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Abstract

In this paper, I exploit a rich vehicle-level micro dataset of the U.S. heavy-duty

trucking fleet to examine how truckers differentially respond to changes in fuel costs.

The empirical results show that the long-run elasticities of vehicle-miles-traveled are

-0.23 for combination trucks and -0.27 for vocational vehicles. Within each of the

two groups, the estimated elasticities vary significantly among different truck weight

classes and business sectors. The heterogeneity in truckers’ responsiveness calls for

differentiated policies, in particular, fuel taxes. I derive the optimal fuel taxes in a

general equilibrium model that includes the externalities of truck operation (such as

air pollution, road deterioration, traffic congestion, vehicle accidents and noise pollu-

tion), measures shipping demand in terms of payload distance and allows truckers to

choose their routes based on shipping demand. Most of the optimally differentiated

diesel taxes are about two or three times the actual rate. Compared to the optimal

uniform tax, implementing differentiated taxes based on vehicle weight classes reduces

the existing distortion and generates an overall welfare gain of about 17.5 billion US

dollars per annum.
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1 Introduction

The trucking industry hauls about 70% of all freight in the United States. Although

medium- and heavy-duty trucks account for only about 5% of all the on-road vehi-

cles, they contributed about 20% of the greenhouse gas emissions and oil use in 2015

(EPA, 2015). Existing policies intending to reduce fuel consumption and greenhouse

gas emissions, such as engine emission standards and fuel economy standards, have

been mostly technology-based and targeted at manufacturers. Fuel pricing policies

have rarely been considered as policy instruments to reduce greenhouse gas emissions

(Decker and Wohar, 2007; Knittel, 2011). Fuel taxes provide a combination of in-

centives with flexibility - a merit lacking in other alternatives (Williams, 2016). The

flexibility allows manufacturers and drivers to choose the most cost effective ways

to reduce fuel consumption, while taking into consideration of negative externalities

caused by the operation, which include greenhouse gas emissions, local air pollutants,

noise pollution, traffic congestion, road deterioration and vehicle accidents. Ideally,

one would design a tax for each category of externalities, but such policy would be

impractical (Williams, 2016). Instead, fuel taxes can be used to address the sum of

all externalities on a per-gallon basis. The challenge lies in possible inequality due to

the difference in truckers’ responses to changes in fuel costs. Imposing a uniform tax

is potentially detrimental for truckers who reduce driving more than the average level.

Such heterogeneity in behavior calls for optimally differentiated fuel taxes.

Among the few existing studies that have discussed the relationship between truck-

ing decisions and fuel costs, most of the empirical analyses are based on aggregated

data (Dahl, 2012; Barla et al., 2014; Ramli and Graham, 2014). At the regional level,

Greene (1984) finds that diesel fuel consumption is inelastic to fuel costs. At the na-

tional level, Dahl (2012) summarizes the fuel price elasticities from existing studies and

looks for their relationship with national income. Barla et al. (2014) apply a Partial

Adjustment Model to national diesel fuel data in Canada and find the elasticities at

-0.43 for the short run and -0.80 for the long run. Adenbaum et al. (2015) take advan-

tage of disaggregated data and find that truck owners undervalue the expected lifetime

fuel savings from better fuel economy, which therefore supports a policy introducing

fuel economy standards in the heavy-duty trucking industry. Leard et al. (2015) use

truck-level survey data to estimate the effect of higher fuel economy on driving dis-

tance, and suggest cautious evaluation of the benefit of such policy.

I exploit a rich vehicle-level micro dataset of the U.S. heavy-duty trucking fleet to

examine truckers’ heterogeneous responses to changes in fuel costs. I start with Leard

et al. (2015)’s empirical framework, in which they estimate the rebound effect (the
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increase in energy use caused by lower fuel cost of driving each mile) for heavy-duty

trucks. In contrast, I look at a broader set of truck characteristics and estimate how

fuel cost affects vehicle-miles-traveled (VMT) heterogeneously among weight classes

and business sectors. I find that a 10% increase in per-mile fuel cost reduces VMT by

2.3% for combination trucks and 2.7% for vocational vehicles. Heavier trucks are less

responsive to changes in fuel cost, since they are more likely to be limited by road use

restrictions. The estimated elasticities vary significantly among different business sec-

tors. Sectors with more flexible schedules and driving routes, such as manufacturing,

business and personal service, tend to have higher elasticities. In addition to VMT,

I also examine truckers’ decisions regarding payload distance (PD). The value of PD

is derived from multiplying VMT by the average cargo weight. The indicator, PD, is

particularly relevant to the heavy-duty trucking industry as both driving distance and

payload weight contribute to total fuel consumption.

An important goal of this paper is to derive the optimally differentiated fuel taxes

and to conduct welfare analysis in the second best setting, i.e., in the presence of tax

distortion in other markets. My model builds upon and contributes to several strands

of the recent literature. First, the analytical model fits in the literature of optimal en-

vironmental taxation in a general equilibrium setting. Bovenberg and Goulder (1996)

first extend this framework to consider taxes imposed on intermediate inputs while

taking into account the presence of other distortionary taxes. The interaction between

the taxed commodity and the labor market is important, as ignoring it can cause bias

in estimated excess burden by a factor of 10 or more (Goulder and Williams, 2003).

Calthrop et al. (2007) apply the general equilibrium model to explore the effect of a

partial tax reform on freight transport in the U.K. Special attention is paid to the con-

gestion effect of freight taxes on passenger vehicles’ VMT - the ambiguous effect is offset

by passenger vehicles as they fill up the space vacated by trucks. Such an offset effect

by automobiles is explored by Parry (2008), who estimates the optimal uniform diesel

tax for heavy-duty trucks in the U.S with elasticity parameters drawn from existing

studies. My general equilibrium model allows differentiation in fuel taxes among truck

weight classes and business sectors, using the elasticities from my empirical analysis.

The derived optimally differentiated taxes are adjusted to take into account the inter-

action with the labor market, using the method developed in Goulder and Williams

(2003). Second, my work connects to the literature on the distributional effects of fuel

taxes. For example, West (2004) estimates the effects of gasoline taxes on different in-

come groups using a discrete-continuous choice model; Bento et al. (2009) investigate

the distributional effects of gasoline taxes by income, race and employment. While

most of the related literature focuses on the effect of gasoline taxes on households,

3



less is known about diesel taxes on the heavy-duty trucking industry. I examine the

distributional effects of diesel fuel taxes among heavy-duty trucks of different weight

classes and business sectors.

The remainder of the paper is organized as follows. In Section 2, I explain the

data and provide descriptive analysis. I discuss the empirical model in which vehicle-

miles-traveled is estimated as a function of per-mile fuel cost, truck characteristics and

business features. I also explain the identification strategy in detail. In Section 4, I

present the estimated elasticities and the heterogeneity in truckers’ responsiveness to

changes in per-mile fuel cost. Section 5 provides robustness and falsification checks.

In Section 6, I construct a general equilibrium model and derive the expression of an

optimal tax. Drawing elasticity parameters from the empirical analysis in Section 4,

I calculate the optimally differentiated fuel taxes, as well as potential welfare gain.

Section 7 concludes.

2 Data

2.1 Data Sources

The primary source of data is the Vehicle Use and Inventory Survey (VIUS), which was

conducted by the Census Bureau every five years from 1982 to 2002.1 The surveying

process remained almost the same across all survey years. The sampling frame was

drawn from state registration records of active trucks as of July 1 in the survey year.

Five strata were created based on truck weights and body types. In each stratum, a ran-

dom sample of truck registrations was taken without replacement. Questionnaires were

mailed out during the second season in the following year. Follow-up mailings and/or

phone calls were conducted on truck owners if they failed to respond in the first round.

Both the sample size and response rate stayed relatively stable across all survey years.2

VIUS provides detailed information on both physical characteristics and opera-

tional features of the U.S. trucking fleet. Weight class, defined as gross vehicle weight

rating (GVWR), is commonly used to distinguish light-duty and heavy-duty vehicles.

Vehicles with a GVWR from class 2b to 8, or a gross vehicle weight greater than 8,500

pounds, are classified as heavy-duty vehicles. I restrict my sample to heavy-duty vehi-

1VIUS was originally referred as Truck Inventory and Use Survey. In 1997, the survey was renamed as
Vehicle Use and Inventory Survey to reflect its expanded scope. The first round of survey was conducted in
1967, while only the data from 1977 to 2002 are in public domain. In this study, I use five years of data from
1982 to 2002. Survey year 1977 is omitted due to its lack of compatibility with the following survey years.

2From 1977 to 2002, the sample size ranges from 116,400 to 153,914, and the response rate varies between
72.52% and 90.20%.
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cles, which account for about 70% of the original dataset.

Following the classification published in the regulatory impact analysis (RIA) by

the EPA, I examine the heavy-duty fleet in two distinct categories – combination trucks

and vocational vehicles. Combination trucks refer to tractor trailers3 with a GVWR

of class 7 or 8 (gross vehicle weight greater than 26,000 pounds). Most combination

trucks are meant for long-distance cargo hauling on highways. The body type of a

trailer is typically either an enclosed box or a basic platform. These two body types

account for more than 50% of the combination truck fleet in my sample. Examples

of other commonly seen trailer body types include insulated refrigerated vans, tank

trucks for liquid or gas, and dump trucks. Vocational vehicles refer to straight trucks

with a gross vehicle weight greater than 10,000 pounds.4 A straight truck typically

has a load area as part of the vehicle. Compared to combination trucks, vocational

vehicles generally undertake shorter trips. For instance, dump trucks, which account

for 24% of all vocational vehicles in my sample, primarily drive locally. Ninety-four

percent of the dump trucks operate within their home base states for more than 80% of

the time. Vocational vehicles are used for various purposes besides hauling cargo. For

example, a turnable ladder can be installed behind the cabin to provide a platform for

tasks such as ventilation or overhaul. A box truck with a rear door can be converted

into a mobile workshop. A multi-stop or step van is usually used for local package

delivery. Winch, crane trucks, and concrete mixers are particularly important for the

construction industry.

I eliminate trucks from the sample if 1) the truck was acquired before or in 1972,

2) the engine model year is 1972 or earlier, 3) the truck used fuel other than diesel,

4) the truck spent most of the year not in use,5 5) the truck was used for personal

transportation, government operations or transporting passengers, 6) there are miss-

ing critical variables after imputation6 or 7) the data are miscoded.7

3A truck tractor is a motor vehicle designed primarily for drawing truck trailers. Truck tractors often lack
a load area and instead have a “fifth wheel” on the back chassis area, which accepts a locking mechanism
under the trailer to attach it.

4Class 2b (gross vehicle weight from 8,501 pounds to 10,000 pounds) straight trucks are also classified as
heavy-duty vocational vehicles in RIA. Unfortunately, I cannot separate Class 2b from Class 2 in the data
set.

5There is no clear quantified criterium based on the questionnaire. The answer is up to truck owners.
6Missing data are imputed by replacing with the mode in the population of similar trucks. Such population

includes trucks that share the same GVWR, model year, make, body/trailer type, home base state, operator
class, main cargo product and business sector.

7I consider the data miscoded in the following situation where cargo weight is negative, or VMT is greater
than 275,000 miles per year, or fuel efficiency is greater than 20 miles per gallon for combination trucks or
zero for any truck, or average vehicle weight (with or without cargo) is less than 5,000 pounds for combination
trucks or 1,000 pounds for vocational vehicles.
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Figure 1: Diesel fuel price (in 2002$) for selected states

The fuel cost per mile, measured in dollars/mile, is derived from taking the ratio of

diesel price and the fuel economy.8 Annual diesel prices at the state level are approx-

imated by the inflation adjusted distillate fuel prices published by the United States

Energy Information Administration (EIA), as well as federal and state fuel tax rates

published in Highway Statistics by the United States Department of Transportation.

All prices are in 2002 U.S. dollars.

The variation in fuel prices comes from two sources. One is driven by the variation

in fuel prices across states and the other is mostly determined by the difference in travel

distance among truckers. Figure 1 shows, for a selection of states, the trend of diesel

price from 1973 to 2002. Truckers in interstate business are more likely to face different

fuel prices than those who primarily drive within their home base states. VIUS provides

information regarding the percentage of in-state trips and out-of-state trips for each

truck surveyed. It is useful to construct trip-based fuel prices to approximate the actual

diesel fuel prices which truckers encountered at the pump. I assume that truckers face

8Fuel economy is measured in miles/gallon. It is usually used interchangeably with “fuel efficiency” in
the literature.
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Figure 2: Allocation of trips between in-state and out-of-state

the diesel prices in their home base states while driving within the home base states,

and the national average diesel price while driving outside of the home base states.

The trip-based diesel fuel price is the average of these two situations weighted by the

percentage of trips. Figure 2 shows the average percentage of these two situations for

both types of trucks. While vocational vehicles mostly stay in their home base states

(92.78% of the time), combination trucks spend a little over one-third of their time

out of home base states. This allocation implies that the second source of variation

in fuel prices - how far trucks travel - is more relevant to combination trucks than to

vocational vehicles.

2.2 Summary Statistics

Table 1 provides the summary statistics of the decision variables, VMT and PD, along

with selected control variables. On average, combination trucks are driven about 64

thousand miles per year, which is more than triple the distance traveled by vocational

vehicles. The difference is more dramatic for payload distance. The average PD for

combination trucks is almost eight times that of vocational vehicles. When comparing

truck characteristics between these two groups, combination trucks, on average, have

lower fuel efficiency, greater lifetime mileage and heavier total vehicle weight.

Truck body/trailer type and axle configuration determine the business use as well
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Table 1: Summary Statistics
Combination Trucks Vocational Vehicles

Mean St.d. Mean St.d.

(1) (2) (3) (4)

VMT (1,000 miles/year) 63.74 45.25 20.16 20.64

Payload distance (10,000 ton-miles/year) 79.25 85.39 9.44 20.85

Fuel economy (miles per gallon) 5.58 1.27 7.19 3.14

Odometer reading (10,000 miles) 43.22 31.37 20.44 22.20

Average vehicle weight (10,000 lbs) 5.70 1.51 3.19 1.56

Axle Configuration:

2 axles 0.00 0.00 0.41 0.49

2 axles; 2 axle trailer 0.11 0.31 0.04 0.21

3 axles 0.00 0.00 0.36 0.48

3 axles; 2 axle trailer 0.71 0.45 0.05 0.21

Vehicle Make:

Ford 0.07 0.26 0.23 0.42

Freightliner 0.30 0.46 0.20 0.40

International/Harvester 0.21 0.41 0.22 0.41

Kenworth 0.16 0.36 0.05 0.22

Mack 0.14 0.34 0.15 0.36

Peterbilt 0.12 0.32 0.04 0.19

Body/Trailer Type:

Basic enclosed van 0.32 0.47 0.13 0.34

Basic platform 0.16 0.36 0.12 0.33

Dump truck 0.08 0.27 0.24 0.43

Insulated, refrigerated van 0.11 0.31 0.03 0.18

Cab Type:

Cab over engine 0.26 0.44 0.20 0.40

Conventional 0.73 0.44 0.77 0.42

Radial tires installed 0.69 0.46 0.62 0.49

Primary Cargo:

Building materials 0.09 0.29 0.28 0.45

Farm products 0.11 0.32 0.08 0.28

Petroleum products 0.04 0.20 0.05 0.21

Processed foods 0.15 0.35 0.07 0.26

Tools, machinery and equipment 0.10 0.30 0.10 0.31

Note: The category dummy variables with mean less than 0.1 are omitted from this table, but they are

included in the regressions. A list of these variables can be found in Appendix A. Other characteristics not

presented in the table include number of cylinders and engine displacement.
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as its carrying capacity. A good design of the cabin (or cab) can reduce the aerody-

namic drag substantially, and therefore improve the fuel efficiency. The conventional

cab is most common in North America. In such a cabin, the driver is seated behind the

engine, as in most passenger vehicles. The next most common cabin type is “cab over

engine” – with the cabin located on top of the engine. This type of design, also called

“flat nose”, often results in more wind resistance and higher drag. In the sample from

VIUS, 73% of combination trucks and 77% of vocational vehicles have conventional

cabs.

Radial tires also contribute to better fuel efficiency. The cored plies are arranged

perpendicularly to the direction of travel, so that the tires experience longer tread life,

better steering characteristics and less rolling resistance. Although bias tires have the

merit of weight carrying ability, radial technology has become the standard design.

In my sample, about 69% of combination trucks and 62% of vocational vehicles are

equipped with radial tires.

3 Estimation Strategy

3.1 Model

The decision of VMT can be considered as an optimal outcome of a profit-maximization

problem. Suppose a driver with truck i in state s in year t receives an exogenous Pb

for each mile (or ton-mile as discussed below) of delivery services in business b. The

cost of operation includes fuel costs and maintenance costs. The per-mile fuel cost,

ci, can be derived from dividing fuel price, pi, by the average MPG. (Note that MPG

is the average fuel efficiency of all trucks with the same type as i.) Maintenance cost

is a function of truck characteristics, Xi, and fleet operational characteristics, Zi.

Equating the marginal revenue with the marginal cost gives the optimal solution of

VMT,

VMTi = F (ci,Xi,Zi, θs, τt, φb) . (1)

The state-level fixed effects, θs, capture the time-invariant factors. For example, if

an intrastate driver in California drives more on average than a driver with the same

truck in Rhode Island due to the geographical difference between these two states, the

state-level fixed effects would prevent such factor from biasing the estimation results.

The survey year fixed effects, τt, are included to systematically identify time-specific

influences on VMT, such as macroeconomic factors, nationwide demand shocks, and

measurement errors for a specific survey year. φb represents the business sector of the
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cargo delivery, such as agriculture or forestry, construction and for-hire transportation.

The business fixed effects capture any industry-specific shocks that may affect trucking

decisions. In addition, φb also absorbs the effect of shipping price, assuming that the

shipping price in a particular business is relatively time-invariant.

Suppose function F takes the following parametric form:

VMTi = cγi exp(β0 +Xi
′βX +Zi

′βZ + θs + τt + φb + εi) , (2)

in which ci is the fuel cost per mile driven, derived from the following calculation:

ci =
pi

MPG
. (3)

εi is assumed to be a mean-zero stochastic error term. Taking the natural logarithm

on both sides of equation (2), I derive the specification for empirical estimation.

ln VMTi = β0 + γ ln ci +Xi
′βX +Zi

′βZ + θs + τt + φb + εi (4)

where γ can be interpreted as the elasticity of VMT with respect to fuel costs.

If shipment price is calculated based on payload distance, Pb is the price for deliv-

ering each payload-ton per mile. It is particularly relevant when the primary business

use of a truck is hauling cargo. The payload distance is constructed as follows:

PDi = VMTi · wi · ξi (5)

where wi denotes the payload weight (in tons), and ξi is the percentage of loaded trips.

To estimate how payload distance responds to changes in per-mile fuel cost, I follow

the same specification as in equation (4):

ln PDi = α0 + δ ln ci +Xi
′αX +Zi

′αZ + θs + τt + φb + εi (6)

where δ is interpreted as the elasticity of payload distance with respect to per-mile fuel

cost.

3.2 Identification

To derive consistent estimates of elasticities of VMT and payload distance, I need to

ensure that the variations in both fuel efficiency, MPG, and fuel price, pi, are exoge-

nous. Given the possibility of reverse causality between truck i’s VMT and its own fuel

efficiency (MPGi), using individual MPGi in equation (3) would be problematic. In-

10



stead, I use the mean MPG of all trucks that share the same characteristics as truck i.

Since fuel efficiency of a vehicle is largely determined by its engineering characteristics

and payload weight, the mean MPG represents the fuel efficiency at the truck-model

level, which is exogenous to an individual trucker’s decision. Thus, this adjustment

eliminates the influence of individual fuel efficiency on the decision of VMT, which is

commonly known as the “rebound effect”. Admittedly, if owners of similar trucks share

similar expectations of VMT and factor such anticipations of usage into their purchase

decisions, the estimated responsiveness using the stated methods would be biased up-

wards (Gillingham, 2012).9 In an alternative specification, I include the interaction

terms of survey year, business sector and region fixed effects to capture the common

effect on trucking due to regional industry shocks during the year in question. If, for

example, the construction industry is booming in California in 2002, it should increase

the demand for trucking on the west coast. Such shocks will be absorbed by the inter-

action terms. In fact, as shown in Tables 2 and 3, the estimation results remain almost

the same with or without the interaction terms, showing that the potential bias from

ignoring the anticipation effect is relatively trivial. That being said, I conservatively

claim that my estimates are the upper bounds of elasticities.

The assumption that individual drivers are price-takers with respect to fuel prices,

though common in the literature, can be questionable in some cases. For example,

a local demand shock to VMT may cause a short-term drawback of fuel supply and

therefore temporarily drive up local fuel prices. Another scenario which may bias the

estimates stems from truckers’ forecasts of future fuel prices. To control for the plau-

sible endogeneity of fuel prices, I instrument fuel prices with the inflation-adjusted

average prices in states that are not bordering with the home base states.10 As fuel

prices across states are correlated, the relevance condition of a valid instrument is sat-

isfied.11 The exclusion condition that a valid instrument must satisfy relies on a rather

strong assumption: a driver in home base state s is not affected by fuel price changes in

states further than his neighboring states. Neighboring states are excluded due to the

possibility that drivers may cross states to purchase fuel if lower price is observed. An-

other plausible instrument is global crude oil price. Global oil price is clearly correlated

with local diesel fuel prices, and it is unlikely that an individual trucker’s operational

decision would affect the global oil price. I provide the estimation results with the

alternative instrumental variable in section 5.2.

9Gillingham (2012) estimates the fuel price elasticities for passenger vehicles and compares the estimates
with and without considering people’s anticipation of driving. He finds that the elasticity (in absolute value)
is higher by 0.06 if failing to consider the anticipation of driving, compared to the alternative case.

10In regressions, the instrumental variable is constructed by taking the ratio of diesel price in non-
neighboring states over average MPG of the same type of trucks.

11First stage estimation results shown in Table B1 in Appendix B.
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The exclusion restriction holds once I control for some important unobservables

with fixed effects. Home base state fixed effects and survey year fixed effects account

for time-invariant and nationwide influences respectively. The growth in state GDP is

included to capture the potential impact of local economic development on the demand

for VMT. I control as much as possible for truck characteristics that affect driving and

capture the variation solely due to difference in fuel costs. The truck characteristics

include model year, make, body/trailer type, cab type, axle configuration, average ve-

hicle weight (in natural log), odometer reading (in natural log), engine displacement,

radial tire installation and number of cylinders. In addition, I account for business

characteristics in the estimation, such as operator class, business sector of the ship-

ment, fleet size and primary cargo product. Depending on the operational area, the

unobserved factors should affect trucks in the same region (broader than states)12 in a

similar way. Robust standard errors are obtained in all regressions.13

4 Empirical Results

4.1 Elasticities

The results from estimating equation (4) are shown in Table (2). The estimations

are conducted separately for combination trucks and vocational vehicles. All fixed

effects and controls discussed above are included. Columns (1) and (4) present the

medium-run elasticities of VMT with respect to fuel costs, estimated using ordinary

least squares (OLS). To address the plausible endogeneity of fuel cost per mile, I show

the elasticities using two-stage least squares in columns (2) and (5), with the instru-

mental variables (IV) being the average cost per-mile of driving in states that are not

bordering the home base states. The estimated elasticities of VMT are highly statis-

tically significant. In general, vocational vehicles are more responsive to changes in

cost per-mile of driving. Specifically, a 10% increase in fuel cost per mile results in a

2.34% reduction in driving distance for combination trucks and 2.70% for vocational

vehicles. The estimated coefficients of other control variables show the expected signs

and remain relatively stable across specifications – highlighting the robustness of the

main results. Interaction terms among business sectors, survey years and regions are

included in columns (3) and (6). These specifications address concerns regarding VMT

anticipation – drivers with similar trucks may have similar expectations of future driv-

12I adopt the regional division provided by the U.S. Energy Information Administration. See the map
shown in Figure C1 in Appendix C.

13I cluster the standard errors at the level of home base states in baseline OLS regressions. State and year
two-way clustering are used in IV regressions.
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Table 2: Estimated Elasticities of VMT
Combination Trucks Vocational Vehicles

OLS IV IV OLS IV IV

(1) (2) (3) (4) (5) (6)

ln(per-mile fuel cost) -0.182∗∗∗ -0.234∗∗∗ -0.238∗∗∗ -0.260∗∗∗ -0.270∗∗∗ -0.272∗∗∗

(0.0400) (0.0311) (0.0304) (0.0208) (0.0211) (0.0203)

Control variables

ln(average vehicle weight) 0.400∗∗∗ 0.402∗∗∗ 0.393∗∗∗ 0.212∗∗∗ 0.213∗∗∗ 0.210∗∗∗

(0.0229) (0.0225) (0.0217) (0.0169) (0.0168) (0.0162)

ln(odometer reading) 0.488∗∗∗ 0.489∗∗∗ 0.487∗∗∗ 0.489∗∗∗ 0.489∗∗∗ 0.490∗∗∗

(0.00761) (0.00765) (0.00754) (0.0109) (0.0108) (0.0108)

ln(state GDP) 0.0784 0.0786∗ 0.0401 0.0146 0.0148 -0.0135

(0.0380) (0.0376) (0.0300) (0.0464) (0.0459) (0.0320)

Survey year FE Yes Yes Yes Yes Yes Yes

Home base state FE Yes Yes Yes Yes Yes Yes

Other truck characteristics Yes Yes Yes Yes Yes Yes

Operational characteristics Yes Yes Yes Yes Yes Yes

Business × year × region No No Yes No No Yes

No. of observation 112,364 112,364 112,364 83,242 83,242 83,242

Adjusted R2 0.550 0.550 0.556 0.426 0.426 0.430

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

The robust standard errors (in parentheses) in (1) and (4) are clustered at the level of home base states.

The robust standard errors in (2), (3), (5) and (6) are clustered at the level of states and survey years.

Other truck characteristics include model year, average vehicle weight (including cargo), odometer reading,

axle configuration, make, body/trailer type, cab type, engine displacement, number of cylinders and radial

tire installation.

Operational characteristics include operator class, business sector, fleet size and main cargo product.

ing demand which may affect today’s choices of fuel economy. Comparing columns (2)

and (3) for combination trucks, as well as columns (5) and (6) for vocational vehicles, I

find that the elasticities remain nearly the same. The robustness of the results suggests

that the anticipation effect resulting from local industry demand shock is small.

Table (3) presents the estimated elasticities of payload distance with respect to

per-mile fuel cost. A 10% increase in per-mile fuel cost induces a reduction in payload

distance by about 4.28% for combination trucks and 3.62% for vocational vehicles once

I control for the endogeneity of fuel prices, as shown in columns (2) and (5). The

estimates are highly statistically significant. The fact that they are even higher than

elasticities of VMT in absolute terms implies that the average payload weight decreases

as per-mile fuel cost increases. While the reason cannot be tested with the available
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Table 3: Estimated Elasticities of Payload Distance
Combination Trucks Vocational Vehicles

OLS IV IV OLS IV IV

(1) (2) (3) (4) (5) (6)

ln(per-mile fuel cost) -0.366∗∗∗ -0.428∗∗∗ -0.425∗∗∗ -0.355∗∗∗ -0.362∗∗∗ -0.361∗∗∗

(0.0442) (0.0317) (0.0306) (0.0250) (0.0259) (0.0252)

Control variables

ln(average vehicle weight) 2.540∗∗∗ 2.543∗∗∗ 2.534∗∗∗ 1.935∗∗∗ 1.935∗∗∗ 1.929∗∗∗

(0.0353) (0.0345) (0.0346) (0.0268) (0.0264) (0.0266)

ln(odometer reading) 0.484∗∗∗ 0.485∗∗∗ 0.483∗∗∗ 0.512∗∗∗ 0.512∗∗∗ 0.509∗∗∗

(0.00838) (0.00841) (0.00828) (0.0120) (0.0118) (0.0114)

ln(state GDP) 0.0616 0.0618∗ 0.0500 0.0497 0.0498 0.0254

(0.0379) (0.0375) (0.0343) (0.0691) (0.0683) (0.0503)

Survey year FE Yes Yes Yes Yes Yes Yes

Home base state FE Yes Yes Yes Yes Yes Yes

Other truck characteristics Yes Yes Yes Yes Yes Yes

Operational characteristics Yes Yes Yes Yes Yes Yes

Business × year × region No No Yes No No Yes

No. of observation 107,963 107,963 107,963 75,142 75,142 75,142

Adjusted R2 0.681 0.681 0.685 0.561 0.561 0.565

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

The robust standard errors (in parentheses) in (1) and (4) are clustered at the level of home base states.

The robust standard errors in (2), (3), (5) and (6) are clustered at the level of states and survey years.

Other truck characteristics include model year, average vehicle weight (including cargo), odometer reading,

axle configuration, make, body/trailer type, cab type, engine displacement, number of cylinders and radial

tire installation.

Operational characteristics include operator class, business sector, fleet size and main cargo product.

data, it is possible that truckers undertake shorter but more frequent trips (therefore

lighter cargo on average) and/or they pick up more profitable cargo to compensate for

the increase in fuel costs.

4.2 Heterogeneity in Responsiveness

It is important to understand the heterogeneity in responsiveness to changes in fuel

costs for two main reasons. First, unlike passenger vehicles, heavy-duty trucks serve

a wide range of purposes besides transporting goods from point A to point B. Het-

erogeneity in truckers’ responsiveness to fuel cost reflects differences in flexibility of

schedule and shipping demand. For this reason, trucks for business or personal ser-

vices are likely to be more responsive than those in mining or forestry. Second, truck
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characteristics, such as vehicle weight and loading capacity, affect truckers’ sensitivity

to changes in fuel costs and their ability to comply with environmental policies. Heav-

ier trucks may encounter more difficulties in changing routes and/or schedules, due to

business restrictions and road limitations. Operational factors, such as operator class

and fleet size, can also result in different responsiveness to changes in fuel costs. Long

distance shipment may be assigned to trucks with relatively low per-mile fuel cost, for

example. Such substitution is more likely to appear in a large fleet. For owner opera-

tors, however, opportunities for such substitution may be more limited. Ignoring these

differences and imposing uniform policies may result in inequality and overall welfare

loss. It is thus essential to recognize the heterogeneity of elasticities among various

truck groups, and design policies and compliance strategies accordingly. In the rest of

this section, I explore the heterogeneity in responsiveness of VMT and payload distance

to fuel costs by vehicle weight class and business sector. The elasticities are necessary

to calculate the optimal differentiated fuel taxes. The heterogeneous responsiveness by

operator class and fleet size is discussed in Appendix D.

4.2.1 Weight Class

Gross vehicle weight rating (GVWR) is the most common vehicle classification used

by government agencies to set differentiated standards. GVWR defines the weight

range of the maximum loading capacity in addition to the weight of the vehicle itself.

By definition, GVWRs of combination trucks are either class 7 or 8, while the weight

ratings for vocational vehicles range from class 3 to 8. The estimation is consistent

with the main specification, discussed in section 3, with additional interaction terms of

GVWR dummies and per-mile fuel cost. I use t-test on the coefficients of the interaction

terms to decide if the heterogeneity in responsiveness is valid. If the coefficient is

statistically significant, it indicates that the responsiveness of truckers in this groups

is significantly different from that in the baseline group. As shown in Table 4, lighter

combination trucks are generally more responsive to changes in fuel costs. Facing a

10% increase in per-mile fuel cost, combination trucks that are lighter than 26,000

pounds (or GVWR 7) tend to reduce their annual mileage by 3.81%, while heavier

trucks’ VMT only drops by 2.16%. Heavy-duty 18-wheeler trucks face not only more

road use limits than lighter trucks, but also more schedule constraints especially for

long-haul trucks. The trend holds true for vocational vehicles in most cases, except for

class 3. It is plausible that most class 3 vocational vehicles are step vans, primarily

used for local delivery businesses. Their choice of routes or schedules tend to be less

flexible.
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Table 4: Elasticities by Weight Class
Dependent variable: ln(VMT) ln(PD)

Combination Vocational Combination Vocational

(1) (2) (3) (4)

Elasticities by weight class:

GVWR = 3 -0.225∗∗∗ -0.499∗∗∗

(0.0833) (0.134)

GVWR = 4 -0.373∗∗ -0.363

(0.190) (0.251)

GVWR = 5 -0.461∗∗∗ -0.627∗∗∗

(0.161) (0.197)

GVWR = 6 -0.295∗∗∗ -0.311∗∗∗

(0.0354) (0.0507)

GVWR = 7 -0.381∗∗∗ -0.296∗∗∗ -0.465∗∗∗ -0.352∗∗∗

(0.0485) (0.0335) (0.0618) (0.0434)

GVWR = 8 -0.216∗∗∗ -0.206∗∗∗ -0.418∗∗∗ -0.293∗∗∗

(0.0326) (0.0238) (0.0327) (0.0265)

Control variables

ln(average vehicle weight) 0.403∗∗∗ 0.247∗∗∗ 2.546∗∗∗ 2.000∗∗∗

(0.0229) (0.0180) (0.0345) (0.0285)

ln(odometer reading) 0.486∗∗∗ 0.488∗∗∗ 0.483∗∗∗ 0.510∗∗∗

(0.00736) (0.0108) (0.00807) (0.0118)

ln(state GDP) 0.0827∗∗ 0.00746 0.0675∗ 0.0359

(0.0374) (0.0459) (0.0375) (0.0660)

Survey year FE Yes Yes Yes Yes

Home base state FE Yes Yes Yes Yes

Other truck characteristics Yes Yes Yes Yes

Business and operational characteristics Yes Yes Yes Yes

No. of observation 113,464 83,970 109,047 75,829

Adjusted R2 0.548 0.426 0.679 0.562

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All robust standard errors (in parentheses) are clustered at the level of home base states and survey years.

In each regression, GVWR dummy variables are interacted with ln(fuel cost per mile). The elasticity for a

particular weight class is the sum of coefficient of the interaction term and that of ln(fuel cost per mile).

The robust standard errors are calculated based on the linear combinations.
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Table 5: Distribution of Business Sectors in 2002
Business sector Combination trucks Vocational vehicles

(1) (2)

Agriculture or forestry 12% 10%

Business and personal service 1% 8%

Construction 8% 26%

For-hire transportation 56% 12%

Manufacturing 5% 6%

Mining or quarrying 2% 2%

Rental or contractor 1% 4%

Retail and wholesale trade 10% 18%

Other 5% 14%

Total 100% 100%

Data source: VIUS 2002

4.2.2 Business Sector

Business sector refers to the industry of either the shipment cargo or the primary task.

The distribution of truck counts across the nine business sectors in my sample are given

separately in Table 5 for combination trucks and vocational vehicles. The majority of

combination trucks are used for for-hire transportation. Other major business sectors

include retail/wholesale trade, farming, manufacturing and construction. Trucks in dif-

ferent business sectors are subject to various purposes and constraints; therefore, their

VMT and payload distance decisions may respond to fuel costs differently from one

another. To examine such heterogeneity among business sectors, I estimate equation

(4) and equation (6) with interaction terms of the nine business sector dummy variables

and the natural log of per-mile fuel cost. The elasticities of interest are obtained by

adding the coefficient of ln(cost of driving) to the coefficients of the interaction terms.

The heterogeneity in elasticities of VMT by business sector is presented in Table

6. All of these regressions use IV to control for the plausibly endogenous fuel costs.

Most of the estimates are highly statistically significant. The estimated elasticities for

combination trucks range from -0.49 to 0.17, and for vocational vehicles from -0.35 to

-0.10. Combination trucks in business and personal services are the most responsive to

changes in per-mile fuel cost. A 10% increase in per-mile fuel cost induces reduction

in VMT by 4.9%. For both types of trucks in mining or quarrying, the estimated elas-

ticities are not statistically significant, possibly because of the relatively rigid demand

for truck transportation at mines. Surprisingly, combination trucks in agriculture or

forestry are driven more as per-mile fuel cost rises.

17



Table 6: Elasticities by Business Sector
Dependent variable: ln(VMT) ln(PD)

Combination Vocational Combination Vocational

(1) (2) (3) (4)

Elasticities by business sector:

Agriculture or forestry 0.174∗∗ -0.310∗∗∗ -0.0677 -0.308∗∗∗

(0.0721) (0.0458) (0.0672) (0.0500)

Business and personal service -0.490∗∗∗ -0.318∗∗∗ -0.668∗∗∗ -0.384∗∗∗

(0.13) (0.0298) (0.153) (0.0448)

Construction -0.262∗∗∗ -0.257∗∗∗ -0.377∗∗∗ -0.351∗∗∗

(0.065) (0.0314) (0.084) (0.0362)

For-hire transportation -0.271∗∗∗ -0.223∗∗∗ -0.513∗∗∗ -0.453∗∗∗

(0.0362) (0.0343) (0.0431) (0.0435)

Manufacturing -0.481∗∗∗ -0.258∗∗∗ -0.616∗∗∗ -0.325∗∗∗

(0.0583) (0.0486) (0.0671) (0.0648)

Mining or quarrying -0.19 -0.0984 -0.293∗∗ -0.0866

(0.125) (0.0731) (0.129) (0.107)

Rental or contractor -0.294∗∗∗ -0.347∗∗∗ -0.416∗∗∗ -0.478∗∗∗

(0.077) (0.0484) (0.117) (0.0652)

Retail and wholesale trade -0.317∗∗∗ -0.245∗∗∗ -0.533∗∗∗ -0.300∗∗∗

(0.0482) (0.0264) (0.0525) (0.0378)

Other -0.244 -0.272∗∗∗ -0.172 -0.549∗∗∗

(0.185) (0.0376) (0.161) (0.0581)

Control variables

ln(average vehicle weight) 0.408∗∗∗ 0.215∗∗∗ 2.547∗∗∗ 1.938∗∗∗

(0.0226) (0.0169) (0.0347) (0.0266)

ln(odometer reading) 0.489∗∗∗ 0.490∗∗∗ 0.486∗∗∗ 0.511∗∗∗

(0.00768) (0.0108) (0.00847) (0.0119)

ln(state GDP) 0.0799∗∗ 0.0134 0.0631∗∗∗ 0.0463

(0.0371) (0.0457) (0.0372) (0.0688)

Survey year FE Yes Yes Yes Yes

Home base state FE Yes Yes Yes Yes

Other truck characteristics Yes Yes Yes Yes

Business and operational characteristics Yes Yes Yes Yes

No. of observation 112,364 83,242 107,963 75,142

Adjusted R2 0.550 0.427 0.681 0.562

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All robust standard errors (in parentheses) are clustered at the level of home base states and survey years.

In each regression, business sector dummy variables are interacted with ln(fuel cost per mile). The elasticity

for a particular business sector is the sum of coefficient of the interaction term and that of ln(fuel cost per

mile). The robust standard errors are calculated based on the linear combinations.
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Table 7: Robustness checks and falsification test
Primary results Aggregate data Alternative IV Falsification test

(1) (2) (3) (4)

Combination Trucks:

Elasticity of VMT -0.234∗∗∗ -0.229∗∗∗ -0.225∗∗∗ -0.00679

(0.0311) (0.0332) (0.0313) (0.00637)

Elasticity of PD -0.428∗∗∗ -0.418∗∗∗ -0.419∗∗∗ -0.00538

(0.0317) (0.0276) (0.0317) (0.00917)

Vocational Vehicles:

Elasticity of VMT -0.270∗∗∗ -0.276∗∗∗ -0.269∗∗∗ 0.00991

(0.0211) (0.0131) (0.0210) (0.00965)

Elasticity of PD -0.362∗∗∗ -0.355∗∗∗ -0.359∗∗∗ 0.0176

(0.0259) (0.0178) (0.0256) (0.0131)

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All robust standard errors (in parentheses) are clustered at the level of home base states and survey years.

Columns (3) and (4) in Table 6 provide the heterogeneous estimates of elasticities

of payload distance in different business sectors. In particular, trucks in business and

personal service, as well as for-hire transportation, have higher elasticities (in absolute

value) for both VMT and PD than the averages shown in Table 3. The reduction

in payload distance ranges from 0.7% to 6.2% across the nine business sectors when

per-mile fuel cost increases by 10%.

5 Robustness and Falsification Checks

I conduct two robustness checks. First, I aggregate the data at the truck model level

to address any potential measurement error.14 Second, I construct an alternative set

of instrumental variables by taking the ratio of truck-level MPG and inflation adjusted

crude oil prices. I show that the primary results, as well as the heterogeneity in

elasticities, remain robust in these specifications. Following the robustness checks, I

conduct a falsification test by randomizing the observations of fuel costs to eliminate

the possibility that my estimation results might be driven by factors outside of the

model.

14Some variables in the survey rely on truckers’ recall of driving distance and travel location. Thus, the
self-reported data may contain measurement error.
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5.1 Aggregate Data

To minimize the potential effect of measurement errors or outliers, I aggregate the data

at the level of survey year, home base state, body/trailer type, make axle configura-

tion, business sector and operator class.15 I apply the same methods as discussed in

section 3. Column (2) in Table 7 presents the estimated overall elasticities using the

IV approach.16 The estimates look similar to the primary estimation results, shown in

section 4 and repeated in column (1) in Table 7. The similarity in results indicates that

the primary estimation outcomes are not driven by individual outliers or measurement

errors.

5.2 Alternative Instrumental Variables

Global crude oil is the source of all distillate products. Its price is often used as an

instrumental variable for the plausibly endogeneous fuel price (Gillingham, 2014). The

second instrumental variable I use is constructed as the ratio of crude oil price over

truck model-level fuel efficiency. Diesel prices in each state are clearly correlated with

the price of their upstream product, crude oil. I show further evidence of this corre-

lation in the first-stage estimation results in Appendix B. The second instrument also

satisfies the exclusion requirement, as the global crude oil price is exogenous to indi-

vidual truckers’ driving decisions. The estimation results of overall elasticities using

the IV approach are presented in column (3) in Table 7.17 The estimates are within

or identical to the 95% confidence interval of the primary results shown in column (1),

confirming the robustness of my main results.

5.3 Falsification Test

I conduct a falsification test by randomizing the variable, fuel cost per mile, among all

observations. If the model is reasonable and the data are adequate, the coefficients on

randomized fuel costs should be insignificant. As shown in column (4) in Table 7, none

of the estimated elasticities is significantly different from zero. This suggests that the

negative effects of fuel costs on VMT and payload distance are valid.

15The data aggregation method in general does not affect the robustness of my results.
16Detailed estimation results using aggregate data can be found in Table E5.
17The heterogeneity in elasticities in different subgroups of trucks are presented in Table E6.
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6 Differentiated Fuel Taxes

The estimated heterogeneous elasticities for trucks in different weight classes and busi-

ness sectors provide important inputs for calculating optimally differentiated fuel taxes.

It is evident in both theory and empirics that implementing differentiated fuel taxes

achieves higher welfare gains than traditional average taxes. Based on the framework

built by Parry and Small (2005) and Parry (2008), I develop a general equilibrium

model including households, production sectors, the trucking fleet and the govern-

ment. The main difference from Parry (2008) is three-fold. First, shipping-intensive

goods18 are priced at the per-ton-mile level, in lieu of per-mile level as in Parry (2008).

This setup is more realistic for the heavy-duty trucking industry and consistent with

how trucking operation is measured in the newly announced regulatory standards in

2016. Second, I allow truckers to choose routes based on shipping demand, while VMT

is assumed constant in Parry (2008). Third, the model incorporates the implemen-

tation of differentiated diesel taxes, while Parry (2008) presents the structure for a

uniform fuel tax. From the analytical model, I derive the expression for the marginal

welfare effect. The optimal tax is set to maximize welfare. The numerical calculation

of the optimal tax relies upon the estimates in this study, parameters from the existing

literature, and a number of assumptions.

6.1 The analytical framework

(i) Household

Suppose a representative household’s utility function can be written as follows:

u = u{Ri, Y, A,M,Z} (7)

Ri, measured in ton-miles, denotes consumption of a market good whose production

and/or distribution involves nontrivial shipping cost. All terms are expressed per

capita per year.19 Index i indicates a GVWR class.20 Ri is defined by the product of

vehicle-miles-traveled, Ti and cargo weight, Wi:

Ri ≡ Ti ·Wi . (8)

18A shipping-intensive good is defined as a market good whose production/distribution involves significant
trucking costs (Parry, 2008).

19The time frame is not important for the model setup per se, but I specify it to be annual average in
consistence with the empirical analysis.

20Technically, index i can refer to any type of categorization, such as truck body types, operation classes,
fleet sizes or shipping business sectors. In the numerical calculation, I extend it to distinguish operations in
rural or urban areas.
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All other consumption is denoted by Y . A is the household’s VMT of passenger ve-

hicles. M denotes total travel time. Z represents all negative externalities incurred

due to auto and trucking activities, including air pollution, energy security, noise, and

accidents. The utility function u{·} is increasing and quasi-concave in Ri, Y and A. It

is decreasing in M and Z with uMM , uZZ < 0.

The household is subject to two constraints - a time constraint and a budget con-

straint, shown in equations (9) and (10) respectively. In equation (9),

M =
∑
i

πA , (9)

π is the inverse of the average on-road driving speed.

I + LST =
∑
i

piRi + Y + (tG + PG)fGA (10)

In equation (10), I denotes household income; LST denotes a lump-sum transfer from

the government. pi is the market price for good Ri, measured in dollars/ton-mile.

The price of general consumption Y is normalized to one. The final gasoline price for

consumers consists of the gasoline tax, tG, and the pre-tax gasoline price, PG. fG is

the inverse of fuel economy of the household’s automobile.

(ii) Production

Shipping costs during production and distribution of good Ri are assumed to be borne

by the final consumers through the equilibrium market price, pi, which can be written

as the following expression.

pi = p0
i + pRi . (11)

Per-unit production cost is denoted by p0
i , while pRi is the per-ton-mile shipping cost

paid to the trucking companies. The unit of production (and consumption) of Ri is

normalized by the quantity transported by per-ton-mile of freight.

(iii) Freight

The fleet manager in a trucking company takes the demand for freight Ri as exogenous,

and chooses fuel efficiency and travel routes to minimize the total operation costs. Note

that the rebound effect is incorporated since I allow the travel distance to vary with the

fuel efficiency. If the industry is perfectly competitive, the shipping price in equilibrium

is equal to the operation cost on a per-ton-mile basis:

pRi = (ti + PD)qi +
1

Wi

(
ωπ + ki{ai}

)
, (12)
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in which ti refers to the diesel fuel tax; PD is the pre-tax diesel price. qi denotes the

shipping efficiency, measured in gallons/ton-mile. Truck drivers are paid by the dis-

tance traveled at the rate of ω, which can be translated to per-mile wage by multiplying

the time spent driving one mile, π. ki{ai} indicates the maintenance cost, which is

a convex function of truck vintage, ai. Solving the fleet manager’s cost minimization

problem yields the following equation:

(ti + PD −
k′i
f2
i

)Ti = −[ωπ + ki + (ti + PD)fi]
dTi
dfi

. (13)

(iv) External costs

The traffic congestion can be reflected in the average time of per-mile travel, π. Fol-

lowing Parry (2008), I write π as a function of truck miles, Ti, and auto miles, Ai:

π = π(Ti, A) . (14)

The negative externality on pavement, L, is proportional to the shipping intensity, Ri,

and can be written as follows:

L =
∑
i

zLi Ri (15)

where zLi is the per ton-mile damage to the pavement caused by truck operation. Other

externalities, Z, induced by both truck and auto driving, include local and global air

pollution, energy security, noise, and accidents:

Z = zAA+
∑
i

(zFi Fi + zTi Ti) , (16)

in which zA is the per-mile external cost induced by auto driving. This term provides

a combined effect of local and global pollution, oil dependency, accidents and noise

pollution. The total external cost of auto driving is proportional to the miles driven,

A, since per-mile fuel use is assumed content. In contrast, a truck’s fuel efficiency may

vary with payload weight; therefore, I define them separately. zTi indicates the milage-

related external costs per mile from noise and accidents. zFi denotes the fuel-related

external costs per gallon, which include local and global air pollution, as well as oil

dependency.

(v) Government

Suppose the government spends fuel tax revenue on road maintenance and a lump-

sum transfer to households. The government’s budget constraint can be expressed as
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follows:

LST + L =
∑
i

tiFi + tGfGA . (17)

6.2 Formulation of the Optimal Taxes

The optimally differentiated taxes that capture each group of trucks’ marginal external

damage can be calculated as follows. I derive the expression of marginal welfare effect

by totally differentiating household’s indirect utility function, ũ, with respect to diesel

fuel tax, ti:
21

1

λ

dũ

dti
= (MECFi − ti)(−

dFi
dti

) +MECTi
(
− dTi
dti

)
− (MECAi − tGfG)

dA

dti
, (18)

in which

MECFi = zFi (−uZ
λ

) , (19)

MECTi = zTi (−uZ
λ

) + zLi Wi + (ωTi −
A

λ
uπ)πTi , (20)

and

MECAi = zA(−uZ
λ

) +
[
(ωTi −

A

λ
uπ)πA

]
. (21)

As shown in equation (19), the marginal external cost related to fuel use by trucks,

MECFi , combines the monetized externalities of local and global air pollution, as well

as oil dependency. The marginal external cost, MECTi , i.e. the marginal damage of

an additional mile driven, is derived by summing the three terms in equation (20).

The first term is the monetized per-mile costs of noise pollution and accidents. The

second term - the product of per-ton-mile pavement damage cost and payload weight -

is the per-mile cost of road deterioration by truck operation. The last term computes

the effect of per-mile truck driving on road congestion. πTi is the incremental time of

per-mile travel for all road users as a result of truck i’s additional mile of operation.

The total miles driven by both trucks and passenger vehicles are weighted by their

value of time – ω for trucks and −uπ
λ for autos. The marginal external cost of auto

driving, detailed in equation (21), summarizes the monetized per-mile external cost of

air pollution, oil dependency, noise, accidents and road congestions.

The (second-best) optimal diesel fuel tax for each type of truck can be derived by

setting the marginal welfare effect to zero. After collecting and rearranging terms, the

21Derivation detail can be found in Appendix F.1.
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optimal diesel tax is expressed as follows:22

t∗i = MECFi +MECTi

( 1

fi

)(εTi
εFi

)
− (MECAi − tGfG)eiβi

( 1

fi

)(εTi
εFi

)
, (22)

in which εTi denotes the elasticity of VMT with respect to fuel price; εFi refers to the

elasticity of fuel use with respect to fuel price; congestion offset βi and passenger vehicle

equivalent ei are expressed as

βi = −
( ∂π
∂A

dA

dti

)
/
( ∂π
∂Ti

dTi
dti

)
(23)

and

ei =
∂π/∂Ti
∂π/∂A

. (24)

6.3 Parameters

Table 8 provides the estimates of elasticities and mean values of fuel efficiency in each

category of weight class and business sector. Column (1) shows the elasticities of VMT

with respect to per-mile fuel cost. The estimated elasticities of fi (inverse of MPG)

with respect to diesel fuel price, listed in column (2), are derived by taking the opposite

sign as elasticities of MPG. The full estimation results are shown in Table 10. The

elasticity of VMT with respect to diesel fuel price, εTi , can be derived as follows:

εTi = ηTi (εfi + 1) , (25)

in which ηTi is the elasticity of VMT with respect to per-mile fuel cost (in column 1),

and εfi is the elasticity of MPG with respect to diesel fuel price (in column 2). The

resulting εTi ’s are shown in column (3) of Table 8.

The elasticity of fuel use with respect to fuel price, εFi can be derived as follows:

εFi = εTi + εfi (26)

The results are shown in column (4) of Table 10. The detailed derivations of equation

(25) and equation (26) are documented in Appendix F.3.

I adopt Parry (2008)’s assmption that passenger-car equivalent, ei, is 2.2 for com-

bination trucks, and 1.9 for vocational vehicles. The congestion offset, βi, is 0.6 for

urban areas and 0 for rural areas. As there is no information in VIUS to distinguish

22Detailed derivation can be found in Appendix F.2.
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Table 8: Elasticities and Fuel Economy
Truck category ηTi εfi εTi εFi MPG

(1) (2) (3) (4) (5)

Combination trucks

GVWR = 7 -0.37 -0.01 -0.36 -0.38 6.35

GVWR = 8 -0.21 0.03 -0.21 -0.18 5.53

Vocational vehicles

GVWR = 3 -0.23 0.20 -0.28 -0.08 11.60

GVWR = 4 -0.29 0.09 -0.32 -0.23 10.58

GVWR = 5 -0.47 0.19 -0.56 -0.36 9.99

GVWR = 6 -0.30 0.01 -0.30 -0.29 7.83

GVWR = 7 -0.30 -0.01 -0.29 -0.31 7.73

GVWR = 8 -0.20 0.06 -0.22 -0.15 6.50

Combination trucks

Agriculture or forestry -0.23 0.02 -0.23 -0.21 5.36

Business and personal service -0.49 -0.06 -0.46 -0.52 5.79

Construction -0.26 -0.01 -0.26 -0.27 5.54

For-hire transportation -0.27 0.06 -0.29 -0.23 5.53

Manufacturing -0.48 -0.01 -0.48 -0.49 5.71

Mining or quarrying -0.19 -0.10 -0.17 -0.27 5.10

Other -0.24 -0.02 -0.24 -0.26 5.94

Rental or contractor -0.29 0.06 -0.31 -0.25 6.04

Retail and wholesale trade -0.32 0.04 -0.33 -0.29 5.86

Vocational vehicles

Agriculture or forestry -0.31 0.08 -0.34 -0.25 6.85

Business and personal service -0.32 0.14 -0.36 -0.22 7.02

Construction -0.26 0.06 -0.27 -0.21 6.49

For-hire transportation -0.22 0.05 -0.24 -0.18 6.86

Manufacturing -0.26 -0.01 -0.26 -0.26 6.93

Mining or quarrying -0.10 -0.06 -0.09 -0.15 5.91

Rental or contractor -0.35 0.01 -0.35 -0.34 8.52

Retail and wholesale trade -0.25 0.01 -0.25 -0.23 8.41

Other -0.27 0.11 -0.30 -0.19 7.95

Note: ηTi : elasticity of VMT with respect to per-mile fuel cost; εfi : elasticity of inverse of MPG with respect

to fuel price; εTi : elasticity of VMT with respect to fuel price; εFi : elasticity of fuel use with respect to fuel

price.
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Table 9: Marginal External Costs
Fuel related MEC (cents/gallon) Mileage related MEC (cents/mile)

Local

air pol-

lution

Global

air pol-

lution

Oil

depen-

dency

Sum Road Conges-

tion

Acci-

dents

Noise Sum

Combination trucks

GVWR 7 Rural 26.9 14.0 16.0 56.9 3.3 1.9 0.9 0.2 6.2

Urban 24.1 14.0 16.0 54.1 10.5 18.4 1.2 2.8 32.8

GVWR 8 Rural 23.4 14.0 16.0 53.4 12.7 2.2 0.9 0.2 16.0

Urban 21.0 14.0 16.0 51.0 40.9 20.1 1.2 3.0 65.2

Vocational vehicles

GVWR 3 Rural 15.6 14.0 16.0 45.6 0.0 0.8 1.0 0.0 1.8

Urban 14.0 14.0 16.0 44.0 0.1 7.7 1.2 0.1 9.1

GVWR 4 Rural 31.0 14.0 16.0 61.0 0.5 1.6 0.7 0.1 2.9

Urban 27.9 14.0 16.0 57.9 1.6 16.1 1.0 0.8 19.5

GVWR 5 Rural 29.3 14.0 16.0 59.3 0.5 1.6 0.7 0.1 2.9

Urban 26.3 14.0 16.0 56.3 1.6 16.1 1.0 0.8 19.5

GVWR 6 Rural 23.0 14.0 16.0 53.0 0.5 1.6 0.7 0.1 2.9

Urban 20.6 14.0 16.0 50.6 1.6 16.1 1.0 0.8 19.5

GVWR 7 Rural 35.0 14.0 16.0 65.0 1.0 2.5 0.5 0.1 4.0

Urban 31.4 14.0 16.0 61.4 3.1 24.5 0.9 1.5 29.9

GVWR 8 Rural 29.4 14.0 16.0 59.4 5.6 3.3 0.5 0.1 9.5

Urban 26.3 14.0 16.0 56.3 18.1 32.6 0.9 1.7 53.3

Auto Rural 22.2 12.0 16.0 50.2 0.0 0.8 1.0 0.0 1.8

Urban 20.0 12.0 16.0 48.0 0.1 7.7 1.2 0.1 9.1

Note: Parameters of global air pollution and oil dependency are from Parry (2008). Other parameters are

from FHWA (2000). Parameters of local air pollution are documented in terms of cents/mile in FHWA

(2000). I multiply them with the corresponding fuel economy to convert to cents/gallon.
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between operations in rural and urban areas, two assumptions are made based on Parry

(2008) and FHWA (2000). First, elasticity of VMT in urban areas is assumed to be

70% of the estimate in rural areas for the same type of vehicles. Second, the ratio of

VMT in rural areas versus those in urban areas is 60%:40% for combination trucks,

and 35%:65% for vocational vehicles.

Table 9 provides the value of marginal external costs for different weight classes

and operation areas, most of which are drawn from the 1997 Federal Highway Cost

Allocation Study Final Report and its addendum. Summarizing the MEC of local air

pollution, global air pollution and oil dependency gives the fuel-related external cost

per gallon. Similarly, the mileage related MEC is computed by adding up the per-mile

external effect on road deterioration, congestion, accidents and noise pollution.

In Table 9, the MECs in each business sector are derived by taking the weighted

average of corresponding MEC, based on the distribution of GVWRs. The weights are

derived by taking the ratio of the number of trucks in each weight class and the total.

Figure 3 shows the distribution of GVWRs in each business sector.

6.4 Optimal Taxes

Substituting the parameters above into the optimal tax expression - equation (22), I

obtain the value of optimal taxes and their corresponding 95% confidence intervals.

Tables 11 and 12 present the results by weight class and business sector, respectively.

In general, the optimal tax is higher for the same type of trucks operating in urban

areas than those in rural areas as the marginal external cost is often greater in more

populated areas. Vehicles with a weight class 6 operating in rural areas have the lowest

optimal tax – about 77 cents per gallon. The optimally differentiated tax peaks at 4.76

dollars per gallon for weight class 8 vocational vehicles in urban areas. Compared to

differentiated taxes by weight class, optimal taxes by business sector show less vari-

ation, especially among vocational vehicles. As presented in Table 12, most of the

optimal taxes for vocational vehicles operating in rural areas are around one dollar per

gallon, and around 2.5 dollars per gallon in urban areas.

To put the calculated optimal taxes in perspective, in 2002, the federal diesel tax

was 24.5 cents/gallon (in 2002 US dollars), and the state diesel taxes ranged from 7.5

cents per gallon in Georgia to 31.8 cents per gallon in Pennsylvania. So, even the dif-

ferentiated optimal taxes on the lower end of the spectrum exceed the actual fuel tax

rates in 2002. If I ignore the heterogeneity of trucks’ responsiveness to changes in fuel

costs and apply the same optimal tax formula, equation (22), to average elasticities,
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Figure 3: Truck Count Distribution of GVWRs in Each Business Sector

Note: Truck count data are derived from VIUS (2002).
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shown in Table 2, I derive the optimal uniform fuel tax at 2.47 dollars per gallon for

combination trucks and 2.07 dollars/gallon for vocational vehicles. These values serve

as the baseline in the welfare analysis in section 6.5.

Since most of the elasticities of MPG with respect to fuel price are very close

to zero and/or cannot be precisely estimated, as shown in Table 10, I calculate the

95% confidence interval of the optimal taxes using the Delta method, and present the

resulting ranges of optimal taxes in columns (2) and (3) in Tables 11 and 12.

6.5 Welfare Effects

The deadweight loss (or excess burden) from a tax change can be derived by taking

the integral of each term in the marginal welfare effect expressed in equation (18). It

has proven to be more accurate, in some cases, than the “Harberger triangle” approx-

imation (Goulder and Williams, 2003). An additional income effect is incorporated to

reduce the deadweight loss in the following mechanism. The income effect increases

the labor supply, which leads to a reduction in labor market distortion caused by the

substitution effect. Following the approach developed in Goulder and Williams (2003),

the deadweight loss due to changes in diesel fuel tax can be expressed as follows.

1
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t2i
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T
i
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P̃D
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P̃D
ti

1− τLεLY
,

(27)

in which P̃D is the after tax price for diesel fuel, τL is the labor tax, and εLY is the

compensated income elasticity of labor supply.

Average fuel use and VMT for each category are drawn from the VIUS 2002 survey.

I assume a labor tax of 40 percent and compensated labor supply elasticity of 0.25.

The elasticity of labor supply is set to be lower than the midrange estimates in the

literature, leading to a more conservative estimate of the welfare effect.

The per-vehicle welfare effect for imposing the differentiated fuel taxes is calculated

according to equation (27), relative to the baseline scenario where uniform optimal

taxes are imposed. The total welfare change in each vehicle category is derived from

multiplying the per-vehicle welfare effect by the total number of vehicles in that cate-

gory.23

23The number of vehicles in each category can be observed in the VIUS surveys. The numbers used in the
total welfare calculation are from VIUS 2002.
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Table 10: Elasticities of MPG With Respect to Diesel Price
Combination trucks Vocational vehicles

OLS IV OLS IV

(1) (2) (3) (4)

Elasticities by weight class

GVWR = 3 -0.0749 -0.195∗∗∗

(0.0567) (0.0748)

GVWR = 4 -0.0729 -0.0864

(0.0604) (0.112)

GVWR = 5 0.00479 -0.192

(0.103) (0.137)

GVWR = 6 0.00116 -0.0146

(0.0193) (0.0261)

GVWR = 7 0.0592∗∗∗ 0.0109 0.0713∗∗∗ 0.0114

(0.0142) (0.0257) (0.0210) (0.0290)

GVWR = 8 0.0111 -0.0305∗∗∗ -0.000842 -0.0618∗∗∗

(0.00819) (0.00761) (0.0104) (0.0164)

Elasticities by business sector

Agriculture or forestry -0.0102 0.0161 0.0151 0.0832∗∗

(0.0182) (0.0225) (0.0194) (0.0339)

Business and personal service -0.0297 -0.0629 -0.0334 0.143∗∗

(0.0524) (0.0564) (0.0513) (0.0552)

Construction -0.0401∗ -0.00922 -0.0302 0.0618∗∗∗

(0.0204) (0.0279) (0.0192) (0.0235)

For-hire transportation -0.0496∗∗∗ 0.0575∗∗∗ -0.034 0.0549∗

(0.0113) (0.00828) (0.0283) (0.0281)

Manufacturing -0.0595∗∗∗ -0.0123 -0.0898 -0.00524

(0.0214) (0.0254) (0.0564) (0.0423)

Mining or quarrying 0.0376 -0.102∗ -0.0145 -0.0599

(0.0354) (0.058) (0.0423) (0.0383)

Rental or contractor -0.0953∗∗∗ 0.0626 -0.0717 0.0132

(0.0296) (0.0574) (0.0534) (0.0556)

Retail and wholesale trade -0.0272∗∗ 0.0379∗ -0.0451∗ 0.015

(0.011) (0.0156) (0.0179) (0.0245)

Other -0.115 -0.0214 0.0521 0.113∗∗

(0.0827) (0.063) (0.0491) (0.0568)

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

Other controls include truck characteristics, business characteristics, state GDP, home state FE. Robust

standard errors are clustered at the level of home base states. Instrumental variable is the inflation-adjusted

crude oil price.
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Table 11: Optimal Taxes Differentiated by Weight Class
Optimal tax (dollar/gallon) 95% confidence interval

(1) (2) (3)

Combination trucks

GVWR 7 Rural 0.95 [ 0.89 1.03 ]

Urban 2.04 [ 1.79 2.36 ]

GVWR 8 Rural 1.57 [ 1.48 1.68 ]

Urban 4.19 [ 3.86 4.57 ]

Vocational vehicles

GVWR 3 Rural 1.17 [ -0.55 0.68 ]

Urban 1.14 [ -0.55 0.66 ]

GVWR 4 Rural 1.03 [ 0.78 10.90 ]

Urban 2.35 [ 1.30 43.75 ]

GVWR 5 Rural 1.04 [ 0.79 2.66 ]

Urban 2.42 [ 1.39 9.24 ]

GVWR 6 Rural 0.77 [ 0.72 0.83 ]

Urban 1.50 [ 1.31 1.78 ]

GVWR 7 Rural 0.95 [ 0.89 1.04 ]

Urban 2.29 [ 1.95 2.79 ]

GVWR 8 Rural 1.46 [ 1.29 1.72 ]

Urban 4.76 [ 3.94 6.03 ]
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Table 12: Optimal Taxes Differentiated by Business Sector
Location Optimal tax (dollar/gallon) 95% confidence interval

(1) (2) (3)

Combination trucks:

Agriculture or forestry Rural 1.44 [ 1.25 1.72 ]

Urban 3.72 [ 3.05 4.73 ]

Business and personal service Rural 1.34 [ 1.12 1.67 ]

Urban 3.36 [ 2.59 4.55 ]

Construction Rural 1.37 [ 1.19 1.65 ]

Urban 3.49 [ 2.85 4.46 ]

For-hire transportation Rural 1.59 [ 1.51 1.69 ]

Urban 4.26 [ 3.96 4.61 ]

Manufacturing Rural 1.37 [ 1.25 1.51 ]

Urban 3.47 [ 3.06 3.98 ]

Mining or quarrying Rural 1.04 [ 0.85 1.51 ]

Urban 2.31 [ 1.62 3.98 ]

Rental or contractor Rural 1.69 [ 1.25 2.87 ]

Urban 4.63 [ 3.05 8.81 ]

Retail and wholesale trade Rural 1.51 [ 1.40 1.66 ]

Urban 3.99 [ 3.57 4.52 ]

Other Rural 1.35 [ 1.02 2.27 ]

Urban 3.39 [ 2.22 6.69 ]

Vocational vehicles:

Agriculture or forestry Rural 1.03 [ 0.91 1.24 ]

Urban 2.70 [ 2.14 3.66 ]

Business and personal service Rural 1.30 [ 1.01 2.14 ]

Urban 3.95 [ 2.61 7.86 ]

Construction Rural 1.04 [ 0.94 1.21 ]

Urban 2.75 [ 2.28 3.49 ]

For-hire transportation Rural 0.92 [ 0.82 1.11 ]

Urban 2.16 [ 1.71 3.00 ]

Manufacturing Rural 0.97 [ 0.84 1.21 ]

Urban 2.42 [ 1.85 3.53 ]

Mining or quarrying Rural 0.81 [ 0.72 1.09 ]

Urban 1.69 [ 1.25 2.98 ]

Rental or contractor Rural 0.80 [ 0.71 0.99 ]

Urban 1.57 [ 1.22 2.24 ]

Retail and wholesale trade Rural 0.98 [ 0.89 1.12 ]

Urban 2.48 [ 2.07 3.10 ]

Other Rural 1.07 [ 0.84 1.93 ]

Urban 2.78 [ 1.81 6.54 ]
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Figure 4: Welfare Effects of Imposing Differentiated Fuel Taxes by Vehicle Weight Class

(GVWR)

Note: The figure shows the distributional welfare effect of imposing optimally differentiated fuel tax by

vehicle weight class on a per-vehicle basis. The baseline scenario is imposing optimal uniform tax and only

distinguishing combination trucks and vocational vehicles. The welfare effect is measured in billion dollars in

2002 USD. The lines crossing through some of the bars show the estimation range at 95% significance level.

The bars without the lines are lack of statistical significance, and therefore, are not precisely estimated.

34



Figure 5: Welfare Effects of Imposing Differentiated Fuel Taxes by Business Sector

Note: The figure shows the distributional welfare effect of imposing optimally differentiated fuel taxes by

business sector on a per-vehicle basis. The baseline scenario imposes an optimal uniform tax and only

distinguishes combination trucks and vocational vehicles. The welfare effect is measured in billion dollars in

2002 USD. Bars without lines lack statistical significance, and therefore are not precisely estimated.
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Figure 4 shows the welfare effects of differentiating fuel taxes by vehicle weight

class. The solid bars refer to welfare changes in combination trucks, while the white

bars refer to those in vocational vehicles. Four important observations can be made

from this figure. First, there is a gain in welfare from imposing differentiated taxes

on most truck classes compared to taxing all classes at a uniform rate. Second, most

welfare gains are from differentially taxing class 8 combination trucks, mainly because

differentiated taxes compensate for the large external cost occurred during the opera-

tion of this type of vehicle. Third, the variation across vehicle weight classes is greater

than across business sectors. In fact, Differentially taxing on most business sectors

induces relatively mild welfare changes. This can be explained by the similar distri-

bution of GVWR classes in each business sector, as shown in Figure 3 with class 8

combination trucks dominant in every grid. Last, but not least, by adding the dollars

saved, it is clearly evident that the total welfare effect of imposing such differentiated

taxes is positive. Relative to imposing an optimal uniform tax, differentiated taxes by

vehicle weight class create a total welfare gain of 17.5 billion dollars annually.

If optimal fuel taxes are differentiated by business sector, the total welfare gain can

be as high as 31.5 billion dollars per year. The distributional effects among GVWRs

and business sectors under such a tax regime are shown in Figure 5. The majority of

the welfare gain is from for-hire transportation, retail and wholesale trade, and manu-

facturing. The effects are distributed almost evenly across weight classes within each

truck type category. Combination trucks in weight class 7 and 8, under optimally

differentiated taxation by business sector, experience similar welfare gains at about

15 to 16 billion dollars. The lack of variation in welfare gain among vocational ve-

hicles in each weight class remains true as well, which can be explained by the fact

that the distribution of GVWRs is similar across business sectors, as shown in Figure 3.

The overall welfare effects of imposing optimal differentiated fuel taxes by weight

class is 17.5 billion per annum, and 32.5 billion per annum by business sectors. If I

adopt a higher elasticity of labor supply at 0.4, the welfare gains are 18 billion for

a weight class based fuel tax and 31 billion for a business sector based fuel tax. If

the administration cost of imposing differentiated fuel taxes based on business sectors

is high enough, optimal fuel taxes by weight class would be more practical and cost
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effective.24 In fact, the welfare gain from such a policy is about 13 times more than

the welfare effect estimated by Parry (2008). He suggests that raising diesel fuel tax

rate from its current level, 0.45 dollar/gallon, to the uniform optimal level increases

welfare by 1.34 billion per annum.

7 Conclusion

Using truck level micro data, I estimate how fuel cost per mile affects trucking decisions

heterogeneously among different weight classes and business sectors. The elasticities

of VMT with respect to per-mile fuel cost are about -0.23 for class 7 and 8 combina-

tion trucks and -0.27 for class 3 - 8 vocational vehicles. Lighter vehicles tend to be

more responsive to changes in per-mile fuel cost. Combination trucks in business and

personal transportation, as well as manufacturing, are driven further per annum com-

pared to similar trucks in other business sectors facing the same fuel cost reduction.

The VMT choices for vocational vehicles for rental and contractor work are the most

elastic among all industries.

I apply the estimated elasticities into a generalized equilibrium model to calcu-

late the optimally differentiated taxes for each vehicle weight class and business sector.

Considerations of externalities resulting from truck operations are built into the model,

such as local and global air pollution, oil dependency, road damage, congestion, ac-

cidents and noise pollution. The optimally differentiated diesel taxes are calculated

based on the heterogeneity in their responsiveness to fuel costs, different level of exter-

nalities incurred, as well as the operation locations. On one hand, when differentiating

taxes by weight class, class 8 vocational vehicles are charged for the highest fuel tax

at 4.76 dollars/gallon. On the other hand, less taxes are imposed on lighter trucks

in rural areas. It is also possible to differentiate taxes by business sector. In total,

there are nine business sectors considered, such as agriculture, construction, for-hire

transportation, mining and rental. In general, combination trucks pay higher taxes

than vocational vehicles in the same industry and area. Combination trucks in for-hire

business and rental/contractor in urban areas face an optimal diesel tax of over 4 dol-

lars/gallon.

24In practice, if the fuel taxes are differentiated based on GVWRs, they can be directly linked with the
Vehicles Identification Number (VIN). In this case, although the fuel price at the station appear to be
homogeneous, truckers can input their VINs and get the discount instantly at the pump or through mail-
in rebates. If the fuel taxes are differentiated based on business sectors, fleets size, or other operational
factors, they are likely linked with commercial vehicle’s DOT (Department of Transportation) number. The
differentiation can be obtained through similar mechanism.
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Optimally differentiating diesel taxes by vehicle weight class brings in about 17.5

billion dollars per annum, while the welfare gain from differentiating taxes by business

sector is about 32.5 billion dollars per annum. These numbers are not sensitive to la-

bor market parameters. Had I adopted a higher elasticity of labor supply, such as 0.4,

the total welfare gain would have been 18 billion and 31 billion dollars per annum.25

Although differentiating by business sector incurs a higher welfare gain, the cost and

difficulty of implementation cannot be overlooked. It is sometimes difficult to define

business sector clearly, especially when some vehicles are involved in multiple types of

work. Vehicle weight class, however, is clearly labeled on the truck’s registration record

and can be identified from the vehicle identification number. Setting a tax based on

such labels will be less difficult to put in practice.

25The total welfare gains calculated with other labor parameters can be found on the author’s website:
www.JenEcon.com.
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Appendix A Variables omitted from the sum-

mary statistics table

• Other axle configurations include “2 axles - 1 axle trailer,” “2 axles - 3 or more

axle trailer,” “2 axles - 3 trailers,” “2 axles - two trailers,” “3 axles - 1 axle

trailer,” “3 axles - 3 or more axle trailer,” “3 axles - three trailers,” “3 axles - two

trailers,” “4 or more axles,” “4 or more axles - 1 axle trailer,” “4 or more axles -

2 axle trailer,” “4 or more axles - 3 or more axle trailer,” “4 or more axles - two

trailers” and “4 or more axles - three trailers.”

• Other vehicle makes include autocar, other(domestic) and other(foreign).

• Other body/trailer types include automobile transport; beverage truck; concrete

mixer; drop frame van; garbage truck; grain bodies; insulated non-refrigerated

van; livestock truck; low boy; multistop or step van; oil field truck; open top van;

platform with devices permanently mounted on it; pole, logging, pulpwood or pipe

truck; service truck or craftsman’s vehicle; tank truck for dry bulk; tank truck for

liquids or gases; utility truck; winch or crane truck; wrecker; yard tractor; and

other.

• Other cab types include cab forward of engine, beside engine or other.

• Other primary cargo include chemicals or drugs; farm products; household goods;

live animals; lumber or fabricated wood products; metal products; mining prod-

ucts; miscellaneous products of manufacturing; no load carried; paper, textiles or

apparel; petroleum products; plastics or rubber products; processed foods; tools,

machinery or equipment; waste or scrap; and other.

• Engine displacement (in cubic inch) are grouped into bins as follows – 1 to 300;

301 to 399; 400 to 499; 500 to 599; 600 to 699; 700 to 799; 800 to 899; 900 or

more.

• Number of cylinders are categorized as 4, 6, 8 and more than 8.
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Appendix B First stage estimation

The instrumental variable used in the main regressions is the per-mile fuel cost in states

that do not share a border with home base states. In section 5.2, I apply an alternative

instrumental variable as a robustness check. The alternative IV is constructed by

dividing crude oil price by MPG. The results of the first stage estimation in the 2SLS

approach are presented in Table B1.

Table B1: First Stage Estimation Results
IV Average fuel prices in non-neighboring states Global crude oil prices

Combination Vocational Combination Vocational

(1) (2) (3) (4)

Coefficients of IV -5.999∗∗∗ -8.590∗∗∗ 0.0169∗∗∗ 0.0136∗∗∗

(0.0406) (0.0632) (0.00197) (0.000054)

R2 0.935 0.931 0.916 0.899

p-value of F statistics < 0.001 < 0.001 < 0.001 < 0.001

Note: ∗∗∗ : p < 0.01; robust standard errors are shown in parenthesis.

Dependent variable is ln(fuel cost per mile).

Columns (1) and (2) are first stage estimations corresponding to the IV estimation shown in Table 2 and

Table 3.

Columns (1) and (2) are first stage estimations corresponding to the robustness check using alternative IV

shown in Table E6.
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Appendix C Regional Division by EIA

Figure C1: Map of regional division in the U.S.
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Appendix D Heterogeneity of Responsiveness by

Other Categories

Appendix D.1 By operator class

There are generally three operator classes, for-hire, private and rental. For-hire trucks

are provided by companies or individuals who own the trucks. An individual who

not only owns the truck, but also drives it for compensation, is referred as an “owner

operator.” A for-hire truck is required for a commercial vehicle DOT (Department of

Transportation) number. As shown in Figure D2, about half of the combination trucks

in my sample are for-hire trucks, while 85% of the vocational vehicles are operated

privately. Private trucks are used for business solely for the companies that own the

trucks. In some cases, private trucks may remain privately licensed if they are not

exclusively for business use. The third operator class is rental. Rental trucks only

comprise a small percentage of my sample, about 2% for both groups. Typically, these

are moving trucks for daily rental. Driving service is usually not provided by truck

rental companies.

Figure D2: Distribution of Trucks by Operator Class

As shown in Table D2, for combination trucks, for-hire trucks are the most respon-

sive to fuel costs among the three operator classes. In particular, a 10% increase in fuel
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Table D2: Estimation Results by Operator Class

Dependent variable: ln(VMT) ln(PD)

CombinationVocational CombinationVocational

(1) (2) (3) (4)

Elasticities by operator class:

For-hire -0.257∗∗∗ -0.207∗∗∗ -0.493∗∗∗ -0.412∗∗∗

(0.0393) (0.0230) (0.0330) (0.0419)

Private -0.220∗∗∗ -0.285∗∗∗ -0.386∗∗∗ -0.344∗∗∗

(0.0346) (0.0148) (0.0307) (0.0167)

Rental -0.194∗∗ -0.287∗∗∗ -0.250∗ -0.601∗∗∗

(0.0827) (0.0480) (0.148) (0.0573)

Control variables

ln(average vehicle weight) 0.408∗∗∗ 0.239∗∗∗ 2.529∗∗∗ 1.933∗∗∗

(0.0223) (0.0191) (0.0282) (0.0398)

ln(odometer reading) 0.484∗∗∗ 0.484∗∗∗ 0.481∗∗∗ 0.510∗∗∗

(0.00706) (0.0174) (0.00522) (0.0184)

ln(state GDP) 0.0780∗ -0.00331 0.0669∗∗ 0.0356

(0.0406) (0.0617) (0.0331) (0.0723)

Survey year FE? Yes Yes Yes Yes

Home base state FE? Yes Yes Yes Yes

Other truck characteristics? Yes Yes Yes Yes

Business and operational characteristics? Yes Yes Yes Yes

No. of observation 109039 75762 109039 75762

Adjusted R2 0.551 0.427 0.681 0.562

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All standard errors are clustered at the level of home base regions and shown in parentheses.

In each regression, operator class dummy variables are interacted with ln(fuel cost per mile). The elasticity

for a particular operator class is the sum of coefficients of the interaction term and ln(fuel cost per mile);

the robust standard error is calculated based on the linear combination correspondingly.
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Table D3: Number of Trucks by Fleet Size
Combination Trucks Vocational Vehicles

1 22,372 11,288

2 to 5 17,719 23,509

6 to 20 22,236 23,415

21 or more 51,137 25,758

Total 113,464 83,970

Data source: U.S. Vehicle Inventory and Use Survey (1982-2002).

cost per mile reduces VMT of for-hire trucks by 2.57%, and private trucks by 2.20%.

Since for-hire truck owners have the flexibility to choose cargo, schedules and routes, it

is not surprising that they are the most responsive to changes in fuel costs. As for vo-

cational vehicles, for-hire vehicles appear to be less sensitive to fuel costs than private

vehicles. Columns (3) and (4) provide the estimated elasticities of payload distance

by operator class. The elasticities are greater in magnitude, showing that payload is

also negatively affected by increase in fuel costs. Such effect is even more obvious for

for-hire vocational vehicles, as the elasticity of payload distance is almost double the

elasticity of VMT.

Appendix D.1.1 By Fleet Size

Are truck owners or fleet managers assigning trips strategically to trucks based on their

fuel costs? If so, trucks in a large fleet have more flexibility in substitution. I should

expect them to be more responsive to changes in fuel costs than those in a small fleet.

In VIUS, the size of fleet is categorized into four bins.26 The number of truck counts

in each bin is presented in Table D3. While combination trucks are spread relatively

evenly in fleets of different sizes, about 70% of vocational vehicles are in relatively small

fleets that have fewer than 20 trucks.

I interact fleet size dummy variables with the natural log of per-mile fuel cost, and

add the interaction terms to the estimation equation specified in equations (4) and (6)

to estimate the elasticities of VMT and payload distance with respect to fuel costs.

The estimates of interest are listed in Table D4. In general, both VMT and payload

distance are more elastic to fuel cost per mile as fleet size increases. This general trend,

with a few exceptions, appears to confirm my expectations. For combination trucks,

the elasticity of VMT in a fleet with 21 or more trucks is more than the elasticity in a

26The categorization for fleet size is similar, yet not exactly the same, across the survey years. Some
adjustments are made to make the grouping consistent.
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Table D4: Estimation Results by Fleet Size
Dependent variable: ln(VMT) ln(PD)

CombinationVocational CombinationVocational

(1) (2) (3) (4)

Elasticities by fleet size:

1 -0.104∗∗ -0.203∗∗∗ -0.279∗∗∗ -0.218∗∗∗

(0.0437) (0.0189) (0.0528) (0.0297)

2 to 5 -0.157∗∗∗ -0.329∗∗∗ -0.302∗∗∗ -0.401∗∗∗

(0.0281) (0.0149) (0.0282) 0.0178

6 to 20 -0.277∗∗∗ -0.255∗∗∗ -0.388∗∗∗ -0.358∗∗∗

(0.0316) (0.0117) (0.0332) 0.0249

21 or more -0.313∗∗∗ -0.271∗∗∗ -0.577∗∗∗ -0.425∗∗∗

(0.0533) (0.0238) (0.052) 0.0338

Control variables

ln(average vehicle weight) 0.405∗∗∗ 0.216∗∗∗ 2.542∗∗∗ 1.938∗∗∗

(0.0224) (0.0155) (0.0274) (0.0384)

ln(odometer reading) 0.487∗∗∗ 0.489∗∗∗ 0.484∗∗∗ 0.512∗∗∗

(0.00753) (0.0168) (0.00549) (0.0183)

ln(state GDP) 0.0814∗ 0.0130 0.0662∗∗ 0.0434

(0.0434) (0.0618) (0.0326) (0.0755)

Survey year FE? Yes Yes Yes Yes

Home base state FE? Yes Yes Yes Yes

Other truck characteristics? Yes Yes Yes Yes

Business and operational characteristics? Yes Yes Yes Yes

No. of observation 109,039 75,762 109,039 75,762

Adjusted R2 0.548 0.425 0.679 0.560

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All standard errors are clustered at the level of home base regions and shown in parentheses.

In each regression, fleet size dummy variables are interacted with ln(fuel cost per mile). The elasticity for

a particular operator class is the sum of coefficients of the interaction term and ln(fuel cost per mile); the

robust standard error is calculated based on the linear combination correspondingly.

All estimations use the 2SLS estimation approach to control for the plausible endogeneity of fuel costs.
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single-truck fleet by about 75%. Vocational vehicles in a large fleet with more than 21

trucks reduce VMT by about 2.89% when per-mile fuel cost increases by 10%, while

a one-vehicle fleet responds only by 2.06%. The estimation results of payload distance

tell a similar story. As shown columns (3) and (4), elasticities (in absolute values) are

the highest in a fleet with more than 21 trucks. All estimates are highly statistically

significant.

46



Appendix E Robustness Checks and the Falsi-

fication Test: Details

Table E5: Robustness check 1: estimate with aggregate data
Dependent variable: ln(VMT) ln(PD)

Combination Vocational Combination Vocational

Overall elasticities -0.211∗∗∗ -0.262∗∗∗ -0.393∗∗∗ -0.350∗∗∗

(0.0316) (0.0254) (0.0322) (0.0312)

Elasticities by GVWR:

GVWR = 3 -0.271∗∗∗ -0.543∗∗∗

(0.0860) (0.145)

GVWR = 4 -0.361∗∗ -0.312

(0.182) (0.266)

GVWR = 5 -0.452∗∗∗ -0.571∗∗∗

(0.166) (0.207)

GVWR = 6 -0.281∗∗∗ -0.287∗∗∗

(0.0388) (0.0543)

GVWR = 7 -0.380∗∗∗ -0.270∗∗∗ -0.433∗∗∗ -0.341∗∗∗

(0.0595) (0.0405) (0.0719) (0.0482)

GVWR = 8 -0.184∗∗∗ -0.199∗∗∗ -0.385∗∗∗ -0.285∗∗∗

(0.0332) (0.0291) (0.0332) (0.0329)

Elasticities by business sector:

Agriculture or forestry 0.129∗ -0.304∗∗∗ -0.0852 -0.272∗∗∗

(0.0726) (0.0493) (0.0728) (0.0517)

Business and personal service -0.371∗∗ -0.270∗∗∗ -0.596∗∗∗ -0.352∗∗∗

(0.148) (0.0362) (0.166) (0.0503)

Construction -0.258∗∗∗ -0.232∗∗∗ -0.368∗∗∗ -0.336∗∗∗

(0.0677) (0.0359) (0.0867) (0.0433)

For-hire transportation -0.256∗∗∗ -0.248∗∗∗ -0.537∗∗∗ -0.440∗∗∗

(0.0350) (0.0397) (0.0456) (0.0476)

Manufacturing -0.402∗∗∗ -0.266∗∗∗ -0.521∗∗∗ -0.325∗∗∗

(0.0594) (0.0566) (0.0743) (0.0759)

Mining or quarrying -0.231∗∗ -0.081 -0.329∗∗∗ -0.0297

(0.112) (0.0847) (0.124) (0.140)

Rental or contractor -0.325∗∗∗ -0.312∗∗∗ -0.392∗∗∗ -0.376∗∗∗

(0.0968) (0.0476) (0.142) (0.0605)

Retail and wholesale trade -0.249∗∗∗ -0.271∗∗∗ -0.432∗∗∗ -0.381∗∗∗

(0.0534) (0.0302) (0.0501) (0.0446)

Other -0.198∗∗∗ -0.291∗∗∗ -0.135 -0.532∗∗∗

(0.205) (0.0415) (0.167) (0.0693)

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All standard errors, shown in parentheses, are clustered at the level of home base states and survey years.

2SLS estimation method is used in all regressions.
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Table E6: Robustness Check 2: Estimate with Alternative IV
Dependent variable: ln(VMT) ln(PD)

Combination Vocational Combination Vocational

Overall elasticities -0.225∗∗∗ -0.269∗∗∗ -0.419∗∗∗ -0.359∗∗∗

(0.0313) (0.0210) (0.0317) (0.0256)

Elasticities by GVWR:

GVWR = 3 -0.172∗∗ -0.366∗∗∗

(0.0864) (0.139)

GVWR = 4 -0.385∗∗ -0.146

(0.187) (0.278)

GVWR = 5 -0.462∗∗∗ -0.689∗∗∗

(0.178) (0.227)

GVWR = 6 -0.263∗∗∗ -0.281∗∗∗

(0.0372) (0.0553)

GVWR = 7 -0.395∗∗∗ -0.181∗∗∗ -0.563∗∗∗ -0.254∗∗∗

(0.0542) (0.0332) (0.0625) (0.0475)

GVWR = 8 -0.200∗∗∗ -0.239∗∗∗ -0.395∗∗∗ -0.322∗∗∗

(0.0336) (0.0236) (0.0337) (0.0265)

Elasticities by business sector:

Agriculture or forestry 0.221∗∗∗ -0.239∗∗∗ 0.0192 -0.230∗∗∗

(0.0753) (0.0468) (0.0688) (0.0524)

Business and personal service -0.501∗∗∗ -0.342∗∗∗ -0.609∗∗∗ -0.404∗∗∗

(0.126) (0.0309) (0.163) (0.0506)

Construction -0.372∗∗∗ -0.303∗∗∗ -0.524∗∗∗ -0.399∗∗∗

(0.072) (0.0317) (0.0913) (0.0360)

For-hire transportation -0.332∗∗∗ -0.273∗∗∗ -0.551∗∗∗ -0.524∗∗∗

(0.0374) (0.0341) (0.0443) (0.0456)

Manufacturing -0.233∗∗∗ -0.236∗∗∗ -0.402∗∗∗ -0.317∗∗∗

(0.0485) (0.0524) (0.0630) (0.0685)

Mining or quarrying -0.405∗∗∗ -0.127 -0.513∗∗∗ -0.152

(0.131) (0.0829) (0.135) (0.110)

Rental or contractor -0.248∗∗∗ -0.342∗∗∗ -0.410∗∗∗ -0.476∗∗∗

(0.0775) (0.0469) (0.113) (0.0639)

Retail and wholesale trade -0.235∗∗∗ -0.207∗∗∗ -0.493∗∗∗ -0.274∗∗∗

(0.0521) (0.0270) (0.0546) (0.0391)

Other -0.188 -0.257∗∗∗ -0.148 -0.473∗∗∗

(0.155) (0.0372) (0.176) (0.0573)

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All standard errors, shown in parentheses, are clustered at the level of home base states and survey years.

2SLS estimation method is used in all regressions.
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Table E7: Falsification Test: Randomize Fuel Cost per Mile
Dependent variable: ln(VMT) ln(PD)

Combination Vocational Combination Vocational

Overall elasticities -0.0124 -0.0176 -0.0157 -0.00546

(0.00969) (0.0151) (0.0119) (0.0160)

Elasticities by GVWR:

GVWR = 3 -0.0871∗ -0.211∗∗

(0.0480) (0.0892)

GVWR = 4 -0.0846 -0.0478

(0.0851) (0.137)

GVWR = 5 0.0588 -0.0274

(0.109) (0.163)

GVWR = 6 -0.00639 0.0241

(0.0303) (0.0416)

GVWR = 7 -0.0216 -0.0255 -0.00869 0.0212

(0.0377) (0.0369) (0.0409) (0.0508)

GVWR = 8 -0.0116 -0.0142 -0.0162 -0.00702

(0.0107) (0.0190) (0.0129) (0.0206)

Elasticities by business sector:

Agriculture or forestry -0.0222 -0.0355 -0.0266 -0.00551

(0.0335) (0.0435) (0.0373) (0.0473)

Business and personal service 0.0573 0.0533 0.0697 -0.0185

(0.0653) (0.0458) (0.0835) (0.0514)

Construction 0.0102 -0.0249 -0.0168 -0.0159

(0.0399) (0.0301) (0.0486) (0.0338)

For-hire transportation -0.00293 -0.0554 -0.00819 -0.00792

(0.00987) (0.0369) (0.0133) (0.0434)

Manufacturing -0.0256 -0.0761 -0.0215 -0.0195

(0.0450) (0.0614) (0.0493) (0.0764)

Mining or quarrying -0.0392 -0.0326 0.0593 0.0337

(0.0652) (0.0699) (0.0827) (0.0980)

Rental or contractor -0.0888 -0.00817 -0.0882 -0.0108

(0.0627) (0.0479) (0.0679) (0.0777)

Retail and wholesale trade -0.0352 -0.0255 -0.0451 -0.0185

(0.0238) (0.0290) (0.0276) (0.0298)

Other -0.0338 0.0852∗∗ 0.0185 0.136∗

(0.150) (0.0411) (0.141) (0.0814)

Note: ∗ : p < 0.1; ∗∗ : p < 0.05; ∗∗∗ : p < 0.01

All standard errors, shown in parentheses, are clustered at the level of home base states and survey years.

2SLS estimation method is used in all regressions.
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Appendix F Derive the Expression of Marginal

Welfare Effect and Optimal Taxes

Appendix F.1 Derive Marginal Welfare Effects

A household chooses Ri, Y , A, subject to time and budget constraints (equation 9 and

10, to maximize the utility (equation 7). The indirect utility function can be written

as follows.

ũ = u(Ri, Y, A, πA,Z) + λ
[
I + LST −

∑
i

piRi − Y − (tG + PG)fGA
]

(28)

Write the first order conditions of the household maximization problem.

∂u

∂Ri
= λpi (29)

uA = πuΠ = λ(tG + PG)fG (30)

uY − λ = 0 (31)

Total differentiating indirect utility with respect to diesel tax ti yields

1

λ

dũ

dti
=
A

λ
uΠ

dπ

dti
+
uZ
λ

dZ

dti
+
dLST

dti
−Ri

dpRi
dti

(32)

Total differentiating equation (12) with respect to diesel tax ti yields

dpRi
dti

= qi +
ω

Wi

dπ

dti
. (33)

Total differentiating equation (14) with respect to diesel tax ti yields

dπ

dti
= πTi

dTi
dti

+ πA
dA

dti
. (34)

Total differentiating equation (16) with respect to diesel tax ti yields

dZ

dti
= zA

dA

dti
+ zFi

dFi
dti

+ zTi
dTi
dti

(35)

Total differentiating equation (15) and equation (17)with respect to diesel tax ti

yields
dLST

dti
= Fi + ti

dFi
dti

+ tGfG
dA

dti
− zLi

dRi
dti

(36)

Substituting (33), (34), (35) and (36) into (32) and rearranging terms give the

expression of marginal welfare effects shown in (18)-(21).
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Appendix F.2 Derive Optimal Taxes

Set the marginal welfare effect (equation 18) to zero, and rearrange terms.

t∗i = MECFi +MECTi
dT/dti
dFi/dti

+ (MECAi − tGfG)
dA/dti
dFi/dti

(37)

Multiplying both the numerator and the denominator of dT/dti
dFi/dti

by T
PD+ti

, and substi-

tuting in the definition of elasticities, congestion offset, and passenger car equivalent

give equation (22)

Appendix F.3 Derive εfi and εFi

The elasticity of VMT with respect to per-mile fuel cost ηTi can be decomposed using

the chain rule and the definition of per-mile fuel cost.

ηTi =
dVMT

d[(PD + ti) · fi]
(PD + ti) · fi

fi

1

ηTi
=

1

εTi
+
εfi
εTi

(38)

Rearranging terms gives equation (25).

Similarly, the elasticity of fuel use with respect to diesel price can be decomposed into

two parts using the chain rule and Fi = Ti · fi by definition.

εFi =
d(Tifi)

d(PD + ti)

PD + ti
Tifi

=
Tidfi + fidTi
d(PD + ti)

PD + ti
Tifi

= εfi + εTi

(39)
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