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Abstract. We study the design of provider incentives in the post-acute care setting –

a high-stakes but under-studied segment of the healthcare system. We focus on long-

term care hospitals (LTCHs) and the large (approximately $13,000) jump in Medicare

payments they receive when a patient’s stay reaches a threshold number of days. The

descriptive evidence indicates that discharges increase substantially after the threshold,

and that the marginal patient discharged after the threshold is in relatively better

health. Despite the large financial incentives and behavioral response in a high mortality

population, we are unable to detect any compelling evidence of an impact on patient

mortality. To assess provider behavior under counterfactual payment schedules, we

estimate a simple dynamic discrete choice model of LTCH discharge decisions. When

we conservatively limit ourselves to alternative contracts that hold the LTCH harmless,

we find that an alternative contract can generate Medicare savings of about $2,100

per admission, or about 5% of total payments. More aggressive payment reforms can

generate substantially greater savings, but the accompanying reduction in LTCH profits

has potential out-of-sample consequences. Our results highlight how improved financial

incentives may be able to reduce healthcare spending, without negative consequences

for industry profits or patient health.
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1 Introduction

Healthcare spending is one of the largest fiscal challenges facing the U.S. federal government. In

2014, the U.S. federal government spent $1.1 trillion on public healthcare programs (BEA, 2015)

and the CBO projects that spending will grow to $2.0 trillion by 2026 (CBO, 2016).

Within the healthcare system, post acute care (PAC) is an under-studied sector, with large

stakes for both spending and patient health. Post-acute care is the term used for formal care

provided to help patients recover from a surgery or other acute care event (MedPAC, 2015b).

Medicare spending on PAC is substantial, about $60 billion in 2013, or about 20% more than the

much-studied Medicare Part D program (MedPAC, 2015a). PAC spending is growing faster than

overall Medicare spending (MedPAC, 2004), and a recent Institute of Medicine report found that

– despite accounting for only 16% of Medicare spending – PAC accounts for a striking 73% of the

unexplained geographic variation in Medicare spending (Newhouse et al., 2013). A large number of

high-risk patients use PAC; over 40% of hospital patients are discharged to PAC (MedPAC, 2015b)

and, we estimate, that 15% of Medicare deaths involve a PAC stay in the 30 days prior to death.

In this paper, we study the impact of provider financial incentives in determining patient flows

and government spending in the Medicare PAC system. The PAC setting is attractive for several

reasons. First, given its fiscal importance, understanding the effects of financial incentives is a

natural area for inquiry. Second, the institutional setting – involving multiple interlocking and

potentially substitutable settings operating under different reimbursement regimes – suggests that

financial incentives may have first order consequences. Third, inefficiencies in the PAC sector

have potentially important implications for public health, given that PAC is disproportionately

concentrated in high-risk patients who might be more vulnerable to inefficiencies in the delivery of

care.

Our analysis focuses on patients whose point of entry into the PAC system is an LTCH.1 We

focus on LTCH patients because of sharp variation in provider incentives at this type of facility.

This is illustrated in Figure 1: providers are reimbursed a daily amount (of approximately $1,300)

up to a threshold number of days, at which point there is a large (approximately $13,000 on average)

increase in payments for keeping a patient an additional day beyond the threshold, but no payments

for any days beyond it. We investigate the effects of this “jump” in payments at the threshold using

detailed Medicare claims and administrative data on the universe of LTCH stays over the 2007-2012

period, when this non-linear payment schedule was in effect, as well as a 2000-2002 period, when

LTCHs were instead reimbursed under a linear (that is, constant per-diem rate) payment schedule.

We start by presenting descriptive evidence on the effect of the jump in payments. Discharges

respond strongly to the payment increase, with the share of stays discharged increasing from 2%

to 9% at precisely the date of the jump. The marginal patient discharged at the threshold appears

to be much healthier than average: at the threshold, patients are disproportionately likely to be

discharged to a less intensive PAC facility or home (“downstream”) relative to acute care hospitals

1The acronym LTCH is typically pronounced “el-tack”, presumably reflecting the fact that LTCHs are sometimes

referred to as long-term acute care hospitals (LTACs), which is pronounced in this manner.
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(“upstream”); they also have substantially lower post-discharge mortality than patients discharged

on earlier days.

A natural question raised by this evidence is whether distortions in the timing of discharge has

an impact on patient health. Given the high baseline mortality rate for LTCH patients (30% die

within 90 days of LTCH admission), if the distortions are harmful, it seems plausible that we could

detect an effect. Empirical analysis is challenging, however, because unlike discharge behavior,

mortality effects may not appear right “at” the threshold.

The available evidence shows no compelling evidence of any mortality effects from the distortions

in discharge behavior. We find no evidence of a change in the level or the slope of the mortality

hazard in the vicinity of the threshold. An additional informative contrast is provided by comparing

the experience of for-profit and non-profit LTCHs. We show that while both types of hospitals

have similar payment schedules, the behavioral response in discharges is much stronger for for-

profit hospitals. Despite the larger behavioral response at the threshold, we find no indication of a

mortality impact even for the for-profit hospitals. These results suggest that the marginal patient

is able to receive similar care whether they are located in an LTCH or in their alternative setting,

which empirically is usually a less intensive PAC facility such as a Skilled Nursing Facility (SNF).

The descriptive analysis of discharge behavior provides compelling evidence that providers re-

spond to financial incentives. But it provides little guidance on how providers respond to the

payment schedule on days further from the threshold. Nor does it provide a natural way to gauge

the magnitude of the provider response or estimate how treatment patterns and Medicare costs

would be effected by counterfactual payment schedules.

To address these questions, we specify and estimate a dynamic model of LTCH discharge be-

havior. In our model, patients are characterized by their health, which evolves stochastically over

time. LTCHs faces a (daily) decision of whether to retain the patient or discharge them to another

facility. The LTCH’s objective function includes both net revenue (Medicare payments net of costs)

and patient utility. If the patient is discharged from the LTCH, the provider receives zero net rev-

enue, but internalizes at least a portion of the patient utility from being treated in an alternative

location. If the LTCH keeps the patient, it receives net revenue that depends on Medicare’s pay-

ment schedule, while also accounting for the patient’s utility from being treated in the LTCH and

the option value of making a similar discharge decision the following day. The provider therefore

faces a standard dynamic discrete choice problem.

We estimate the model by simulated method of moments to match the observed discharge and

mortality patterns under the linear and non-linear payment schedules. To take advantage of the

variation provided by the sharp jump in payments, we assign greater weights to moments that are

close to the jump. The estimated model fits the data reasonably well.

We use the model and the estimated parameters to investigate the effects of alternative contracts

that – like the observed contract – have a daily reimbursement rate up to a cap but that – unlike

the observed contract – do not have the (presumably undesirable) jump in payments at a threshold

date. We find, for example, that if we were to lower the fixed payment to eliminate the jump in

payments at the threshold, we would reduce total payments per admission for the episode of care
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by 25 percent, or about $13,000 per admission. However, such a payment schedule substantially

reduces LTCH revenue and estimated profits, and therefore may have out-of-sample impacts on

LTCH behavior that our estimates would not capture, such as induced LTCH exit ot lower service

quality.

We therefore also engage in a more conservative set of counterfactuals in which we restrict

attention to alternative contracts that would hold the LTCH harmless if their behavior did not

change. Specifically, we consider the set of contracts that hold LTCHs revenue constant under their

observed discharge schedule. Thus, if we apply this schedule and behavior responds, LTCHs must

be better off. Using our estimated model, we are able to identify a broad set of “win-win” payment

schedules that reduce Medicare payments and, by construction, leave LTCHs (weakly) better off.2

The contract that generates the largest savings reduces Medicare payments for the episode of care

by 4.5%, and increases LTCH profits by 5.1%.

Our paper relates to a large literature examining how healthcare spending responds to financial

incentives. Given the importance of healthcare spending in the economy and in public sector

budgets, the existence of this large literature is not surprising. What is surprising – and arguably

unfortunate from this perspective – is that the vast majority of this literature (including much of

our own work) has focused on the impact of consumer financial incentives, such as deductibles and

co-payments.3 The majority of healthcare spending, however, is accounted for by a small share of

high-cost individuals whose spending is largely in the “catastrophic” range where deductibles and

co-payments no longer bind, and thus where consumer cost-sharing is likely to have little impact

relative to provider-side incentives.

The relative lack of research on the provider side presumably reflects the difficulties in finding

clean variation in incentives to model and study. Perhaps not surprisingly therefore, the sharp

incentives created by the current LTCH payment schedule have already received some attention in

both academic (Kim et al., 2015) and popular (Weaver et al., 2015) spheres. Our descriptive work

on discharges around the threshold is quite similar to this prior work, while our descriptive analysis

of the health of the marginal dischargee and our exploration of mortality effects is new. Our paper

is most closely related to Eliason et al. (2016) who – in independent ongoing work – also study the

impact of the LTCH payment schedule on discharge behavior descriptively and through the lens of

a dynamic model. Where comparable, the results are broadly similar to ours; however they focus

more on heterogeneity in provider responses and, unlike us, do not analyze patient mortality or

post-discharge health care use.

Finally, from a more conceptual perspective, our paper is related to a growing literature that

2 Given the lack of compelling evidence of mortality effects at the threshold, it seems reasonable to assume that

mortality impacts are also unlikely to be first-order under these ”LTCH held harmless” alternative contracts.
3The literature on the impact of consumer incentives (“moral hazard”) in health insurance is too vast to try

to summarize or cite here. Most of the work on provider-side responses has focused on descriptive evidence that

providers do respond to incentives, with much of the evidence coming from the response to the introduction of the

Inpatient Prospective Payment System in 1983 (Cutler and Zeckhauser (2000) provide a review of this evidence).

More recently, Clemens and Gottlieb (2014) provide a rare look at the behavioral response of physicians to financial

incentives.
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seeks to interpret descriptive evidence of the behavioral responses to non-linear payment schedules

(“bunching”) through the lens of richer economic models that allow for assessments of behavior

under counterfactual schedules (e.g., Chetty et al., 2011; Einav et al., 2015, forthcoming; Manoli

and Weber, 2017).

The rest of the paper proceeds as follows. Section 2 provides some background on the PAC

sector, LTCHs, and our data. In Section 3, we describe the discharge and mortality patterns around

the jump in payments. Section 4 presents the model, discusses estimation, and presents the results

from our counterfactuals. Section 5 concludes.

2 Setting and Data

2.1 Post-Acute Care in The United States

Post-acute care (PAC) is the term for rehabilitation and palliative services provided to patients

recovering from an acute care hospital stay. In the United States, the Center for Medicaid and

Medicare Services (CMS) associates PAC with three types of facilities – long-term care hospitals

(LTCHs), skilled nursing facilities (SNFs), and inpatient rehabilitation facilities (IRFs) – as well as

care at home provided by home health agencies (HHAs) (MedPAC, 2015b). In 2013, Medicare paid

$60 billion to PAC providers, approximately 16% of the $368 billion paid that year for Traditional

Medicare (TM) claims (MedPAC, 2015a). This is about 20% larger than spending in Traditional

Medicare on the much-studied Medicare Part D program.

In recent years, the geographic variation and growth rate of spending on PAC have raised

concerns about the efficiency of the sector. From 2001 to 2013, Medicare spending on PAC grew

at an annual rate of 6.1%, 2 percentage points higher than the rate of total spending growth for

TM (The Boards of Trustees for Medicare, 2002 and 2014; MedPAC, 2015a). A recent Institute

of Medicine report found that, despite accounting for only 16% of spending, PAC contributed to

a striking 73% of the unexplained geographic variation in spending, suggesting that there may be

substantial inefficiencies in the sector (Newhouse et al., 2013).

It is useful to think about patients generally flowing “downstream” through the healthcare sys-

tem. Upon experiencing an acute health event, they enter a regular Acute Care Hospital (ACH),

from there they may enter a PAC facility to recover, and eventually go home once they are suffi-

ciently healthy and independent. Some ACH patients “skip” the PAC stay and return home directly

from the ACH, and some patients occasionally relapse and move “upstream” from a PAC facility

back to an ACH.

The top panel of Figure 2 gives a sense of transitions between ACHs, PAC facilities (LTCHs,

SNFs, and IRFs), home (including HHAs), and death (including hospice). (Throughout the rest

of the paper, we use the term PAC facilities to refer to LTCHs, SNFs, and IRFs, because these

are facilities that provider in-house care, in constrast to HHAs, which provide care at the patient’s

home.) In our data, described below, 26% of patients who are discharged from an ACH received
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follow-up care from a PAC facility.4 From these PAC facilities, 60% of patients continue to flow

home, where they may still receive treatment from an HHA, while 33% are discharged back to an

ACH. The remaining 7% of discharges are to a hospice or due to death.

Just like the natural flow of patients into and out of the PAC system, there is also a general

ordering of care within it. LTCHs provide the most intensive care, SNFs and IRFs provide less

intensive care, and HHAs the least intensive bundle of medical services. Severity of Illness (SOI)

categories is a commonly used measure of intensity of care, and is constructed using the patient’s

age, diagnoses, procedures, and comorbidities.The share of patients in the highest severity of illness

category declines from 43% at LTCHs, to approximately 12% at SNFs and IRFs, to 4% at HHAs

(AHA, 2010). Medicare payments per day follow the same declining pattern.

Our point of entry into the PAC landscape is through admission to an LTCH. The bottom panel

of Figure 2 looks at patient flows from LTCHs. About 11% of LTCH patients are discharged back

to an ACH, 38% are discharged to another PAC facility (SNF or IRF), and 33% are discharged

to their homes, where they may continue to receive care from an HHA. The remaining 18% are

discharged to a hospice (4%) or die within the LTCH (14%). In contrast, once in a SNF or IRF,

patients almost never get discharged to an LTCH, die much less frequently (5%), and much more

often (60%) return directly home.

Despite the interlocking nature of the PAC system, the way that Medicare reimburses post-

acute care varies substantially by the setting. Historically, all providers were paid according to an

administrative estimate of their costs. Since the early 2000s, however, many PAC stays are paid

under a prospective payment system (PPS), yet the unit of payment varies across sites. Loosely,

HHAs are paid per 60-day episode-of-care, SNFs are paid a fixed rate per day of stay, while IRFs

and LTCHs are in principle paid a fixed amount per admission (like ACHs).5 We provide more

details on LTCH payments in Section 3.

The fact that each type of facility is paid under a different system has often raised concerns.

From a public health perspective, there is concern that the separate payment systems do not

give providers enough incentive to coordinate care across different facilities. From a budgetary

perspective, there is concern that providers may shuffle patients across facilities with the aim of

increasing Medicare payments. These concerns have spurred various proposals for payment reform,

including a recent bill which proposes providing a “bundled payment” to a single PAC coordinator,

and letting this coordinator internalize the costs and benefits associated with the sequence of

admissions and discharges for the entire episode of care (H.R.1458 – BACPAC Act of 2015).

4In analysis that includes HHAs in the calculation, the number of ACH patients who are discharged to PAC rises

to 42% (MedPAC, 2015b).
5These different payment systems also has differential implications for beneficiaries’ cost-sharing requirements

across types of PAC settings. Beneficiaries generally are not required to make any cost sharing for HHA services.

IRF and LTCH stays are tied to the beneficiaries’ inpatient deductible, so when arriving from an ACH there would

typically be no requirement for additional cost sharing. SNF stays are associated with separate SNF coinsurance for

stays longer than 20 days.
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2.2 Long-Term Care Hospitals

Our primary focus is on patients whose point of entry into the PAC system is a long-term care

hospital (LTCH). The demarcation “LTCH” describes how the provider gets paid by Medicare. It

is a regulatory, rather than medical, concept. For a hospital to get paid as an LTCH, it must have

an average inpatient length of stay of 25 days or more. Naturally, there are many ways to meet this

requirement, so from a medical standpoint the question of what exactly is an LTCH often results

in differentiated or fuzzy answers.

The LTCH category of hospitals was created to solve a potential problem created by the 1982

Tax Equity and Fiscal Responsibility Act (TEFRA), which established the prospective payment

system (PPS) for acute care hospitals. Under the new PPS, hospitals were paid per discharge, and

not based on their costs, as a way to create incentives for hospitals to be efficient in their treatment

decisions. Regulators who were designing the PPS realized that there was a small number of

hospitals that had long average length-of-stays (LOS) and would not be financially viable under

the fixed-price PPS. LTCHs were thus created as a carve-out from PPS for hospitals that had an

average LOS of at least 25 days. At that point in time, there were 40 hospitals that qualified as

LTCHs – mainly former tuberculosis and chronic disease hospitals in the Boston, New York City,

and Philadelphia metropolitan areas. LTCHs payments were based on costs measured in 1982,

roughly in the spirit of the pre-1982 payment system, and adjusted for inflation in subsequent

years. See Liu et al. (2001) for more on the background of the LTCH sector.

Over the last 30 years, and perhaps because of the LTCH exemption from PPS, there was rapid

growth in the LTCH sector. Because new entrants did not have cost data for 1982, payments

for new entrants were determined by costs in the initial years of operation. This encouraged new

entrants to be inefficient when they first opened and earn profits by increasing their efficiency over

time (Liu et al., 2001). From the initial 40 hospitals first designated as LTCHs in 1982, there are

now over 400 such hospitals in the country.

Geographic penetration of LTCHs is extremely varied. This presumably reflects their historical

roots as tuberculosis and chronic disease hospitals in the northeast, as well as certificate of need

(CON) laws that have restricted entry. There are only a few LTCHs in the west of the country,

and three states (Massachusetts, Texas, and Louisiana) account for a third of all LTCHs. In places

where there are LTCHs, these hospitals are an important part of Medicare’s PAC landscape. For

instance, in hospital service areas (HSAs) with at least one LTCH, we calculate that LTCHs account

for 13% of Medicare PAC facility days and 28% of Medicare PAC facility spending; nationwide,

payments to LTCHs account for 12% of Medicare PAC facility spending.6

LTCHs are much more likely to be for-profit than other medical providers. According to 2008

data from the American Hospital Association (AHA), 72% of LTCHs are for-profit (versus 17% for

ACHs), 22% are non-profit, and 6% are government run. The LTCH market is dominated by two

6Authors’ calculations using 2007-2012 data described below. PAC facilities include LTCH, SNF and IRF. PAC

facilities represent about 70 percent of total PAC spending, with the other 30 percent due to PAC provided by HHAs

(MedPAC, 2015a).
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for-profit companies, Kindred Health Systems and Select Medical, which run about 40% of LTCHs,

according to the AHA data. Company reports indicate that LTCHs are highly profitable. For their

business segments that include LTCHs, Kindred’s profits have hovered between 22% and 29% of

revenue and Select’s profits have ranged between 16% to 22% of revenue.7

Approximately half of LTCHs are known as Hospitals-within-Hospitals (HwHs), meaning that

they are physically located within the building or campus of an ACH but have a separate governing

body and medical staff. Regardless of an LTCH’s location (co-located or freestanding), they tend to

have strong relationships with a single ACH.8 Because of concerns over close relationships between

LTCHs and their partner ACHs, in 2005 CMS established a policy known as the “25-percent rule”

that creates disincentives for admitting more than 25% of patients from a single facility; however,

Congress has delayed the full implementation of the law.9

2.3 Data

Our main analysis focuses on patients who are admitted to an LTCH and follows them throughout

their entire healthcare episode. Our primary data source is the Medicare Provider and Analysis

Review (MedPAR) data, spanning the years 2000-2012. The dataset contains claim-level informa-

tion on discharges from ACHs, LTCHs, SNFs, and IRFs. Each record is a unique stay for which

a claim was submitted, and the data contain information on procedures, admission and discharge

dates, admission sources and discharge destinations, hospital charges, and Medicare payments. The

MedPar data also provide us with basic demographic information such as the age, sex, and race of

the beneficiary, and information about the patient’s diagnoses (DRG).

We supplement this primary source with several ancillary data sources. First, we use Medicare’s

beneficiary summary file on cost and use it to approximate post-LTCH discharge payments for

hospice and for HHAs, as well as post-LTCH discharge hospice days; Appendix A provides more

details.10 Second, we use Medicare’s beneficiary files to determine whether the beneficiary is dually

eligible for Medicare and Medicaid and the date of death (if any) through 2012. Third, we use the

7Profits are defined as EBITA (earnings before interest, taxes, and amortization). Kindred’s profits are based on

2009 to 2015 company reports. Prior to 2009, Kindred did not separate out their reporting of LTCH profits from the

much larger SNF category. Select’s profits are based on company reports from 2004 to 2015.
8MedPAC (2004) found that HwHs receive 61% of their cases from their most frequent referring hospital and

freestanding hospitals receive 42% from their most frequent referring hospital.
9There is also a regulation known as the “5-percent rule” that addresses the incentive for HwH to “ping-pong”

patients between the ACH and LTCH. In particular, if more than 5% of patients who are discharged from an LTCH

to an ACH are readmitted to the LTCH, the LTCH will be compensated as if the patient had a single LTCH stay

(42 CFR 412.532).
10In the MedPAR data, we can observe all discharge destinations, but we can only observe post-discharge payments

and days for ACH and PAC facilities (SNF, IRF, LTCH) and not for home health visits or hospice. Appendix A

shows how we estimate these using the summary file on cost and use which includes spending for all components

of care. In practice, HHA and hospice payments are quite small as a share of the total. For example, we estimate

that of individuals with an LTCH discharge, LTCH and SNF/IRF payments constitute over 90 percent of total PAC

payments, with home health accounting for only 8 percent.

7



Medicare chronic conditions file to measure whether the individual has any of 27 chronic conditions

in the calendar year prior to the LTCH stay. Finally, we use data from the American Hospital

Association (AHA) survey over the same period to determine whether an LTCH is for-profit, non-

profit, or government owned, and whether it is co-located with an ACH.

Our analysis focuses on the current Medicare payment schedule for LTCHs, known as LTCH-

PPS. We analyze the time periods before and after full implementation of LTCH-PPS, which was

phased in over a five year period starting in October 1, 2002. We define the pre-PPS period as

discharges that occurred from January 1, 2000 to September 30, 2002. For this period, we measure

post-discharge costs, days and mortality through March 31, 2003, which is six months after the last

LTCH discharge. We exclude the October 2002 to September 2007 phase-in period because provider

behavior during this period potentially reflects the combination of changing financial incentives and

learning about the new incentive structure, complicating the interpretation of the data. We define

the PPS period as discharges that occurred from October 1, 2007 to July 31, 2012, and analyze

post-discharge costs, days and mortality through December 31, 2012, which is similarly six months

after our last LTCH discharge.

Table 1 shows summary statistics on ACH, LTCH, and SNF/IRF admissions in the pre-PPS

and PPS periods.11 Since an observation is an admission, some patients (16%) show up multiple

times in the data. LTCH patients are, on average, slightly younger than ACH patients and much

younger than SNF/IRF patients. LTCH patients are also almost twice as likely to be black and

about one-third more likely to be eligible for Medicaid, relative to ACH and SNF/IRF patients.

These differences are fairly stable over time. From a health perspective, patients in the LTCH

look less healthy than those in the ACH or SNF/IRF. They have more chronic conditions prior to

the stay and higher mortality. For example, about 15% of LTCH patients die within 30 days of

admission and 30% die within 90 days; these mortality rates are about 50% larger than mortality

rates for SNF/IRF patients and about twice as large as those for ACH patients.

In terms of the intensity of medical care, LTCH stays are closer to ACH stays than stays at

a SNF/IRF. The majority of LTCH and ACH patients receive at least one medical procedure

versus about 5% of patients who visit an SNF/IRF. The most common LTCH procedures (blood

transfusion, and ventilation) are also more similar to those that occur at an ACH, relative to

occupational and physical therapies, which are the most common procedures in SNF/IRF. Length

of stay at an LTCH, however, is (by design) much more similar to that of a SNF/IRF. The average

stay at an ACH is 5 days, while it is just over 25 days in LTCH and SNF/IRF.

The bottom rows of Table 1 show statistics on Medicare and out-of-pocket payments. Medicare

payments in the PPS period average $2,079 per day at an ACH, $1,392 per day at an LTCH, and

$507 per day at a SNF/IRF. However, because LTCH stays are much longer than ACH stays, per-

admission Medicare payments at LTCHs average over $35,000, which is three times greater than

per-admission ACH and SNF/IRF payments. Out-of-pocket payments at ACHs and LTCHs arise

from Medicare’s Part A deductible ($1,156 in 2012) and from co-insurance payments that apply

11We group SNF and IRF admissions together for convenience, as both represent post-acute care that is “less

intense” than an LTCH and because IRFs only account for a small (6.4%) fraction of these admissions.
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when the patient has more than 60 hospital days in the benefit period ($289 per day in 2012).

Because patients have no out-of-pocket exposure between the deductible and their 60th hospital

day, out-of-pocket payments are a modest 7.7% of Medicare payments at ACHs and 5.4% at LTCHs

in the PPS period. SNFs, on the other hand, have a separate co-insurance schedule with payments

of $144.50 per day in 2012 for stays in excess of 20 days, and have a much higher out-of-pocket

share.

Our analysis encompasses not only the experience of the patient in the LTCH (i.e., length of stay

and payments) but also their post-discharge experience. Table 2 provides some summary statistics

on post-discharge experience. We define a post-discharge episode of care as the spell of continuous

days with a Medicare payment to an ACH, SNF/IRF or LTCH; the episode ends if there are two

days or more without any Medicare payments being made to any of these institutions. For each post-

discharge episode we report 30-day mortality, 90-day mortality, post-discharge Medicare payments,

and post-discharge facility days (i.e. days in an ACH, SNF/IRF, LTCH or hospice). Focusing on

the PPS period, about one-quarter of LTCH patients die in the 90-days post discharge. Average

length of stay in the post-discharge episode of care is 26 days, which is similar to the average time

in the LTCH (see Table 1). Average post-discharge Medicare payments is $22,975, about 60% of

Medicare payments to the LTCH (see Table 1).

In some of our analyses below, we will find it useful to classify live discharges from the LTCH as

either “upstream” or “downstream” based on their discharge destination. “Upstream” discharges

represent patients in worse health than “downstream” destinations. Specifically, we group LTCH

discharges to hospice or ACH as “upstream” and discharges to SNF/IRF, or home (with or with-

out home health care), or to other as “downstream”.12 Table 2 shows that most (about 85%) of

LTCH discharges are downstream, and that patients initially discharged downstream have substan-

tially lower post-discharge mortality (e.g. 18% 90-day mortality compared to 60% for upstream

discharges), length of stay, and costs.

3 LTCH Payments, Discharge Patterns, and Outcomes

In this section we present descriptive analysis on LTCHs’ response to financial incentives. We start

by describing the LTCH budget set, including the large jump in payments that is our primary

source of identification. We then show evidence on how discharge patterns and mortality rates vary

with the budget set. This descriptive evidence motivates several of our key modeling choices in the

dynamic model of LTCH discharge behavior, which we present in the next section.

12Appendix Table A1 shows more granularity on the discharge destinations within upstream and downstream. In

the PPS period 97 percent of patients discharged upstream are sent to ACH (vs hospice); of patients discharged

downstream, about half are sent to SNF/IRF (which we group together because over 90 percent of discharges to SNF

or IRF are to SNF) and another 40 percent are discharge to home or home health care.
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3.1 LTCH Payments

We provide a basic overview here of how LTCH payments vary with the patient’s length of stay,

an object we refer to as the LTCH budget set or payment schedule. Appendix B provides more

details. Figure 1 summarizes the payment schedules in the pre-PPS and PPS periods.

Prior to October 1, 2002, LTCHs were paid their (estimated) daily cost, generating a linear

relationship between the length of the hospital stay and payments. As described earlier, this

“cost plus” reimbursement of LTCHs was seen as potentially encouraging inefficient entry into the

LTCH market. Because of this and other concerns, the 1997 Balanced Budget Act (BBA) and

1999 Balanced Budget Refinement Act (BBRA) implemented a PPS for LTCHs. LTCH-PPS was

phased in over a 5-year period starting on October 1, 2002 and was fully implemented by October

1, 2007. At a broad level, LTCH-PPS is designed to operate like the PPS for acute care hospitals

(IP-PPS), under which hospitals are paid a lump-sum that is based on the patient’s diagnosis

(diagnosis-related group, or DRG) and does not vary with the patient’s length of stay.

Much like LTCHs were originally created to address a potential problem with the introduction

of PPS for ACHs, so too the details of the LTCH-PPS payment schedule can be thought of as

attempting to address a potential problem arising from the introduction of PPS for LTCHs. In

particular, in designing LTCH-PPS, officials were concerned that LTCHs might discharge patients

after a small number of days but still receive large lump-sum payments intended for longer hospitals

stays. To address this concern, they created short stay outlier (SSO) threshold. If stays were

shorter than the SSO threshold, payments would be based on the pre-PPS cost-based reimbursement

schedule and LTCHs would not receive a large lump sum. However, while reducing the incentive to

cycle patients in and out of the LTCH, the SSO system creates potentially problematic incentives

at the SSO threshold. At the day where payments switch from per-day reimbursement to lump-sum

prospective payment amount, Medicare payments for keeping a patient an additional day “jump”

by a large amount.

Figure 1 graphs the average payment schedules in the pre-PPS and PPS periods, pooling across

LTCH facilities and DRGs. The y-axis shows cumulative Medicare payments, inflation-adjusted

to 2012 dollars. The x-axis shows the length of the stay relative to the SSO threshold, which we

normalize to be day 0. The SSO threshold is defined as five-sixths the geometric mean length of

stay for that DRG in the previous year and therefore varies by DRG (and also, to a much lesser

extent, by year). The average threshold is at 22.5 days; the modal threshold (accounting for 22.4%

of PPS stays) is 20 days and 99% of the sample has a SSO threshold between 16 and 39 days.13 As

a result, in this and subsequent figures, we present results relative to the SSO threshold so that we

can pool analyses across DRGs.14 Because the SSO threshold is undefined in the pre-PPS period,

13Across all DRGs, the SSO threshold ranges from 14 to 56 days.
14We start the x-axis range at -15 days because nearly all SSO thresholds occur after 16 days. If we extended the

x-axis range to -16, for example, there would be a change in the composition of DRGs between days -16 and -15

due to the entry of new DRGs into the sample. We end the x-axis range at 45 days because there are relatively few

(2.1%) patients who are kept at the LTCH more than 45 days beyond the SSO threshold.
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we assign pre-PPS stays the threshold for their DRG from PPS period.15

Under the pre-PPS system, average payments scale linearly with the length of stay at a rate of

$1,071 per day. Under the PPS system, payments increase linearly by $1,386 per day to the left of

the SSO threshold, “jump” by $13,656 at the SSO threshold, and remain constant thereafter. The

increase in payments at the jump is large: it is equal to 55% of the cumulative payment amount

on the day prior to the threshold, or equivalent to about 10 days of payments at the pre-threshold

daily rate.

This sharp jump in payments was presumably not the intention of the policymakers who de-

signed the LTCH-PPS, but it arises naturally from the interaction of two sensible policies. As is

standard in fixed price contracts, the LTCH-PPS payments were likely set to approximate average

costs per stay. As noted, payments on a cost-plus basis up to the SSO threshold were introduced

to avoid LTCHs receiving large lump sum payments for relatively short stays. While reducing the

incentive to discharge patients from an ACH to an LTCH, the transition unavoidably creates poten-

tially problematic incentives. Particularly concerning is where the threshold was set: we estimate

that under the pre-PPS payment scheme, 44% of stays would have been below the subsequent short

stay outlier threshold, which is a large fraction for a policy that is at least ostensibly designed to

target “outlier” events.

In Section 4 we explore the impact of alternative, counterfactual payment schedules. To elim-

inate the jump in payments, our counterfactuals alter the payment prior to the SSO threshold

(so that it does not approximate per-day costs), alter the fixed PPS amount (so that it does not

approximate average costs), or alter both segments of the payment schedule.

3.2 Discharge Patterns

We present a number of descriptive results on discharge patterns from the LTCH around the thresh-

old. The results can be summarize as follows. First, there is a large spike in discharges at precisely

the date of the jump in payments, indicating a strong response to financial incentives. Second,

the marginal patients discharged at the threshold are in relatively better health: they are dispro-

portionately discharged “downstream” and they have lower post-discharge mortality rates than

patients discharged at other times. Third, among patients discharged downstream, the marginal

patients discharged at the threshold are relatively sicker, with higher post-discharge costs than

pre-threshold dischargees. Below we discuss how these patterns can be rationalized with a simple

model of LTCH behavior.

Figure 3 shows the aggregate pattern of discharges by length of stay in the pre-PPS and PPS

periods. A discharge occurs when the patient is transferred to another facility, sent home, or dies at

the LTCH. The y-axis shows discharges as a share of the total number of stays at the LTCH. The x-

axis plots the length of stay relative to the DRG-specific SSO threshold, defined in the same manner

as in Figure 1. In the PPS period, there is a sharp increase in discharges at the SSO threshold, with

15Since the thresholds occasionally vary over time, we use the SSO threshold from 2007, which is the first year in

the PPS period.
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the share of discharges increasing from about 2% to 9% per day. Discharge rates remain elevated

over the subsequent 7 to 10 days before reverting to baseline. In the pre-PPS period, there is no

evidence of any bunching at the SSO threshold. This discharge pattern is consistent with a strong

response to the financial incentives.

Relative to the pre-PPS constant, per-day payment schedule, the increase in discharges under

PPS at the threshold could be drawn either “from the left” or “from the right” of the distribution.

In other words, the excess discharges at the threshold could reflect patients who under the pre-PPS

schedule would have been discharged before the threshold but are “retained” in order to get the

lump sum payout at the threshold, or patients who would have been discharged after the threshold

but are now discharged earlier since there is no longer a marginal financial payment associated with

keeping them additional days.

Because the share of discharges to the left of the threshold is lower in the PPS period relative to

the pre-PPS period, it is tempting to infer that the excess mass of discharges is primarily “drawn

from the left” of the distribution. However, we caution that differences in the discharge rate might

not only reflect the change in financial incentives but also changes in patient health and other secular

trends between the pre-PPS and PPS periods. For example, a simple reweighting of the pre-PPS

admissions to match the DRG composition of the PPS period eliminates approximately 30% of the

difference between the pre-PPS and PPS discharge rates prior to the SSO threshold (Appendix

Figure A2). In Section 4, we show how we can use our model to compare discharge patterns

under the observed PPS payment schedule to discharge patterns under alternative, counterfactual

payment schedules.

Figure 4 decomposes the discharge pattern by the location of discharge in order of descending

patient health: downstream, upstream, and death. The figure shows increases at the threshold in

discharges both upstream and downstream, but the proportional increase is substantially larger

on the downstream margin. Moreover, because the pre-threshold discharge rate is much higher

downstream, the sharp change in discharge rate at the threshold (shown in Figure 3) is almost

entirely driven by downstream discharges. We defer our discussion of the bottom panel on mortality

to the subsection below.

Appendix Figure A3 plots the 30-day post-discharge mortality rate, defined as death within

30 days of an (alive) discharge, by length of stay. The graph shows a sharp drop in post-dischage

mortality at the SSO threshold, again suggesting that the patients who are discharged at the

threshold are healthier than the patients who are discharged immediately beforehand. Of course,

the decline in mortality not only reflects changes in the composition of patients discharged at the

threshold, but could in principle reflect a treatment effect of discharge on health. We address this

in the next section.

Finally, Figure 5 plots Medicare payments for the episode of care that occur after the LTCH

discharge, by length of stay at the LTCH. We show these post-discharge payments separately

for patients discharged “upstream” and discharged “downstream” and view them as a proxy for

the patient’s health at the time of discharge. For patients discharged downstream, there is a

sharp increase in post-discharge payments at the threshold, with average post-discharge payments
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increasing from approximately $10,000 to $20,000. There is small change in the opposite direction

for patients initially discharged upstream. For longer lengths of stay, the figure becomes noisy due

to the small number of discharges.

Figure 5 suggests a simple model of LTCH behavior, which motivates the model we present in

Section 4. Prior to the threshold, retaining patients is profitable, and only the healthiest patients

are discharged to SNF/IRF or their home and the sickest patients discharged to an ACH or a

hospice. After the threshold, on the downstream margin, LTCHs work “down the distribution”

and discharge less healthy patients, increasing post-discharge costs on average. Similarly, on the

upstream margin, LTCHs work “up the distribution,” discharging patients who are in better health,

and decreasing post-discharge costs on average. The marginal patient discharged downstream at

the threshold is therefore sicker than the average patient discharged prior to the threshold, while

the marginal patient discharged upstream is slightly healthier than the average patient discharged

upstream in prior days.

3.3 (Lack of) Mortality Effects

A natural question raised by the discharge patterns is whether the distortions in the timing of

discharges have an impact on patient health and in particular mortality. Since the 90-day mortality

rate of LTCH patients is approximately 30% (see Table 1), if these distortions are harmful to health,

it seems plausible that we might be able to pick up an effect with our data.

Empirical identification of mortality effects from the distortion in patient location at the

threshold is challenging, however. Health evolves according to a stochastic process, with sicker

patients having a higher probability of death. Distortions to the location of care might impact

the level of someone’s health, generating an on-impact effect on the probability of death analogous

to the on-impact effect on discharges we detected. However, distortions to the location might

also effect the stochastic process for health, which would be associated with a longer-run change in

mortality rate, but might not have an immediate mortality effect. We therefore attempt to examine

not only whether there is an immediate impact on mortality at the threshold, but whether we can

detect any longer-run changes.

We have already seen in the bottom panel of Figure 4 some suggestive evidence that mortality

rates are declining over the course of the LTCH stay with little difference around the SSO thresh-

old.16 However, the interpretation of the bottom panel of Figure 4 – which plots mortality rates

for LTCH patients by length of stay – is complicated by selection concerns. Since LTCHs are

differentially discharging healthier patients at the SSO threshold, the composition of patients who

remain at the LTCH is changing, making it tricky to disentangle any potential treatment effects on

mortality from effects due to changes in the selection of LTCH patients.

In Figure 6 we circumvent this issue by taking advantage of the fact that our data allow us to

track mortality outcomes for patients even after their LTCH discharge. Conceptually, our mortality

16The downward trend results from “natural selection”: as the sickest patients die, the remaining patients become

gradually healthier.
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analysis follows the logic of a reduced form regression, where the mortality hazard is the outcome,

discharge patterns are the endogenous variable, and the SSO threshold is the instrument. In

particular, since we know there is a sharp jump in discharge patterns at the threshold (analogous

to a large first stage), if there is a change in the level or slope of the mortality hazard at the

threshold (that is, non-zero reduced form), we can infer that the distortion in discharge location

has an impact on mortality.

The top panel of Figure 6 is thus similar to the bottom panel of Figure 4, but uses the full

set of LTCH patients (unconditional on their location) rather than only those who have yet to be

discharged. As before, natural selection leads mortality rates to decline over time, but we now can

interpret more cleanly the mortality pattern around the SSO threshold. The plot shows no obvious

evidence of a change in the level of mortality hazard in the vicinity of the threshold during the

PPS period. In Appendix C, we examine this mortality pattern more formally using a regression

discontinuity design and similarly fail to reject the null of a smooth mortality hazard around the

SSO threshold. These findings are consistent with no mortality effect but do not allow us to rule

out a gradual effect that would not appear sharply in the data.

If distortions in the location of care effected the stochastic process for health, we might not

observe an immediate effect, but would see a change in mortality over a longer time horizon. The

bottom panel of Figure 6 attempts to look for a more gradual effect by plotting a 30-day mortality

rate, by days since LTCH admission, where the 30-day mortality hazard measures the share of

patients who are alive on a given day but die during the subsequent 30 days. The plot once again

shows no effect around the threshold, suggesting there are no gradual effects of the distortion

in location on mortality. In Appendix C, we present regression discontinuity analysis that more

formally confirms this result.

Obviously, this (lack of) reduced form effect should be judged in relation to the size of the first

stage effect on the location of care. And as we show in our counterfactuals, the “experiment” we

analyze only shifts the location of care for a relatively small number of days, so perhaps the non-

effect is not surprising. Yet, these relatively small changes in the location of care are precisely what

we explore with our counterfactuals in the next section. Figure 6 makes us conclude that there

is little evidence of quantitatively large effect on mortality that is created by the sharp discharge

incentives at the SSO threshold.

Finally, we provide some additional traction on potential mortality impacts by exploiting dif-

ferences in the response to incentives between for-profit and non-profit LTCHs. Figure 7 shows

the payment schedules (top panel), discharge shares (middle panel), and mortality rates (bottom

panel), separately by for-profit status. While the payment schedules are almost the same across

the two groups of hospitals, the behavioral response to the jump in payments is substantially larger

at for-profit LTCHs. Prior to the threshold, for-profit hospitals have a slightly lower discharge

rate, but at the SSO threshold their discharge share rises by about twice as much as that of non-

profit hospitals, suggesting that, perhaps not surprisingly, for-profit hospitals are relatively more

responsive to financial incentives.

Given the for-profits LTCHs’ much larger behavioral response to the jump in payments, if the
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PPS payment schedule affected mortality, we would expect a more pronounced mortality effect at

for-profit hospitals. The bottom panel of Figure 7 provides no suggestion of any differences in the

mortality pattern by for-profit status. Mortality hazards in the PPS period are remarkably similar

across both groups in the immediate vicinity of the SSO threshold; this suggests no on-impact effect

of the location distortion on mortality.17

Overall, we interpret the results in this section as showing no evidence of any impact of the

PPS payment schedule relative to the pre-PPS schedule on mortality. While these results are not

definitive – given the challenges discussed in detecting delayed mortality effects – they provide

no “smoking gun” evidence of patient harm (at least as measured by mortality). Combined with

the earlier results, which indicate that the patients who are most affected by the SSO threshold

are disproportionately healthy, the results suggest that the marginal patient affected by the PPS

payment schedule is able to receive similar care whether they are located in an LTCH or in their

alternative setting, which empirically is usually a SNF.

4 Quantifying the Importance of Financial Incentives

The results in the last section provide descriptive evidence of the response of LTCHs to the sharp

financial incentives associated with the SSO threshold. One way to quantify the importance of the

financial incentives in directing discharge patterns out of LTCHs is to assess how these patterns

would change in response to counterfactual financial contracts that exhibit weaker incentives. Doing

so requires a dynamic model, which is the focus of this section.

4.1 A simple model of LTCH discharge decisions

Consider a patient i who is admitted at day t = 0 to LTCH l. We index patient i’s health at

the time of admission by hi,0, and assume that hi,t (conditional on patient i staying at LTCH l)

evolves stochastically from day to day. In our baseline specification, we assume that hi,t follows a

monotone Markov process, such that hi,t ∼ F (·|hi,t−1) with F (·|h) stochastically increasing in h.18

We use higher values of h to indicate better health and thus assume that daily mortality hazard

m(h) is strictly decreasing in h.

Hospital l’s flow (daily) payoff from keeping patient i (whose health is given by h) during the

tth day since admission is given by

ul(h, t|keep) = p(t)− cl(h) + βwl(h) + σεεilt , (1)

where p(t) is the hospital’s revenue, which depends on CMS’ reimbursement schedule for patient

i, cl(h) is the hospital’s daily cost of treating a patient with health index h, and the third term

17The mortality pattern for non-profit hospitals is slightly more noisy, but this is presumably driven by sampling

variation due to the smaller samples size of non-profit admissions (113,154 versus 487,988 for for-profits in the PPS

period).
18In sensitivity analysis, we examine the robustness to our findings to allowing the health process to vary over time

since admission.
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captures the patient’s utility from staying at LTCH l, wl(h), multiplied by the hospital’s weight

on it β. Finally, εilt is an error term, which is distributed i.i.d. type I extreme value and scaled

by the parameter σε. The error term presumably captures idiosyncratic considerations associated

with the patient and/or the hospital.

Our focus is on the hospital’s discharge decision. Consider a set of J alternative destinations

for patient i, each indexed by j. Conditional on discharging the patient to destination j, LTCH

l’s revenue and cost are both zero, and its flow payoffs are given by the patient’s utility, again

multiplied by the hospital’s weight on it β, and a logit error, scaled by σε:

uj(h, t|discharge to j) = βwj(h) + σεεijt . (2)

Moreover, because hospital l loses control over the patient upon discharge, it will be convenient to

denote by Wj(h) the present value to hospital l of the patient’s utility from being discharged to

alternative j.

This setting lends itself to a simple dynamic programming problem, which can be represented

by the following Bellman equation:

Wl(h, t) = E

(
max

{
ul(h, t|keep) + δ (1−m(h))

∫
Wl(h

′, t+ 1)dF (h′|h) ,

maxj∈J
(
uj(h, t|discharge to j) + δ (1−m(h))

∫
Wj(h

′)dGj(h
′|h)
) }) ,

(3)

where δ is the LTCH’s (daily) discount factor. That is, the two state variables are the health of

the patient and the number of days since LTCH admission. Every day the hospital makes a binary

decision whether to discharge or keep the patient, and in the event of a discharge the hospital

also decides about the discharge location. Of course the model can allow the patient to actually

“decide” about the discharge destination by having the hospital place a large weight on patient

utility. While we did not find a mortality effect in our descriptive analysis, by allowing the health

process outside the LTCH to evolve according to Gj(·|h), instead of F (·|h) within the LTCH, our

model allows patient health to evolve differentially across alternative locations of care

It is convenient to benchmark the patient’s utility against her utility at the LTCH, thus nor-

malizing wl(h) = 0 for all h, vj(h) = wj(h)−wl(h), and Vj(h) accordingly defined. Applying these

adjustments and using the well-known expression for the logit’s inclusive value, we can write the

problem as

Vl(h, t) = σεln

exp
(
p(t)− cl(h) + δ (1−m(h))

∫
Vl(h

′, t+ 1)dF (h′|h)

)
+
∑
j∈J

exp (Vj(h))

 .

(4)

Finally, we note that the state variable t only affects the problem through the hospital revenue

function p(t), and p(t) = 0 for all t > SSO, so the problem becomes stationary after the SSO

threshold, and the solution is simply a fixed point of

V t>SSO
l (h) = σεln

exp
(
−cl(h) + δ (1−m(h))

∫
V t>SSO
l (h′)dF (h′|h)

)
+
∑
j∈J

exp (Vj(h))

 .

(5)
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We can therefore solve for the dynamic problem by first solving for the fixed point associated with

the post-SSO stationary part of the problem given by equation (5), and then iterating backwards

until t = 0 using equation (4).

4.2 Parameterization, estimation, and identification

Parameterization. We make several additional assumptions before we take the model to the data.

First, we restrict the set of alternative discharge destinations J to include only two options, J =

{D,U}. Motivated by the summary statistics described in Section 3, option D covers the collection

of downstream destinations (SNF, IRF, and home with or without HHA) that are appropriate

for LTCH patients who are of better health or require lower levels of medical monitoring. In

contrast, option U covers upstream discharge destinations (ACH and hospice) which would be

natural discharge destinations for patients who are of worse health.

Because, conditional on discharge, financial incentives do not affect the LTCH’s discharge des-

tination, having a richer set of discharge options is unlikely to affect our counterfactual predictions.

By focusing on two options, we essentially restrict the LTCH to consider two types of marginal

LTCH patients. One set of marginal patient are those who are healthier, and for whom the hospital

must consider whether to keep them or discharge them to location D. The second set of marginal

patients are sicker, and for whom the hospital must consider whether to keep them in the LTCH

or transfer them to location U .

The second assumption regards the health process. Given that mortality is monotone in h, it is

convenient to normalize the health index by mortality risk. We do so by assuming that h is defined

by its associated mortality hazard using the following relationship:

m(h) = 1− Φ(h) , (6)

where Φ(·) is the standard normal CDF. We note that h is an index and thus has no cardinal mean-

ing, and the above is simply a normalization, which entails h with a cardinal measure. Equipped

with this normalization, we then make parametric assumptions about the initial (as of LTCH ad-

mission, t = 0) health distribution of newly admitted patients, and about how the health process

evolves over time within the LTCH. Specifically, we assume that hi,0 is drawn from N(µ0, σ
2
0) and

that F (·|hi,t−1) follows a simple AR(1) process:

hi,t = µ+ ρhi,t−1 + εi,t, where εi,t ∼ N(0, σ2) . (7)

In our baseline specification, we allow the health process to be different inside the LTCH in the

pre-PPS and PPS periods to accommodate potential differences in the LTCH patient mix, which

may result from the growth of the LTCH sector, time trends in medical technology and practice,

or directly from the change in financial incentives. Note that we do not need to model the health

process outside the LTCH since any effect of the post-discharge location on health would affect the

discharge decisions through its (unidentified) effect on the continuation values, Vj(h), which we do

not model explicitly.
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The third assumption is associated with the LTCH’s cost, cl(h), which we assume are given by

cl(h) = γcreported . (8)

That is, as described in Section 2 and reported in the bottom row of Table 1, we observe the

cost associated with each hospital l, which enters the formula by which it is paid by CMS. We

use the averages reported there (separately for the pre-PPS and PPS periods) as our estimates of

creported . We do not treat these reported costs as the “true” costs, but we use it to guide our

model of costs in two ways. First, and importantly, we assume that the hospital’s cost do not vary

with the patient health h, which is consistent with CMS’s treatment of costs and also seems natural

given that LTCH patients are generally stable. Second, we assume that the reported costs are true

up to a monotone transformation, which we assume to be linear. This assumption means that

if hospital l has higher reported costs than hospital k, we will also assume that this also reflects

the ranking of their true underlying cost. This seems natural, and could be driven by a variety of

factors, including geographic location. We naturally expect γ ≤ 1.

The fourth assumption is to parameterize VU (h) and VD(h). We approximate each using a

linear function in h, so that

Vj(h) = υ0j + υ1jh for j = D,U . (9)

Recall from Section 3 that healthier patients (higher h), who are associated with lower mortality, are

discharged to D, while sicker patients (lower h), associated with higher mortality, are discharged to

U . It is therefore natural to expect υ1,D > 0 and v1,U < 0. That is, all else equal, facility D becomes

a more attractive discharge destination as health gets better (h is higher) and facility U becomes a

more attractive discharge destination as patients’ health worsens (h is lower). As explained below,

one of the intercept terms v0,D and v0,U needs to be normalized, so we set v0,U = 0.

Fifth, as we discussed in Section 2, LTCHs are part of an interlocking post-acute care system,

with changes in LTCH incentives potentially affecting Medicare spending throughout the patients’

entire episode of care. In particular, Figure 5 showed sharp changes in both upstream and down-

stream post-discharge payments at the SSO threshold, indicating a relationship between patients’

health at discharge and total Medicare spending. To account for these type of spillover effects in

our counterfactuals, we model the relationship between health at discharge and post-discharge costs

as

Pj(h) = exp(ζ0,j + ζ1,jh) for j = D,U , (10)

where Pj(h) are the post-discharge payments for a patient initially discharged to location j = D,U

with health status h at the time of discharge. We allow this relationship to vary by whether the

patient is initially discharged upstream or downstream and use an exponential specification so that

predicted post-discharge payments are strictly positive.

Finally, as is typical in these type of models, we set (rather than estimate) the daily discount

factor to δ = 0.951/365.19 Thus, overall we are left with 23 parameters to estimate: five parameters

19While having a discount factor so close to 1 might generally create convergence issues, in our Bellman equation
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(µ0, σ0, µ, σ, ρ) that are associated with the health distribution and the way it evolves over time in

the pre-PPS period, five corresponding parameters in the PPS period, the cost parameters (γ), four

parameters (υ1U , υ0D, υ1D , σε) associated with the relative value of patients at facilities U and D,

four parameters associated with post-discharge payments in the PPS period (ζ0,D, ζ1,D, ζ0,U , ζ1,U ).

Estimation. An important decision is how to treat heterogeneity across patients, observable

health conditions, and LTCH hospitals. In our baseline specification, we abstract from such hetero-

geneity and instead model the “average” discharge decision as it pertains to the “average” LTCH

patient and the “average” payment schedule. That is, we pool all payment schedules observed in

the data, separately for the pre-PPS and PPS periods, measure each day in the schedule relative to

the DRG-specific SSO threshold in the PPS period (which is normalized to zero), and construct the

average payment schedule for each day, as shown in Figure 1. We then apply an analogous exercise

to the discharge pattern, and construct the distribution of discharge patterns in a 61-day window

around the SSO threshold (from day -15 to day 45), as shown in Figure 3 and Figure 4. We then

estimate our model in an attempt to match these average patterns. The dramatic difference in the

payment schedules between the pre-PPS and PPS periods will assist in the identification of some

of the parameters and is an important ingredient in our research design.

An advantage of this approach of focusing on the average pattern rather than the heterogenous

pattern is that it only requires us to solve the dynamic problem once (for each pricing period),

which is computationally attractive. Given that our primary focus is on the aggregate effect of

financial incentives across the entire LTCH sector, abstracting from the heterogeneity across pa-

tients and hospitals is likely to be inconsequential. However, heterogeneity in the effect of financial

incentives is interesting, and our separate analysis below of for-profit and non-profit LTCHs reveals

intriguing patterns. Heterogeneity is also the focus of the related exercise reported by Eliason et

al. (2016).

We estimate the model using simulated method of moments, by trying to match the daily

mortality and discharge patterns presented in Figure 4, as well as post-discharge payment moments

that are based on Figure 5. Specifically, we use two sets of moments. First, we use 183 moments for

the pre-PPS payment schedule, reflecting the daily discharge and mortality risks within the 61-day

window around the SSO threshold. One set of moments is associated with discharge rates to D,

another with discharge rates to U , and a third with mortality rates. We then construct another set

of 183 corresponding moments for the PPS period. Because much of the identification is driven by

the sharp change to discharge incentives at the SSO threshold, we assign greater weights to moments

that are closer to day zero (the SSO threshold) by making the weights decrease by a constant amount

(1/61) per day away from the threshold. The second set of moments uses the data on post-discharge

payments to allow us to capture spillover effects in our counterfactuals. Specifically, we average

post-discharge payments for each discharge destination (U or D), separately for dischargees before

and after the SSO threshold. We then match them to the model prediction regarding the health

the probability of survival enters jointly with the discount factor so that the “effective discount factor” δ (1 −m(h))

is not too close to 1.
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status distribution of dischargees, thus allowing us to link health and post-discharge payments.20

Generating the model predictions requires us to solve the dynamic problem described in the

previous section for each set of parameters. To ease with computation, we approximate the health

process F (·|hi,t−1)with a discrete health space that evolves according to a Markov transition ma-

trix (Tauchen, 1986).21 This eases the solution of the dynamic problem, and at the same time

allows us to read the discharge probabilities directly off the solution, without any need to integrate

(presumably by simulation) over unattractive integration regions.

Intuition for Identification. To see the intuition for the identification of the parameters,

it is easiest to consider first a case where health is homogeneous across patients and over time.

Under this assumption, the data can be characterized by daily observations of discharge shares

to U and to D (sUt and sDt, respectively), with the remaining patients staying at the LTCH

(slt = 1− sUt − sDt). The problem resembles a repeated static discrete choice problem, where the

mean utility of each discharge destination is given by the continuation values VUt, VDt, and Vlt. As

is usual in multinomial logit models, the observed daily shares can then be inverted to recover the

values of VUt, VDt, and Vlt, subject to a required level and scale normalizations.

Let us start with the level normalization, and consider discharge shares after the SSO threshold,

where the model is in a steady state. Setting VUt = 0 allows us to estimate VD from the average

values of VDt and Vlt, up to a scale normalization. To identify the scale parameter σε, consider

the discharge shares the day before the SSO threshold: the jump in payments introduces a sharp

change in the continuation values, which identifies the effect of payments on V s, or equivalently

identifies σε. Finally, the cost parameter γ is identified off the non-stationarity of the model prior

to the SSO threshold, and the way discharge patterns are changing as the SSO threshold gets

closer. As the SSO threshold nears, the expected (remaining) length of stay of patients shortens,

making the expected life-time costs associated with a given patient gradually decline in a way that

is not proportional to expected payments, allowing us to separately identify the impact of cost.

Loosely, Vlt varies over time as a function of the payment schedule p(t), reported costs scaled by

parameter γ, and the relevant time horizon, which depends on the mortality rate and subsequent,

endogenous discharge decisions. So one can think of the identification of the scale parameter σε

and γ as a projection of the values of Vlt on these observables. The sharp change in payments

at the SSO threshold provides a sharp change in the present value of payments and identifies the

scale parameter (or equivalently the coefficient on payments when the variance of the error term

is standardized), and the differential change in the present value of payments versus costs as the

patient approaches the SSO threshold identifies γ. This identification can be achieved from the

PPS moments alone, but given that we restrict these parameters to be time-invariant, it is also

aided by variation in discharge patterns between the pre-PPS and PPS periods.

20Because there is no variation in payments in the pre-PPS period, we do not have the variation in dischargee

health that we need to identify the pre-PPS post-discharge payments model. Since we focus on the PPS period in

our counterfactuals, and therefore do not need these estimates, we do not estimate pre-PPS post discharge payments.
21In particular, we approximate the health distribution with a grid of 250 evenly spaced values that span a range

of +/- three standard deviations of the steady state health process.
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If health status h was observed, we could make the argument above conditional on health,

and thus identify each object as a non-parametric function of h. In practice h is unobserved, but

identifying the health process is conceptually easy given our assumptions. If there are no discharges,

which is roughly the case during the first week or so of the LTCH stay, the only attrition from the

sample is due to mortality. With only five parameters that determine the initial health distribution

and how it evolves from day to day, mortality rates over five days are sufficient to identify the

health process parameters, separately in the pre-PPS and PPS periods. Once the unobserved

health distribution is identified, we can integrate over h and apply a similar intuition to the one

we described above for the homogenous h case. Moreover, once the health process is identified, the

cross-sectional distribution of h varies over time in “known” ways, so we can also identify how the

key parameters – in particular the V ’s – vary as a function of h. Finally, the relationship between

the health status h and the post-discharge costs is directly identified off the data given that the

model does not impose any restrictions about this relationship.

Finally, the parameters of the post-discharge payments model (ζ0,D, ζ1,D, ζ0,U , ζ1,U ) are identi-

fied by the sharp change in health of patients discharged on different sides of the SSO threshold.

Obviously, as is typically the case, the intuition for identification requires us to have substantial

variation in the data. In practice, some of the variation is not as large, and statistical power issues

require us to impose more parametric structure, so the estimable model is not as flexible – especially

in terms of the extent to which parameters vary with h – as the identifiable structure would be.

4.3 Parameter estimates and model fit

Table 3 presents the parameter estimates. We estimate γ = 0.78 implying that LTCH’s actual costs

are 22% lower than their reported value. This is consistent with our prior that reported costs are

inflated.

The υ1,U , υ0,D, and υ1,D parameters capture the value the LTCH places on the patient’s utility

from being discharged to U or D relative to remaining at the LTCH, as well as any potential effect

on patient health evolution in the discharge location (relative to remaining at the LTCH). The

estimates imply that LTCHs are indifferent between U and D for a patient with h = 2.0, which is a

fairly low health level. For instance, h = 2.0 is the 4.2th percentile of the steady state PPS health

distribution (µ = 6.2, σ = 2.4) and corresponds to a daily mortality hazard of 2.1%. Consistent with

our description of patients flowing “downstream” as their health improves, D is relatively better for

healthier patients and U is better for sicker patients. The magnitude of the slope parameter v1,D

is about one-fifth as large (in absolute value) as the slope parameter v1,U , which indicates that a

given change in financial incentives will have a much larger effect on discharges on the downstream

D margin. These estimates are consistent with the descriptive evidence that shows a substantially

larger response on the downstream margin at the SSO threshold.

Relative to the slope parameters υ1,U and υ1,D, the scale parameter σε on the logit error is

fairly small. The estimates imply that a tenth of a standard deviation increase in the error term
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increases the value of discharging a patient to a given location by $71, the product of σε = 550

and a tenth of a standard deviation of the logit error (π/
√

6). In contrast, a tenth of a standard

deviation increase in steady state health index (σ = 2.4) raises the value of discharging a patient

downstream by $1, 523 (= 0.1×2.4×6, 330) and lowers the value of discharging a patient upstream

by $7, 274 (= 0.1× 2.4× 30, 230), indicating that health status is capturing most of the unobserved

heterogeneity in discharge behavior.

The ζ0,U , ζ1,U , ζ0,D, and ζ1,D parameters capture the relationship between health at discharge

and post-discharge payments in the PPS period. Consistent with our interpretation of Figure 5,

the estimates indicate that post-discharge payments are declining as the patient gets healthier,

with semi-elasticities of ζ1,U = −0.79 and ζ1,D = −0.27 on the upstream and downstream margins,

respectively.

We are cautious not to over-interpret the change between the pre-PPS and PPS periods in the

health process parameters. Because they are the only parameters that are allowed to vary across

the time periods, they capture not only differences in the health of admitted patients but may also

reflect other factors that vary over time, such as changes in medical technology or the administrative

capacity of providers.

The model fits the data reasonable well. Figure 8 presents our discharge moments and the

simulated moments from the estimated model. The left column shows values in the PPS period

and the right column shows values in the pre-PPS period. The top row shows the share of discharges

to U by day relative to the SSO threshold, the middle row shows the share of discharges to D, and

the bottom row shows the share of patients who die at the LTCH. The model does a very good job

fitting the “spike” in discharges to U and D in the PPS period. This is particularly encouraging

because this variation is our key source of identifying variation. The model fit for the mortality

patterns in the pre-PPS and PPS periods is good over the initial days, but less good at longer time

horizons. This is likely due to our fairly parsimonious parameterization of the health process. The

model fit is also poorer for discharges to U in the pre-PPS period.

Figure 9 provides some intuition for how the model operates, illustrating the “policy function”

at the estimated parameters.22 Healthy patients (higher h) are discharged to D, while sick patients

(lower h) are discharged to U . Consistent with the descriptive evidence, LTCHs work “down the

distribution” at the jump and lower their discharge threshold on the D margin and conversely work

“up the distribution” on the U margin and increase the discharge threshold. The larger shift on

the D margin relative to the U margin relates directly to our discussion above on the magnitude

of the slope parameter estimates (v1,D and v1,U ). The relatively small outward shift in the policy

function just before the SSO threshold is consistent with the descriptive results which show limited

evidence on “missing mass” immediately to the left of the SSO threshold.

22The policy function is not a deterministic function of h; given the ε’s in the LTCH’s keep and discharge flow

payoff functions (see equations 1 and 2) , h is related to discharge stochastically. The policy lines in Figure 9 are

drawn so that at that given level of h, 50% of the patients are discharged to the relevant destination.
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4.4 The effects of counterfactual financial incentives

We use our model to simulate discharge patterns and Medicare payments under a variety of coun-

terfactual payment schedules. Throughout this section, we assume that the initial distribution of

health of admitted patients stays the same but that the subsequent discharge decisions reflect the

incentives provided by the counterfactual payment schedules.

We limit our attention to alternative schedules that maintain the current practice of a cap

on payments after a certain number of days. We do this both because it respects the current

policy approach toward LTCH payments and because an “uncapped” schedule would lead to a

small number of long hospitals stays, which is outside of the variation in our data. Specifically,

we consider three main types of counterfactuals: that remove the jump holding the threshold day

constant, payments schedules that eliminate the jump (and allow the threshold day to vary) while

holding LTCHs harmless, and cost-based reimbursement at a constant per diem, capped at 60 days.

We discuss each in turn below.

Removing the jump. We start by considering two simple modifications of the baseline pay-

ment schedule that eliminate the jump in payments at the SSO threshold, but, like the baseline

PPS payment schedule, provide no payments on the margin for stays in excess of the SSO threshold.

Figure 10 plots these counterfactual payments schedules and the baseline schedule for comparison.

The top panel shows a counterfactual we call “higher rate per day,” which eliminates the jump by

increasing the per-diem payment from $1,384 to $2,153 prior to the SSO threshold but holds the

post-threshold payment fixed. The bottom panel shows a counterfactual schedule we call “lower

cap,” which eliminates the jump in payments at the SSO threshold by reducing the PPS payment

from $34,419 to $22,144 but holds the pre-SSO per diem payment fixed. The “higher rate per

day” contract is weakly more generous than the baseline schedule, while the “lower cap” contract

is weakly less generous.

We use our model to simulate discharge patterns and Medicare payments under these two

counterfactuals. Figure 11 shows the policy functions under each payment schedule, Figure 12 shows

the discharge patterns, and Table 4 summarizes the impact of each of these payments schedules on

Medicare payments to the LTCH and to other facilities.

The black dashed lines in Figure 11 shows the policy function under the “higher rate per day”

counterfactual. During the first few days, the policy function is similar to that under the observed

schedule. However, as the length-of-stay increases, the elimination of the jump reduces the incentive

to retain patients, and the policy function shifts inwards on the upstream and downstream margins.

The black dashed lines in Figure 12 shows discharge patterns under this counterfactual. Mirroring

the changes in the the policy function, the “higher rate per day” counterfactual increases discharges

in the 10 days prior to the SSO threshold, relative to the observed schedule. As shown in column 2

of Table 4, these higher discharge rates reduce average length of stay by 1.9 days or 7.2%.23

23Length of stay is measured from day -15. However, because the average SSO threshold across admissions in our

sample is 22.5 days, values for length of stay need to be increased by 7.5 (=22.5-15) days to match the summary

data.
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Despite the significantly higher per-day payments prior to the jump ($2,151 versus $1,384),

Medicare payments to LTCHs increase by a very small $369 or 1%. The small increase is due to

a large behavioral response to the incentives. Holding discharge patterns fixed, LTCHs would get

paid about 50% more per day for stays below the SSO threshold, but in response to the elimination

of the jump, patients are now discharged earlier, so overall payments are lower. Holding discharge

patterns fixed, we calculate that the mechanical effect of this counterfactual is a $1,767 increase in

Medicare payments to the LTCH, implying that the behavioral response to the removal of the jump

reduces Medicare payments to the LTCH by $1,398 per admission. LTCH profits per admission

rise by about $2,483 or 37% relative to the observed schedule. We next explore the effects of

the “lower cap” payment schedule. The grey lines in Figure 11 show the policy function under

this counterfactual. The elimination of the jump in payments shifts the policy function inwards

during the entire pre-threshold period, relative to that under the observed schedule. The grey lines

in Figure 12 show that discharges correspondingly rise, with the daily share of discharges to S

increasing four-fold and the share of discharges to A increasing more modestly over most of the

pre-threshold period. As shown in column 3 of Table 4, average length of stay is reduced by 4.5

days, and payments to the LTCH are reduced by $11,954 or 43%. The mechanical effect (holding

observed discharge patterns fixed) of the “lower cap” payment schedule is a reduction in payments

of $8,844 or about 74% of the overall reduction, with the remaining 26% due to the behavioral

response. LTCH profits per admission fall by over $6,954 per admission and are estimated to be

negative, a point we return to below.

The remaining rows of Table 4 consider the impact of these counterfactual payment schedules

on Medicare payments throughout the rest of the episode of care. For these counterfactuals, the

spillovers on post-discharge payments are small. For the “higher rate per day” counterfactual, post-

discharge payments for patients discharged U and D are affected by a few hundred dollars. For

the “lower cap” counterfactuals, the decrease in post discharge payments is larger but still small

compared to decrease in LTCH payments. Combining the effects on LTCH payments and post-

discharge payments, our estimates indicate that the “higher rate per day” has virtually no effect

on total Medicare payments ($70 increase) and the “lower cap” reduces total Medicare payments

by a substantial $12,467 or 26%.

While interesting, neither of the above counterfactuals is fully satisfactory. While the “lower

cap” counterfactual suggests that alternative payment schedules could substantially reduce Medi-

care payments, the large decrease in LTCH revenue (and in estimated profits) might have unin-

tended consequences. For instance, under this payment schedule, LTCHs might cut back on socially

valuable fixed investments or even exit the market. In contrast, the “higher rate per day” counter-

factual, while clearly making LTCHs better off, has virtually no effect on Medicare payments. Yet,

these two exercises suggest that there might be “intermediate” contracts that generate cost savings

without the risk of unintended consequences. We explore such counterfactuals below.

“Win-win” payment schedules. With the above considerations in mind, we now consider a

set of counterfactuals that hold LTCH revenue fixed under the observed discharge patterns. Faced
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with these contracts, if LTCHs do not change their behavior, they will have identical revenue,

costs, and profits as they would under the observed payment schedule. If the LTCH change their

behavior, by revealed preferences, they must be (weakly) better off. Therefore, by design, these

contracts should not have a negative impact on LTCHs.

To keep with the spirit of the previous counterfactuals, we consider contracts that pay a constant

per-diem amount up to a threshold length of stay, at which point the payments are capped and per

diem payments drop to zero (obviously, with no jump). We consider contracts where the payment

is capped at thresholds in a +/- 10 day range on either side of the current SSO threshold date.

Since the generosity of the contract is strictly increasing in the per diem rate, for a given date at

which payments are capped, there is a unique payment schedule that holds LTCH revenue fixed

under the baseline discharge patterns.

Figure 13 plots a set of these contracts, where to avoid overcrowding the figure, we show

payment schedules for only a subset of the 21 contracts considered. The top panel of Figure 14

plots LTCH payments against total Medicare payments (including estimated post-discharge costs)

for each of the contracts we consider. The bottom panel of Figure 14 plots estimated LTCH profits

against Medicare payments for each contract. For comparison, both plots also show outcomes under

the observed payment schedule.

The figures indicate that there is a broad set of “win-win” payment schedules that reduce

total Medicare payments for the episode of care while leaving LTCHs (weakly) better off. Every

counterfactual contract with a threshold between -8 and 8 days reduces Medicare spending, although

there is substantial heterogeneity in the reduction. LTCH revenues increase for every contract with

a threshold of 6 to 10 days and declines for contracts with a threshold of -10 to 5 days. Because

LTCHs value both profits and patient utility, LTCH profits under counterfactuals do not necessarily

increase. LTCH profits are higher than their baseline level for contracts with a threshold -10 to 2

days and are lower for thresholds of 3 to 10 days. Counterfactuals that decrease profits do not

lower them by a substantial amount.

The counterfactual with payment threshold of 1 day more than the current SSO threshold results

in the largest reduction in Medicare spending and is a natural contract to focus on.24 Column 4

of Table 4 shows outcomes for this contract. Under this payment schedule, Medicare payments to

LTCHs are reduced by $1,660 or 5.9%. Accounting for Medicare payments across the entire episode

of care leads to somewhat higher savings of $2,145, or 4.5% of total episode payments. Despite the

reduced payments, LTCH profits rise by $344 per stay or 5.1%: the decline in LTCH revenue is

offset by lower costs, as length of stay is almost 2 days (9%) shorter.

Cost-based payment schedules. The last two columns of Table 4 report results from two

additional counterfactuals that explore cost-based reimbursement as a constant per diem rate. The

first counterfactual pays LTCHs a constant per diem of their estimated costs, which is $1,107 per

day. The second counterfactual pays LTCHs a constant per diem of $507, which is the average per

24By contrast, we achieve the highest Medicare dissavings with the counterfactual with the payment threshold of

-10 days, where Medicare spending rises by over 2 percent.
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day payment to SNFs during the post-discharge period. We think about this counterfactual as a

form of “reference based pricing” where Medicare pays LTCHs the opportunity cost to Medicare

of the patient – i.e., the amount Medicare would have incurred for the patient at a location that

provides fairly similar care (at least for the marginal patient). To avoid extrapolating too far outside

of our data, for both of these counterfactuals we cap payments after 60 days, which leads LTCHs

to discharge virtually all of their patients within 90 days of the current SSO threshold.

Paying LTCHs their estimated costs leads to a substantial $7,010 increase in payments to LTCHs

and a smaller $3,530 overall increase in total Medicare payments. Payments increase because LTCH

retain patients for longer time periods rather than discharging them to SNFs where Medicare

payments would be lower, with average length of stay increasing from 19.2 to 32.4 days. Paying

LTCHs the average per-diem for SNFs leads to a massive decrease in LTCH payments and total

Medicare payments, accompanied by a sharp reduction in length of stay. Of course, concerns about

unintended consequences, which we discussed in the context of the “lower cap” schedule, are also

relevant here.

For-profits vs. not-for-profit LTCHs. Coming soon.

Robustness. In our baseline model, we made a number of parametric assumptions. In order

to assess the sensitivity of our main results to these assumptions, Table 6 reports the main results

from a subset of the (many) alternative specifications that we examined. The results appear to be

qualitatively robust.

In our first alternative specification, we relax the assumption that the health process is stationary

by allowing the auto-correlation parameter ρ to vary with length-of-stay according to ρ = ρ0 +

ρ1 ln(t + 1), where the time index is defined such that the patient is admitted on date t = 0.25

While in the pre-PPS period ρ1 is very close to zero, in the PPS period the estimate is a slightly

negative ρ1 = −0.005, which is consistent with health becoming less stable over the course of the

stay. However, as shown in Panel B of Table 6, enriching the specification in this manner has

virtually no effect on the counterfactuals. We also specified other models of health processes, such

as a random walk and a random walk with a drift, but the ability of these models to fit the data

was much worse than our baseline specification.

The second specification reported in Table 6 fits the model using only the PPS moments. The

counterfactuals, shown in Panel C of Table 3, are very similar to the baseline estimates, suggesting

that the sharp jump in payments at the SSO threshold, relative to over-time variation from the

implementation of LTCh-PPS, is the key driver of the results. The limited importance of the over-

time variation presumably stems from the fact that we allow distinct health process parameters in

each period, thereby soaking up much of the over-time variation.

25We assume that the correlation parameter becomes fixed after 45 days at a value of ρ = ρ0 + ρ1 ln(46) so that

the dynamic programming problem becomes stationary for t > 45, allowing us to solve the t > 45 problem by value

function iteration and earlier periods by backwards induction.
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5 Conclusions

Because a large share of healthcare spending takes place in the “catastrophic coverage” range

where consumer financial incentives (i.e., cost-sharing) is limited, provider incentives may be the

most powerful financial tool for controlling healthcare costs and quality. Yet, the balance of research

on financial incentives has focused on consumer, and not provider, incentives. This is especially

true when it comes to structural research that attempts to interpret data using economic models

of behavior and to explore the effects of richer counterfactual policies.

In this paper, we examined the impact of provider financial incentives in post-acute care (PAC)

– a setting with large stakes both for the government budget and patient health – that has received

scant attention in the academic literature. Within the context of PAC, we examined the impact of

a jump in Medicare payments to long term care hospitals (LTCHs) that occurs after a pre-specified

length of stay, when reimbursement shifts from a per diem rate to a lump sum payment. At the

threshold, the payment for keeping an individual another day jumps by about $13,000, with no

marginal payment for additional days beyond the threshold.

The descriptive evidence shows a large response by LTCHs to the jump in payments. At the

threshold, there is a large spike in discharges. The marginal patient affected by the payment thresh-

old is relatively healthy; we are unable to detect any impact on patient mortality at the threshold,

even in this high-mortality population. To examine the implications of alternative payment sched-

ules, we wrote down and estimated a stylized dynamic model of LTCH discharge behavior which

allows us to model LTCH behavior, payments, and profits, as well as total Medicare payments for

the episode of care, under alternative payment schedules.

We used the estimated model to search for “win-win” contracts that hold LTCHs (and presum-

ably therefore its patients) harmless, while reducing Medicare payments. The contract with the

largest Medicare savings reduced total Medicare payments by 5% percent LTCH admission while

increasing LTCH profits by a similar percentage.

We also considered more aggressive payment schedules that resulted in substantially higher

Medicare savings but raised the possibility of unintended consequences due to a large reduction in

LTCH profits. In particular, in our model we take admission to the LTCH as given and focus on the

impact of counterfactual policy on length of stay and payments in the LTCH and post-discharge

cost for this fixed set of patients. However, large reduction in profits brought about in our more

aggressive counterfactuals may affect which patients are admitted to an LTCH and might have

even broader effects on the market, for instance through the entry/exit decision. We consider an

important area for further work to move “up” the healthcare pathway and model the decision to

discharge from an acute hospital stay to an LTCH or other PAC facility.

More broadly, our results indicate how economic models and data can be combined to better

inform contract design. Little other than common sense was needed to see that some alternative

payment schedule should be better for both the Medicare payer and the LTCH. Data and de-

scriptive evidence, however, were important to move beyond this conceptual “existence proof” to

demonstrate a quantitatively meaningful behavioral response by the LTCH to the current payment
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schedule. And the economic model and its estimates were necessary to identify specific contracts

that could create a “win-win” for the LTCH and Medicare payments given the LTCH’s optimizing

behavioral response to alternative contracts. While naturally our results are specific to our partic-

ular setting, we hope that this type of approach can inform future work examining the impact of

provider financial incentives not only for the provider but throughout the healthcare system.
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Appendix

Appendix A. Post-discharge payments and days

Our starting point of the analysis is an admission to an LTCH. We can observe all discharge

destinations from an LTCH. Appendix Table A1 shows the share of discharges to different locations.

In the PPS period, 14% of patients die during their LTCH stay, another 11% are discharged

“upstream” (with the vast majority going to inpatient care) and 75% are discharged “downstream”

(with approximately half of these patients going to a SNF/IRF and 40% going home, where they

may receive care from an HHA).

We define a post-discharge “episode of care” as the spell of almost continuous days following

discharge from an LTCH with Medicare payments to an ACH, SNF/IRF or LTCH. In particular,

the episode ends if there are at least two ways without Medicare payments to these institutions.

Although we can observe all discharge destinations within the episode of care, we only observe

claim-level Medicare payments and days at ACHs, SNF/IRFs, and LTCHs. To address the fact

that we do not observe payments or days at HHAs or hospices, we supplement the MedPAR data

with annual spending and utilization from the Beneficiary Summary File (BSF) Cost & Utilization

file. For every stay in the MedPAR data, we observe whether the patient was discharged to an

HHA or hospice at some point in the episode of care. For patients who were discharged to an HHA

or hospice, we impute the patient’s payments and days using the annual BSF data.

Since these annual amounts include some payments and days that occur before or after the

“episode of care.” our imputation likely leads us to overestimate post-discharge Medicare payments

and days. However, we think that the approach provides a reasonable approximation. Appendix

Table A2 shows that our estimates of post-discharge costs and facility days are not affected much

if we instead impute 0 costs for HHA and hospice, and 0 days for hospice.

Appendix B. LTCH payment systems

Prior to fiscal year 2003 (i.e. October 2002), CMS reimbursed LTCHs on a cost-based system. At

the start of fiscal year 2003, CMS began transitioning LTCHs to a prospective payment system

(PPS). The PPS, which was fully phased in by the start of fiscal year 2008 (i.e. October 2007), is

the focus of our study. This appendix describes it in more detail, drawing heavily on Kim et al.

(2015), Medicare Reimbursement Reference Guide (2015), and MedPAC (2014).

B.1. LTCH PPS rules

In contrast to the cost-based system, which had reimbursed hospitals based on the estimated cost of

each patient’s case, the PPS outlined a fixed reimbursement amount for each patient, based on the

patient’s DRG. These DRG-based lump-sum payments were meant to reflect the typical resources

consumed by each type of patient. However, in order to discourage short stays in hospitals which
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were meant to provide long-term care, the PPS includes a short stay outlier (SSO) threshold, with

reduced payments below the full DRG payment for LTCH patients who are discharged before a

DRG-specific threshold.

Full DRG payment

The full DRG payment is computed as

Full DRG Payment = Adjusted Federal Rate x DRG Relative Weight, (11)

where

Adjusted Federal Rate = (Unadj. Federal Rate x Labor-Related Share x Wage Index) + (12)

+ (Unadj. Federal Rate x Nonlabor-Related Share).

This payments is similar to the much-studied Inpatient PPS used for (regular) acute care hos-

pitals (ACHs) that was introduced in 1983, but differs in two ways. First, although the DRGs

are defined in the same way for the LTCH and Inpatient PPS, the relative weights associated with

DRGs have different values in LTCH-PPS. Second, the LTCH-PPS unadjusted federal rate is larger

than the corresponding Inpatient PPS value. The result is that LTCH-PPS payments are substan-

tially greater than Inpatient PPS payments for the same DRG, presumably to reflect the greater

costs at an LTCH relative to an ACH.26

Short Stay Outlier (SSO) payment

If a LTCH stay has a length of stay (LOS) shorter than or equal to five-sixths of the geometric

average length of stay (ALOS) for the DRG, it is paid as a short stay outlier. We call the smallest

integer greater than five-sixth of the geometric ALOS the SSO Threshold. The SSO threshold is

constant within a DRG-PPS Rate Year (with the exception of 2009).

A short stay outlier is paid the lowest of the following:

1. Full DRG Payment.

2. 120% of the DRG per diem amount times the length of stay, where the DRG per diem amount

is defined as the ratio of the full DRG payment to the geometric average of the LOS for hat

26Also, like Inpatient PPS, LTCH PPS offers a High Cost Outlier (HCO) payment for particularly costly stays.

Specifically, an LTCH can receive a HCO payment if the cost of the case exceeds the HCO Threshold. The HCO

payment is made in addition to the regular payment amount. Importantly, for our purposes, HCO payments can be

made regardless of whether the LTCH stay is considered an SSO outlier or eligible for the full DRG payment. We

therefore exclude HCO payments from our analysis and model. About 9% of LTCH stays in our baseline sample have

HCO payments, and the median HCO payment in our baseline sample is $12,428.
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DRG. This option is roughly equivalent to a linear interpolation of the full DRG payment

between Day 0 and the SSO Threshold.27

3. 100 percent of the cost of the case, which is computed as total charges multiplied by the

facility-specific cost-to-charge ratio.

4. A blend of the Inpatient PPS amount (used at ACH) and 120 percent of the DRG per diem

amount. Note that this option converges to option 2 as LOS increases.

B.2. Empirical payment schedules

PPS payment schedule

We use a commercial software offered by the company 3M (the product is called “Core Grouping

Software” (CGS)) to compute counterfactual Medicare payments for each post-PPS period stay.28

Specifically, for each stay in the PPS period, we compute the PPS payment for the actual discharge

day and each possible counterfactual discharge days. The inputs into this calculation are the ad-

mission date, estimated hospital charges, principal and secondary diagnoses, procedures, discharge

status, age, and sex of the patient. For counterfactual lengths of stay, we assume that hospital

charges scale linearly with the observed length of stay.

With this information, the software produces the DRG code, the SSO threshold day, and the

total Medicare payment for each length of stay. To validate the software, we compare the predicted

DRG against the DRG we observe in the data, and the predicted payment against the observed

payment for the observed length of stay. The predicted DRG matches the observed value in 99.9%

stays and the predicted Medicare payment is within one dollar of the observed Mediare payment

in 90% of stays.

Appendix Figure A1 illustrates the resultant, estimated payment schedules for both the pre-PPS

and PPS periods. Note that this figure differs slightly from Figure 1 in the paper, which depicts

a stylized model of the post-period payment schedules in which the pre-threshold payments are

constant per diem. In practice, the pre-threshold payments appear to be slightly bowed downwards;

we abstract from this in Figure 1 which we use in our model estimates, where we used the average

payment per day for stays discharged before the threshold to construct the slope of the paymetn

schedule prior to the threshold.

What features of the payment rule created this jump? Recall that right of the SSO Threshold,

short-stay outlier rules do not apply and the payment is just the full DRG payment, which means

the cumulative payment schedule is always a flat line to the right of the threshold. To the left of

the SSO Threshold, each stay is paid the minimum of four alternative payments; the shape of the

27To see this, note that 120 percent of the DRG per diem amount times the length of stay is approximately equal

to 120% x (Full DRG payment) / ((6/5)SSO Threshold)) x LOS, which is equal to (Full DRG payment) / (SSO

Threshold) x LOS.
28For more information about this software, see: http://solutions.3m.com/wps/portal/3M/en US/Health-

Information-Systems/HIS/Products-and-Services/Products-List-A-Z/Core-Grouping-Software/
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payment schedules therefore depends on which of the four alternatives is binding. If options 1, 2,

or 4 were binding, we would not see a jump at the threshold. Therefore, we conclude that cost of

the case must be binding in most cases because we observe a jump on average. Note that the cost

of case being binding is necessary rather than the sufficient condition for creating a jump in the

payment schedule; the costs could theoretically be such that the payment schedule only has a kink

at the SSO threshold rather than a jump. In practice, however, the cost of the case is on average

lower than the other options, and we see a jump at the threshold.

Pre-PPS payment schedule

In the pre-PPS period, LTCHs were paid their (estimated) costs, up to facility-specific per-day

limit (MedPAC 2014). For most facilities, this limit was binding. For these facilities, we calculate

the LTCH payment schedule as the per-day limit multiplied by the length of the stay. For a small

number of facilities, the payment limit does not appear to bind. For these facilities, we assume that

reported costs are linear in the patient’s length of stay, and we calculate the payment schedule as

the (imputed) per-day cost multiplied by the length of stay. When we analyze discharge patterns

in the pre-PPS period, we assign each stay the SSO yhreshold it would have had in the first year

PPS period, based on the DRG assignments made using the CGS software described above.

Appendix C. Mortality analysis

We formally test for a mortality effect using a regression discontinuity (RD) design. Let i index

individuals and t index days relative to the SSO threshold. Let yit be a mortality indicator. For

our analysis of the 1-day mortality hazard, yit take a value of 1 if the individual dies on day t and

takes on a value of 0 if the individual is alive. For the 30-day mortality analysis, yit takes on a

value of 1 if the individual dies in the subsequent 30 days and takes on a value of 0 if the individual

does not die over this period. Individuals who have already died are excluded from the analysis.

In our baseline RD specification, we allow for a linear trend in the running variable t and permit

this linear trend to vary on different sides of the SSO threshold:

yit = α0 + α1t+ 1t≥0(β0 + β1t) + εit . (13)

The coefficient of interest β0 captures the change in mortality at the SSO threshold, conditional on

the linear controls. To confirm the robustness of our findings, we also estimate a specification with a

quadratic time trend that, as before, is also allowed to vary on different sides of the SSO threshold:

yit = α0 + α1t+ α2t
2 + 1t≥0(β0 + β1t+ β2t

2) + εit . (14)

In both specifications, we restrict our analysis to observations close the threshold, focusing on

bandwidths of 3, 5, and 10 days within the threshold. We cluster our standard errors at the DRG

level, which allows for correlation in the health process not only within an individual over time but

also within the set of individuals who have the same DRG and therefore may exhibit correlated

mortality profiles. We focus the mortality analysis on the post-PPS period.
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Appendix Table A3 shows the parameter estimates with Panel A focusing on the 1-day mortality

hazard. Column (1) of Panel A, which shows our baseline specification with a linear time trend

and a 3-day bandwidth, indicates that 1-day mortality increases by less than 0.01 percentage point

at the threshold. This estimate is tiny in absolute magnitude, small relative to the baseline daily

mortality rate of 0.6%, and is statistically indistinguishable from zero. Columns (2) to (6) show that

this finding is robust to alternative bandwidths and a quadratic time trend. Panel B shows effects on

the 30-day mortality hazard. Column (1) of Panel B, which again shows the baseline specification

with a linear time trend and a 3-day bandwith, indicates an economically tiny and statistically

insignificant 0.003 percentage point decline in 30-day mortality at the threshold (relative to a

baseline 30-day mortality rate of 13.5%). As before, the effect is robust to alternative bandwidths

and a quadratic time trend.

Because our standard errors in the regression discontinuity analysis rely on difficult-to-test

assumptions about the correlation structure of the error term, we assess the robustness of our

statistical inference using permutation inference (Rosenbaum 1984, 2002; Abadie et al. 2014).

Specifically, we estimate equation (13) with a bandwith of 3, replacing the dummy variable for

being to the right of the SSO threshold with a dummy variable for being to the right of placebo

thresholds defined at t = −12 and t = 42 in the pre- and post-PPS periods. That is, we estimate

an RD effect for a placebo threshold at each day starting 3 days after the start of our sample and

ending 3 days before the end (to allow for a 3-day bandwidth); we also exclude days -3 to 3 in the

post-PPS period since these days might be contaminated by a potential treatment effect.

Appendix Figure A4 plots the actual effect and the distribution of placebo estimates for the

1-day and 30-day mortality hazards. The plots show that the actual change in mortality at the

SSO threshold is not particularly large relative to the typical day-to-day variation in the mortality

hazard. The distributions of placebo estimates imply a p-value of 0.796 for the 1-day mortality

hazard and a p-value of 0.757 for the 30-day mortality hazard.
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Figure 1: LTCH payment schedules before and after PPS

Figure presents the payment schedule (in 2012 dollars) in both the pre-PPS and PPS periods. Sample pools admissions

that are associated with di¤erent short-stay outlier (SSO thresholds), and x-axis is normalized by counting days

relative to the threshold. The linear payment schedule begins with the �rst day of admission, and the y-axis is

normalized to zero for day -15.
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Figure 2: Patents �ow into and out of Post-Acute Care

Acute Care
Hospitals
(ACHs)

Home

Home
Health

Agencies
(HHAs)

Hospice or
Death

68%

Post­Acute Care
(PAC) facilities

6%

26%

60%7%

33%

Skilled
Nursing
Facilities
(SNFs)

Acute Care
Hospitals
(ACHs)

Home

Home
Health

Agencies
(HHAs)

Hospice or
Death

34%

11%

60%

18%

5%

Long­Term
Care

Hospitals
(LTCHs)

Inpatient
Rehab

Facilities
(IRFs)

38%

33%

Top panel shows patient �ow from acute care hospitals (ACHs) to the di¤erent destinations: post-acute care (PAC)

facilities; home and home health agencies; and death or hospice. Post-acute care facilities include Long-Term Care

Hospitals (LTCH), Skilled Nursing Facilities (SNFs) and Inpatient Rehabilitation Facilities (IRFs). Bottom panel

shows how the pattern �ow pattern is di¤erent, within PAC, between Long-Term Care Hospitals (LTCHs) and other

PAC facilities (SNFs and IRFs). All numbers for this �gure use the universe of Traditional Medicare admissions

during the PPS period (Oct 2007 to December 2012). Numbers are shares of total discharges from each type of

facility, excluding a small share of discharges (never greater than 5%) that are more di¢ cult to classify. See Appendix

for more details.
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Figure 3: Discharge patterns by length of stay

Figure presents the distribution of the time of discharge relative to the SSO threshold. That is, each number graphed

represents the number of discharges at a given (relative) day divided by the total number of LTCH admissions.

Sample pools admissions that are associated with di¤erent SSO thresholds, and x-axis is normalized by counting days

relative to the threshold.
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Figure 4: Discharge patterns across discharge destinations

Figure is similar to Figure 3, but presents the distribution separately by discharge destination. Top panel presents

discharges �downstream� (to SNF, IRF, LTCH, home health, home, or other), middle panel presents discharges

�upstream�(ACH or hospice), and the bottom panel presents discharges due to death.
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Figure 5: Post-discharge payments

Figure presents the average post-discharge payments for patients discharged alive, by discharge day and discharge

destination (upstream vs. downstream, as de�ned in Figure 4). We de�ne a post-discharge episode as ongoing until

there is a break of at least two days that does not involve a facility stay; see text for more details.
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Figure 6: Mortality patterns by length of stay

Figure presents post LTCH-admission mortality hazard rates by day. Mortality includes any mortality, whether it

occurs within the LTCH or after discharge. Each panel presents hazard rates for di¤erent subsequent horizons: same

day (top) and 30-day forward (bottom).
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Figure 7: Di¤erential patterns for for-pro�ts and not-for-pro�t LTCHs

Figure replicates earlier �gures, but separates the analysis for for-pro�t and non-pro�t LTCHs (the latter includes

government-operated LTCHs). The top panel reports the payment schedule, replicating Figure 1. The middle panel

reports discharge patterns, replicating Figure 3. The bottom panel reports mortality patterns, replicating the top

panel of Figure 6.
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Figure 8: Model �t

Figure shows the moments we use for estimation, and how the model is able to �t them. Black bars in each panel

represent the actual moments from the data, and the gray bars represent the predicted moments from the model

estimates. The left three panel represent the PPS period, and the right three panels represent the pre-PPS period.

The top panels show discharge rates upstream, the middle panels show discharge rates downstream, and the bottom

panels show mortality rates (within the LTCH).
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Figure 9: Implied health processes and optimal discharge policy

Figure illustrates the policy function implied by the estimated model. The top black line approximates the health

level above which a patient is discharged to D, and the bottom black line approximates the health level below which

a patient is discharged to U . Higher h denotes better health (lower mortality), Recall that the discharge decision is

a function of the model parameters and an idiosyncratic error term; the lines are drawn to re�ect the health level at

which 50 percent of patients are discharged to D (top line) and U (bottom line).
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Figure 10: Counterfactual payment schedules

Figure shows the observed (PPS) payment schedule (thick gray line in both panels) and the �rst two counterfactual

payment schedules we consider (black line in each panel). Both counterfactual schedules eliminate the jump in

payments at the SSO threshold, but do this in di¤erent ways.
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Figure 11: Counterfactual policy functions

Figure shows the implied discharge policy function from the two �no jump� counterfactual payment schedules de-

scribed in the main text and illustrated in Figure 10 The discharge policy function associated with the observed

contract design is shown in gray and is the same as the one reported in Figure 9 of the main text.
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Figure 12: Counterfactual discharge patterns

Figure show discharge and within-LTCH mortality patterns from two counterfactual payment schedules described

in the main text and illustrated in Figure 10. The solid black line reports results that are based on our parameter

estimates (reported in Table 3) and the observed payment schedule, and each other line reports the results from

predicted discharge and mortality patterns under a di¤erent counterfactual payment schedule..
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Figure 13: Potential �Win-win�payment schedules

Figure shows some examples of the 21 potential "win-win" contracts we consider. All contracts pay a constant amount

up to a threshold length of stay, where they are capped (so that per diem rate drops to zero) with no jump at the

threshold. We consider threshold days ranging from +/- 10 days of the current threshold, with the unique payment

schedule de�ned for each threshold day as the one that would hold payments to the LTCH (i..e LTCH revenue) �xed

if they did not change their discharge behavior under the observed contracts.
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Figure 14: LTCH payments, LTCH pro�ts, and total Medicare payments from potential
�win-win�schedules

Figure shows outcomes (given the LTCH�s counterfactual behavior) under the various potential �win-win�payment

schedules (see Figure 13). For each schedule (represented by a dot which is labelled with the day the payment schedule

switches from a per-day rate to a cap) the top panel shows LTCH payments per admission against (the negative of)

total Medicare payments (including estimated post-discharge payments) for the episode of care; the bottom panel

shows LTCH pro�ts per admission against total Medicare payments.
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Table 1: Summary statistics

ACH LTCH SNF/IRF ACH LTCH SNF/IRF

Number of stays (000s) 29,223 218 5,058 47,559 583 11,172
Panel A. Patient attributes

Average age 74.5 73.9 80.2 73.5 71.7 79.1
Fraction male 0.43 0.44 0.35 0.44 0.48 0.37
Fraction white 0.84 0.74 0.87 0.82 0.73 0.85
Fraction black 0.11 0.20 0.10 0.12 0.20 0.11
Fraction aged 65+ 0.86 0.83 0.94 0.81 0.76 0.91
Fraction dual eligible 0.24 0.31 0.27 0.27 0.38 0.27

Panel B. Patient health indicators
Number of Chronic Conditionsd 5.6 6.4 4.6 4.9 7.8 5.6
30 Day Mortality Since Admission 0.082 0.142 0.114 0.079 0.159 0.088
90 Day Mortality Since Admission 0.142 0.275 0.219 0.139 0.308 0.186
Fraction home within 90 daysa 0.810 0.560 0.501 0.797 0.463 0.556
Three most common DRGs:b Joint Repl. (3.9%) Ventilator (10.7%) Rehab w/ CC (17.1%)

Septicemia (2.8%) Resp. Failure (8.3%) Rehab w/o CC (10.2%)

Dig. Disorders (2.1%) Septicemia (5.7%) Ungroupable (3%)

Panel C. Procedures during stay
Length of stayc 5.6 26.6 23.5 5.2 25.4 25.6
Fraction with no procedures 0.43 0.61 0.95 0.40 0.28 0.98
Number of procedures (cond. on any) 2.5 2.4 2.0 2.7 2.9 2.1
Three most common procedures: Transfusion (6.2%) Cath (7.5%) Phys. Therapy (2.6%) Transfusion (10.2%) Cath (19.9%) Occ. Therapy (1.3%)

Arteriography (5.5%) Transfusion (5.5%) Occ. Therapy (2.4%) Cath. (6.6%) Transfusion (18.3%) Phys. Therapy (1.2%)
Cardiac cath. (5.2%) Occ. Therapy (5.0%) Transfusion (0.3%) Dialysis (4.6%) Ventilation (14.4%) Transfusion (0.2%)

Panel D. Payments and cost (2012 $)

Total Medicare payments per stay 9,425 28,442 9,727 10,845 35,365 12,983
Medicare payments per day 1,671 1,068 414 2,079 1,392 507
Out­of­pocket payments 772 2,344 1,568 837 1,915 1,954
Out­of­pocket payments per day 137 88 67 161 75 76
Total reported costs ­­ 28,442 ­­ ­­ 36,236 ­­
Reported cost per day ­­ 1,068 ­­ ­­ 1,426 ­­

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ Jul 2012)

a Reports fraction home at least once during the 90 days after admission, where �home�means alive and not in a

facility (ACH, LTCH, SNF/IRF, or hospice).
b DRG groupings changed between the pre-period and post-period, so for simplicity we report this only for the

post-period.
c Length of stay is censored at 100 days for SNFs, since after that Medicare does not pay and therefore further days

are not observed. This applies to about 2 percent of stays.
d Number of chronic conditions is measured in the calendar year prior to the stay.
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Table 2: Post-discharge outcomes

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 187.4 41.7 145.7 504.9 80.3 424.7
Post­discharge 30­day mortality 11.3 24.9 7.4 14.3 47.6 8.0
Post­discharge 90­day mortality 20.3 37.5 15.3 24.4 60.0 17.6
Post­discharge paymentsa 13,370 31,832 8,079 22,975 35,799 20,552
Post­discharge facility daysa 17.5 33.2 13.0 26.3 33.0 25.0

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ July 2012)

Table presents summary statistics on post-discharge costs and facility days using the baseline sample of LTCH stays

described in Table 1, excluding discharges due to death.
a Post-discharge payments and post-discharge days refer to the entire post-discharge episode of care, which we de�ne

to begin at the day of discharge and end when the patient spends two consecutive days at home.
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Table 3: Parameter estimates

Parameter Std. error Parameter Std. error

Health process during pre­PPS: Preferences:
μ0 9.72 0.026 γ 0.78 0.013
σ0 3.68 0.016 ν1

U (000s) ­30.23 1.854
μ 0.37 0.002 ν0

D (000s) ­74.21 2.341
ρ 0.99 < 0.001 ν1

D (000s) 6.33 0.182
σ 2.13 0.003 σε (00s) 5.50 0.169

Health process during PPS: Post­discharge payments:
μ0 5.40 0.143 ζ0

U 10.01 0.043
σ0 1.89 0.065 ζ1

U ­0.79 0.052
μ 4.45 0.106 ζ0

D 12.67 0.039
ρ 0.28 0.007 ζ1

D ­0.27 0.009
σ 2.31 0.067

Table presents parameter estimates of the parameters in our baseline speci�cation. Standard errors are computed

using the asymptotic GMM formula, where the variance-covariance matrix is computed using bootstrapped samples.
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Table 4: Discharges and payments from counterfactuals scenarios

(1) (2) (3) (4) (5) (6)

LTCH payments:
Total payments 27,987 28,357 16,033 26,328 34,998 7,259
Total profits 6,738 9,220 ­217 7,082 ­907 ­8,664
Average LOSa 19.2 17.3 14.7 17.4 32.4 14.4
Payment per day 1,457 1,640 1,092 1,514 1,079 505

Discharges Upstream:
Total payments 3,895 3,610 3,253 3,642 6,089 3,247
Share of discharges 0.12 0.11 0.10 0.11 0.17 0.10
Payment per discharge 33,802 33,441 32,636 33,424 35,481 32,466

Discharges Downstream:
Total payments 16,038 16,024 16,167 15,805 10,364 15,325
Share of discharges 0.79 0.80 0.83 0.80 0.66 0.83
Payment per discharge 20,377 19,918 19,538 19,675 15,611 18,477

Total Medicare payments 47,921 47,991 35,453 45,776 51,451 25,831

Counterfactual Payment Schedule
Pre­SSO per diem 1,384 2,151 1,384 1,936 1,107 507
Cap amount 34,419 34,419 22,144 32,907 66,397 30,420

Linear schedule at
"opportunity" (SNF)

cost

Observed
schedule

Higher rate per
day Lower cap

Lowest Medicare
Payment within

"LTCH preferred"
schedules

Linear schedule at
estimated cost

Table presents results from three counterfactual payment schedules. Column (1) reports results that are based on

our parameter estimates (reported in Table 3) and the observed payment schedule, and each other column reports

the results from predicted discharge patterns under a di¤erent counterfactual payment schedule. The counterfactual

payment schedules we consider are described in the main text.
a Length of stay is measured from day -15. To make it comparable to the summary statistics reported in Table 1,

all numbers should be increased by 7.5 days (because the average SSO threshold across admissions in our sample is

22.5 days).
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Table 6: Robustness to alternative speci�cations

Observed schedule Higher rate per day Lower cap

Lowest Medicare
Payment within

"LTCH preferred"
schedules

A. Baseline Specification
LTCH Total Payments 27,987 28,357 16,033 26,328
LTCH Total Profits 6,738 9,220 ­217 7,082
LTCH Average LOS 19.2 17.3 14.7 17.4
Total Medicare Payments 47,921 47,991 35,453 45,776

B. Alternative Specification #1: Time­Varying Health Process
LTCH Total Payments 28,037 28,384 16,006 26,365
LTCH Total Profits 6,137 8,664 ­689 6,535
LTCH Average LOS 19.3 17.4 14.7 17.5
Total Medicare Payments 47,893 47,929 35,316 45,725

C. Alternative Specification #2: Post­PPS Moments Only
LTCH Total Payments 28,009 28,381 16,058 26,367
LTCH Total Profits 7,766 10,128 545 8,010
LTCH Average LOS 19.3 17.4 14.8 17.5
Total Medicare Payments 47,878 47,963 35,445 45,765

Table reports the main results from two alternative speci�cations of the model. Panel A reports results from the

baseline speci�cation, which correspond to the numbers that are already reported in Table 4. Panel B repeats the

analysis, but we allow the AR(1) health process to vary over time by allowing the serial correlation parameter � to

change linearly with time since LTCH admission. Panel C re-estimates the model using only data from the post-PPS

period.
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Appendix Figure A1: Empirical vs. Approximated payment schedules

Figure presents the payment schedules used in the paper (gray lines, which are the same as Figure 1 in the main

text) against the observed payments (black lines). Appendix B provides more detail about the (slight) di¤erences.
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Appendix Figure A2: Discharge patterns, re-weighted

Figure is the same as Figure 3 in the main text, except that pre-PPS line is re-weighted to re�ect the same DRG mix

as in the PPS period.
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Appendix Figure A3: Post-discharge mortality rates

Figure presents the (forward looking) 30-day mortality rate after an (alive) discharge, as a function of the day of

discharge.
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Appendix Figure A4: Perturbation tests for the estimated mortality e¤ect

Figure shows perturbation tests for the mortality e¤ect described in Appendix C. The top panel reports estimated

1-day (top panel) and 30-day (bottom panel) mortality e¤ect from estimating equation (13) with a bandiwth of 3,

but replacing the dummy variable for being to the right of the SSO threshold with a dummy variable for being to the

right of a placebo threshold; see Appendix for more details. The �gure also shows where the actual estimated e¤ect

falls within this range of placebo estimates.
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Appendix Table A1: Discharge destinations

Pre­PPS PPS

Death 0.138 0.133

Upstream 0.192 0.138
Inpatient 0.981 0.761

Hospice 0.005 0.033

Downstream 0.670 0.729

LTCH 0.001 0.006

SNF 0.242 0.438

IRF 0.006 0.067

Home Health 0.216 0.305

Home 0.457 0.140

Other 0.077 0.043

Total 1.00 1.00

Number of Obs. 217,562 582,552
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Appendix Table A2: Post-discharge outcomes

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 187.4 41.7 145.7 504.9 80.3 424.7

Post­discharge payments (upper bound) 13,370 31,832 8,079 22,975 35,799 20,552
Post­discharge payments (lower bound) 12,369 31,137 6,991 20,291 33,469 17,801

Post­discharge facility days (upper bound) 17.5 33.2 13.0 26.3 33.0 25.0
Post­discharge facility days (lower bound) 17.3 32.5 12.9 24.9 26.0 24.6

Pre­PPS (Jan 2000 ­ Sep 2002) PPS (Oct 2007 ­ July 2012)

Table presents upper and lower bounds for our imputation of post-discharge payments and days using the baseline

sample of LTCH stays described in Table 1, excluding discharges due to death. Appendix A provides more detail.

The upper bound are used for our empirical analysis.
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Appendix Table A3: Regression discontinuity e¤ect on mortality

(1) (2) (3) (4) (5) (6)

Panel A. Effect on 1­Day Mortality Hazard

Post Threshold Indicator 0.00007 0.00022 0.00039 0.00003 ­0.00013 0.00019
(0.00023) (0.00017) (0.00013) (0.00048) (0.00030) (0.00019)

[0.754] [0.204] [0.003] [0.950] [0.665] [0.317]
Bandwidth 3 5 10 3 5 10
No. of Obs. 4,077,864 6,408,072 12,233,592 4,077,864 6,408,072 12,233,592

Panel B. Effect on 30­Day Mortality Hazard

Post Threshold Indicator ­0.00005 ­0.00022 0.00014 0.00012 ­0.00008 ­0.00015
(0.00017) (0.00016) (0.00022) (0.00026) (0.00021) (0.00021)

[0.785] [0.186] [0.514] [0.651] [0.719] [0.475]
Bandwidth 3 5 10 3 5 10
No. of Obs. 4,077,864 6,408,072 12,233,592 4,077,864 6,408,072 12,233,592

Linear Quadratic

Table shows results from the regression-discontinuity mortality analysis described in Appendix C. Column (1)-(3) use

a linear functional form (see equation (13)) before and after the SSO threshold, while columns (4)-(6) use a quadratic

functional form (see equation (14)). The table reports the estimate of the �o coe¢ cient, which captures the jump in

mortality rate at the SSO threshold in the PPS-period. Each column uses di¤erent number of days before and after

the SSO threshold to report the estimate. The 1-day mortality hazard is de�ned as the share of individuals alive at

a given day who die by the next day; the 30-day mortality hazard is likewise de�ned as the share of individuals alive

at a given day who die in the next 30 days. Standard errors, clustered at the DRG level, are in regular brackets and

p-values in squared brackets.
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