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Abstract

This paper studies optimal dynamic compensation where firms face volatility shocks

but have only limited ability to commit to long-term contracts. I analyze a continuous-

time dynamic principal-agent model with private effort and regime switching in cash

flow volatility. In high volatility times, limited-commitment firms are forced to expedite

payments to managers because sufficient deferred compensation is no longer credible;

meanwhile, contract termination becomes more likely. In contrast, full-commitment

firms defer compensation even more in high volatility times. This relationship between

payment timing and expected contract length sheds light on empirical observations of

compensation and volatility.
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1 Introduction

Contemporary firms, especially those in the financial industries, rely heavily on incentive

pay, which constitutes the majority of overall firm cost as well as total employee compensa-

tion. While incentive pay is directly motivated by the presence of uncertainty, most extant

research on managerial compensation has so far focused on its relationship with profitability

rather than with uncertainty. Moreover, while a growing body of research identifies un-

certainty shocks as the key contributing factor to financial crises and business cycles,1 how

compensation and uncertainty dynamically evolve with each other is relatively less addressed.

The current paper fills this gap by studying how uncertainty dynamically affects compen-

sation through a continuous time principal-agent model. Due to moral hazard, the optimal

contract incentivizes the manager by promising delayed cash bonuses after his performance

exceeds some benchmark. When a shock increases uncertainty, the manager’s performance

becomes a noisier signal and his effort harder to gauge. I show that, absent of any other

contracting friction, the optimal contract raises the performance hurdle, prescribes a back-

loaded compensation, and the manager is less likely to receive cash payments in the high

uncertainty state.

This benchmark theoretical prediction, however, does not reconcile with recent empirical

findings on managerial compensation and risk. In cross-sectional studies, Peters and Wagner

(2014) show that higher industry-level equity volatility is strongly associated with higher

managerial compensation. Cheng et al. (2015) find a similar relationship for firms in the

financial sector; moreover, the higher compensation in riskier firms mainly take the form of

incentive pay such as cash bonuses.2 The financial sector’s behavior in the recent financial

crisis is also at odds with the benchmark result. Despite being in a period of heightened

1See for instance Bloom (2009), Di Tella (2013), He and Krishnamurthy (2013), Atkeson et al. (2014),
Brunnermeier and Sannikov (2014).

2Frydman and Jenter (2010) show that performance insensitive compensation (e.g. salary) makes up less
than 20% of top manager’s total compensation.
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uncertainty, some firms actually front-loaded their employees’ compensation and expedited

payments.3 Overall, huge losses of company wealth notwithstanding, many bankers and

executives still received substantial compensation in the form of cash bonuses during the

financial crisis,4 which unsurprisingly raised much public attention and scholarly debate

over the efficiency of the current compensation structure.

I argue that the discrepancy between what the benchmark model predicts and what is

actually observed for compensation and uncertainty stems from an overlooked but critical

market friction. Namely, the benchmark result is predicated on firms’ ability to fully commit

to long-term incentive contracts, which is not always consistent with the nature of such

contracts. More specifically, to provide correct incentives to managers, firms must commit

in two ways: commit to making payments when due, and commit to retaining managers until

their performance is sufficiently poor. The latter type of commitment is generally infeasible

in practice given the prevalence of at-will employment. Under US labor laws, firms can fire

employees without having to establish just cause or give warning. Firms can also liquidate

anytime, after which they are no longer liable for any future compensation promised to

employees.

In light of these observations, I re-examine the implication of uncertainty on compensa-

tion when firms have ability to unilaterally terminate contracts, which I refer to as principal’s

limited commitment. Limited commitment restricts firms’ ability to use deferred compensa-

tion as incentive. Moreover, the concern over firms’ commitment is greatest when uncertainty

is high and firm value low. I find, therefore, that firms with limited commitment are forced

to lower their performance hurdles, make front-loaded compensation, and managers are more

3For example, Bank of America announced in 2009 that it would accelerate the vesting period of their
employees’ stocks from 2012 to 2011, claiming that such action is “critical for retention of talent” during
volatile times. Deloitte reported instances of financial firms lowering performance hurdles during the crisis
so employees would still be entitled to bonuses. See Forbes Insight (2009) and Management Today (2010).

4Wall Street Compensation–‘No Clear Rhyme or Reason’. Wall Street Journal (2009). Moreover, Kaplan
and Rauh (2010) and Philippon and Reshef (2012) show that the high level incentive payments are not
exclusive to a handful of managerial elites only.
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likely to receive cash payments in the period immediately after entering the high uncertainty

state. These key results are robust to introducing real costs associated with default and to

allowing contract renegotiation.

Different from comparative statics analysis, I model uncertainty shocks through stochas-

tic regime switching between low and high volatility states. Under regime switching, firms

optimally allocate deferred compensation to managers until the marginal value before the

uncertainty shock is equal to the marginal value after the shock. These important dynam-

ics are absent from simple comparative statics, which implicitly hold managerial deferred

compensation constant when comparing different volatility levels. Moreover, the dynamics

of regime switching reveal that cash payments should not be confused with “reward”. In

fact, under limited commitment, the lifetime present value managers derive from a contract

that results in more immediate payments during financial crises is lower, due to a higher

probability of termination.

This paper contributes in several ways to the literatures on contract theory, managerial

compensation, and corporate governance. On the modeling side, this is to my knowledge the

first paper to jointly consider agency, limited commitment, and regime switching. It adds

to the growing literature of continuous-time dynamic agency models, such as DeMarzo and

Sannikov (2006), Biais et al. (2007), Sannikov (2008), He (2009), Biais et al. (2010), and

Zhu (2013), and is the closest to DeMarzo and Sannikov (2006) and Zhu (2013) in modeling

the cash flow process and the moral hazard problem.5 The regime switching technique for

continuous time models is adopted from Hoffmann and Pfeil (2010), Piskorski and Tchistyi

(2010), Narita (2011), Li (2012), and DeMarzo et al. (2012). Different from these models

which focus on stochastic regimes of profitability, this paper studies regimes of cash flow

5It thus differs from most of the long-standing limited commitment literature which focuses on the optimal
risk sharing contract between a risk-neutral principal and a risk-averse agent. In such an environment,
termination is never part of an optimal compensation scheme. By contrast, I study a setting where a risk-
neutral agent is protected by limited liability. In this environment, incentives are optimally provided in part
through the threat of contract termination. This is a critical feature for my study, given the high frequency
of managerial turnover in financial firms.
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volatility. Although some of the results are replicable with stochastic profitability, volatility

is more suitable for analyzing incentive compensation, which is the predominant component

of compensation for modern firms. More discussions about the unqiue predictions from

stochastic volatility can be found on the Internet Appendix.

2 Model

In this section I describe the model. I start with the standard principal-agent environment

with volatility regime switching representing the normal and crisis states, and solve for the

optimal contract. Then I discuss the effect of considering principals limited commitment

and the different optimal contract implied.

2.1 Basic Environment

Time is continuous. A principal, representing a firm, must hire an agent, representing a

manager, to run a project. Both the principal and the agent are risk neutral. The cash flow

Yt of the project follows

dYt = µ(et)dt+ σtdZt ,

where Zt is a standard Brownian motion; µ(et) is the expected cash flow rate depending on

the agent’s effort.

The agent controls the cash flow growth rate by choosing a binary effort level et ∈ {e, e},

representing “working” and “shirking”, respectively. I assume µ(e) = µ and µ(e) = µ − C

where C > 0, that is, shirking results in lower expected cash flow. However, the agent enjoys

a private benefit λC whenever he shirks, where λ ∈ (0, 1]. Effort is private to the agent: the

principal can observe Yt but not et. The principal discounts future cash flows by r and the

agent by γ > r, so the agent is more impatient.6

6The asymmetry of discount rates is a standard, essential requirement for a non-trivial incentive compat-
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The volatility of the cash flow, σt, is stochastic. For simplicity I assume σt takes two

values: σl or σh, representing “normal” and “crisis” times respectively, with σl < σh. If the

current state is s, in any given time interval (t, t+dt), the transition probability to the other

state ŝ is πsdt. In the remainder of this paper, I further simplify the model by assuming that

πh = 0, so the state h is absorbing. This means the economy starts with low volatility σl and

experiences a one-time transition into the high volatility state with probability πhdt within

any time interval dt. I will refer to this one-time change in volatility as the “uncertainty

shock” to the economy.7.

For now, I assume that the principal can commit to any contract once it is signed, but the

agent is protected by limited liability with an outside option whose value R is normalized

to 0. The principal has an outside option L which she receives whenever the contract is

terminated. Both the principal and the agent take no further action after the contract

termination, which eliminates reputation concerns. Finally, I assume the principal always

prefers to induce the agent to work, which is true as long as C, the cost of shirking, is high

enough.

2.2 Optimal Contract with Full Commitment

I now solve the optimal contract with principal having full power of commitment. Let Ft be

the filtration generated by the cash flow history. A contract which specifies a compensation

process {It}t≥0 from the principal to the agent, a termination time τ , and a recommended

ible contract to exist in this type of model. However, once I impose the principal’s commitment constraint,
this additional constraint leads to the existence of an optimal contract even for the case where r=γ, which
I describe at the end of this section

7Most of the analytical results do carry through when I allow the states to be recurring, i.e. when πh > 0.
Discussion of the optimal contract under recurring states is given in the appendix. I also assume that πl is a
small number to ensure that states l and h have their proper definitions. If πl is too large, the value function
(derived later) in the low volatility state converges to the value function in the high volatility state. To keep
them sufficiently distant, πl must be small enough. See the Appendix for more a detailed discussion.
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effort process et defines the agent’s continuation utility Wt:

Wt = E

[∫ τ

t

e−γ(s−t)
(
dIs + λC1{et=e}dt

)
|Ft

]
.

where 1{et=e} is an indicator function that takes value 1 if et = e and zero other wise. Wt

simply measures the present value of all expected future payments.

Similarly, the contract defines the principal’s valuation of the project Vt which is the

expectation of total future cash flow minus the payment to the agent plus the liquidation

value when the contract is terminated.

Vt = E

[∫ τ

t

e−r(s−t) (dYt − dIs) + e−r(τ−t)L|Ft

]
,

Let V (Wt) denote the principal’s value function, which represents the highest valuation

the principal can achieve, or the firm value, as a function of the agent continuation utility.

There are two value functions Vs(Wt), one for each state s ∈ (l, h), that satisfy the principal’s

Hamiltonian-Jacobian-Bellman (HJB) equation:

rVs(Wt) = max
βt≥λ,δs

µ+ (γWt − πtδs(Wt))V
′
s (Wt) +

1

2
β2
t σ

2
sV
′′
s (Wt)

+πs (Vŝ(Wt + δs(Wt))− Vs(Wt)) . (1)

The principal chooses βt and δs(Wt) optimally. βt can be interpreted as the pay-for-

performance sensitivity of the contract, which is incentive compatible as long as βt ≥ λ.

That is, the agent must be given sufficient “skin-in-the-game” to work. In the Appendix I

show that the value function Vs(Wt) is globally concave, which implies the optimal contract

provides minimal pay-for-performance sensitivity needed for incentive compatibility. That is,

βt = λ. The variable δs(Wt) denotes the discontinuous adjustment in the agent’s continuation

utility at the time of regime switching. Such adjustment exists because the shadow value of
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the agent’s continuation utility is different for the principal in different states. The principal

can promise future compensation conditional on the state of the economy and substitute

immediate payments with more future payments if the value of the agent’s continuation

utility is higher in one state. Therefore, the choice of δs(Wt) is determined by matching the

first order derivatives of the principal’s value functions before and after the regime switching,

that is

V ′ŝ (Wt + δs(Wt)) = V ′s (Wt), if W + δs > R , (2)

δs(Wt) = R−Wt, otherwise , (3)

In other words, the principal optimally deploys the agent’s continuation utility until its

marginal value to the principal is equalized across states. In the case where the first order

derivatives cannot be matched for any δs such that W + δs > R, the contract is simply

terminated.8

To sum up, the optimal contract can be characterized by the following proposition:

Proposition 1. The optimal contract under volatility regime switching with full commitment

defines a pair of value functions Vs(W ) and payment boundaries W s, s ∈ {l, h}such that

rVs(W ) = µ+ (γW − πsδs(W ))V ′s (W ) +
1

2
λ2σ2

sV
′′
s (W )

+πs (Vŝ(W + δs(W ))− Vs(W )) , (4)

subject to boundary conditions Vs(R) = L; V ′s (W s) = −1; and V
′′
s (W s) = 0. Vs(W ) is

concave, continuous, and twice differentiable when W ∈ [R,W s]. δs(W ) is determined by

(2) and (3).

8It is worth noting that the discontinuity in the agent’s continuation utility δ has non-trivial solutions
even when the transition probability πl approaches zero, that is when the pair of value functions Vs(W )
converge to two independent functions with different values of variance. The effect of πl on determining δ is
small when πl is close to zero because Vs(W ) moves relatively little. This implies analyses of δ can be made
almost independently of πl for small πl which greatly simplifies the mathematics.
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Under the optimal contract, the value function in each state has two boundaries: a

termination boundary R and payment boundaries W s. The contract must be terminated

when Wt = R due the agent’s limited liability, therefore Vs(R) = L (“value matching”). The

agent receives instant cash payment of size Wt −W s once Wt exceeds W s, thus V ′s (W s) =

−1 (“smooth pasting”). This compensation scheme resembles cash bonuses that managers

in practice receive for good performance, where W s represents the “performance hurdle”

managers must clear before getting paid. Finally, the payment boundaries are optimally

chosen by the principal, which leads to the “super contact” condition V ′′s (W s) = 0.

The optimal contract is associated with welfare losses due to moral hazard. The efficient

allocation calls for the principal and the agent to split the maximal surplus generated by

running the project permanently; that is, Vs(W ) + W = µ/r for both s ∈ l, h. However,

when moral hazard is present, incentive compatibility requires delaying payments to the

agent, who is more impatient than the principal. Substituting boundary conditions for W s

into the principal’s HJB equation yields rVs(W s)+γW s = µ, which I refer to as the “second

best” frontier, a critical boundary when considering the optimal contract with principal’s

limited commitment.

A numerical example of the principal’s value functions are illustrated in Figure 1. Firm

value is always lower in the high volatility state for any given level of W except at the

termination boundary, which leads to the following conclusion:

Corollary 1. Vh(W ) < Vl(W ) for every W > R, and Wh > Wl. That is, the payment

boundary under high volatility is higher for the full commitment contract.

Intuitively, since cash flow serves as a signal for the principal to infer the agent’s pri-

vate effort, a more noisy signal increases the likelihood of contract termination which is a

necessary but costly action for the principal to provide proper incentives. That is why the

regime switching from the low to the high volatility state is referred to as a negative shock in

this paper. More importantly, Corollary 1 states that the principal defers payments to the
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Figure 1 – Value Functions for the Optimal Contracts: Full Commitment

This figure plots firm value functions under regime switching and full commitment on the principal’s side.

Parameter values are L = 20, R = 0, γ = 0.04, r = 0.02, µ = 1, λ = 0.1, σl = 5.9, σh = 6.5, πl = 0.001,

πh = 0.

agent when volatility is high under the full commitment contract. Since the cost of providing

incentives to the agent is the possibility of early termination after sufficiently poor perfor-

mance, it is higher when volatility is higher, as rising uncertainty of cash flows increases the

likelihood of sufficiently poor performance and the subsequent early termination. The prin-

cipal adjusts the contract optimally by giving the agent more financial slack. Here financial

slack, defined as W s − R, measures how much loss the principal is willing to take before

terminating the agent’s contract. Greater flexibility to the agent regarding his performance

lowers the possibility of costly early termination and is thus optimal for the principal under

higher volatility.

2.3 Optimal Contract with Limited Commitment

So far, the structure of the optimal contract characterized in Proposition 1 relies on the

principal’s commitment to all future payments once the contract is signed. However, before
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the agent’s continuation utility W hits the payment boundary W , the agent is not actually

paid. His continuation utility measures the present value of the total amount of payment

he expects to receive in the future, only if the principal honors the contract. Just as the

agent is tempted to quit his job when W approaches his reservation utility R, the principal

will likewise be tempted to exercise her outside option, which in this model is liquidating

the project and receiving L, if the firm value V drops below the liquidation value before

W reaches the payment boundary. If enforcement is not perfect and commitment becomes

a binding constraint before the cash payment boundary is reached, the dynamics of the

optimal contract will consequently be different.

To consider this impact, I assume that the principal can terminate the agent’s contract

anytime. As discussed earlier, this assumption of limited commitment on the part of the

principal is more realistic, as firms generally are free to fire managers or liquidate projects

at any time in practice. Once the contract is terminated, I assume both parties will receive

the value of their outside options: L for the principal and R for the agent. This assumption

sets this model apart from the other models in the relational contract literature in that

termination time is the only aspect of the contract to which the principal cannot commit.

Conditional on the continuation of the contract, the principal can still commit to all pay-

ments once the payment boundary is reached, suggesting the existence of long-term contracts

although subject to a participation constraint from the principal.9

Given the limited commitment constraint I introduce here a heuristic approach that

derives the optimal contract under principal’s limited commitment by separating the com-

mitment constraint from moral hazard, the other contractual friction in the model. First,

suppose there is only one volatility state, and the agent’s effort is observable to the princi-

9The assumption that firms can default on W anytime is a simple yet without loss of generality charac-
terization of the important commitment constraint that is both prevalent in practice and commonly used
in studies. See, for instance, Levin (2003), Berk et al. (2010), Rampini and Viswanathan (2013), Ai and Li
(2014). The assumption that the principal receives her outside option L and the agent receives R no matter
who breaches the contract is made here to illustrate the implications of limited commitment without losing
tractability and can easily be relaxed, which I do in Section 4

11



pal such that the only contractual constraints are the principal’s limited commitment and

the agent’s limited liability. Limited commitment implies a participation constraint for the

principal:

Vt ≥ L . (5)

Combined with the agent’s participation constraint Wt ≥ R, they define a payoff space

{(W,V )|W ≥ R, V ≥ L} where, if the continuation value delivered by a contract falls into

the space, the contract will not be terminated, i.e. the contract is self-enforcing10.

Given the self-enforcing contracting space, consider now adding moral hazard. Analysis

from the previous section applies. The principal’s value function must lie in the area bounded

by W ≥ R, V ≥ L and the “second best” frontier rV + γW = µ. Intuitively, the boundary

condition of the payment boundary W depends on whether the value function crosses the

“second best” frontier or the self-enforcing border V (W ) = L first. If the value function meets

rV (W ) + γW = µ first, it immediately follows V ′′(W ) = 0 and the principal’s commitment

constraint is not binding. In contrast, if the value function reaches V (W ) = L first, then

the payment boundary is no longer optimally chosen, and the “super contact” condition is

replaced with a physical boundary condition V (W ) = L. The reason why only firm value at

the payment boundary turns out to matter under limited commitment is the combination

of a concave value function, V (R) = L on the left boundary, and W as a reflecting right

boundary.

Let variables with a superscript L represent variables in the limited commitment envi-

ronment, the following proposition summarizes the optimal contract. A formal verification

theorem of the optimality of this contract is provided in the appendix.

10One may be worried that a limited commitment principal should not be able to “commit” to terminating
the contract immediately when the agent’s participation constraint binds either. The principal can “reset”
the contract once W reaches R, for instance through renegotiation. I address this point the later section,
and derive explicitly the renegotiation-proof contract in the Appendix to demonstrate that this concern does
not affect the validity of the main results. At this point it is useful to simply assume the principal can also
commit not to renegotiate the contract.
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Proposition 2. The optimal contract under volatility regime switching with limited commit-

ment on the principal’s side defines a pair of value functions V L
s (W ) and payment boundaries

W
L

s , s ∈ {l, h}such that V L
s (W ) satisfies the same system of ODE (4) and boundary condi-

tions V L
s (R) = L; V L′

s (W
L

s ) = −1, and

V L′′

s (W
L

s ) = 0, if V L
s (W

L

s ) ≥ L ,

V L
s (W

L

s ) = L, otherwise .

The boundary conditions specified in this Proposition imply that under limited commit-

ment, the optimal contract takes three different forms depending on whether the principal’s

participation constraint (5) is binding at the payment boundary in each state: first, if (5) is

not binding for either s = l or s = h, this contract is simply identical to the full-comment

contract and the principal’s commit power does not matter. Secondly, the limited commit-

ment constraint is binding in the high volatility state but not the low volatility state. Third,

the constraint is binding in both states.11

Of the three types of contracts, the first type is obviously the least interesting since it is

identical to the contract with full commitment. The second type can resemble contracts of

either the first or the third type, depending on parameter values. I leave the details of this

type to the Appendix. The third type of contract produces the most distinct implications for

the dynamics of compensation between the full commitment and the limited commitment

case. In the remainder of this paper, I will concentrate discussion on this type only. That is,

unless stated otherwise, I assume the parameter space is such that under full commitment,

Vs(W ) < L for both s = l and s = h12.

11It is impossible for the constraint to be binding in the low volatility state but not in the high volatility
state, since firm value is always lower when volatility is higher. See the Appendix for details.

12The exact space of parameters satisfying such condition is difficult to characterize. However, W is larger
and V (W ) smaller whenever γ is closer to r, holding other parameters constant. This implies if the principal
and the agent have similar patience level, there is a potentially large parameter space in which the limited
commitment constraint will be binding in both states once it is imposed.
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A numerical examples of the optimal contract under limited commitment is shown in

Figure 2, using the same parameters as Figure 1 does. Note that in Figure 1, firm value in

both states is below the liquidation value L and therefore payment boundaries in neither

state can be sustained without principal’s full commitment. Figure 2 thus represent the case

in which the limited commitment constraint binds in both state.

Figure 2 – Value Functions for the Optimal Contracts: Limited Commitment

This figure plots firm value functions under regime switching and limited commitment on the principal’s

side. Parameter values are the same as in Figure 1

Comparing Figure 2 to Figure 1, the contrast between optimal contracts under different

commitment assumptions is apparent. The most crucial comparison is the position of the

payment boundary, which is summarized as the following:

Corollary 2. If Vs(W ) < L and V L
s (W

L
) = L for both s = l and s = h, then W

L

h < W
L

l .

That is, the payment boundary under high volatility is lower for the limited commitment

contract.

Corollary 2 states that while the principal raises the performance hurdle when volatility

is high under the full commitment contract, under limited-commitment, performance hurdle

14



is lower. Intuitively, limited commitment implies that the principal’s participation constraint

V L
s (W ) ≥ L must be satisfied at any given time. In other words, the contract must guarantee

firm value of at least L, which restricts the amount of future cash flow generated by continuing

the project that can be used as compensation to the agent. When uncertainty becomes

higher, the total value of the project is lower. A principal lacking the ability to commit

to future payments when firm value is too low is forced to lower the performance hurdle

because the principal can now credibly promise less compensation in the future. The relative

positions of the payment boundaries under each volatility state determine the timing of the

cash payment to the agent, the expected length of the contract, as well as the concavity

of the principal’s value function, all of which are essential in studying the compensation

structure in the next section.

Limited commitment also expands the space of parameters in which the optimal contract

exists: the case when r = γ. In the full commitment model, r = γ means the principal

can costlessly delay payments to the agent. The payment boundary is therefore infinity, and

the optimal contract does not exist. In contrast, the limited commitment constraint puts

a physical bound on the payment boundary such that the payment boundary is where the

limited commitment constraint binds.

3 Implications on Dynamic Compensation

In this section I derive the implications of contracts under different level of commitment on

compensation. I present these implications first through numerical examples from simula-

tions and then through formal analytics.
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3.1 Numerical Illustration

The optimal contracts under full and limited commitment differ in how the payment bound-

ary is determined. Their implications for compensation thus also differ, as the agent only

receives payments in the form of cash bonuses once his continuation utility W exceeds the

payment boundary. In this section I show how considering the optimal contract under limited

commitment generates conclusions different from those with full commitment.

I begin the analysis with numerical simulations, in order to provide a transparent view

of contract dynamics. In the simulations I segment the continuous-time model into discrete

time intervals. The economy starts with low volatility, and the agent’s initial wealth W0 is

drawn uniformly from the interval (R,W l). I simulate N different paths of cash flows, and

for each path, allow the state to switch to σh following a poisson arrival process, representing

the transition into the crisis time. For each period before and after the uncertainty shock, I

calculate the frequency of cash payments by taking the average number of recorded payments

among all firms still surviving after the crisis. I repeat this simulation procedure for both

the full commitment and limited commitment contract.

The results from simulation are shown in Figure 3, with N = 1, 000, 000, and the volatility

shock occurs is indicated as period 20. Panel A plots the frequency of payments, while Panel

B plots the fraction of active projects (managers) at each given time. Both full and limited

commitment contracts are shown, using exactly the same parameter values. I choose the

parameters such that once the limited commitment constraint is imposed, it will be binding

in both low and high volatility states.
Two observations emerge from the frequency of cash bonuses shown in Figure 3. On the

one hand, under the limited commitment contract, the frequency of payments in the few

periods immediately after the uncertainty shock is much higher than the frequency under

the full commitment contract and the frequency in the low volatility state. On the other

hand, payment frequency under the limited commitment contract quickly diminishes to zero

due to a higher rate of contract termination, while it is much more persistent under the full
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Panel A. Frequency of Payments Panel B. Survival Rate

Figure 3 – Simulation Results

This figure plots the frequency of cash compensation (bonuses) and the fraction of active projects from

simulating 1,000,000 paths of cash flows. Period 20 corresponds to the volatility shock (from σl to σh).

Parameter values are the same as those in Figure 3.

commitment contract. Both observations can be formalized using mathematical concepts in

stochastic calculus and are rigorously proven in the next subsection. Here I offer readers

with a general interest a heuristic derivation and an intuitive explanation of the mechanism

behind these results.

Frequency of cash payments can be rationalized when considered jointly with the like-

lihood of contract termination. When uncertainty is higher, firms with full commitment

power optimally set higher bonus hurdles so managers are able to build large continuation

utility, reducing the likelihood of early contract termination. In contrast, without full com-

mitment power, large deferred payments are no longer credible. The higher the cash flow

uncertainty, the lower the value from running the firm and the more likely it is for firms

to terminate managers’ contracts before any bonuses are realized. Managers thus have to

be compensated with bonuses early for the increased likelihood of turnover. Put differently,

during crisis when firm value is low, firms have to make higher payments to retain their
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managers, who are more worried about loosing their jobs in the near future. A similar argu-

ment applies to the comparison between normal and crisis times for the limited commitment

contract, under which the capacity of credibly deferring payments is correlated with firm

value in each state.

It is important to clarify here that, despite the above description of immediate payment as

a result of shorter expected tenure, the two are not fruit and tree to each other but rather two

sides of the same coin. Both compensation and contract length are endogenously determined

by the dynamics of the state variable W . In the high volatility state, the dynamics of the

agent’s continuation utility are given by dWt = γWt − dIt + λdZt. Payment dIt reduces Wt

and thus increases the likelihood of termination. As shorter length stimulates more front-

loaded contracts, a front-loaded contract also implies more aggressive managerial replacement

following negative performance.

I also calculate the average size of cash payments for each period before and after the

uncertainty shock, which produces a pattern almost identical to that observed in Panel A

of Figure 3. This is not surprising given that conditional on receiving payments, the size of

payments depends only on the variance σ which is a constant once the state is fixed.

3.2 Formal Analysis of the Regime Switching Model

While numerical simulations provide intuitive and transparent stories, I now formally state

and prove the results. In addition to being mathematically rigorous, the formal argument

also provides new insights into some important and controversial topics in the research on

executive compensation.

3.2.1 Adjustment in the Agent’s Wealth

The first step in formally showing the result of compensation in high volatility times is to

derive the adjustment of the agent’s continuation utility δ(W ). The size of δ(W ) takes
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different values depending on the different payment boundaries specified according to the

type of the contract. Figure 4 Panel A illustrates the change in δl(W ) and δLl (W ) as functions

of the agent’s wealth W before the state transition.

Panel A. Size of δl(W ) Panel B. Distance to the Payment Boundary

Figure 4 – Allocation of Agent’s Continuation Utility

This figure plots the size of δl (left panel) and Wh − Wt+ (right panel), the distance between agent’s

continuation utility and the payment boundary after the uncertainty shock.

For both types of contracts, the region to the left of the kink in δ represents the region

in which contracts are terminated once the uncertainty shock arrives, and the agent’s entire

promised future utility is wiped out. However, the full commitment and limited commitment

contracts behave very differently thereafter: while δl(W ) for the full commitment contract

increases in W continues to grow until it becomes positive, δLl (W ) is hump-shaped, and

remains negative all the way to the payment boundary for the limited commitment case. The

reason for this difference is that under limited commitment as the agent’s wealth increase,

the limited commitment constraint is more likely to be binding under higher volatility, when

firm value is lower and the capacity of the principal making promises of future payments is

limited. Thus, the marginal value of the agent’s wealth is always less in the high volatility

state.
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Observations from Figure 4 can be formally summarized in the following proposition:

Proposition 3. There exist cut-off levels of the agent’s continuation utility Ŵ such that if

Wt− > Ŵ :

δl(Wt−) > 0

δLl (Wt−) < 0

Panel B of Figure 4 illustrates the distance to the payment boundary after the volatility

shock. While the payment boundary of the limited commitment contract is lower, the

agent’s adjusted continuation utility after the uncertainty shock is also closer to the payment

boundary. The following Corollary formally summarizes this observation:

Corollary 3. Let Wt− be the agent’s continuation utility before the uncertainty shock, and

Wt+ ≡ Wt− + δl(Wt−) and WL
t+ ≡ Wt− + δLl (Wt−) be the agent’s continuation utility after the

uncertainty shock under full and limited commitment contract, respectively, then

W
L

h −WL
t+ < W h −Wt+ , if Wt− > Ŵ .

This conclusion plays a leading role in the analysis of compensation later, as being close

to the payment boundary implies a larger probability of receiving more cash payments in

the near future. At the same time, a lower payment boundary suggests a higher likelihood

of contract termination following a series of poor performances. This trade-off between

immediate cash payments and likelihood of termination is the central mechanism behind the

dynamics of compensation.

After establishing the direction of δ(W ) and the position of Wt+ relative to the payment

boundary, I can formalize the observations from the simulation example using standard

methods in stochastic calculus. The argument is presented in the next subsection
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3.2.2 Analytical Characterization

Here I characterize the dynamics of compensation following uncertainty shocks. Given any

Wt+ , the agent’s continuation utility after the volatility increase, the goal is to characterize

the distribution of the agent’s wealth after a certain amount of time elapses. Given the

property of Brownian motions, it is equivalent to characterize the amount of payment by the

frequency of payment (as shown in Figure 3), which is the approach adopted in this section.

Following Cox and Miller (1977), given the dynamics of W , the transition density function

f(t,W ;Wt+) for a process starts with Wt+ and satisfies the Kolmogorov forward equation:

∂

∂t
f(t,W ;Wt+) =

1

2

∂2

∂W 2

[
λ2σ2

hf(t,W ;Wt+)
]
− ∂

∂W
[γWf(t,W ;Wt+)]

subject to boundary conditions:

f(t, R;Wt+) = 0

1

2

∂

∂W

[
λ2σ2

hf(t,W ;Wt+)
]
|W=Wh

− γW hf(t,W h;Wt+) = 0

Unfortunately, this partial differential equation is generally intractable. However, when γ is

small, the dynamics of W can be approximated by a standard Brownian motion with one

absorbing boundary R and one reflecting boundary W h, whose transition density has an

explicit form13. Details on the approximation and the derivation of the transition density

are shown in the Appendix by virtue of the method developed in Ward and Glynn (2003)

After obtaining the transition density, I can measure the likelihood of cash payments

given a certain time period T after the shock using the concept of local time in stochastic

processes. Given a time period T and initial point Wt+ , define local time J

Jh(T ;Wt+) = lim
ε→0

1

2ε

∫ T

0

1{Wh−ε<Wt<Wh+ε}dt|W0 = Wt+

13The assumption γ > r is still needed for the benchmark full commitment contract to exist. It is not
necessary, though, for the limited commitment contract. See the end of Section 2. for the discussion
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where 1{·} is the indicator function. This local time is a random variable that measures the

amount of time W spends in the neighborhood of the payment boundary. Since being at

the payment boundary implies cash payments, this can be interpreted as the frequency of

payments an agent with initial wealth Wt+ receives within time T after the economy enters

crisis mode.

The definition of Jh allows the following proposition:

Proposition 4. Assume γ is small. There exists T̂ and Ŵt− such that if T < T̂ :

EL [Jh(T ;Wt−)] > E [Jh(T ;Wt−)]

EL [Jh(T ;Wt−)] > EL [Jl(T ;Wt−)]

for all Wt− > Ŵt−, where EL represents expectation under the limited commitment contract

Proposition 4 is a formal characterization of the observations obtained from Figure 3.

Despite the mathematical complexity, its basic intuition is quite simple: first, compare

the limited and full commitment contract, Corollary 3 shows W is closer to the payment

boundary after the uncertainty shock under the limited commitment contract. When γ is

small, the process of W behaves similarly to a standard Brownian motion and thus spends

more time at the payment boundary whenever the starting point is closer to the boundary.

In more intuitive terms, the agent should expect more frequent payments in the near future

if his cumulative performance is closer to the target bonus hurdle set by his contract. The

similar argument applies to the comparison between the limited commitment contract in low

and high volatility states: Wt+ is closer to W
L

h than Wt− is to W
L

l .

Why does Proposition 4 hold only when T is small? This is because while Wt+ is closer to

the payment boundary after the shock under the full commitment contract, it is also closer to

the termination boundary because the agent is overall punished according to Proposition 3.

As T increases, the likelihood of contract termination rises faster for the limited commitment
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contract. That is, agents now operate under tighter financial slack. The longer into a

crisis, the more likely is termination, as the possibility of realizing a series of losses becomes

more real. The conclusion in Proposition 4 thus holds only for T small enough, when the

probability of termination is negligible. As shown by the numerical simulations, this pertains

to the second observation that cash payment vanishes very quickly under the high volatility

state under limited commitment. The notion of termination likelihood can be formally

described using the concept of stopping time, as the next proposition shows:

Proposition 5. Define τs = inf
{
t : Wt = R|W s

}
as the termination time given payment

threshold W s then:

EL(τh) < EL(τl)

EL(τh) < E(τh)

When the commitment constraint is binding, the agent’s expected termination time is shorter

under high volatility

Intuitively, given the absorbing boundary R and reflecting boundary W h, a process with

initial value Wt+ is in expectation stopped earlier whenever Wt+ is closer to R and W h is

smaller. The limited commitment contract satisfies both conditions. Further, it should be

noted that this proposition does not require the assumption of a small γ, as the expected

speed of growth for W is lower when Wt+ is lower, which the limited commitment contract

again satisfies. Nevertheless the proof of Proposition 5 still imposes the restriction on γ for

the sole purpose of analytical tractability.

The results of this subsection imply that the recipients of crisis time bonuses are those

who perform relatively well before the crisis. Proposition 4 states that more frequent cash

compensation is conditional on the agent’s wealth before the shock Wt− surpassing a certain

threshold, and higher Wt− represents better before-shock performance. Those who perform

relatively poorly ex ante are no longer around after the crises as a result of either replacement
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or firm liquidation. Combined with Proposition 3, this suggests that those who produce the

largest profits before the crisis are being criticized the most for receiving bonuses during the

crisis. One should keep in mind, however, that the huge loss of firm wealth is primarily due

to the risky aggregate environment and, despite receiving bonuses for a short period into the

crisis, managers are being harmed overall.

4 Discussions

In this section I address two questions one might have regarding the approach: (1) Is the

limited commitment assumption too extreme? (2) How do state varying outside options L

and R affect the result?

4.1 Alternative Commitment Mechanism

Economic research has long recognized that firms do not possess full commitment power

over labor contracts.14 Recent research shows that firms can also default on labor contracts

because of limited or costly access to financial markets.15 Furthermore, most of these studies

also assume that firms, in addition to not being able to commit to intertemporal compensa-

tion, also cannot commit to terminal payments such as severance pay.16 In practice, severance

pay, especially for incentive purposes, is rarely paid in the event of firm liquidation. It is

difficult to specify severance pay in contracts such that it is fully contingent. The execution

14There are many studies on risk sharing in labor contracts that emphasize the lack of commitment from
the firm side, for example Thomas and Worrall (1988) Abreu et al. (1990), Ray (2002), Berk et al. (2010),
Grochulski and Zhang (2011), and Miao and Zhang (2014). More generally, the relational contract literature,
such as Atkeson (1991), Levin (2003), Grochulski and Zhang (2013), and Opp and Zhu (2015), has studied
the lack of commitment from both contracting parties

15For example, Ellul et al. (2014) and Palacios and Stomper (2014).
16For instance, Berk et al. (2010), Ai and Li (2014), and Bolton et al. (2015). Even when severance pay

is included in managerial contracts, as long as it is not fully guaranteed, limited commitment remains and
the argument of this paper still applies
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of severance pay is also subject to changes in the external enforcement environment.17

Furthermore, any implementation mechanisms of terminal pay is likely not immune to the

limited commitment problem. Imagine if firms could set up for the agent an escrow account of

balance W , and allow the agent to withdraw the balance in the event of contract termination.

This mechanism for implementing the terminal payment, however, must necessarily give

the principal access to the escrow account in order to update W according to the agent’s

performance and at the same time forbid the agent access to the account to prevent balance

manipulation. This is essentially giving firms the control right to that account and asking

firms to “commit” to paying the agent out of the balance of that account. This is effectively

no different than giving firms the control right to cash flows, which is what this paper

describes. The same difficulty of commitment remains, as it is intrinsically difficult to prevent

the principal from drawing down the balance of any account to which she has control right

before she defaults.

The assumption that the principal can default with impunity can also be easily relaxed.

In the Appendix I derive a reneogiation-proof contract, which would address the concern of

complete default but does not change the qualitative results of the paper. Furthermore, even

if firms can credibly pledge payments to a degree when terminating the agent’s contract, in

other words some but not all of W is lost at the time of contract termination, for example

due to the cost of legal procedure, the same concern of limited commitment still applies.

Finally, using a novel approach, I also provide a justification for the limited commitment

constraint based on the security implementation of optimal contracts. Details of such imple-

mentation can be found in the Internet Appendix. The implementation involves standard

securities such as equity and debt and hence potential tension between their holders. Fol-

lowing an uncertainty increase, the face value of long-term debt must decline, implying the

redemption of debt which entails a wealth transfer from equity holders. Under high volatil-

17Two recent cases: during the bankruptcies of Hostess Brands Inc. and Hawker Beechcraft Corp., the
US Justice Department blocked proposals to grant extra bonuses to the executives of those companies.
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ity, firm value is low, in which case equity holders may find it optimal to default rather

than recall the debt. Therefore, in the implementation of the contract, assuming that the

principal has full ability to commit to the agent is equivalent to assuming that equity holders

have full ability to commit to maintaining a certain capital structure. The latter assumption

is largely unrealistic as equity holders usually can default on debt without considering the

effect on the firm as a whole.

4.2 Outside Options

In the baseline model, the assumption that both the principal and agent receive constant

outside value whenever the contract terminates is critical to obtaining a closed-form solution.

It is not so, however, to establishing the key findings of this paper regarding the difference

in payment frequency and termination likelihood under the full versus limited commitment

contract. There are many ways to endogeinize firm’s outside option L and therefore make

it state-contingent. I discuss only one straightforward case here and show how the main

results still hold. Suppose firms can, at any time, replace the incumbent manager with a

new manager, by paying a search cost CR. The contract with the new manager will specify

an initial W which maximizes firm value in that state. That is, Ls = V ∗s (W )− CR. Figure

5 illustrates the value functions and payment boundaries under this assumption.

In Figure 5, under both full commitment and limited commitment, the liquidation value is

lower in the high volatility state, because V ∗h (W ) is lower. However, the payment boundaries

still resemble the baseline case shown in Figure 1 and Figure 2 where it is higher in the high

volatility state under full commitment, and lower in the high volatility state under limited

commitment. Intuitively, a lower value implies a lower value for the principal’s outside

option, thus reducing the tightness of the commitment constraint imposed on the contract.

Therefore, whether more frequent cash bonuses are paid in the high volatility state simply

depends on which dominates–the decrease in L or the increase in σ, an interesting task for
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Panel A. Full Commitment Panel B. Limited Commitment

Figure 5 – Endogenous State-varying Liquidation Value

This figure plots the value functions with endogenous L defined by Ls = V ∗
s (W )−CR. The full commitment

case is shown in the left panel. The limited commitment case is shown in the right panel. Parameters are

the same as used in Figure 1 and Figure 2, and CR = 6

future empirical work.

Finally, it is also unclear whether outside option value for sure decreases in crisis times.

In the above case, the search cost CR can also be made state contingent, reflecting the likely

different difficulty in finding a replacement manager in good versus bad times. How it is

different, however, is not immediately clear. In bad times, more managers are laid off. The

search for a replacement could therefore be less difficult due to a larger managerial talent

pool; but it could also be more difficult due to greater information asymmetry regarding a

potential manager’s true ability). The degree of variation in the outside options of managers

and firms under different volatility levels remains to be revealed by future empirical work.

Large variation in volatility relative to small changes in outside options would produce results

consistent with those of the present model.
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5 Conclusion

This paper studies the optimal compensation contract under the twin assumptions of limited

commitment of the principal and regime switching of cash flow volatility. It has been argued

that a sudden and dramatic increase in market uncertainty is the most critical feature of

financial crises. When uncertainty is high, investment becomes more risky and the value

of continuing operations correspondingly low. Principals without full commitment cannot

credibly pledge sufficient amounts of future payments and must therefore provide agents

with more immediate compensation.

Results in this paper introduce a caveat to the popular perception that the high compen-

sation observed in the financial crisis is a sign of managerial are entrenched and suboptimal

contracts. In the aftermath of the recent financial crisis many economists and politicians

blamed the current managerial compensation scheme for not aligning managerial incentives

with long-term investor benefit. Consequently, policy recommendations to propagate the use

of delayed payment as a solution to that problem were suggested.18 However, the effective-

ness of such recommendation hinges on the credibility that future payment promised to the

executives will be delivered at full value. Without taking into account firms’ commitment

ability, policies intended to align managers’ incentives with those of investors could actually

backfire. First, during times of financial uncertainty, following the recommendation to defer

compensation and restrict retention payments would actually do more harm than good as

it would undermine managerial incentives. Secondly, if executives believe that when firms

are in distress, investors will withdraw by selling their shares, then the value of their stock

holdings is less the longer they have to wait to cash them out. As a result executives may

require even higher and more immediate compensation at the time of distress.

The theoretical results of this paper generate testable empirical hypotheses: conditional

18For instance, the Troubled Asset Relief Program (TARP) limits the ability of executives of TARP firms to
cash out their restricted stock until the government is repaid in full. See TARP Standards for Compensation
and Corporate Governance, 74 Fed. Reg. 28,394, 28,410 (June 15, 2009)
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on negative uncertainty shocks, commitment-constrained firms make larger immediate pay-

ments and have higher managerial turnover relative to unconstrained firms. While the em-

pirical literature on corporate governance generally takes low total compensation and high

pay-for-performance sensitivity as indicative of good governance, this paper shows the im-

portance of considering these under the context of market uncertainty. Total compensation

and pay-for-performance sensitivity are sensible proxies for firm governance only when firms

have no commitment issue, which may not always be true, especially during spells of high

volatility. Altogether, these are areas in which this model can be fruitfully applied.
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Appendix A. Proofs

Proof of Proposition 1 and 2:

Much of the proof regarding the volatility regime switching can be inferred from Hoffmann
and Pfeil (2010), and Piskorski and Tchistyi (2010). Therefore I combine the proof of
Proposition 1 and 2 and focus on the case of limited commitment, beginning with the single
state case.

The optimality condition for a single state, full commitment environment is identical to
the baseline model in DeMarzo and Sannikov (2006). Now consider the limited commitment
case. Define the social benefit function as F (W ) = W + V (W ), which satisfies

F ′′(W ) =
rF (W ) + (γ − r)W − µ

1
2
λ2σ2

s

.

When the principal’s participation constraint is binding, FL(W ) = L+W
L

implying

FL′′(W
L
) =

rL+ γW
L − µ

1
2
λ2σ2

s

.

Suppose FL′′(W
L
) > 0, that is, rL + γW

L
> µ, this implies that V L′′(W

L
) > 0. Since

V L(W
L
) = L, rV L(W ) + γW

L
> µ. Compare this result to the case of full commitment,

where rV (W ) + γW = µ. If W
L
< W , since rV (W ) + γW < µ for all W < W , it must be

that rV (W
L
)+γW

L
< µ, which implies V (W

L
) < V L(W

L
). However this is a contradiction

since V (W ) ≥ V L(W ) for every W . If, on the other hand, W
L
> W , but V L(W

L
) = L

and V (W ) < L, which implies that V L(W
L
) > V (W

L
) again, contradiction. Therefore

FL′′(W ) < 0 in the neighbourhood of W
L
.

The rest of the argument about FL being also concave besides the neighbourhood of W
L

follows the standard argument. The proof also implies immediately that rV L(W ) +γW ≤ µ

for all W if the boundary condition V L′′(W
L
) = L is true. This conclusion is used in the

following verification theorem.
Verification Theorem: for any incentive compatible contract, define an auxiliary gain

process G as

Gt =

∫ t

0

e−rs(dYs − dIs) + e−rtV (Wt) ,
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where Wt evolves according to dWt. By Ito’s lemma

ertGt =

(
µ+ γWtV

′(Wt) +
1

2
β2
t σ

2V ′′(Wt)− rV (Wt)

)
dt−(1+V ′(Wt))dIt+(1+βtV (Wt))σdZt .

(6)
The first two terms are negative and therefore Gt is a supermartingale. Now evaluating the
principal’s payoff for this contract

E

[∫ τ

0

e−rs(dYs − dIs) + e−rτL

]
=

E (Gtˆτ ) + e−rτE

[
1{t≤τ}

(
Et

(∫ τ

t

e−r(s−t)(dYs − dIs) + e−r(τ−t)L

)
− V (Wt)

)]
.

First, E (Gtˆτ ) ≤ G0 sinceGt is a supermartingale. Then, Et
(∫ τ

t
e−rs(dYs − dIs) + e−rtL

)
≤

µ
r
−Wt, since by the argument above, rV (W ) + γW ≤ µ for all W . Letting t→∞ implies

that

E

(∫ τ

0

e−rs(dYs − dIs) + e−rτL

)
≤ V0(W ) .

Moving on to the two volatility states case: since the high volatility state is assumed a
absorbing state, the value function in such state follows directly from the analysis above,
while the optimality conditions for the low volatility state can be proved in a very similar
manner. Differentiate the corresponding social benefit function with respect to W , substi-
tuting in the boundary conditions and evaluating the equation at the payment boundary
WL implies

F ′′′l (W l) =
(γ − r) +

(
γW l − πlδl(WL)

)
F ′′l (W l)

1
2
λ2σ2

l

,

where F ′′l (Wl) is given by

F ′′l (W l) =
rFl(W l) + (γ − r)W l − µ+ πl

(
Fh(W l + δl(W l))− Fl(W l)

)
1
2
λ2σ2

l

.

Piskorski and Tchistyi (2010) show the optimality conditions for the full commitment
case. Under limited commitment, if the commitment constraint is not binding in the low
volatility state, the proof is identical to theirs. Now suppose it is binding, which implies

that it must also be binding in the high volatility state. Given the fact that V L′
l (W

L

l ) =

V L′
h (W

L

h ) = −1, the slope matching procedure that pins down δ implies δLl (W
L

l ) = W
L

h−W
L

l ,

Given that rFL
l (W

L

l ) + γW
L

l < µ from Corollary 1, if W
L

h < W
L

l , then δLl (W
L

l ) < 0,

and FL′′′
l (W

L

l ) > 0. If W
L

h > W
L

l , then γW
L

l − πlδ
L
l (W

L

l ) > 0 as πl <
γW

L
l

δLl (W
L
l )

. Since
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δLl (W
L

l ) < W
L

h <
µ−rL
γ

, γW
L

l − πlδLl (W
L

l ) > 0 as long as πl <
W

L
l

µ−rL . Note that for a non

trivial contract, W
L

l > R = 0, there is always πl small enough such that πl <
R

µ−rL is

satisfied. The subsequent verification is similar to that used in Piskorski and Tchistyi (2010)
thus is omitted here.�

Proof of Corollary 1 and 2:

The relationship between V (W ) and V L(W ) is fairly straightforward: if V L(W ) > V (W )
instead, then V (W ) cannot be the optimal value function for the principal since the con-
tracting space with the commitment constraint is a strict subset of the contracting space

without the constraint.The relationship between W and W
L

follows that rV (W ) + γW = µ

and rV (W
L
) + γW

L ≤ µ and the inequality is strict whenever V (W ) < L�
From Corollary 1 and Proposition 2, Vh(W ) < Vl(W ) and V L

h (W ) < V L
l (W )for all

W > R. For the full commitment contract, V ′′l (W l) = V ′′h (W h) = 0 implies rVs(W s) + γW s

for s = l, h, then Corollary 1 implies W l < W h. For the limited commitment contract,

V L
l (W

L

l ) = V L
h (W

L

h ) = L and V ′s (W ) < 0 near the payment boundary implies W
L

l > W
L

h�

Proof of Proposition 3:

This proposition is proved in two steps. First, I show that both V ′l and V ′h are convex
functions at the payment boundary. This conclusion utilizes the concavity of the value
function which is true for both full commitment and limited commitment so only the former
is shown. Differentiate the principal’s HJB equation with respect to W , and substituting
in V ′h(W + δl(W )) = V ′h(W ), a condition that is always satisfied around the neighbourhood
of the payment boundary because V ′s (W ) = −1 regardless of state and contract type. This
yields

rV ′s (W ) = (γW − πsδs(W ))V ′′s (W ) +
1

2
λ2σ2

sV
′′′
s (W ) + (γ − πsδ′s(W ))V ′s (W ) .

Evaluating this at the payment boundary in the high volatility state yields

V ′′′h (W h) =
(γ − r)− γW hV

′′
h (W h)

1
2
λ2σ2

h

> 0 ,

since V ′′h (W h) ≤ 0. Similarly,

V ′′′l (W l) =
(γ − r)− γW lV

′′
l (W l) + πlX(W l)

1
2
λ2σ2

l

,
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where
X(W l) = δ′l(W l)V

′
l (W l) + δl(W l)V

′′
l (W l) .

Letting πL → 0 yields

V ′′′l (W l) =
(γ − r)− γW lV

′′
l (W l)

1
2
λ2σ2

l

> 0 .

Therefore V ′′′l (W l) > 0 for small enough πl, and both V ′l and V ′h are convex functions at the
payment boundary. The same argument applies for the limited commitment contract.

The second step compares the variation of δ near the payment boundary. Consider the
full commitment contract: Vh(W ) < Vl(W ) and Vh(R) = Vl(R) = L implies V ′h(R) < V ′l (R).

Since V ′h(W h) = V ′l (W l) = −1, there must exist Ŵ such that V ′h(Ŵ ) = V ′l (Ŵ ). Moreover,

W h > W l and, because V ′s are convex functions, there is a unique Ŵ after which δl(W ) > 0

for all W > Ŵ .
For the limited commitment contract, V L′

h (R) < V L′
l (R), V L′

h (W
L

h ) = V L′
l (W

L

l ) = −1 and

W
L

h < W
L

l by Corollary 2 implies there exists ŴL such that δLl (W ) > 0 for all W > ŴL

Let Ŵ be the largest between the two cut-offs for the full and limited commitment contract,

and note that Ŵ < W
L

l since δLl (W
L

l ) < 0 and δl(W l) > 0 proves this proposition.�

Proof of Corollary 3:

Define ∆(W ) =
(
W h − (W + δl(W ))

)
−
(
W l −W

)
as the difference between the distances

to the payment boundary before and after the uncertainty shock for the full commitment
contract, and ∆L(W ) as the same distance but for the limited commitment contract. Then

∆L(W )−∆(W ) =
(
W

L

h −W h

)
−
(
W

L

l −W l

)
−
(
δLl (W )− δl(W )

)
. For small πl, W

L

l −W l

is small. Therefore ∆L(W ) − ∆(W ) < 0 as long as W
L

h − δLl (W ) < W h − δL(W ). Notice

that W h − W
L

h = δL(W l) − δLl (W
L

l ), and δ′l(W l) > 0 while δL′l (W
L

l ) < 0 by Proposition

3. Therefore δl(W ) − δLl (W ) < δl(W l) − δLl (W
L

l ) = W h −W
L

h for any W > Ŵ . That is,

∆L(W )−∆(W ) < 0 for all W > Ŵ .�

Proof of Proposition 4:

Following Cox and Miller (1977), the transition density of the process W in the high
variance state given initial value Wt+ follows the Kolmogorov forward equation:

∂

∂t
f(t,W ;Wt+) =

1

2

∂2

∂W 2

[
λ2σ2

hf(t,W ;Wt+)
]
− ∂

∂W
[γWf(t,W ;Wt+)] ,
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subject to the boundary conditions

f(t, 0;Wt+) = 0

1

2

∂

∂W

[
λ2σ2

hf(t,W ;Wt+)
]
|W=Wh

− γW hf(t,W h;Wt+) = 0 ,

where f is a density function conditional on Wt+ = W .
Define σ2 = λ2σ2

h as the overall variance of the W process. Let fγ be the solution to this
boundary value problem for a particular γ. According to Ward and Glynn (2003), when γ
is closer to zero, fγ can be approximated by

fγ(t,W ;Wt+) = k(γ)g(t,W ;Wt+) + o(γ) , (7)

where k(γ) =
(
1− γ

2σ2W
2
t+ + γ

2σ2W
2 + γ

2
t
)

and g is the corresponding transition density
function for the same process but with γ = 0.

Now the problem becomes a Brownian motion between an absorbing and a reflecting
barrier. In particular, g(t,W ;Wt+) satisfies the differential equation:

∂

∂t
g(t,W ;Wt+) =

1

2

∂2

∂W 2

[
σ2g(t,W ;Wt+)

]
,

subject to boundary conditions g(t, R;Wt+) = 0, 1
2
σ2 ∂

∂W
[g(t,W ;Wt+)]|W=Wh

= 0.
The solution to this problem has been derived by Schwarz (1992) as

g(W, t) =
∞∑
n=1

An exp

(
−α2

n

1

2
σ2t

)
cos (αnW ) ,

where αn = (2n−1)π
2Wh

and An =
cos(αnWt+)

Wh
.

Substituting this into the approximation function (7) yields f(W, t) which can be used
in the definition of the expected local time at the payment boundary

E [Lh(T ;Wt+)] = lim
ε→0

1

2ε

∫ T

0

dt

∫ Wh+ε

Wh−ε
f(t,W ;Wt+)dW

Fixed some Wt+ < W
L

h , Let

E[Jh(T ;Wt+)] ≡ E[Jh(T ;Wt+)|W h]

be the expected local time given the full commitment value functions and payment bound-
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aries, and define

EL[Jh(T ;Wt+)] ≡ E[Jh(T ;Wt+)|WL

h ]

be the expectation of local time at the payment boundary under the limited commitment
contract. First, ∂

∂T
E[Jh(T ;Wt+)]|T=0 > 0, that is, the expected time spend at one point is

longer whenever the time interval is longer, in particular when the time interval expands
a small amount from 0. Secondly, such derivative is larger for smaller W h because for a
fixed W , f(W, t) is decreasing in W h. The effect of expanding the time interval is bigger,
the shorter distance between Wt+ and the reflecting boundary is. Note that in the case of
σ � γ, the approximation adjustment term h(γ) is close to one if W and Wt+ are near each
other, this implies the most precise approximation is around the payment boundary, exactly
the target of the analysis given here.

From Corollary 2, W h > W
L

h , and EL[Jh(0;Wt+)] = E[Jh(0;Wt+)] = 0 implies

EL [Jh(T ;Wt+)] > E [Jh(T ;Wt+)] , as T → 0 .

The expected local time grows faster for closer reflecting boundary near T = 0. Also

EL [Jh(T ;Wt+)] < E [Jh(T ;Wt+)] , as T →∞ ,

which implies there is some T̂ such that

EL
[
Jh(T̂ ;Wt+)

]
= E

[
Jh(T̂ ;Wt+)

]
,

and
EL [Jh(T ;Wt+)] > E [Jh(T ;Wt+)] , for all 0 < T < T̂ .

Finally, notice that given W h, E [Lh(T ;Wt+)] is decreasing in Wt+ , that is, the further Wt+

is from the reflecting barrier, the less time it spends there within a certain time. Therefore

EL
[
Jh(T ;WL

t+)
]
> E [Jh(T ;Wt+)] as long as W

L

h − WL
t+ < W h − Wt+ . By Corollary 3

W
L

l −WL
t+ < W h −Wt+ , if Wt− > Ŵ , therefore EL [Jh(T ;Wt−)] > E [Jh(T ;Wt−)] for all

0 < T < T̂ as long as Wt− > Ŵ�

Proof of Proposition 5:

Consider the process of W in the high volatility state with initial position Wt+ . Let N
be the number of times W reaches the reflecting boundary W h before it is stopped. Then

E [τ ] =
∞∑
i=0

E [τ,N = i] .
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First consider N ≥ 1, if W reaches W h at least once before it is stopped, then starting
from W h, the expected stopping time is smaller whenever W h−R is a shorter interval. Next
consider the case M = 0, the expected stopping time is smaller whenever Wt+ is closer to R.
Finally, the average speed of growth of W , γW , is slower for smaller W . From Corollary 2

and 3 it can be concluded that EL [τh] < E [τh]because W
L

h < W h and WL
t+ < Wt+ for the

same Wt− .
Same comparison can be conducted between EL [τh] and EL [τl]. The expected stopping

time is smaller when W and the initial W is closer to R, and when σ is larger.
The exact value of E [τ ] is difficult to compute due to the irregular process W follows.

However, when γ is small, the same approximation method used in the proof of Proposition
4 can be applied here as well. The problem thus becomes a standard absorbing time question
for a Brownian motion between an absorbing and a reflecting barrier, whose solution is given
by Cox and Miller (1977) as

E [τ ] =
Wt+(2W h −Wt+)

σ2

This solution confirms that E [τ ] is positively related to W h and Wt+ while negatively related

to σ. Since W
L

h < W
L

l < W h, W
L
t+ < WL

t− < Wt+ , and σh > σl, E
L [τh] must be the smallest

compare to E [τh] and EL [τl]�

Appendix B. Recurring States

In the main body of the paper I assume that the transition probability from high to low
uncertainty state πh is zero, that is the crisis state is absorbing. This assumption greatly
simplifies the verification of the optimality of the contract, but is unnecessarily for the results
of this paper to hold. In this appendix I provide a full characterization of the optimal contract
when I relax such assumption. That is, when πh > 0 and the economy switches between
normal and crisis times stochastically. Li (2012) establishes the technical details required to
study this case. The following proposition summarizes the result:

Proposition 6. Suppose πl > 0 and πh > 0. Let Nt be the total number of state transitions
at time t. The agent’s continuation utility Wt follows

dWt = γWt − dIt + λ(dYt − µdt) + δt(dNt − πtdt); . (8)

The optimal contract is a pair of value functions Vs(W ) and payment boundaries Ws,
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s ∈ {l, h} such that

rVs(W ) = µ+ (γW − πsδs(W ))V ′s (W ) +
1

2
λ2σ2

sV
′′
s (W )

+πs (Vŝ(W + δs(W ))− Vs(W )) , (9)

subject to boundary conditions Vs(R) = L; V ′s (W s) = −1; and

V
′′

s (W s) = 0 ,

where δs(W ) follows (2) and (3). If the principal has only limited commitment, the optimal

contract is a pair of value functions V L
s (W ) and payment boundaries W

L

s , s ∈ {l, h}, such
that V L

s (W ) satisfies the same system of ODE (9) and boundary conditions V L
s (R) = L;

V L′
s (W

L

s ) = −1, and

V L′′

s (W
L

s ) = 0, if V L
s (W

L

s ) ≥ L ,

V L
s (W

L

s ) = L, otherwise .

Proof: The proof builds on iteration procedure described in Li (2012). I therefore only
sketch the argument here in the interest of space. Consider first the case of full commitment.
Applying the martingale method of Sannikov (2008), the agent’s continuation utility follows

(8). Ito’s lemma implies that the principal’s HJB equation satisfies (1). Let Ṽs(W ) be a

solution to (1). The concavity of Ṽs(W ) can be shown using the method similar to Proposition

1. Take Ṽl(W ) as given, define an auxiliary value function US
h as the payoff assuming the

principal ceases to provide any incentive to the agent in the high volatility state until the
next volatility shock arrives. The concavity of Ṽs(W ) implies that Ṽh(W ) > US

h . Apply the

similar argument to Ṽl(W ) but take Ṽh(W ) as given, Li (2012) shows that the procedure
converges to a pair of function Vs(W ) satisfying equation (9). Finally, the same procedure
also applied to the limited commitment contract as long as Vs(W ) remains concave, which

is shown in Proposition 2 by replacing the Vh(W ) with Ṽh(W ) in its proof.�
The optimal contract characterized under recurring state is qualitatively identical to the

one summarized in section 2 under a one-time shock. In fact, principal’s value functions of
the contract under recurring states converge to value functions under a one-time shock when
πh → 0. Given πs are assumed to be small numbers the case of a one-time shock provides a
good approximation for the general case of recurring states and does not lose any important
result.

All the remaining results discussed in the main body regarding the position of payment
boundaries, the frequency of cash payment and expected termination time are preserved in
the recurring state contract, as long as the parameters are that once the limited commitment
constraint is imposed, it is binding in both states. The discussion of “pay-for-luck” can be
expanded to not only negative shocks but also positive shocks. The following result can be
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inferred from Proposition 3: Under the full commitment contract, managers whose accu-
mulated performance is well enough receive less utility when volatility decreases; meanwhile
managers under the limited commitment contract receive higher utility. The conclusion for
limited commitment contract is consistent with empirical findings of “pay-for-luck” which
further reinforce the importance of taking firms’ commitment ability into account when
understanding compensation under shocks.

Appendix C. Contracts with Limited Commitment Bind-

ing in One State Only

Section 2 introduced three types of contracts based on when the limited commitment con-
straint is binding. While the main text focuses on the third types, here I also provide some
discussions of the second type: the contract where the limited commitment constraint is
binding only in the high volatility state. In general, this type of contract can behave like
contracts with either full commitment or those with limited commitment but the commit-
ment constraint is binding in both states, depending on the parameter value σ in each state.

The main goal of this appendix is to establish conditions under which the main Propo-
sitions in Section 3 are still valid for the optimal contract when the limited commitment
constraint is imposed. The proofs of Proposition 4 reveal that the key variable driving the
dynamics of compensation is the distance between Wt+ and payment boundary W h. This
leads to the conjecture that the dynamics of compensation of the type of contract discussed
in this appendix section will be similar to the dynamics of the limited commitment contracts
described in Section 3 as long as when the commitment constraint is imposed, the agent’s

continuation utility Wt+ is closer to the payment boundary W
L

h compared to the full com-
mitment case. Due to the implicit form of the value function, it is analytically difficult to
characterize the exact range of parameters under which this conjecture is true. Nevertheless
the following proposition gives one sufficient condition for it.

Proposition 7. If the commitment constraint is binding only in the high variance state,

then there exist Ŵ such that WL
t+ −W

L

h < Wt+ −W h for all Wt− > Ŵ as long as W h < W l.

Proof: Similar to the proof in Section 3, consider the full commitment contract first.
Vh(W ) < VL(W ) implies W h > W l and V ′h(R) < V ′l (R). Since V ′h(W h) = V ′l (W l) = −1,

there must exist Ŵ such that V ′h(Ŵ
) = V ′l (Ŵ ) and δl(W ) > 0 for all W > Ŵ .

Next, if the limited commitment constraint is imposed and binding, V L′
h (R) < V L′

l (R),

V L′
h (W

L

h ) = V L′
l (W

L

l ) = −1. If W
L

h < W
L

l , then there exists ŴL such that δLh (W ) > 0 for

all W > Ŵ . Let Ŵ = max
{
Ŵ , ŴL

}
, then δ′l(W l) > 0 while δL′l (W

L

l ) < 0 for all W > Ŵ .

Finally, define ∆L(Wt−) − ∆(Wt−) =
(
W

L

h −W h

)
−
(
W

L

l −W l

)
−
(
δLl (Wt−)− δl(Wt−)

)
.
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For small πl, W
L

l −W l is small. Notice that W h −W
L

h = δl(W l)− δLl (W
L

l ), δ′l(W l) > 0 and

δL′l (W
L

l ) < 0 implies δl = (Wt−) − δLl (Wt−) < δl = (W l) − δLl (W
L

l ) = W h = −WL

h for any

Wt− > Ŵ . Therefore, ∆L(Wt−)−∆(Wt−) < 0 for all Wt− > Ŵ .�
Given the sufficient condition above, the rest of the analysis follows exactly the one shown

in the main text. Figure 6 demonstrate the difference between two levels of volatility in the

high volatility state. For the same level of σl, the relative position of W l and W
L

h are similar
to the full commitment case when σh is moderate, but converge to the case in which the
commitment constraint is binding in both states when σh becomes high enough.

Panel A. Low σh Panel B. High σh

Figure 6 – Contracts with the Commitment Constraint Binding in One State Only

This figure plots firm value functions when the limited commitment constraint is binding only in the high

volatility state. Parameter values are the same as those in Figure 1 and Figure 2 except σl = 5 and σh = 6

for the left panel, and σh = 6.5 for the right panel

The finding of this section greatly expands the domain of contracts to which Propositions
4 and 5 can apply. Large bonuses in crisis times could be possible if the abrupt volatility
increase is substantial enough that many firms that operate smoothly during normal times
suddenly become constrained in the amount they can credibly pledge to pay their managers
in the long-run. The greater increase of market risks during the crises, the more severe is
this concern. Future research that calibrates or empirically investigates the real scope of
this commitment constraint will be helpful in determining the proportion of firms that are
subject to limited commitment contracts and firms whose dynamics of bonuses follow the
predictions in this paper.
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Appendix D. Renegotiation-Proof Contracts

In this paper the principal terminates the manager’s contract whenever W = R, which may
be suspect under limited commitment. However, this assumption is not required to deliver
the qualitative results of this paper. One way to consider the principals lack of commitment
when W approaches R is renegotiation. In this Appendix, I derive the renegotiation-proof
contract and show that the main results carry through. Moreover, despite the principal
having only limited power of commitment, renegotiation-proofness is not a necessary feature
of the resulting equilibrium contract. In the limited commitment literature, 19 the off-
equilibrium strategy for a defaulting party is usually autarky or complete exclusion from re-
entering any contracting relationship. In practice, modifying the contract, via renegotiation
or replacing the incumbent agent, is usually costly. Allowing for costly contract modification
preserves the key predictions of the model, as explained further in the following paragraphs.

A renegotiation-proof contract requires the slope of the principal’s value function to
be non-positive. Such condition is ruled out in the main context of this paper because

V L(R) = V L(W
L
) = L when the limited commitment constraint binds, hence a non-trivial

contract must have a region where the principal’s valuation is increasing in the agent’s
continuation value W . To allow renegotiation-proof contracts I modify the assumption about
the principal’s commitment ability. I assume now that the principal will only withdraw the
investment when firm values is below zero. This assumption is similar to the one made by
Ai and Li (2014) and Bolton et al. (2015). The corresponding constraint on the payment
boundary is now:

V (W ) ≥ 0 .

The dynamics of the agent’s continuation value under renegotiation-proof contracts follow

dWt = γWt − dIt + λ(dYt − µdt) + δt(dNt − πtdt) + dPt .

The new term dPt defines a reflecting termination boundary W which satisfies the boundary
condition V (W ) = L and V ′(W ) = 0. Termination is stochastic at this boundary, with
probability dPt

W−Rto account for the extra term on the agent’s continuation value and keep
the contract incentive compatible.

For the main results of this paper to carry through, it is sufficient to prove the following
proposition:

Proposition 8. Under the renegotiation-proof contract, W h > W l under full commitment

and W
L

h < W
L

l when the constraint is binding in both states.

Proof: Clearly, Corollary 1 and 2 still apply to renegotiation-proof contracts. Therefore

19For instance, Thomas and Worrall (1988) Abreu et al. (1990), Ray (2002), Levin (2003), and Miao and
Zhang (2014)
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W
L

h < W
L

l since Vh(W ) < Vl(W ) and V (W ) = 0 if the commitment constraint is binding
in both states. Without the constraint the contract is a standard continuous-time dynamic
contract with regime switching, and the argument of the boundary positions can be found
in Hoffmann and Pfeil (2010)�

Given the relative positions of the payment boundaries for the full commitment and
limited commitment contracts, one can easily see that a statement similar to Corollary
3 can be made here as well. Figure 7 shows the value functions for the renegotiation-
proof contracts, where both the endogenous renegotiation boundaries as well as the payment
boundaries are displayed. The graphs confirms Propositions regarding the relative positions
of payment boundaries for both the full and limited commitment contracts. Such conclusions
leads to the same dynamics of bonuses payment described in Section 3 and the details are
thus omitted here.

Panel A. Full Commitment Panel B. Limited Commitment

Figure 7 – Renegotiation-Proof Contracts

Last but not least, renegotiation-proofness is not a necessary feature for the contract
to be optimal despite limited commitment. The principal is still able to rule out further
renegotiation since the only action she cannot commit to is not to withdraw when firm value
is negative. In particular, the principal can commit to the random termination schedule
described above, which is crucial in keeping the manager’s incentive properly. Further, the
assumption of investors withdrawing their investment when firm value drops below zero
replaces the earlier assumption of liquidation at any time, and therefore the value of the firm
at the termination boundary is still the liquidation value since it is determined by the agent’s
effective limited liability constraint and the principal is able to commit to termination once
that boundary is reached.
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