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Abstract

We characterize when physical probabilities, marginal utilities, and the dis-

count rate can be recovered from observed state prices for several future time

periods. We make no assumptions of the probability distribution, thus gen-

eralizing the time-homogeneous stationary model of Ross (2015). Recovery is

feasible when the number of maturities with observable prices is higher than the

number of states of the economy (or the number of parameters characterizing

the pricing kernel). When recovery is feasible, our model is easy to implement,

allowing a closed-form linearized solution. We implement our model empiri-

cally, testing the predictive power of the recovered expected return and other

recovered statistics.
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1 Introduction

The holy grail in financial economics is to decode probabilities and risk preferences

from asset prices. This decoding has been viewed as impossible until Ross (2015) pro-

vided sufficient conditions for such a recovery in a time-homogeneous Markov econ-

omy (using the Perron-Frobenius Theorem). However, his recovery method has been

criticized by Borovicka, Hansen, and Scheinkman (2015) (who also rely on Perron-

Frobenius and results of Hansen and Scheinkman (2009)), arguing that Ross’s as-

sumptions rule out realistic models.

This paper sheds new light on this debate, both theoretically and empirically.

Theoretically, we generalize the recovery theorem to handle a general probability

distribution which makes no assumptions of time-homogeneity or Markovian behavior.

We show when recovery is possible – and when it isn’t – using a simple “counting”

argument (based on Sard’s Theorem). When recovery is possible, we show that our

recovery inversion from prices to probabilities and preferences can be implemented in

closed form, making our method simpler and more robust. We implement our method

empirically using option data from 1996-2014 and study how the recovered expected

returns predict future actual returns.

To understand our method, note first that Ross (2015) assumes that state prices

are known not just in each final state, but also starting from each possible current

state as illustrated in Figure 1, Panel A. Simply put, he assumes that we know all

prices today and all prices in all “parallel universes” with different starting points.

Since we clearly cannot observe such parallel universes, Ross (2015) proposes to im-

plement his model based on prices for several future time periods, relying on the

assumption that all time periods have identical structures for prices and probabilities

(time-homogeneity), illustrated in Figure 1, Panel B. In other words, Ross assumes

that, if S&P 500 is 2000, then one-period option prices are the same regardless of the

time period.

We show that the recovery problem can be simplified by starting directly with the

state prices for all future times given only the current state (Figure 1, Panel C). We
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impose no dynamic structure on the probabilities, allowing the probability distribu-

tion to be fully general at each future time, thus relaxing Ross’s time-homogeneity

assumption which is unlikely to be met empirically.

We first show that when the number of states S is no greater than the number

of time periods T , then recovery is possible. To see the intuition, consider simply

the number of equations and the number of unknowns: First, we have S equations

at each time period, one for each Arrow-Debreu price, for a total of ST equations.

Second, we have 1 unknown discount rate, S − 1 unknown marginal utilities, and –

for each future time period – we have S − 1 unknown probabilities. In conclusion,

we have ST equations with 1 + S − 1 + (S − 1)T = ST + S − T unknowns. These

equations are not linear, but we provide a precise sense in which we can essentially

just count equations. Hence, recovery is possible when S ≤ T .

To understand the intuition behind this result, note that, for each time period,

we have S equations and only S− 1 probabilities. Hence, we have one extra equation

that can help us recover the marginal utilities and discount rate — and the number

of marginal utilities does not grow with the number of time periods.

By focusing on square matrices, Ross’s model falls into the category S = T so

our counting argument explains why he finds recovery. However, our method applies

under much more general conditions. We show that, when Ross’s time-homogeneity

conditions are met, then our solution is the same as his. The converse is not true:

when Ross’s conditions are not met, then our model can be solved while Ross’s cannot.

Further, we illustrate that our solution is far simpler and allows a closed-form solution

that is accurate when the discount rate is close to 1.

To understand the condition S ≤ T , consider what happens if the economy evolves

in a standard multinomial tree with no upper or lower bound on the state space: For

each extra time period, we get at least two new states since we can go up from highest

state and down from the lowest state. Therefore, in this case S > T , so we see that

recovery is impossible because of the number of states is higher than the number

of time periods. Hence, achieving recovery without further assumptions is typically
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impossible in most standard models of finance where the state space grows in this

way. In other words, our model provides a simple alternative way – via our counting

argument – to understand the critique of Borovicka, Hansen, and Scheinkman (2015)

that recovery is impossible in standard models.

Nevertheless, we show that recovery is possible even when S > T under certain

conditions. While maintaining that probabilities can be fully general (and, indeed,

allow growth), we assume that the utility function is given via a limited number of

parameters. Again, we simply need to make our counting argument work. To do this,

we show that, if the pricing kernel can be written as functions of N parameters, then

recovery is possible as long as N + 1 < T . This large state-space framework is what

we use empirically as discussed further below.

We illustrate how our method works in the context of three specific models, namely

Mehra and Prescott (1985), Black and Scholes (1973), and a simple non-Markovian

economy. For each economy, we generate model-implied prices and seek to recover

natural probabilities and preferences using our method. This provides an illustration

of how our method works, its robustness, and its shortcomings. For Mehra and

Prescott (1985), we show that S > T so general recovery is impossible, but, when

we restrict the class of utility functions, then we achieve recovery. For the binomial

model in the spirit of Black and Scholes (1973), we show that recovery is impossible

even under restrictive utility specifications because consumption growth is iid., which

leads to a flat term structure, a pricing matrix of a lower rank, and a continuum of

solutions for probabilities and preferences. Finally, we show how recovery is possible

in the non-Markovian setting, which falls outside the framework of Borovicka, Hansen,

and Scheinkman (2015) and Ross (2015), illustrating the generality of our framework

in terms of the allowed probabilities.

Finally, we implement our methodology empirically using the large set of call and

put options written on the S&P 500 stock market index over the time period 1996-

2014. We estimate state price densities for multiple future horizons and apply our

closed-form method to recover probabilities and preferences each month. Based on
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the recovered probabilities, we derive the risk and expected return over the future

month from the physical distribution of returns. Our empirical results suggest that

the recovered statistics have predictive power for the distribution of future realized

returns, although we caution that these results are based on a relatively short sample

of 18 years and we are able to reject that the full distribution of recovered probabilities

exactly matches the true distribution using a Berkowitz test.

The literature on recovery theorems is quickly expanding. Hansen and Scheinkman

(2009) provide general results of their operator approach to long term risk. Bakshi,

Chabi-Yo, and Gao (2015) empirically test the restrictions of the Recovery Theorem.

Audrino, Huitema, and Ludwig (2014) and Ross (2015) consider how to extract a full

transition state price matrix from current option prices, relying on time-homogeneity

and additional restrictions and approximations. Martin and Ross (2013) apply the

recovery theorem in a term structure model in which the driving state variable is a

stationary Markov chain and they show how recovery can be done using the (infinitely)

long end of the yield curve. Several papers focus on generalizing the underlying

Markov process to a continuous-time process with a continuum of values: Carr and

Yu (2012) use Long’s portfolio to show a recovery result using Sturm-Liouville theory

as the equivalent to Ross’s use of Perron-Frobenious theory. Walden (2013) shows

how recovery is possible in an unbounded diffusion setting, and Linetsky and Qin

(2015) show a recovery theorem assuming that the driving state process belongs to

a general class of continuous-time Markov processes (Borel right processes) which

include multidimensional processes in bounded and unbounded state spaces. These

papers all impose time-homogeneity of the underlying Markov process. Schneider and

Trojani (2015) focus on recovering moments of the physical distribution and choose

among potential pricing kernels matching these moments the kernel giving rise to a

minimal variance physical measure. What these papers have in common is that they

attempt to recover physical probabilities and the pricing kernel using forward looking

information. Malamud (2016) shows that knowledge of investor preferences is not

necessarily enough to recover physical probabilities when option supply is noisy, but
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shows how recovery can may be feasible when the volatility of option supply shocks

is also known. Prior to Ross (2015), the dynamics of the risk-neutral density and the

physical density along with the pricing kernel has been extensively researched using

historical option or equity market data. A partial list of prominent papers includes,

Jackwerth (2000), Jackwerth and Rubinstein (1996), Bollerslev and Todorov (2011),

Ait-Sahalia and Lo (2000), Rosenberg and Engle (2002), Bliss and Panigirtzoglou

(2004) and Christoffersen, Heston, and Jacobs (2013).

Our paper contributes to the literature by characterizing recovery for any proba-

bility distribution, not just time-inhomogeneous Markov process, by proving a simple

solution and its closed-form approximation, and by providing natural empirical tests.

Rather than relying on specific probabilistic assumptions (Markov processes and er-

godocity) as in Ross (2015) and Borovicka, Hansen, and Scheinkman (2015), we follow

the tradition of general equilibrium (GE) theory, where Debreu (1970) pioneered the

use of Sard’s theorem and differential topology. Bringing Sard’s theorem into the

recovery debate provides new economic insight on when recovery is possible.1

The remainder of the paper is structured as follows. Section 2 briefly reviews

Ross’s Recovery Theorem. Section 3 develops our Generalized Recovery Theorem,

showing how and when marginal utilities, physical probabilities, and the discount

rate can be decoded from prices. Section 4 provides a closed-form solution to the

recovery problem. Section 5 generalizes our model to capture a large state space

in which marginal utilities are given by a lower-dimensional set of (risk aversion)

parameters. Section 6 illustrates our method in the context of three specific models.

Section 7 describes our data and empirical methodology and Section 8 provides our

empirical results.

1We thank Steve Ross for pointing out the historical role of Sard’s theorem in general equilibrium
theory.
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2 Ross’s Recovery Theorem

This section briefly describes the mechanics of the recovery theorem of Ross (2015)

as a background for understanding our generalized result in which we relax the as-

sumption that transition probabilities are time-homogeneous.

The idea of the recovery theorem is most easily understood in a one-period setting.

In each time period 0 and 1, the economy can be in a finite number of states which

we label 1, . . . , S. Starting in any state i, there exists a full set of Arrow-Debreu

securities, each of which pay 1 if the economy is in state j at date 1. The price of

these securities is given by πi,j.

The objective of the recovery theorem is to use information about these observed

state prices to infer physical probabilities pi,j of transitioning from state i to j. We

can express the connection between Arrow-Debreu prices and physical probabilities

by introducing a pricing kernel m such that for any i, j = 1, ..., S

πi,j = pi,jmi,j (1)

It takes no more than a simple one-period binomial model to convince oneself, that if

we know the Arrow-Debreu prices in one and only one state at date 0, then there is

in general no hope of recovering physical probabilities. In short, we cannot separate

the contribution to the observed Arrow-Debreu prices from the physical probabilities

and the pricing kernel.

The key insight of the recovery theorem is that by assuming that we know the

Arrow-Debreu prices for all the possible starting states, then with additional structure

on the pricing kernel, we can recover physical probabilities. We note that knowing the

prices in states we are not currently in (“parallel universes”) is a strong assumption.

In any event, under this assumption, Ross’s result is that there exists a unique

set of physical probabilities pi,j for all i, j = 1, . . . , S such that (1) holds if the matrix

of Arrow-Debreu prices is irreducible and if the pricing kernel m has the form known
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from the standard representative agent models:

mi,j = δ
uj

ui
(2)

where δ > 0 is the discount rate and u = (u1, . . . , uS) is a vector with strictly positive

elements representing marginal utilities.

The proof can be found in Ross (2015), but here we note that counting equations

and unknowns certainly makes it plausible that the theorem is true: There are S2

observed Arrow-Debreu prices and hence S2 equations. Because probabilities from a

fixed starting state sum to one, there are S(S − 1) physical probabilities. It is clear

that scaling the vector u by a constant does not change the equations, and thus we

can assume that u1 = 1 so that u contributes with an additional S − 1 unknowns.

Adding to this the unknown δ leaves us exactly with a total of S2 unknowns. The

fact that there is a unique strictly positive solution hinges on the Frobenius theorem

for positive matrices.

The most troubling assumption in the theorem above is that we must know state

prices also from starting states that we are currently not in. It is hard to imagine

data that would allow us to know these in practice. Ross’s way around this assump-

tion is to leave the one-period setting and assume that we have information about

Arrow-Debreu prices from several future periods and then use a time-homogeneity

assumption to recover the same information that we would be able to obtain from

the equations above.

We therefore consider a discrete-time economy with time indexed by t, states

indexed by s = 1, ..., S, and πi,jt,t+τ denoting the time-t price in state i of an Arrow-

Debreu security that pays 1 in state j at date t + τ . The multi-period analogue of

Eqn. (1) becomes

πi,jt,t+τ = pi,jt,t+τ m
i,j
t,t+τ (3)

Similarly, the multi-period analogue to equation (2) is the following assumption, which
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again follows from the existence of a representative agent with time-separable utility:

Assumption 1 (Time-separable utility) There exists a δ ∈ (0, 1] and marginal

utilities uj > 0 for each state j such that, for all times τ , the pricing kernel can be

written as

mi,j
t,t+τ = δτ

uj

ui
(4)

Critically, to move to a multi-period setting, Ross makes the following additional

assumption of time-homogeneity in order to implement his approach empirically:

Assumption 2 (Time-homogeneous probabilities) For all states i, j and time

horizons τ > 0, pi,jt,t+τ does not depend on t.

This assumption is strong and not likely to be satisfied empirically. We note that

Assumptions 1 and 2 together imply that risk neutral probabilities are also time-

homogeneous, a prediction that can also be rejected in the data.

In this paper, we dispense with the time-homogeneity Assumption 2. We start by

maintaining Assumption 1, but later consider a broader assumption that can be used

in a large state space.

3 A Generalized Recovery Theorem

The assumption of time-separable utility is consistent with many standard models of

asset pricing, but the assumption of time-homogeneity is much more troubling. It

restricts us from working with a growing state space (as in standard binomial mod-

els) and it makes numerical implementation extremely hard and non-robust, because

trying to fit observed state prices to a time-homogeneous model is extremely difficult.

Furthermore, the main goal of the recovery exercise is to recover physical transition

probabilities from the current states to all future states over different time horizons.

Insisting that these transition probabilities arise from constant one-period transition
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probabilities is a strong restriction. We show in this section that by relaxing the

assumption of time-homogeneity of physical transition probabilities, we can obtain

a problem which is easier to solve numerically and which allows for a much richer

modeling structure. We show that our extension contains the time-homogeneous

case as a special case, and therefore ultimately should allow us to test whether the

time-homogeneity assumption can be defended empirically.

3.1 A Noah’s Arc Example: Two States and Two Dates

To get the intuition of our approach, we start by considering the simplest possible

case with two states and two time-periods. Consider the simple case in which the

economy has two possible states (1, 2) and two time periods starting at time t and

ending on dates t + 1 and t + 2. If the current state of the world is state 1, then

equation (3) consists of four equations:

π1,1
t,t+1 = p1,1

t,t+1 m1,1
t,t+1

π1,2
t,t+1 = (1− p1,1

t,t+1) m1,2
t,t+1

π1,1
t,t+2 = p1,1

t,t+2 m1,1
t,t+2

π1,2
t,t+2 = (1− p1,1

t,t+2)︸ ︷︷ ︸
2 unknowns

m1,2
t,t+2︸ ︷︷ ︸

4 unknowns

(5)

We see that we have 4 equations with 6 unknowns so this system cannot be solved in

full generality. However, the number of unknowns is reduced under the assumption

of time-separable utility (Assumption 1). To see that most simply, we introduce the

notation h for the normalized vector of of marginal utilities:

h =

(
1,
u2

u1
, . . . ,

uS

u1

)′
≡ (1, h2, . . . , hS)′. (6)
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where we normalize by u1. With this notation and the assumption of time-separable

utility, we can rewrite the system (5) as follows:

π1,1
t,t+1 = p1,1

t,t+1δ

π1,2
t,t+1 = (1− p1,1

t,t+1)δh2 (7)

π1,1
t,t+2 = p1,1

t,t+2δ
2

π1,2
t,t+2 = (1− p1,1

t,t+2)δ2h2

This system now has 4 equations with 4 unknowns, so there is hope to recover the

physical probabilities p, the discount rate δ, and the ratio of marginal utilities h.

Before we proceed to the general case, it is useful to see how the problem is solved

in this case. Moving h2 to the left side and adding the first two and the last two

equations gives us two new equation

π1,1
t,t+1 + π1,2

t,t+1

1

h2

− δ = 0 (8)

π1,1
t,t+2 + π1,2

t,t+2

1

h2

− δ2 = 0

Solving equation (8) for h2 yields 1
h2

= (δ−π1,1
t,t+1)/π1,2

t,t+1 and we can further arrive at

π1,1
t,t+2 −

π1,2
t,t+2π

1,1
t,t+1

π1,2
t,t+1

+
π1,2
t,t+2

π1,2
t,t+1

δ − δ2 = 0 (9)

Hence, we can solve the 2-state model by (i) finding δ as a root of the 2nd degree poly-

nomial (9); (ii) computing the marginal utility ratio h2 from (8); and (iii) computing

the physical probabilities by rearranging (7).

3.2 General Case: Notation

Turning to the general case, recall that there are S states and T time periods. Without

loss of generality, we assume that the economy starts at date 0 in state 1. This allows
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us to introduce some simplifying notation since we do not need to keep track of the

starting time or the starting state — we only need to indicate the final state and the

time horizon over which we are considering a specific transition.

Accordingly, let πτs denote the price of receiving 1 at date τ if the realized state

is s and collect the set of observed state prices in a T × S matrix Π defined as

Π =


π11 ... π1S

...
...

πT1 ... πTS

 (10)

Similarly, letting pτs denote the physical transition probabilities of going from the

current state 1 to state s in τ periods, we define a T × S matrix P of physical

probabilities. Note that pτs is not the probability of going from state τ to s (as in

the setting of Ross (2015)), but, rather, the first index denotes time for the purpose

of the derivation of our theorem.

From the vector of normalized marginal utilities h defined as in (6) we define the

S−dimensional diagonal matrixH = diag(h). Further, we construct a T−dimensional

diagonal matrix of discount factors as D = diag(δ, δ2, . . . , δT ).

3.3 Generalized Recovery

With this notation in place, the fundamental TS equations linking state prices and

physical probabilities, assuming utilities depend on current state only, can be ex-

pressed in matrix form as

Π = DPH (11)

Note that the (invertible) diagonal matrices H and D depend only on the vector h

and the constant δ so, if we can determine these, we can find the matrix of physical
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transition probabilities from the observed state prices in Π:

P = D−1ΠH−1 (12)

Since probabilities add up to 1, we can write Pe = e, where e = (1, . . . , 1)′ is a vector

of ones. Using this identity, we can simplify (12) such that it only depends on δ and

h:

ΠH−1e = DPe = De = (δ, δ2, . . . , δT )′ (13)

To further manipulate this equation it will be convenient to work with a division of

Π into block matrices:

Π =
[
Π1 Π2

]
=

Π11 Π12

Π21 Π22

 (14)

Here, Π1 is a column vector of dimension T , where the first S−1 elements are denoted

by Π11 and the rest of the vector is denoted Π21. Similarly, Π2 is a T ×(S−1) matrix,

where the first S − 1 rows are called Π12 and the last rows are called Π22. With this

notation and the fact that H(1, 1) = h(1) = 1, we can write (13) as

Π1 + Π2


h−1

2

...

h−1
S

 =


δ
...

δT

 (15)

where of course h−1
s = 1

hs
. Given that these equations are linear in the inverse marginal

utilities h−1
s , it is tempting to solve for these. To solve for these S−1 marginal utilities,
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we consider the first S − 1 equations

Π11 + Π12


h−1

2

...

h−1
S

 =


δ
...

δS−1

 (16)

with solution2


h−1

2

...

h−1
S

 = Π−1
12




δ
...

δS−1

−


π11

...

πS−1,1


 (17)

Hence, if δ were known, we would be done. Since δ is a discount rate, it is reasonable

to assume that it is close to one over short time periods. We later use this insight to

derive a closed-form approximation which is accurate as long as we have a reasonable

sense of the size of δ. For now, we proceed for general unknown δ.

We thus have the utility ratios given as a linear function of powers of δ. The

remaining T − S + 1 equations give us

Π21 + Π22


h−1

2

...

h−1
S

 =


δS

...

δT

 (18)

and from this we see that if we plug in the expression for the utility ratios found

above, we end up with T − S + 1 equations, each of which involves a polynomium

in δ of degree a most T. If T = S, then δ is a root to a single polynomium so at

most a finite number of solutions exist. If T > S, then typically no solution exists for

general Arrow-Debreu prices Π since δ must simultaneously solve several polynomial

equations. However, if the prices are generated by the model, then a solution exists

and it will almost surely be unique. To be precise, we say that Π has been “generated

2Of course, to invert Π12 it must have full rank. As long as Π2 has full rank, we can re-order the
rows to ensure that Π12 also has full rank.
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by the model” if there exist δ, P , and H such that Π can be found from the right-hand

side of (11). The following theorem formalizes these insights (using Sard’s Theorem):

Proposition 1 (Generalized Recovery) Consider an economy satisfying Assump-

tion 1 with Arrow-Debreu prices for each of the T time periods and S states. The

recovery problem has

1. a continuum of solutions if S > T ;

2. at most S solutions if the submatrix Π2 has full rank and S = T ;

3. no solution generically in terms of an arbitrary positive matrix Π and S < T ;

4. a unique solution generically if Π has been generated by the model and S < T .

Proof. We have already provided a proof for 1 and 2 in the body of the text. Turning

to 3, we note that the set X of all (δ, h, P ) is a manifold-with-boundary of dimension

S ·T −T +S. The discount rate, probabilities and marginal utilities map into prices,

which we denote by F (δ, h, P ) = DPH = Π, where, as before, D = diag(δ, ..., δT )

and H = diag(1, h2, ..., hS)), and F is C∞. If S < T , the image F (X) has Lebesgue

measure zero in RT×S by Sard’s theorem, proving 3. Indeed, this means that the

prices that are generated by the model F (X) have measure zero relative to all prices

Π.

Turning to 4, we first note that P and H can be uniquely recovered from (δ,Π)

(given that Π is generically full rank). Indeed, H is recovered from (17) and P is

recovered from (12). Therefore, we can focus on (δ,Π).

For two different choices of the discount rate (δa, δb) and a single set of prices Π,

we consider the triplet (δa, δb,Π). We are interested in showing that the different

discount rates cannot both be consistent with the same prices, generically. To show

this, we consider the space M where the reverse is true, hoping to show that M is

“small.” Specifically, M is the set of triplets where Π is of full rank and both discount
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rates are consistent with the prices, that is, there exists (unique) Pi and Hi (i = a, b)

such that DaPaHa = DbPbHb = Π.

Given that probabilities and marginal utilities can be uniquely recovered from

prices and a discount rate (as explained above), we have a smooth map G from M to

X by mapping any triplet (δa, δb,Π) to (δa, ha, Pa), where (ha, Pa) are the recovered

marginal utility and probabilities. The image of this map consists exactly of those

elements of X for which F is not injective. The proof is complete if we can show that

this image has Lebesgue measure zero, which follows again by Sard’s theorem if we

can show that the dimension of M is strictly smaller than ST − T + S.

To study the dimension of M , we note that we can think of M as the space

of triplets such that the span of Π contains both the points (δa, δ
2
a, ..., δ

T
a )′ and

(δb, δ
2
b , ..., δ

T
b )′. The span of Π is given by VΠ := {Π · (1, h2, h3, ..., hS)′|hs > 0},

which is an affine (S − 1)-dimensional subspace of RT for Π of full rank. The set of

all those Π ∈ RT×S such that VΠ passes through two given points of RT (in general

position with respect to each other) form a subspace of dimension ST − 2(T −S+ 1)

since each point imposes T − S + 1 equations (and saying that the points are in

general position means that all these equations are independent). Therefore, M is a

manifold of dimension ST − 2T + 2S since the pair (δa, δb) depends on two param-

eters, and, for a given pair, there is a (ST − 2T + 2S − 2)-dimensional subspace of

possible Π (any two distinct points are always in general position). Hence, we see

that dim(M) = ST − 2T + 2S < ST − T + S = dim(X) since S < T , which implies

that G(M) has measure zero in X. Further, the prices where recovery is impossible,

F (G(M)), have measure zero in the space of all prices generated by the model F (X)

where we use the Lebesgue measure on X to define a measure3 on F (X).

Proposition 1 provides a simple way to understand when recovery is possible,

namely, essentially when the number of time periods T is at least as large as the

number of states S.

3We can define a measure on F (X) by µ∗(A) := µ(F−1(A)) for any set A, where µ is the Lebesgue
measure on X.
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Proposition 1 also sheds an alternative light on the critique of Borovicka, Hansen,

and Scheinkman (2015) that recovery is infeasible in standard models. Indeed, we

provide a simple counting argument: Suppose that the economy has growth such

that, for each extra time period, the economy can increase from the previously highest

state and go down from the previously lowest state. Then we get two new states for

each new time period, which implies that S > T such that recovery is impossible.

Nevertheless, we can still achieve recovery in such a large state space if we consider

a class of pricing kernels that is sufficiently low-dimensional as we discuss below in

Section 5.

3.4 Further Results

We next show that our problem is indeed a generalized problem in the sense that if

a solution exists satisfying the more restrictive assumptions in Ross (2015), then it is

also a solution to our problem. The reverse is not true: a solution to the generalized

recovery problem cannot be achieved in Ross’s framework if the world is not time-

homogeneous.

Proposition 2 (Strictly More General Method) Suppose that we observe T pe-

riods of state prices given the current state at date 0 and Assumption 1 applies (time-

separable utility).

1. If Assumption 2 also applies (time-homogeneity) then a solution to Ross’s Re-

covery problem produces a solution to our generalized recovery problem as well.

Generically among price matrices for Ross’s problem, the corresponding price

matrix Π for the generalized recovery problem is full rank.

2. A solution to the generalized recovery problem is not in general a solution to

Ross’s recovery problem without Assumption 2. With S = T , there exists set of

parameters with positive Lebesgue measure for the generalized recovery problem

where no solution exists for Ross’s recovery problem. With S > T , generically
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among price matrices for the the generalized recovery problem, there exists no

solution to Ross’s recovery problem.

Proof. For part 1, let Π̄ denote an S × S matrix of one-period state prices as

considered in Ross (2015), i.e., π̄ij is the value in state i at date 0 of receiving 1 in

the next period if the state is j. Let F denote the corresponding matrix of one-period

physical transition probabilities. A solution to Ross’ problem satisfies

Π̄ = δH−1FH (19)

and therefore also by time-homogeneity for all k = 1, . . . , T

Π̄k = δkH−1F kH (20)

If the starting state is 1 (without loss of generality) then the equations of our gener-

alized recovery problem are the subset obtained by considering the first row of each

equation obtained by varying k above. The equations above show that by setting the

k′th row of our matrix of physical transition probabilities P equal the first row of F k,

we have a solution to the equations for our generalized recovery problem.

To see that Π is full rank, we first diagonalize Ross’s price matrix as Π̄ = V ZV ′,

where Z = diag(z1, ..., zS) is the matrix of eigenvalues and V is the matrix of eigen-

vectors. The k’th row in the generalized-recovery pricing matrix is the first row (still

assuming that the starting state is 1) of Π̄k = V ZkV ′. Letting v denote the first row

in V , we see that the k’th row of Π is vZkV ′ = (v1z
k
1 , ..., vSz

k
S)V ′ so

Π =


1 ... 1
...

...

zT−1
1 ... zT−1

S



v1z1 0

. . .

0 vSzS

V ′ (21)

Therefore, Π is full rank generically because it is the product of three full-rank ma-

trices. Indeed, the first matrix is a Vandermonde matrix, which is full rank when the
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z’s are non-zero and different, which is true generically. The second matrix is clearly

also full-rank since the v’s are also non-zero generically, and the third matrix is full

rank by construction.

For part 2, consider first the case where S < T . The dimension of the parameter

set (transition probabilities + utility parameters) generating the generalized-recovery

price matrix Π is ST − T + S, which is strictly greater than the dimension S2 of

the parameter space generating price matrices in Ross’s homogeneous case. Hence,

generically no time-homogeneous solution can generate a generalized recovery price

Π.

Our framework is also more general in the the case S = T . Recalling that pτi

denotes the probability of going from the current state 1 to state i in τ periods,

it is clear that in a time-homogeneous setting we must have p22 ≥ p11p12, i.e., the

probability of going from state 1 to state 2 in two periods is (conservatively) bounded

below by the probability obtained by considering the particular path that stays in

state 1 in the first time period and then jumps to state 2 in the second. However,

such a bound need not apply for the true probabilities if the transition probabilities

are not time-homogeneous. The set of parameters that can generate Π matrices that

are not attainable from homogeneous transition probabilities is clearly of Lebesgue

measure greater than zero in the S2−dimensional parameter space.

Part 1 of the proposition shows that, when Ross’s assumptions are met, a solution

to his problem is also a solution to our generalized problem. Further, our method can

also recover the underlying parameters (as per Proposition 1) since the price matrix

Π is full rank. Part 2 of the proposition shows that for many “typical” price matrices

(e.g., those observed in the data), no solution exists for Ross’s recovery problem even

though a solution exists for the generalized recovery problem.

We finally note that the very special case of an observed flat term structure of

interest rates has some special properties. In particular, with a flat term structure

there exists a solution to the problem in which the representative agent is risk neutral,

echoing an analogous result by Ross.
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To see this result, note that the price of a zero-coupon bond with maturity τ

is equal to the sum of the τ ’th row of Π, which we write as (Πe)τ . Having a flat

term structure means that the yield on the zero-coupon bonds does not depend on

maturity, i.e., that there exists a constant r such that

1

(1 + r)τ
= (Πe)τ (22)

Let the T ×S matrix Q contain the risk-neutral transition probabilities seen from the

starting state, i.e., the k’th row of Q gives us the risk-neutral probabilities of ending

in the different states at date k.

Proposition 3 (Flat Term Structure) Suppose that the term structure of interest

rates is flat, i.e., there exists r > 0 such that 1
(1+r)τ

= (Πe)τ for all τ = 1, . . . , T .

Then the recovery problem is solved with equal physical and risk-neutral probabilities,

P = Q. This means that either the representative agent is risk neutral or the recovery

problem has multiple solutions.

Proof. Let R denote the diagonal matrix whose k’th diagonal element is 1
(1+r)k

.

Having a flat term structure means that the matrix Π of state prices as seen from a

particular starting state can be written as

Π = RQ

which defines Q as a stochastic matrix (i.e., with rows that sum to 1). Clearly, by

letting δ = 1/(1 + r) and having risk-neutrality, i.e. H = IS (the identity matrix of

dimension S), we obtain a solution to our recovery problem

Π = RQ = DPH = RPIS = RP

by setting P = Q.

We note that this result should be interpreted with caution. The knife-edge (i.e.,

measure zero) case of a flat term structure may well be generated by the knife-edge
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case of a price matrix Π with low rank, which implies that a continuum of solutions

may exists and the representative agent may well be risk averse (as one would expect).

Intuitively, a flat term structure may be generated by a Π with so much symmetry

that it has a low rank.

4 Closed-Form Recovery

The recovery problem is almost linear, except for the powers of the discount rate δ

which enter into the problem as a polynomial. In practical implementations over the

time horizons where options are liquid, a linear approximation provides an accurate

approximation given that δ is close to one. For instance, we know from the literature

that δ is close to 0.97 at an annual horizon.

The linear approximation is straightforward. To linearize the discounting of δτ

around a point δ0 (say, δ0 = 0.97), we write δτ ≈ aτ + bτδ for known constants aτ and

bτ . Based on the Taylor expansion δτ ≈ δτ0 + τδτ−1
0 (δ − δ0), we have aτ = −(τ − 1)δτ0

and bτ = τδτ−1
0 . As seen in Figure 2, the approximation is accurate for δ ∈ [0.94, 1]

for time horizons less than 2 years.

With the linearization of the polynomials in δ, the equations for the recovery

problem (13) become the following:
π11

...

πT1

+


π12 . . . π1S

...
...

πT2 . . . πTS




h−1
2

...

h−1
S

 =


a1 + b1δ

...

aT + bT δ

 (23)

which we can rewrite as a system of T equations in S unknowns as


−b1 π12 . . . π1S

...
...

...

−bT πT2 . . . πTS




δ

h−1
2

...

h−1
S

 =


a1 − π11

...

aT − πT1

 (24)
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Rewriting this equation in matrix form as

Bhδ = a− π1 (25)

we immediately see the closed-form solution

hδ =

 B−1(a− π1) for S = T

(B′B)−1B′(a− π1) for S < T
(26)

We see that, when S = T , we simply need to solve S linear equations with S un-

knowns. When S < T , we could simply just consider S equations and ignore the

remaining T − S equations.

More broadly, if S < T and we start with prices Π that are not exactly generated

by the model (e.g., because of noise in the data), then (26) provides the values of δ

and the vector h that best approximate a solution in the sense of least squares.

The following theorem shows that the closed-form solution is accurate as long as

the value of δ0 is close to the true discount rate:

Proposition 4 (Closed-Form Solution) If prices are generated by the model and

B has full rank S ≤ T then the closed-form solution (26) approximates the true

solution in the following sense: The distance between the true solution (δ̄, h̄, P̄ ) and

the approximate solution (δ, h, P ) approaches 0 faster than (δ0 − δ̄) as δ0 approaches

δ̄.

Proof. The approximation result follows from Lemma 1 in the appendix.

5 Recovery in a Large State Space

A challenge in implementing the Ross Recovery Theorem is that it does not allow

for an expanding set of states as we know it, for example, from binomial models and

multinomial models of option pricing. Simply stated, the expanding state space in a
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binomial model adds more unknowns for each time period than equations even under

the assumption of utility functions that depend on the current state only. We next

show how we handle an expanding state space in our model.

We have in mind a case where the number of states S is larger than the number

of time periods T . In a standard binomial model, for example, with two time periods

we need five states corresponding to the different values that the stock can take over

its path. The key to solving this problem is to reduce the dimensionality of the

utility ratios captured in the vector h. To do that, we replace Assumption 1 with

the following assumption that the pricing kernels belong to a parametric family with

limited dimensionality.

Assumption 1* (General utility with N parameters) The pricing kernel at

time τ in state s (given the initial state 1 at time 0) can be written as

m1,s
0,τ = δτhs(θ) (27)

where δ ∈ (0, 1] and h(·) > 0 is a one-to-one C∞ smooth function of the parameter

θ ∈ Θ, an embedding from Θ ⊂ RN to RS, and Θ has a non-empty interior.

With a large number of unknowns compared to the number of equations, we need

to restrict the set of unknowns, and this is done by assuming that the utilities are

parameterized by a lower-dimensional set Θ.

5.1 A Large Discrete State Space

Let us first consider two simple examples of how we can parameterize marginal utilities

with a low-dimensional set of parameters. First, we consider a simple linear expression

for the marginal utilities and then we discuss the case of constant relative risk aversion

(a non-linear mapping from risk aversion parameters Θ to marginal utilities).

We start with a simple linear example of how the parametrization works. We
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consider a matrix B of full rank and dimension (S − 1)×N such that
h−1

2

...

h−1
S

 =


a1

...

aS−1

+


b11 . . . b1N

...
...

bS−1,1 . . . bS−1,N



θ1

...

θN

 = A+Bθ (28)

Combining this equation with the recovery problem (15) gives

(Π1 + Π2A) + Π2B


θ1

...

θN

 =


δ
...

δT

 (29)

This equation has exactly the same form as our original recovery problem (15), but

now Π1 + Π2A plays the role of Π1, similarly Π2B plays the role of Π2, and θ plays

the role of (h−1
2 , ..., h−1

S )′. The only difference is that the dimension of the unknown

parameter has been reduced from S − 1 to N . Therefore, Proposition 1 holds as

stated with S replaced by N + 1.

Hence, while before we could achieve recovery if S ≤ T , now we can achieve

recovery as long as N + 1 ≤ T . In other words, recovery is possible as long as the

representative agent’s utility function can be specified by a number of parameters

that is small relative to the number of time periods for which we have price data.

Assumption 1* also allows for the marginal utilities to be non-linear function of

the risk aversion parameters θ. This generality is useful because standard utility

functions may give rise to such a non-linearity. As a simple example, consider an

economy with a representative agent with CRRA preferences. In this economy, the

pricing kernel in state s at time τ (given the current state 1 at time 0) is

m1,s
0,τ = δτ

(
cs
c1

)−θ
(30)

where cs is the known consumption in state s of the representative agent and θ is

the unknown risk aversion parameter. Hence, Assumption 1* is clearly satisfied with
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h−1
s (θ) = ( cs

c1
)θ. Our generalized recovery result extends to the large state space as

stated in the following proposition.

Proposition 5 (Generalized Recovery in a Large State Space) Consider an econ-

omy satisfying Assumption 1* with Arrow-Debreu prices for each of the T time periods

and S states such that N + 1 < T . The recovery problem has

1. no solution generically in terms of an arbitrary Π matrix of positive elements;

2. a unique solution generically if Π has been generated by the model.

Proof. Following the same logic as the proof of Proposition 1, we note that the set

X of all (δ, θ, P ) is a manifold-with-boundary of dimension S · T − T + N + 1. The

discount rate, marginal utility parameters, and probabilities map into prices, which

we denote by F (δ, θ, P ) = DPH = Π, where, as before, D = diag(δ, ..., δT ) and

H = diag(h1(θ), h2(θ), ..., hS(θ))), and F is C∞. Since N + 1 < T , the image F (X)

has Lebesgue measure zero in RT×S by Sard’s theorem, proving part 1.

Turning to part 2, we first note that P can be uniquely recovered from (θ̄,Π)

using equation (12), where θ̄ = (δ, θ). Therefore, we can focus on (θ̄,Π), studying the

solutions to Π(h−1
1 (θ), ..., h−1

S (θ))′ = (δ, ..., δT )′.

For two different choices of the parameters (θ̄a, θ̄b) and a single set of prices Π,

we consider the triplet (θ̄a, θ̄b,Π). We are interested in showing that the different

parameters cannot both be consistent with the same prices, generically. To show

this, we consider the space M where the reverse is true, hoping to show that M is

“small.” Specifically, M is the set of triplets where Π is of full rank and both discount

rates are consistent with the prices, that is, there exists (unique) Pi (i = a, b) such

that DaPaHa = DbPbHb = Π.

Given that probabilities can be uniquely recovered from prices and parameters, we

have a smooth map G from M to X by mapping any triplet (θ̄a, θ̄b,Π) to (δa, θa, Pa).

The image of this map consists exactly of those elements of X for which F is not

injective. The proof is complete if we can show that this image has Lebesgue measure
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zero, which follows again by Sard’s theorem if we can show that the dimension of M

is strictly smaller than S · T − T +N + 1.

To study the dimension of M , consider first VΠ := {Π(h−1
1 (θ), ..., h−1

S (θ))′|θ ∈ Θ},

which is an N -dimensional submanifold of RT for Π of full rank and given that h is

a one-to-one embedding. We note that we can think of M as the space of triplets

such that VΠ contains both the points (δa, δ
2
a, ..., δ

T
a )′ and (δb, δ

2
b , ..., δ

T
b )′, where the

corresponding θ’s are given uniquely from the definition of VΠ since Π is full rank and

h is one-to-one. The set of all those Π ∈ RT×S such that VΠ passes through two given

points of RT form a subspace of dimension ST − 2(T −N) since each point imposes

T −N equations. Therefore, M is a manifold of dimension ST −2T + 2N + 2. Hence,

we see that G(X) has measure zero in X and F (G(X)) has measure zero in F (X).

5.2 Continuous State Space

Finally, we note that our framework also easily extends to a continuous state space

under Assumption 1*. We start with a continuous state-space density πτ (s) at each

time point τ = 1, . . . , T (given the current state at time 0). As before, πτ (s) repre-

sents Arrow-Debreu prices or, more precisely, πτ (s)ds represents the current value of

receiving 1 at time τ if the state is in a small interval ds around s. Similarly, we let

pτ (s) denote the physical probability density of transitioning to s in τ periods. The

fundamental recovery equations now become

πτ (s) = δτhs(θ)pτ (s) (31)

By moving h to the left-hand side and integrating, we can eliminate the natural

probabilities as before.∫
πτ (s)h

−1
s (θ)ds = δτ (32)
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For each time period τ , this gives an equation to help us recover the N+1 unknowns,

namely the discount rate δ and the parameters θ ∈ RN . Hence, we are in the same

situation as in the discrete-state model of Section 5.1, and we have recovery if there

are enough time periods as stated in Proposition 5.

As before, the linear case is particularly simple. Suppose that the marginal utilities

can be written as4

h−1
s (θ) = A(s) +B(s)θ (33)

where, for each s, A(s) is a known scalar and B(s) is a known row-vector of dimension

N . Using this expression, we can rewrite equation (32) as a simple equation of the

same form as our original recovery problem (15):

πAτ + πBτ θ = δτ (34)

where πAτ =
∫
πτ (s)A(s)ds and πBτ =

∫
πτ (s)B(s)ds. Hence, as before, we have T

equations that are linear except for the powers of the discount rate.

6 Recovery in Specific Models: Examples

In this section we investigate recovery of specific models of interest. In a controlled

environment, we show when, given state prices, our model recovers the true underlying

risk-aversion parameter, time-preference parameter along with the true multiperiod

physical probabilities.

6.1 Recovery in the Mehra and Prescott (1985) model

The Mehra and Prescott (1985) model works as follows. The aggregate consumption

either grows at rate u = 1.054 or shrinks at rate d = 0.982 over the next period.

4Note that h−1s (θ) denotes 1
hs(θ)

, i.e., it is not the inverse function of hs(θ).
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This consumption growth between time t− 1 and t is captured by a process Xt. The

aggregate consumption process can be written as

Yt =
t∏

s=1

Xs (35)

where the initial consumption is normalized as Y0 = 1.

Consumption growth Xt is a Markov process with two states, up and down. The

probability of having an up state after an up state is φuu; = Pr(Xt = u|Xt−1 = u) =

0.43 and, equally, the probability of staying in the down state is φdd = 0.43. Hence,

the probability of switching state is φud = φdu = 0.57.

The Arrow-Debreu price of receiving 1 at time t in a state st = (yt, xt) is computed

based on the CRRA preferences for the representative agent with risk aversion γ = 4

as

π1,st
0,t = δty−γt Pr(Xt = xt, Yt = yt) (36)

where the time-preference parameter is δ = 0.98 and the physical probabilities Pr(Xt =

xt, Yt = yt) of each state are computed based on the Markov probabilities above.5

Based on this model of Mehra and Prescott (1985), we compute Arrow-Debreu

prices in each state over T = 20 time periods and examine whether we can recover

probabilities and preferences based on knowing only these prices (we have also per-

formed the recovery for other values of T ).

Impossibility of general recovery. We first notice from equation (35) that

consumption has growth, which immediately implies that S > T . This means that

recovery is impossible without further assumptions. Hence, we proceed using the

method concerning a large state space of Section 5.

5We note that prices of long-lived assets, for example the overall stock market, depends on both
Xt and Yt (even if the aggregate consumption Yt is the aggregate dividend). Therefore, stock index
options would provide information on Arrow-Debreu prices on each state st = (yt, xt). Alternatively,
we could consider recovery based only on Arrow-Debreu securities that depend on yt. This would
correspond to observing options on “dividend strips.” Either way, we get the same recovery results
in the Mehra and Prescott (1985) model.
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Recovery under CRRA. The simplest way to proceed is to assume that we

know the form of the pricing kernel (36), but we don’t know the risk aversion γ, the

discount rate δ, or the probabilities. We can then write the Generalized Recovery

equation set on the form

Πh−1(γ) =
[
δ δ2 . . . δT

]′
(37)

where h is a one-to-one C∞ smooth function of the parameter γ based on (36), see

Appendix B for details.6 Therefore, we are in the domain of Assumption 1* and, as

long as T > 2 (since N = 1 is the number of risk aversion parameters and 2 is the total

number of variables, δ and γ) then by Proposition 5 we know that the Generalized

Recovery equation set generically has a unique solution.

We first seek to recover γ and δ by minimizing the pricing errors (again, see

Appendix B for details). Panel A of Figure 3 shows the objective function for this

minimization problem. As seen from the figure, there is a unique solution to the

problem, which naturally equals the true parameters δ̂ = 0.98, γ̂ = 4.

Finally, we turn to the recovery of natural probabilities. It is worth noticing that

we do not recover the Markov switching probabilities φuu, φdd, φud or φdu. Rather,

what is recovered is the multi-period probabilities p1,st
0,t of transitioning from the initial

state to each future state (consistent with the intuition conveyed in Figure 1).7 The

probabilities p1,st
0,t are recovered exactly. Fortunately, these multi-period probabilities

are all we need for making predictions about such statistics as expected returns,

variances, and quantiles across different time horizons.

6.2 Black-Scholes-Merton and iid. consumption growth

We can capture a binomial model in the spirit of Black-Scholes-Merton and Cox,

Ross, and Rubinstein (1979) as follows. We consider the same model for aggregate

6Matlab code is available from the authors upon request.
7Recovery of the underlying path-dependent probabilities is possible if we have access to Arrow-

Debreu prices for all paths or if we assume that we know the structure of the underlying tree.
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consumption Yt, but now Xt is iid. (corresponding to φuu = φdu and φdd = φud). In

other words, the standard binomial Black-Scholes-Merton model has iid consumption

growth. Specifically, we assume that up and down probabilities are always 50%

(φuu = φdu = φdd = φud = 0.5).

This binomial model implies a flat term structure which puts us in the case of

Proposition 3, where recovery is impossible.8 Concretely, the problem is that the

price matrix Π from (37) is not full rank. Hence, as seen in Figure 3 Panel B, the

objective of minimizing pricing errors has a continuum of solutions. In other words,

recovery is not feasible.

6.3 A non-stationary model without Markov structure

Lastly, we consider a model where the consumption growth Xt is not Markov. Specif-

ically, we still consider the binomial tree described above in Sections 6.1–6.2, but

now we let the probability of transitioning up/down from any state s at any time t

depend on the path taken from time 0 to time t. At each node at each path, we draw

a random uniformly distributed probability for an “up” move, and, of course, assign

one minus this probability to the next “down” node.

We now seek to recover δ and γ. As seen in Figure 3 Panel C, the objective function

has a unique solution which again equals the true parameters δ̂ = 0.98 and γ̂ = 4.

Hence, recovery can be possible even when the driving process is non-stationary and

non-Markovian, again under parametric assumptions about the utility function (i.e.,

a model outside the scope of Ross (2015) and Borovicka, Hansen, and Scheinkman

(2015)).

8Iid. consumption growth and standard utility functions generally lead to a flat term struc-
ture because the price of a bond with τ periods to maturity can be written as Et(δ

τ ut+τ
ut

) =

Et(
∏
s=1,...,τ δ

ut+s
ut+s−1

) =: ( 1
1+r )τ , where the expected utility increments are the same for all s because

they depend on consumption growth ct+s
ct+s−1

, which has constant expected value when it is iid.
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7 Data and Empirical Methodology

In this section we describe our data and empirical methodology.

7.1 Data and Sample Selection

We use the Ivy DB database from OptionMetrics to extract information on standard

call and put options written on the S&P 500 index for every Wednesday from January

1996 to august 2014. We obtain implied volatilities, strikes, and maturities, allowing

us to back out market prices. As a proxy for the risk-free rate, we use the zero-

coupon yield curve of the Ivy DB database, which is derived from from LIBOR rates

and settlement prices of CME Eurodollar futures. We also obtain expected dividend

payments, calculated under the assumption of a constant dividend yield over the life

time of the option. We consider options with time to maturity between 10 and 360

days and apply standard filters, excluding contracts with zero open interest, zero

trading volume, and quotes with best bid below $0.50, and options with implied

volatility higher than 100%.

7.2 Recovery Methodology

The Generalized Recovery Theorem relies on the knowledge of state prices from the

current initial state to all possible future states for several future time periods. Unfor-

tunately, there is currently no market trading pure Arrow-Debreu securities. There-

fore, we use options to back out Arrow-Debreu prices as described in detail in Ap-

pendix C. This method yields state prices for each day t that we consider across 34

future time horizons, namely 30, 40, 50,..., 350, 360 calender days, and across a range

of index levels. Given the current index level St and the current VIXt volatility index,

we consider index levels from St − 2.5St ×VIXt to St + 4St ×VIXt. For example, on

March 12, 2014 the S&P 500 index value was at 1868 and VIX was at 0.1447, so on

this day we consider state prices for future index levels from 1192 to 2949.

Given these observed state prices, we recover preferences and probabilities as
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follows. We apply the closed-form approximation method of Proposition 4 in the

context of a large state space as in Section 5. Indeed, as discussed above, we have

T = 34 time periods and more than 1000 index values so there are many more states

than time periods, i.e., in the notation of Proposition 1 we have S >> T . Following

the discussion in Section 5 we impose a linear, lower-dimensional, structure on the

inverse pricing kernel, H−1e. We do this by letting H−1e = Bθ, where θ is an 11-

dimensional column vector and B is a known S × 11 “design matrix.”

We use the design matrix B shown in Figure 4. Panel A illustrates the columns of

our design matrix, which are piecewise linear. The first column is constant, meaning

that the first parameter θ1 determines the initial level of the inverse pricing kernel

H−1e = Bθ. The next column slopes up and is then flat, so θ2 is the initial slope of

Bθ. Similarly, θ3 is the slope of the next line segment generated by Bθ.

The resulting inverse pricing kernel is shown in Figure 5 Panel A for March 12,

2014. The piecewise linear structure is visible. Panel B shows the corresponding

pricing kernel, which has piecewise constant curvature. We impose that θ1, ..., θ11 ≥ 0

which means that the inverse pricing kernel is monotonically increasing or, equiva-

lently, that the pricing kernel is monotonically decreasing9 i.e., that marginal utility

decreases at higher levels of wealth.

The design matrix is characterized by its “break points” that separate the state

space into 10 regions. These regions are chosen as follows. The lowest region ranges

over states from (1 − 2.5VIXt)St to (1 − 2VIXt)St. The highest region covers states

ranging from (1 + 2VIXt)St to (1 + 4VIXt)St. In between these extremes, we consider

8 regions of equal size in the range (1− 2VIXt)S0 to (1 + 2VIXt)St. When using this

specification of B and the estimated Arrow-Debreu prices, we obtain an S×N matrix

ΠB with full rank for every last Wednesday of the month for the period 1/1996 to

9There is an ongoing debate in the literature of whether or not the pricing kernel is monotonically
decreasing. Jackwerth (2000), Ait-Sahalia and Lo (2000) and Rosenberg and Engle (2002) suggest
that the kernel is not monotonically decreasing in wealth whereas Barone-Adesi, Engle, and Mancini
(2008), Bliss and Panigirtzoglou (2004) and Linn, Shive, and Shumway (2015) argue that it is.
Our framework allows for both monotonically decreasing and non-monotonically decreasing pricing
kernels.
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7/2014.

At each date t we impose a first order Taylor expansion of δτ , for τ ∈ {1, ..., 34},

in D around the initial guess

δ̄ =
1

1 + rft,t+1

(38)

where rft,t+1 is the time t 1-month risk-neutral interest rate. This implies that our

starting guess for the physical discounting is risk-neutrality discounting. With this

in place we set up the following minimization problem

min
θ,δ

norm (ΠBθ − (a+ bδ)) (39)

s.t. θ > 0

δ ∈ (0, 1]

where a and b are known vectors coming from the linearization of δτ ≈ aτ+bτδ around

δ̄ given in (38) as discussed in Section 4. Given a state price matrix Π and a design

matrix B we estimate the θ and δ that best fits the model in a squared error sense.

Once the pricing kernel and discount rate have been recovered, we back out the

multi-period physical probabilities as

P = D−1Π diag(Bθ) (40)

where D is a diagonal matrix with elements Dii = δi and diag(Bθ) is a diagonal matrix

with elements diag(Bθ)jj = Bjθ where Bj is the j’th row of B. We normalize P to

have row sums of one, this is necessary since θ and δ are found from the minimization

problem in (39) and not solved perfectly.
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7.3 Computing Statistics under the Physical Probability Dis-

tribution

Once we have recovered the probabilities of each state for each future time period, it is

straightforward to compute any statistic under the physical probability distribution.

If the level of the index at time t is St, then the state space consists of all integer

values of the index between the minimum value (1− 2.5VIXt)St and (1 + 4VIXt)St.

Let Nt denote the number of states as seen from time t and think of state 1 as the

lowest state and Nt as the highest state. We compute time t physical expectation of

one month returns by summing over the Nt states as

EP
t [rt,t+1] =

Nt∑
ν=1

pt+1,νrt+1,ν (41)

where pt+1,ν is the estimated time t conditional physical probability for the transition

to state ν at time t+ 1, i.e., in one month. Similarly, rt+1,ν = St+1(ν)
St
− 1 is the return

over the period t to t + 1 if state ν is realized at time t + 1. Here, St+1(ν) is the

integer-value of the index at time t+ 1 if state ν is realized.

If rt,t+1 is the 1-month return on the index in period t to t + 1 and rft,t+1 is the

1-month risk-free rate, then we compute

µt = EP
t [rt,t+1]− rft,t+1 (42)

as the conditional expected 1-month excess return over period t to t+1. Furthermore,

we let

σt =

√
VARP

t (rt,t+1) (43)

be time t conditional 1-month volatility. We compute the contemporaneous unpre-
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dictable innovation in the conditional expected return as

∆µt+1 = µt+1 − Et[µt+1] (44)

where we impose an AR(1)-process on the innovation to the risk premium Et[µt+1] =

α0 + α1µt based on the regression

µt+1 = α0 + α1µt + εt+1 (45)

The estimated persistence parameter α1 is 0.31 at the monthly horizon.

8 Empirical Results

As described in Section 7, we are able to recover physical probabilities for each state

and each date that we consider, under our given assumptions. We next investigate

the quality of these recovered probabilities. We investigate the recovered probabilities

by examining their ability to predict the future market return and the future market

volatility and by examining the full distribution via a Berkowitz test, cf. Berkowitz

(2001).

We first consider the expected return and risk implied by the recovered proba-

bilities. Figure 6 shows how the conditional expected monthly excess returns varies

over time. The average conditional expected monthly excess return is 0.32%, that is,

3.86% on an annualized basis, with significant variation over time.

The estimated physical volatility is plotted in Figure 7. It is not surprising that

volatilities can be recovered, so we report these as a simple reality check of our method.

The recovered volatility looks reasonable and is 97% correlated with the VIX index

as seen in Table 1.

Table 1 also shows that the recovered volatility is highly correlated with the SVIX

variable of Martin (2015), which in turn is also highly correlated with VIX. Hence,

the following tests we only include one of them at a time. We focus on the former
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two, but our regressions below are qualitatively the same if we control for SVIX.

Lastly, Table 1 shows that the recovered expected return is positively correlated

with the future realized return, and more so than any of the other variables. Further,

the innovation in the expected return is negatively correlated with the contempora-

neous return, consistent with the idea that a higher required return is associated with

lower current prices. We next test this predictability more directly.

Table 2 reports the results of regressing the ex post realized excess return on

the ex ante recovered expected excess return, µt, the ex post innovation in expected

return, ∆µt+1, and, as controls, the ex ante recovered volatility, σt, and the ex ante

VIX volatility index:

rt,t+1 = β0 + β1µt + β2∆µt+1 + β3σt + β4VIXt + εt,t+1 (46)

where εt+1 is a noise term. To understand this regression, note that we are interested

in testing whether the recovered probabilities give rise to reasonable expected returns,

that is, time-varying risk premia. For this, we want to test whether a higher ex

ante expected return is associated with a higher ex post realized return (β1 > 0)

and whether an increase in the risk premium is associated with a contemporaneous

drop in the price (β2 < 0). More specifically, under the null hypothesis of correctly

recovered probabilities, the estimates of regression (46) should satisfy

β0 = 0 and β1 = 1 and β2 < 0 (47)

Table 2 reports evidence consistent with this null hypothesis over the full sample

from 1/1997 to 7/2014. First, the intercept β0 is insignificantly different from zero

in all specifications. Second, β1 is positive and marginally significant from 0 in some

specifications and never significantly different from 1. The coefficient β2 is highly

significant and has the desired negative sign. Further, as expected the absolute value

of β2 is greater than zero since a shock to the discount rate leads to a larger shock to

the price (cf. Gordon’s growth model for the extreme example of a permanent shock).
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Table 3 reports the result of regression (46) over two sub-samples that have been

considered in the literature (e.g., Martin (2015)). Panel A reports regression results

for the pre-crisis period (1/1996–8/2008) and Panel B reports the results outside

the financial crisis (full sample excluding 9/2008–7/2009). The results are broadly

consistent with those over the full sample. All the key parameters have the expected

sign, the estimated coefficient β1 is positive and marginally significant or insignificant,

and β2 is negative and significant.

Following Goyal and Welch (2008) we also compare the out-of-sample predictive

ability of our ex-ante expected returns compared to a ’prevailing-mean’ estimate.

More precisely, letting PMt+1 denote the mean of excess returns estimated over 10

years up to time t, we compute

R2 = 1−
∑

t (rt+1 − Et(rt+1))2∑
t (rt+1 − PMt+1))2

and

R̄2 = R2 − (1−R2)

(
T − k
T − 1

)

find R̄2 = 0.0128 which is positive and large compared to typical values of R̄2, cf.

Goyal and Welch (2008). Using the heuristic calculations of Cochrane (1999) this

magnitude of R2 (cf. Kelly and Pruitt (2013)) can be shown to have significant

economic implications.

Table 4 reports the results of regressing ex post realized volatility on the ex ante

recovered conditional volatility, σt, or the VIX volatility index:

√
VAR(rt,t+1) = β0 + β1σt + β2VIXt + εt,t+1 (48)

where the realized volatility
√

VAR(rt,t+1) is computed using close-to-close daily data

over the 4 weeks from t to t+ 1 by OptionMetrics. As seen in Table 4, the estimated

slope coefficient β1 is 1.01, close to the predicted value of 1, for the recovered volatility
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σt. The slope coefficient for VIX is estimated to 0.90. The slope estimate for the

recovered volatility is highly significantly different from zero (t-statistic above 16)

and not significantly different from one, but the estimated intercept β0 is marginally

significantly different from zero, a rejection of the model. Also, the VIX index has a

slightly higher R2, which may reflect that the recovery method introduces some noise

in the volatility measure.

We finish of by testing the full predicted distribution of the recovered probabilities,

we consider a so-called Berkowitz test, cf. Berkowitz (2001). Let F̂t denote the

estimated distribution of the excess return rt+1 given the information at time t. If

the estimated distribution is equal to the true distribution, then the distribution of

ut+1 = F̂t(rt+1) is uniform and the distribution of xt+1 = Φ−1(ut+1) is normal. In

the Berkowitz test, we estimate the coefficients in the model xt+1 = c+ βxt + εt and

perform a likelihood ratio test of the joint hypothesis that c = β = 0 and V ar(εt) = 1.

We reject the hypothesis that the recovered distribution fully captures the realized

excess return distribution. To further shed light on the discrepancy between the

estimated and the empirical distribution of excess returns, we compute for each date

t the cut-off points for the five quintiles of the estimated conditional distribution

of the next period’s excess return, and we then record the quintile into which the

realized excess return actually fell. Figure 8 plots the number of times the realized

excess return, rt+1, ended up in each quintile estimated at time t. If our estimated

conditional distribution at time t were accurate, then we would expect excess realized

returns to be uniformly distributed across each quintile. Figure 8 suggests that our

estimated distribution may put to little mass on very large excess returns.

In summary, we find positive evidence that the recovered probabilities contain

information about future expected returns, but we are able to reject that the recovered

probabilities provide a perfect description of the future evolution of the market. Our

goal has mainly been to illustrate that our general method is easily applicable and

can be useful in testing important issues in asset pricing.
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9 Conclusion

We characterize when preferences and natural probabilities can be recovered from

observed prices using a simple counting argument. We make no assumptions on the

physical probability distribution, thus generalizing Ross (2015) who relies on strong

time-homogeneity assumptions.

In economies with growth, recovery is generally not feasible as emphasized by

Borovicka, Hansen, and Scheinkman (2015). To address this issue, we consider a

framework to handle economies with growth, models with more states than time pe-

riods, classical multinomial models, models with an infinite state space, and models

with non-Markovian behavior. The fundamental assumption is that the pricing ker-

nel can be parameterized by a sufficiently low-dimensional parameter vector which

balances the extra information obtained by adding new time periods with the ex-

panding set of unknown state prices. When recovery is feasible, our model is easy to

implement, allowing a closed-form linearized solution.

We implement our model empirically, testing the predictive power of the recovered

statistics. Our empirical findings indicate that the ex ante expected returns based

on our recovered physical probabilities may help predict future returns, but we reject

that the full recovered probability distribution is a perfect description of the future

market behavior. Future research may further explore the best ways to empirically

implement our theory and test its benefits and limitations.
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A Appendix: Proofs

Lemma 1 Suppose that x∗ ∈ Rn is defined by f(x∗) = 0 for a differentiable function

f : Rn → Rn with full rank of the Jacobian df in the neighborhood of x∗, and x is

defined as the solution to the equation, f(x̄) + df(x̄)(x − x̄) = 0, where f has been

linearized around x̄ = x∗ + ∆x ε for ∆x ∈ Rn and ε ∈ R. Then x = x∗ + o(ε) for

ε→ 0.

Proof. Since we have x = x̄− df−1f(x̄) we see that, as ε→ 0,

x− x∗

ε
=
x̄− x∗

ε
− df−1f(x̄)− f(x∗)

ε
→ ∆x− df−1df∆x = 0 (A.1)

B Appendix: Details on Recovery in Mehra-Prescott

Let

Π =


π0,d

0,1 π1,u
0,1 0 0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 π0,d
0,2 π1,d

0,2 π1,u
0,2 π2,u

0,2 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
... . . .

...
...

...
... . . .

...

0 0 0 0 0 0 0 . . . 0 π0,d
0,T π1,d

0,T π1,u
0,T . . . πT,u0,T


(B.1)

where πk,u0,t is the state price of making a total of k “up” moves in t periods where

the last move was “up,” that is, the Arrow-Debreu price for the state st = (yt, xt) =

(ukdt−k, u). Similarly, πk,d0,t is the state price of making a total of k “up” moves in t

periods where the last move was “down”.

Π has dimension T × (
∑T

t=1 2t). This implies that the h−1(γ) vector of inverse

marginal utility ratios must be (
∑T

t=1 2t)-dimensional. We fix this in the following
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way. We let

h−1(γ) =
[
(y0

1)γ (y1
1)γ (y0

2)γ (y1
2)γ (y1

2)γ (y2
2)γ . . . (yTT )γ

]′
(B.2)

where ykt = ukdt−k is the level of aggregate consumption when making a total of k

“up” moves in t periods and γ is the risk-aversion parameter that we wish to recover.

There is no closed-form solution to the non-linear case of CRRA preferences. In

order to obtain model estimates we sort to a numerical exercise, that is to minimize

the objective function g:

min
γ,δ

g(γ, δ) := norm

Πh−1(γ)−


δ

δ2

...

δT



 (B.3)

s.t. γ ∈ R+

δ ∈ (0, 1]

Based on the recovered (γ, δ) that solve this minimizition problem, we can recover

the natural probabilities from (36).

C Appendix: Computing State Prices Empirically

Before we can recover probabilities, we need to know that Arrow-Debreu prices or,

said differently, characterize the risk-neutral distribution. There exist many ways to

do this in practice based on observed option prices, including various interpolation

methods. To ensure that we start with an arbitrage-free collection of Arrow-Debreu

prices by strike and maturity, we use the model of Bates (2000) to derive state prices

from observed option prices. This parametric approach puts structure on the tails

of the risk-neutral density, which also allows us to extrapolate outside the range of

observable option quotes. While the Bates (2000) model may not be the “true”
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specification of the economy, we simply use this framework as a standard method in

the literature to compute state prices, and, consistent with this pragmatic view, we

allow parameters to change over time (which also avoids look-ahead bias).

In this model, the risk-neutral process for the price of the underlying asset, St,

and the instantaneous variance, Vt, are assumed to be of the form

dSt/St = (rf − d− λk̄)dt+
√
VtdZt + kdqt (C.1)

dVt = (α− βVt)dt+ σv
√
VtdZvt (C.2)

where Zt and Zvt are Brownian motions with correlation ρ, and qt is a Poisson counting

process that captures the risk of jumps in the price. The jumps occur with intensity

λ and each jump causes the price to be multiplied by the factor 1 + k, which is

lognormally distributed, i.e., ln(1 + k) ∼ N(ln(1 + k̄)1
2
δ2, δ2). Further, rf is the

risk-free rate and d is the dividend yield.

We calibrate these model parameters every fourth Wednesday as follows:10 On

each day, given the current level of the market St and the risk-free term structure

rft,t+τ , we find the model parameters (α, β, λ, k̄, σv, δ) and state variable Vt that mini-

mize the vega-weighted squared pricing errors for fifty call and put options, following

the methodology of Trolle and Schwartz (2009). The fifty chosen call/put options are

those with the highest volumes. We allow the model parameters to vary over time

since we simply use the model to smooth observed option prices (that may be noisy)

such that they are arbitrage-free.

Once we have obtained model estimates, we compute the risk-neutral density

f(τ, Sτ ) for any time τ periods into the future and state Sτ given the current time

state St as:

f(τ ;Sτ ) =
1

π

∫ ∞
0

(
Sτ
St

)−iu
ψ(τ, u)du (C.3)

10We use data for every fourth Wednesday as a compromise between (i) the tradition in the asset
pricing literature on return predictability of focusing on monthly returns, and (ii) the tradition in
the option literature of focusing on Wednesdays, where among other reasons option liquidity is high.
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that is, by integrating the characteristic function ψ numerically using the Gauss-

Laguerre quadrature method. Knowing the risk-neutral density, the corresponding

state price density π(τ ;ST ) is the density discounted by the τ -period risk-free rate

rft,t+τ :

π(τ ;Sτ ) = e−r
f
t,t+τf(T ;Sτ ) (C.4)

This completes the computation of state prices. Indeed, we think of π(τ ;Sτ ) as the

Arrow-Debreu prices we need as starting point for our recovery for each index level.

For example π(1, 2000) is the Arrow-Debreu price of receiving $1 in one year of the

S&P500 is between 2000 and 2001. We consider the grid of maturities and index

levels described in Section 7.2.
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D Tables and Figures

Panel A. Ross’s Recovery Theorem: one period, two “parallel universes”

t=1t=0

Current state

Other state

Panel B. Ross’s Recovery Theorem: time-homogeneous dynamic setting

t=2t=1t=0

Current state

Other state

Panel C. Our Generalized Recovery: No assumptions about probabilities

t=2t=1t=0

Current state

Other state

Figure 1: Generalized Recovery Framework. Panel A illustrates the idea behind
Ross’s Recovery Theorem, namely that we start with information about all Arrow-
Debreu prices in all initial states (not just the state we are currently in, but also
prices in “parallel universes” where today’s state is different). Panel B shows how
Ross moves to a dynamic setting by assuming time-homogeneity, that is, assuming
that the prices and probabilities are the same for the two dotted lines, and so on for
each of the other pairs of lines. Panel C illustrates our Generalized Recovery method,
where we make no assumptions about the probabilities.
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Panel A: t = 2 years
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Panel B: t = 0.5 years

Figure 2: Closed-Form Solution: Approximation Error. The figure shows that
the generalized recovery problem is very close to being linear. We show that the only
non-linearity comes from the discount rate δ due to the powers of time, δt. However,
the function δ → δt is very close to being linear for the relevant range of annual
discount rates, say δ ∈ [0.94, 1], and the relevant time periods that we study. Panel
A plots the discount function and the linear approximation around δ0 = 0.97 given a
horizon of t = 2 years. Panel B plots the same for a horizon of a half year.
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Table 1: Correlation Matrix. This tables shows the pairwise correlations between
the recovered conditional expected excess return, µt, the recovered conditional volatil-
ity, σt, the VIXt index, the lower boundary on the equity premium, SVIXt, due to
Martin (2015), the ex post innovation in the expected return, ∆µt+1, and the ex post
realized excess return, rt+1.

µt σt VIXt SVIXt ∆µt+1 rt+1

µt 1 0.563 0.543 0.512 0 0.118
σt 1 0.971 0.937 0.224 0.032
VIXt 1 0.963 0.249 0.023
SVIXt 1 0.209 0.003
∆µt+1 1 -0.394
rt+1 1
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Panel A: Mehra Prescott (1985)

Panel B: Iid. consumption

Panel C: Non-Markovian

Figure 3: Generalized Recovery: Objective Function in Specific Economic
Models. This figure shows the objective function used for the generalized recovery
method, the squared pricing errors in (B.3). Panel A shows that the objective function
for the Mehra Prescott (1985) model has a unique minimum, making the generalized
recovery feasible. Panel B shows that generalized recovery is not feasible in the
Black-Scholes-Merton model with iid. consumption as the objective has a continuum
of solutions. Panel C shows that generalized recovery is feasible in the non-Markovian
model.
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Panel A: Design Matrix: Illustration.
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Panel B: Design Matrix: Equation.

Figure 4: Design Matrix. This figure illustrates the design matrix B used to span
the inverse pricing kernel as a function of the state, which is the level of the S&P500.
Panel A depicts the columns of the design matrix graphically while Panel B shows the
matrix mathematically. We see that each column is piece-wise linear and increasing,
ensuring that the inverse pricing kernel enherits the same properties. The first column
controls the level, and each of the next columns control the slope of the successive
line segments.
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Panel A: Inverse Pricing Kernel is Piecewise Linear.
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Panel B: Pricing Kernel has Piecewise Constant Curvature.

Figure 5: Pricing Kernel. Panel A shows the estimated inverse pricing kernel on
March 12, 2014. We note that it consists of ten linear pieces governed by the columns
of the design matrix shown in Figure 4 weighted by the estimated parameters θ. Panel
B shows the corresponding pricing kernel, which has piece-wise constant curvature.
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Figure 6: Recovered conditional expected excess return. The figure plots
monthly conditional expected excess market returns, recovered last Wednesday of
each month from 1/1996 to 7/2014.
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Figure 7: Recovered conditional volatility of excess return. The figure plots
monthly conditional market volatility, recovered last Wednesday of each month from
1/1996 to 7/2014.

54



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Figure 8: Frequency histogram. The figure plots the frequency at which the
realized excess return, rt+1, ended up in the estimated time t conditional excess return
distribution bucket. The null hypothesis is that each bar has equal height, but based
on a Berkowitz test we can rejects the hypothesis that the recovered distribution fully
captures the realized excess return distribution.
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Table 2: Does the Recovered Expected Return Predict the Future Return? This table reports results of the
regression of the ex post realized excess return rt+1 on the ex ante recovered expected excess return, µt, the ex post
innovation in expected return, ∆µt+1, the ex ante recovered volatility, σt, and ex ante the VIX volatility index:

rt,t+1 = β0 + β1µt + β2∆µt+1 + β3σt + β4VIXt + εt,t+1

The regression uses monthly data over the full sample 1/1997–6/2014 , t-statistics are reported in parentheses, and
significance is indicated as * for p < 0.1, ** for p < 0.05, and *** for p < 0.01.

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -0.00 0.00 0.00 0.00 -0.00 0.00 0.01 -0.00
(-0.30) (1.33) (0.28) (0.39) (-0.28) (0.70) (0.75) (-0.59)

µt 1.44∗ 1.41∗ 1.87∗∗ 1.89∗∗ 1.18
(1.82) (1.95) (2.03) (2.08) (1.39)

∆µt+1 -5.09∗∗∗ -5.09∗∗∗ -5.18∗∗∗

(-6.64) (-6.67) (-6.60)
σt 0.01 -0.04 0.02

(0.13) (-0.92) (0.52)
VIXt 0.00 -0.04

(0.03) (-1.00)

Adj. R2 (%) 0.95 15.16 -0.40 -0.42 16.14 0.89 0.95 15.88
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Table 3: Does the Recovered Expected Return Predict the Future Return in Sub-Samples? This table
reports the result of the same regressions as in Table 2 over two sub-samples. Panel A reports regression results for
the pre crisis period (1/1996–8/2008) and Panel B reports the results outside the financial crisis (full sample excluding
9/2008–1/2010). The tables report t-statistics in parentheses and significance is indicated as * for p < 0.1, ** for p < 0.05,
and *** for p < 0.01.

Panel A: Pre crisis (1/1996–8/2008)
(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -0.00 0.00 -0.01 -0.01 -0.00 -0.01 -0.01 -0.02∗

(-0.58) (0.13) (-1.12) (-1.05) (-0.52) (-0.86) (-0.84) (-1.84)
µt 1.96∗ 1.51∗ 1.11 1.18 0.47

(1.96) (1.66) (0.97) (1.06) (0.44)
∆µt+1 -4.53∗∗∗ -4.66∗∗∗ -5.00∗∗∗

(-4.46) (-4.82) (-5.10)
σt 0.08 0.05 0.11∗

(1.36) (0.74) (1.77)
VIXt 0.07 0.04

(1.31) (0.71)

Adj. R2 (%) 1.74 10.68 0.54 0.45 12.88 0.74 0.71 14.04

Panel B: Full sample except the financial crisis (1/1997–6/2014 excluding 9/2008–7/2009)
(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -0.00 0.00∗ -0.01 -0.01 -0.00 -0.01 -0.01 -0.02∗

(-0.22) (1.65) (-1.26) (-1.18) (-0.42) (-0.78) (-0.77) (-1.97)
µt 1.94∗∗ 1.90∗∗∗ 1.58∗ 1.60∗ 1.08

(2.47) (2.61) (1.74) (1.79) (1.29)
∆µt+1 -4.83∗∗∗ -4.82∗∗∗ -5.08∗∗∗

(-6.26) (-6.33) (-6.62)
σt 0.09∗ 0.04 0.10∗

(1.82) (0.73) (1.94)
VIXt 0.08∗ 0.04

(1.78) (0.72)

Adj. R2 (%) 2.20 14.30 1.01 0.93 16.43 1.89 1.88 17.44
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Table 4: Does the Recovered Volatility Predict the Future Volatility? This
table reports results of a monthly regression of the ex post realized volatility on the
ex ante recovered return volatility, σt, and the VIX volatility index:√

VAR(rt,t+1) = β0 + β1σt + β2VIXt + εt,t+1

using the full sample 1/1997–6/2014. The realized volatility in computed using close-
to-close daily data over the month by OptionMetrics. The table reports t-statistics
in parentheses and significance is indicated as * for p < 0.1, ** for p < 0.05, and ***
for p < 0.01.

(1) (2)

Intercept -0.03∗∗ -0.02
(-2.27) (-1.63)

σt 1.01∗∗∗

(16.69)
VIXt 0.90∗∗∗

(17.27)

Adj. R2 (%) 53.43 55.14
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