BLACK SWANS AND THE MANY SHADES OF UNCERTAINTY

Nicholas Kozeniauskas Anna Orlik¹ Laura Veldkamp NYU Fed Board NYU Stern

Winter Meeting of the Econometric Society

3rd January 2016

¹Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect the position of the Board of Governors of the Federal Reserve or the Federal Reserve System.

Types of Uncertainty

VIX: expected future variance of S&P 500 Micro uncertainty: IQR of firm sales growth (MicroU) Higher-order uncertainty: std. of GDP growth forecasts (HiOrderU)

Introduction

- Approaches to modeling uncertainty
 - MacroU: heteroskedastic aggregate shock
 - MicroU: heteroskedastic firm-specific shock
 - HiOrderU: changes in dispersion of private information

Provides no connection between different types of uncertainty

- In the paper: the different types of uncertainty are highly correlated—even after controlling for the business cycle
- Why? What's the connection between the various uncertainty shocks?

Skewness amplifies uncertainty in bad times

MacroU: average st. dev. of beliefs about TFP growth

Skewness amplifies MacroU in bad times

Skewness amplifies uncertainty in bad times

Same force amplifies disagreement when uncertainty is high

- \rightarrow Firms choose different inputs \rightarrow growth dispersion (MicroU)
- & Firms make different GDP growth forecasts (HiOrderU)

Skewness amplifies uncertainty in bad times

Key: With skewness, good times are more similar than bad times

Model

- Islands model with unit mass of islands/firms
- Decision: choose labor supply to maximize utility

$$egin{aligned} U_{it} &= oldsymbol{Q}_{it} - L^{\gamma}_{it}, \ oldsymbol{Q}_{it} &= oldsymbol{A}_t L_{it} \end{aligned}$$

TFP process:

$$\Delta a_t \equiv \Delta \log A_t = c + b \exp X_t$$

 X_t : GARCH(1,1), parameters unknown

- Firms forecast X_t at end of t 1 to choose labor
 - Prior for *t*: estimate GARCH model on data to t 1.
 - Posterior: prior + idiosyncratic signal by Bayes' law.

$$\begin{aligned} \mathbf{Z}_{i,t-1} &= \Delta \mathbf{X}_t + \eta_{t-1} + \psi_{i,t-1}, \\ \eta_{t-1} &\sim \mathbf{N}(\mathbf{0}, \sigma_{\eta}^2), \quad \psi_{i,t-1} \sim \mathbf{N}(\mathbf{0}, \sigma_{\psi}^2). \end{aligned}$$

Model cont.

- Key ingredients of model
 - 1. Negatively skewed TFP growth: calibration $\rightarrow b < 0$
 - 2. Variation in prior precision of beliefs about X_t
 - 3. Private information
- Role of ingredients 2 and 3:

More uncertainty about aggregate state (more MacroU)

 \rightarrow more weight on private information

 \rightarrow more dispersed actions (MicroU) and forecasts (HiOrderU)

► Investigate role of skewness by comparing results to model with ∆a_t = X_t

Quantitative exercise

- Calibration
 - Period: 1962Q3–2011Q4
 - ► TFP growth (5 params.) calibrated to moments of GDP growth
 - ► Signal noises calibrated to moments of GDP growth forecasts
- Uncertainty measures
 - MacroU: Av. std. of beliefs about TFP growth
 - ► HiOrderU: Cross-sectional st. dev. of GDP growth forecasts
 - MicroU: Cross-sectional IQR of firm level sales growth
- We want to explain
 - 1. Size of HiOrderU and MicroU shocks
 - 2. Correlation of HiOrderU and MicroU
 - 3. Correlation of HiOrderU and MicroU with GDP growth

	Model	Data
 (a) Micro Uno	certainty	
Std.	14.7	11.6
Corr. with GDP growth	-0.07	-0.52
 Corr. with HiOrderU	0.21	0.43
(b) HiOrder Un	certainty	
Std.	23.6	31.1
Corr. with GDP growth	-0.17	-0.28

	Model	Data
(a) Micro Unc	ertainty	
Std.	14.7	11.6
Corr. with GDP growth	-0.07	-0.52
Corr. with HiOrderU	0.21	0.43
(b) HiOrder Uncertainty		
Std.	23.6	31.1
Corr. with GDP growth	-0.17	-0.28

Generates most uncertainty shocks

	Model	Data
(a) Micro Unc	ertainty	
Std.	14.7	11.6
Corr. with GDP growth	-0.07	-0.52
Corr. with HiOrderU	0.21	0.43
(b) HiOrder Uncertainty		
Std.	23.6	31.1
Corr. with GDP growth	-0.17	-0.28

Generates most uncertainty shocks

Generates 1/2 of MicroU and HiOrderU correlation

	Model	Data
(a) Micro Unc	ertainty	
Std.	14.7	11.6
Corr. with GDP growth	-0.07	-0.52
Corr. with HiOrderU	0.21	0.43
(b) HiOrder Uncertainty		
Std.	23.6	31.1
Corr. with GDP growth	-0.17	-0.28

Generates most uncertainty shocks Generates 1/2 of MicroU and HiOrderU correlation Uncertainty countercyclical

	Model	Data
(a) Micro Unc	ertainty	
Std.	14.7	11.6
Corr. with GDP growth	-0.07	-0.52
Corr. with HiOrderU	0.21	0.43
(b) HiOrder Uncertainty		
Std.	23.6	31.1
Corr. with GDP growth	-0.17	-0.28

Generates most uncertainty shocks Generates 1/2 of MicroU and HiOrderU correlation Uncertainty countercyclical MicroU very countercyclical in the data

	No skewness	Full Model	
(a) Micro	(a) Micro Uncertainty		
Std.	4.7	14.7	
Corr. with GDP growth	0.00	-0.07	
Corr. with HiOrderU	0.16	0.21	
(b) HiOrder Uncertainty			
Std.	5.9	23.6	
Corr. with GDP growth	0.00	-0.17	

	No skewness	Full Model
(a) Micro	Uncertainty	
Std.	4.7	14.7
Corr. with GDP growth	0.00	-0.07
Corr. with HiOrderU	0.16	0.21
(b) HiOrder Uncertainty		
Std.	5.9	23.6
Corr. with GDP growth	0.00	-0.17

GARCH & param. learning \rightarrow uncertainty shocks

	No skewness	Full Model
(a) Micro Uncertainty		
Std.	4.7	14.7
Corr. with GDP growth	0.00	-0.07
Corr. with HiOrderU	0.16	0.21
(b) HiOrder Uncertainty		
Std.	5.9	23.6
Corr. with GDP growth	0.00	-0.17

GARCH & param. learning \rightarrow uncertainty shocks Skewness amplifies uncertainty shocks

	No skewness	Full Model	
(a) Micro	(a) Micro Uncertainty		
Std.	4.7	14.7	
Corr. with GDP growth	0.00	-0.07	
Corr. with HiOrderU	0.16	0.21	
(b) HiOrder Uncertainty			
Std.	5.9	23.6	
Corr. with GDP growth	0.00	-0.17	

GARCH & param. learning \rightarrow uncertainty shocks Skewness amplifies uncertainty shocks GARCH & param. learning \rightarrow corr. b/w MicroU and HiOrderU

	No skewness	Full Model
(a) Micro		
Std.	4.7	14.7
Corr. with GDP growth	0.00	-0.07
Corr. with HiOrderU	0.16	0.21
(b) HiOrder Uncertainty		
Std.	5.9	23.6
Corr. with GDP growth	0.00	-0.17

GARCH & param. learning \rightarrow uncertainty shocks Skewness amplifies uncertainty shocks GARCH & param. learning \rightarrow corr. b/w MicroU and HiOrderU Skewness generates countercycle uncertainty

Conclusion

Recent research uses different kinds of uncertainty shocks

This paper: What's the connection between them?

We use some exogenous MacroU & explain MicroU and HiOrderU

- ► MacroU shocks \rightarrow agents vary their reliance on private info \rightarrow MicroU and HiOrderU shocks
- Negative skewness in aggregate outcomes
 - \rightarrow good times are more similar than bad times
 - \rightarrow MacroU, MicroU and HiOrderU amplified in bad times