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Abstract

In this paper, we extend the model firm dynamics of Garcia-Macia, Klenow, and
Hsieh (2016) (GHK) to include a description of the costs of innovative investments as in
the model of Klette and Kortum (2004). In this model, aggregate productivity (TFP)
grows as a result of innovative investment by incumbent and entering firms in improving
continuing products and acquiring new products to the firm. This model serves as a useful
benchmark because it nests both Quality-Ladders based Neo-Shumpeterian models and
Expanding Varieties models commonly used in the literature and, at the same time, it
provides a rich model of firm dynamics as described in GHK. We show how data on firm
dynamics and firm value can be used to infer the elasticities of aggregate productivity
growth with respect to changes in incumbent firms’ investments in improving their in-
cumbent products, incumbent firms’ investments in acquiring products new to the firm,
and entering firms’ investments in acquiring new products. As discussed in Atkeson and
Burstein (2015), these elasticities are a crucial input in evaluating the extent to which it
is possible to alter the medium term growth path of the macroeconomy through policies
aimed at stimulating innovative investments by firms. We use these methods to pro-
vide quantitative estimates of these elasticities of aggregate TFP growth with respect to
changes in each of the three categories of innovative investment in the model as well as
of the rate of social depreciation of innovation expenditures. We demonstrate that these
quantitative implications of the model are highly sensitive to one’s estimate of the baseline
research intensity of the economy and to one’s estimate of the baseline market value of
intangible capital within firms.
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1 Introduction:

Garcia-Macia, Klenow, and Hsieh (2016) (henceforth GHK) present a tractable model of firm

dynamics that captures many features of the data on firm dynamics. Firms in this model

are distinguished by the technologies they posses for producing intermediate products. In this

dimension, the model is a straightforward extension of Klette and Kortum (2004). This model

allows for aggregate productivity growth to arise through innovation by incumbent firms to

improve their own products, innovation by incumbent firms to obtain products new to the firm,

and innovation by entering firms to obtain new products. Products that are new to a firm may

be new to society or “stolen” from other firms. The goal of their paper is to use data on firm

dynamics to estimate how much of the observed growth in aggregate productivity comes from

these different types of innovation by firms.

In this paper, we extend the GHK model of firm dynamics to include a description of

the costs of innovative investments that are left un-modelled in their paper. We also extend

this model to allow for two simple forms of social depreciation of innovation expenditures: we

allow incumbent firms to lose products due to exogenous exit of products and we allow for the

productivity with which incumbent firms can produce products to deteriorate over time in the

absence of innovative investments by that firm.

Our extended version of the GHK model then conveniently nests both the canonical Expand-

ing Varieties models analyzed in Luttmer (2007), Luttmer (2011) and Atkeson and Burstein

(2010) and the canonical Quality-Ladders based Neo-Shumpeterian models analyzed in Klette

and Kortum (2004) and the many models based on that framework. As a result, it incorpo-

rates the increasing returns due to increased variety as well as the intertemporal knowledge

spillovers from one firm’s success in innovation to the social payoffs to another firm’s innovative

investment.

We then use this extended version of the GHK model to consider the question of how an

economist who has access to rich data on firm dynamics and firm value might identify the

social returns to increased innovative investment by firms. We measure the social returns to

innovative investment by firms in terms of the increased growth of aggregate productivity that

would result from an increase in innovative investment.

We are able to measure these social returns to innovative investment by firms due to several

assumptions in our extended GHK model that make the model implied relationships between

firms’ innovative investments and the dynamics of firm size and value particularly tractable.
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Under these assumptions, the current productive capacity of all firms corresponds to a

measure Mt(z), where Mt(z) is the measure of intermediate products that can be produced

with physical capital and labor at productivity exp(z). The corresponding measure of products

in this economy is Mt =
∑

zMt(z). Under the assumption that markups are constant across

products, aggregate TFP in the economy is given as a geometrically weighted aggregate of

product level productivities

Zt =

[∑
z

exp((ρ− 1)z)Mt(z)

]1/(ρ−1)

In general, to measure the social returns to firms’ innovative investments, one must construct

a model of how those investments translate into dynamics for the measure of productivities with

which firms produce the products consumers desire Mt(z). These dynamics must be inferred

from data on the size of products, which corresponds to the model implied measure of size

s =
exp((ρ− 1)z)

Zρ−1
t

reflecting either the share of output of a product in total output, the share of production labor

devoted to a product in total production labor, the share of physical capital devoted to a

product in total physical capital, or the share of variable profits earned on a product in total

variable profits. This inference is complicated by the fact that the growth in the number of

products of a given size may be genuinely new products for society or simply a reallocation due

to business stealing.

To make progress on this inference, we use two key assumptions. First, we assume that

the equilibrium dynamics of z at the product level obeys a strong form of Gibrat’s Law: both

the exit rate of products and the increment to z for continuing products are independent of

product size. This assumption is quite close to the assumptions made in GHK to derive a

simple transition law for aggregate TFP as a function of the arrival rate of different types of

innovations to z at the product level. (We do drop the assumption in GHK of endogenous exit

of small products due to fixed operating costs.) Second, we assume that equilibrium innovative

investment at the product level is proportional to product size. This second assumption is quite

close to those used in Klette and Kortum (2004) and Atkeson and Burstein (2010) to aggregate

innovative investment. In our model, these assumptions lead us to the following simple form of

the aggregate relationship between firms’ innovative investments and TFP growth

logZt+1 − logZt = G(xict, ximt, xet)
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where xict is the aggregate investment incumbent firms undertake at t to lower the marginal cost

with which they produce their current products, ximt is the aggregate investment incumbent

firms undertake at t in acquiring new products to the firm (both those new to society and those

stolen from other firms), and xet is the aggregate investment by entering firms at t in acquiring

new products to produce at t+1 (both those new to society and those stolen from other firms).

These innovative investments are in units of a produced input to innovation that we term the

research good and are subject to a resource constraint

xict + ximt + xet = Yrt

where Yrt is the aggregate ouput of the input into innovation and Prt is the price of this research

good relative to consumption. We refer to Srt = PrtYrt/GDPt as the research intensity of the

economy.

We seek to measure the social returns of firms’ innovative investments in terms of the

derivatives of this equilibrium function G.1 We do so at an assumed baseline level of aggregate

TFP growth ḡZ and unobserved baseline levels of investment. For example, we refer to

Gicx̄ic

as the elasticity of aggregate TFP growth with respect to a change in firms’ investments in

lower the marginal cost of production of their currently produced products, and likewise for the

other two forms of innovative investment. The elasticity of aggregate TFP growth with respect

to a proportional change in all three forms of innovative investment, is then given by

Gicx̄ic +Gimx̄im +Gex̄e

We also consider the elasticity of changes in innovative investment concentrated entirely on

each one of the three forms of innovative investment

Gicx̄ic
Ȳr
x̄ic

1As discussed in Atkeson and Burstein (2015), these elasticities of aggregate TFP growth with respect to
changes in real innovative investment are impact elasticities. That is, these elasticities are useful for measuring
the elasticities of aggregate TFP growth with respect to policy-induced changes in expenditures on innovative
investment on impact. As discussed in our earlier paper, the dynamics are shaped to a large extent by the
degree of intertemporal knowledge spillovers. If these are large enough to ensure that the model displays fully
endogenous growth, then impact elasticities are also useful in measuring the permanent change in the growth
rate of aggregate TFP that arises from a policy-induced permanent change in the innovation intensity of the
economy.

4



and likewise for the other two forms of investment.

Following Atkeson and Burstein (2015), we first show that if one imposes the assumption

that there is no social depreciation of innovation expenditures, as is done in Klette and Kortum

(2004) and GHK, then the quantitative implications of the model for the elasticities of aggregate

productivity growth with respect to changes in innovative investments in economies with low

baseline levels of TFP growth are tightly restricted by that low baseline level of TFP growth

regardless of the fit of the model to the data on firm dynamics and value. Specifically, the

function G is concave in a proportional increase in its three arguments so

Gicx̄ic +Gimx̄im +Gex̄e ≤ ḡZ −G(0, 0, 0)

since ḡZ corresponds to the growth of aggregate TFP at the baseline level of investments. We

refer to the model’s counterfactual implications for the growth rate of aggregate TFP if there

were no investments by firms in innovation (G(0, 0, 0)) as the social depreciation of innovation

expenditures. Under the assumption of no social depreciation, G(0, 0, 0) = 0, and hence the

social return we wish to measure is bounded by the baseline growth rate of TFP ḡZ .

We then take up the question of what quantitative social returns to firms’ innovative invest-

ments the extended GHK model with the two forms of social depreciation can admit once it has

been fit to data on firm dynamics and firm value. We assume that the economist conducting the

measurement has access to data on the size and number of products in entering and incumbent

firms and data on the value of firms in excess of their stock of physical capital. We show how to

identify the parameters of the function G and the levels of investment of each type from these

data up to two unidentified parameters: the fraction of products that are new to entering and

incumbent firms that are new to society as opposed to stolen from other firms, and the fraction

of firm value that is due to the variable profits earned on existing products versus due to the

added innovative capacity of the firm associated with the acquisition of these products. We are

able to use the model to impose upper and lower bounds on these two unobserved parameters.

Our main results are presentations of the model-implied relationships between these data on

firm dynamics and firm value, the two set-identified parameters, and the elasticities of aggre-

gate TFP growth with respect to changes in these three categories of innovative investment by

firms.

We next use our theoretical results to deliver quantitative estimates of the social returns

to firms’ innovative investments implied by our extended GHK model and the data in the

Business Dynamics Statistics database as well as calibrations of total innovative expenditure
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from Nakamura (2009) and firm value from McGrattan and Prescott (Forthcoming). We find

elasticities of aggregate productivity growth with respect to individual categories of investment

ranging from 0 to 0.44 and with respect to a proportional increase in all three categories

of innovative investment ranging from 0.013 to 0.039, with the alternative estimates driven

primarily by different calibrated values of the baseline market value of intangible capital within

firms. We find corresponding rates of social depreciation of innovation expenditures ranging

from 0.023 to 0.037 per year.

2 Model and Equilibrium Properties:

In this section, we review the key results we derive from the dynamic equations of the model.

Details of how these dynamic equations are derived from a fully specified version of the model

are given in subsequent sections.

2.1 Aggregate Output and Total Factor Productivity:

At each date t, aggregate output of the final good used for consumption and investment in

physical capital is given by

Yt = ZtK
α
t L

1−α
pt

where Kt is the aggregate stock of physical capital, Lpt is the aggregate quantity of labor used

in production of this final good, and Zt is total factor productivity.

As is standard in this literature, we assume that this final good Yt is produced from a

continuum of intermediate products through a CES aggregator with elasticity ρ. These inter-

mediate goods are each provided by monopolist producers who engage in monopolistic price

competition. These intermediate products are produced according to production technologies

yt(z) = exp(z)kt(z)αlpt(z)1−α

where z indexes the position of the marginal cost curve for the producer of the intermediate

good and kt(z) and lpt(z) denote the quantities of physical capital and labor used in production

of the intermediate good with index z at date t. To simplify our notation, we assume that

the support of z is a countable grid with zn = n∆ for the integers n. Assuming constant

markups µ > 1 of prices to marginal costs across products, we get the result that in equilibrium

total factor productivity is a CES aggregate of the indices z across the available intermediate
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products of the form

Zt =

[∑
n

exp((ρ− 1)zn)Mt(zn)

]1/(ρ−1)

where Mt(zn) is the measure of intermediate products with index zn at date t. Note that the

measure of products available in the economy at date t is given by

Mt =
∑
n

Mt(zn)

2.1.1 Product Size:

In equilibrium we have that

st(z) =
exp((ρ− 1)z)

Zρ−1
t

=
yt(z)

Yt
=
kt(z)

Kt

=
lpt(z)

Lpt
.

Hence, we refer to st(z) as the size of a product. In data, this can be measured in terms of

value added or profits or physical capital or production labor. This measure is also additive,

so we can use it to refer to the size of categories of products as we do below.

2.1.2 Factor Shares:

In equilibrium with constant markups µ across products, fraction α/µ of output Yt is paid to

physical capital, fraction (1 − α)/µ to production labor, and fraction (µ − 1)/µ to the firms

that produce the intermediate products are variable profits.

2.2 Contributions to TFP by firm and product categories:

As in Klette and Kortum (2004), firms in this economy produce a number of products j, where

j is a natural number. Entering firms enter with a single product, so j = 1. Firms exit when

the number of products that they produce drops to zero.

We say that a firm is an incumbent firm at t if it also produced products at t−1. Otherwise,

firms at t are entering firms.

We say that a product is an existing product at t if it was also produced at t−1. Otherwise,

products at t are new products.

New products are new to society. Not all products that a new to a firm at t are new to

society. Some products that are new to a firm at t are incumbent products that were produced

by some other firm at t− 1. We refer to existing products that are produced by a different firm
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at t than at t − 1 as stolen products. We refer to incumbent products at t that are produced

by the same firm at t as at t − 1 as continuing products. Note that, by definition, continuing

products are produced by incumbent firms.

With this terminology, we decompose aggregate productivity at t into five components:

Zict =

[∑
n

exp((ρ− 1)zn)Mict(zn)

]1/(ρ−1)

where Mict(zn) is the measure of continuing products with index zn produced by incumbent

firms at date t,

Zint =

[∑
n

exp((ρ− 1)zn)Mint(zn)

]1/(ρ−1)

where Mint(zn) is the measure of new products with index zn produced by incumbent firms at

date t,

Zist =

[∑
n

exp((ρ− 1)zn)Mist(zn)

]1/(ρ−1)

where Mist(zn) is the measure of stolen products with index zn produced by incumbent firms

at date t,

Zent =

[∑
n

exp((ρ− 1)zn)Ment(zn)

]1/(ρ−1)

where Ment(zn) is the measure of new products with index zn produced by entering firms at

date t, and

Zest =

[∑
n

exp((ρ− 1)zn)Mest(zn)

]1/(ρ−1)

where Mest(zn) is the measure of stolen products with index zn produced by entering firms at

date t.

With these definitions, we have the following decomposition of aggregate productivity

Zρ−1
t = Zρ−1

ict + Zρ−1
int + Zρ−1

ist + Zρ−1
ent + Zρ−1

est

As in GHK, this decomposition can be done by product categories existing and new

Zρ−1
t =

(
Zρ−1
ict + Zρ−1

ist + Zρ−1
est

)
+
(
Zρ−1
int + Zρ−1

ent

)
and firm categories, incumbent and entering

Zρ−1
t =

(
Zρ−1
ict + Zρ−1

ist + Zρ−1
int

)
+
(
Zρ−1
est + Zρ−1

ent

)
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In using data on firm dynamics to discipline the model, we use the results that these decom-

positions of aggregate productivity correspond to decomposition of product categories categories

by category size

1 =

(
Zρ−1
ict

Zρ−1
t

+
Zρ−1
ist

Zρ−1
t

+
Zρ−1
est

Zρ−1
t

)
+

(
Zρ−1
int

Zρ−1
t

+
Zρ−1
ent

Zρ−1
t

)
and likewise for firm categories, incumbent and entering

1 =

(
Zρ−1
ict

Zρ−1
t

+
Zρ−1
ist

Zρ−1
t

+
Zρ−1
int

Zρ−1
t

)
+

(
Zρ−1
est

Zρ−1
t

+
Zρ−1
ent

Zρ−1
t

)
We also use notation for a corresponding decomposition of the measure of products into five

categories

Mict =
∑
n

Mict(zn)

and similarly for the categories is, in, es, and en.

Let

Sict =
Zρ−1
ict

Zρ−1
t

denote the aggregate size of continuing products at incumbent firms, and likewise let Sint, Sist,

Sent and Sest denote the sizes of the other four product categories. Let

Simt = Sint + Sist

denote the size of those products that are new to incumbent firms at t and Set = Sent + Sest

the size of those products that are new to entering firms at t.

Fict =
Mict

Mt

denote the fraction of products that are continuing products at incumbent firms, and likewise let

Fint, Fist, Fent and Fest denote the sizes of the other four product categories. Let Fimt = Fint +

Fist denote the fraction of products that are new to incumbent firms at t and Fet = Fent + Fest

the fraction of products that are new to entering firms at t. Note that the average size of

products in a category is given by the ratio S/F .

2.3 Technology for Innovative Investment:

We assume that firms make three types of investment in innovation as in GHK: incumbent firms

invest to improve their continuing products, incumbent firms invest to acquire new products to
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the firm either through the creation of a new product or acquisition of a stolen product, and

entering firms invest to acquire new products to the entering firm either through the creation

of a new product or acquisition of a stolen product. Innovative investment is undertaken using

a second final good, which we term the research good, as an input. The aggregate amount of

this research good produced at time t is

Yrt = ArtZ
φ−1
t Lrt (1)

where Lrt = Lt − Lpt is the quantity of labor devoted to production of the research good, Art

is the level of exogenous scientific progress, and the term Zφ−1
t for φ ≤ 1 reflects intertemporal

knowledge spillovers in the production of the research good as in the model of Jones (2002)

equation 5.

We denote the aggregate quantity of the research good that incumbent firms invest at t in

improving z for continuing products at t + 1 by xict. We denote the aggregate quantity of the

research good that incumbent firms invest at t in acquiring products new to that firm at t+ 1

by ximt. We denote the aggregate quantity of the research good that entering firms invest at t

in acquiring products new to that firm at t+ 1 by xet. The resource constraint for the research

good is

xict + ximt + xet = Yrt (2)

As in Klette and Kortum (2004), we assume that the innovative investment undertaken by

a firm is simply the sum of the investments by that firm at the product level. As in Atkeson

and Burstein (2010), the equilibrium investment by incumbent firms in improving each of their

continuing products is directly proportional to the size of the product. As in Klette and Kortum

(2004), the equilibrium investment by incumbent firms in acquiring products new to the firm is

directly proportional to the number of products produced by the firm. Finally, we assume that

the amount that each entering firm invests is a parameter at t that we normalize to 1/Mt. The

technologies for innovative investment that we assume build in two key spillovers. First, for

incumbent firms investing in improving a continuing product, the cost of such investment falls

with aggregate TFP. Second, for incumbent and entering firms investing to acquire products

new to the firm, the productivity index z of the acquired product rises with the average value

of exp((ρ− 1)z) across existing products and the cost of the investment falls with the measure

of existing products Mt.

Furthermore, as in Klette and Kortum (2004) and Atkeson and Burstein (2010) and many

other papers in the literature, we assume that these investments result in equilibrium dynamics
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for the scale of existing products consistent with a strong form of Gibrat’s Law characterized

by the following four properties of equilibrum. First, we assume that a fraction δ0 of existing

products at t cease to be produced (for exogenous reasons) at t + 1, with this exogenous

exit probability δ0 independent of the index z of the product. Second, the probability that an

existing product is stolen from an incumbent firms is independent of the index z of the product.

Third, the increment to the index z for existing products that are stolen by incumbent and

entering firms between t and t+1 is zt+1−zt = ∆ independent of the index z of the product that

is stolen. Fourth, the distribution of the increments to the index z between t and t+1 for those

products that are continuing products produced by incumbent firms at t+ 1 is independent of

the index z of those products at t.

We now describe the dynamics of the measures and contribution to aggregate productivity of

each product category, based on our assumptions on the technologies for innovative investment

at the firm level. Further details are given in the Appendix (To be written).

2.3.1 Measures by product category

The measure of products produced at t+ 1 by entering firms is given as a function of entering

firms’ innovative investment at t by

Mest+1 +Ment+1 = xetMt.

This expression follows from the assumption that if an entering firm spends 1/Mt units of the

research good, it acquires 1 new product. Thus if there are Me entering firms at time t they

spend Me/Mt units of the research good and produce Me new products at t+1. Further details

are provided in the Appendix (to be be written).

We assume that fraction δ of these products produced by entering firms at t+ 1 are stolen

from incumbent firms, with the remaining fraction 1− δ being new to society. Thus, we assume

that

Mest+1 = δxetMt

We assume that the measure of products new to incumbent firms at t + 1 is given as a

function of these firms’ investments ximt at t. Specifically, this measure is

Mist+1 +Mint+1 = h(ximt)Mt

where h(·) is a strictly increasing and concave function with h(0) = 0 and h(x) < 1 for all x.

This expression follows from the assumption that if each incumbent firm spends x/Mt units
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of the research good per product it produces, it acquires h(x) new products per product –

if x = ximt is the same for each product then ximt is spent on aggregate and h(ximt)Mt new

products are created at t+ 1.

We again assume that fraction δ of these products are stolen products, so

Mist+1 = δh(ximt)Mt

The measure of continuing products produced by incumbent firms at t+1 are those products

at t that do not cease to exist at t + 1 plus those products at t that are not stolen at t + 1.

Thus

Mict+1 = (1− δ0)Mt −Mist+1 −Mest+1 = (1− δMt)Mt

where

δMt ≡ δ0 + δ (h(ximt) + xet) (3)

2.3.2 Dynamics of the measure of products

These assumptions imply dynamics for the total measure of products

Mt+1

Mt

= (1− δMt) + h(ximt) + xet (4)

2.3.3 Investment and growth of Z by product category

In this subsection, we make assumptions about the relationship between investment and the

growth of Z by product category. These assumptions deliver our model’s predictions for the

relationship between investment and the growth of size by product category as well as for the

relationship between investment and the growth rate of aggregate TFP.

We assume that, due to spillovers as in Luttmer (2007), new products in entering firms at

t + 1 have average exp((ρ − 1)z) indexed by η̄enZ
ρ−1
t /Mt so that their total contribution to

aggregate productivity is

Zρ−1
ent+1 = η̄enZ

ρ−1
t (1− δ)xet.

where we used the assumption that

Ment+1

Mt

= (1− δ)xet

New products obtained by incumbent firms have average exp((ρ−1)z) indexed by η̄inZ
ρ−1
t /Mt

so that

Zρ−1
int+1 = η̄inZ

ρ−1
t (1− δ)h(ximt).
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where we use the assumption that

Mint+1

Mt

= (1− δ)h(ximt)

Products that are stolen each have increment of size ∆ to their index z from t to t + 1.

Thus, they have average exp((ρ− 1)z) indexed by exp((ρ− 1)∆)Zρ−1
t /Mt so

Zρ−1
est+1 = exp((ρ− 1)∆)Zρ−1

t δxet,

and

Zρ−1
ist+1 = exp((ρ− 1)∆)Zρ−1

t δh(ximt),

Those products that are continuing products in incumbent firms at t + 1 experience, on

average, increment ζ̄(xict) to their exp((ρ− 1)z) from t to t+ 1. Thus

Zρ−1
ict+1 = (1− δMt) ζ̄(xict)Z

ρ−1
t

This expression follows from the assumptions that if an incumbent firm with a continuing

product with productivity z spends x of the research good on improving that product, it

draws a new productivity, conditional on survival, that is k steps from z with probability

ζ
(
k, x

Zρ−1
t

exp((ρ−1)z)

)
. In equilibrium, each incumbent firm chooses the same investment per unit

size x (z) = xict
exp((ρ−1)z)

Zρ−1
t

, so for all products the probability of drawing a new productivity

that is k steps from the current level is ζ (k, xict). We define the expectation over k as ζ̄ (xict).

Adding over all incumbent products, the aggregate resources spent in this activity are xict. We

assume that ζ̄(xic) is a strictly increasing and concave function, and that 0 < ζ̄(0) < 1.

2.3.4 Dynamics of TFP

These assumptions imply dynamics for aggregate productivity

Zρ−1
t+1

Zρ−1
t

= (1− δ0 − δ(h(ximt) + xet)) ζ̄(xict) + η̄ih(xmt) + η̄exet (5)

where

η̄i = δ exp((ρ− 1)∆) + (1− δ)η̄in

and

η̄e = δ exp((ρ− 1)∆) + (1− δ)η̄en
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2.3.5 Parameters and the length of the time period

The parameters δ0, δ, η̄in,and η̄en all represent ratios of level variables and hence are set inde-

pendent of the length of the time period.

The variables xic, xim and xe represent flows, and hence are proportional to the length of

the time period. Likewise, since h(xim) reflects an arrival rate of new products, this rate should

also be proportional to the length of the time period. The step size ∆ for stolen products is

independent of the length of the time period.

Since log(ζ̄(x)) corresponds to the growth rate of z for continuing products in incumbent

firms, we do require that log(ζ̄(x)) converges to zero as the time interval between periods t and

t+ 1 shrinks to zero.

Thus, without loss of generality, we can assume that exp((ρ−1)∆) ≥ ζ̄(x). This corresponds

to the requirement that a product that is stolen from incumbent firms is produced with a

higher z at t + 1 in its new firm than it would have had as a continuing product in the firm

that previously produced it. As we discuss below, this assumption also thus corresponds to the

assumption that stolen products have larger average size than continuing products in incumbent

firms.

2.4 Nested Models

This model nest five commonly used models in the literature: three types of Expanding Varieties

models and two types of Neo-Schumpeterian models.

If δ = 0, then there is no business stealing and hence all new products acquired by incumbent

and entering firms are new products for society, expanding the measure of products Mt. This is

the assumption typically made in an Expanding Varieties model. Luttmer (2007) is an example

of an expanding varieties model in which there is only innovative investment in entry. (Note

that we do not consider the endogenous exit of products due to fixed operating costs featured in

that paper and in GHK). Atkeson and Burstein (2010) is an example of an expanding varieties

model in which there is innovative investment in entry and by incumbent firms in continuing

products. Luttmer (2011) is an example of an expanding varieties model in which there is

innovative investment in entry and in the acquisition of new products by incumbent firms.

Neo-Schumpeterian models based on the Quality-Ladders framework typically assume δ = 1

and δ0 = 0. The simplest versions of these models do not accommodate growth in the measure

of varieties Mt. Grossman and Helpman (1991) and Aghion and Howitt (1992) are examples
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of Neo-Schumpeterian models in which there is only innovative investment in entry. Klette

and Kortum (2004) is an example of a Neo-Schumpeterian model in which there is innovative

investment in entry and by incumbent firms in acquiring new products.

3 Disciplining the Model with Data on Firm Dynamics

We consider an economist who has data on the growth rate of the measure of products Mt+1/Mt

as well as data on the fraction of products that are continuing products in incumbent firms

Fict+1, the fraction of products that are new to incumbent firms measured as the sum of those

that are new to society and stolen Fimt+1, and the fraction of products that are produced in

entering firms measured as the sum of those that are new to society and stolen Fet+1.

We also assume that this economist has data on the growth rate of aggregate TFP Zt+1/Zt

(at least for some baseline value) and data on the aggregate size of continuing products in

incumbent firms Sict+1, the aggregate size of products that are new to incumbent firms measured

as the sum of those that are new products and those that are stolen Simt+1, and the aggregate

size of products that are new to entering firms measured as the sum of those that are new

products an those that are stolen Semt+1.

We use the notation

gZt+1 = log(Zt+1)− log(Zt)

to denote the growth rate of aggregate TFP and gMt+1 = log(Mt+1) − log(Mt) to denote the

growth rate of the measure of products.

3.1 Implications of data on the dynamics of the measure of products

Data on the dynamics of the measure of products allow one to identify the values of the following

on a balanced growth path (BGP)

(1− δ̄M) = F̄ic exp(ḡM)

h(x̄im) = F̄im exp(ḡM)

x̄e = F̄e exp(ḡM)

3.2 Implications of data on size and aggregate TFP growth

Data on size and aggregate TFP growth, together with the data on the measures of products

discussed above, allow one to identify the following model parameters.
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The parameters η̄e and η̄i are identified from data on the average size of products that are

new to entering and incumbent firms on a balanced growth path (these BGP average sizes are

denoted with a bar):

η̄e =
S̄e
F̄e

exp((ρ− 1)ḡZ)

exp(ḡM)

η̄i =
S̄im
F̄im

exp((ρ− 1)ḡZ)

exp(ḡM)

The value of ζ̄(xict) is identified from data on the average size of continuing products in

incumbent firms

ζ̄(x̄ic) =
S̄ic
F̄ic

exp((ρ− 1)ḡZ)

exp(ḡM)

3.3 Parameters that are not identified

The parameters δ0 and δ governing the share of products new to incumbent and entering firms

that are stolen from other incumbent firms together with the parameters η̄in and η̄en governing

the average value of exp((ρ− 1)z)/Zρ−1
t for that fraction (1− δ) of products new to incumbent

and entering firms that are new to society are not pinned down by the data on firm dynamics

we have discussed. Instead, we have only identified δMt as defined in equation (3) and η̄i and

η̄e defined in equation (5).

Our model does impose bounds on these parameters δ0 and δ. Both of these parameters

must be non-negative. We must have δ0 ≤ δ̄M as observed in the data (F̄ic exp(ḡM)). We must

have δ below the minimum of four upper bounds. The first of these is δ ≤ 1. The second of

these corresponds to the value of δ implied by equation (3) with δ0 = 0 (since δ0 cannot be

negative) and the data on the exit rate of incumbent products and the fraction of new products

in incumbent and entering firms. Specifically

δ ≤ δ̄M
h(x̄im) + x̄e

=
1− F̄ic exp(ḡM)

(1− F̄ic) exp(ḡM)

The third and fourth bound corresponds to the requirement that stolen products in incum-

bent firms have higher z (on average) than the products that they replace, i.e. exp((ρ−1)∆) ≥
ζ̄(x̄ic). Note that our model’s implications for the average size of stolen products in incumbent

and new firms is
S̄is
F̄is

=
S̄es
F̄es

=
exp((ρ− 1)∆)

exp(ρ− 1)ḡZ)
exp(ḡM)

and that the average size of new products in incumbent firms is the solution to

S̄im
F̄im

= δ
S̄is
F̄is

+ (1− δ) S̄in
F̄in
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The requirement that stolen products be larger than those that they replace, i.e.

S̄is
F̄is
≥ S̄ic
F̄ic

(or, similarly, exp((ρ − 1)∆) ≥ ζ̄(x̄ic)) together with the requirement that new products have

non-negative average size (η̄in > 0) implies that we must have

δ ≤ S̄im
F̄im

/ S̄ic
F̄ic

Similar arguments for entering firms give the fourth bound

δ ≤ S̄e
F̄e

/ S̄ic
F̄ic

The minimum of these bounds binds when new products in incumbent or entering firms are

smaller than continuing products on average in the data.

We have imposed directly by assumption that h(0) = 0 and that the measure of products

in entering firms at t+ 1 is equal to zero when xet = 0.

The parameter ζ̄(0) corresponding to the counterfactual growth rate of exp((ρ − 1)z) for

continuing products in the absence of investment in improving these products is also not iden-

tified.

4 Elasticities of TFP growth with respect to innovative

investment

From equation (5), we can write the growth rate of TFP as a function of innovative investments

as

log(Zt+1)− log(Zt) = G(xict, ximt, xet)

where

G(xic, xim, xe) =
1

ρ− 1
log
(
(1− δ0 − δ(h(xim) + xe)) ζ̄(xic) + η̄ih(xm) + η̄exe

)
We now consider the elasticities of TFP growth with respect to the three types of innovative

investment. To do so, we evaluate derivatives of G at a point (x̄ic, x̄im, x̄e) and Ȳr that satisfies

equation (2). Define ḡZ to be the growth rate of TFP at those levels of investment. Define

x̂ = log(x)− log(x̄)
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Then, to a first order approximation we have

ĝZ ≡ Gicx̄icx̂ic +Gimx̄imx̂im +Gex̄ex̂e

where

ĝZ ≈ log(Z ′)− log(Z)− ḡZ

and

Gic =
1

ρ− 1

(1− δ0 − δ(h(x̄im) + x̄e)) ζ̄
′(x̄ic)

exp((ρ− 1)ḡZ)
(6)

Gim =
1

ρ− 1

(
−δζ̄(x̄ic) + η̄i

)
h′(x̄m)

exp((ρ− 1)ḡZ)
(7)

and

Ge =
1

ρ− 1

(
−δζ̄(x̄ic) + η̄e

)
exp((ρ− 1)ḡZ)

(8)

4.1 Identifying or bounding elasticities

In what follows, we look to use data on firm dynamics and the value of firms to identify precisely

or bound the model-implied impact elasticity ĝZ/Ŷr computed from derivatives (6), (7), and

(8), baseline investment levels Ȳr, x̄ic, x̄im and x̄e, and alternative perturbations to investment

x̂ic, x̂im, x̂e.

We consider two types of perturbations to investment. The first type is a proportional

change in all categories of investment

x̂ic = x̂im = x̂e = Ŷr

The second type of perturbation is concentrated on a single form of investment

x̂ic =
Ȳr
x̄ic
Ŷr

x̂im =
Ȳr
x̄im

Ŷr

or

x̂e =
Ȳr
x̄e
Ŷr

We start our analysis with an application of the results of Atkeson and Burstein (2015)

bounding the impact elasticity ĝZ/Ŷr with respect to a proportional change in all three cat-

egories of investment by the difference between the baseline growth rate of TFP and the
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model implied counterfactual growth rate of TFP in the absence of any innovative investment,

ḡZ−G(0, 0, 0). In the original GHK model, it is assumed that G(0, 0, 0) = 0, so this proposition

imposes a tight bound for advanced economies with low baseline ḡZ . We then show that in our

specification of the GHK model, G(0, 0, 0) can be less than zero, relaxing this bound.

Once we allow for the possibility that G(0, 0, 0) < 0, the model admits for a large value of

the impact elasticity ĝZ/Ŷr even in an advanced economy. As we have discussed above, data on

firm dynamics allows us to identify some terms in the derivatives (6), (7), and (8), but we are

not able to identify the parameter δ governing the extent of business stealing, the derivatives

of the innovation technologies ζ̄ ′(x̄ic) and h′(x̄m), and the baseline investment levels Ȳr, x̄ic, x̄im

and x̄e needed to compute these elasticities.

In section 5 we discuss how to use data on the value of intangible capital in firms together

with the condition that firms choose investment to maximize that private value to identify the

derivatives of the innovation technologies ζ̄ ′(x̄ic) and h′(x̄m) and the breakdown of expenditure

on innovation into the three categories of innovative investment. In section 6 we then report

on the model’s quantitative implications for these elasticities for various assumed values of the

parameter δ governing the extent of business stealing.

4.2 Elasticity with respect to a proportional change in all innovative
investment

Following Atkeson and Burstein (2015), we are able to bound the elasticity of TFP growth with

respect to a proportional change in all innovative investments as follows.

Proposition 1. If x̂ic = x̂im = x̂e = Ŷr, then the elasticity of TFP growth with respect to

innovative investment is bounded by the difference between the baseline growth rate of TFP and

the growth rate of TFP when all investment is zero, i.e.

ĝZ ≤ (ḡZ −G(0, 0, 0)) Ŷr

Proof. The proof follows from the concavity of the function H(a) (see appendix) defined as

H(a) ≡ G(ax̄ic, ax̄im, ax̄e)

Specifically, if x̂ic = x̂im = x̂e = Ŷr, then

ĝZ = H ′(1)Ŷr

The result follows from the fact that for concave functions H ′(1)1 ≤ H(1)−H(0).
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4.3 Social Depreciation of Innovation in the GHK model

Note that the bound on the elasticity ĝZ/Ŷr established in proposition 1 is independent of

parameters outside of those that determine the model’s implications for ḡZ and G(0, 0, 0). We

refer to the growth rate of TFP that would arise if all innovative investment were set to zero,

G(0, 0, 0), as the rate of social depreciation of innovation.

In both Klette and Kortum (2004) and GHK, it is assumed that the rate of social depreci-

ation of innovation G(0, 0, 0) = 0. As a result, the elasticity ĝZ/Ŷr is bounded by ḡZ .

In our implementation of the GHK model, we do not make this assumption that there is

no social depreciation of innovation. Because we allow for exogenous exit of existing varieties,

denoted by δ0, and for deterioration of the index z of continuing varieties in incumbent firms,

denoted by ζ̄(0) ≤ 1, we have social depreciation of innovation given by

G(0, 0, 0) =
1

ρ− 1
log
(
(1− δ0)ζ̄(0)

)
≤ 0 (9)

(recall that since h(xim) denotes a rate at which incumbent firms acquire new products, we

impose that h(0) = 0). Thus, our version of the GHK model potentially allows for a higher

elasticity ĝZ/Ŷr > ḡZ if we allow for social depreciation by calibrating δ0 > 0 and/or ζ̄(0) < 1.

4.4 Bounding elasticities with respect to components of investment
and social depreciation

In the experiment in which we consider proportional changes in investment, we have that the

elasticity of TFP growth with respect to total innovative expenditure is equal to the sum of

three individual elasticities:

ĝZ = [Gicx̄ic +Gimx̄im +Gex̄e] Ŷr

Using the same logic based on concavity, in this model, we can bound these elasticities of

TFP growth with respect to each component of innovative investment as follows.

Corollary 2. The individual elasticities of TFP growth with respect to the components of

investment are bounded by

Gicx̄ic ≤ ḡZ −G(0, x̄im, x̄e)

Gimx̄im ≤ ḡZ −G(x̄ic, 0, x̄e)

Gex̄e ≤ ḡZ −G(x̄ic, x̄im, 0)
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Proof. These bounds follow as a corollary to proposition 1 from the concavity of the functions

Hic(a) = G(ax̄ic, x̄im, x̄e)

Him(a) = G(x̄ic, ax̄im, x̄e)

and

He(a) = G(x̄ic, x̄im, ax̄e)

and the observation that the desired elasticities are given by H ′ic(1), H ′im(1), and H ′e(1) respec-

tively.

The bounds on the elasticities of TFP growth with respect to changes in the components

of innovative investment presented in Proposition 2 offer a procedure for bounding the change

in TFP growth ĝZ that would arise from a change in total innovative investment Ŷr focused

entirely on one of the categories of innovative investment. Specifically, consider changes in

investment of the form (x̂ic, 0, 0), (0, x̂im, 0), and (0, 0, x̂e). Then we have

x̂ic =
Ȳr
x̄ic
Ŷr

and similarly for x̂im and x̂e. This observation gives us that the change in TFP growth ĝZ that

would arise from a change in total innovative investment Ŷr focused entirely on an individual

category of innovative investment (x̂ic, 0, 0) is bounded by

ĝZ ≤ (ḡZ −G(0, x̄im, x̄e))
Ȳr
x̄ic
Ŷr

and similarly for x̂im and x̂e.

We look to calculate these bounds and the corresponding exact elasticities as functions of

observables below.

4.5 Exact Elasticities

Given the functional form of the transition law for TFP in equation (5), we can obtain formulas

for these individual elasticities that show the relationship between the exact elasticities and

these bounds. Specifically, these elasticities are given by

Gicx̄ic =
1

ρ− 1

exp((ρ− 1)ḡZ)− exp((ρ− 1)G(0, x̄im, x̄e))

exp((ρ− 1)ḡZ)

ζ̄ ′(x̄ic)x̄ic
ζ̄(x̄ic)− ζ̄(0)

(10)

Gimx̄im =
1

ρ− 1

exp((ρ− 1)ḡZ)− exp((ρ− 1)G(x̄ic, 0, x̄e))

exp((ρ− 1)ḡZ)

h′(x̄im)x̄im
h(x̄im)

(11)
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Gex̄e =
1

ρ− 1

exp((ρ− 1)ḡZ)− exp((ρ− 1)G(x̄ic, x̄im, 0))

exp((ρ− 1)ḡZ)
(12)

Thus, our assumptions that ζ̄(x) and h(x) are concave and that h(0) = 0 give us tighter bounds

on these elasticities than those in proposition 2. That is, for example, since

1

ρ− 1

exp((ρ− 1)ḡZ)− exp((ρ− 1)G(0, x̄im, x̄e))

exp((ρ− 1)ḡZ)
< ḡZ −G(0, x̄im, x̄e)

for ρ > 1, these elasticities lie strictly below the bounds above unless we set ρ = 1. As ρ→∞,

these elasticities converge to zero.

4.6 Exact Elasticities and Counterfactual Size of Products

To calculate these exact individual elasticities, we need to identify the concavity of the functions

ζ̄(xic) and h(xim). We can bound these individual elasticities, however, by expressing the terms

1

ρ− 1

exp((ρ− 1)ḡZ)− exp((ρ− 1)G(0, x̄im, x̄e))

exp((ρ− 1)ḡZ)

etc. in terms of baseline and counterfactual sizes of product categories. We do so in the next

proposition.

Define

S̃ic(0) ≡ (1− δ̄M)ζ̄(0)

exp((ρ− 1)ḡZ)
=

F̄ic exp(ḡM)

exp((ρ− 1)ḡZ)
ζ̄(0)

where the second equality follows from the identification of parameters in data on firm dynamics

as described above.

Proposition 3. We have the following bounds on individual elasticities.

Gicx̄ic ≤
1

ρ− 1

(
S̄ic − S̃ic(0)

)
(13)

Gimx̄im ≤
1

ρ− 1

(
S̄im − δ

S̄ic
F̄ic

F̄im

)
(14)

Gex̄e =
1

ρ− 1

(
S̄e − δ

S̄ic
F̄ic

F̄e

)
(15)

Proof. These bounds follow immediately from equations (10), (11), and (12), the concavity of

h(x) and ζ̄(x), the assumption that h(0) = 0, and the definition of S̃ic(0). Note that equation

(15) is an equality because we have a linear entry technology.
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Note that if we impose the restriction as in GHK that incumbent firms do not suffer regress of

z on continuing products even if they do not invest in improving these products (i.e. ζ̄(0) = 1),

we then have from (13) the bound that

Gicx̄ic ≤
1

ρ− 1

(
S̄ic −

F̄ic exp(ḡM)

exp((ρ− 1)ḡZ)

)
(16)

This bound can be evaluated given the data we assume is available to the economist. Alterna-

tively, as we argue in Corollary 6, if the economist is able to estimate the elasticity Gicx̄ic using

other data, one can then use (13) to put an upper bound on the value of ζ̄(0). We do so in our

calibration section below.

The result in equation (15) shows that the only source of uncertainty in identifying the

elasticity of TFP growth with respect to entry given the data we have assumed the economist

to have is the parameter δ. Likewise, the result in equation (14) allows us to bound the

elasticity of TFP growth with respect to investment by incumbents in acquiring new products

given knowledge of δ.

If we set δ at its minimum value of 0, so that there is no business stealing as in an Expanding

Varieties model, we have

Gex̄e =
1

ρ− 1
S̄e (17)

This means that a model with δ = 0 that is calibrated to a baseline growth TFP growth rate

of ḡZ = .01, ρ = 4 and aggregate size of entering firms of S̄e > .03 implies an elasticity at

least as large as 0.01 as long as the other two derivatives are non-negative. Given the bound

in proposition 1, a reasonably calibrated Expanding Varieties model must imply that there is

some social depreciation of innovation expenditures

Note that the corresponding elasticity of aggregate TFP to a change in innovative investment

devoted entirely to investment in entry when δ = 0 is then given by

Gex̄e
Ȳr
x̄e

=
1

ρ− 1
S̄e
Ȳr
x̄e

(18)

where x̄e/Ȳr is the share of innovative investment undertaken by entering firms. We use data on

the value of firms’ intangible capital to estimate this share of innovative investment by entering

firms below.

In the next section, we turn to using data on the value of firms to identify the levels of

investment x̄ic/Ȳr, x̄im/Ȳr, and x̄e/Ȳr. We then use equilibrium conditions to identify ζ̄ ′(x̄ic)

and h′(x̄im), which allows us to fully identify the desired elasticities up to uncertainty over δ.
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5 Firm Values and the Equilibrium Levels of Innovative

Investment

We now consider the features of the model that can be identified if the economist requires that

the model also match data on the allocation of factor payments observed in GDP and data on

the value of the intangible capital in firms relative to GDP. We assume throughout that there

are no taxes or subsidies in the observed equilibrium. A full calibration exercise would have to

take into account the impact of taxes and subsidies on measures of firm value. We intend this

section to demonstrate the method for using data on firm value to discipline the model-implied

impact elasticities of aggregate TFP growth with respect to changes in innovative investment).

Here we consider the older notion of GDP as equal to the sum of expenditures on consump-

tion and investment in physical capital. This notion of GDP corresponds to

Ct +Kt+1 − (1− δK)Kt = Yt = ZtK
α
t L

1−α
pt

Standard arguments imply that fraction α/µ of GDP is paid to physical capital as either

explicit or imputed rentals, fraction (1 − α)/µ is paid as compensation to production labor

Lpt. The remaining fraction (µ − 1)/µ of output is available to owners of firms in the form of

variable profits. A portion of these variable profits are spent on firms’ innovative investments.

The cost of these innovative investment is paid to research labor. Note that to match the model

implications for compensation of research labor to data from the National Income and Product

Accounts, one must impute compensation of research labor in the form of sweat equity as in

McGrattan and Prescott (2010).

We assume that the compensation of research labor WtLrt is equal to the total value of

research output PrtYrt where Prt represents the price of the research good in terms of consump-

tion. Thus, the total compensation of labor is given by WtLpt + WtLrt. The aggregate flow

of variable profits paid to firm owners in excess of aggregate costs of innovative investments is

then [
µ− 1

µ
− Srt

]
Yt (19)

where

Srt =
PrtYrt
Yt

denotes the research intensity of the economy.

We now turn to the equations that we use to match data on firm value on a balanced growth

path.
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5.1 The value of a continuing product for an incumbent firm

We guess that a product of size s at t adds value Vts to the firm that produces this product at

date t. We also guess that in equilibrium, investment by incumbents in improving their own

products is directly proportional to product size s = exp((ρ − 1)z)/Zρ−1
t , or xzt(s) = xzts for

all s.

We then have the following recursion for this value of a product in terms of its variable

profits to an incumbent

Vts =
µ− 1

µ
Yts− Prtxicts+

1

1 +Rt

Vt+1(1− δMt)ζ̄(xict)
Zρ−1
t

Zρ−1
t+1

s

where Rt denotes the consumption interest rate between t and t+ 1. Using the notation

vt ≡
Vt
Yt

exp(gY t+1) = Yt+1

Yt
we have

vt =
µ− 1

µ
− Prtxict

Yt
+

exp(gY t+1)

1 +Rt

vt+1Sict+1 (20)

and in a BGP
Prx̄ic
Y

=
µ− 1

µ
−
[
1− exp(ḡY )

1 + R̄
S̄ic

]
v̄ (21)

When an incumbent firm chooses investment xic optimally, its choice satisfies the first order

condition

Prt =
1

1 +Rt

Vt+1(1− δMt)ζ̄
′(xict)

Zρ−1
t

Zρ−1
t+1

which, in a BGP is equivalent to

Prx̄ic
Y

=
exp(ḡY )

1 + R̄
v̄

(1− δ̄M)ζ̄ ′(x̄ic)x̄ic
exp((ρ− 1)ḡZ)

(22)

5.2 The value of a new product in facilitating further acquisition of
products

We guess that each incumbent firm invests a constant amount of the research good per product

that it owns at t in acquiring new products for that incumbent firm. Thus, if ximt is the total

investment of this type by incumbents, then this investment per products is ximt(s) = ximt/Mt

independent of the size s of the product.
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We then have the following recursion for the value of a product to an incumbent in terms

of the added research capacity it gives to that incumbent

Ut = −Prtximt
Mt

+
1

1 +Rt

Vt+1h(ximt)η̄i
1

Mt

Zρ−1
t

Zρ−1
t+1

+

1

1 +Rt

(h(ximt) + (1− δMt))Ut+1

Using the notation

ut ≡
UtMt

Yt

and multiplying by Mt gives

ut = −Prtximt
Yt

+
exp(gY t+1)

1 +Rt

[vt+1Simt+1 + ut+1Fit+1]

where

Fit+1 ≡ Fict+1 + Fimt+1

is the fraction of products that produced by incumbent firms at t+ 1. These include products

that are new to the firm and products that are continuing.

In a BGP, we then have

ū = −Prx̄im
Y

+
exp(ḡY )

1 + R̄

[
v̄S̄im + ūF̄i

]
or

Prx̄im
Y

=
exp(ḡY )

1 + R̄
v̄S̄im −

[
1− exp(gY )

1 + R̄
F̄i

]
ū (23)

When an incumbent firm chooses investment xim optimally, its choice satisfies the first order

condition

Prt =
1

1 +Rt

[
Vt+1η̄i

Zρ−1
t

Zρ−1
t+1

+ Ut+1Mt

]
h′(ximt) (24)

In a BGP, this is equivalent to

Prtx̄im
Y

=
exp(ḡY )

1 + R̄

[
v̄(S̄in + S̄is) + ū

Mth(xim)

Mt+1

]
h′(x̄im)x̄im
h(x̄im)

or
Prtx̄im
Y

=
exp(ḡY )

1 + R̄

[
v̄S̄im + ūF̄im

] h′(x̄im)x̄im
h(x̄im)

(25)
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5.3 Value of a new firm

Finally, we have free entry condition

Prt
Mt

=
1

1 +Rt

[
Vt+1

η̄e
Mt

Zρ−1
t

Zρ−1
t+1

+ Ut+1

]
(26)

Multiplying by xetMt and dividing by Yt gives

Prtxet
Yt

=
exp(gY t+1)

1 +Rt

[vt+1Set+1 + ut+1Fet+1]

In a BGP, this equation becomes

Prx̄e
Y

=
exp(ḡY )

1 + R̄

[
v̄S̄e + ūF̄e

]
(27)

5.4 Aggregate Value of Firms

Summing together equations (21), (23), and (27) gives the standard formula

[v̄ + ū] =

[
µ− 1

µ
− Sr

] [
1− exp(ḡY )

1 + R̄

]−1

(28)

where v̄+ ū is total firm value relative to GDP and, from equation (19), µ−1
µ
−Sr is the fraction

of GDP that is paid as profits in excess of innovative investments to owners of firms. This

formula values the aggregate stock of intangible capital of firms in the economy as a perpetuity

that grows at the same rate as consumption in the economy.

Under the standard decentralization in which firms manage the stock of physical capital,

we then have that the total value of all firms in the economy relative to GDP is given by

K

Y
+ v + u

equal to the sum of the values of the tangible and intangible capital within firms.

5.5 Implications of data on firm value for the level of each category
of investment

We now consider the model’s implications for the division of firm value into components v and

u and the division of innovative investment into components

Sr =
Prxic
Y

+
Prxim
Y

+
Prxe
Y
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To do so, assume that one has data on the division of firm intangible value into components

v̄/(v̄ + ū) and ū/(v̄ + ū). This split of total firm value may be difficult to identify in data. We

are able to bound this fraction v̄/(v̄+ ū) above and below by the requirement that both x̄ic and

x̄im are non-negative.

Proposition 4. In equilibrium, on a balanced growth path, the fraction of intangible firm value

v̄/(v̄ + ū) must lie in the interval[
1− exp(gY )

1+R̄
F̄i

]
[
1− exp(gY )

1+R̄
(F̄i − Sim)

] ≤ v̄

v̄ + ū
≤

µ−1
µ[

µ−1
µ
− Sr

]
[
1− exp(gY )

1+R̄

]
[
1− exp(ḡY )

1+R̄
S̄ic

] (29)

Proof. If one has such data on the division of firm value, then equation (21) determines Prxic/Y .

To ensure that the implied value of Prxic/Y ≥ 0, we must have

0 ≤ µ− 1

µ
−
[
1− exp(gY )

1 + R̄
S̄ic

]
v̄

v̄ + ū
(v̄ + ū)

[
1− exp(gY )

1 + R̄
S̄ic

]
v̄

v̄ + ū
(v̄ + ū) ≤ µ− 1

µ

v̄

v̄ + ū
≤ 1[

1− exp(gY )

1+R̄
S̄ic

] µ−1
µ

v̄ + ū

and thus the second inequality above follows from equation (28).

Likewise, given a division of firm value, then equation (23) determines Prxim/Y . To ensure

that Prxim/Y ≥ 0, we must have

0 ≤ exp(gY )

1 + R̄
S̄im

v̄

v̄ + ū
−
[
1− exp(gY )

1 + R̄
F̄i

](
1− v̄

v̄ + ū

)
[
1− exp(gY )

1 + R̄
F̄i

]
≤
[
1− exp(gY )

1 + R̄
(F̄i − S̄im)

]
v̄

v̄ + ū

which implies the first inequality above.

This proposition implies that any calibration of total intangible value of firms relative to

GDP, v̄ + ū, together with a division of that value that lies in the bounds set in proposition 4,

we have Prx̄ic/Ȳr given from equation (21) and Prx̄im/Ȳr given from equation (23). The value

of Prx̄e/Ȳr then follows from equation (27) and is immediately non-negative.
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5.6 Implications of optimality of investment for the elasticity of TFP
growth with respect to changes in investment in improving own
products

From equation (6), we see that we must identify the derivative ζ̄ ′(x̄ic) to identify the elasticities

that we desire. We do so using our model’s implications for steady-state firm value and the

assumption that investment in continuing products is chosen optimally in steady-state given

in equations (21) and (22). Specifically, equation (22) identifies the desired derivative up to

knowledge of v̄ and the scale of this category of innovative investment from the condition that

the private return to innovative investment in continuing products is equal to the interest rate.

We then use our calibration of the scale of firms’ intangible value v̄+ ū and its division between

v̄ and ū to determine v̄ and the valuation equation (21) to determine the scale of this category

of innovative investment.

These arguments give the following proposition.

Proposition 5. Data on firm value in steady-state together with the condition that innovative

investment in continuing products be privately optimal gives

Gicx̄ic =
1

ρ− 1

Prx̄ic
Y

exp(ḡY )

1+R̄
v̄

(30)

Thus, the elasticity of aggregate TFP growth with respect to a change in aggregate innovative

investment directed entirely at investment by incumbent firms in improving their own products

is given by

Gicx̄ic
Ȳr
x̄ic

=
1

ρ− 1

[
Sr

exp(ḡY )

1+R̄

]
1

v̄
(31)

Proof. Equation (30) follows directly from equations (6) and (22). We have

Ȳr
x̄ic

= Sr
Y

Prx̄ic

With equation (30), we then have the result (31).

Note that this procedure allows us to identify this elasticity Gicx̄ic without knowledge of

the extent of business stealing. Note as well that we have the following corollary that allows

us to use firm value to place an upper bound on the counterfactual value ζ̄(0), i.e., the model-

implied deterioration of productivity for continuing products that would occur in the absence

of innovative investment by incumbent firms in those products.
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Corollary 6. The counterfactual growth rate of continuing products in incumbent firms is

bounded above by

S̃ic(0) ≤ S̄ic −
Prxic
Y

exp(ḡY )

1+R̄
v̄

or equivalently,

ζ̄(0) ≤ exp((ρ− 1)ḡZ)

F̄ic exp(ḡM)

(
S̄ic −

Prxic
Y

exp(ḡY )

1+R̄
v̄

)
Proof. This bound follows directly from (13) and equation (30)

5.7 Elasticities with respect to incumbent and entrant investment
in new products

In the event that η̄i = η̄e, the first order condition for xim in equation (24) and the free entry

condition (26) imply that h′(x̄imt) = 1 in equilibrium for all dates t in which both investments

are undertaken. This implies that Gim = Ge at all dates t in which both investments are

undertaken along the equilibrium path. In this case, we have the result that the elasticity of

TFP with respect to a change in Ŷr devoted entirely to either x̂im or x̂e is the same. That is

Gex̄e
Ȳr
x̄e

= Gimx̄im
Ȳr
x̄im

More generally, the first order condition and free entry condition above imply that[
Vt+1

Yt+1

η̄i
Zρ−1
t

Zρ−1
t+1

+
Ut+1

Yt+1

Mt

]
h′(ximt) =

[
Vt+1

Yt+1

η̄e
Zρ−1
t

Zρ−1
t+1

+
Ut+1

Yt+1

Mt

]
so

h′(ximt) =
vt+1Set+1/Fet+1 + ut+1

vt+1Simt+1/Fimt+1 + ut+1

We now compute the elasticities Gimx̄im
Ȳr
x̄im

and Gex̄e
Ȳr
x̄e

in the more general case.

Proposition 7. Data on firm value and the condition that incumbents’ investments in acquiring

new products be privately optimal imply that

Gimx̄im =
1

ρ− 1

Prxim
Y

exp(ḡY )

1+R̄
v̄

S̄im/F̄im − δS̄ic/F̄ic
S̄im/F̄im + ū/v̄

(32)

The elasticity of aggregate TFP growth with respect to a change in aggregate innovative invest-

ment directed entirely at acquisition of new products by incumbent firms is given by

Gimx̄im
Ȳr
x̄im

=
1

ρ− 1

[
Sr

exp(ḡY )

1+R̄

]
1

v̄

[
S̄im/F̄im − δS̄ic/F̄ic
S̄im/F̄im + ū/v̄

]
(33)
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Proof. From equation (11) and proposition 3, we have

Gimx̄im =
1

ρ− 1

(
S̄im/F̄im − δS̄ic/Fic

) h′(x̄im)x̄im
h(x̄im)

We obtain an expression for
h′(x̄im)x̄im
h(x̄im)

from the first order condition for privately optimal xic in equation (25). This proves (32). We

have
Ȳr
x̄im

= Sr
Y

Prx̄im
With equation (32), we then have the result (33).

We also have the following proposition regarding the elasticity of TFP growth with respect

to a change in aggregate innovative investment concentrated entirely on entry.

Proposition 8. The elasticity of aggregate TFP growth with respect to a change in aggregate

innovative investment directed entirely at entering firms is given by

Gex̄e
Ȳr
x̄e

=
1

ρ− 1

[
Sr

exp(ḡY )

1+R̄

]
1

v̄

[
S̄e/F̄e − δS̄ic/F̄ic
S̄e/F̄e + ū/v̄

]
(34)

Proof. We have Gex̄e given in equation (15). To compute the desired elasticity, we multiply

this expression by Sr/(Prx̄e/Y ). We have Prx̄e/Y given by the free entry condition (27).

Corollary 9. These elasticities can be ordered as follows

Gimx̄im
Ȳr
x̄im
≤ Gicx̄ic

Ȳr
x̄ic

Gex̄e
Ȳr
x̄e
≤ Gicx̄ic

Ȳr
x̄ic

In the event that the average size of new products in incumbent and entering firms is the same,

as in S̄im/F̄im = S̄e/F̄e, then

Gimx̄im
Ȳr
x̄im

= Gex̄e
Ȳr
x̄e

Proof. The first inequality follows from the observation that[
S̄im/F̄im − δS̄ic/F̄ic
S̄im/F̄im + ū/v̄

]
≤ 1

The second from the observation that[
S̄e/F̄e − δS̄ic/F̄ic
S̄e/F̄e + ū/v̄

]
≤ 1

The final equality follows directly from the assumption on the equality of the average size of

new products in incumbent and entering firms.
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5.8 Dynamics

To be completed.

6 Quantitative analysis

We now turn to a calibration of our model. To reiterate, we make several key assumptions

regarding what the economist observes.

We assume that the economist observes the elasticity of demand for intermediate products

indexed by ρ, the gap between the interest rate and the growth rate of the economy indexed

by exp(ḡY )/(1 + R̄), the growth rate of the labor force ḡL.

We assume that the economist observes the baseline growth rate of aggregate TFP due to

innovative investment by firms indexed by ḡZ and the baseline growth rate of the number of

products ḡM . We also assume that the economist observes product level data on the fraction

of products that are continuing products in incumbent firms, F̄ic, the fraction of products that

are new to incumbent firms, F̄im, the fraction of products that are new to entering firms F̄e,

and the corresponding sizes of these three product categories S̄ic, S̄im, and S̄e. As discussed in

section 3, these data are critical for identifying δM , h(x̄im), x̄e, ζ̄(x̄ic), η̄i, and η̄e.

We assume that the economist observes the overall innovative intensity of the economy Sr,

and either the share of profits to intangible capital in GDP indexed by (µ − 1)/µ − Sr or,

equivalently, the value of intangible capital in firms relative to GDP indexed by v + u. We

also assume that the economist observes the division of that intangible value between v̄ and

ū. As discussed in section 5, these data are critical for identifying the division of innovative

investment S̄r into the three categories of investment Prx̄ic/Ȳr, Prx̄im/Ȳr, and Prx̄e/Ȳr and for

identifying the derivatives ζ̄ ′(x̄ic)x̄ic/ζ̄(x̄ic) and h′(x̄im)x̄im/h(x̄im).

To implement a calibration of the model, we use data from the Longitudinal Business

Database covering the time period 1980-2014. This data set reports on the number and em-

ployment of business establishments in the United States. These establishments are matched

to the firms that own them. We make the identifying assumption that an establishment in the

LBD data corresponds to an intermediate good in the model. We assume that the fraction of

new products in entering firms in the model corresponds to the fraction of establishments in

the data that are new and are owned by new firms. The fraction of new products in incumbent

firms in the model corresponds to the fraction of establishments that are new and are owned
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by firms that are not new. The fraction of products that are continuing products in incumbent

firms in the model corresponds to the fraction of establishments are are not new. We make the

same mapping between model and data for product (establishment) size measured as the share

of employment in establishments in each of the three categories above. We use averages of the

data from 1980-2014 in our calibration.

We are not able to identify two key parameters in our model: the split indexed by δ of new

products to firms between those that are new to society and those that are stolen from other

firms and the division indexed by v̄/(v̄ + ū) of firms’ intangible value between components v̄

and ū. The fraction δ is bounded below by zero and above as describe in section 3.3. We

consider specifications of our model with δ set to its minimum and maximum values. The

fraction v̄/(v̄ + ū) is bounded above and below as described in proposition 4. In our baseline

specification of the model, these bounds impose tight restrictions on this fraction. Hence we

consider only and intermediate value of this fraction.

We are also uncertain about the level of the value of firms’ intangible capital relative to

GDP as indexed by v̄ + ū. Given the importance of this quantity in determining the model-

implied elasticities of aggregate TFP growth with respect to changes in innovative investment

by firms, we consider two alternative calibrations of this quantity in our model. To implement

the alternative specification of the model with this lower level of firm intangible value, we leave

the innovation intensity of the economy Sr unchanged and reduce the share of variable profits

in GDP (µ− 1)/µ.

6.1 Calibration

We set the parameter governing the elasticity of demand for intermediate goods at ρ = 4. We

set the total employment growth rate at ḡL = 0.0136 and the growth rate of the number of

products ḡM = 0.0123 (based on the Longitudinal Business Database described above). We

set the baseline growth rate of aggregate productivity due to innovative investment by firms of

ḡZ = 0.0125 and the baseline growth of output per capita at ḡY = 0.02.

We follow McGrattan and Prescott (Forthcoming) in setting the ratio between the growth

rate of output and the gross interest rate at exp(gY )
1+R

= 0.98, and we target v̄ + ū = 1.7 based

on their estimates of the stock of business intangible capital relative to GNP in the U.S. From

equation (28), we obtain the fraction of profits to intangible capital in GDP as µ−1
µ
−Sr = 0.034.

We calibrate Sr = 0.077 based on Nakamura (2009). This calibration implies a gross markup
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of µ = 1.125.

We measure Se, Sim, Fe, and Fim (and hence Sic = 1 − Se − Sim and Fic = 1 − Fe − Fim)

using the Longitudinal Business Database as described above. Averaging between 1980 and

2014 for all sectors, we obtain F̄e = 0.085, F̄in = 0.022, F̄ic = 0.893, S̄e = 0.030, S̄in = 0.026

and S̄ic = 0.945. The average growth rate in the number of establishments is ḡM = 0.012, which

we also target in our calibration, while the average growth rate in total employment is given

by the target described above.

We consider two values of δ — its minimum value of δ = 0 and its maximum value of

δ = 1/3. The first specification corresponds to a model with no business stealing. the second

specification corresponds to a model with the maximum amount of business stealing consistent

with the observation that new establishments in entering firms have smaller average size than

do continuing establishments. Hence, in this second specification, the marginal contribution of

entry to aggregate productivity growth is zero.

In our baseline calibration, the fraction v̄/(v̄ + ū) is bounded between .80 and .875. We

consider .85 as a baseline value for this fraction.

We consider two values for v̄ + ū. The first is 1.7 from McGrattan and Prescott (2016) as

described above. The second is 0.7. This value used to illustrate the sensitivity of our model’s

implications to this calibrated quantity.

6.2 Alternative Specifications of business stealing and firm value

We now present results for four specifications of our model. Specification 1 is our specification

with no business stealing and a high value of intangible capital (δ = 0 and v̄ + ū = 1.7).

Specification 2 is our specification with the maximum amount of business stealing and a high

value of intangible capital (δ = 1/3 and v̄ + ū = 1.7). Specification 3 is our specification

with no business stealing and a moderate value of intangible capital (δ = 0 and v̄ + ū =

0.7). Specification 4 is our specification with the maximum amount of business stealing and

a moderate value of intangible capital (δ = 1/3 and v̄ + ū = 0.7). In Specifications 1 and 2,
µ−1
µ
− Sr = 0.034. In specifications 3 and 4, µ is reduced so that µ−1

µ
− Sr = 0.014.

In all four specifications of our model, the research intensity of the economy is fixed at

S̄r = 0.077. In specifications 1 and 2, the implied composition of these innovative investments

implied by equations (21), (23), and (27) is titled heavily toward expenditure on entry with

Prx̄ic/Y = 0.0033, Prx̄im/Y = 0.0010, and Prx̄e/Y = 0.063.
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In specifications 3 and 4, these innovative investments implied by equations (21), (23),

and (27) are more tilted toward investment in continuing products with Prx̄ic/Y = 0.047,

Prx̄im/Y = 0.0041, and Prx̄e/Y = 0.026.

6.3 Implied elasticities

We present the model implied impact elasticities of aggregate productivity growth with respect

to each category of investment in Table 1. We report on the elasticity of aggregate TFP

with respect to a change in innovative investment concentrated on entry in equation (34), the

elasticity of aggregate TFP with respect to a change in innovative investment concentrated on

new product acquisition by incumbent firms in equation (33), and the elasticity of aggregate

TFP with respect to a change in innovative investment concentrated on continuing products in

incumbent firms in equation (31). We also report on the sum of the elasticities (30), (32), and

(15) corresponding to the elasticity of aggregate TFP with respect to a proportional increase

in all three categories of innovative investment.

Consider first the results for specification 1 — the specification with no business stealing

and a high valuation of firms’ intangible capital. Here we see a moderate elasticity of aggregate

TFP with respect to a proportional change in all three categories of innovative investment

of 0.013. Note that this elasticity is of a similar order of magnitude as our baseline growth

rate of aggregate productivity ḡZ = 0.0125 even though, in this specification of the model,

we are allowing for social depreciation of innovation expenditures since all exit of products

is assumed to be due to exogenous exit. In contrast, in specification 2 — the specification

with the maximum amount of business stealing — the elasticity of aggregate TFP with respect

to a proportional change in all three categories of innovative investment is much smaller at

0.002. This is due to the fact that at the maximum value of δ, the elasticity of aggregate

TFP with respect to entry is equal to zero. This second specification of the model implies that

proportional changes in innovative investment by firms would have only a minimal impact of

aggregate TFP growth.

In both specifications 1 and 2, the elasticity of aggregate TFP growth with respect to a

change in innovative investment by incumbent firms on continuing products is moderately high

at 0.018. Hence, a targeted policy that did stimulate innovative investment by incumbent firms

on continuing products could have a moderate impact on aggregate TFP growth, particularly

in the case of specification 2 if that policy could simultaneously discourage investment in entry.
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In specification 2, the bulk of innovative investment is directed at entry but this investment no

marginal contribution to aggregate TFP growth.

In specifications 3 and 4, we see the quantitative importance of the value of firms’ intangible

capital as measured by v̄+ ū. In these two specifications, we reduce the assumed value of v̄+ ū

from 1.7 to 0.7. At the same time, we leave the division of value v̄/(v̄ + ū) unchanged. Hence,

from equations (31), (33), and (34), we have that all of the elasticities of aggregate TFP growth

with respect to a change in each category of innovative investment is multiplied by 1.7/0.7

relative to the corresponding elasticity in specifications 1 and 2. The impact of this change in

assumptions on the elasticity of aggregate TFP growth with respect to a proportional change

in all three categories of innovative investment is even larger than this ratio (given the larger

share of innovative investment by continuing products in this specification) — rising to 0.039

and 0.028 for specifications 3 and 4 respectively.

These results demonstrate the importance of refining our estimates of the value of intangible

capital in firms for assessing the potential social gains from using policy to stimulate further

innovative investment.

6.4 Implications for social depreciation of innovation expenditures

Now consider the implications of our calibrated model for the extent of social depreciation of

innovation expenditures as defined in equation (9). As indicated in that equation, the rate of

social depreciation of innovation expenditures is determined by parameters ρ, δ0, and ζ̄(0).

We have fixed ρ = 4 in all specifications of our model.

Given a choice of δ in our four specifications of the model, the data imply a value of δ0

from equation (3). In specifications 1 and 3, in which we assume that δ = 0 so that there is no

business stealing, we have δ0 = 0.0966. In specifications 2 and 4 in which we have the maximum

amount of business stealing consistent with the bounds on δ discussed in section 3.3, we have

δ0 = 0.067. Note then that in all specifications of our model, we must assume that there is

some exogenous exit of products.

We are not able to identify the parameter ζ̄(0). We are able to put an upper bound on this

quantity as described in corollary 6 (as well as the assumed upper bound of 1). In specifications

1 and 2 of our model, this bound in corollary 6 is higher than one, so we set ζ̄(0) = 1 as in

GHK. In specifications 3 and 4 of our model, we set ζ̄(0) equal to its upper bound of 0.992.

These parameters give the following model-implied rates of social depreciation of innovation
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Table 1: Elasticities of aggregate TFP growth

Specification xe only xim only xic only Proportional change

1. δ = 0, v̄ + ū = 1.7 0.012 0.016 0.018 0.013
2. δ = 0.33, v̄ + ū=1.7 0.000 0.011 0.018 0.002

3. δ = 0, v̄ + ū = 0.7 0.029 0.038 0.044 0.039
4. δ = 0.33, v̄ + ū = 0.7 0.000 0.027 0.044 0.028

expenditures. In specification 1, G(0, 0, 0) = −0.034, in specification 2, −0.023, in specification

3, −0.037, and in specification 4, −0.026. Hence, in each specification of our model, the data

call for the model to allow for moderate social depreciation of innovation expenditures.

Appendix: Concavity of H function

Define

H (a) = (1− δ0 − δ (h (ax̄im) + ax̄e)) ζ (ax̄ic) + η̄ih (ax̄im) + η̄eax̄e

We now prove that H ′′ (1) < 0. We have:

H ′ (a) = ζ ′ (ax̄ic) (1− δ0 − δ (h (ax̄im) + ax̄e)) x̄ic−δ (x̄imh
′ (ax̄im) + x̄e) ζ (ax̄ic)+η̄ix̄imh

′ (ax̄im)+η̄ex̄e

and

H ′′ (a) = ζ ′′ (ax̄ic) (1− δ0 − δ (h (ax̄im) + ax̄e)) x̄
2
ic − ζ ′ (ax̄ic) δ (h′ (ax̄im) x̄im + x̄e) x̄ic

−δ (x̄imh
′′ (ax̄im) x̄im) ζ (ax̄ic)− δ (x̄imh

′ (ax̄im) + x̄e) ζ
′ (ax̄ic) x̄ic + η̄ix̄imh

′′ (ax̄im) x̄im

Evaluated at a = 1,

H ′′ (1) = ζ ′′ (x̄ic) (1− δ0 − δ (h (x̄im) + x̄e)) x̄
2
ic − ζ ′ (x̄ic) δ (h′ (x̄im) x̄im + x̄e) x̄ic

−δ (x̄imh
′ (x̄im) + x̄e) ζ

′ (x̄ic) x̄ic + (η̄i − δζ (x̄ic))h
′′ (x̄im) x̄2

im

Given our assumptions that h′ (x̄im) > 0, ζ ′ (x̄ic) > 0, ζ ′′ (x̄ic) < 0, h′′ (x̄im) < 0, and η̄i >

δζ (x̄ic), all terms are negative so H ′′ (1) < 0.
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