Optimal Incentive Contract with Costly and Flexible Monitoring

Anqi Li ¹ Ming Yang ²

¹Department of Economics, Washington University in St. Louis

²Fuqua School of Business, Duke University

January 2016

Motivation

Choice of monitoring technology has significant impact on employee productivity.

Standard agency models take the monitoring technology as exogenously given.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Need strong assumptions to justify

- Simple and intuitive contracts;
- e Heterogeneity in managerial practices.

Preview

A principal-agent model with flexible and costly monitoring:

- Flexibility: specify the qualitative and quantitative natures of the monitoring technology;
- **Cost**: increasing in the entropy of the agent's compensation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Endogenize the choice of monitoring technology as part of the contract design problem.

Use factors that affect the monitoring cost to explain

- Simple and intuitive contracts;
- Heterogeneity in human resource practices.

Agenda

Baseline model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 Extensions
- Conclusion

Agenda

Baseline model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 Extensions
- Conclusion

Setup

A risk-neutral principal and a risk-averse agent.

Agent payoff u(w) - c(a):

- Consumption $w \ge 0$, u(0) = 0, u' > 0, u'' < 0;
- Effort $a \in \{0,1\}$, c(1) = c > c(0) = 0.

Each effort level *a* generates a probability space (Ω, Σ, P_a) .

Principal's goal: elicit high effort from the agent.

Incentive Contract

A pair of monitoring technology \mathcal{P} and wage scheme $w(\cdot)$:

1 \mathcal{P} : a partition of Ω whose elements belong to Σ ;

$$2 w : \mathcal{P} \to \mathbb{R}_+.$$

Timeline:

- Parties commit to $\langle \mathcal{P}, w(\cdot) \rangle$;
- The agent privately exerts $a \in \{0, 1\}$;
- Nature draws $\omega \in \Omega$ according to P_a ;
- $A(\omega) \in \mathcal{P}$ is publicly realized;
- The principal pays the promised wage $w(A(\omega))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The contract defines a signal X and a random wage W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For each effort level *a* and $A \in \mathcal{P}$:

- X takes value A with prob. $P_a(\omega \in A)$;
- W equals w(A) with prob. $P_a(\omega \in A)$.

Monitoring Cost and Total Cost

Monitoring cost for each given a:

 $\mu \cdot H_a(W)$

1 $H_a(W)$: entropy of the random wage. 2 $\mu > 0$: cost and benefit of monitoring the agent.

Total cost for each given a:

 $\underbrace{\mathbb{E}_{a}[W]}_{} + \underbrace{\mu \cdot H_{a}(W)}_{}$

incentive cost monitoring cost

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Detect Deviation

For each $A \in \Sigma$, define

$$z(A) = 1 - \underbrace{\frac{dP_0}{dP_1}(A)}_{\text{likelihood ratio}}$$

A contract is incentive compatible for the agent if

$$\int_{A\in\mathcal{P}}u(w(A))z(A)dP_1\geq c$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Optimal Incentive Contract

The optimal incentive contract $\langle \mathcal{P}^*, w^*(\cdot) \rangle$ solves

$$\min_{ \langle \mathcal{P}, w(\cdot) \rangle } \mathbb{E}_1[W] + \mu \cdot H_1(W)$$
s.t. (IC) and (LL)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Benchmark: Exogenous Monitoring Technology

Standard agency models take $\ensuremath{\mathcal{P}}$ as exogenously given and solve for

$$\min_{w:\mathcal{P}
ightarrow\mathbb{R}_+}\mathbb{E}_1[W], ext{ s.t. (IC) and (LL)}$$

Denote the solution by $w^*(\cdot; \mathcal{P})$.

Lemma 1.

For any given \mathcal{P} , there exists $\lambda > 0$ such that for each $A \in \mathcal{P}$, $u'(w^*(A; \mathcal{P})) = \frac{1}{\lambda z(A)}$ if and only if $w^*(A; \mathcal{P}) > 0$.

Increasing Wage Scheme and MLRP

Definition 1.

Suppose \mathcal{P} is totally ordered under \leq . Then the distributions of the signal induced by \mathcal{P} satisfy the monotone likelihood ratio property if any $A, A' \in \mathcal{P}$ such that $A \leq A'$, we have z(A) < z(A').

Lemma 2.

Suppose \mathcal{P} is totally ordered under \leq . Then $w^*(\cdot; \mathcal{P})$ is increasing if and only if the distributions of the signal induced by \mathcal{P} satisfy MLRP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For an arbitrary monitoring technology,

- 0 $\mathcal P$ may not be totally ordered, e.g., multi-source feedback;
- ${\it @}$ Even if ${\cal P}$ is totally ordered, MLRP is still a strong property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Optimal Contract with Costly and Flexible Monitoring

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 1.

For any $\mu > 0$, (i) $\mathcal{P}^* = \{A_1, A_2, \dots, A_n\}$ for some $n \in \mathbb{N}$; (ii) $z(A_1) < z(A_2) < \dots < z(A_n)$; (iii) $w^*(A_1) = 0 < w^*(A_2) < \dots < w^*(A_n)$.

Agenda

Baseline model

- 2 Extensions
 - Multi-task
 - Multi-agent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

Agenda

- Baseline model
- 2 Extensions
 - Multi-task
 - Multi-agent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Onclusion

A risk-neutral principal and a risk-averse agent.

The agent can exert $a_i \in \{0, 1\}$ in each of two tasks i = 1, 2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Each effort profile $\vec{a} \in \{0,1\}^2$ generates $(\Omega, \Sigma, P_{\vec{a}})$.

Principal's goal: elicit high effort in both tasks.

Detect Deviation

For each $A \in \Sigma$ and each $\vec{a} \in \{10, 01, 00\}$, define

$$z_{ec{a}}(A) = 1 - rac{dP_{ec{a}}(A)}{dP_{11}(A)}$$

A contract is incentive compatible for the agent if for each $\vec{a} \in \{10, 01, 00\}$,

$$\int_{A\in\mathcal{P}}u(w(A))z_{\vec{a}}(A)dP_{11}\geq c(11)-c(\vec{a})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal Multi-Task Contract with Costly and Flexible Monitoring

Theorem 2.

For each $\mu > 0$, (i) $\mathcal{P}^* = \{A_1, \dots, A_n\};$ (ii) $w^*(A_1) = 0 < w^*(A_2) < \dots < w^*(A_n);$ (iii) There exist $\lambda_{\vec{a}}, \vec{a} \in \{10, 01, 00\}$, such that for all $k = 2, \dots, n$,

$$u'(w^*(A_k)) = \frac{1}{\sum_{\vec{a}} \lambda_{\vec{a}} z_{\vec{a}}(A_k)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Agenda

- Baseline model
- 2 Extensions:
 - Multi-task
 - Multi-agent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Onclusion

Multiple Agents

A risk-neutral principal and two risk-averse agents i = 1, 2.

Each agent *i* exerts $a_i \in \{0, 1\}$.

Each a_i independently generates $(\Omega, \Sigma, P_{a_i})$, where

•
$$\Omega = \{0, 1\}, \Sigma = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\};$$

• $P_1(1) = p \in (0, 1) \text{ and } 1 - \frac{dP_0(1)}{dP_1(1)} = z \in (0, 1).$

Each $\vec{a} = (a_1, a_2)$ generates $(\Omega \times \Omega, \Sigma \otimes \Sigma, P_{a_1} \times P_{a_2})$.

Principal's goal: elicit high effort from both agents.

A monitoring technology \mathcal{P} and a wage scheme $\vec{w}(\cdot)$:

P: a partition of Ω × Ω whose elements belong to Σ ⊗ Σ;
w : P → ℝ²₊.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Individual Reward

Figure: Γ_4

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Tournament

Figure: Γ_{3b}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Group Compensation

Figure: Γ_{2a}

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Group Compensation

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - の々で

Optimal Multi-Agent Contract

Figure: Individual reward vs. group compensation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Result

- **(**) Difference in μ yields various kinds of incentive schemes.
- 2 Lack of individual performance appraisal when μ is big.

Explain variation in managerial practices by factors that affect μ :

- **Cost**: information technology, labor market regulation, tacit knowledge transfer;
- Benefit: human capital share, product market competition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

A principal-agent model with costly and flexible monitoring.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Endogenize the choice of monitoring technology.

Use factors that affect the monitoring cost to explain

- Simple and intuitive contracts;
- Heterogeneity in human resource practices.