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1. Introduction

Information asymmetry is a fundamental concept in economics, but its estimation is chal-

lenging because private information is generally unobservable. Many proxies for information

asymmetry exist including bid/ask spreads, price impacts, and estimates from structural

models. In this paper, we study identification of information asymmetry parameters in

structural models. Structural modeling allows the econometrician to capture parameters

related to the underlying economic mechanisms such as the probability and magnitude of

private information events or the intensity of noise trading. Demand for plausible measures

of information asymmetry is high because private information plays a key role in so many

economic settings. Evidence of this demand is the large literature in finance and accounting

that utilizes the probability of informed trade (PIN) measure of Easley, Kiefer, O’Hara and

Paperman (1996) to proxy for information asymmetry.1

Our first contribution is to propose and solve a model of informed trading in securities

markets that shares many features of the PIN model of Easley et al. (1996) but in which

informed trading is endogenous as in Kyle (1985). We call this a hybrid PIN-Kyle model.

In the paper, we study a binary signal following Easley et al. (1996), but the model can

accommodate more general signal distributions.2

An important implication of the model is that order flows alone cannot identify infor-

mation asymmetry. The intuition is quite simple. Consider, for example, a stock for which

there is a large amount of private information and another for which there is only a small

1Some of those papers assesses whether information risk is priced. See, for example, Easley and O’Hara
(2004), Duarte and Young (2009), Mohanram and Rajgopal (2009), Easley, Hvidkjaer and O’Hara (2002),
Easley, Hvidkjaer and O’Hara (2010), Akins, Ng and Verdi (2012), Li, Wang, Wu and He (2009), and Hwang,
Lee, Lim and Park (2013). Many other papers use PIN (and other measures) to capture a firm’s information
environment in a variety of applications ranging from corporate finance (e.g., Chen, Goldstein and Jiang,
2007; Ferreira and Laux, 2007) to accounting (e.g., Frankel and Li, 2004; Jayaraman, 2008).

2A precursor to our paper is Li (2012), which solves a continuous-time Kyle model in which the probability
of an information event is less than 1 by applying filtering theory to a transformation of the aggregate order
process. The filtering solution produces a stochastic differential equation for the equilibrium rather than a
closed form solution. The method of proof used in this paper shares some features with the proof in Back
and Crotty (2015).
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amount of private information. If it is anticipated that private information is more of a

concern for the first stock than for the second, then the first stock will be less liquid, other

things being equal. The lower liquidity will reduce the amount of informed trading, possibly

offsetting the increase in informed trading due to greater private information. In equilib-

rium, the amount of informed trading may be the same in both stocks, despite the difference

in information asymmetry. In general, the distribution of order flows need not reflect the

degree of information asymmetry when liquidity providers react to information asymmetry

and informed traders react to liquidity. Thus, we provide the first theoretical explanation of

why the PIN methodology, which uses order flows alone to estimate information asymmetry

parameters, may not identify private information.3

Our second contribution is to develop novel estimates characterizing the information

environment in financial markets. We structurally estimate our theoretical model for a

panel of stocks and provide several validation checks that the estimated parameters are

plausibly related to information asymmetry. First, reduced-form estimates of price impact

are increasing in our structural estimates of the probability and magnitude of information

events, as implied by theory. Second, excess kurtosis is decreasing in the ex ante probability

of an information event in the model and in the data. This occurs in the model because the

sensitivity of prices to orders depends on the perceived likelihood that an informed trader

is present. This changing sensitivity of prices to orders means that returns are drawn from

3Several papers argue that PIN does not identify private information. Aktas et al. (2007) examine
trading around merger announcements. They show that PIN decreases prior to announcements. In contrast,
percentage spreads and the permanent price impact of trades, measured as in Hasbrouck (1991), rise before
announcements, indicating the presence of information asymmetry. They describe the decline in PIN prior
to announcements as a PIN anomaly. Akay et al. (2012) show that PIN is higher in the Treasury bill market
than it is in markets for individual stocks. Given that it is very doubtful that informed trading in T-bills is
a frequent occurrence, this is additional evidence that PIN is not measuring information asymmetry. Benos
and Jochec (2007) find that PIN is higher following earnings announcements, contrary to their assumption
that information asymmetry should be higher before announcements. Duarte, Hu and Young (2016) also
examine earnings announcements. They estimate the parameters of the PIN model and then compute the
conditional probability of an information event each day. They show that the conditional probability rises
prior to announcements but stays elevated for a number of days following announcements. They show that
the high post-announcement conditional probabilities are due to high turnover and argue that high turnover
is misidentified as private information by the PIN model.
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a mixture distribution, exhibiting excess kurtosis. Third, volatility over the latter part of

a trading day is increasing in the conditional probability of an information event, where

the conditioning is based on cumulative order flows over the first part of the day and our

estimated parameters. This phenomenon of stochastic volatility occurs in both the model

and the data.4

To demonstrate potential applications of the estimates, we revisit two settings in which

PIN estimates have been employed. One application of PIN has been to attempt to capture

time-series variation in information asymmetry. For example, Brown, Hillegeist and Lo

(2004, 2009) examine changes in information asymmetry following voluntary conference calls

and earnings surprises, respectively, while Duarte, Han, Harford and Young (2008) study the

effect of Regulation FD on PIN and the cost of capital. We show that conditional probabilities

of information events calculated using order flows and our parameter estimates rise on average

around earnings announcements and also around block accumulations by Schedule 13D filers,

indicating that the model does capture time series variation in information asymmetry.

The second application illustrates how estimates of the information asymmetry parame-

ters from our model can be used to augment studies concerned with cross-sectional differences

in the information content of prices. To do so, we consider the hypothesis of Chen et al.

(2009) that corporate investment is more sensitive to market prices when there is more

private information in prices. Our model allows us to measure the amount of private in-

formation alternatively by the frequency of private information events, by the magnitude

of private information, and by the fraction of total price movement that is due to private

information. We show that corporate investment is more sensitive to prices when any of

these measures is higher. These measures of private information should prove useful in other

settings in which researchers are interested in capturing distinct facets of the information

4Banerjee and Green (2015) solve a rational expectations model with myopic mean-variance investors
in which investors learn whether other investors are informed. They show that variation over time in the
perceived likelihood of informed trading induces volatility clustering. While their model is quite different
from ours, our model also exhibits volatility clustering. Volatility follows the same pattern as Kyle’s lambda,
which varies over time due to variation in the market’s estimate of whether an information event occurred.
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environment (e.g., the amount of noise trading or the magnitude of private information).

Related structural models of informed trading include the Adjusted PIN (APIN) model of

Duarte and Young (2009), the Volume-Synchronized PIN (VPIN) model of Easley, López de

Prado and O’Hara (2012), and the modified Kyle model of Odders-White and Ready (2008).

The APIN model allows for time variation in liquidity trading (with positively correlated

buy and sell intensities), which provides a better fit to the empirical distribution of buys and

sells. The VPIN model estimates buys and sells within a given time interval by assigning a

fraction of total volume to buys and the remaining fraction to sells based on standardized

price changes during the time interval.5 Odders-White and Ready (OWR) analyze a Kyle

model in which the probability of an information event is less than 1, as it is in our model.

However, they analyze a single-period model, whereas we study a dynamic model. Unlike

our dynamic model in which prices equal conditional expectations, market makers in their

model only match unconditional means of prices to unconditional means of asset values.6

Our estimate of the probability of an information event is not positively correlated in the

cross section with estimates from the other models. The divergence between the estimates is

not surprising, because the models have different assumptions/implications regarding what

data is required to identify the probability of an information event.7 We also calculate a

composite measure of information asymmetry in our model: the expected average lambda.

This measure incorporates both the probability and magnitude of information events as

5Easley et al. (2011) claim that VPIN predicted the “flash crash” of May 6, 2010. This claim and some
other claims regarding VPIN are challenged by Andersen and Bondarenko (2014b). See also Easley et al.
(2014) and Andersen and Bondarenko (2014a).

6In a single-period model, because of the net order having a mixture distribution, the conditional expec-
tation of the asset value given the net order is not a linear function of the net order. To make the model
tractable, Odders-White and Ready deviate from the usual Kyle model formulation and do not require the
asset price to equal its conditional expected value. Instead, they only require that unconditional expected
market maker profits are zero. They find the pricing rule that is linear in the net order that has this “zero
conditional expected profits on average” property. Such a pricing rule would require commitment by market
makers, because it is not consistent with ex-post optimization by market makers. In contrast, pricing in
our model is consistent with ex-post optimization by competitive market makers: prices equal conditional
expected values.

7While the OWR model uses both prices and order flows for estimation, their model shares the feature
of the PIN model that the unconditional order flow distribution depends on the information asymmetry
parameters and hence could be used to identify information asymmetry.
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well as the amount of liquidity trading. Unlike the probability of an information event, the

expected average lambda from our model is positively correlated with similar measures from

other models (PIN, APIN, VPIN, and the OWR lambda). Each of these measures should

be increasing in the probability of an information event, so it is surprising that they are all

positively correlated, given the lack of correlation of the ‘probability of an information event’

estimates. However, the measures are also decreasing in the amount of noise trading, and

we present evidence in Section 5 that the measurement of noise trading is quite positively

correlated across models, resulting in the positive correlation of the composite measures. Of

course, applications of the measures generally assume that they are correlated with private

information, not just inversely correlated with liquidity trading.

Theory predicts that orders have larger price impacts when information asymmetry is

more severe.8 Note that this is true in both the Kyle (1985) model upon which the hybrid and

OWR models are based and the Glosten and Milgrom (1985) model upon which PIN models

are based. To test this implication of theory, we compute reduced-form estimates of price

impacts for our sample and regress them on estimated information asymmetry parameters

from each model. Empirically, expected average lambda from the hybrid model explains

a substantial amount of cross-sectional variation in price impacts. However, PIN, APIN,

VPIN, and the OWR lambda are also positively related to price impacts cross-sectionally.

Our hybrid model (and to a lesser extent VPIN) performs the best in a horse race.

Other related theoretical work includes Rossi and Tinn (2010), Foster and Viswanathan

(1995), and Chakraborty and Yilmaz (2004). Rossi and Tinn solve a two-period Kyle model

in which there are two large traders, one of whom is certainly informed and one of whom

may or may not be informed. In their model, unlike ours, there are always information

events. Foster and Viswanathan (1995) consider a series of single-period Kyle models in

8There seems to be general agreement that at least a portion of the price impact of trades is due to
information asymmetry. Glosten and Harris (1988), Hasbrouck (1988), and Hasbrouck (1991) estimate
models of trades and price changes in which both information asymmetry and inventory control motives are
accommodated, and all three papers conclude that information asymmetry is important.
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which traders choose in each period whether to pay a fee to become informed. There may

be periods in which there are no informed traders. However, in their model, it is always

common knowledge how many traders choose to become informed, so, in contrast to our

model, there is no learning from orders about whether informed traders are present.

Chakraborty and Yilmaz (2004) study a discrete-time Kyle model in which there may

or may not be an information event. Their main result is that the informed trader will

manipulate (sometimes buying when she has bad information and/or selling when she has

good information) if the horizon is sufficiently long. The primary difference between their

model and ours is that they assume that the noise trade distribution has finite support, so

market makers may incorrectly rule out a type of trader if the horizon is sufficiently long.

In contrast, market makers in our model can never rule out any type of the informed trader

until the end of the model, so it does not strictly pay for a low type to pretend to be a high

type or vice versa.

2. The Hybrid Model

The hybrid model includes two important features of PIN models—a probability less

than 1 of an information event and a binary asset value conditional on an information

event—and it also includes an optimizing (possibly) informed trader, as in the Kyle (1985)

model. Denote the time horizon for trading by [0, 1]. Assume there is a single risk-neutral

strategic trader. Assume this trader receives a signal S ∈ {L,H} at time 0 with probability

α, where L < 0 < H. Let pL and pH = 1 − pL denote the probabilities of low and high

signals, respectively, conditional on an information event. With probability 1−α, there is no

information event, and the trader also knows when this happens. Let ξ denote an indicator

for whether an information event has occurred (ξ = 1 if yes and ξ = 0 if no). In addition

to the private information, public information can also arrive during the course of trading,

represented by a martingale V . Whether there was an information event, and, if so, whether

the signal was low or high becomes public information after the close of trading, producing
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an asset value of V1 + ξS.

In addition to the strategic trades, there are liquidity trades represented by a Brownian

motion Z with zero drift and instantaneous standard deviation σ. Let Xt denote the number

of shares held by the strategic trader at date t (taking X0 = 0 without loss of generality),

and set Yt = Xt + Zt. The processes Y and V are observed by market makers. Denote the

information of market makers at date t by FV,Yt .

One requirement for equilibrium in this model is that the price equal the expected value

of the asset conditional on the market makers’ information and given the trading strategy

of the strategic trader:

Pt = E
[
V1 + ξS | FV,Yt

]
= Vt + E

[
ξS | FV,Yt

]
. (1)

We will show that there is an equilibrium in which Pt = Vt + p(t, Yt) for a function p. This

means that the expected value of ξS conditional on market makers’ information depends

only on cumulative orders Yt and not on the entire history of orders.

The other requirement for equilibrium is that the strategic trades are optimal. Let θt

denote the trading rate of the strategic trader (i.e., dXt = θt dt). The process θ has to

be adapted to the information possessed by the strategic trader, which is V , ξS, and the

history of Z (in equilibrium, the price reveals Z to the informed trader). The strategic trader

chooses the rate to maximize

E

∫ 1

0

[V1 + ξS − Pt] θt dt = E

∫ 1

0

[ξS − p(t, Yt)] θt dt , (2)

with the function p being regarded by the informed trader as exogenous. In the optimization,

we assume that the strategic trader is constrained to satisfy the “no doubling strategies”

condition introduced in Back (1992), meaning that the strategy must be such that

E

∫ 1

0

p(t, Yt)
2 dt <∞
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with probability 1.

Let N denote the standard normal distribution function, and let n denote the standard

normal density function. Set yL = σN−1(αpL) and yH = σN−1(1− αpH). This means that

the probability mass in the lower tail (−∞, yL) of the distribution of cumulative liquidity

trades Z1 equals αpL, which is the unconditional probability of bad news. Likewise, the

probability mass in the upper tail (yH ,∞) of the distribution of Z1 equals αpH , which is the

unconditional probability of good news. Set

q(t, y, s) =


E[Z1 − Zt | Zt = y, Z1 < yL] if s = L ,

E[Z1 − Zt | Zt = y, yL ≤ Z1 ≤ yH ] if s = 0 ,

E[Z1 − Zt | Zt = y, Z1 > yH ] if s = H .

(3)

From the standard formula for the mean of a truncated normal, we obtain the following more

explicit formula for q:

q(t, y, s)

σ
√

1− t =


− n

(
yL−y
σ
√

1−t

)
/N
(
yL−y
σ
√

1−t

)
if s = L ,[

n
(
yL−y
σ
√

1−t

)
− n

(
yH−y
σ
√

1−t

)]/[
N
(
yH−y
σ
√

1−t

)
− N

(
yL−y
σ
√

1−t

)]
if s = 0 ,

n
(
y−yH
σ
√

1−t

)
/N
(
y−yH
σ
√

1−t

)
if s = H .

(4)

The equilibrium described in Theorem 1 below can be shown to be the unique equilibrium in

a certain broad class, following Back (1992). The proof of Theorem 1 is given in Appendix A.9

Theorem 1. There is an equilibrium in which the trading rate of the strategic trader is

θt =
q(t, Yt, ξS)

1− t . (5)

9The proof is based on a generalization of the Brownian bridge feature of the continuous-time Kyle model
established in Back (1992). Whereas a Brownian bridge is a Brownian motion conditioned to end at a
particular point, in this model (with a discrete rather than continuous distribution of the asset value) we
encounter a Brownian motion conditioned only to end in a particular interval. The generalization of the
Brownian bridge is established as a lemma in Appendix A.
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The equilibrium asset price is Pt = Vt + p(t, Yt), where the pricing function p is given by

p(t, y) = L · N
(
yL − y
σ
√

1− t

)
+H · N

(
y − yH
σ
√

1− t

)
. (6)

In this equilibrium, the process Y is a martingale given market makers’ information and

has the same unconditional distribution as does the liquidity trade process Z; that is, it is a

Brownian motion with zero drift and standard deviation σ.

The last statement of the theorem implies that the distribution of order flows in the

model does not depend on the information asymmetry parameters α, H, and L. Thus, if

the model is correct, it is impossible to estimate those parameters using order flows alone.

In general, the theorem suggests that it may be difficult to identify information asymmetry

parameters using order flows alone, as discussed in the introduction and the next subsection.

When we estimate the hybrid model, we use both order flows and returns, in contrast to the

PIN model that only uses order flows.

Empirically, we test the relationship between α and price impacts of trades. Figure 1

plots the equilibrium price as a function of Yt for two different values of α. It shows that

the price is more sensitive to orders when α is larger. This is also true in the PIN model.

We test the relationship for both models. To investigate further how the sensitivity of prices

to orders depends on α in the hybrid model, we calculate the price sensitivity—that is, we

calculate Kyle’s lambda.

Theorem 2. In the equilibrium of Theorem 1, the asset price evolves as dPt = dVt +

λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) = − L

σ
√

1− t · n
(
yL − y
σ
√

1− t

)
+

H

σ
√

1− t · n
(
yH − y
σ
√

1− t

)
. (7)

Furthermore, Kyle’s lambda λ(t, Yt) is a martingale with respect to market makers’ informa-

tion on the time interval [0, 1).
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Kyle’s lambda is a stochastic process in our model, but we can easily relate the expected

average lambda to α. Because lambda is a martingale, the expected average lambda is

λ(0, 0). Substitute the definitions of yL and yH in (7) to compute10

λ(0, 0) = −L
σ

n
(
N−1(αpL)

)
+
H

σ
n
(
N−1(1− αpH)

)
. (8)

Figure 2 plots the expected average lambda as a function of α for two values of H, taking

L = −H. Doubling the signal magnitudes doubles lambda. Furthermore, the expected

average lambda is increasing in α.

2.1. Nonidentifiability Using Order Flows Alone

A key result of Theorem 1 is that the aggregate order imbalance Y1 has the same distri-

bution as the liquidity trades Z1 and is invariant with respect to the information asymmetry

parameters.11 Applications of the PIN model typically assume each day is a separate in-

stance of the model and use daily buys and sells to estimate the model parameters. If our

model describes reality and each day is a separate instance of the model, then the sample

of daily order imbalances is a sample of i.i.d. normal random variables with mean zero and

variance equal to the variance of daily liquidity trades Z1.12 The distribution of the sample is

invariant with respect to the frequency and magnitude of information events, so the sample

of daily order imbalances alone cannot identify information asymmetry.

The fact that aggregate orders Y1 have the same distribution as liquidity trades is a con-

sequence of the martingale property of Y (a continuous martingale with quadratic variation

10If information events occur for sure (α = 1), then λ(0, 0) = (H − L) n(0)/σ. This is analogous to the
result of Kyle (1985) that lambda is the ratio of the signal standard deviation to the standard deviation of
liquidity trading. Of course, it is not quite the same as Kyle’s formula, because we have a binary signal
distribution, whereas the distribution is normal in Kyle (1985).

11This result on the nonidentifiability of information asymmetry parameters from order flows does not
depend on the binary signal assumption. Internet Appendix A presents the model with a general signal
distribution. The unconditional order flow distribution is the same as the distribution of noise order flows
in the general model as well.

12Of course, we cannot know if a single day is a separate instance of either model. Many (long-lived)
instances of private information may entail informed trading over multiple days (e.g., activist investors in
Collin-Dufresne and Fos, 2015).
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over each time interval equal to the length of the interval is automatically a Brownian mo-

tion). The martingale property of Y is equivalent to unpredictability of informed orders in

our model. As mentioned before, informed orders are predictable in the PIN model, because

informed traders do not react to price changes in the PIN model.13

Further insight into the identification issue can be gained by noting that, as in the PIN

model, the unconditional distribution of the order imbalance in our model is a mixture of

three conditional distributions. With probability αpL, Y1 is drawn from the distribution con-

ditional on a low signal; with probability αpH , Y1 is drawn from the distribution conditional

on a high signal; and with probability 1 − α, Y1 is drawn from the distribution conditional

on no information event. The first two distributions have nonzero means—there is an excess

of sells over buys in the first and an excess of buys over sells in the second. This is also

analogous to the PIN model. Thus, one might conjecture that changing α—thereby chang-

ing the likelihood of drawing from the first two distributions—will alter the unconditional

distribution of Y1. If so, then one could perhaps identify α from the distribution of Y1. In

the PIN model, it is indeed true that changing α, holding other parameters constant, alters

the unconditional distribution of the order imbalance. However, it is not true in our model,

because the distribution of informed trades in our model depends endogenously on α due to

liquidity depending on α. With a larger alpha, the market is less liquid (see the compara-

tive statics in Figure 2) and the informed trader trades less aggressively With endogenous

informed orders, the arrival rate of informed orders depends on prior price changes as shown

in Figure 3, which is not the case in the PIN model. In particular, when prices have moved

13The negative result on identification also holds in a more general model in which there is a predictable
component of order flows. In that model,

Y1 =

∫ 1

0

µt dt+ Y ∗
1 ,

where Y ∗ is the sum of informed orders and unpredictable liquidity trades, and where µ is adapted to the
price process and hence adapted to Y ∗. Because informed orders are unpredictable, Y ∗ is a martingale;
therefore, it is a Brownian motion with its variance determined by the variance of liquidity trades. This
implies that the distribution of Y1 is again invariant with respect to the information asymmetry parameters.
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in the direction of the news, informed orders slow down, and, when prices have moved in the

opposite direction, informed orders speed up. Figure 3 shows that these changes in intensity

depend on the ex ante probability of an information event α. Thus, the distributions over

which we are mixing change when the mixture probabilities change, leaving the unconditional

distribution of Y1 invariant with respect to α.

The change in the conditional distributions is illustrated in Figure 4. The top and bot-

tom panels of Figure 4 show that the strategic trader trades more aggressively when an

information event occurs if an information event is less likely (α = 0.1 versus α = 0.5).

This equilibrium reaction of informed trading to exogenous changes in the probability of

information events is missing in the PIN model, in which informed trading is exogenously

determined. It is a key feature of our model that results in the probability of information

events being unidentified by the distribution of order imbalances. The unconditional distri-

bution of Y1 is standard normal for both α = 0.1 and α = 0.5 in Figure 4, so we cannot hope

to use the unconditional distribution to recover α.

Continuing with the example in Figure 4, calculate the expected absolute order imbalance

as

αpLE
[
|Y1| | ξ = 1, S = L

]
+ (1− α)E

[
|Y1| | ξ = 0

]
+ αpHE

[
|Y1| | ξ = 1, S = H

]
,

with σ = 1 and pL = pH = 1/2. If α = 0.5, then the expected absolute order imbalance is

1

4
× 1.27 +

1

2
× 0.32 +

1

4
× 1.27 = 0.80 .

On the other hand, if α = 0.1, then the expected absolute order imbalance is

1

20
× 2.06 +

9

10
× 0.66 +

1

20
× 2.06 = 0.80 .

Again, we see that informed trading is more aggressive when information events occur if
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such events are less likely. Here, it is clear that the endogenous change in informed trading

exactly offsets the exogenous change in the likelihood of information events. In other words,

the endogenous changes in the distributions over which we are mixing exactly offset the

changes in the mixing probabilities (this is true even with pL 6= pH). On the other hand,

under the assumptions of the PIN model, the expected absolute order imbalance varies with

α (see Easley et al., 2008, p. 176, for a discussion of how the absolute order imbalance is

related to α and to PIN under the assumptions of the PIN model).

The previous paragraphs describe the invariance of the unconditional distribution of Y1

with respect to α. The other important parameters governing information asymmetry are

L and H. For example, if the possible signals L and H are both small in absolute value,

then information asymmetry is a minor concern even if information events occur frequently.

Order flows cannot identify L and H in our model. In fact, L and H do not affect even

the conditional distributions shown in Figure 4; thus, they do not affect the unconditional

distribution of Y1.

Of course, identifying the information asymmetry parameters from the distribution of or-

der imbalances is a very different issue from using order imbalances to update the probability

of an information event in a particular instance of the model. Conditional on knowledge of

the parameters, the order imbalance does help in estimating whether an information event

occurred in a particular instance of the model; in fact, the market makers in the model

update their beliefs regarding the occurrence of an information event based on the order

imbalance. So, we can compute

prob(info event | Yt, parameters) ,

and this probability does depend on the information asymmetry parameters. We could use

this to identify the information asymmetry parameters if we had data on order imbalances

and data on whether information events occurred. Of course, we do not have data of the
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latter type. Theorem 1 shows that the likelihood function of the information asymmetry

parameters given only data on order imbalances is a constant function of those parameters;

hence, the order imbalances alone cannot identify them.

In our empirical work, we estimate the model parameters using prices and order flows.

Armed with these parameter estimates and order flow observations, we can compute condi-

tional probabilities of an information event. We examine their predictive relation to intraday

volatility and their time-series properties around earnings announcements and around Sched-

ule 13D filer trades in Sections 3.4 and 4.1.

2.2. The Contrarian Trader Assumption

One way in which our model departs from the PIN model is that the strategic trader is

present in our model even when there is no information event. When there is no information

event, this trader behaves as a contrarian, selling on price increases and buying on price

declines.14 The existence of such a contrarian trader seems likely if there are always some

traders who are best informed—corporate managers, for example. This would be the case if

information is truly idiosyncratic to the firm. If, on the other hand, there is an industry or

other aggregate component to the information, then it is possible that no one knows when

no one else has information. In that case, the contrarian trader we postulate would not exist.

Our result on the nonidentifiability of information asymmetry parameters from order

flows is not due to the contrarian trader assumption. In Internet Appendix B, we solve a

variant of the PIN model in which contrarian traders arrive to the market when there is no

information event. The contrarian traders condition their trading direction on the prevailing

bid and ask quotes and the intrinsic value of the asset. The unconditional distribution of

order imbalances in that model is shown in Figure 5 for three different values of α (the

probability of an information event). The figure shows that the distribution depends on α;

14We assume the existence of such a trader because it makes the model more tractable. OWR describe
the trader as also being present in their model when there is no information event, but, because the trader
has no opportunity to react to price changes in their one-period model, the trader optimally chooses a zero
trade in the absence of an information event.
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thus, order imbalances can be used to identify information asymmetry in the PIN model

even when a contrarian trader is present. Thus, the contrarian trader assumption is not

the main driving force behind our nonidentifiability result. Instead, the result depends on

market makers reacting to information asymmetry and to strategic traders reacting both

to liquidity and to price changes. That is, order flows depend on market liquidity, which

depends on information asymmetry. This creates an indirect dependence of order flows on

information asymmetry that is countervailing to the direct relation.

3. Parameter Estimates

We estimate the hybrid model using trade and quote data from TAQ for NYSE firms

from 1993 through 2012.15 We sign trades as buys and sells using the Lee and Ready (1991)

algorithm: trades above (below) the prevailing quote midpoint are considered buys (sells).

If a trade occurs at the midpoint, then the trade is classified as a buy (sell) if the trade price

is greater (less) than the previous differing transaction price.16 We sample prices and order

imbalances hourly and at the close and define order imbalances as shares bought less shares

sold (denoted in thousands of shares).

We estimate the model by maximum likelihood, maintaining the standard assumptions

in the literature that each day is a separate realization of the model and that parameters are

constant within each year for each stock. We assume that the possible signals on each day i

are proportional to the observed opening price on day i, Pi0. Specifically, we assume that

for each firm-year, there is a parameter κ such that the possible signals on each day i are

H = −L = κPi0. We also assume the public information process V is a geometric Brownian

motion on each day with a constant volatility δ. Appendix B derives the likelihood function

for the hybrid model under these assumptions. The likelihood function depends on the signal

15We require that firms have intraday trading observations for at least 200 days within the year. We also
require firms have the same ticker throughout the year and experience no stock splits.

16Prior to 2000, quotes are lagged five seconds when matched to trades. For 2000-2002, quotes are lagged
one second. From 2003 on, quotes are matched to trades in the same second. To account for quote updates
within a second, we use the interpolated time technique introduced by Holden and Jacobsen (2014).
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magnitude κ, the probability α of information events, the probability pL of a negative signal

conditional on an information event, the standard deviation σ of liquidity trading, and the

volatility δ of public information.

3.1. Estimates of the Hybrid Model

Figure 6 displays the time-series of average estimates and the interquartile range for the

cross-section of stocks for the hybrid model. The average α is almost 70% in the early

part of the sample and falls to about 50% by the end of the sample, indicating that the

likelihood of private information events, at least at the daily frequency we study, has fallen

on average. This effect starts in 2007 and is evident in the decrease in the lower quartile of α

estimates. The other components of private information events are the magnitude κ of the

signal and the likelihood pL of a bad event. Private information κ initially rises during the

late 1990s, but exhibits a strong downward trend thereafter. The average pL indicates that

the distribution of information is relatively symmetric between positive and negative events.

We combine these estimates into a single composite measure of information asymmetry by

calculating the expected average lambda from Equation (8). The estimates indicate that the

amount of private information has fallen across the twenty year sample with the exception

of the late 1990s and the financial crisis.17

In general, the standard deviation σ of order imbalances and the volatility δ of public

information appear to be roughly stationary. Despite the well-documented rise of high-

frequency trading and the associated sharp increase in trading volume, the volatility of order

imbalances has remained fairly stable over the twenty year sample. Like private information,

public information volatility also spiked during the financial crisis. This suggests private

information may be proportional to public information rather than a fixed amount.

17As we discuss in Section 5.3, the same pattern is seen in reduced-form price impact measures.
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3.2. Testing Whether There is Always an Information Event in the Hybrid Model

Our hybrid model relaxes the assumption in Kyle (1985) that an information event occurs

in each instance of the model (in each day in our implementation). A natural question is

whether this relaxation is supported in the data. The Kyle framework is nested in our model

by the restriction that α = 1. Accordingly, we estimate the model with this restriction. The

standard likelihood ratio test of the null that α = 1 against the alternative that α ∈ [0, 1] is

rejected for 75% of the firm-years (with a test size of 10%). However, the usual regularity

conditions for the likelihood ratio test require that the restriction not be at the boundary of

the parameter space. To address this issue, we bootstrap the distribution of the likelihood

ratio statistic for a random sample of 100 firm-years as in Duarte and Young (2009).

Specifically, for a given firm-year, we estimate the restricted model (α = 1) and then

simulate 500 firm-years under the null using the estimated (restricted) parameters. We then

estimate the restricted and unrestricted models for each simulated firm-year to obtain the

distribution of the likelihood ratio under the null. The 90th percentile of this distribution is

the critical value to evaluate the empirical likelihood ratio. These bootstrapped likelihood

ratio tests reject the restricted Kyle model in favor of the hybrid model for 76 of the 100

randomly selected firm-years. The data thus supports the conclusion that the probability of

an information event is less than 1.

3.3. Estimated Parameters and Reduced-Form Price Impacts

The model places structure on the price and order flow data, allowing the econometrician

to identify components of Kyle’s lambda. Of course, one can estimate a reduced-form price

impact as well. As an initial test of whether our estimates relate to price impact as implied

by theory, we test the comparative statics from Figure 2 that price impacts are increasing

in both the probability and magnitude of information events.

We employ three estimates of the price impact of orders. The first is the 5-minute percent
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price impact of a given trade k as:

5-minute Price Impactk =
2Dk(Mk+5 −Mk)

Mk

, (9)

where Mk is the prevailing quote midpoint for trade k, Mk+5 is the quote midpoint five min-

utes after trade k, and Dk equals 1 if trade k is a buy and −1 if trade k is a sell. Goyenko,

Holden and Trzcinka (2009) use this measure as one of their high-frequency liquidity bench-

marks in a study assessing the quality of various liquidity measures based on daily data.18

For a given stock-day, the estimate of the percent price impact is the equal-weighted average

price impact over all trades on that day. We average these daily price impact estimates for

each stock-year.

We also estimate the cumulative impulse response function (Hasbrouck, 1991), which

captures the permanent price impact of an order. The cumulative impulse response is cal-

culated from a vector autoregression of log price changes and signed trades. Finally, we

estimate a version of Kyle’s lambda (denoted λ̂intraday) using a regression of 5-minute returns

on the square-root of signed volume following Hasbrouck (2009) and Goyenko, Holden and

Trzcinka (2009). We estimate these for each stock day, taking the median estimate across

days as the stock-year estimate.

The first panel of Table 1 reports panel regressions of the three price impact measures on

α and κ. Before running the regressions, the price impacts and the structural parameters are

winsorized at 1/99% and standardized to have unit standard deviation. Price impacts are

positively related to each of the hybrid model parameters that measure private information

(the probability α of an information event and the magnitude κ of information events). The

coefficients are positive even with the inclusion of firm fixed effects, suggesting α and κ

capture within-firm information asymmetry variation as well.

18Holden and Jacobsen (2014) show that liquidity measures such as the percent price impact can be biased
when constructed from monthly TAQ data, so we follow their suggested technique in processing the data.
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A summary measure of the amount of private information is the standard deviation of

the signal ξS, denoted SD(ξS). In the binary signal case, SD(ξS) is:

2κ
√
αpL(1− pL) . (10)

The second panel of Table 1 shows that the estimated SD(ξS) is strongly positively correlated

with the price impact estimates, as expected. Cross-sectionally, a one standard deviation

increase in SD(ξS) is associated with about three-quarters of a standard deviation increase

in 5-minute price impact and λ̂intraday and almost half a standard deviation increase in the cu-

mulative impulse response measure. Variation in SD(ξS) within firm is positively correlated

with within-firm variation in all three price impact measures.

3.4. Excess Kurtosis and Stochastic Volatility

In this section, we test two additional predictions of the model. The first is the relation

between alpha and excess kurtosis. The second is the implication from Theorem 2 that

volatility is stochastic and depends on the conditional probability of an information event.

Our model proposes a natural mechanism that causes stock returns to exhibit excess

kurtosis: The sensitivity of prices to orders depends on the perceived likelihood that an

informed trader is present. In turn, this depends on the cumulative order flow imbalance. If

the likelihood is judged to be high, then prices are quite sensitive to orders. If the likelihood

is low, then prices are relatively insensitive. Even if orders are i.i.d., this changing sensitivity

of prices to orders means that returns are drawn from a mixture distribution, exhibiting

excess kurtosis. This phenomenon is more extreme if the prior probability of an information

event is lower; thus, the lower the prior probability of an informed trader being present, the

higher is the excess kurtosis.

In Table 2, we test this implication of the model for simulated and actual data. We first

simulate the model for α values ranging from 0.05 to 0.95 in 0.05 increments. For each α

value, the simulated panel contains 1000 firm-years. We estimate excess kurtosis for each
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firm-year. The first column of Table 2 reports a regression of excess kurtosis on α. In the

model, lower levels of α are associated with greater excess kurtosis.

Column two of Table 2 reports the same regression using the estimated α for the actual

data. As in the model, stocks with higher alpha exhibit lower excess kurtosis. This result

is robust to inclusion of controls for size, price, and volume, as well as firm and year fixed

effects.

The second implication of the model that we test is that volatility depends on the condi-

tional probability of an information event. Thus, there is stochastic volatility. In the model,

market makers update their conditional probabilities of an information event, CPIE t, as:19

CPIE t(Yt) =


N
(
yL−Yt
σ
√

1−t

)
+ N

(
Yt−yH
σ
√

1−t

)
if t < 1 ,

1 (Y1 < yL) + 1 (Y1 > yH) if t = 1 .

(11)

In Table 3, we test the relation between volatility and the conditional probability of

an information event. We measure volatility as absolute returns over the last three and a

half hours of the trading day. CPIE is calculated for each day using the cumulative order

imbalance over the first three hours of the day, along with the estimated parameters which

are needed to calculate yL and yH . We report predictive regressions of end-of-day absolute

returns on CPIE calculated from the first part of the day.

As in the previous table, the first column reports results using simulated data from

the model. Higher levels of CPIE predicts higher volatility in the second part of the day.

Columns two through five show that this phenomenon holds in the actual data as well. The

empirical finding holds controlling for the prior day’s realized absolute return as well as firm

and year fixed effects. Moreover, CPIE captures more than just volatility in cumulative

order flows through the first part of the day. The last column of Table 3 shows that CPIE

predicts volatility even controlling for the absolute cumulative order imbalance.

19This formula follows from parts (B) and (C) of the lemma in Appendix A.
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4. Applications

We now discuss two potential applications of the estimation procedure. A large literature

uses the PIN model, as discussed previously. Broadly speaking, some of this work relates

PIN estimates to times when researchers believe information events have likely occurred.

Other research uses PIN to proxy for information asymmetry or price informativeness. We

discuss examples of how our estimates might be useful to research of either type.

4.1. Detecting Information Events

Information asymmetry is generally unobservable, so testing performance of adverse se-

lection measures is challenging. In this section, we study how the conditional probability

of an information event as measured by our model varies in two settings considered in the

literature: earnings announcements and trading by Schedule 13D filers.

4.1.1. Earnings Announcements

Many studies have examined the information environment surrounding earnings an-

nouncements. Some studies assume that information asymmetry is higher prior to infor-

mation events, while others note that private ability or knowledge to interpret public infor-

mation may result in adverse selection following announcements (Kim and Verrecchia, 1997).

Several recent papers (Duarte et al., 2016; Brennan et al., 2016) use conditional estimates

based on the EKOP and OWR models around earnings announcements.

As we discuss in Section 2.1, one can assess the probability of an information event if

one observes cumulative order flows and knows the underlying parameters. Armed with our

estimates of the parameters, we examine conditional probabilities of an information event,

CPIE, on the days around earnings announcements.

Figure 7 plots the cross-sectional average of model-implied CPIE in event time around

earnings announcements. The average CPIE rises significantly on day t− 1, consistent with

early leakage of some information prior to the announcement. The average CPIE is highest

on days t and t+ 1, and then falls over the next week or so. The results suggest that adverse
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selection may actually be worse following an earnings announcement rather than before it,

as discussed in Kim and Verrecchia (1997).20

4.1.2. Schedule 13D Filings

Collin-Dufresne and Fos (2015) examine whether various measures of adverse selection are

higher during periods in which Schedule 13D filers accumulate ownership positions. These

positions are generally associated with a positive stock price reaction, so these investors are

privately informed. These investors must disclose days on which they traded over a sixty-

day period preceding the filing date. Thus, this data provides the econometrician with a

laboratory concerning informed trading. Collin-Dufresne and Fos (2015) show that measures

designed to capture information asymmetry are actually lower on days when Schedule 13D

filers trade. As they discuss, this could be due to endogenous trading in times of greater

liquidity and due to the use of patient limit orders. The latter effect arises in part because

of the filers’ ability to control the timing of the private information revelation. This differs

from the earnings announcement setting where an informed trader’s information is valid only

for an exogenous duration.

We revisit the Schedule 13D setting to assess whether the conditional probability of

an information event is higher on days when these informed investors trade. Note that

this setting is further from the theoretical setting we consider. The ultimate revelation of

information is at least partially in the control of the informed trader. Moreover, the private

information persists across trading days, so our empirical assumption that information is

revealed at the end of the day is violated. Nonetheless, we consider whether the main

intuition for our conditional probabilities, that order flows should be more extreme, helps

reveal the presence of informed traders.

Table 4 reports average values of CPIE on days during the sixty-day disclosure window

when Schedule 13D filers do or do not trade. Just over half of the firm-days with no Schedule

20This conclusion is also reached by Krinsky and Lee (1996) using the adverse selection component of
bid-ask spreads and by Brennan et al. (2016) using conditional probabilities from the PIN model.
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13D trades are identified as being event days. On the other hand, 66% of the days when

Schedule 13D filers do trade are identified as event days. The increase of 7.9% is statistically

significant and represents about a 14% increase in the conditional probability relative to

non-13D trading days. Thus, despite the fact that trading by Schedule 13D filers is inversely

correlated with the various measures of permanent price impact commonly used in the lit-

erature and employed by Collin-Dufresne and Fos (2015), we find that the trading by 13D

filers is manifested in higher conditional probabilities of an information event, calculated

according to our model.

We also report average CPIE for two subperiods, the first and second halves of the dis-

closure period (days [t − 60, t − 31] and [t − 30, t − 1], respectively). If block accumulation

by a 13D filer is detected by other strategic traders, then both the 13D filer and the other

strategic traders should trade aggressively to beat others to the market (Holden and Sub-

rahmanyam, 1992). This is more likely to have occurred during the second subperiod, so

we expect Schedule 13D filers to trade more aggressively (use more market orders rather

than limit orders) in the second subperiod. Furthermore, the second subperiod includes the

period after crossing the 5% threshold, after which the 13D must be filed within ten days.

We certainly expect more aggressive trading during that period. As a result of these consid-

erations, we expect signed order flow to reflect the presence of informed trade more in the

second subperiod than in the first. The second and third rows of Table 4 show that this is

indeed the case. There is a smaller difference of 4.9% in CPIE over the first 30 days of the

block-accumulation period between Schedule 13D trading days and non-trading days. In the

second half of the disclosure period however, the average CPIE is 9.8% higher on days when

informed Schedule 13D filers trade than on days they do not.

4.2. Measuring the Information Content of Prices

Some studies use PIN to measure the information content of prices in order to test

various economic theories. Applications in corporate finance include Chen, Goldstein and

Jiang (2007), Ferreira and Laux (2007), and Bharath, Pasquariello and Wu (2009), and
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applications in accounting include Frankel and Li (2004), Jayaraman (2008), and Brown and

Hillegeist (2007).

Here, we demonstrate how our structural estimates could be used to augment one such

study. Chen et al. (2007) study how corporate managers learn from prices in making invest-

ment decisions. They find that investment sensitivity to prices (Q) is increasing with price

informativeness as proxied by PIN and by 1−R2 from an asset pricing model. In Table 5, we

replicate Chen et al. (2007) for our sample. Before running the regressions, we standardize

each information environment variable to have unit standard deviation. As in Chen et al.

(2007), the coefficient on Q is increasing in PIN (column 2).

To demonstrate how researchers might employ our methodology in this setting, we con-

sider two composite measures of the information environment from the hybrid model. The

first is the standard deviation of the signal (SD(ξS)) from Equation (10). We also calcu-

late the proportion of the return variance due to private information, which we term the

order-flow component of prices (OFC):

var(ξS)

var(ξS) + var(eδBi1−δ2/2)
=

SD(ξS)2

SD(ξS)2 + eδ2 − 1
. (12)

Columns 4 and 5 of Table 5 show that investment-price sensitivity is increasing in each of

these measures.

One advantage of our estimation procedure relative to PIN is that it allows us to sepa-

rately estimate the probability and magnitude of information events. Investment sensitivity

to prices is increasing in each of these components (column 6 of Table 5). Thus, when there

are more frequent or larger episodes of private information, investment is more sensitive to

prices. A one standard deviation increase in κ (the magnitude of information events) is

associated with a 25% increase in investment-price sensitivity. A standard deviation change

in α (the probability of an information event) has an effect about a third as large. The

positive effect of α conflicts with results from decomposing PIN into the probability of an
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information event and the relative intensity of informed to uninformed traders (column 3).

An increase in the PIN α does not lead to increased investment sensitivity to prices.

5. Comparison to Other Models

In this section, we compare the estimates of our model to those of the three structural

models (PIN, APIN, OWR) and the reduced-form version of PIN (VPIN) discussed in the

introduction. The estimation procedure for the other models is detailed in Internet Appendix

C.

5.1. Correlations of Model Parameters

Panel A of Table 6 shows the correlations among PIN, APIN, VPIN, lambda from the

OWR model (λOWR), and the expected average lambda from our model (λhybrid) – see Equa-

tion (8). All of the correlations are positive. The largest correlations with λhybrid are those

of the OWR lambda and VPIN. This is perhaps not surprising since each of these estimates

uses price changes in some form. The OWR lambda uses the joint distribution of returns

and order flows, while VPIN signs volume using price changes.

We call PIN, APIN, VPIN, λowr, and λhybrid composite measures of information asym-

metry because, with the exception of VPIN, they are functions of the underlying structural

parameters.21 We also examine the correlations of the structural parameters of the various

models. Panel B of Table 6 reports correlations of the estimated probability of an informa-

tion event from each model (except VPIN which does not identify α). The estimates of α

for the hybrid model are negatively correlated with estimates of α from the other models.

In each of the other models, the unconditional distribution of order flow imbalances changes

with α, unlike in our model, so the lack of correlation of the hybrid model α with the other

α’s is consistent with the identification discussion in Section 2.1. The implications of the

21We refer to VPIN as reduced-form because it does not identify the underlying structural parameters.
Rather, it proxies for PIN by separately estimating the numerator and denominator of PIN—see Internet
Appendix C.4.
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models for the unconditional distribution of order flow imbalances are discussed further in

Internet Appendix D.22

The positive correlation of λhybrid with the other composite measures is somewhat sur-

prising given that the α of the hybrid model is not positively correlated with the α’s of the

other models. A potential explanation lies in the estimates of noise trading. Equation (8)

shows that the expected average lambda is inversely related to the volatility of noise trading.

The other measures are also inversely related to noise trading (see Equations C.2, C.6, and

C.4 in the Internet Appendix). Panel C of Table 6 reports correlations of the noise trading

parameters of each model. We scale the PIN and APIN noise trading parameters by the

estimated µ, so the fractions ε/µ and (ε + θη)/µ represent the intensity of noise trading

relative to informed trading. Note that PIN and APIN are decreasing in these ratios, re-

spectively. The noise trading parameters are positively correlated across the models. For

this reason, the composite measures are positively correlated despite the lack of correlation

of the estimated alphas.

5.2. Cross-Sectional Variation in Parameters

It is interesting to see how estimates of private information differ in the cross-section of

firms across models. Table 7 reports average values of the estimates within market capitaliza-

tion deciles. Across all the models, composite measures of information asymmetry decrease

in firm size (Panel A). For the hybrid model, the average probability α of an information

event decreases in firm size while the estimates for the other models are exactly the opposite,

increasing in firm size (Panel B). As in the unconditional correlation analysis, the composite

measures seem to behave similarly in the size cross section due to similarities in noise trading

measurement. Estimates from all the models indicate more intense noise trading for larger

capitalization stocks. For each of the models other than the hybrid model, the effect of the

22Venter and de Jongh (2006), Duarte and Young (2009), Gan, Wei and Johnstone (2014), and Duarte,
Hu and Young (2016) all show that the PIN model fails to fit the empirical joint distribution of buy and sell
orders.
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more pronounced noise trading dominates the modest increases in α as a function of size,

so these composite measures are lower for larger firms as a result of higher estimated noise

trading.23

5.3. Relation to Price Impacts

In theory, price impacts should be larger when information asymmetry is higher. This

is true for both the hybrid model and the other models. It is shown in Section 2 for the

hybrid model. For the PIN model, the opening quoted spread is the product of PIN and

the magnitude of the information, H − L.24 In this section, we assess how cross-sectional

variation in price impacts relates to the estimated composite measure from each model. For

price impacts, we use the three measures described in Section 3.3.

Figure 8 plots the time-series of the cross-sectional average and interquartile range of the

price impact measures and the five composite information asymmetry measures. Over the

twenty year sample, price impacts initially rose over the 1990s before falling dramatically

following the turn of the century, with the brief exception of the financial crisis. Note that

the time-series of the hybrid model expected average lambda and the magnitude of private

information, κ, exhibit similar patterns (Figure 6). The OWR lambda exhibits similar

behavior. PIN, APIN, and VPIN are much less variable over time.

Table 8 reports cross-sectional regressions of the price impact measures on the composite

information asymmetry measures. The information asymmetry measures are winsorized

at 1/99% and standardized to have unit standard deviations. In univariate regressions

(Panel A), each of the price impact measures is positively related to each of the information

asymmetry measures. The hybrid model lambda and VPIN have the highest explanatory

power for each of the price impact measures.

In Panel B, we include λhybrid along with the other information asymmetry measures,

23The OWR lambda is also a function of its estimated magnitude of private information σi. For both the
hybrid model and the OWR model, the estimated magnitude of private information is also increasing in size.

24See Equation (11) of Easley et al. (1996), which assumes pL = pH .
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controlling for a firm’s size, price, and trading volume using the logarithm of market capital-

ization, the inverse stock price as of the beginning of the year, and the logarithm of trading

volume over the year.25 In each specification, λhybrid is significantly positively related to the

price impact measure. APIN and the OWR lambda are generally insignificant when λhybrid is

included as an explanatory variable (for the cumulative impulse response measure, the OWR

lambda is marginally significant with the wrong sign). For two of the price impact measures,

PIN and VPIN remain significant when λhybrid is included, though the PIN coefficient is

much smaller than the λhybrid and VPIN coefficients. Furthermore, for the estimate of Kyle’s

lambda based on Hasbrouck (2009) and Goyenko et al. (2009), only λhybrid is a significant

explanatory variable.

6. Conclusion

We propose a model of informed trading that is a hybrid of the PIN and Kyle models.

Unlike the Kyle model, information events occur with probability less than one as in the

PIN model, and unlike the PIN model, informed orders are endogenously determined as in

the Kyle model. An important implication of the model is that both returns and order flows

are needed to identify information asymmetry parameters. The reason is that order flows

depend on market liquidity, which depends on information asymmetry. This is an indirect

dependence of order flows on information asymmetry that is countervailing to the direct

relation. This result suggests that measures of information asymmetry based solely on order

flows (like PIN) may be misspecified.

We estimate the hybrid model and provide several analyses that suggest the estimates

capture cross-sectional and time-series variation in information asymmetry. We illustrate

two possible applications of our estimates: a new methodology to detect information events

and a corporate finance application. Our model allows the econometrician to identify distinct

25Size, price, and volume are strongly related to price impacts (Breen, Hodrick and Korajczyk, 2002); on
average, these three control variables explain 65% of the cross-sectional variation in price impact.

28



components of information asymmetry such as the probability and magnitude of potential

information events. We hope such refinements will prove useful to future finance and ac-

counting research.

Finally, we compare the parameter estimates to those from other structural models and

to price impact measures. While composite information asymmetry measures from all of

the models are positively correlated with price impacts, the measure from the hybrid model

(and to a lesser extent VPIN) win in a horse race at explaining price impact measures. To

a certain extent this might be expected, since the measure from the hybrid model is the

expected average Kyle’s lambda, and Kyle’s lambda should be highly correlated with price

impacts. However, the measure from the Odders-White and Ready (2008) model is also an

estimate of a Kyle’s lambda, and it is dominated by the hybrid model in the horse race.
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Appendix A. Proofs

The process Y described in the following lemma is a variation of a Brownian bridge. It

differs from a Brownian bridge in that the endpoint is not uniquely determined but instead is

determined only to lie in an interval—either the lower tail (−∞, yL), the upper tail (yH ,∞) or

the middle region [yL, yH ]—depending on whether there is an information event and whether

the news is good or bad. Part (C) of the lemma follows immediately from the preceding

parts, because the probability (A.3) is the probability that Y1 /∈ [yL, yH ] calculated on the

basis that Y is an FY –Brownian motion with zero drift and standard deviation σ.

Lemma. Let N denote the standard normal distribution function. Let FY = {FYt | 0 ≤ t ≤

1} denote the filtration generated by the stochastic process Y defined by Y0 = 0 and

dYt =
q(t, Yt, ξS)

1− t dt+ dZt . (A.1)

Then, the following are true:

(A) Y is an FY –Brownian motion with zero drift and standard deviation σ.

(B) With probability one,

ξ = 1 and S = L ⇒ Y1 < yL , (A.2a)

ξ = 0 ⇒ yL ≤ Y1 ≤ yH , (A.2b)

ξ = 1 and S = H ⇒ Y1 > yH . (A.2c)

(C) For each t < 1, the probability that ξ = 1 conditional on FYt is

N

(
yL − Yt
σ
√

1− t

)
+ 1− N

(
yH − Yt
σ
√

1− t

)
. (A.3)
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Proof of the Lemma. Set

k(1, y, s) =


1{y<yL} if s = L ,

1{yL≤y≤yH} if s = 0 ,

1{y>yH} if s = H ,

and, for t < 1,

k(t, y, s) =


N
(
yL−y
σ
√

1−t

)
if s = L ,

N
(
yH−y
σ
√

1−t

)
− N

(
yL−y
σ
√

1−t

)
if s = 0 ,

N
(
y−yH
σ
√

1−t

)
if s = H .

Define

`(t, y, s) =
∂ log k(t, y, s)

∂y
,

for t < 1. Then, (1 − t)σ2`(t, y, s) = q(t, y, s) for t < 1, and the stochastic differential

equation (A.1) can be written as

dYt = σ2 `(t, Yt, ξS) dt+ dZt (A.4)

The process Y is an example of a Doob h-transform—see Rogers and Williams (2000).

To put (A.4) in a more standard form, define the two-dimensional process Ŷt = (ξS, Yt)

with random initial condition Ŷ0 = (ξS, 0), and augment (A.4) with the equation d(ξS) = 0.

The existence of a unique strong solution Ŷ to this enlarged system follows from Lipschitz

and growth conditions satisfied by `. See Karatzas and Shreve (1988, Theorem 5.2.9).

The uniqueness in distribution of weak solutions of stochastic differential equations

(Karatzas and Shreve, 1988, Theorem 5.3.10) implies that we can demonstrate Properties

(A) and (B) by exhibiting a weak solution for which they hold. To construct such a weak
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solution, define a new measure Q on F1 using k(1, Z1, ξS)/k(0, 0, ξS) as the Radon-Nikodym

derivative. The definition of k implies that k(t, Zt, ξS) is the Ft–conditional expectation of

the indicator function k(1, Z1, ξS), so k(t, Zt, ξS) is a martingale on the filtration F. By

Girsanov’s Theorem, the process Z∗ defined by Z∗0 = 0 and

dZ∗t = −σ2 `(t, Zt, ξS) dt+ dZt

is a Brownian motion (with zero drift and standard deviation σ) on the filtration F relative

to Q. It follows that Z is a weak solution of (A.4) relative to the Brownian motion Z∗ on

the filtered probability space (Ω,F,Q).

To establish Property (A) for the weak solution, we need to show that Z is a Brownian

motion on (Ω,G,Q). Because Z is a Brownian motion on (Ω,G,P), it suffices to show that

Q = P when both are restricted to G1. This holds if for all t1 < · · · < tn ≤ 1 and all Borel

B we have

P((Zt1 , . . . , Ztn) ∈ B) = Q((Zt1 , . . . , Ztn) ∈ B) . (A.5)

The right-hand side of (A.5) equals

E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn)

]
,

which can be represented as the following sum:

αpLE

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξS = L

]
+ (1− α)E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξ = 0

]
+ αpHE

[
k(1, Z1, ξS)

k(0, 0, ξS)
1B(Zt1 , . . . , Ztn) | ξS = H

]
.
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Using the definitions of yL, yH , and k, this equals

E
[
1{Z1<yL}1B(Zt1 , . . . , Ztn) | ξS = L

]
+ E

[
1{yL≤Z1≤yL}1B(Zt1 , . . . , Ztn) | ξ = 0

]
+ E

[
1{Z1>yH}1B(Zt1 , . . . , Ztn) | ξS = H

]
.

The P–independence of Z and ξS imply that the conditional expectations equal the uncon-

ditional expectations, so adding the three terms gives

E [1B(Zt1 , . . . , Ztn)] = P((Zt1 , . . . , Ztn) ∈ B) .

This completes the proof that Z is a Brownian motion on (Ω,G,Q).

To establish Property (B) for the weak solution of (A.4), we need to show that

Q(Z1 < yL | ξS = L) = 1 , (A.6a)

Q(yL ≤ Z1 ≤ yH | ξ = 0) = 1 , (A.6b)

Q(Z1 > yH) | ξS = H) = 1 . (A.6c)

Consider (A.6a). We have

Q(ξS = L) = E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1{ξS=L}

]
= E

[
k(1, Z1, L)

k(0, 0, L)
1{ξS=L}

]
= E

[
1{Z1<yL}1{ξS=L}

]/
αpL

= αpL ,

using the definition of k for the third equality and the P–independence of Z and ξS for the
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last equality. By similar reasoning,

Q(Z1 < yL, ξS = L) = E

[
k(1, Z1, ξS)

k(0, 0, ξS)
1{Z1<yL}1{ξS=L}

]
= E

[
k(1, Z1, L)

k(0, 0, L)
1{Z1<yL}1{ξS=L}

]
= E

[
1{Z1<yL}1{ξS=L}

]/
αpL

= αpL .

Thus,

Q(Z1 < yL | ξS = L) =
Q(Z1 < yL, ξS = L)

Q(ξS = L)
=
αpL
αpL

= 1 .

Conditions (A.6b) and (A.6c) can be verified by the same logic.

Proof of Theorem 1. It is explained in the text why the equilibrium condition (1) holds. It

remains to show that the strategy (5) is optimal for the informed trader. Let G def
= {Gt | 0 ≤

t ≤ T} denote the completion of the filtration generated by Z, form the enlarged filtration

with σ–fields Gt ∨ σ(ξS), and let F def
= {Ft | 0 ≤ t ≤ T} denote the completion of the

enlarged filtration. The filtration F represents the informed trader’s information.

Define

J(1, y, L) = −L(y − yL)1{y>yL} +H(y − yH)1{y>yH} ,

J(1, y, 0) = −L(yL − y)1{y<yL} +H(y − yH)1{y>yH} ,

J(1, y,H) = −L(yL − y)1{y<yL} +H(yH − y)1{y<yH} .

For t < 1 and s ∈ {L, 0, H}, set J(t, y, s) = E[J(t, Z1, s) | Zt = y]. Then, J(t, Zt, ξS) is an

F–martingale, so it has zero drift. From Itô’s formula, its drift is

∂

∂t
J(t, Zt, ξS) +

1

2
σ2 ∂

2

∂z2
J(t, Zt, ξS) .
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Equating this to zero, Itô’s formula implies

J(1, Y1, ξS) = J(0, 0, ξS) +

∫ 1

0

dJ(t, Yt, ξS) = J(0, 0, ξS) +

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt .

Therefore,

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

∂J(t, Yt, ξS)

∂y
dYt . (A.7)

To calculate ∂J(t, y, s)/∂y, use the fact that, by independent increments,

J(t, y, s) = E[J(t, Z1, s) | Zt = y] = E[J(t, Z1 − Zt + y, s)]

to obtain

∂J(t, y, s)

∂y
= E

[
∂

∂y
J(t, Z1 − Zt + y, s)

]
.

Now, note that, for any real number a excluding the kinks at yL − y and yH − y,

∂

∂y
J(1, a+ y, L) = −L1{a>yL−y} +H1{a>yH−y} ,

∂

∂y
J(1, a+ y, 0) = L1{a<yL−y} +H1{a>yH−y} ,

∂

∂y
J(1, a+ y,H) = L1{a<yL−y} −H1{a<yH−y} .

Therefore,

∂J(t, y, L)

∂y
= −LN

(
y − yL
σ
√

1− t

)
+H N

(
y − yH
σ
√

1− t

)
,

∂J(t, y, 0)

∂y
= LN

(
yL − y
σ
√

1− t

)
+H N

(
y − yH
σ
√

1− t

)
,

∂J(t, y,H)

∂y
= LN

(
yL − y
σ
√

1− t

)
−H N

(
yH − y
σ
√

1− t

)
.
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Now, the definition (6) gives us

∂J(t, y, s)

∂y
= p(t, y)− s

for all s ∈ {L, 0, H}. Substituting this into (A.7) gives us

E[J(1, Y1, ξS)− J(0, 0, ξS)] = E

∫ 1

0

[p(t, Yt)− ξS] dYt . (A.8)

The “no doubling strategies” condition implies that
∫
p dZ is a martingale, so the right-hand

side of this equals

E

∫ 1

0

[p(t, Yt)− ξS]θt dt .

Rearranging produces

E

∫ 1

0

[ξS − p(t, Yt)]θt dt = E[J(0, 0, ξS)− J(1, Y1, ξS)] ≤ E[J(0, 0, ξS)] ,

using the fact that J(1, y, s) ≥ 0 for all (y, s) for the inequality. Thus, E[J(0, 0, ξS)] is an

upper bound on the expected profit, and the bound is achieved if and only if J(1, Y1, ξS) = 0

with probability one. By the definition of J(1, y, s), this is equivalent to Y1 < yL with

probability one when ξS = L, yL ≤ Y1 ≤ yH with probability one when ξ = 0, and Y1 > yH

with probability one when ξS = H. By part (B) of the proposition, the strategy (5) is

therefore optimal.

Proof of Theorem 2. By Itô’s formula and the fact that (dY )2 = (dZ)2 = σ2 dt, we have

dp(t, Yt) =

(
pt(t, Yt) +

1

2
σ2pyy(t, Yt)

)
dt+ py(t, Yt) dYt ,

where we use subscripts to denote partial derivatives. Both Y and p(t, Yt) are martingales

with respect to the market makers’ information, so the drift term must be zero. That can

also be verified by direct calculation of the partial derivatives, using the formula (6) for
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p(t, y). Thus,

dp(t, Yt) = py(t, Yt) dYt .

A direct calculation based on the formula (6) for p(t, y) shows that py(t, y) = λ(t, y) defined

in (7).

To see that λ(t, Yt) is a martingale for t ∈ [0, 1), with respect to market makers’ infor-

mation, we can calculate, for t < u < 1,

E[λ(u, Yu) | Yt = y] = − L

σ
√

1− u ·
∫ ∞
−∞

n

(
yL − y′
σ
√

1− u

)
f(y′ | u− t, y)dy′

+
H

σ
√

1− u ·
∫ ∞
−∞

n

(
yH − y′
σ
√

1− u

)
f(y′ | u− t, y)dy′ ,

where f(· | τ, y) denotes the normal density function with mean y and variance σ2τ . A

straightforward calculation shows that this equals λ(t, y). For example, to evaluate the first

term, use the fact that

1

σ
√

1− u n

(
yL − y′
σ
√

1− u

)
f(y′ | u− t, y)

=
1

σ
√

1− t n

(
yL − y
σ
√

1− t

)
× 1√

2πσ2(1− u)(u− t)/(1− t)

× exp

(
−
(

1− t
2(1− u)(u− t)σ2

)(
y′ − (1− u)y + (u− t)yL

1− t

)2
)
,

which integrates to

1

σ
√

1− t n

(
yL − y
σ
√

1− t

)
,

because the other factors constitute a normal density function.
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Appendix B. Hybrid Model Likelihood Function

Assume the trading period [0, 1] corresponds to a day. This implies that any private

information becomes public before trading opens on the following day.26 We can estimate

the model parameters using intraday price and order flow information. If we assume further

that the model parameters are stable over time, then the price and order flow information

from multiple days can be merged to estimate the parameters with greater precision.

The opening price on each day i is Pi0
def
= E[Vi1 + ξiSi] = Vi0. To obtain stationarity, we

assume that the signal Si on day i is proportional to the observed opening price Pi0. This

construction causes the pricing function to be day-specific, and we denote it by pi(t, y). In

fact,

pi(t, y) = Pi0 × p(t, y)

where p(t, y) is defined in Theorem 1. We specify that H = −L = κ in the empirical

implementation. Under this specification, the pricing function expressed in returns is given

by:

p(t, Yt) =


−κ1{Yt<yL} + κ1{Yt>yH} if t = 1 ,

−κF (yL|t, Yt) + κ(1− F (yH |t, Yt)) if t < 1

where F (y|t, Yt) is the normal distribution function with mean Yt and variance (1− t)σ2.

The price at time t on day i is Vit + pi(t, Yit), so the gross return through time t is

Pit
Pi0

=
Vit
Vi0

+
pi(t, Yit)

Pi0
=
Vit
Vi0

+ p(t, Yit) . (B.1)

Assume

dVit
Vit

= δ dBit

26In contrast to Odders-White and Ready (2008), our estimation does not use overnight returns. In our
theoretical model, private information that is made public after the close of trading is incorporated into
prices before trading ends (convergence to strong-form efficiency). Thus, overnight returns in our model are
due to arrival of new public information, which does not aid in estimating the model.
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for a constant δ and a Brownian motion Bi, so we have

Pit
Pi0

= p(t, Yit) + eδBit−δ2t/2 .

Assume the price and order imbalance are observed at times t1, . . . , tk+1 each day with

tk+1 = 1 being the close and the other times being equally spaced: tj = j∆ for ∆ > 0 and

j ≤ k. Let Pij denote the observed price and Yij the observed order imbalance at time tj on

date i. Define

Γ =



1

2

...

k

1/∆


, Σ =



1 1 · · · 1 1

1 2 · · · 2 2

...
...

...
...

...

1 2 · · · k k

1 2 · · · k 1/∆


.

On each day i, the vector Yi = (Yi,t1 , . . . , Yi,tk+1
)′ is normally distributed with mean 0

and covariance matrix σ2∆Σ. Set

Uij = log

(
Pij
Pi0
− p(tj, Yij)

)
(B.2)

and Ui = (Ui1, . . . , Ui,k+1)′. The density function of (Pi1/Pi0, . . . , Pi,k+1/Pi0) conditional on

Yi is

f(Ui1, . . . Ui,k+1)e−
∑k+1

j=1 Uij ,

where f denotes the multivariate normal density function with mean vector −(δ2∆/2)Γ and

covariance matrix δ2∆Σ.

Let Li denote the log-likelihood function for day i. Dropping terms that do not depend
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on the parameters, we have

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆

(
Ui +

δ2∆

2
Γ

)′
Σ−1

(
Ui +

δ2∆

2
Γ

)
+

k+1∑
j=1

Uij .

Using the facts that Γ′Σ−1 = (0, . . . , 0, 1) and Γ′Σ−1Γ = 1/∆, this simplifies to

− Li = (k + 1) log σ +
1

2σ2∆
Y ′i Σ

−1Yi + (k + 1) log δ

+
1

2δ2∆
U ′iΣ

−1Ui +
1

2
Ui,k+1 +

δ2

8
+

k+1∑
j=1

Uij .

Hence, the log-likelihood function L for an observation period of n days satisfies

− L = n(k + 1) log σ +
1

2σ2∆

n∑
i=1

Y ′i Σ
−1Yi + n(k + 1) log δ

+
1

2δ2∆

n∑
i=1

U ′iΣ
−1Ui +

nδ2

8
+

n∑
i=1

(
k∑
i=1

Uik +
3

2
Ui,k+1

)
. (B.3)

We minimize (B.3) in α, κ, pL, σ, and δ (note that κ and pL enter L because they affect the

function p that enters L via (B.2)). We sample every hour and at the close, so ∆ = 1/6.5.
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Table 1: Price Impact and Probability and Magnitude of Information Events
Panel regressions of price impacts on the estimated probability of an information event α and the magnitude
of an information event κ (Panel A) and the standard deviation of the signal (SD(ξS)) (Panel B). The
dependent variables are the 5-minute price impact, the cumulative impulse response estimated following
Hasbrouck (1991), and an estimate of Kyle’s lambda (λ̂intraday) using a regression of 5-minute returns on
the square-root of signed volume following Hasbrouck (2009) and Goyenko et al. (2009). All variables are
standardized to have a unit standard deviation. Standard errors are clustered by firm and year. t statistics
are in parentheses, and statistical significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

Panel A. Probability and Magnitude of Information Events

5-Minute Cumulative

Price Impact Impulse Response λ̂intraday

(1) (2) (3) (4) (5) (6)

α 0.21∗∗∗ 0.09∗∗∗ 0.16∗∗∗ 0.06∗∗∗ 0.22∗∗∗ 0.12∗∗∗

(4.73) (3.93) (3.66) (2.93) (4.58) (3.98)

κ 0.62∗∗∗ 0.41∗∗∗ 0.45∗∗∗ 0.26∗∗∗ 0.72∗∗∗ 0.55∗∗∗

(20.00) (10.77) (11.00) (6.58) (10.58) (8.61)

Constant 0.14∗∗∗ -0.25∗∗∗ 0.48∗∗∗ -0.54∗∗∗ -0.57∗∗∗ 0.25∗∗∗

(7.12) (-6.10) (19.64) (-12.78) (-16.80) (3.67)

Observations 19940 19940 19940 19940 19940 19940
R2 0.605 0.810 0.630 0.833 0.396 0.658
Year FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes

Panel B. Unconditional Signal Standard Deviation

5-Minute Cumulative

Price Impact Impulse Response λ̂intraday

(1) (2) (3) (4) (5) (6)

SD(ξS) 0.73∗∗∗ 0.52∗∗∗ 0.55∗∗∗ 0.36∗∗∗ 0.84∗∗∗ 0.69∗∗∗

(27.42) (18.45) (13.97) (8.83) (11.07) (11.55)

Constant 0.07∗∗∗ -0.19∗∗∗ 0.42∗∗∗ -0.47∗∗∗ -0.65∗∗∗ 0.33∗∗∗

(5.16) (-6.64) (21.29) (-12.21) (-16.48) (5.65)

Observations 19940 19940 19940 19940 19940 19940
R2 0.635 0.825 0.659 0.845 0.440 0.684
Year FE Yes Yes Yes Yes Yes Yes
Firm FE No Yes No Yes No Yes



Table 2: Excess Kurtosis and Probability of an Information Event
Panel regressions of excess kurtosis of returns relative to the estimated probability of an information event
α. The first column uses simulated data from the model using α values ranging from 0.05 to 0.95 in 0.05
increments. For each α value, the panel contains 1000 simulated firm-years. Excess kurtosis is estimated
for each firm-year of 252 days. The other parameters are κ = 0.02, σ = 0.1, pL = 0.5, and δ = 0.02. The
remaining columns use excess kurtosis and estimated α for NYSE firms. Standard errors are clustered by
firm and year. t statistics are in parentheses, and statistical significance is represented by * p < 0.10, **
p < 0.05, and *** p < 0.01.

(1) (2) (3) (4)

α -0.62∗∗∗ -0.31∗∗ -0.26∗ -0.26∗

(-14.21) (-2.10) (-1.93) (-1.81)

Log(Size) 0.18∗∗∗ 0.11
(2.85) (1.34)

Inverse Price 0.09 0.30
(0.20) (1.10)

Log(Volume) -0.20∗∗∗ -0.05
(-3.33) (-0.48)

Observations 19000 19940 19940 19940
R2 0.275 0.139 0.144 0.269
Year FE N/A Yes Yes Yes
Firm FE No No No Yes
Data Simulated Actual Actual Actual
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Table 3: End-of-day Volatility and Conditional Probability of an Information Event
Panel regressions of end-of-day absolute returns as a function of the conditional probability of an information
event (CPIE). The dependent variable is the absolute return over the last three and a half hours of the day.
The conditional probabilities are based on the cumulative order flow over the first three hours of the day
as defined in Equation (11). The first column uses simulated data from the model using α values ranging
from 0.05 to 0.95 in 0.05 increments. For each α value, the panel contains 1000 simulated firm-years. The
other parameters are κ = 0.02, σ = 0.1, pL = 0.5, and δ = 0.02. The remaining columns use daily data for
NYSE firms. Standard errors are clustered by firm and year. t statistics are in parentheses, and statistical
significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

(1) (2) (3) (4)

CPIE 28.05∗∗∗ 14.77∗∗∗ 7.70∗∗∗ 4.44∗∗∗

(4.81) (11.43) (7.07) (5.34)

Lag Abs Ret 0.21∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(16.84) (10.45) (10.39)

Abs OIB 4.49∗∗∗

(17.53)

Constant 112.60∗∗∗ 50.57∗∗∗ 55.00∗∗∗ 54.62∗∗∗

(31.61) (41.35) (57.34) (52.87)

Observations 4788000 4908887 4908887 4908887
R2 0.009 0.091 0.134 0.135
Year FE N/A Yes Yes Yes
Firm FE N/A No Yes Yes
Data Simulated Actual Actual Actual
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Table 4: Conditional Probability of an Information Event on Days when Schedule 13D Filers Trade
Average levels of the conditional probability of an information event (CPIE) on days when Schedule 13D
filers do or do not trade. CPIE is defined in Equation (11). The sample contains trading days in the sixty-
day disclosure period prior to a Schedule 13D filing date for NYSE firms in the sample of Collin-Dufresne
and Fos (2015). The first column reports the average CPIE on days when Schedule 13D filers trade. The
second column reports the average CPIE on days when Schedule 13D filers do not trade. The third column
reports the differences between the two types of days. We report the analysis for two subperiods, the first
and second halves of the disclosure period (days [t − 60, t − 31] and [t − 30, t − 1], respectively). Standard
errors are clustered by event. t statistics of the differences are in parentheses, and statistical significance is
represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

Days with Days with No
Informed Trading Informed Trading Difference

(1) (2) (3)

Full Disclosure Window:
Days [t− 60, t− 1]

CPIE 65.6 57.6 7.9∗∗∗

(4.73)

1st Half of Disclosure Window:
Days [t− 60, t− 31]

CPIE 62.5 57.5 4.9∗∗∗

(2.03)

2nd Half of Disclosure Window:
Days [t− 30, t− 1]

CPIE 67.6 57.8 9.8∗∗∗

(5.03)
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Table 5: Investment-Price Sensitivity and the Information Content of Prices
Panel regressions of corporate investment (capital expenditures) on market-to-book of assets (Q) and the
information content of prices following Chen et al. (2007). PIN is the probability of informed trading
from Easley et al. (1996). SD(ξS) is the standard deviation of the signal ξS as in Equation (10). OFC
is the proportion of return variance due to private information (the order-flow component of prices) as in
Equation (12). α is the probability of an information event in either the PIN or hybrid model. κhybrid
is the magnitude of an information event and σhybrid is the standard deviation of noise trading from the
hybrid model. ε/µ is the ratio of the uninformed to informed trading intensities from PIN. CF is firm cash
flows. RET is the cumulative return over the next three years. INV ASSET is the inverse of the book value
of assets. Standard errors are clustered by firm and year. t statistics are in parentheses, and statistical
significance is represented by * p < 0.10, ** p < 0.05, and *** p < 0.01.

(1) (2) (3) (4) (5) (6)

Q 1.59∗∗∗ 1.17∗∗∗ 2.08∗∗∗ 1.17∗∗∗ 1.29∗∗∗ 1.12∗∗∗

(8.36) (4.66) (7.35) (4.84) (5.67) (3.69)
Q× PIN 0.19∗∗∗

(2.61)
Q× αPIN -0.01

(-0.11)
Q× ε

µ -0.30∗∗∗

(-2.71)
Q× SD(ξS) 0.26∗∗∗

(3.27)
Q×OFC 0.20∗∗

(2.28)
Q× αhybrid 0.10∗∗∗

(2.87)
Q× κhybrid 0.29∗∗∗

(3.64)
Q× σhybrid -0.22∗∗

(-1.99)
CF 7.71∗∗∗ 7.73∗∗∗ 7.89∗∗∗ 7.85∗∗∗ 7.98∗∗∗ 7.66∗∗∗

(5.44) (5.46) (5.55) (5.55) (5.54) (5.56)
RET -0.18 -0.18 -0.19∗ -0.16 -0.19∗ -0.19∗

(-1.59) (-1.56) (-1.68) (-1.56) (-1.70) (-1.76)
INV ASSET 0.56∗∗∗ 0.52∗∗ 0.51∗∗ 0.56∗∗∗ 0.53∗∗ 0.49∗∗

(2.70) (2.56) (2.50) (2.73) (2.57) (2.39)
PIN -0.23∗∗∗

(-2.72)
αPIN 0.01

(0.16)
ε
µ 0.32∗∗

(2.35)
SD(ξS) -0.55∗∗∗

(-4.14)
OFC -0.21

(-1.61)
αhybrid -0.11∗∗

(-2.02)
κhybrid -0.52∗∗∗

(-4.05)
σhybrid -0.28

(-1.24)

Adjusted R2 0.745 0.745 0.746 0.746 0.745 0.748
Year FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes



Table 6: Structural Parameter Correlations
Correlations of structural parameters from the hybrid and other structural PIN models. For all models, α =
probability of an information event. For the hybrid model, λhybrid is the expected average lambda λ(0, 0)
based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed trading estimated using the
methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley et al. (2012), respectively. λOWR

is the estimate of Kyle’s lambda from Odders-White and Ready (2008). σhybrid and σu are the standard
deviations of noise trading from the hybrid and OWR models, respectively. ε/µ and (ε+θη)/µ are the ratios
of the informed to uninformed trading intensities from the PIN and APIN models, respectively.

Panel A. Composite Measures
λhybrid PIN λOWR APIN VPIN

λhybrid 1.00

PIN 0.35 1.00

λOWR 0.55 0.17 1.00

APIN 0.42 0.58 0.19 1.00

VPIN 0.56 0.42 0.26 0.48 1.00

Panel B. Probability of an Information Event
αhybrid αPIN αOWR αAPIN VPIN

αhybrid 1.00

N/AαPIN -0.08 1.00

αOWR -0.10 0.05 1.00

αAPIN -0.01 0.25 0.04 1.00

Panel C. Noise Trading

σhybrid
ε
µ σu

ε+θη
µ VPIN

σhybrid 1.00

N/A
ε
µ 0.57 1.00

σu 0.92 0.51 1.00
ε+θη
µ 0.53 0.83 0.48 1.00
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Table 7: Structural Parameter Estimates and Market Capitalization
Average values of parameter estimates within each NYSE market capitalization decile (formed annually).
For all models, α = probability of an information event. For the hybrid model, λhybrid is the expected
average lambda λ(0, 0) based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed
trading estimated using the methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley
et al. (2012), respectively. λOWR is the estimate of Kyle’s lambda from Odders-White and Ready (2008).
σhybrid and σu are the standard deviations of noise trading from the hybrid and OWR models, respectively.
ε/µ and (ε+ θη)/µ are the ratios of the informed to uninformed trading intensities from the PIN and APIN
models, respectively.

Panel A. Composite Measures
λhybrid PIN λOWR APIN VPIN

1 (Small) 0.199 0.18 0.139 0.15 0.28
2 0.144 0.15 0.089 0.13 0.27
3 0.109 0.14 0.068 0.12 0.25
4 0.085 0.13 0.058 0.12 0.24
5 0.066 0.13 0.049 0.11 0.23
6 0.052 0.12 0.040 0.10 0.23
7 0.042 0.12 0.034 0.10 0.22
8 0.035 0.11 0.032 0.09 0.21
9 0.025 0.09 0.024 0.08 0.20
10 (Large) 0.020 0.08 0.020 0.07 0.18

Panel B. Probability of an Information Event
αhybrid αPIN αOWR αAPIN VPIN

1 (Small) 0.72 0.31 0.11 0.41

N/A

2 0.70 0.33 0.12 0.44
3 0.67 0.34 0.12 0.44
4 0.67 0.35 0.12 0.45
5 0.65 0.36 0.14 0.45
6 0.63 0.36 0.14 0.45
7 0.62 0.38 0.16 0.46
8 0.59 0.38 0.17 0.46
9 0.57 0.39 0.18 0.46
10 (Large) 0.52 0.39 0.23 0.47

Panel C. Noise Trading

σhybrid
ε
µ σu

ε+θη
µ VPIN

1 (Small) 0.06 0.73 0.04 1.24

N/A

2 0.06 0.94 0.04 1.51
3 0.07 1.07 0.05 1.70
4 0.08 1.18 0.06 1.83
5 0.09 1.28 0.08 1.97
6 0.11 1.38 0.09 2.08
7 0.12 1.55 0.11 2.25
8 0.15 1.74 0.14 2.50
9 0.19 2.12 0.19 2.82
10 (Large) 0.29 2.64 0.33 3.43
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Figure 1: Price and Order Imbalance
The equilibrium price Vt + p(t, Yt) as a function of the order imbalance Yt at t = 0.5 for two values of the
probability α of an information event, when ξS = H, Vt = 50, H = 10, L = −10, σ = 1, and pH = pL = 1/2.
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Figure 2: Expected Average Lambda
Expected average lambda (8) as a function of α for two different values of H − L, taking |L| = H, when
σ = 1 and pL = pH = 1/2.
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Figure 3: Equilibrium Informed Trading and Price
The equilibrium informed trading rate θt as a function of the price Vt+p(t, Yt) at t = 0.5 for two values of the
probability α of an information event, when ξS = H, Vt = 50, H = 10, L = −10, σ = 1, and pH = pL = 1/2.
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Figure 4: Conditional Order Imbalance Distributions
The density function of the net order flow Y1 conditional on a low signal, no information event, and a high
signal for two values of the probability α of an information event, when σ = 1 and pL = pH = 1/2.
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Figure 5: Order Imbalance Distribution for a PIN Model with Contrarian Traders
This figure plots the simulated distribution of order imbalances for a variant of the Easley et al. (1996) model
in which contrarian traders arrive in the event of no information as described in Internet Appendix B. Order
imbalance is the number of buys minus number of sells. The histograms plot 50,000 instances of the model.
The parameter values are α ∈ {0.25, 0.5, 0.75}, pL = 0.5, ε = 10, µ = 10, L = −1, H = 1, V ∗ = 0.
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Figure 6: Time Series of Hybrid Model Estimates
The annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the hy-
brid model. The model is estimated on a stock-year basis for NYSE stocks from 1993
through 2012 using prices and order imbalances in six hourly intraday bins and at the close.
The model parameters are α = probability of an information event, κ = signal scale parameter,
σ = standard deviation of liquidity trading, δ = volatility of public information, and pL =
probability of a negative event. λhybrid is the expected average lambda λ(0, 0) based on Equation (8).
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Figure 7: Conditional Probability of an Information Event around Earnings Announcements
The figure reports averages of the end-of-day conditional probability of an information event, CPIE, defined
in Equation (11), in event time around earnings announcements. CPIE is calculated using the estimated
parameters and order flows. Dashed lines indicate the 95% confidence interval.
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Figure 8: Time Series of Price Impact Estimates and Composite Measures
The annual cross-sectional mean, 25th and 75th percentiles of 5-minute price impacts and composite infor-
mation asymmetry measures. Five-minute price impacts are estimated daily and averaged annually for each
stock-year for NYSE stocks from 1993 through 2012.The stock-year estimates of the cumulative impulse
response and λintraday are the medians of daily estimates. λhybrid is the expected average lambda λ(0, 0)
based on Equation (8). PIN, APIN, and VPIN are the probabilities of informed trading estimated using
the methodologies in Easley et al. (1996), Duarte and Young (2009), and Easley et al. (2012), respectively.
λOWR is the estimate of Kyle’s lambda from Odders-White and Ready (2008).
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Internet Appendix to

Identifying Information Asymmetry in Securities Markets

Internet Appendix A. Hybrid Model with General Signal Distribution

We present the hybrid model with a general signal distribution. For simplicity, we omit

public news arrival, which is straightforward to add as in the paper.

Internet Appendix A.1. Model

Assume the single strategic trader receives a signal S at time 0 with probability α. The

value of the asset at the end of the day conditional on all available information is V1 + ξS.

The standard continuous-time Kyle (1985) model is a special case of this model in which

α = 1, V is constant, and S is normally distributed.

Assume the signal S has a continuous distribution function G. Set s = inf{s | G(s) > 0}

and s̄ = sup{s | G(s) < 1}. Assume −∞ ≤ s < 0 < s̄ ≤ ∞. Assume G is strictly

increasing on (s, s̄) except possibly on some interval containing zero. If there is such an

interval with zero in its interior, then there is zero probability of very small good or bad

news. Including this feature in the model would make it possible to ensure that information

events are nontrivial. Under these assumptions, G−1 is uniquely defined on (0, 1), except

possibly at G(0).

Internet Appendix A.2. Brownian Bridge

Let F denote the distribution function of the normally distributed variable Y1. Set

yL = F−1(αG(0)) and yH = F−1(1− α + αG(0)). This means that

α prob(S ≤ 0) = prob(Y1 ≤ yL) ,

and

α prob(S > 0) = prob(Y1 > yH) .

1



Thus, the unconditional probability of bad news is equal to the probability that Y1 ≤ yL,

and the unconditional probability of good news is equal to the probability that Y1 > yH .

Set

q(t, y, s) =


F−1(αG(s))− y if G(s) < G(0) ,

E[Y1 | Yt = y, yL ≤ Y1 ≤ yH ]− y if G(s) = G(0) ,

F−1(1− α + αG(s))− y if G(s) > G(0) .

(A.1)

Note that if G(s) < G(0), then y
def
= F−1(αG(s)) satisfies

F (y) = αG(s) < αG(0) = F (yL) .

Thus, the function s 7→ F−1(αG(s)) maps {s | G(s) < G(0)} to {y | y < yL}. Symmetrically,

the function s 7→ F−1(1− α + αG(s)) maps {s | G(s) > G(0)} to {y | y > yH}.

Lemma. Let N denote the standard normal distribution function. Let FY = {FYt | 0 ≤ t ≤

1} denote the filtration generated by the stochastic process Y defined by Y0 = 0 and

dYt =
q(t, Yt, ξS)

1− t dt+ dZt . (A.2)

Then, the following are true:

(A) Y is an FY –Brownian motion with zero drift and standard deviation σ.

(B) With probability one,

ξ = 1 and S < 0 ⇒ Y1 = F−1(αG(S)) < yL , (A.3a)

ξ = 0 ⇒ yL ≤ Y1 ≤ yH , (A.3b)

ξ = 1 and S > 0 ⇒ Y1 = F−1(1− α + αG(S)) > yH . (A.3c)

2



(C) For each t < 1, the probability that ξ = 1 conditional on FYt is

N

(
yL − Yt
σ
√

1− t

)
+ 1− N

(
yH − Yt
σ
√

1− t

)
. (A.4)

The process Y described in the lemma is a variation of a Brownian bridge. It differs from a

Brownian bridge in that the endpoint is not uniquely determined when there is no information

event (ξ = 0). Part (C) of the proposition follows immediately from the preceding parts,

because the probability (A.4) is the probability that Y1 /∈ [yL, yH ] calculated on the basis

that Y is an FY –Brownian motion with zero drift and standard deviation σ.

Internet Appendix A.3. Equilibrium

Let f(· | t, y) denote the density function of Y1 conditional on Yt = y, that is, the normal

density function with mean y and variance (1− t)σ2.

Theorem. There is an equilibrium in which the trading rate of the strategic trader is

θt =
q(t, Yt, ξS)

1− t . (A.5)

The equilibrium asset price is Pt = Vt + p(t, Yt), where the pricing function p is given by

p(t, y) =

∫ yL

−∞
G−1

(
F (z)

α

)
f(z | t, y) dz +

∫ ∞
yH

G−1

(
F (z)− 1 + α

α

)
f(z | t, y) dz . (A.6)

The asset price evolves as dPt = dVt + λ(t, Yt) dYt, where Kyle’s lambda is

λ(t, y) =
1

σ2(1− t)

∫ yL

−∞
(z − y)G−1

(
F (z)

α

)
f(z | t, y) dz

+
1

σ2(1− t)

∫ ∞
yH

(z − y)G−1

(
F (z)− 1 + α

α

)
f(z | t, y) dz . (A.7)

There is convergence to strong-form efficiency in the sense that limt→1 Pt = V1 + ξS with

probability one.
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The probability that an information event occurred, conditional on the market’s informa-

tion at any date t < 1, is given by (A.4). The probability is generally an increasing function

of the absolute net order imbalance at t; more precisely, it is an increasing function of the

distance of the net order imbalance from the midpoint of yL and yH . The strong-form effi-

ciency condition means that the market learns by the close of trading whether the strategic

trader is informed and, if so, what her information is. From the proposition, we know that

if ξ = 1 and S < 0, then

Yt → F−1(αG(S)) < yL (A.8a)

with probability one as t→ 1. On the other hand, if ξ = 1 and S > 0, then

Yt → F−1(1− α + αG(S)) > yH (A.8b)

with probability one. In each case, the market learns S from Y as t → 1. If the strategic

trader is uninformed (ξ = 0), then

yL ≤ lim inf
t→1

Yt ≤ lim sup
t→1

Yt ≤ yH , (A.8c)

and the difference between Pt and Vt converges to zero as t→ 1.

The proofs of the lemma and theorem are similar to those in the paper and are available

upon request.
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Internet Appendix B. EKOP with Contrarian

The primary difference between the hybrid model and the PIN model is that, in the

former model, the strategic trader endogenously trades based on liquidity in the market.

A second difference is that the strategic trader acts as a contrarian in the absence of an

event. We now present evidence that the result on identification of information asymmetry

parameters does not result from this assumption.

We analyze an alteration of the original EKOP Glosten-Milgrom model to include the

presence of contrarian informed traders on non-event days, as in the hybrid Kyle model.

However, we maintain the assumption of exogenous trading by these contrarians. Contrarians

have Poisson arrival rate µ and buy the asset if a(t) < V ∗, sell the asset if b(t) > V ∗, and

refrain from trade if the known value is within the spread.

Let 1
over be an indicator variable for b(t) > V ∗. This is an indicator for whether a

contrarian finds the asset over-priced on a non-event day n. Let 1
under be an indicator

variable for a(t) < V ∗. This is an indicator for whether a contrarian finds the asset under-

priced on a non-event day n. Let 1inside be an indicator variable for V ∗ ∈ [b(t), a(t)]. This

is an indicator for when a contrarian on non-event days finds it optimal not to trade on a

non-event day n due to the spread.

Internet Appendix B.1. Bid prices

Following Section I.B of EKOP, the market maker’s posterior probability of no news at

time t conditional on a sell order arriving St is:

Pr(n|St) = Pn(t|St) =
Pr(St|n) Pr(n)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.1)

=
(ε+ 1

overµ)Pn(t)

ε+ µ (Pb(t) + 1overPn(t))
(B.2)
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The posterior probability for bad news conditional on a sell order arriving St is:

Pr(b|St) = Pb(t|St) =
Pr(St|b) Pr(b)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.3)

=
(ε+ µ)Pb(t)

ε+ µ (Pb(t) + 1overPn(t))
(B.4)

The posterior probability for good news conditional on a sell order arriving St is:

Pr(g|St) = Pg(t|St) =
Pr(St|g) Pr(g)

Pr(St|n) Pr(n) + Pr(St|g) Pr(g) + Pr(St|b) Pr(b)
(B.5)

=
εPg(t)

ε+ µ (Pb(t) + 1overPn(t))
(B.6)

Then the bid price will be

b(t) = V ∗ · Pn(t|St) + L · Pb(t|St) +H · Pg(t|St) (B.7)

=
V ∗ · (ε+ 1

overµ)Pn(t) + L · (ε+ µ)Pb(t) +H · εPg(t)
ε+ µ (Pb(t) + 1overPn(t))

(B.8)

Let b0 denote the value of b(t) when we substitute 1over = 0 into the formula and let b1

denote the value of b(t) when we substitute 1over = 1. Define p as

p =
εPg(t)

εPg(t) + [ε+ µ]Pb(t)
.

Then

b0 = V ∗ + [pH + (1− p)L− V ∗]× (ε+ µ)Pb + εPg
ε+ µPb

b1 = V ∗ + [pH + (1− p)L− V ∗]× (ε+ µ)Pb + εPg
ε+ µPb + µPn

Note that the formulas for b0 and b1 are the same except that the denominator in the

fraction is larger for b1, so the fraction is larger for b0. This shows that

6



pH + (1− p)L− V ∗ > 0⇒ b0 > b1 > V ∗

pH + (1− p)L− V ∗ < 0⇒ b0 < b1 < V ∗

So, b(t) = b1 in the former case (1over = 1), and b(t) = b0 in the latter case (1over = 0).

Internet Appendix B.2. Ask prices

The market maker’s posterior probability of no news at time t conditional on a buy order

arriving Bt is:

Pr(n|Bt) = Pn(t|Bt) =
Pr(Bt|n) Pr(n)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.9)

=
(ε+ 1

underµ)Pn(t)

ε+ µ (Pg(t) + 1underPn(t))
(B.10)

The posterior probability for bad news conditional on a buy order arriving Bt is:

Pr(b|Bt) = Pb(t|Bt) =
Pr(Bt|b) Pr(b)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.11)

=
εPb(t)

ε+ µ (Pg(t) + 1underPn(t))
(B.12)

The posterior probability for good news conditional on a buy order arriving Bt is:

Pr(g|Bt) = Pg(t|Bt) =
Pr(Bt|g) Pr(g)

Pr(Bt|n) Pr(n) + Pr(Bt|g) Pr(g) + Pr(Bt|b) Pr(b)
(B.13)

=
(ε+ µ)Pg(t)

ε+ µ (Pg(t) + 1underPn(t))
(B.14)
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Then the ask price will be

a(t) = V ∗ · Pn(t|Bt) + L · Pb(t|Bt) +H · Pg(t|Bt) (B.15)

=
V ∗ · (ε+ 1

underµ)Pn(t) + L · εPb(t) +H · (ε+ µ)Pg(t)

ε+ µ (Pg(t) + 1underPn(t))
(B.16)

Let a0 denote the value of a(t) when we substitute 1
under = 0 into the formula and let a1

denote the value of a(t) when we substitute 1under = 1. Define p̄ as

p̄ =
εPb(t)

εPb(t) + [ε+ µ]Pg(t)
.

Then

a0 = V ∗ + [p̄L+ (1− p̄)H − V ∗]× (ε+ µ)Pb + εPg
ε+ µPb

a1 = V ∗ + [p̄L+ (1− p̄)H − V ∗]× (ε+ µ)Pb + εPg
ε+ µPb + µPn

Note that the formulas for a0 and a1 are the same except that the denominator in the

fraction is larger for a1, so the fraction is larger for a0. This shows that

p̄L+ (1− p̄)H − V ∗ > 0⇒ a0 > a1 > V ∗

p̄L+ (1− p̄)H − V ∗ < 0⇒ a0 < a1 < V ∗

So, a(t) = a0 in the former case (1under = 0), and a(t) = a1 in the latter case (1under = 1).

Internet Appendix B.3. Updating probabilities and prices between arrival of traders

Pi(t) denotes the probability of an event i day (i ∈ {n, g, b}) conditional on information

up to time t. This includes both past trades and the absence of trades. We need to calculate

8



the updating about day type over intervals without trades. Let Nt denote the absence of buys

or sells at time t. The market maker’s posterior probability of no news at time t conditional

on no order arriving Nt is:

Pn(t|Nt) =
Pr(Nt|n) Pr(n)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.17)

=

(
1− 2ε dt− (1− 1

inside)µ dt
)
Pn(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
(B.18)

=

(
1− (µ+ 2ε) dt+ 1

insideµ dt
)
Pn(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
(B.19)

The posterior probability for bad news conditional on no order arriving Nt is:

Pb(t|Nt) =
Pr(Nt|b) Pr(b)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.20)

=
(1− (µ+ 2ε) dt)Pb(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
(B.21)

The posterior probability for good news conditional on no order arriving Nt is:

Pg(t|Nt) =
Pr(Nt|g) Pr(g)

Pr(Nt|n) Pr(n) + Pr(Nt|g) Pr(g) + Pr(Nt|b) Pr(b)
(B.22)

=
(1− (µ+ 2ε) dt)Pg(t)

1− (µ+ 2ε) dt+ Pn(t)1insideµ dt
(B.23)

Because the informed traders do not trade when the value is within the spread on non-event

days, market makers update slightly more towards the occurrence of a non-event day relative

to good or bad events in the absence of trade when V ∗ falls within the spread.

Internet Appendix B.4. Expected values and spreads

The expected value of the asset conditional on the history of trades and prices:

Et[V ] = V ∗ · Pn(t) + L · Pb(t) +H · Pg(t) (B.24)

9



Substituting into the bid and ask equations:

b(t) = Et[V ]− µ (Pb(t) + 1
overPn(t))

ε+ µ (Pb(t) + 1overPn(t))
(Et[V ]− L) (B.25)

a(t) = Et[V ] +
µ
(
Pg(t) + 1

underPn(t)
)

ε+ µ (Pg(t) + 1underPn(t))
(H − Et[V ]) (B.26)

When the bid (and expected asset value) is above V ∗ (i.e., 1over = 1), market-makers lower

the bid beyond the level in EKOP to protect against selling by a contrarian informed trader.

Similarly, when the ask (and expected asset value) is below V ∗ (i.e., 1under = 1), then the ask

is above the EKOP ask as market-makers protect against buying by a contrarian informed

trader. The resulting bid-ask spread is:

a(t)−b(t) =
µ
(
Pg(t) + 1

underPn(t)
)

ε+ µ (Pg(t) + 1underPn(t))
(H − Et[V ])+

µ (Pb(t) + 1
overPn(t))

ε+ µ (Pb(t) + 1overPn(t))
(Et[V ]− L)

(B.27)

When the expected asset value (and bid) is above V ∗ (i.e., 1over = 1), then the spread is:

µPg(t)

ε+ µPg(t)
(H − Et[V ]) +

µ (Pb(t) + Pn(t))

ε+ µ (Pb(t) + Pn(t))
(Et[V ]− L) (B.28)

When the expected asset value (and ask) is below V ∗ (i.e., 1under = 1), the spread is

µ (Pg(t) + Pn(t))

ε+ µ (Pg(t) + Pn(t))
(H − Et[V ]) +

µPb(t)

ε+ µPb(t)
(Et[V ]− L) (B.29)

Internet Appendix B.5. Distribution of Order Imbalances and Identification

We simulate the model to characterize the end-of-day distribution of order imbalances.

We discretize the day (T = 1) into 1000 equal-spaced bins and determine at each bin whether

a buy order, a sell order, or no order arrives. The probabilities of each of these events differ

based on the type of day realized (i ∈ {n, g, b}) and on the price path for non-event days.

The assumption of contrarian informed traders for non-event days does not change the

ability of the econometrician to identify information asymmetry parameters from the dis-
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tribution of order imbalances. The unconditional distribution of order imbalances in the

EKOP model with contrarians consists of three conditional distributions. On good or bad

event days, the conditional distributions have positive or negative order imbalances on av-

erage as in the standard EKOP model. These are distributed Skellam as in the original

PIN model. The distribution of order imbalances conditional on a non-event day are more

balanced. However, this is no longer Skellam since the arriving informed traders may either

buy, sell, or abstain from trade based on prices. However, the general intuition of the EKOP

identification holds. 1 − α is estimated as the mass of balanced trade corresponding to the

non-event days. pL is estimated using the mass of days with sell order imbalances relative

to the mass of days with buy order imbalances. The location of each of these Skellam dis-

tributions is used to determine µ, while ε is identified based on the variance of each of the

conditional distributions.
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Internet Appendix C. Likelihoods and Estimates of Other Models

Internet Appendix C.1. PIN Model

The likelihood of the PIN model is:

L(B, S|α, pL, µ, ε) =
T∏
t=1


(1− α)

[
exp (−2ε) εBt+St

Bt!St!

]
+αpL

[
exp (−(µ+ 2ε)) (µ+ε)StεBt

Bt!St!

]
+α(1− pL)

[
exp (−(µ+ 2ε)) (µ+ε)BtεSt

Bt!St!

]
 (C.1)

where Bt (St) is the number of buys (sells) on day t, α is the probability of an information

event, pL is the probability that an information event is bad news, and µ and ε are the arrival

rates of informed and uninformed traders. PIN, the probability of informed trade, is given

by the formula:

PIN =
αµ

αµ+ 2ε
. (C.2)

Figure C.1 displays the time series of average parameter estimates for the PIN model. The

average estimated α is much lower than in the hybrid model at 30 to 40%. The uninformed

trading intensity ε and informed trading intensity µ each rise markedly in the mid-2000’s

reflecting the dramatic rise in trading volume. The average estimated PIN falls from about

15% in 1993 to 10% in 2012.

Internet Appendix C.2. Odders-White and Ready Model (OWR)

The parameter vector for the Odders-White/Ready model is Θ = (α, σu, σz, σi, σp,d, σp,o)

where α is the probability of an information event, σu is the standard deviation of noise

trading, σz is the volatility of the noise in the order flow observed by the econometrician,

and σi is the standard deviation of the normally distributed private information. σp,d and

σp,o are the standard deviations of the intraday and overnight returns. The likelihood of the
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Odders-White/Ready model is:

L(ye,t, rd,t, ro,t|Θ) =
T∏
t=1

 (1− α)fN(ye,t, rd,t, ro,t; Θ)

+αfE(ye,t, rd,t, ro,t; Θ)

 (C.3)

where ye,t is the order flow observed on day t, rd,t is the intraday return, and ro,t is the

overnight return. fN and fE are multivariate normal densities conditional on no event or an

event occurring, respectively. Both fN and fE are mean zero with the following variances

and covariances. Conditional on no event, they are:

var(ye,t) = σ2
u + σ2

z ,

var(rd,t) = σ2
p,d + ασ2

i /4 ,

var(ro,t) = σ2
p,o + ασ2

i /4 ,

cov(rd,t, ro,t) = −ασ2
i /4 ,

cov(rd,t, ye,t) = α1/2σiσu/2 ,

cov(ro,t, ye,t) = −α1/2σiσu/2 .

Conditional on an event, they are:

var(ye,t) = (1 + 1/α)σ2
u + σ2

z ,

var(rd,t) = σ2
p,d + (1 + α)σ2

i /4 ,

var(ro,t) = σ2
p,o + (1 + α)σ2

i /4 ,

cov(rd,t, ro,t) = (1− α)σ2
i /4 ,

cov(rd,t, ye,t) = α−1/2σiσu/2 + α1/2σiσu/2 ,

cov(ro,t, ye,t) = α−1/2σiσu/2− α1/2σiσu/2 .

13



The OWR λ is:

λOWR =
α1/2σi
2σu

. (C.4)

We measure rd,t and ro,t as open-to-VWAP (all on day t) and VWAP-to-open (from day t

to day t + 1) returns. As in the hybrid model, ye,t is total share imbalance in thousands

of shares. Figure C.2 displays the time series of average parameter estimates for the OWR

model. All three of the return variables, σi, σp,d, and σp,o, rise during the late 1990’s and

the financial crisis.

Internet Appendix C.3. Adjusted PIN Model (APIN)

The likelihood of the Duarte-Young model is:

L(B, S|α, pL, µ, ε, θ, η) =
T∏
t=1



(1− α)(1− θ)
[
exp (−2ε) εBt+St

Bt!St!

]
(1− α)θ

[
exp (−2(ε+ η)) (ε+η)Bt+St

Bt!St!

]
+α(1− θ)pL

[
exp (−(µ+ 2ε)) (µ+ε)StεBt

Bt!St!

]
+αθpL

[
exp (−(µ+ 2ε+ 2η)) (µ+ε+η)St (ε+η)Bt

Bt!St!

]
+α(1− θ)(1− pL)

[
exp (−(µ+ 2ε)) (µ+ε)BtεSt

Bt!St!

]
+αθ(1− pL)

[
exp (−(µ+ 2ε+ 2η)) (µ+ε+η)Bt (ε+η)St

Bt!St!

]


(C.5)

where Bt (St) is the number of buys (sells) on day t, α is the probability of an information

event, pL is the probability that an information event is bad news, µ and ε are the arrival

rates of informed and uninformed traders, θ is the probability of a shock to buy and sell

intensities, and η is the increment to buy and sell intensities when such a symmetric order

flow shock occurs. We calculate Adjusted PIN using the formula:

APIN =
αµ

αµ+ 2ε+ 2θη
. (C.6)

Figure C.3 displays the time series of average parameter estimates for the DY model. The

parameters exhibit similar time-series dynamics to their counterparts in the PIN model.
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Internet Appendix C.4. Volume-Synchronized PIN Measure (VPIN)

VPIN of Easley et al. (2012) builds on the intuition of the EKOP model that the numer-

ator in PIN is the expected order imbalance while the denominator is expected volume. In

order to estimate each of these components, the trading day is divided into equal size volume

bins occurring in volume time τ . Let n denote the number of volume bins and V denote

the volume in a single bin. For every volume bin τ , volume is signed to buying or selling

volume based on the price change occurring over that bin. Let t(τ) denote the clock time

corresponding to volume time τ and N(·) denote the standard normal cumulative distribu-

tion function. Then volume in bin τ is assigned to buying and selling activity, respectively,

as:

V B
τ =

t(τ)∑
i=t(τ−1)+1

Vi · N
(
Pi − Pi−1

σ∆P

)

V S
τ =

t(τ)∑
i=t(τ−1)+1

Vi ·
[
1− N

(
Pi − Pi−1

σ∆P

)]
,

where the summation is over the number of 1-minute time intervals contained within volume

bin τ , Vi is the volume in time bin i, Pi − Pi−1 is the price change over time bin i, and σ∆P

is an estimate of the standard deviation of price changes within the day. We estimate VPIN

using n = 20 volume bins per day. Volume-synchronized PIN is then defined as:

VPIN =

∑n
τ=1

∣∣V B
τ − V S

τ

∣∣
nV

. (C.7)

We calculate VPIN each day and average across days to create an average VPIN for each

firm-year.
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Figure C.1: Time Series of PIN Model Estimates
The annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the Easley et al.
(1996) model. The model is estimated on a stock-year basis for NYSE stocks from 1993 through
2012 using daily buys and sells. The model parameters are α = probability of an information event,
pL = probability of a negative event, ε = Poisson intensity of uninformed trades, µ =
Poisson intensity of informed trades, and PIN = Probability of informed trade.
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Figure C.2: Time Series of Odders-White and Ready Model Estimates
This figure plots the annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the
Odders-White and Ready (2008) model. The model is estimated on a stock-year basis for NYSE stocks from
1993 through 2012 using daily order imbalances, intraday open-to-VWAP returns, and overnight VWAP-
to-open returns. The model parameters are α = probability of an information event, σi = the standard
deviation of the mean zero, normally distributed private information conditional on an information event,
σu = the standard deviation of the mean zero, normally distributed net order flow from uninformed traders,
σpD = the standard deviation of mean zero, normally distributed intraday public news, σpO = the standard
deviation of mean zero, normally distributed overnight public news, and λ = the price impact. Estimates
of σz, the error with which the econometrician observes order flow is suppressed for space.
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Figure C.3: Time Series of Adjusted PIN Model Estimates
This figure plots the annual cross-sectional mean, 25th and 75th percentiles of parameter estimates for the
Duarte and Young (2009) model. The model is estimated on a stock-year basis for NYSE stocks from 1993
through 2012 using daily buys and sells. The model parameters are α = probability of an information event,
pL = probability of a negative event, ε = Poisson intensity of uninformed trades, µ = Poisson intensity
of informed trades, θ = probability of a shock to buy and sell intensities, η = increment to buy and sell
intensities when a symmetric order flow shock occurs, and APIN = Probability of informed trade.
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Figure C.3: (continued) Time Series of Adjusted PIN Model Estimates
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Internet Appendix D. Empirical and Theoretical Order Flow Distributions

Each of the models have different implications for the unconditional distribution of order

imbalances. For all four structural models, the order flow distribution is a mixture distribu-

tion. Figure D.1 shows how the distributions can differ based on the underlying parameter

values, plotting the model-implied order imbalance distributions based on the estimates for

the smallest and largest NYSE firm deciles. Under the hybrid model, end-of-day order flows

are normally distributed with standard deviation σ. Under the OWR model, order flows are

a mixture of two normal distributions, one for non-event days and a higher variance one for

event days. Both of the Kyle-based models result in unimodal order flow distributions. On

the other hand, the PIN and Adjusted PIN models imply order imbalance distributions that

can be trimodal. Indeed, this is generally the case for order imbalances implied by structural

estimates of the PIN and adjusted PIN models. The PIN and adjusted PIN models must fit

volume as well as order imbalances since the input data are buy and sell volumes. On the

other hand, the hybrid and OWR models need only fit the order flow distribution.

How do the model-implied order imbalance distributions compare to those found empir-

ically? Figure D.2 shows the empirical standardized order imbalance distributions for the

smallest and largest NYSE size deciles in our sample. The figure displays both share and

trade imbalances since these are the underlying data for the Kyle-based and PIN models,

respectively. The empirical distributions do not exhibit strong multimodal behavior. This

is more consistent with the modeling assumption of the Kyle-based models than that of the

PIN models.
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Figure D.1: Model-implied Order Imbalance Distributions and Market Capitalization
The mixture distributions of standardized order imbalances implied by structural estimates from the hybrid
and PIN models for the smallest and largest size deciles. Order imbalances are standardized by the standard
deviation of order imbalances. For the hybrid model, the order imbalance variance is σ2. For the PIN model,
the order imbalance variance is 2ε+ αµ(1 + µ)− (αµ(1− 2pL))2. For the APIN model, the order imbalance
variance is 2(ε + θη) + αµ(1 + µ) − (αµ(1 − 2pL))2. For the OWR model, the order imbalance variance is
σ2
u. For the hybrid and OWR model, the order imbalances are measures in shares. For the PIN and APIN

model, the order imbalances are measures in number of trades. The parameters for each size decile are based
on the structural estimates, some of which are reported in Table 7.
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Figure D.1: (continued) Model-implied Order Imbalance Distributions and Market Capitalization
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Figure D.2: Empirical Order Imbalance Distributions and Market Capitalization
The distributions of daily standardized order imbalances for the smallest and largest size deciles. For each
firm-year, daily order imbalances are standardized by the firm-year standard deviation. The hybrid model
is estimated using order imbalances measured in shares (top row) and the PIN models are estimated using
order imbalances measured in number of trades (bottom row).
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