Bogus Joint-Liability Groups in Microfinance – Theory and Evidence from China

A. Karaivanov	X. Xing	Y. Xue
SFU	Tsinghua University	UIBE

January 2016

AEA Meeting, San Francisco 2016

Motivation

- survey data on clients of CFPAM, the leading microlender in China, indicates that a substantial fraction (69%) of microfinance joint-liability groups are what we call **bogus** (*Lei Da Hu*)
- **bogus group** = one person uses all loans given to the group members (cosigners) for one's own *single* purpose
- **standard group** = each member uses their *own separate loan* for a *different* purpose (as modeled in the literature)
- the practice of *Lei Da Hu* is against CFPAM rules but hard (or unwilling?) to enforce compliance

What we do

- write a model in which bogus and standard joint liability groups arise endogenously and can coexist in equilibrium
 - *selection* who and when forms bogus groups
 - repayment/default rate
 - *efficiency* are bogus groups 'bad' or 'good'?
- analyze the optimal loan contract (menu) when bogus groups cannot be detected or ruled out ex-ante
- empirical analysis; welfare and policy counterfactuals in progress and future work

Model

Borrowers

- risk neutral; each has a single investment project with productivity (type),
 k_i ∈ {k_L, k_H} where k_H > k_L > 0
- projects are fully loan-financed
- given loan (=investment) amount L, the project return is:

$$Y_i = \begin{cases} k_i L & \text{with probability } p \in (0,1) & [\text{success}] \\ 0 & \text{with probability } 1-p & [\text{failure}] \end{cases}$$

- project returns are i.i.d. across borrowers

Lender(s)

- risk neutral
- zero profits; no cross-subsidization (free entry)
- opportunity cost of funds = 1
- only group loans are provided, with a joint liability clause
 - two-person borrower groups
- loan terms: each borrower receives
 - loan size L
 - gross repayment R

Credit market features

• limited enforcement

- for example, unverifiable project return

• limited liability

- the borrowers have no other assets or income to be seized in case of failure (or this is unenforceable)

• joint liability

– each borrower can be held responsible for the full group obligation 2R

Default or repayment I

- involuntary default a borrower cannot repay the loan when her project fails
- strategic default a borrower whose project succeeds may default strategically and keep Y_i
- in either case, the other group member could choose to repay 2R if her project succeeds

Default or repayment II

- if the lender does not receive $2R \implies both$ borrowers are **cut off** from future access to credit
- if the lender receives $2R \implies both$ borrowers obtain value of future access to credit V > 0 each

Timing and information

- 1. two borrowers i, j form a group
- 2. the project productivities k_i, k_j are realized (observed by the borrowers but possibly not by the lender)
- 3. the lender offers contract(s) consisting of loan size and repayment $\{L, R\}$
- 4. the borrowers choose to operate as bogus or standard group unobserved by the lender
- 5. the project outcomes are realized (non-verifiable)
- 6. each borrower decides to repay or default
- 7. payoffs are realized

Standard groups – repayment decision

- two-stage repayment game a la Besley-Coate
- Stage 1: each borrower asked to repay R; decide simultaneously, non-cooperatively*
 - if one's project fails default involuntarily
 - if both repay or both default game ends, payoffs realized (see below);

– if not, \Longrightarrow

• Stage 2: if a borrower has repaid R in stage 1 but her partner has not, the former is asked to pay extra R

Repayment decision – backward induction

- Stage 2: repay is optimal if $R \leq V$
- Stage 1: suppose $R \leq V$ (so either will repay in Stage 2), then the Stage 1 (row) payoffs, conditional on own project success, are as follows:

	repay	de fault
repay	$k_i L - R - (1-p)R + V$	$k_i L - 2R + V$
default	$k_i L + pV$	$k_i L$

• (*repay*, *repay*) is the unique* SPNE if

$$R \le \frac{1-p}{2-p}V$$

Standard groups only

- the optimal loan terms for standard group ij maximize the group expected payoff

$$W_{ij}(L, R|S) \equiv p(k_i + k_j)L - 2p(2-p)R + 2p(2-p)V$$

subject to:

$$2R \leq k_m L$$
 for $m = i, j$ (feasibility)

 $R \leq \frac{1-p}{2-p}V$ (no strategic default)

p(2-p)R = L (lender zero profits)

Standard groups only

• assume

 $k_L \ge \frac{2}{p(2-p)}$ [Assumption A1]

(ensures feasibility for any i, j; also implies $pk_i > 1 - all$ projects are socially efficient)

• **Proposition 1**: The optimal standard group contract $S \equiv \{L_S, R_S\}$ is

$$L_S = p(1-p)V \text{ and } R_S = \frac{1-p}{2-p}V$$

• note: the contract is the same whether or not the lender observes k_i, k_j

Allowing for bogus groups

- suppose now
 - bogus groups may form and
 - group form choice is unobserved by the lender
- the group form choice is *endogenous*, based on maximizing the *group's joint payoff*
- in a bogus group, all funds are invested into the more productive project (w.l.o.g., $k_i \ge k_j$)
 - it resembles an individual loan of size 2L
 - the joint liability clause has no bite since the 'ghost' member has no income (limited liability)

Bogus groups

- same repayment game but, since the cosigner has no project, the lender comes back to the Stage 1 repaying member with certainty
- \bullet upon project success, the cosigner is compensated with some transfer T independent of the repay/default decision
- given (L, R), optimal to repay if

$$2k_iL - 2R + V - T \ge 2k_iL - T \quad \Leftrightarrow \quad R \le V/2$$

- weaker than the standard group no-default condition, $R \leq \frac{(1-p)V}{2-p}$
- using the lender's zero profit condition, 2pR = 2L, the best contract for a bogus group is:

$$L_B = pV/2, \quad R_B = V/2$$

1. risk-sharing – standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$

- 1. **risk-sharing** standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$
- 2. expected output weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$

- 1. **risk-sharing** standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$
- 2. expected output weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$
- 3. **strategic default incentive** stronger in a standard group due to being able to free ride on partner's repayment

- 1. **risk-sharing** standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$
- 2. expected output weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$
- 3. **strategic default incentive** stronger in a standard group due to being able to free ride on partner's repayment
- 4. interest rate higher in a bogus group $(\frac{1}{p}$ vs. $\frac{1}{p(2-p)})$ lack of diversification; implied by 1.

- 1. **risk-sharing** standard group members cover for their partners (larger expected continuation value but also larger expected repayment); favors standard groups if $R \leq V$
- 2. expected output weakly larger in a bogus group, $2k_iL$ vs. $(k_i + k_j)L$
- 3. **strategic default incentive** stronger in a standard group due to being able to free ride on partner's repayment
- 4. interest rate higher in a bogus group $(\frac{1}{p}$ vs. $\frac{1}{p(2-p)})$ lack of diversification; implied by 1.
- 5. **Ioan size** larger loans can be supported in a bogus group $(L \le pV/2$ vs. $L \le p(1-p)V$); implied by 3.

Who forms bogus groups?

• for given (L, R), optimal to form a bogus group instead of a standard group if,

$$(k_i - k_j)L > 2(1 - p)(V - R)$$
 [form bogus]

* the RHS is the net risk-sharing benefit in a standard group (item 1)
* the LHS is the expected output gain in a bogus group (item 2)

- for given (L, R) a bogus group is more likely
 - the larger are $k_i k_j$ and p
 - the lower is \boldsymbol{V}

Bogus groups – a problem?

• Proposition 2: At the standard group contract $S = (L_S, R_S)$, if

$$k_H - k_L > \frac{2}{p(2-p)}$$
 (**)

then:

(a) all (k_H, k_L) borrower pairs optimally form bogus groups
(b) all (k_H, k_L) groups cause losses to the lender

- Intuition:
- (a) output gains
- (b) loss of diversification all funds put into a single project instead of split between two i.i.d. projects.

Bogus groups – a problem?

- if condition (**) is not satisfied, it **does not mean** that offering (L_S, R_S) is necessarily optimal
- the lender would not lose money but a superior contract may exist, utilizing the additional advantages of bogus groups (items 3 and 5)

The optimal loan contract allowing for bogus groups

• assume k_i, k_j observed* by the lender. For given k_i, k_j, p , the optimal loan contract solves:

$$\max_{L, R, \tau \in \{0,1\}} \tau W(L, R|S) + (1-\tau)W(L, R|B) \text{ subject to}$$

 $\tau W(L, R|S) + (1 - \tau)W(L, R|B) \ge \tau W(L, R|B) + (1 - \tau)W(L, R|S)$ (IC)

$$R \leq au rac{(1-p)V}{2-p} + (1- au)rac{V}{2}$$
 (no default)

$$R = \tau \frac{L}{p(2-p)} + (1-\tau) \frac{L}{p} \quad \text{(zero profits)}$$

The optimal contract – observable productivity

Proposition 3: The optimal loan contract (L^*, R^*) for a k_i, k_j group is:

(a) for homogeneous, ii (HH or LL) groups

- if
$$p(2p-1)k_i > 1$$
 (large k_i or p), then $L^* = pV/2 \equiv L_B$,
 $R^* = V/2 \equiv R_B$ and the group is bogus ($\tau^* = 0$)
- if $p(2p-1)k_i \leq 1$ (small k_i or p), then $L^* = p(1-p)V = L_S$,
 $R^* = \frac{(1-p)V}{2-p} = R_S$ and the group is standard

(b) for heterogeneous (HL) groups, depending on parameter values*

- either $L^* = L_B$, $R^* = R_B$ and the group is bogus (for large k_i , or p, or $k_H - k_L$) - or $L^* = \min\{L_S, L_E\}$, $R^* = \frac{L^*}{p(2-p)}$ and the group is standard (where $L_E \equiv \frac{p(1-p)V}{\frac{1-p}{2-p} + \frac{p}{2}(k_H - k_L)} < L_S$)

Optimal lending with endogenous bogus groups – summary

- bogus homogeneous groups if
 - large p
 - medium p + large k_i
- bogus heterogeneous groups if
 - large p
 - medium p + large k_L
 - small/medium p + large k_H relative to k_L
- standard heterogeneous groups with contract $\mathcal{E} \equiv (L_E, R_E)$ for small/medium p + medium k_H relative to k_L

HL group (0

HH, LL, HL group $(\frac{4}{5} \le p < 1)$ kı $k_H = k_L$ kн $\downarrow k_H = \frac{1}{p(2p-1)}$ 6 k_L LL group $(\frac{1}{2} \leq p < \frac{4}{5})$ HH group $(\frac{1}{2} \leq p < \frac{4}{5})$ $-k_H = k_L$ $-k_H = k_L$ $\downarrow k_H = \frac{1}{p(1-p)}$ $\downarrow k_H = \frac{1}{p}$ k_H k_H $k_{L} = \frac{1}{p(2p-1)}$ $- k_L = \frac{1}{p(2p-1)}$ 10 16 10 12 14 8 k_L 8 k_L HL group $(\frac{4}{7} \leq p < \frac{4}{5})$ HL group $(\frac{1}{2}$ $k_H = \frac{1}{p(2p-1)}$ 5 k_{H} ontract S with contract S $k_L = \frac{1}{p(2p-1)}$ $k_L = rac{1}{p(2p-1)}$ with contract E $k_{L} = \frac{2}{p(2-p)}$ p(2-3p)(2p-1) k_I 20 15 4 k_L k_L HH, LL group (0HL group (0.5 н , ith contract S $k_L = \frac{2}{p(2-p)}$ ku = k $k_H = k_I$ 6 k_L 6 k_L 10

Figure 1: The equilibrium contracts and group forms under different parameter values when productivity is observable

Discussion

- interest rate: $\frac{R_B}{L_B} > \frac{R_S}{L_S} = \frac{R_E}{L_E}$ bogus groups face higher interest rate
- repayment amount: $R_B > R_S$ bogus groups owe more
- loan size: $L_B > L_S > L_E$ bogus groups receive larger loans (if p > 1/2)
- project type: larger productivities k_H, k_L and/or larger differential, $k_H k_L$ make bogus groups optimal
- **composition**: heterogeneous groups have stronger incentive to be bogus

Discussion

- bogus groups always receive their optimal loan $\mathcal{B} = (\frac{pV}{2}, \frac{V}{2})$ independent of k_i, k_j
- the contract for a standard group may differ from $\mathcal S$ and depend on the productivities (case $\mathcal E$)
 - IC only binds in case $\ensuremath{\mathcal{E}}$
- taking into account bogus groups maximizes total surplus (constrainedefficient)
- bogus groups are *not* a *loss-causing nuisance* but arise endogenously to exploit higher-productivity investments
- bogus groups could mitigate the strategic default problem making larger loans possible (if p>1/2)

Extension – joint repayment decision

- borrowers decide jointly to default or repay 2R (verifiable Y_i within the group or social capital)
- standard groups only:
 - optimal contract is \mathcal{S}' with $L_{S'} = p(2-p)V$ and $R_{S'} = V$
 - larger loan size, same interest rate as $\ensuremath{\mathcal{S}}$
- allowing bogus groups:
 - the no-default condition is now $R \leq V$ for both bogus and standard groups (no strategic interaction)
 - at \mathcal{S}' any HL group is bogus and causes loss to the lender
 - intuition: only effect 2 (expected output) operates; effect 1 (risk sharing) is zero at $R_{S'} = V$

Extension – joint repayment decision

Proposition D3: Suppose the borrowers make the repayment decision jointly and k_i and k_j are observed by the lender.

	optimal co	ontract and gr	oup form
	LL groups	HH groups	HL groups
1. k_H close to k_L	\mathcal{S}' , standard	\mathcal{S}' , standard	${\cal E}$, standard
2. k_H large relative to k_L	\mathcal{S}' , standard	\mathcal{S}' , standard	${\cal B}$, bogus

- intuition:
 - homogeneous pairs (HH or LL) no benefit from forming bogus group (no extra output, no risk-sharing, same R)
 - heterogeneous pairs (HL) bogus groups optimal for k_H sufficiently large relative to k_L

Conclusions

- bogus groups are efficient larger loan size can be supported and larger output created
- bogus groups are more likely to be used by "better" borrowers (with higher k_i and p)
- bogus groups have a lower repayment rate (p vs. $1 (1 p)^2$) and hence require higher interest rate
- MFIs using group lending must take into account that bogus groups can form and address this by offering appropriate loan terms or menus

Thank you

Endogenous bogus groups – payoffs

• the expected total payoffs of a standard and bogus group are respectively

$$W(L, R|S) = \begin{cases} p(k_i + k_j)L - 2p(2-p)R + 2p(2-p)V & \text{if } R \leq \frac{1-p}{2-p}V \text{ (repay, repay)} \\ p(k_i + k_j)L - 2pR + 2pV & \text{if } R \in (\frac{1-p}{2-p}V, \frac{V}{2}] \text{ (repay, default)} \\ p(k_i + k_j)L & \text{if } R > \frac{V}{2} \text{ (default, default)} \end{cases}$$

$$W(L, R|B) = \begin{cases} 2pk_iL - 2pR + 2pV & \text{if } R \leq \frac{V}{2} \text{ (repay)} \\ 2pk_iL & \text{if } R > \frac{V}{2} \text{ (default)} \end{cases}$$

 *remark: the standard group (*repay*, *default*) equilibrium is payoff-dominated by the (*repay*) bogus group outcome

Unobserved productivities

• due to free entry the lender cannot screen the group composition (HH, LL or HL) using different interest rates

 \implies at most a two-contract menu can be offered, (L_N, R_N) and (L_M, R_M) designed for standard and bogus groups respectively

- IC has to ensure that each group
 - chooses its intended form (bogus vs. standard)
 - self-selects into intended contract (\mathcal{N} or \mathcal{M})

Optimal contract menu – unobserved productivities

$$\begin{aligned} \max_{L_N, R_N, L_M, R_M} \sum_{ij} q_{ij} W_{ij}(L_N, R_N, L_M, R_M) & \text{subject to:} \\ R_M \leq \frac{V}{2} & (\text{no default, bogus}) \\ R_M = \frac{L_M}{p} & (\text{zero profits, bogus} \\ R_N \leq \frac{1-p}{2-p} V & (\text{no default, standard}) \\ R_N = \frac{L_N}{p(2-p)} & (\text{zero profits, standard}) \\ W_{ij}(L_N, R_N, L_M, R_M) \geq \max\{W_{ij}(L_N, R_N | B), W_{ij}(L_M, R_M | S)\} & (\text{IC2}) \end{aligned}$$

 $\forall ij \in \{HH, HL, LL\}$, where

$$W_{ij}(L_N, R_N, L_M, R_M) \equiv \max\{W_{ij}(L_N, R_N | S), W_{ij}(L_M, R_M | B)\}$$

Optimal contract menu – unobserved productivities

• **Proposition 4:** Suppose k_i and k_j are unobservable to the lender. The optimal loan menu consists of two contracts, \mathcal{N} and \mathcal{M} such that:

(i) contract \mathcal{M} has terms $L_M^* = L_B$ and $R_M^* = R_B$ for any k_H, k_L, p .

- (ii) contract \mathcal{N} has terms $L_N^* = L_S$, or $L_N^* = L_E < L_S$, or $L_N^* = L_F < L_S$, and $R_M^* = \frac{L_N^*}{p(2-p)}$, depending on parameters, where $L_F \equiv \frac{pk_H 1}{pk_H \frac{1}{2-p}} \frac{pV}{2}$ and $R_F \equiv \frac{L_F}{p(2-p)}$.
- (iii) borrowers who select contract \mathcal{N} optimally form standard group; borrowers who select \mathcal{M} form a bogus group.

Joint repay/default decision – unobservable k's

	menu	selected c	ontract and g	roup form
		LL groups	HH groups	HL groups
1. k_H close to k_L	\mathcal{E},\mathcal{B}	${\cal E}$, standard	${\cal E}$, standard	${\cal E}$, standard
2. k_H large relative to k_L	\mathcal{F},\mathcal{B}	${\cal F}$, standard	${\cal F}$, standard	${\cal B}$, bogus

• standard groups receive smaller loans than in contract S – agency costs

Excluding bogus groups?

- choose $({\cal L},{\cal R})$ to maximize the group payoff subject to: no default, zero profits, and

$$(k_i - k_j)L \le 2(1-p)(V-R)$$
 [no bogus]

- **Proposition 5:** Suppose the lender wants to **exclude** bogus groups and k_i, k_j are observed.
- (i) the payoff-maximizing excluding contract for HH and LL groups is $\mathcal{S} = (L_S, R_S)$
- (ii) the payoff-maximizing excluding contract for HL groups is:

$$- S = (L_S, R_S) \text{ if } k_H - k_L \le \frac{2}{p(2-p)} \\ - \mathcal{E} = (L_E, R_E) \text{ with } L_E < L_S \text{ if } k_H - k_L > \frac{2}{p(2-p)} (**)$$

Data

- 2011 phone survey with 366 borrowers belonging to 80 joint liability groups
 - clients of CFPAM China's largest microlender (175,000 clients, 1.87RMB in loans in 2013)
- data on
 - group form (*Lei Da Hu* or not)
 - knowledge of joint liability and other members
 - loan use, size, repayment, interest
 - others see Table 2

Table 2: Summary Statistics						
Variable	Variable Definition	Obs	Mean	Std. Dev.	Min	Max
bogus	group type dummy	366	0.69	0.21	0	1
mpayment	monthly payment (in RMB)	366	828.6	192.3	50.7	908
loansize	loan amount (in RMB)	366	7194	1774	500	8000
duration	number of payments in total	366	9.93	0.62	4	10
ir	interest rate	366	13.5%	0.32%	12%	16%
age	age	366	43.8	9.68	21	64
married	marital status dummy	366	0.94	0.24	0	1
AFAF	industry dummy	366	0.80	0.40	0	1
manufacture	industry dummy	366	0.06	0.23	0	1
service	industry dummy	366	0.02	0.15	0	1
wholesale	industry dummy	366	0.08	0.27	0	1
transport	industry dummy	366	0.02	0.14	0	1
housing	industry dummy	366	0.02	0.15	0	1
below	education dummy	366	0.01	0.10	0	1
primary	education dummy	366	0.27	0.44	0	1
junior	education dummy	366	0.69	0.46	0	1
highschool	education dummy	366	0.03	0.17	0	1
college	education dummy	366	0.01	0.09	0	1
beizhen	county dummy	366	0.54	0.50	0	1
xiuyan	county dummy	366	0.22	0.41	0	1
$\mathbf{xingcheng}$	county dummy	366	0.25	0.43	0	1
Han	the majority of Chinese	366	0.29	0.46	0	1
Manchu	one of the minorities of Chinese	366	0.70	0.46	0	1
Mongols	one of the minorities of Chinese	366	0.01	0.07	0	1

What is going on?

- the data indicate that the interest rate and number of repayments are basically identical across all borrower groups
- are parameters such that the S or B contract is optimal for all?
 - cannot be since we observe 70:30 split in group form
- \bullet the lender ignoring or unaware of bogus groups? \implies losses or sub-optimality
 - consistent with the 2005 *Planet Rating* report

Bogus groups – determinants

- Table 4 bogus groups are statistically significantly associated with:
 - smaller monthly repayment
 - larger loan size

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	bogus	bogus	bogus	bogus	bogus	bogus	bogus	bogus
						t o white		(codule
Impayment	-4.78**				-4.75**	-4.85**	-4.44**	-4.60**
	(2.14)				(2.10)	(2.12)	(2.00)	(2.06)
lloansize	5.41^{**}				5.38^{**}	5.53^{**}	5.12^{**}	5.28^{**}
	(2.18)				(2.13)	(2.16)	(2.04)	(2.10)
lage				-0.47	-0.53	-0.60	-0.60	-0.66
				(0.48)	(0.50)	(0.52)	(0.54)	(0.54)
married				-0.22	-0.077	0.04	0.08	0.15
				(0.49)	(0.50)	(0.51)	(0.51)	(0.51)
AFAF		-1.16				-0.98	-0.97	-0.99
		(1.08)				(1.08)	(1.09)	(1.09)
$\operatorname{manufacture}$		-1.54				-1.56	-1.41	-1.39
		(1.16)				(1.17)	(1.18)	(1.18)
service		0.00				-0.10	-0.09	-0.13
		(1.51)				(1.52)	(1.52)	(1.52)
wholesale		-0.76				-0.82	-0.65	-0.62
		(1.15)				(1.16)	(1.17)	(1.17)
transportation		-3.74**				-3.82**	-3.82**	-3.78**
		(1.52)				(1.52)	(1.52)	(1.52)
below		. ,	13.80			· · ·	15.16	15.89
			(574.1)				(716.9)	(894.2)
primary			14.47				15.00	15.68
1 0			(574.1)				(716.9)	(894.2)
junior			14.68				14.97	15.62
5			(574.1)				(716.9)	(894.2)
highschool			14.78				14.98	15.58
0			(574.1)				(716.9)	(894.2)
manchu							()	-0.26
								(0.28)
mongols								-1.30
								(1 45)
Constant	-15 10***	1 95*	-13 80	2.76	-12 97**	-12 42**	-26 64	-27 25
Constant	(5.41)	(1.07)	(574.1)	(1.87)	(5.68)	(5.82)	(716.9)	(894.3)
Observentions	366	366	366	366	366	366	366	366

Table 4. Determinants of bogus vs. standard group for

*** p<0.01, ** p<0.05, * p<0.1