation
of Y (θ) and D(θ) is not feasible in our context since the missing data mechanism pertains to the
exogenous variables X and so for observation i the endogenous Yi(θ) cannot be simulated when
Di = 0.

This inability to simulate Y (θ) when D = 0 also ensures that II based on the “observed” or
“complete case” moment conditions

E[Dm(Y, Z,X, β)] = 0

E[Dm(Y (θ), Z,X, β)] = 0

will not, in general, identify θ0. Identification would require that the joint distributions of
(D, Y , Z,X) and (D, Y (θ0), Z,X) be equivalent. However, this cannot be true in general for the
following reason: the simulated error ε̃ used to generate Y (θ0) is, by construction, independent
of D, whereas the MAR-X assumption does not demand independence between ε (structural
error in Y -equation) and D, either unconditionally or conditional on X and Z. Hence, unless D
is independent of ε, which, in turn, rules out endogenous missingness of X, one cannot identify θ0

following the above approach except by happenstance. To further clarify this idea of identification

6



failure, we refer the interested reader to Section 4.1 for a toy example that illustrates this failure
in a simple probit model.

Interestingly enough, this double hurdle of data missingness may actually suggest to modify
the binding function even more by considering the simulated moment conditions:

E[D ·D(θ) ·m(Y (θ), Z,X, β)] = 0.

While this complicated simulated missing data mechanism may actually provide a feasible solu-
tion (see Chaudhuri et al. (2015)), our focus of interest in this paper is rather to remain true to
the initial auxiliary model and moment condition in (1) by considering its “observed” counterpart

E

[
D

p0(W )
m(W,X, β)

]
= 0.

While we have stressed in the introduction that it is the MAR-X assumption that makes this
IPW auxiliary model equivalent to the initial one, more importantly the MAR-X assumption
allows us to define a conformable binding function II without resorting to simulation of the
missingness indicator D.

2.2 II Based on IPW Under MAR-X

The use of the MAR-X assumption made in the introduction, albeit non-standard because of
its use in the auxiliary model, corrects for the effect of selection bias in the identification of the
auxiliary parameters β; that is, for all β ∈ B, we have, by the MAR-X assumption

E

[
D

p0(W )
m(Y, Z,X, β)

]
= E

[
E

[
D

p0(W )

∣∣∣∣W,X]E [m(Y, Z,X, β)
∣∣W,X]] = E [m(Y, Z,X, β)] .

(10)
The key property for performing II using the auxiliary model based on moment conditions (10)
is to ensure the resulting binding function will properly match. This matching will require that,
for all β ∈ B and for all θ ∈ Θ,

E

[
D

p0(W )
m(Y (θ), Z,X, β)

]
= E [m(Y (θ), Z,X, β)] . (11)

Demonstrating satisfaction of (11) requires a more precise study of the expectations used
above. In equation (10) the notations are straightforward: expectations are computed with
respect to the joint distribution of (D, Y, Z,X) given by the data generating process (DGP).
In (11) the expectation operator is more complicated since it involves jointly the DGP for the
observed and simulated data. To highlight this difference, we analyze each case in turn, starting
with the observed data.

The observed data {Di, Yi, Zi, DiXi}Ni=1, where DiXi = 0 if Di = 0 and Xi else, can be seen
as the output of the following mechanism:
(O1) A sample of exogenous variables {Zi, Xi}Ni=1, possibly partially latent, is generated by a
completely unknown DGP.
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(O2) A sample of i.i.d. stochastic errors {εi}Ni=1 are drawn from the known probability distribu-
tion of ε, with all draws independent of {Zi, Xi}Ni=1.
(O3) Endogenous variables {Yi}Ni=1 are observed as a result of the DGP: Yi = r(Zi, Xi, εi; θ

0),
with θ0 the true unknown value of the structural parameters.
(O4) A vector {Di}Ni=1 is drawn in the product of conditional distributions of Di given {Yi, Zi}Ni=1.
Moreover, these conditional distributions, for i = 1, ..., N, are assumed (by MAR-X) not to
depend on Xi when conditioned on Wi.

For the simulated data, a similar procedure is implicitly considered when simulating the
endogenous variable. However, unlike step (O2) above, for some integer S ≥ 1 we draw S
independent simulated samples of i.i.d. errors {ε̃is}Ni=1 from the known probability distribution
of ε with {ε̃is}Ni=1 independent of {εi, Zi, Xi, Di}Ni=1 by construction.2 Given, {ε̃is}Ni=1, and in
accordance with (O3) above, we define, for all θ ∈ Θ: Yis(θ) = r(Zi, Xi, ε̃is; θ). The simulation
step produces a sequence {Zi, DiXi, εi, Di, ε̃is}Ni=1, s = 1, ..., S of i.i.d. draws in a joint distribution
that defines, through known transformations, the joint distribution of the variables at stake to
compute the expectation in (11). It is worth noting that, the missing data problem requires us
to draw the simulated sample in a specific way: namely, because of the missing data, we can not
simulate Yis(θ) when Di = 0.

However, while we have maintained the standard assumption that the draws of stochastic
errors {ε̃is}Ni=1 are independent of {εi, Zi, Xi, Di}Ni=1, these draws are also independent of the
missing data mechanism encapsulated in the variables {Di}Ni=1. Therefore, the missingness in-
dicator {Di}Ni=1 are endowed with an exogeneity status in regards to the simulated errors. In
particular, because Di is independent of ε̃is, for each s = 1, ..., S, given (εi, Zi, Xi) since ε̃is jointly
independent of (εi, Zi, Xi, Di), we have that

Di ⊥ Yis(θ)
∣∣ Wi, Xi. (12)

The conditional independence D ⊥ Y (θ)
∣∣ W,X generated through the simulation step is the

key condition for validity of (11) since

E

[
D

p0(W )
m(Y (θ), Z,X, β)

]
= E

[
E

[
D

p0(W )
m(Y (θ), Z,X, β)

∣∣∣∣W,X]] (by L.I.E.)

= E

[
E

[
D

p0(W )

∣∣∣∣W,X]E [m(Y (θ), Z,X, β)|W,X]

]
(by (12))

= E

[
E

[
D

p0(W )

∣∣∣∣W]E [m(Y (θ), Z,X, β)|W,X]

]
(by MAR-X)

= E [m(Y (θ), Z,X, β)] (by definition of p0(W )). (13)

It is crucial to point out that independence between ε̃ and (ε, Z,X), as in a standard II context,
is not sufficient to ensure equation (13). Moreover, equation (13) is precisely what we need to
ensure an II approach that is feasible and valid, when based on the auxiliary model (1), in spite
of the missing data problem.

2Alternatively, one can draw a single simulated sample of errors of size S ·N .
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More precisely, for β0 ∈ B and θ 7→ β0(θ) defined by, respectively,

E
[
m(Y, Z,X, β0)

]
= 0,

E
[
m(Y (θ), Z,X, β0(θ))

]
= 0,

under the standard identification assumption β0 = β0(θ)⇔ θ = θ0 comparison of (10) and (11)
ensures that we can make this II approach feasible in spite of the missing data by solving the
“observed” estimating equations

E

[
D

p0(W )
m(Y, Z,X, β0)

]
= 0 (14)

E

[
D

p0(W )
m(Y (θ), Z,X, β0(θ))

]
= 0. (15)

This is where the novelty of our approach lies. Identification of θ0, by means of (10) and (13),
does not result directly from the use of IPW under only MAR-X in (2) but also requires the
conditional independence introduced through the simulation step.

Clearly, implementation of the above strategy requires consistent estimation of p0(W ). The
complete asymptotic theory will be developed in Section three in the framework of a fully para-
metric model. This parametric model will define the set of possible DGPs according to steps
(O1), (O2), (O3) and (O4) above, augmenting it by a parametric specification p(W ; γ) for
Pr[D = 1|W ] in step (O4) such that

p0(W ) = Pr[D = 1 |W ] ≡ p(W ; γ0) (16)

for a unique γ0 ∈ Interior(Γ) ⊂ Rdγ .
The reader familiar with nonparametric estimation of optimal instruments knows that an

alternative solution to use estimating equations like (14)-(15) would be to come up with a con-
sistent, albeit nonparametric, estimator of p0(W ) (for example, by letting dγ →∞). However,
in the context of IPW, this would pave the way for new discussions about efficient II with missing
data: Chen et al. (2008) (see also Graham (2011) and Chaudhuri et al. (2015)) show that a
nonparametric estimator of p0(W ) would actually lead, in general, to a more accurate estimator
of β0. This apparent paradox is easy to explain when one realizes that step (O4) provides a set
of conditional moment restrictions

E[D − p0(W ) |W ] = 0. (17)

These conditional moment restrictions would in general bring relevant information about the
unknown parameter β beyond what can be brought by a given parametric model like (16). It
must be kept in mind that parametric maximum likelihood estimation of such a parametric model
amounts to picking a subset (of dimension dγ) of the above conditional moment restrictions,

E

[
D − p0(W )

p0(W )(1− p0(W ))

∂

∂γ
p(W ; γ0)

]
= 0
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that is optimal for estimation of γ0. However, this set of moment restrictions does not exhaust
all the information in (17) that could be relevant for the optimal estimation of β0. While our
focus of interest in this paper is not efficient direct estimation of β but indirect estimation of θ,
obviously, the two efficiency issues are tightly related but much beyond the scope of this paper.

3 IPW Indirect Inference (IPW-II)

In this section we discuss precise implementation of our inverse probability weighted II (IPW-II)
approach under MAR-X missing data. Asymptotic properties of the ensuing IPW-II approach
are discussed in Section 3.4. Section 3.5 presents a computationally friendly implementation of
this approach for non-smooth problems and presents subsequent asymptotic theory.

3.1 Estimation of the Auxiliary Model Parameters

3.1.1 Observed Data

Following the identification strategy devised in Section two, define the estimator β̂N as the
solution of

1

N

N∑
i=1

Di

p(Wi, γ̂N)
m(Yi, Zi, Xi, β̂N) = 0,

where γ̂N is the maximum likelihood estimator, the solution to 0 =
∑N

i=1 lγ(Di,Wi, γ), with
lγ(Di,Wi, γ̂N) the score vector of the parametric model describing the missing data mechanism:

lγ(Di,Wi, γ) =
∂

∂γ
log
[
(p(Wi, γ))Di (1− p(Wi, γ))1−Di

]
=

1

p(Wi, γ)(1− p(Wi, γ))

∂p(Wi, γ)

∂γ
[Di − p(Wi, γ)] = li,γ(γ). (18)

Note that (β̂′N , γ̂
′
N)′ can also be seen as a joint GMM estimator provided by the just identified

moment conditions

E

[
Di

p(Wi; γ)
m(Yi, Zi, , Xi, β)

]
= 0

E [lγ(Di,Wi, γ)] = 0

It is well known (see, e.g., Breusch et al. (1999), Lemma 1, p93) that we can obtain an
asymptotically equivalent GMM estimator by considering instead the moment conditions:

E
[
m∗i (γ, β)− Π

[
m∗i (γ

0, β0)
∣∣ li,γ(γ)

]]
= 0

E [lγ(Di,Wi, γ)] = 0 (19)
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where

m∗i (γ, β) =
Di

p(Wi; γ)
m(Yi, Zi, Xi, β) ≡ Di

p(Wi; γ)
mi(β),

and, for γ = γ0, Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ)

]
is the affine regression of m∗i (γ

0, β0) on li,γ(γ
0); i.e.,

Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ)

]
= Ω12 (Ω22)−1 li,γ(γ),

Ω12 = Cov
[
m∗i (γ

0, β0), li,γ(γ
0)
]
, Ω22 = Var

[
li,γ(γ

0)
]
.

Clearly, the two moments in (19) are uncorrelated at the true value (γ0, β0), allowing us to

compute directly the asymptotic distribution of the GMM estimator β̂N from its asymptotic
expansion3

√
N
(
β̂N − β0

)
= −

[
G′0V

−1
0 G0

]−1
G′0V

−1
0

1√
N

N∑
i=1

{
m∗i (γ

0, β0)− Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]}
+ oP (1)

= −G−1
0

1√
N

N∑
i=1

{
m∗i (γ

0, β0)− Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]}
+ oP (1),

where

G0 = E

[
Di

p(Wi; γ0)

∂m(Wi, Xi, β
0)

∂β′

]
, (20)

V0 = Var
[
m∗i (γ

0, β0)
]
− Var

[
Π
[
m∗i (γ

0, β0)
∣∣ li,γ(γ0)

]]
(21)

The following remarks are in order.
Remarks:

(1) Applying again the MAR-X property to G0 yields

G0 = E

[
E

[
Di

p(Wi; γ0)

∣∣∣∣Wi, Xi

]
∂m(Wi, Xi, β

0)

∂β′

]
= E

[
∂m(Wi, Xi, β

0)

∂β′

]
,

as if we had no missing data. However, due to the missing data problem, the formula (20)
provides the natural way to estimate G0 from its sample counterpart after plugging in a consistent
estimator of (γ0, β0). Similarly,

Var
[
m∗i (γ

0, β0)
]

= E
[
m∗i (γ

0, β0)m∗i (γ
0, β0)′

]
= E

[
1

p(Wi; γ0)
mi(β

0)m′i(β
0)

]
should rather be estimated from the sample counterpart of (21) rather than the above equation.
However, the division by p(Wi; γ

0) in the above equation shows the price we pay, in terms of
accuracy of the GMM estimator of β, for the missing data problem.

3Precise regularity conditions ensuring the validity of this expansions are given as Assumptions A1-A5 in the
appendix.
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(2) The asymptotic variance of
√
N
(
β̂N − β0

)
, given by G−1

0 V0G
′−1
0 , is smaller (in terms of

comparison of positive semi-definite matrices) than the asymptotic variance of a GMM estimator
that one would obtain if they knew the true unknown propensity score p0(W ) = p(W ; γ0) and
instead estimated β0 using only

E

[
Di

p0(Wi)
mi(Y, Z,X, β)

]
= 0, (22)

for which the resulting asymptotic variance would be given by G−1
0 [Var [m∗i (γ

0, β0)]]G′−1
0 .

This remark is sometimes summarized by a kind of puzzling statement: “it is better to
estimate the weights by a conditional MLE procedure than using known weights (if we knew
them)” (Wooldridge, 2007). The explanation of this anomalous statement is simple: we took
advantage of the second set of moment conditions (provided by the score vector li,γ(γ

0)) to reduce
the variance of the first initial set m∗i (γ

0, β0) by computing the residual of its regression on the
second set. The possible efficiency loss when going to GMM based only on (22) instead of GMM

estimator β̂N based on the complete set is not due to the knowledge of γ0 but to the possible
omission of the second set of moment conditions li,γ(γ

0), even when we don’t need to estimate
γ0.

3.1.2 Simulated Data

For a given integer S ≥ 1, we can draw S independently simulated samples of i.i.d. errors {ε̃is}Ni=1

from the known probability distribution of ε with, for each s = 1, ...., S, {ε̃is}Ni=1 independent of

{εi, Zi, Xi, Di}Ni=1. We can then compute

Yis(θ) = r (Zi, Xi, ε̃is; θ)

and define the estimator β̃
(s)
N (θ) as the solution of

N∑
i=1

Di

p(Wi, γ̂N)
m
(
Yis(θ), Zi, Xi, β̃

(s)
N (θ)

)
= 0.

Using similar arguments to those developed in the previous section, when N is large,

√
N
(
β̃

(s)
N (θ0)− β0

)
= −G−1

0

1√
N

N∑
i=1

{
m∗is(γ

0, β0; θ0)− Π
[
m∗is(γ

0, β0; θ0)
∣∣ li,γ(γ0)

]}
+ oP (1),

(23)
where m∗is(γ, β; θ) = Di

p(Wi;γ)
m(Yis(θ), Zi, Xi, β),

Π
[
m∗is(γ

0, β0; θ)
∣∣ li,γ(γ)

]
= Ω12(θ) (Ω22)−1 li,γ(γ),

Ω12(θ) = Cov
[
m∗is(γ

0, β0; θ), li,γ(γ
0)
]

Note that Ω12(θ) does not depend on (i, s) since all the draws (Zi, Xi, ε̃is) are drawn in the
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same distribution. However, it is critical to note that,

Ω12(θ0) 6= Ω12,

which follows from the fact that, for D (εi, Zi, Xi, Di) denoting the joint probability distribution
of (εi, Zi, Xi, Di), in general

D (εi, Zi, Xi, Di) 6= D (ε̃i, Zi, Xi, Di) .

This discrepancy is a consequence of the missingness indicator Di being endowed with an exo-
geneity status with regards to the simulated errors ε̃is, since ε̃is is, by construction, independent
of (Zi, Xi, Di). In contrast to ε̃is, MAR-X does not require that the error εi be independent of
(Zi, Xi, Di) since Di to be independent of Yi given (Zi, Xi).

Following the first II estimator of Gourieroux et al. (1993) (see their proposition 1 pS89), an

estimator of θ can be obtained by calibrating the value of θ in order to have the estimator β̂N of
auxiliary parameters close to the average value β̂N,S(θ) of simulated estimators

β̂N,S(θ) =
1

S

S∑
s=1

β̃
(s)
N (θ).

From β̂N,S(θ) and (23), we deduce that, for given S,

√
N
(
β̂N,S(θ0)− β0

)
= −G−1

0

√
N

N · S

N∑
i=1

S∑
s=1

{
m∗is(γ

0, β0; θ0)− Π
[
m∗is(γ

0, β0; θ0)
∣∣ li,γ(γ0)

]}
+oP (1).

3.2 The Calibration Step

Given auxiliary parameters estimates β̂N , β̂N,S(θ), an efficient Wald-type IPW-II estimator for
θ is obtained as

θ̂N(Υ) := arg min
θ∈Θ

[
β̂N − β̂N,S(θ)

]′
Υ−1
N (S)

[
β̂N − β̂N,S(θ)

]
, (24)

where ΥN is a positive definite weighting matrix that consistently estimates

Υ(S) := lim
N→∞

Var
{√

N
(
β̂N − β̂N,S(θ0)

)}
.

To deduce the form of Υ(S), we first use the expansions
√
N(β̂N−β0) and

√
N(β̂N,S(θ0)−β0),

given in the previous subsections, to find

√
N
(
β̂N − β̂N,S(θ0)

)
= −G−1

0

√
N

[
ξ̄N,S − C0Ω−1

22

N∑
i=1

li,γ(γ
0)/N

]
+ oP (1),
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where C0 = [Ω12 − Ω12(θ0)] and

ξ̄N,S =
N∑
i=1

ξi,S/N ≡
1

N

N∑
i=1

[
m∗i (γ

0, β0)− 1

S

S∑
s=1

m∗is(γ
0, β0; θ0)

]
.

Noting that,

Cov

(
√
Nξ̄N,S , C0Ω−1

22

N∑
i=1

li,γ(γ
0)/
√
N

)
= C0Ω−1

22 C
′
0 = Var

(
C0Ω−1

22

N∑
i=1

li,γ(γ
0)/
√
N

)

and for W0(S) = limN→∞Var
{√

Nξ̄N,S

}
= E

[
ξi,S · ξ′i,S

]
, Υ(S) then has the following form:

Υ(S) = G−1
0

[
W0(S)− C0Ω−1

22 C
′
0

]
G−1′

0 .

We have the following remarks about the components of Υ(S).
Remarks:

(1) The term W0(S) in Υ(S) can further be decomposed by noting the following: one,

Var
[
m∗is(γ

0, β0; θ0)
]

= E

[
Di

p2(Wi; γ0)
m(Yis(θ

0), Zi, Xi, β
0)m′(Yis(θ

0), Zi, Xi, β
0)

]
= E

[
1

p(Wi; γ0)
m(Yis(θ

0), Zi, Xi, β
0)m′(Yis(θ

0), Zi, Xi, β
0)

]
= Var

[
m∗i (γ

0, β0)
]
,

where the second equality comes from an argument similar to the one used to prove (13) and
the third equality is implied by the fact that the joint distributions satisfy D (εi, Zi, Xi) =
D (ε̃is, Zi, Xi); two, by the same logic, for s, s′ = 1, ..., S

Cov
[
m∗i (γ

0, β0),m∗is(γ
0, β0; θ0)

]
= Cov

[
m∗is(γ

0, β0; θ0),m∗is′(γ
0, β0; θ0)

]
.

Introducing the notations,

I0 = Var
[
m∗i (γ

0, β0)
]
,

K0 = Cov
[
m∗i (γ

0, β0),m∗is(γ
0, β0; θ0)

]
,

elementary algebra yields4

W0(S) =

(
1 +

1

S

)
(I0 −K0),

which is similar to the result obtained in Gourieroux et al. (1993) (see the last formula pS109).

4The term K0 is non-zero in general because the observed and simulated samples both contain the common
the exogenous variables X and Z.
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(2) The term K0 can be further decomposed, by noting that, for s, s′ = 1, ..., S, even if s = s′,

K0 = Cov
{
E[m∗is(γ

0, β0; θ0) |Zi, DiXi] , E[m∗is′(γ
0, β0; θ0) |Zi, DiXi]

}
= Var

{
E[m∗is(γ

0, β0; θ0) |Zi, DiXi]
}

= Var
{
E[m∗i (γ

0, β0) |Zi, DiXi, Di]
}

which yields following alternative specification for I0 −K0:

I0 −K0 = V ar
{
m∗i (γ

0, β0)− E[m∗i (γ
0, β0) |Zi, DiXi, Di]

}
.

This expression makes explicit the efficiency gain due to the fact that we do not simulate the
exogenous variables.

3.3 Alternative Implementation: IPW-II Estimator

The Wald-type II estimator in equation (24) is computationally expensive in situations where

β̂N,S(θ) is not known in closed form. For computational simplicity we can instead consider
estimators of θ defined as, near, minimizers of∥∥∥MN,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

, (25)

where AN is a given sequence of positive definite matrices (with positive definite probability
limit A). Following Gourieroux et al. (1993) (see their formula page S91), it is well-known that
with the appropriate choice of weighting matrix, an II estimator based on (24) is asymptotically
equivalent to an II estimator based on (25). Note that our case is slightly more general than
Gourieroux et al. (1993) since they consider only estimating equations for β given by the score of
an auxiliary model. Then, their matrix G0 is the Hessian matrix and is symmetric and positive
definite. The extension to our context is straightforward if G0 is a non-singular matrix.

Exact implementation of the IPW-II approach can be carried out using the following algo-

rithm, which deals with the potential non-smoothness, in θ, of
∥∥∥MN,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

.5

Algorithm for implementing of IPW-II

• Step 0: Using the observed {Wi, Di}Ni=1 estimate p̂0(Wi) := p(Wi; γ̂N) for each i = 1, . . . , N
where γ̂N is a the maximum likelihood estimator based on any given parametric specifica-
tion p(W ; γ) for p0(W ), and where γ is some dγ × 1 unknown parameter.

• Step 1: Using the observed sample {Wi, Di, X
obs
i := DiXi}Ni=1, obtain β̂N as:

β̂N := argβ∈B {MN(β, γ̂N) = 0}

where MN(β, γ) :=
1

N

N∑
i=1

Di

p(Wi; γ)
m(Yi, Zi, X

obs
i , β).

5Such situations arise in simulation based estimation of discrete choice models because the simulated dependent
variable, as a function of θ, i.e., Y (θ), can change discretely (e.g. from 0 to 1) with an infinitesimal change in θ.
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• Step 2a: Sort the observed sample so that the first N1 =
∑N

i=1Di units have Di = 1, i.e.,
have Xi observed. For any given θ ∈ Θ, and for each i = 1, . . . , N1, generate:

ε̃is
i.i.d.∼ F 0

ε , Yis(θ) = r(Zi, Xi, θ, ε̃is) for s = 1, . . . , S

where S is the pre-specified number of simulations. Set Yis(θ) = 0 for s = 1, . . . , S and
i = N1 + 1, . . . , N . (This is inconsequential because we will not use these remaining i’s.)

• Step 2b: For any given positive definite matrix AN , obtain the II estimator θ̂N(AN) as:∥∥∥MN,S

(
β̂N , γ̂N , θ̂N(AN)

)∥∥∥
AN
≤ oP

(
N−1/2

)
+ inf

θ∈Θ

∥∥∥MN,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

(26)

where MN,S(β, γ, θ) := 1
NS

∑N
i=1

Di
p(Wi;γ)

∑S
s=1 m(Yis(θ), Zi, X

obs
i , β, ).

We call θ̂N(AN) the IPW-II estimator of θ0.
Remarks:

(1) The IPW-II procedure models p0(W ) parametrically and is susceptible to misspecification.
Adverse consequences of parametric misspecification of p0(W ) in Step 0, and remedy thereof by
using doubly robust estimating functions for β or by nonparametric estimation of p0(W ) have
been studied for general IPW estimators [e.g., Scharfstein et al. (1999), Hirano et al. (2003),
Chen et al. (2008)].

(2) Optimal choice of A = plimAN follows from Gourieroux et al. (1993) with an additional
modification due to the fact that the nuisance parameter p0(W ) is estimated. Even with the
optimal A, the relative efficiency of the II estimator of θ with respect to the full information
maximum likelihood estimator ultimately depends on the “richness” of the auxiliary model.
Keane and Smith (2005) provide an illuminating demonstration with simulations.

3.4 Asymptotic Distribution of the IPW-II Estimator

We provide precise results for consistency and asymptotic normality of the IPW-II estimator. For
the sake of generality, we deviate from the standard II treatment (see Gourieroux et al. (1993))
and present results that accommodate for non-smoothness with respect to θ in the moment
vector m(Y (θ), Z,X, β). The required technical assumptions A1-A7, along with the proofs of
the stated results, which are similar in spirit to and based on Pakes and Pollard (1989), are
collected in the Appendix.

Proposition 1. Let A1-A6(1) in the Appendix hold. Let S be fixed and AN
P−→ A as N → ∞

where A is positive definite. Then the IPW-II estimator in (26) satisfies: θ̂N(AN)
P−→ θ0.

Proposition 2. Let Assumptions A1-A7 in the Appendix hold. Let S be fixed and AN
P−→ A as

N →∞ where A is symmetric and positive definite. Let ∂
∂θ′
β0(θ0) be full column rank. Then the
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IPW-II estimator in (26) satisfies:
√
N(θ̂N(A)− θ0)

d−→ N (0,Σ(A)) where:

Σ(A) :=

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1
∂β0(θ0)′

∂θ
G′0AH0AG0

∂β0(θ0)

∂θ′

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1

,

G0 := E

[
∂

∂β′
m(Y, Z,X, β0)

]
≡ E

[
∂

∂β′
m(Y (θ0), Z,X, β0)

]
,

H0 := W0(S)− C0Ω−1
22 C

′
0 ≡

(
1 +

1

S

)
[I0 −K0]− C0Ω−1

22 C
′
0,

C0 := Ω12 − Ω12(θ0) ≡ E

[
D

p2
0(W )

{
m(Y, Z,X, β0)−m(Y (θ0), Z,X, β0)

} ∂

∂γ′
p(W ; γ0)

]
Remarks:

(1) The optimal A is Aopt = H−1
0 . Hence the optimal asymptotic variance given the aux-

iliary model is: Σ(Aopt) =
[
∂β0(θ0)′

∂θ
G′0H

−1
0 G0

∂β0(θ0)
∂θ′

]−1

. The missing X and the estimation

of the nuisance parameters γ to model this missingness make this optimal asymptotic vari-
ance different from that given in Proposition 4 of Gourieroux et al. (1993). Without the for-
mer, W0(S) would reduce to standard definitions given in Gourieroux et al. (1993); i.e., ξi,S,

defining the asymptotic expansion of
√
N
(
β̂N − β̂N,S(θ0)

)
, would reduce to m(Yi, Zi, Xi, β

0) −
1
S

∑S
s=1m(Yis(θ

0), Zi, Xi, β
0). Without the latter, C0Ω−1

22 C
′
0 would not appear in the definition

of H0. And the difference between the two formulas would disappear.
(2) The matrix H0 can be equivalent written in the more compact form

H0 := E
[(
ξi − Π(ξi|lγ(Di,Wi; γ

0))
) (
ξi − Π(ξi|lγ(Di,Wi; γ

0))
)′]

,

ξi :=
Di

p0(Wi)

[
m(Yi, Zi, Xi, β

0)− 1

S

S∑
s=1

m(Yis(θ
0), Zi, Xi, β

0)

]
,

where li,γ(γ) was defined in (18), and Π(ξi|li,γ(γ0)), stands for the affine regression of ξi on
li,γ(γ

0). Using this formula the asymptotic variance of the IPW-II estimator can be stated as

Σ(H−1
0 ) =

[
∂β0(θ0)′

∂θ
G′0

{
E
[(
ξi − Π(ξi|lγ(Di,Wi; γ

0))
) (
ξi − Π(ξi|lγ(Di,Wi; γ

0))
)′]}−1

G0
∂β0(θ0)

∂θ′

]−1

.

The above formula is similar to existing formulas describing the asymtotic variance covariance
of GMM estimators with missing data, see, e.g.,

(3) The IPW-II estimator is based on inverse probability weighting the so called com-
plete cases, i.e., sample units with no missing variables, to correct for the endogenous miss-
ingness/selection. This makes it widely applicable to scenarios where the pattern of missingness
is more complex [see Little and Rubin (2002)]. For example, let X = (X ′1, X

′
2)′ and suppose

we observe (Y ′, Z ′)′ for some sample units, (Y ′, Z ′, X ′1)′ for some and (Y ′, Z ′, X ′)′ for the rest.
This is a scenario of monotonic pattern in missingness. If there is another subset of the sample
units where we observe (Y ′, Z ′, X ′2)′, then this is a scenario of non-monotonic pattern in missing-
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ness. The above algorithm can be directly applied under both scenarios since it works with the
complete cases only, i.e, sample units for which we observe (Y ′, Z ′, X ′)′. However, the estimator
will not be semiparameterically efficient in the sense of Robins et al. (1994) and Robins and
Rotnitzky (1995).

Since the driving force behind the potential loss in efficiency related to Remarks (2) and
(3) above are well understood now, we abstract from such efficiency considerations to keep this
paper short.

3.5 Smoothed Implementation: IPW-GII Estimator

Implementation of the IPW-II estimator when MN,S (β, γ, θ) is non-smooth in θ can be compu-
tationally burdensome. Following Keane and Smith (2005), we propose an alternative estimator
that simplifies estimation via smoothing. The smoothed estimator is obtained in the same man-
ner as θ̂N , except that Yis(θ) in the original algorithm is replaced by a transformation Yis(θ, hN)
that is smooth (continuously differentiable) in θ for hN > 0, where

lim
hN→0

Yis(θ, hN) = Yis(θ) for all s = 1, . . . , S and i = 1, . . . , N. (27)

The term hN controls the smoothness of the transformation – larger (smaller) hN leads to a
more (less) smooth transformation but increases (decreases) estimation bias – and needs to be
specified by the user taking into consideration the sample size N and the simulation size S.

Such transformations are widely used in simulation-based estimation of discrete choice models
to avoid computational difficulties arising from the non-differentiability of the concerned estimat-
ing equations with respect to θ (see Train, 2009). To our knowledge, Keane and Smith (2005)
were first to propose its use in the context of II. They named the ensuing II procedure Gener-
alized Indirect Inference (GII). Bruins et al. (2015) present a thorough theoretical exposition of
GII.

We formally define the GII (smoothed) estimator θ̃hN(AN) as a solution of:∥∥∥Mh
N,S

(
β̂N , γ̂N , θ̃

h
N(AN)

)∥∥∥
AN
≤ oP

(
N−1/2

)
+ inf

θ∈Θ

∥∥∥Mh
N,S

(
β̂N , γ̂N , θ

)∥∥∥
AN

, (28)

where Mh
N,S(β, γ, θ) := 1

NS

∑N
i=1

Di
p(Wi;γ)

∑S
s=1m(Yis(θ, hN), Zi, X

obs
i , β, ) and refer to θ̃hN(AN) as

the IPW-GII estimator of θ0.
The proposed smoothing approach in Keane and Smith (2005) is more sophisticated than (28)

and involves choosing the appropriate smoothing parameter h in two steps, which is not fully
reflected in the definition (28). In our Monte Carlo experiment involving estimation of structural
parameters in a multinomial probit model, however, a naive one-step choice of h for the IPW-GII
estimator provides significant improvements over the IPW-II estimator. In particular, not only
does it reduce the computational cost substantially but it also improves the asymptotic normality
approximation for the distribution of the II estimator.6

Asymptotic equivalence between θ̃hN(AN) and θ̂N(AN) is ensured by letting hN → 0 at a

6With minor modifications to the assumptions and the theoretical results presented in this paper one can also
accommodate the two-step procedure for the choice of h, if needed, following the results in Bruins et al (2015).
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controlled rate (
√
NhN = o(1)) and under additional, but standard, technical conditions on the

quantities depending on hN . We collect these conditions under assumption A8 in the Appendix.

Proposition 3. Under Assumptions A1-A8 in the Appendix, for some sequence of non-
negative real numbers h = hN satisfying

√
NhN = o(1),

√
N‖θ̂N(A)− θ̃hN(A)‖ = oP (1).

4 Illustrative Example: Multinomial Probit Model

Herein, we consider a multinomial probit model similar to Section 9 in Gourieroux et al. (1993).
However, our choice of the auxiliary model is different. It is based on (14)-(15), which leads to
ordinary least squares computations, and has similarities with the auxiliary models in Keane and
Smith (2005) and Li (2010), with Keane and Smith (2005) using this auxiliary model to estimate
the parameters of the multinomial probit model. Section 4.1 specifies the auxiliary model for
II and establishes the identification conditions A2 and A3 without explicit consideration of the
missing variables. However, missing variables under MAR-X can be accommodated by simply
replacing the moment vector for the auxiliary model by its inverse probability weighted version.
The satisfaction of A2 and A3 ensure the adequacy of the auxiliary model for use in II. Section
4.2 presents a simulation study demonstrating the effectiveness in finite samples of the IPW-II
and IPW-GII estimators in this model when the exogenous variable X is missing endogenously
following MAR in (2), i.e., MAR-X.

4.1 Indirect Inference: Multinomial Probit Model

Consider a (J + 1)-alternative multinomial probit model with the alternative 0 as the baseline:

Y =
J∑
j=1

j × 1 (Uj > max(0, Uk : k = 1, . . . , J and k 6= j)),

where Uj = Z ′jα +X ′λj + ej,

and (e1, . . . , ek)
′ = Ω1/2(ε1, . . . , εk)

′ with Ω1/2 lower triangular such that Ω1/2Ω1/2′ = Ω.

(29)

Let (ε1, . . . , εk)
′ ∼ N(0, Ik) be independent of Z = (Z ′1, . . . , Z

′
J)′, i.e., say the alternative depen-

dent variables, and X, i.e., say the purely individual specific variables.7 This corresponds to the
structural model (8). Let the structural parameters be θ = (α′, h′1, . . . , h

′
J , ω

′)′ where ω are the
unique unrestricted elements of Ω. θ = θ0 in our population of interest.

Our implementation of II in this multinomial probit model follows the same steps described
in Section 3.1-3.3. One possible choice for m(.), which we follow in the Monte-Carlo experiment

7Normality of ε rules out ties in Uj ’s almost surely in Z and X. Also assume that the usual restrictions for
identification, such as standardizing α, λj ’s and Ω with respect to the (1, 1)-th element of Ω, and/or any other
context specific restrictions are imposed. We abstract from all such issues that are peripheral to the message of
our paper.
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in Section 4.2, is to take:

m(R,Z,X, β) =



 ζ(R1 − ζ ′β1)
...

ζ(RJ − ζ ′βJ)


vech


 R1 − ζ ′β1

...
RJ − ζ ′βJ


 R1 − ζ ′β1

...
RJ − ζ ′βJ


′

−

 β11 . . . β1J
...

...
...

β1J . . . βJJ





(30)

where R (stands for response) is either Y or Y (θ), as appropriate. Rj = 1(R = j) for j = 1, . . . , J
and β = (β′1, . . . , β

′
J , β11, . . . , β1J , β22, . . . , β2J , . . . , βJJ)′. ζ is some vector valued function of Z

and X; for example, ζ = (1, Z ′, X ′)′. A “richer” function ζ, for example, that also includes
quadratic terms in Z and X, increases the “richness” of the auxiliary model and generally leads
to higher efficiency of II; see Keane and Smith (2005) for a careful demonstration.

This choice of m(.) has the benefit of only requiring simple computations of equation-by-
equation ordinary least squares in a seemingly unrelated regression (SUR) model with J response
variables 1(Y = j) or 1(Y (θ) = j) for j = 1, . . . , J ; same set of regressors ζ for all regressions;
and regression errors with unknown variance-covariance matrix. In particular, this choice of
m(.) leads to the first order conditions (that are efficient given ζ) for the SUR model regression
coefficients, augmented by the estimating equations for the unique elements in the variance-
covariance matrix of the SUR regression errors. Hence, for a given ζ, the computation and
efficiency consideration involved with this choice of m(.) are the same as that due to the quasi
maximum likelihood estimation of the parameters of the auxiliary model in Keane and Smith
(2005).

Lemma 1 below shows that when no variables are missing, standard least squares identification
conditions are sufficient for the key identification conditions A2 and A3 to hold in II based on
the auxiliary model induced by the choice of m(.) in (30). The proof is trivial and hence omitted.

Lemma 1. Define Yj := 1(Y = j) and Yj(θ) := 1(Y (θ) = j). Then Assumption A2 in the
Appendix holds if E [ζζ ′] is non-singular, while Assumption A3 in the Appendix holds under the
additional orthogonality restriction E[ζ(Yj(θ)−Yj(θ0)] = 0 or, equivalently, E[ζ(Yj(θ)−Yj)] = 0
for j = 1, . . . , J if and only if θ = θ0.

Remarks:
(1) The lemma also applies to other discrete response models as long as the non-singularity

and orthogonality conditions hold. This does not contradict the well known results that, typically
such orthogonality (or even mean independence) conditions are not sufficient for non-parametric
identification of the structural parameters in discrete response models. While apparently no
other distributional assumption has been made in its statement, the lemma is highly parametric
and could not possibly be used without knowing the distribution of Yj(θ) conditional on Z,X.

(2) Section 4.2 takes ζ = (1, Z ′, X ′)′ and, therefore, according to Lemma 1 it implicitly
requires for identification of θ0 the following high level orthogonality conditions:

(a) P (Yj(θ) = 1) = P (Yj(θ
0) = 1) for all j = 1, . . . , J if and only if θ = θ0.
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(b) E[Z(P (Yj(θ) = 1|Z,X)−P (Yj(θ
0) = 1|Z,X))] = 0 for all j = 1, . . . , J if and only if θ = θ0.

(c) E[X(P (Yj(θ) = 1|Z,X) − P (Yj(θ
0) = 1|Z,X))] = 0 for all j = 1, . . . , J if and only if

θ = θ0.

(3) A “richer” ζ, for example, that also includes quadratic terms in Z and X, would impose
additional such orthogonality conditions and thereby would lead to higher precision of the II
estimates.

(4) The result directly applies to our framework of endogenously missing exogenous variables
X by replacing m(R,Z,X, β) in (30) by D

p(W ;γ0)
m(R,Z,X, β) and appealing to MAR-X.

Finally, Lemma 1 can also be used to identify the pseudo-true θ (call it θ∗) estimated by
II when the exogenous variables X are missing endogenously following MAR in (2) and the
missingness is simply ignored. Hereafter, we will referee to an II procedure that simply ignore
the missingness as standard II.

Consider the following toy example where, for simplicity of demonstration, we take J = 1,
ignore Z, and make specific and convenient distributional assumptions that are covered by the
our maintained assumptions.
Toy Example: Let the structural model and the missingness mechanism be characterized by:

Y = 1(Xλ0 + ε ≥ 0) and D = 1(Y γ0 + v ≥ 0)

where the scalar random variable X, the structural error ε and the missingness error v are
assumed to be independent. Let θ0 = λ0. Following (30), define m(R,X, β) = X(R −Xβ) for
R = Y or R = Y (θ). We ignore the overidentifying (second moment) restrictions from (30) for
simplicity.

Therefore, using the observed data, standard II defines β0 and β0(θ) from (1) as follows:

β0 solves E[DX(Y −Xβ)] = 0, and β0(θ) solves E[DX(Y (θ)−Xβ)] = 0.

These are essentially the population version of the first two steps of standard II. The final step
obtains θ∗ by a matching exercise, such as, β0 = β0(θ∗) which, by Lemma 1, holds if and only
if E[DXY (θ∗)] = E[DXY ]. Letting FT denote the distribution function of any variable T , we
know:

E[DXY (θ∗)] = E
[
((1− Fv(−γ0))(1− Fε(−Xθ0)) + (1− Fv(0))Fε(−Xθ0))(1− Fε(−Xθ∗))X

]
,

E[DXY ] = E
[
(1− Fv(−γ0))(1− Fε(−Xθ0))X

]
.

The above equalities follow from using MAR-X in (2), the conditional (on X) independence
between Y and Y (θ), and the fact that Fε = Fε̃. For simplicity, assume the specific and convenient
distributions: ε ∼ N(0, 1), v ∼ N(0, 1) and X ∼ Bernoulli(q). Denote the distribution function
of N(0, 1) by Φ(.) and its inverse by Φ−1(.). Therefore, equating E[DXY (θ∗)] = E[DXY ] we
obtain, for standard II,

(pseudo-true value) θ∗ = Φ−1

(
Φ(γ0)Φ(θ0)

Φ(γ0)Φ(θ0) + Φ(0)(1− Φ(θ0))

)
6= θ0 (true value)

unless γ0 = 0, i.e., unless the missingness is exogenous. Hence, it is the endogeneity of the
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missingness that causes the problem of identification with standard II. Our proposed II solves
this problem.

4.2 Simulation Study: Three Alternative (J = 2) Probit Model

The simulation design considered here is similar to Model 4 in Keane and Smith (2005) and
Bruins et al. (2015). In particular, we consider the multinomial probit model in (29) with J = 2.

For each i = 1, . . . , N , we generate the exogenous regressors as: Zji
i.i.d.∼ χ2

1 − 1 for j = 1, 2

and Xi
i.i.d.∼ N(1, 2) independent of each other. Normalizing all the parameters in the model by

the (1,1)-th element of Ω, i.e., equivalently, by fixing ω11 = 1 (not to be estimated), we take

θ0 = (α0 = 1, λ0
1 = 1, λ0

2 = 2, ω0
12 = .5, ω0

22 = 1)′. We generate the structural errors εi
i.i.d.∼ N(0, I2)

and ei = Ω01/2εi independent of the regressors Z1i, Z2i, Xi and, finally, we generate the outcome
Yi following (29) for each i = 1, . . . , N .

We consider the following missingness mechanism that determines the observability of X.
Generate

Di = 1(γ0
1 × 1(Yi = 1) + γ0

2 × 1(Yi = 2) + γ0
3 × Z2i ≥ vi)

for each i = 1, . . . , N with vi
i.i.d.∼ N(0, 1) independent of the structural errors ei and the exogenous

variables Zi = (Z1i, Z2i)
′ and Xi. Hence MAR-X in (2) holds. Take γ0

1 = −.5, γ0
2 = .5 and γ0

3 = 1.
This leads to roughly 50% of sample units with missing X.

We consider the auxiliary model and the corresponding auxiliary parameters as defined by
(1) based on the choice of m(.) given in (30) with ζ = (1, Z1, Z2, X)′.

We consider four estimators: the standard II estimator, an infeasible II estimator, the IPW-II
and IPW-GII estimators introduced in Section 3. The standard II estimator works with the com-
plete case data {DiYi, DiZi, DiXi}Ni=1, i.e., sample units without any missing variables. Standard
II ignores the endogenous missingness of X and thus can be biased, gauging the magnitude and
consequences of this bias is the first purpose of the simulation study. The infeasible II estimator
works with the infeasible full data set {Yi, Zi, Xi}Ni=1, which is only available because we have gen-
erated the data (and the subsequent missingness), and is not available in practice. The infeasible
II is the II estimator that one would use if there were no missingness in the data. Its finite-sample
behavior provides an infeasible benchmark for the performance of II in this context. The IPW-II
and IPW-GII estimators work with the observed data {Di, Yi, Zi, DiXi}Ni=1 but account for the
endogeneity in the missingness of X. These estimators are designed to correct the bias of the
standard II estimator, and demonstrating this is the second purpose of the simulation study. The
third purpose of the study is to demonstrate that the normal approximation in Proposition 2
may only be appropriate for the IPW-II estimator asymptotically, even when the sample size
is very large. Lastly, the simulation study demonstrates that the IPW-GII estimator does not
suffer from this issue thanks to the smoothing proposed by Keane and Smith (2005).

We compute the mean bias (MBIAS), mean absolute bias (ABIAS), standard deviation
(STD), interquartile range (IQR) and the coverage of a 95% Wald-confidence interval (COV95)
for all the estimators of (α0, λ0

1, λ
0
2, ω

0
12, ω

0
22) for sample sizes N = 200, 500, 1000 and 5000. We

take S = 10. The standard II, infeasible II and IPW-II estimators are computed by the pat-
ternsearch routine in Matlab. On the other hand, the smoothness of the optimization problem
for the IPW-GII estimator allows the use of the gradient-based Matlab routine fminunc. Fol-
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lowing Keane and Smith (2005), the initial value is set at the true parameter value for all four
estimation procedures. All four estimators use the (estimator specific) optimal weighting matrix
(see Proposition 3.2), and in effect are continuously updated generalized method of moments
estimators. All results are based on 10, 000 Monte-Carlo trials.

To abstract from biases due to small sample sizes and instead focus on the bias that arises
because the standard II estimator deliberately ignores the endogenous missingness, we only
report the results for the standard II estimator based on N = 5000 in Table 1. (Results for
other sample sizes are available from the authors.) This estimator is badly biased (MBIAS).
As a consequence, the coverage of the 95% confidence intervals for the unknown parameters are
extremely low: indeed as low as 1%.

Table 2 reports the results for the other three estimators. As expected from the results in
Section 3, the IPW-II corrects the bias of the standard II estimator. Its bias (MBIAS) decreases
considerably as the sample size increases. ABIAS, STD and IQR also display similar pattern
with the increase in sample size. The coverage (COV95) is good. Overall, keeping in mind that X
is missing for roughly 50% sample units, the finite-sample behavior of the IPW-II estimator does
not deviate much from that of the infeasible benchmark provided by the infeasible II estimator,
especially when the sample size is not too low.

Similar phenomenon of bias correction is observed for the IPW-GII estimator. However,
its bias (MBIAS) is larger than that of the IPW-II estimator. Its ABIAS, STD and IQR are
also generally larger than that of the IPW-II estimator. These features are possibly due to the
naive one-step choice for the smoothing parameter hN in the implementation of the IPW-GII
estimator.8

Nevertheless, the IPW-GII estimator indeed serves the dual purpose stated in Section 3. The
IPW-GII estimator is much faster than the IPW-II estimator, and more importantly, while the
studentized IPW-II estimator is far from from being normally distributed, even for large sample
size N = 5000, no such problem arises for the IPW-GII estimator;9 Figure 1 gives precise details.

5 Conclusion

In this paper we have demonstrated the problems with identification and consistent estimation
of the structural parameters by II when the exogenous variables can be endogenously missing.
Under the MAR assumption, which may arise in empirical work for reasons such as survey
non-response, survey revisions, cost-effective survey design, etc. Our proposed solution, which
we call the modified method of II, can be implemented as either the IPW-II or the IPW-GII
estimator. This novel estimation method corrects for the sample selection bias in the estimation
of the auxiliary parameters with the observed data and the simulated data using the method

8The smoothing parameter hN is .078, .0571, .0458, .0284 respectively for N = 200, 500, 1000, 5000. This is in
rough accordance to the requirements of Proposition3 but with a slight tilt toward zero for the smaller sample
sizes N = 200, 500 to reduce the bias due to smoothing.

9The same issue is also present in the infeasible II estimator. However, for both the infeasible II and IPW-II,
the quality of the normal approximation is better if we use a richer auxiliary model by augmenting ζ = (1, Z ′, X ′)′

with quadratic terms in Z and X. This removes some wiggliness in the corresponding kernel density plots. These
figures are not included for brevity but can be found in the previous version of the paper and are available from
the authors.
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of inverse probability weighting. The desirable performance of the proposed II approach was
demonstrated theoretically and via simulations. The extremely poor performance of standard II
based on simply discarding sample units with missingness was also demonstrated via simulations.
Finally, we conclude by noting that in comparison with II based on discarding sample units with
missingness, our proposed method involves only one additional preliminary step of estimation of
a binary choice model such as logit or probit, and hence retains the computational attractiveness
of II.
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A Appendix: Technical assumptions and proofs

A.1 Technical Assumptions

The following notations are used. For a d × d matrix A and a c × d matrix B, define ‖b‖A :=√
Trace(BAB′) and ‖b‖ := ‖b‖A=Id . Define Nδ(θ0) ⊂ Θ, Nδ(β0) ⊂ B and Nδ(γ0) ⊂ Γ as some

generic open neighborhoods of radius δ for θ0, β0 and γ0 respectively. Finally, define

M(β, γ) := E

[
D

p(W ; γ)
m(Y, Z,X, β)

]
and M(β, γ, θ) := E

[
D

p(W ; γ)
m(Y (θ), Z,X, β)

]
.

By the definition of β0 in (1), the definition of the binding function in (15), and the above
Lemmas,

M(β0, γ0) = M(β0, γ0, θ0) = 0. (31)

Assumption A1:

(a) Structural Model in (8): ε has a known distribution Fε = F 0
ε and is independent of Z and

X whose unknown distribution is F(Z,X) = F 0
(Z,X).

(b) Strict overlap: For MAR in (2), p0(W ) := P (D = 1|W ) ∈ [p, 1) for a constant p > 0.

(c) Observed sample: {Wi, Di, X
obs
i := DiXi}Ni=1 are i.i.d. copies of W,D, and Xobs := DX.

Assumption A2: β0 is the unique solution to equation (1).
Assumption A3: For all θ ∈ Θ, the binding function β(θ) defined in equation (15) satisfies
β0 = β(θ) if and only if θ = θ0.
Assumption A4 : There exists a unique γ0 ∈ Γ and a function p(w, γ) : Support(W ) × Γ 7→
(0, 1) such that p0(w) = p(w; γ0) for all w ∈ Support(W ). Γ ⊂ Rdγ is compact and dγ is finite.
Assumption A5:

(a) Θ ⊂ Rdθ and B ⊂ Rdβ are compact with θ0 ∈ interior(Θ) and β0 ∈ interior(B).

(b) For l = (l1, l2, l3) where l1 ∈ Support(Y or Y (θ)) (as appropriate) and (l2, l3) ∈ Support(Z,X):
m(l, β) is continuous in β for all l, and ‖m(l, β)‖2 ≤ g(l) for all l and E[g(l)] <∞.

(c) For δ > 0: sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖MN,S(β, γ, θ)−M(β, γ, θ)‖
1 + ‖MN,S(β, γ, θ)‖+ ‖M(β, γ, θ)‖

= oP (1).

Assumption A6:

(a) p(w; γ) is continuous in γ ∈ Γ for all w ∈ Support(W ).

(b) For some δ > 0: p(w; γ) is twice continuously differentiable in γ ∈ Nδ(γ0) for all w ∈
Support(W ), and the derivatives pγ(w; γ) := ∂

∂γ′
p(w; γ) and pγγ(w; γ) := ∂

∂γ′
p′γ(w; γ) sat-

isfy: supγ∈Nδ(γ0) ‖pγ(w; γ)‖2 +supγ∈N (γ0) ‖pγγ(w; γ)‖ < b(w) for all w ∈ Support(W ) where
b(w) ≥ 0 and E[b(w)] <∞.

(c) The score lγ(D,W ; γ) := (D−p(W ; γ))p′γ(W ; γ)/[p(W ; γ)(1−p(W ; γ))] is such that B0 :=

E
[
lγ(D,W ; γ0)l′γ(D,W ; γ0)

]
is nonsingular.
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Assumption A7:

(a) For each l = (l1, l2, l3) where l1 ∈ Support(Y or Y (θ)) (as appropriate) and (l2, l3) ∈
Support(Z,X), m(l, β) is continuously differentiable in β ∈ Nδ(β0) for some δ > 0. Allow
for changing the order of differentiation and integration, i.e., let E

[
supβ∈Nδ(β0) ‖∂m(l, β)/∂β′‖

]
<

∞.

(b) G0 := E
[
∂
∂β′m(Y, Z,X, β0)

]
≡ E

[
∂
∂β′m(Y (θ0), Z,X, β0)

]
is nonsingular.

(c)
√
Nξ̄N,S

d−→ N
(
0, E

[
ξi,Sξ

′
i,S

])
where ξ̄N,S :=

∑N
i=1 ξi,S/N for

ξi,S :=
D

p(W ; γ0)
m(Y, Z,X, β0)− 1

S

S∑
s=1

D

p(W ; γ0)
m(Y (θ0), Z,X, β0)

.

(d) For θ = θ0: (∂/∂θ′)M(β0, γ0, θ) has rank dθ and is continuously differentiable in θ.

(e) For every positive sequences {δN} and δN = o(1)

sup
θ∈NδN (θ0),β∈NδN (β0),γ∈NδN (γ0)

√
N‖MN,S(β, γ, θ)−M(β, γ, θ)−MN,S(β0, γ0, θ0)‖

1 +
√
N‖MN,S(β, γ, θ)‖+

√
N‖M(β, γ, θ)‖

= oP (1).

To establish the asymptotic properties of the GII estimator, additionally define for each h:

Mh(β, γ, θ) := E

[
D

p(W ; γ)
m(Y (θ, h), Z,X, β)

]
.

As before like (31) and further using (27),

M(β0, γ0) = M(β0, γ0, θ0) = Mh=0(β0, γ0, θ0) = 0. (32)

The following assumptions on Mh
N(β, γ, θ) Mh(β, γ, θ) and M(β, γ, θ) are additionally maintained

for the asymptotic equivalence of the GII and II estimators.
Assumption A8: For some δ > 0 and a finite b > 0, let the following hold for Mh

N,S(.) and its
limit counterpart Mh(.):10

(a) sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖Mh(β, γ, θ)−M(β, γ, θ)‖ ≤ b× h for h ∈ [0, δ).

(b) sup
h∈[0,δ)

sup
θ∈Θ,β∈Nδ(β0),γ∈Nδ(γ0)

‖Mh
N(β, γ, θ)−Mh(β, γ, θ)‖

1 + ‖Mh
N(β, γ, θ)‖+ ‖Mh(β, γ, θ)‖

= oP (1).

(c) (i) sup
h∈(0,δ)

sup
θ∈Nδ(θ0),β∈Nδ(β0),γ∈Nδ(γ0)

∥∥∥∥ ∂

∂(β′, γ′)

(
Mh

N(β, γ, θ)−Mh(β, γ, θ)
)∥∥∥∥ = oP (1).

10See Remark 4 for an explanation of these assumptions.
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(c) (ii) sup
h∈(0,δ)

sup
θ∈Nδ(θ0),β∈Nδ(β0),γ∈Nδ(γ0)

∥∥∥∥ ∂

∂θ′
(
Mh

N(β, γ, θ)−Mh(β, γ, θ)
)∥∥∥∥ = OP (N−1/2).

(d) ∂
∂(β′,γ′,θ′)

Mh(β, γ, θ) is continuous in β, γ, θ, h for (β, γ, θ) ∈ Nδ(β0, γ0, θ0) and h ∈ [0, δ).

(e) sup
h∈(0,δ)

√
N‖Mh

N(β0, γ0, θ0)−Mh(β0, γ0, θ0)−MN(β0, γ0, θ0)‖
1 +
√
N‖Mh

N(β0, γ0, θ0)‖+
√
N‖Mh(β0, γ0, θ0)‖

= oP (1).

Remark 1: It is well known that by Assumptions A4 and A6, the maximum likelihood estimator
γ̂N that gives p̂0(w) = p(w, γ̂N) for Step 0 of modified II satisfies:

√
N(γ̂N − γ0) = B−1

0

1√
N

N∑
i=1

lγ(Di,Wi; γ
0) + oP (1). (33)

Also, (2), Assumptions A1(b)-(c), A5(a)-(b) and A7(a)-(b) and (33) give for β̂N from Step 1:

√
N(β̂N − β0) = −G−1

0

1√
N

N∑
i=1

τi + oP (1) (34)

where τi := Di
p0(Wi)

m(Yi, Zi, Xi, β
0)−E

[
D

p0(W )
m(Y, Z,X, β0)lγ(D,W ; γ0)′

]
B−1

0 lγ(Di,Wi; γ
0). See.

e.g., Chaudhuri and Min (2012) for (33) and (34). Similar steps and (13) give for β̂N(θ0) defined
as:

β̂N(θ0) := argβ∈B
{
MN,S

(
β, γ̂N , θ

0
)

= 0
}

(35)

the asymptotically linear representation as:

√
N(β̂N(θ0)− β0) = −G−1

0

1√
N

N∑
i=1

τi,S + oP (1) (36)

where

τi,S :=
Di

p0(Wi)

1

S

S∑
s=1

m(Yis(θ
0), Zi, Xi, β

0)−E
[

D

p0(W )
m(Y (θ0), Z,X, β0)lγ(D,W ; γ0)′

]
B−1

0 lγ(Di,Wi; γ
0).

Therefore, under Assumption A7(c) and for a fixed S, using (33), (34) and (36) jointly give:

√
N(β̂N − β̂N(θ0)) = −G−1

0

√
N
[
ξ̄N,S − C0(γ̂N − γ0)

] d−→ N
(

0, G−1
0 H0G

−1′

0

)
(37)

where C0 := Cov(ξi,S, lγ(Di,Wi; γ
0)) = E

[
1

p0(W )
{m(Y, Z,X, β0)−m(Y (θ0), Z,X, β0)} ∂

∂γ′
p(W ; γ0)

]
.

Remark 2: Assumption A5(c) is an uniform convergence condition for which the strict overlap
assumption in A1(b) plays a crucial role. The same holds for the stochastic equicontinuity
condition Assumption A7(e) that is similar to condition (iii) in Theorem 3.3 of Pakes and
Pollard (1989), but additionally it allows for nuisance parameters close to their true values. Such
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high-level assumptions need to be verified on a case-by-case basis [see, e.g., Cattaneo (2010) or
Chaudhuri and Guilkey (2014)].
Remark 3: Since it is also well known how to account for random weighting matrix [see Lemmas
3.4 and 3.5 of Pakes and Pollard (1989)], we abstract from it in all the proofs below and instead
directly assume in the concerned propositions that the weighting matrix AN is possibly based on

some preliminary consistent estimators of the concerned parameters such that AN
P−→ A where

A is a positive definite matrix. Hence in what follows let θ̂N := θ̂LMN (AN).
Remark 4: Assumption A8 is a high-level condition restricting the choice of kernels (e.g.
logistic or normal) used within the smoothing step of the generalized II procedure. Essentially
it imposes sufficient smoothness condition on Mh

N(.) and Mh(.) to facilitate simple proofs of the
desired asymptotic properties of the GII estimator. The denominators in A8(b) and (d) add
slightly more generality (similar to those in A5(d) and A7(e)). The asymmetric treatment with
respect to (β, γ) and θ in A8(c) (i) and (ii) respectively is due to the fact that we do not formally

establish
√
N -consistency of θ̃hN prior to demonstrating its asymptotic normality. The stronger

condition in (ii) bears resemblance with the assumptions on suitable central limit theorem for
Jacobians in the weak identification literature (see Kleibergen (2005)).

A.2 Proofs

Proof of Proposition 1: For notational simplicity, in what follows we drop the S subscript
from the definition of MN,S(·). Hopefully, this is not too confusing since S is assumed fixed.

The proof proceeds by showing that ‖M(β0, γ0, θ̂N)‖ = oP (1). Under Assumptions A2 and

A3, this condition is sufficient for θ̂N
P−→ θ0 by virtue of (31), (33), (34) [where the last two give:

γ̂N ∈ Nδ(γ0) and β̂N ∈ Nδ(β0) respectively with probability approaching 1], and the continuity
implied by Assumptions A1(b), A6(a) and A5(b). Note that by the triangle inequality:

‖M(β0, γ0, θ̂N)‖ ≤‖M(β0, γ0, θ̂N)−M(β̂N , γ̂N , θ̂N)‖+ ‖M(β̂N , γ̂N , θ̂N)−MN(β̂N , γ̂N , θ̂N)‖
+ ‖MN(β̂N , γ̂N , θ̂N)‖.

By (33), (34), and the continuity implied by Assumptions A1(b), A6(a) and A5(b), the first

term on the right hand side, i.e., ‖M(β0, γ0, θ̂N) − M(β̂N , γ̂N , θ̂N)‖ is oP (1). (33), (34) and

Assumption A5(c) imply that the second term ‖M(β̂N , γ̂N , θ̂N) − MN(β̂N , γ̂N , θ̂N)‖ is oP (1).

The definition in (26) implies that the third term ‖MN(β̂N , γ̂N , θ̂N)‖ ≤ ‖MN(β̂N , γ̂N , θ
0)‖ =

‖M(β̂N , γ̂N , θ
0)‖+oP (1) where the equality follows from (33), (34) and Assumption A5(c). Since

(33), (34) and, as before, the continuity of M(β, γ, θ0) in β and γ imply that ‖M(β̂N , γ̂N , θ
0)‖ =

‖M(β0, γ0, θ0)‖+ oP (1), it follows by (31) that the third term is also oP (1).

Proof of Proposition 2: For notational simplicity, again, in what follows we drop the S
subscript from the definition of MN,S(·).

Since θ̂N
P−→ θ0, it follows by (31) and Assumption A7(d) that ‖θ̂N−θ0‖ = OP

(
‖M(β0, γ0, θ̂N)‖

)
.

Under our maintained assumptions and (33) and (34), it can then be shown that ‖M(β0, γ0, θ̂N)‖
and hence ‖θ̂N − θ0‖ is OP (N−1/2). Details are available from the authors. Given this, and that
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our assumptions are essentially same as that in Theorem 3.5 of Pakes and Pollard (1989), the
rest of the proof is also similar. Hence we only provide a sketch of the proof below, and highlight
the differences that appear only to the end of the proof.

For now let dθ = dβ. Justifying by virtue of (33), (34) and the
√
N -consistency of θ̂N , linearize

MN(ζ̂N , θ) in a
√
N -neighborhood of θ0 by the function [see, for example, Chen et al. (2003)]:

LN(θ) := MN(β0, γ0, θ0)+
∂M(β0, γ0, θ0)

∂β′
(β̂N−β0)+

∂M(β0, γ0, θ0)

∂γ′
(γ̂N−γ0)+

∂M(β0, γ0, θ0)

∂θ′
(θ−θ0).

Define θ∗N = arg minθ ‖LN(θ)‖. For the application of Assumption A7(e) in the remainder of

the proof choose δN such that β̂N ∈ NδN (β0), γ̂N ∈ NδN (γ0), and both θ̂N , θ
∗
N ∈ NδN (θ0). It

can now be shown (details available from the authors) by (33), (34), Assumption A7(e) and the√
N -consistency of θ̂N that ‖MN(β̂N , γ̂N , θ)− LN(θ)‖ = oP (N−1/2) for both θ = θ̂N and θ = θ∗N ,

and thus, subsequently, by Assumption A7(d) that

√
N(θ̂N − θ0) =

√
N(θ∗N − θ0) = op(1). (38)

Now note by (35): β̂N(θ0) satisfies 0 = MN(β̂N(θ0), γ̂N , θ
0). Expanding the right hand side gives:

0 = MN(β0, γ0, θ0) +
∂M(β0, γ0, θ0)

∂β′
(β̂N(θ0)− β0) +

∂M(β0, γ0, θ0)

∂γ′
(γ̂N − γ0) + oP (N−1/2). (39)

On the other hand, since θ∗N = arg minθ ‖LN(θ)‖, it follows that oP (N−1/2) = LN(θ∗N). Hence by

the definition of LN(θ∗N) and using
√
N -consistency of β̂N , γ̂N and θ∗N it follows that:

oP (N−1/2) = MN(β0, γ0, θ0) +
∂M(β0, γ0, θ0)

∂(β′, γ′, θ′)

[
(β̂N − β0)′, (γ̂N − γ0)′, (θ∗N − θ0)′

]′
. (40)

Therefore, equating (39) and (40) gives:

∂M(β0, γ0, θ0)

∂θ′

√
N(θ∗N − θ0) = −∂M(β0, γ0, θ0)

∂β′

√
N(β̂N − β̂N(θ0)) + oP (1).

Until now in this proof we have disregarded the over-identifying nature of the system with

respect to θ. However, when dθ < dβ, and AN
P−→ A (positive definite), under Assumption

A7(d), standard methods modify the above relation as, up to an oP (1) term:

∂M ′(β0, γ0, θ0)

∂θ
A
∂M(β0, γ0, θ0)

∂θ′

√
N(θ∗N − θ0) = −∂M

′(β0, γ0, θ0)

∂θ
A
∂M(β0, γ0, θ0)

∂β′

√
N(β̂N − β̂N(θ0)).

Differentiating M(β0(θ), γ0, θ0) with respect to θ at θ = θ0 and using Assumption A7(d):
∂
∂θ′
M(β0(θ0), γ0, θ0) = ∂

∂β′M(β0(θ0), γ0, θ0) ∂
∂θ′
β0(θ0). Since β0 = β0(θ0) by Assumption A3,

this gives ∂
∂θ′
M(β0, γ0, θ0) = ∂

∂β′M(β0, γ0, θ0) ∂
∂θ′
β0(θ0) = G0

∂
∂θ′
β0(θ0) since (2), Assumptions

A4, A7(a) and (b) give G0 = ∂
∂β′M(β0, γ0, θ0). Combining the above and using (37) and (38)
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we obtain:

√
N(θ̂N − θ0) =

[
∂β0(θ0)′

∂θ
G′0AG0

∂β0(θ0)

∂θ′

]−1
∂β0(θ0)′

∂θ
G′0A
√
N
[
ξ̄N − C0(γ̂N − γ0)

]
+ oP (1)

d−→ N (0,Σ(A)) .

Proof of Proposition 3: For notational simplicity, we will drop the N subscript from h (with
the understanding that for any given N , h > 0 but h = o(N−1/2)) and the S subscript from the
definition of Mh

N,S(·). Also, since the weighting matrix AN can be handled in the same manner as
in Propositions 2, we only consider the just-identified case (dθ = dβ) and take AN = A = Idβ .

The proof now proceeds in two steps, first we demonstrate consistency of θ̃hN for θ0, and we then

demonstrate ‖θ̃hN − θ̂N‖ = oP (N−1/2). The entire proof closely follows that of Propositions 1
and 2 except that having established consistency we slightly deviate to emphasize the fact that
Mh

N(β, γ, θ) is indeed differentiable with respect to θ for h > 0.

Consistency: Following Proposition 1, by continuity of M(β, γ, θ) in θ, the result follows if

‖M(β0, γ0, θ̃hN)‖ = oP (1) as h→ 0. This condition will be sufficient for θ̃hN
P−−→
h→0

θ0 by the same

arguments as Proposition 1. By the triangle inequality:

‖M(β0, γ0, θ̃hN)‖ ≤‖M(β0, γ0, θ̃hN)−M(β̂N , γ̂N , θ̃
h
N)‖+ ‖M(β̂N , γ̂N , θ̃

h
N)−Mh(β̂N , γ̂N , θ̃

h
N)‖

+ ‖Mh(β̂N , γ̂N , θ̃
h
N)−Mh

N(β̂N , γ̂N , θ̃
h
N)‖+ ‖Mh

N(β̂N , γ̂N , θ̃
h
N)‖. (41)

As before, by Assumptions A1(b), A6(a) and A5(b), ‖M(β0, γ0, θ̃hN)−M(β̂N , γ̂N , θ̃
h
N)‖ is oP (1).

For the second term on the RHS of (41) note that, due to (33) and (34), γ̂ and β̂ belong re-
spectively in Nδ(γ0) and Nδ(β0) with probability approaching one. Hence the second term is
oP (1) by Assumption A8(a) and the condition that h → 0. Similar arguments give the third
term on the RHS to be oP (1) by virtue of Assumption A8(b). Finally consider the fourth term

and note that: ‖Mh
N(β̂N , γ̂N , θ̃

h
N)‖ ≤ ‖Mh

N(β̂N , γ̂N , θ
0)‖ + oP (1) = ‖Mh(β̂N , γ̂N , θ

0)‖ + oP (1)
where the first inequality follows from (28) and the second by Assumption A8(b). Now, (i) the
Lipschitz continuity of Mh in A8(a), (ii) continuity of M(.) with respect to β and γ that is
implied by Assumptions A1(b), A5(b) and A6(a), along with (iii) (33) and (34) give for h→ 0,

‖Mh(β̂N , γ̂N , θ
0)‖ = ‖M(β̂N , γ̂N , θ

0)‖ + oP (1) = ‖M(β0, γ0, θ0)‖ + oP (1), and this is oP (1) by

(32). Hence the fourth term is also oP (1) and thus it follows that θ̃hN
P−−→
h→0

θ0.

Asymptotic equivalence: In a just-identified model, θ̃hN satisfies the definition in (28) if

oP (1) =
√
NMh

N(β̂, γ̂N , θ̃
h
N).

Denoting ζ = (β′, γ′, θ′)′ for simplicity, and expanding the RHS we obtain:

oP (1) =
√
NMh

N(ζ0) +
∂

∂β′
Mh

N(ζ̄β,N)
√
N(β̂N − β0) +

∂

∂γ′
Mh

N(ζ̄γ,N)
√
N(γ̂N − γ0)

+
∂

∂θ′
Mh

N(ζ̄θ,N)
√
N(θ̃hN − θ0)
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for some (row-by-row) mean-values ζ̄β,N , ζ̄γ,N and ζ̄θ,N . Therefore, by
√
N -consistency of β̂N

and γ̂N from (34) and (33), consistency of θ̃hN (just established above), uniform convergence in
Assumptions A8(c)(i) (applied to the second and third terms on RHS) and A8(c)(ii) (applied
to the last term on RHS), the continuity assumption in A8(d), it follows that

oP (1) =
√
NMh

N(ζ0) +
∂M(ζ0)

∂ζ ′

√
N
[
(β̂N − β0)′, (γ̂N − γ0)′, (θ̃hN − θ0)′

]′
.

Finally take δN > 0 and δN = o(N−1/2), and note that:

sup
h∈(0,δN )

√
N‖Mh

N(ζ0)−MN(ζ0)‖ ≤ sup
h∈(0,δN )

√
N‖(Mh

N(ζ0)−Mh(ζ0))− (MN(ζ0)−M(ζ0))‖

+ sup
h∈(0,δN )

√
N‖Mh(ζ0)−M(ζ0)‖

≤ oP (1) +
√
Nb× δN

with probability approaching 1, respectively by Assumptions A8 (d) (along with the fact that
M(ζ0) = 0) and (a). Since δN = o(N−1/2) as dictated by the statement of the Proposition, it
now follows that suph∈(0,δ)

√
N‖Mh

N(ζ0)−MN(ζ0)‖ = oP (1) and hence

oP (1) =
√
NMN(ζ0) +

∂M(ζ0)

∂ζ ′

√
N
[
(β̂N − β0)′, (γ̂N − γ0)′, (θ̃hN − θ0)′

]′
=
√
NLN(θ̃hN)

for LN(θ) defined in the proof of Proposition 2. Therefore, ‖LN(θ̃hN)‖ = oP (N−1/2). Now by

following the same steps as in that proof we obtain
√
N‖θ̃hN − θ̂N‖ = oP (1).

B Tables and Figures

θ MBIAS ABIAS STD IQR COV95

α 0.0331 0.0472 0.0647 0.0727 94.05
λ1 0.0259 0.0487 0.0648 0.0698 91.73
λ2 0.4905 0.4905 0.1013 0.5008 1.03
ω12 -0.1297 0.2053 0.2216 0.2568 91.82
ω22 1.2701 1.2707 0.4538 1.3488 17.54

Table 1: Monte-Carlo results for the Multinomial probit (J = 2) model. MBIAS, ABIAS, STD,
IQR and COV95 are the mean bias, absolute bias, standard deviation, interquartile range and
coverage of a 95% Wald-type confidence interval for the standard II estimator for the different
elements of θ when N = 5000. STD is based on Monte-Carlo. Results are obtained by 10000
Monte-Carlo trials.
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