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Abstract

In the United States, customer owned firms are responsible for 35% of consumer
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firm. I show that its growth, pricing, and capital structure are tied together: higher
sales tomorrow are achieved through higher prices today and lower leverage today.
This result does not hold for a shareholder owned firm. I document stylized facts
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“Cooperative undertakings account for a substantial share of developed market economies
and that share is likely to grow with the advent of the new economy” (Rey and Tirole, 2007).

1 Introduction

Two firms operate in identical, but independent markets. They face identical demands
for their goods and identical costs of production. One firm is owned by shareholders—
the “corporation.” It maximizes profit. The other firm is owned by its customers—the
“cooperative.” It maximizes total surplus, as its owners are both purchasers of its good and
suppliers of its capital. How do growth, pricing, and capital structure compare between these
two firms? I show that in the cooperative—unlike the corporation—they are fundamentally
linked and should covary in predictable ways.

Suppose, for concreteness, that a corporate bank observes an opportunity to grow its
loan book next quarter. Perhaps a new source of information will reduce the riskiness of
making loans—like credit reports—or perhaps a new technology will lower the cost of day-
to-day transactions—like smartphone apps. When next quarter rolls around, the bank will
offer lower loan rates to bring more applicants through the door. But it won’t offer this
quarter’s loan applicants lower (or higher) rates. This quarter’s rates are set to maximize
this quarter’s profit. They don’t tell us anything about credit reports or smartphone apps.
What if the bank is running low on equity? Can it use this quarter’s rates to shore up its
balance sheet? It can’t. It already makes as much profit as it can. If it needs more equity,
it will have to get it somewhere else.

Suppose, on the other hand, that a cooperative bank observes an opportunity to grow
its loan book next quarter. Like the corporate bank, its costs will fall. Now the cooperative
bank would happily set loan rates so that it makes no profit.1 If it has ample equity, it
will do just this. But what if it doesn’t have ample equity? Unlike the corporate bank,
the cooperative bank can do better than offer its “first best” rate. It can offer positive-
profit rates, retain the earnings and use them to finance next quarter’s loan growth. The
cooperative bank balances the gains from loan growth next quarter against the deadweight
loss from profit this quarter.

In this paper, I show that the cooperative’s growth, prices, and leverage will covary in
predictable ways. I show that higher sales next quarter are achieved through higher prices
this quarter and lower leverage this quarter. In insurance-speak, higher policy growth is
achieved through a higher insurance margin and a higher solvency ratio. In bank-speak,
higher loan growth is achieved through a higher net interest margin and a higher capital

1Profit creates a deadweight loss for its customer-owners.
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ratio.
While this paper’s contribution is primarily theoretical, I document a number of stylized

facts about US credit unions, which are cooperative banks. I find that industry loan growth
is positively correlated with the industry net interest margin and positively correlated with
the industry capital ratio. These correlations don’t hold for traditional, shareholder owned
banks and are consistent with the theory’s predictions.

Cooperatives appear most commonly in insurance—as mutual insurance companies—and
banking—as credit unions, mutual savings banks, and agricultural credit associations. Mu-
tual insurance companies are responsible for 35% of consumer insurance in the US and 27%
of consumer insurance worldwide. They manage $7.7 trillion in assets.2 Credit unions are
responsible for 10% of consumer banking in the US.3 Approximately 8% of adults worldwide
are members of a credit union and collectively they manage $1.8 trillion in assets in 105
countries.4 A non-negligible amount of banking services are provided by mutual savings
banks, and agricultural credit associations. Cooperatives appear outside of the financial
sector as well, most notably in electricity provision. Rural electricity cooperatives supply
13% of US electricity and hold $150 billion in assets.5 Despite their economic importance,
customer owned firms receive little theoretical or empirical attention.6 In this paper, I show
that they should defy some basic theories of corporate finance and industrial organization.

The model works as follows. There are two firms: the shareholder owned corporation and
the customer owned cooperative. The corporation maximizes profit while the cooperative
maximizes total surplus. Firms operate for two periods and then liquidate. They face
identical demands for their goods and identical costs of production. In the first period,
they observe an opportunity to grow—a technology shock—which lowers their costs of doing
business. Firms use the prices of their goods to manage their sales and internal funds.

The model has three working assumptions. The first assumption is that firms enjoy
market power. They can increase sales by lowering prices and decrease sales by raising
prices. In the model, I assume that firms are monopolists. This isn’t true in reality, but it’s
a good benchmark.

The second assumption is that firms face capital requirements. There is only so much
leverage that regulators, creditors or investors can stomach. In the model, firms must hold
a minimum ratio of equity-to-sales. If “sales” is off-putting, recall that in an insurance

22012 Global Mutual Market Share. International Cooperative and Mutual Insurance Federation.
3Credit Union Report Year-End 2014. Credit Union National Association.
42014 Statistical Report. World Council of Credit Unions.
5Co-op Facts & Figures. National Rural Electric Cooperative Association.
6The basic contracting issues of customer ownership have been studied by several authors (see section

2). What remains undeveloped is an operational theory of the customer owned firm.
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company, “sales” means “policies” (a liability) and in a bank, “sales” means “loans” (an
asset) or “deposits” (a liability). Equity-to-sales is a measure of leverage. I don’t impose a
capital structure per se. Firms can hold equity in excess of the minimum.

The third assumption is that firms rely on internal funds for equity. The cooperative
can’t raise external equity. If it did, it would cede control to non-customers. It would no
longer be “customer owned.” There’s nothing stopping the corporation from raising external
equity. For the sake of a clean comparison, I assume that it can’t. I show that differences in
behavior are driven by differences in ownership and not by differences in financial constraints.

The first set of results concerns the behavior of prices. I show that the corporation’s
prices never depend on the technology sock. For sufficiently large technology shocks, the
cooperative’s prices are increasing in the technology shock.

The second set of results concerns the covariation of growth, pricing and leverage. For
sufficiently large technology shocks, the cooperative’s growth will covary positively with
its prices and negatively with its leverage. The corporation’s growth will vary with the
technology shock, but it won’t covary with its prices or leverage.

The theory proposed in this paper offers a novel explanation for the sensitivity of cooper-
atives’ investment to cash flow.7 The standard explanation says that financially constrained
firms turn positive cash flow directly back into investment. The explanation in this paper is
quite different. It says that cooperatives observe investment opportunities and adjust their
(expected) cash-flow by adjusting their prices.

The theory also offers a novel example of a dynamic pricing problem. In the model, the
corporation’s problem is time-separable. The corporation can choose today’s prices without
regard for the future. The cooperative’s problem is not. It adjusts today’s prices according
to future growth opportunities. That pricing should be a dynamic problem in insurance or
banking deserves pause. As demonstrated by Bulow (1982), a durable goods monopolist may
have an incentive to intertemporally price discriminate, in which case her problem problem
is “dynamic” (it’s not time-separable). But if she can lease the good instead of selling
it, her problem is static again (it’s time-separable). Lending is leasing cash. Insurance
is leasing a state contingent claim to cash. Borrowers can refinance. Policyholders can
surrender their policies and obtain new ones. We should not expect Bulow’s intertemporal
price discrimination in the financial sector.

7I don’t develop a Q-theory for the cooperative, so I only conjecture that this channel is at-play.
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2 Literature

It has long been postulated that cooperatives should, because of their peculiar organiza-
tion, offer competitive prices (see, for example, Enke, 1945). The implication is powerful:
a monopolist may enjoy economies of scale, but society suffers a deadweight loss; Bertrand
competitors may offer competitive prices, but miss out on economies of scale. The coop-
erative skirts both costs. It can offer competitive prices while enjoying economies of scale.
As noted by Hansmann (2009), many insurance mutuals in nineteen century America were
formed precisely to avoid paying the rates offered by corporate carriers.

Also noted by Hansmann (2009) is the reality that contracting is costly when ownership
lies with customers. Whether customer owned firms offer prices that are consistent with
their ownership is an empirical question, and a challenging one at that. Consider a firm that
operates for one period (and one period only). If it shows a profit, then we can conclude
that its prices are inconsistent with customer ownership.8 Now suppose that it operates for
more than one period. If it still shows a profit, then we can’t be so sure that it’s prices are
inconsistent with customer ownership. Maybe it needed to grow, creating a need for profits.
A dynamic perspective is essential. This paper takes a step toward answering the “pricing
and ownership” question by providing a dynamic theory of the customer owned firm, with
particular emphasis on those found in insurance and banking.

A substantial literature beginning with Fama and Jensen (1983b,a), Hansmann (1985,
2009), Mayers and Smith Jr (1981, 1986) and Smith and Stutzer (1990a,b, 1995) explores
the basic contracting problems of customer ownership. Broadly, this literature argues that
customer ownership reduces informational costs inherent to some businesses. By making its
policyholders owners, for example, a mutual insurance company attenuates moral hazard by
tying its policyholders’ welfare to its own.

A parallel, empirical literature studies the effects of customer ownership on firm policies.
O’Hara (1981) examines the impact of customer ownership on costs, profitability, risk and
growth in the savings and loan industry. She finds that savings and loan associations are less
profitable and grow slower than their stock association counterparts. Mayers and Smith Jr
(1988) conduct a similar study in the property/casualty market. They examine the impact of
ownership on lines-of-business specialization, line-of-business concentration and geographic
concentration. More recently, Ostergaard et al. (2015) examine the survivability of savings
banks in the presence of competition.

What seems absent from this literature is an applied theory of corporate finance and
industrial organization for customer owned firms. Because of their ownership, they rely

8I’m assuming that profit is deterministic, as it will be in the model.
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heavily—if not exclusively—on internal funds for growth. Internal finance is an inherently
dynamic problem, in the sense that today’s decisions affect tomorrow’s availability of funds.
The static models that kickstarted the literature are insufficient to explain real-world growth,
pricing and capital structure decisions.

The predictions of the current paper are consistent with a number of recent findings.
Zanjani (2007) finds that when regulation of the life insurance industry changed from federal
to state hands, mutual life insurance companies survived in states with less stringent capital
requirements. The theory presented in this paper predicts that capital requirements are a
limiting factor for the growth of mutual insurance companies. Ramcharan et al. (2014), who
study the transmission of financial shocks through bank networks, find that loan growth in
US credit unions is highly sensitive to their capital ratios, a relationship that will emerge
from the theory in this paper. This paper strongly complements the recent empirical work
of Adelino, Lewellen, and Sundaram (2015), who examine investment policies of non-profit
hospitals. The authors point out that non-profits dominate the healthcare sector, which
accounts for 15% of the US economy. Non-profits do not share objectives with the profit-
maximizing, shareholder-owned firms of standard theory. The standard theory of corporate
finance simply doesn’t apply. While this paper considers customer owned firms—such as
mutual insurance companies and credit unions—many of the insights can be translated to
the problem of the non-profit, which also has incentives for growth and also relies on internal
funds for equity. Complimenting their findings, I explore a novel mechanism behind the
investment cash-flow sensitivity.

That customer ownership should affect pricing dates back to Enke (1945), who argued
that a cooperative should offer competitive prices, even if it enjoyed market power. The
importance of a dynamic theory for customer owned firms cannot be understated. Cooper-
atives regularly make profits, which are justified on the grounds of “risk management” and
“growth.” Asking an empirical question, like “do credit unions offer rates consistent with
customer ownership?” requires an understanding of their internal finance. To the best of my
knowledge, this is the first paper to theoretically investigate the effect of a customer friendly
objective on pricing by benchmarking to the behavior of a profit-maximizer.

Several attempts have been made at a dynamic theory of customer owned financial in-
stitutions. Deshmukh, Greenbaum, and Thakor (1982) model a mutual financial institution
and take the pessimistic view that its objective is to maximize the manager’s welfare. Smith
(1988) presents a dynamic model of a credit union, but obtains qualitative results only.
Brown and Davis (2009) present an ad-hoc model of credit union capital management for
estimation purposes. Rubin et al. (2013) present a dynamic model of a credit union, where
members’ concern for the viability of the institution drive rate decisions. None of these
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models explicitly benchmark to a shareholder owned, profit-maximizing firm.

3 A Deterministic, Two-Period Model

I consider two types of firms: the cooperative, whose ownership lies with its customers,
and the corporation, whose ownership lies with shareholders (who are not customers). For
ease of exposition, I model firm behavior using the standard model of a single-product,
two-period monopolist. I make two adjustments to the standard model. First, I adjust the
cooperative’s objective to reflect its customers’ ownership. Second, I assume that firms face
capital requirements, as they would if they operated in the insurance or banking industries.
To examine the effect of customer ownership on growth, pricing and capital structure, I
benchmark my results for the cooperative against those of the corporation, which faces
capital requirements but has the usual objective of profit maximization.

There are four periods, t = 0, 1, 2, 3. Firms are capitalized in period zero. They operate
in periods one and two. They liquidate in period three. There is no discounting.

Firms face constant marginal costs ct > 0 for t ∈ {1, 2}. Growth emerges as a feature
of the model because of an exogenous shock to marginal costs. Put δ := (c1 − c2)/c1, so
that δ measures the percentage by which marginal costs fall between the first and second
periods. For example, if δ = 1/2, then the marginal cost falls by 50%. I will refer to δ
as the technology shock. The technology shock can be interpreted as an innovation in the
transaction technology (e.g. the Internet, smartphone apps), risk assessment (e.g. actuarial
tables, credit reports) or knowledge (e.g. learning-by-insuring, learning-by-lending).

Firms face a twice continuously differentiable demand D, which is defined for strictly
positive prices. D satisfies D > 0, D′ < 0, and D′′ > 0. Put P := D−1. Define the elasticity
and curvature of D to be ε(p) := −pD′(p)/D(p) and σ(D) := −pD′′(p)/D′(p) respectively.
D is such that for all p < 0,

(A1) σ(p) < 2ε(p),

(A2) σ(p) ≤ 1 + ε(p),

(A3)
∫∞
p D(s)ds <∞, and

(A4) limρ→∞ ρD(ρ) = 0.

(A1) guarantees the strict quasiconcavity of one-period profit (and hence the uniqueness
of the profit-maximizing price). (A2)—without too much loss of generality—simplifies the
proof of Proposition 2. (A3) guarantees the existence of the consumer surplus. (A4) guaran-
tees the existence of a profit-maximizing price. Exponential demand and constant elasticity
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demand (with elasticity strictly greater than one) satisfy A1 – A4. Linear demand doesn’t,
but it results in particularly well-posed problems for both the cooperative and corporation,
as the objectives and constraints are all concave.

The first assumption deals with firms’ market power.

Assumption 1. Firms are monopolists.

Reality is more complicated. Mutual insurance companies compete with a plethora of car-
riers. Credit unions compete with just about anyone who makes home and auto loans or
issues credit cards. To model this rich ecosystem of financial institutions would cloud the
basic intuition of the theory. For simplicity and clarity, I assume that firms are monopolists
and leave the task of developing a richer theory to future work.

Define the profit Π(p; c) := (p−c)D(p) and the consumer surplus S(p) :=
∫∞
p D(s)ds. As

it will appear frequently, define the monopoly price to be pm(c) := argmaxp Π(p; c). pm(c)
exists and is unique (see Lemma 4 in the appendix).

The next assumption deals with firms’ sources of equity.

Assumption 2. A firm’s internal funds are its only source of equity.

Assumption 2 might seem strong, but it turns out to be natural for the cooperative. Suppose
a firm needs equity. By equity, I mean the residual claim. The residual claim, because of
its riskiness, gives its holder two rights: the right to control the firm and the right to
appropriate the firm’s profits. These rights constitute ownership (Hansmann, 2009). If the
firm is a cooperative, then it can’t issue residual claims to non-customers. If it did, it would
no longer be customer owned. Now it can issues residual claims to its customers, but the
practice is uncommon.9

There’s no reason why the corporation can’t issue equity. I make Assumption 2 for the
corporation so that I can make a clean, clear and fair comparison with the cooperative. All
of the paper’s main results go through without it.

To fix ideas, I assume that firms pay dividends upon liquidation. Again, this assumption
doesn’t change the paper’s main results. It just relieves us from the burden of deriving a
dividend policy.

Assumption 2 implies that a firm’s stock of equity, mt, evolves according to

mt+1 = Π(pt; ct) +mt. (1)

The firm makes profits and increases its stock of equity by retaining earnings. The stock is
neither depleted through dividend payments nor replenished through equity issuance.

9See Lund (2013) and Section 4.
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The last assumption deals with firms’ capital structures.

Assumption 3. Firms face capital requirements.

Whether to appease regulators, creditors, or investors, firms must holds some minimum
fraction of equity in their capital structure. They are free to hold a larger fraction. The
assumption can be interpreted in a variety of ways, depending on the nature of the business.
In insurance and banking, firms face state imposed capital requirements. In non-financial
industries, the “capital requirement” amounts to “risk management.” I will defer discussion
of real-world capital requirements to Section 4.

Formally, firms face a capital requirement of the form

kD(pt) ≤ mt (CRt)

for k ∈ (0, 1). Taken literally, CRt says that firms must hold a fraction k of sales in equity.
Recall that in an insurance company, “sales” means “policies” (a liability); in a bank, “sales”
means “loans” (an asset) or “deposits” (a liability), so the capital requirement is a constraint
on leverage.

I assume that the corporation maximizes profit. For the cooperative, I adopt the objec-
tive postulated by Enke (1945): the cooperative maximizes total surplus, which is the sum
of consumer surplus and profit.10 The total surplus has a number of desirable properties.
First, it clearly reflects the fact that the cooperative’s members are both customers (con-
sumer surplus) and owners (profit). Second, the optimal price is the marginal cost, so the
cooperative is a natural non-profit. What Enke’s objective lacks in specificity, it makes up
for in clarity, elegance and generality.

The timeline is as follows:

Period 0 : Owners learn c1 and capitalize the firm with equity m1 > 0.

Period 1 : Owners learn c2 and set price p1.

Period 2 : Owners earn profit Π(p1; c1) and set price p2.

Period 3 : Owners earn profit Π(p2; c2) and pay liquidating dividend m3.

To widen the scope of the model’s applications, I don’t attempt to model the capitalization
process in period 0. For the remainder of the paper, I treat m1 as if it were exogenous.

10Because firms are assumed to be monopolists (Assumption 1), the industry profit and the firm profit
are the same.
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3.1 What’s in a Price?

In this section, I define the cooperative’s and corporation’s problems. I show that they always
have solutions and I present the paper’s core result: the cooperative’s first period price is
increasing in the technology shock, while the corporation’s first period price is constant.

Formally, the cooperative’s problem is to

max
p>0

∞∫
p1

D(s)ds+
∞∫
p2

D(s)ds+m3 (2)

subject to (3)

kD(p1) ≤ m1, (CR1)

kD(p2) ≤ m2 = m1 + Π(p1; c1) and (CR2)

m3 = Π(p1; c1) + Π(p2; c2) +m1. (4)

The cooperative operates in the first and second periods, offering favorable prices to its
customer-owners. In the third period, it pays a liquidating dividend. By substituting m3,
we see that it maximizes total surplus each period.

The solution to the cooperative’s unconstrained problem is to offer the marginal cost
price each period. Any other price creates a deadweight loss for its customer-owners. The
solution to its constrained problem is far more nuanced and is the subject of this section.

It’s worth pointing out how growth, pricing and capital structure enter the cooperative’s
problem. The role of pricing should be evident (prices are the choice variables). Growth
is the percentage by which sales increase between the first and second periods. Capital
structure comes from the capital requirements. If the capital requirement binds, then the
firm is very levered; if it doesn’t, then the firm is less levered. At the heart of the paper’s
results is the profit term in the second period capital requirement. It represents the firm’s
internal funds. By adjusting this term in the first period, the firm adjusts the amount of
growth that it can support in the second period.

Fortunately, the cooperative’s problem admits solutions under the assumptions made
thus far.

Lemma 1. There is a solution to the cooperative’s problem. Moreover, it satisfies the Kuhn-
Tucker conditions.

Throughout the paper, I benchmark the cooperative’s behavior to that of the corporation.
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The corporation’s problem is to

max
p>0

m3 = Π(p1; c1) + Π(p2; c2) +m1 (5)

subject to (6)

kD(p1) ≤ m1 and (CR1)

kD(p2) ≤ m2 = m1 + Π(p1; c1) (CR2)

and it also admits solutions.

Lemma 2. There is a solution to the corporation’s problem. Moreover, it satisfies the Kuhn-
Tucker conditions.

Our first result deals with the corporation’s prices.

Proposition 1. The corporation’s first period price is constant with respect to the technology
shock.

Proposition 1 says that the corporation sets today’s price to maximize today’s profit. It may
need additional equity to support tomorrow’s growth, but today’s prices won’t be of any
help.

It’s instructive to look at the first-order conditions for p1. If the first period capital
requirement binds, then p∗1 = P (m1/k), which is constant with respect to δ. Now suppose
that the first period capital requirement doesn’t bind. Let λ denote the Langrange multiplier
on the second period capital requirement. The corporation’s first-order condition reads

0 = Π′(p∗1; c1)︸ ︷︷ ︸
A

+λΠ′(p∗1; c1)︸ ︷︷ ︸
B

. (Corporation)

Since λ ≥ 0, we have that Π′(p∗1; c1) = 0. p∗1 doesn’t depend on λ and λ is the only variable
tying p∗1 to δ, so p∗1 doesn’t depend on δ either. In fact, p∗1 = pm(c1). The corporation’s first
period price is constant with respect to the technology shock. Increasing its internal funds
(B) is consistent with maximizing profit (A).

Now that we have a benchmark in place, let’s turn our attention back to the cooperative.
Before proceeding, I segregate cooperatives into those that are adequately capitalized and
those that are poorly capitalized. This segregation has no economic importance and is meant
only to ease the exposition.

Definition 1. The cooperative is adequately capitalized if m1 > kD(c1 − k) and poorly
capitalized otherwise.11

11I have to assume that the minimum equity-to-sales ratio is sufficiently small (k < c1).
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The corporation’s pricing problem is time-separable. It sets today’s price to maximize
today’s profit, without regard for tomorrow’s growth opportunity. This is always true,
regardless of the state of its internal funds. With this result in mind, the following result
about the cooperative is surprising.

Proposition 2. If the cooperative is adequately capitalized, then for sufficiently large technol-
ogy shocks (δ > 1−P (m1/k)/c1), its first period price is strictly increasing in the technology
shock. Its first period price is constant for all other technology shocks. If the cooperative is
poorly capitalized, then its first period price is non-decreasing in the technology shock.

Proposition 2 says that the cooperative adjusts today’s price according to tomorrow’s growth
opportunity. Its pricing problem is not time-separable. Today’s prices depend on information
about the future.

The first-order conditions are again informative. Let λ be as before. The cooperative’s
first-order condition reads:

0 = S ′(p∗1) + Π′(p∗1; c1)︸ ︷︷ ︸
A

+λΠ′(p∗1; c1)︸ ︷︷ ︸
B

(Cooperative)

(recall that S is the consumer surplus). Now, p∗1 depends on λ and so p∗1 depends on δ.
Increasing its internal funds (B) is inconsistent with maximizing first period total surplus
(A), although it is consistent with maximizing second period total surplus. Unlike the
corporation, the cooperative faces a trade-off. Increasing its internal funds creates slack in
the second period capital requirement—which makes growth possible—but it also creates a
deadweight loss.

The proof is slightly more involved than the argument that I’ve just made, but the result
is deep. I said that S is the consumer surplus, but any function that depends on p1 will tie
the first period price to the technology shock. Put differently, the cooperative’s first period
price will depend on the technology shock, even if I’ve misspecified its objective.

3.2 Growth, Pricing and Leverage

Propositions 1 and 2 suggest that while the corporation’s problem is time-separable, the
cooperative’s is not. The cooperative adjusts today’s prices according to tomorrow’s growth
opportunity. The result is theoretically interesting, but it doesn’t lend itself to predictions
about the real world.

In what follows, I show that the cooperative’s growth is positively related to prices and
negatively related to leverage.
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In this model, the technology shock is the natural source of variation, so I index all
variables by δ. Define growth to be

Growth(δ) = γ(δ) := D(p∗2(δ))−D(p∗1(δ))
D(p∗1(δ)) . (7)

It is the percentage by which sales increase between the first and second periods. If, for
example, D is the demand for insurance policies, then Growth is policy growth. If D is the
demand for loans, then Growth is loan growth.

Define the profit margin to be

ProfitMargin(δ) = µ(δ) := p∗1(δ)− c1. (8)

In insurance and banking, ProfitMargin is the insurance margin and the net interest margin
respectively. Note that c1 is fixed, so ProfitMargin will vary one-for-one with p∗1.

In the model, the natural measure of leverage is the ratio of equity-to-sales. If D is the
demand for insurance policies, then the equity-to-sales ratio is the solvency ratio. If D is the
demand for loans—as it is in my data work—the equity-to-sales ratio is the equity-to-loans
ratio or the capital ratio. I will use the banking nomenclature. Define the capital ratio to be

CapitalRatio(δ) = κ(δ) := m1

D(p∗1(δ)) . (9)

Leverage and the capital ratio are inverses: the higher the leverage, the lower the capital
ratio and the higher the capital ratio, the lower the leverage.

The first implication of the model is that the cooperative’s growth is increasing with its
profit margin.

Proposition 3. If the cooperative is adequately capitalized, then for sufficiently large tech-
nology shocks (δ > 1 − P (m1/k)/c1), its growth is strictly increasing with its profit margin.
Its profit margin is constant for all other technology shocks. If the cooperative is poorly
capitalized, then its growth is non-decreasing with its profit margin.

Proof. Fix δ > 0. Consider first the adequately capitalized cooperative. If δ > 1 −
P (m1/k)/c1, then there is an open interval of technology shocks around δ in which the
second period capital requirement binds, but the first period capital requirement does not
(see Lemma 14 in the appendix). The second period capital requirement reads

kD(p∗2(δ)) = m1 + Π(p∗1(δ); c1) = m1 + (p∗1(δ)− c1)D(p∗1(δ)). (10)
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Rewriting it in terms of growth and the profit margin, we obtain

γ(δ) = m1

kD(µ(δ) + c1) + µ(δ)
k
− 1. (11)

Differentiating γ with respect to δ, we obtain

dγ

dδ
= −m1D

′(µ+ c1)
kD(µ+ c1)2 ·

dµ

dδ
+ 1
k
· dµ
dδ
. (12)

Proposition 2 yields
dµ

dδ
= dp∗1

dδ
> 0 (13)

so we can safely write

dγ

dµ
= dγ

dδ

/
dµ

dδ
= −m1D

′(µ+ c1)
kD(µ+ c1)2 + 1

k
> 0. (14)

as desired. If δ ≤ 1 − P (m1/k)/c1, then neither the first nor the second period capital
requirements bind (see, again, Lemma 14 in the appendix). In fact, p∗1 = c1 so the profit
margin is constant.

Suppose that the cooperative is poorly capitalized. We can no longer appeal to Lemma
14, but the arguments made for the adequately capitalized cooperative can be carried over
to the poorly capitalized cooperative. If the first period capital requirement binds, then
p∗1 = P (m1/k). If neither the first nor the second period capital requirements bind, then
p∗1 = c1. In either case, the first period price is constant with respect to the technology
shock—and hence the profit margin is constant with respect to the technology shock. If the
second period capital requirement binds, but the first period capital requirement does not,
then we can appeal to the argument for the adequately capitalized cooperative to conclude
that growth is strictly increasing with the profit margin.

In section 4, I will take Proposition 3 to the data. Suppose we ran the regression

Growtht = α + βProfitMargint + εt. (15)

Proposition 3 says that either ProfitMargint is constant—in which case the regression
suffers from multicollinearity—or Growtht is positively correlated with ProfitMargint, in
which case β will load with a positive sign.

As a benchmark, note the following result.

Proposition 4. The corporation’s profit margin is constant.
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Proof. This is a direct consequence of Proposition 1.

The second implication of the model is that the cooperative’s growth is decreasing with
its leverage (equivalently, increasing with its capital ratio). The intuition is a bit subtle.
We know from Proposition 2 that the cooperative’s first period price is increasing in the
technology shock. If the cooperative observes a growth opportunity but doesn’t have ample
equity, it will raise its first period price, make a profit, retain its earnings and use them to
support growth. By raising its first period price, it lowers its first period sales, which lowers
its first period leverage (equivalently, raises its first period capital ratio). If the cooperative is
a bank—for example—then expanding its first period net interest margin means contracting
its first period loan book. It will appear less levered in the first period.

Proposition 5. If the cooperative is adequately capitalized, then for sufficiently large tech-
nology shocks (δ > 1−P (m1/k)/c1), its growth is strictly increasing with its capital ratio. Its
capital ratio is constant for all other technology shocks. If the cooperative is poorly capitalized,
then its capital ratio is non-decreasing with its capital ratio.

Proof. The proof follows the proof of Proposition 3. Consider first the adequately capitalized
cooperative. Rewriting the second period capital requirement in terms of growth and the
capital ratio, we obtain

γ(δ) = κ(δ)
k

+ P (m1/κ(δ))
k

− 1. (16)

Differentiating γ with respect to δ, we obtain

dγ

dδ
= 1
k
· dκ
dδ
− P ′(m1/κ)

kκ2 · dκ
dδ

(17)

Proposition 2 yields
dκ

dδ
= −m1D

′(p∗1)
D(p∗1)2 ·

dp∗1
dδ

> 0 (18)

so we can safely write
dγ

dκ
= dγ

dδ

/
dκ

dδ
= 1
k
− P ′(m1/κ)

kκ2 > 0 (19)

as desired. If δ ≤ 1 − P (m1/k)/c1, then neither the first nor the second period capital
requirements bind (see, again, Lemma 14 in the appendix). p∗1 = c1 so the capital ratio is
constant. The argument for the poorly capitalized cooperative follows the one contained in
the proof of Proposition 3.

Again, we can think about Proposition 5 in terms of a regression:

Growtht = α + βCapitalRatiot + εt. (20)
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Proposition 3 says that either CapitalRatiot is constant—in which case the regression suffers
from multicollinearity—or Growtht is positively correlated with CapitalRatiot, in which case
β will load with a negative sign.

As a benchmark, note the following result.

Proposition 6. The corporation’s capital ratio is constant.

The profit margin and capital ratio emerge as the key determinants of the cooperative’s
growth. It’s natural to ask how growth covaries with both the profit margin and the capital
ratio. Doing so, we obtain the following elegant result:

Proposition 7. If the cooperative is adequately capitalized, then for sufficiently large tech-
nology shocks (δ > 1 − P (m1/k)/c1), the cooperative’s growth can be written as a linear
function of its profit margin and capital ratio.

Proof. The proof follows the proof of Proposition 3. Rewriting the second period capital
requirement in terms of growth, the profit margin and the capital ratio, we obtain

γ(δ) = k−1µ(δ) + k−1κ(δ)− 1. (21)

as desired.

At first blush, it might seem that Propositions 3, 5, and 7 are just restatements of the
second period capital requirement. This is not the case. The corporation’s second period
capital requirement may bind, but variation in its profit margin and its capital ratio will not
translate into variation in its growth.

4 Applications

In this section, I discuss customer owned firms to which the theory can be applied. For
each type of firm, I assess the extent to which Assumptions 1 (market power), 2 (internal
finance) and 3 (capital requirements) are satisfied. In the case of credit unions, I document
two stylized facts that are consistent with Propositions 3 and 5.

4.1 Credit Unions

Credit unions are savers’ cooperatives. They are owned by the people from whom they accept
deposits, known as members. Like any other bank, credit unions sell deposits to savers and
buy loans from borrowers. Borrowers are typically nominal savers and enjoy control rights
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comparable to those of savers.12 Members who borrow are offered low rates on loans while
members who save are offered high rates on deposits. Members’ control rights are similar
to those of the shareholders of large, publicly held corporations. The Federal Credit Union
Act requires boards “...to be elected annually by and from the members....” In the event
of a voluntary liquidation, credit unions distribute their equity to their members through a
liquidating dividend.

US credit unions hold $1.1 trillion in assets.13 They hold 9.5% of consumer savings
($971.2 billion) and originate 10.3% of installment credit ($345.6 billion).14 They originate
11% of home loans and 17% of auto loans.15 Over 100 million US adults are members of a
credit union.16

The theory proposed in this paper assumes that internal funds—amassed through earn-
ings retention—are the cooperative’s only source of equity. Credit unions satisfy this assump-
tion well. The Federal Credit Union Act states that credit unions “...do not issue capital
stock...[and]...must rely on retained earnings to build net worth.”

US credit unions face capital requirements under federal law. They must maintain a
capital asset ratio of 6%. They are also evaluated using more contemporary Risk Based
Capital measures.

Because of data availability, I use the US credit union industry as a laboratory to test
the theory’s predictions. Data on credit unions comes from the NCUA call reports; data on
traditional banks comes from the FDIC call reports. Observations are industry aggregates for
the first quarter of 2003 through the last quarter of 2012. Figure 1 plots loan growth against
the net interest margin. For both samples I plot a regression line. The point estimates and
the standard errors can be found in Table 1. For credit unions, loan growth is positively
and significantly related to the net interest margin, a finding consistent with Proposition
3. I’m unable to document a relationship for banks. This finding is either consistent with
Proposition 4 or a symptom of high variance.

A similar story emerges for leverage. Figure 1 plots loan growth against the industry

12To illustrate the point, consider the following allegory. Bonnie and Clyde choose to become members
of a credit union. They each make a minimum deposit of—say—$5. Credit unions operates under a one-
member-one-vote rule. So Bonnie receives the right to exactly one vote and Clyde receives the right to
exactly one vote. After opening their accounts, Bonnie deposits $9,995 and Clyde borrows $10,005. Bonnie
is a net $10,000 depositor and Clyde is a net $10,000 borrower. Bonnie could care less about the rate on
loans and Clyde could care less about the rate on deposits, but each has one vote just the same.

132017 Statistical Report. World Council of Credit Unions.
14Credit Union Report Year-End 2014. Credit Union National Association.
15First statistic: David Morrison. Credit Unions Score 11% Mortgage Market Share. Credit Union Times,

August 2015. Second statistic: Michael Muckian. Credit Unions Gain Auto Loan Market Share: Experian.
Credit Union Times, September 2014

162017 Statistical Report. World Council of Credit Unions.
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capital ratio. Again, point estimates and the standard errors can be found in Table 1. For
credit unions, loan growth is positively and significantly related to the capital ratio (nega-
tively related to leverage), a finding consistent with Proposition 5. I’m unable to document
a relationship for banks. It is unclear whether this result is consistent with Proposition 6.

Finally, I attempt to test Proposition 7. Neither the net interest margin nor the capital
ratio load. The two covariates have a correlation of .84 (compare with .46 for banks) so it is
likely that the regression suffers from multicollinearity.

4.2 Mutual Insurance Companies

Mutual insurance companies are policyholders’ cooperatives. They are owned by the people
to whom they underwrite insurance policies, also known as members. Members can vote
for directors and have a claim to the company’s equity upon dissolution. Mutual insurance
companies can—and do—pay non-obligatory dividends.17

In 2012, US mutual insurance companies enjoyed a 34.5% market share (28.7% for life
and 39.2% for non-life); globally, mutual insurance companies enjoyed a 26.7% market share
(25.0% for life and 28.9% for non-life). The two largest mutual life insurance companies are
New York Life (4.8% market share) and MassMutual (2.8% market share) while the two
largest mutual home/auto insurance companies are State Farm (20.3% for home, 18.7% for
auto) and Liberty Mutual (6.6% for home, 5.0% for auto).18

Like their credit union cousins, mutual insurance companies rely heavily on retained
earnings for equity.19 They are state regulated. Most of the statutory capital requirements
specify the amount of initial equity needed to be chartered.20 That being said, state regula-
tors use Risk Based Capital measures as part of their ongoing oversight role. The National
Association of Insurance Commissioners (NAIC) has developed “model laws” to unify insur-
ance regulation through the US.

4.3 The Farm Credit System

The Farm Credit System is a network of cooperative banks known as Agricultural Credit
Associations (ACAs). ACAs are borrowers’ cooperatives. They are owned by the people to
whom they make loans. Unlike credit unions, ACAs don’t have saver-members. Members

17New York Life, the largest mutual life insurance company in the US, announced its largest dividend in
company history on November 23, 2015. http://www.newyorklife.com/about/nyl-dividend-payout.

18Global Mutual Market Share 2012. International Cooperative and Mutual Federation.
19Robert Detlefsen. Focus On The Future: Options For The Mutual Insurance Company. National

Association of Mutual Insurance Companies. March, 2010.
20http://www.naic.org/documents/industry_ucaa_chart_min_capital_surplus.pdf.
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finance their loans by issuing bonds through Farmer Mac. ACA members—like credit union
and mutual insurance company members—can vote for directors.

In 2014, the Farm Credit System was responsible for 42.5% ($135 billion) of total farm
debt. The Farm Credit System is regulated by the Farm Credit Administration, which has
adopted capital requirements “comparable to the Basel III framework.”21 ACAs are unique
among cooperative banks in that they require borrowers to purchase “at-risk stock.” This
practice violates Assumption 2 and should attenuate the effects predicted by Propositions 3
and 5. That being said, it does not seem that borrower stock completely covers ACA equity
needs. In 2014, ACAs financed sizable 17% of their assets with retained earnings.

4.4 Rural Electricity Cooperatives

This paper has focused on cooperatives in the financial sector. Cooperatives appear in other
industries as well. One of the most interesting and economically important examples comes
from rural electricity provision. Rural electricity cooperatives supply 13% of US electricity
(killowatt-hours) and serve 42 million Americans. Rural electricity cooperatives don’t face
capital requirements like banks do, but equity still seems to be important. In 2010, the
industry maintained a capital-asset ratio of 30%22.

5 Conclusion

Despite their economic significance, customer owned firms have received little theoretical or
empirical attention. This paper presents a simple theory of internal finance for the customer
owned firm. It shows that a customer friendly objective ties together the firm’s growth,
pricing and capital structure. It shows that high sales growth is achieved through high
prices and low leverage. Underlying this result is a dynamic pricing problem. The price
of the firm’s good depends on future growth opportunities. These results stand in stark
contrast to traditional theories of corporate finance and industrial organization.
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6 Appendix B: Proofs

This section contains proofs omitted from the text.

6.1 A Few Definitions

As they will appear frequently, put

p1 := max{P (m1/k), pm(c1)}, (22)

p1 := max{P (m1/k), c1}, (23)

p2 := max{P (m1/k + Π(p1; c1)/k), pm(c2)}, (24)

p2 := max{P (m1/k + Π(p1; c1)/k), c2}. (25)
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It will transpire that solutions to both the cooperative’s problem and the corporation’s
problem live in the box B := [p1, p1] × [p2, p2]. That p1 ≤ p1 follows immediately from the
fact that pm(c1) > c1. That p2 ≤ p2 will follow from Lemma 6. Put

g1(p) := m1 − kD(p1), (26)

g2(p) := m1 + Π(p1; c1)− kD(p2). (27)

In terms of g1 and g2, the constraint set for both the cooperative’s problem and the corpo-
ration’s problem is given by

C := {p ∈ R2
++ | g1(p) ≥ 0, g2(p) ≥ 0}. (28)

The cooperative’s problem is equivalent to

max
p∈C

fS+Π(p) := S(p1) + Π(p1; c1) + S(p2) + Π(p2; c2) (29)

and the corporation’s problem is equivalent to

max
p∈C

fΠ(p) := Π(p1; c1) + Π(p2; c2). (30)

I will frequently use the definitions δ := (c1 − c2)/c1 and pm(c) := argmaxp Π(p; c) and the
assumptions A1 – A4. Definitions and assumptions not contained in this appendix can be
found in the body of the text.

6.2 General Results

Lemma 3. Π(•; c) is strictly quasiconcave.

Proof. If p > 0 is such that 0 = Π′(p; c) = D(p) + (p− c)D′(p), then

Π′′(p; c) = 2D′(p) + (p− c)D′′(p) (31)

= 2D′(p)− D(p)D′′(p)
D′(p) (32)

= D′(p)
(

2− D(p)D′′(p)
D′(p)2

)
(33)

= D′(p)
(

2− σ(p)
ε(p)

)
> 0 (34)

where the last line follows by (A1). We conclude that Π(•; c) is strictly quasiconcave.
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Lemma 4. pm(c) exists and is unique.

Proof. Π′(c; c) = D(c) > 0, so there is some p0 > c such that Π(p0; c) > 0 = Π(c; c).
Now limp→∞ pD(p) = 0 (A4) and limp→∞D(p) = 0 (a direct consequence of A3), so
limp→∞Π(p; c) = 0: there is some p1 > c such that Π(p; c) < Π(p0; c) for all p > p1.
pm(c), if it exists, is an element of [c, p1]. But Π(p; c) is continuous, so it achieves pm(c) on
[c, p1] (Extreme Value Theorem). The uniqueness of pm(c) follows by the quasiconcavity of
Π(•; c).

Lemma 5. Let c > 0. c is the unique maximizer of S + Π(• ; c).

Proof. Let p > 0, p 6= c. Then

S(p) + Π(p; c) =
∞∫
p

D(s)ds+ (p− c)D(p) (35)

=
∞∫
c

D(s)ds+
c∫
p

D(s)ds+ (p− c)D(p) (36)

=
∞∫
c

D(s)ds−
c∫
p

(s− c)D′(s)ds (37)

<

∞∫
c

D(s)ds = S(c) + Π(c; c). (38)

Use integration by parts to obtain the third line; use the fact that D′ < 0 to obtain the
fourth.

Lemma 6. If p1 ≤ p1 ≤ p1, then Π(p1; c1) ≥ Π(p1; c1).

Proof. If p1 = c1, then p1 ≥ p1 = c1 and hence Π(p1; c1) ≥ 0 = Π(c1; c1) = Π(p1; c1). If
p1 = p1 = P (m1/k), then the result follows immediately. If p1 = P (m1/k) and p1 = pm(c1),
then p1 ≤ p1 ≤ pm(c1) and hence

Π(p1; c1) ≥ min{Π(p1; c1),Π(pm(c1); c1)} = Π(p1; c1) (39)

by the strict quasiconcavity of Π(• ; c1) and the definition of pm(c1).

Lemma 7. Let p ∈ C, t ∈ {1, 2}. If pt > pt, then Π(pt; ct) > Π(pt; ct).

Proof. If pt = pm(ct), then pt > pt = pm(ct) and hence Π(pt; ct) = Π(pm(ct); ct) > Π(pt; ct).
If pt 6= pm(ct), then pt > pt > pm(ct) and hence

Π(pt; ct) > min{Π(pt; ct),Π(pm(ct); ct)} = Π(pt; ct) (40)
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by the strict quasiconcavity of Π(• ; ct) and the definition of pm(ct).

Lemma 8. Let p ∈ C, t ∈ {1, 2}. If pt > pt, then S(pt) + Π(pt; ct) > S(pt) + Π(pt; ct).

Proof. Use Lemma 7 and the fact that S is strictly decreasing.

Lemma 9. Let p ∈ C, t ∈ {1, 2}. If pt < p
t
, then p

t
= ct.

Proof. Suppose p
t
6= ct. If t = 1, then p1 < p1 = P (m1/k) ≤ p1 (recall that p ∈ C).

We have a contradiction. If t = 2, then p2 < p2 = P (m1/k + Π(p1; c1)/k). Now p ∈ C,
so p1 ≥ P (m1/k) and p2 ≥ P (m1/k + Π(p1; c1)/k). If p1 = pm(c1), then Π(p1; c1) =
Π(pm(c1); c1) ≥ Π(p1; c1). If p1 6= pm(c1), then p1 ≥ P (m1/k) = p1 > pm(c1) and hence

Π(p1; c1) ≥ min{Π(p1; c1),Π(pm(c1); c1)} = Π(p1; c1) (41)

by the strict quasiconcavity of Π(• ; c1) and the definition of pm(c1). Therefore,

p2 < p2 = P (m1/k + Π(p1; c1)/k) ≤ P (m1/k + Π(p1; c1)/k) ≤ p2. (42)

We again have a contradiction.

Lemma 10. Let p ∈ C, t ∈ {1, 2}. If pt < p
t
, then Π(p

t
; ct) > Π(pt; ct).

Proof. p
t

= ct (Lemma 9) so pt < p
t

= ct < pm(ct) and hence

Π(p
t
; ct) > min{Π(pt; ct),Π(pm(ct); ct)} = Π(pt; ct) (43)

by the strict quasiconcavity of Π(• ; ct) and the definition of pm(ct).

Lemma 11. Let p ∈ C, t ∈ {1, 2}. If pt < p
t
, then S(p

t
) + Π(p

t
; ct) > Π(pt; ct) + S(pt).

Proof. p
t

= ct (Lemma 9) so pt < p
t

= ct. The result follows by Lemma 5.

Lemma 12. Let p∗ ∈ C be a solution to either the cooperative’s problem or the corporation’s
problem. The constraint qualification holds at p∗.

Proof. The derivative of (g1, g2) has full rank at p∗:
∣∣∣∣∣∣ g

1
1(p∗) g1

2(p∗)
g2

1(p∗) g2
2(p∗)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ −kD
′(p∗1) 0

Π′(p∗1; c1) −kD′(p∗2)

∣∣∣∣∣∣ = k2D′(p∗1)D′(p∗2) > 0 (44)

so the constraint qualification holds.
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Lemma 13. Let p∗ ∈ C be a solution to either the cooperative’s problem or the corporation’s
problem. If g1(p∗) = 0, then m1 < D(c1 − k).

Proof. If g1(p∗) = 0, then m1 = kD(p∗1). g2(p∗) ≥ 0 implies that

0 < kD(p∗2) ≤ m1 + Π(p∗1; c1) = kD(p∗1) + (p∗1 − c1)D(p∗1) = (k + p∗1 − c1)D(p∗1), (45)

which implies that p∗1 > c1 − k. We conclude that m1 = kD(p∗1) < kD(c1 − k).

6.3 The Cooperative

Proof of Lemma 1. I will start by showing that solutions, if they exist, live in the box B:
for each p ∈ C ∩ Bc, there is a p̃ ∈ C ∩ B such that fΠ+S(p̃) > fΠ+S(p). Fix p ∈ C ∩ Bc.
Each element of B is strictly positive in each of its coordinates. Moreover, g1(p1, •) ≥ 0,
g1(p1, •) ≥ 0 and g1(p1, •) ≥ 0 by construction. Consider each of the following cases:

1. Suppose p1 > p1 and p2 > p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (46)

≥ m1 + Π(p1; c1)− kD(P (m1/k + Π(p1)/k)) (47)

= Π(p1; c1)− Π(p1; c1) ≥ 0 (48)

(Lemma 6). Apply Lemma 8 twice to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

2. Suppose p1 > p1 and p2 < p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (49)

≥ m1 + Π(p1; c1)− kD(P (m1/k + Π(p1; c1)/k)) = 0. (50)

Apply Lemmas 8 and 11 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

3. Suppose p1 < p1 and p2 > p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (51)

≥ m1 + Π(p1; c1)− kD(P (m1/k + Π(p1; c1)/k)) = 0. (52)

Apply Lemmas 11 and 8 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).
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4. Suppose p1 < p1 and p2 < p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (53)

> m1 + Π(p1; c1)− kD(p2) = g2(p1, p2) ≥ 0 (54)

(Lemma 10). Apply Lemma 11 twice to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

5. Suppose p1 > p1 and p2 ≤ p2 ≤ p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (55)

> m1 + Π(p1; c1)− kD(p2) = g2(p1, p2) ≥ 0 (56)

(Lemma 7). Apply Lemma 8 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

6. Suppose p1 < p1 and p2 ≤ p2 ≤ p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (57)

> m1 + Π(p1; c1)− kD(p2) = g2(p1, p2) ≥ 0 (58)

(Lemma 10). Apply Lemma 11 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

7. Suppose p1 ≤ p1 ≤ p1 and p2 > p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (59)

≥ m1 + Π(p1; c1)− kD(P (m1/k + Π(p1; c1)/k)) (60)

= Π(p1; c1)− Π(p1; c1) ≥ 0 (61)

(Lemma 6). Apply Lemma 8 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

8. Suppose p1 ≤ p1 ≤ p1 and p2 < p2. Observe that (p1, p2) ∈ C ∩B:

g2(p1, p2) = m1 + Π(p1; c1)− kD(p2) (62)

> m1 + Π(p1; c1)− kD(p2) = g2(p1, p2) ≥ 0. (63)

Apply Lemma 11 to obtain fΠ+S(p1, p2) > fΠ+S(p1, p2).

The solution, if it exists, must be an element of B. Put C := C ∩B. C is non-empty because
(p1, p2) ∈ C. C is closed because it is defined by weak inequalities. C is bounded because it
lives in the box B. So C is compact. Now fS+Π is continuous. The Extreme Value Theorem
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tells us that fS+Π attains its maximum on C, which we’ve shown is its maximum on C.
We have a solution, the objective and constraints are twice continuously differentiable and
we know that the constraint qualification holds (Lemma 12). We appeal to Kuhn-Tuckers’
Theorem: there are multipliers satisfying the Kuhn-Tucker conditions at the solution.

Lemma 14. Suppose that the cooperative is adequately capitalized. Then its first period
capital requirement does not bind. Its second period capital requirement binds if and only if
δ > 1− P (m1/k)/c1.

Proof. Let p∗ ∈ C be a solution to the cooperative’s problem (Lemma 1 guarantees that p∗

exists). Because the cooperative is adequately capitalized, we have thatm1 > kD(c1−k) and
so Lemma 13 guarantees that g1(p∗1) > 0. Put differently, the first period capital requirement
doesn’t bind. If δ > 1 − P (m1/k)/c1, then we have that m1 < kD((1 − δ)c1) = kD(c2)
and so Lemma 5 guarantees that g2(p∗) = 0. The second period capital requirement binds.
Conversely, if δ ≤ 1−P (m1/k)/c1, then we have that m1 ≥ kD(c2) and Lemma 5 guarantees
that g2(p∗) = 0. The second period capital requirement doesn’t bind.

Proof of Proposition 2. Suppose that the cooperative is adequately capitalized. If δ > 1 −
P (m1/k)/c1, then Lemma 14 guarantees that there’s an open interval of technology shocks
around δ in which the second period capital requirement binds, but its first period capital
requirement doesn’t. In this neighborhood, the first-order conditions are:

0 = −D(p∗1) + Π′(p∗1; c1) + λΠ′(p∗1; c1) (64)

0 = −D(p∗2) + Π′(p∗2; c2)− λkD′(p∗2) (65)

kD(p∗2) = m1 + Π(p∗1; c1). (66)

Eliminating λ yields

kD(p∗1) = (k + p∗2 − c2)Π′(p∗1; c1) (67)

kD(p∗2) = m1 + Π(p∗1; c1). (68)

Now kD(p∗1) > 0, so Π′(p∗1; c1) 6= 0 and we can safely write

p∗2 = c2 − k + kD(p∗1)
Π′(p∗1; c1) . (69)

Using the second period capital requirement, we can write

P (m1/k + Π(p∗1; c1)/k) = c2 − k + kD(p∗1)
Π′(p∗1; c1) . (70)
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Rearranging, we obtain

c2 = φ(p∗1) := k + P (m1/k + Π(p∗1; c1)/k)− kD(p∗1)
Π′(p∗1; c1) . (71)

All that’s left to show is the invertability of the right-hand-side. Put ψ(p∗1) := D(p∗1)/Π′(p∗1; c1).
Differentiating ψ, we obtain

ψ′(p∗1) = (Π′(p∗1; c1))−2(D′(p∗1)Π′(p∗1; c1)−D(p∗1)Π′′(p∗1; c1)) (72)

= (Π′(p∗1; c1))−2(D′(p∗1)(D(p∗1) + (p∗1 − c1)D′(p∗1))−D(p∗1)(2D′(p∗1) + (p∗1 − c1)D′′(p∗1)))
(73)

= (Π′(p∗1; c1))−2((p∗1 − c1)(D′(p∗1))2 −D(p∗1)D′(p∗1)− (p∗1 − c1)D(p)D′′(p∗1)) (74)

= (Π′(p∗1; c1))−2((D′(p∗1))2((p∗1 − c1)(1−D(p)D′′(p∗1)/(D′(p∗1))2)−D(p∗1)/D′(p∗1)))
(75)

= (Π′(p∗1; c1))−2(D′(p∗1))2((p∗1 − c1)(1− σ(p∗1)/ε(p∗1)) + p∗1/ε(p∗1)) (76)

= (Π′(p∗1; c1))−2(D′(p∗1))2(p∗1 − c1)(ε(p∗1)− σ(p∗1) + p∗1)/ε(p∗1) (77)

≥ (Π′(p∗1; c1))−2((D′(p∗1))2(−(p∗1 − c1) + p∗1)/ε(p∗1)) (78)

= (Π′(p∗1; c1))−2c1(D′(p∗1))2/ε(p∗1) (79)

> 0, (80)

having used the facts that p∗1 ≥ c1 (Lemma 1) and σ(p) ≤ 1 + ε(p) (A2). Together with the
fact that P ′ < 0, we conclude that φ′ < 0 by the inverse function theorem. Finally,

dp∗1
dδ

= dp∗1
dc2
· dc2

dδ
= −c1φ

′(p∗1) > 0 (81)

so that the first period price is strictly increasing in the technology shock.
If δ ≤ 1− P (m1/k)/c1, then Lemma 14 says that neither the first nor the second period

capital requirements bind. In fact, p1 = c1 so the first period price is constant with respect
to the technology shock.

Suppose that the cooperative is poorly capitalized. We can no longer appeal to Lemma
14, but the arguments made for the adequately capitalized cooperative can be carried over
to the poorly capitalized cooperative. If the first period capital requirement binds, then
p∗1 = P (m1/k). If neither the first nor the second period capital requirements bind, then
p∗1 = c1. In either case, the first period price is constant with respect to the technology
shock. If the second period capital requirement binds, but the first period capital requirement
doesn’t, then we can appeal to the argument for the adequately capitalized cooperative to
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conclude that the first period price is strictly increasing in the technology shock.

6.4 The Corporation

Proof of Lemma 2. The proof is identical to that of Lemma 1, except that Lemma 7 should
be used in place of Lemma 8, Lemma 10 should be used in place of Lemma 11 and fΠ should
be used in place of fS+Π.

Proof of Proposition 1. Let p∗ ∈ C be a solution to the corporation’s problem and let λ ≥ 0
denote the Lagrange multiplier on the constraint g2(p) ≥ 0. If g1(p∗) = 0, then p∗1 =
P (m1/k). If g1(p∗) > 0, then the condition for p1 is 0 = (1 +λ)Π′(p∗1; c1), which implies that
p∗1 = pm(c1).
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Figure 1: Loan Growth and Net Interest Margins. This figure plots loan growth
against the net interest margin for credit unions and banks. An observation is a quarter
between the first quarter of 2003 and the fourth quarter of 2012. Loan growth in quarter
t is the aggregate change in loans from quarter t to quarter t + 1 divided by the aggregate
loans in quarter t. The net interest margin in quarter t is the aggregate net interest income
in quarter t divided by the aggregate loans in quarter t. The coefficient on the net interest
margin is significant and positive for credit unions and insignificant for banks (see Table 1).
The R2 is 27.3% for the credit union regression and 1.0% for the bank regression. The solid
line is the regression line for credit unions; the dashed line is the regression line for banks.
Data on credit unions comes from the NCUA call reports; data on banks comes from the
FDIC call reports.
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Figure 2: Loan Growth and Capital Ratios. This figure plots loan growth against the
capital ratio for credit unions and banks. An observation is a quarter between the first
quarter of 2003 and the fourth quarter of 2012. Loan growth in quarter t is the aggregate
change in loans from quarter t to quarter t + 1 divided by the aggregate loans in quarter
t. The capital ratio in quarter t is the aggregate equity capital in quarter t divided by the
aggregate loans in quarter t. The coefficient on the capital ratio is significant and positive
for credit unions and insignificant for banks (see Table 1). The R2 is 26.8% for the credit
union regression and 4.6% for the bank regression. The solid line is the regression line for
credit unions; the dashed line is the regression line for banks. Data on credit unions comes
from the NCUA call reports; data on banks comes from the FDIC call reports.
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Figure 3: The Corporation’s (Top) and Cooperative’s (Bottom) Objectives. This
figure illustrates the corporation’s and cooperative’s objectives under linear demand. The
corporation maximizes the profit Π(p; c) = (p − c)D(p) (the dark rectangle). The co-
operative’s members are customers, and so it maximizes the consumer surplus

∫ 1
0 D(s)ds

(the light triangle), but its members are also owners, and so it maximizes the profit
Π(p; c) = (p − c)D(p) (the dark rectangle). It should be clear that p > c is inefficient
in a static setting (although it will be in a dynamic setting).
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Loan Growth
Credit Unions Banks

(1) (2) (3) (4) (5) (6)
Net Interest Margin 4.537∗∗∗ 2.585 2.427 6.143

(1.200) (2.179) (4.004) (4.361)
Capital Ratio 0.943∗∗∗ 0.490 −0.298 −0.456∗

(0.252) (0.457) (0.220) (0.244)
Constant −0.032∗∗ −0.140∗∗∗ −0.092 −0.007 0.080∗ 0.023

(0.012) (0.041) (0.058) (0.056) (0.040) (0.057)
Observations 40 40 40 40 40 40
R2 27.3% 26.8% 29.5% 1.0% 4.6% 9.5%
F Statistic 14.290∗∗∗ 13.939∗∗∗ 7.748∗∗∗ 0.367 1.840 1.936

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Loan Growth, Net Interest Margins, and Capital Ratios. This table
displays loan growth regressions. An observation is a quarter between the first quarter of
2003 and the fourth quarter of 2012. Loan growth in quarter t is the aggregate change in
loans from quarter t to quarter t + 1 divided by the aggregate loans in quarter t. The net
interest margin in quarter t is the aggregate net interest income in quarter t divided by the
aggregate loans in quarter t. The capital ratio in quarter t is the aggregate equity capital in
quarter t divided by the aggregate loans in quarter t. Data on credit unions comes from the
NCUA call reports; data on banks comes from the FDIC call reports.
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