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“The action which follows upon an opinion depends as much upon the amount of confidence in

that opinion as it does upon the favorableness of the opinion itself.”

Frank Knight (1921)

1. INTRODUCTION

The main objective of this paper is to understand how informational ambiguity and, naturally,

ambiguity attitude affect security prices in an otherwise Glosten and Milgrom (1985) (GM)

type sequential trading models. By incorporating ambiguity relevant uncertainty (i.e. uncer-

tainty that can not be explained by probability theory) on the market maker side, we examine

the question “how perceived ambiguity or confidence of the market maker in his probability

assessment affects market microstructure”.

We obtain two main results. First, we derive equilibrium bid/ask prices and spread under an

informationally ambiguous market maker in closed form. It turns out that the bid-ask spread

with an informational ambiguity can be wider or narrower than the standard probabilistic GM

spread, depending on the combination of ambiguity and ambiguity attitude. To be more pre-

cisely, we introduce a concept of “bid-ask spread neutrality” in which the equilibrium spread

under ambiguity is the same as the one in GM model without ambiguity. We provide a neutrality

condition that connects informational ambiguity to ambiguity attitude. Consequently, we show

that the equilibrium ambiguous spread can be decomposed into the standard GM spread and

an “ambiguity premium/discount” component characterizing the ambiguity aversion/seeking of

the market maker. For a sufficiently ambiguity averse market maker, the “ambiguity premium

effect” on the bid-ask spread provides a potential explanation to drying liquidity and price in-

efficiency during the periods of extreme market stress. On the other hand, “ambiguity discount

effect” prevails when the market maker is not sufficiently ambiguity averse. Second, we extend

our analysis to different order sizes and examine the joint impact of order size and ambiguity.1

1 We mainly focus on the static aspects with two trade sizes as Easley and O’Hara (1987). Ozsoylev and Takayama
(2010) extend their framework to n trade sizes in a multi-period setting. We believe our primary results would
remain true with n trade size in a dynamic set-up. There is also an argument of irrelevance of trade sizes in today’s
financial markets since the large orders are “sliced up” into small orders. To this end, Seppi (1990) theoretically
shows that even when a block can be “sliced up” into a sequence of small trades, blocks may still be traded as part
of both informed and uninformed investors’ optimal trading strategies. Using transactions data for a sample of
NYSE firms, Barclay and Warner (1993) show that most of the cumulative stock-price change is due to medium-
size traders and Chakravarty (2001), Anand and Chakravarty (2007) find that the source of this disproportionately
large cumulative price impact of medium-size trades is institutional trades. Alexander and Peterson (2007) further
find evidence of trade-size clustering on multiples of 500, 1,000, and 5,000 shares in NYSE and Nasdaq consistent
with the stealth trading.
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We obtain necessary and sufficient conditions for the existence of pooling and separating equi-

libria. It turns out that for a sufficiently ambiguity averse market maker, Easley and O’Hara

(1987) bounds (the large buy (sell) to small buy (sell) order ratio) for the existence of pooling

and separating equilibria are pulled down with informational ambiguity if the large orders are

more likely. In extreme informational ambiguity, the market maker always considers the market

as a separating equilibrium.

This paper makes economic and methodological advances over previous research on sequen-

tial trading models. Specifically, we propose a GM type model such that a decision maker does

not depend on a purely probabilistic information. We make three additions to the original model

(one economic and two methodological in nature). First, we use non-additive probabilities to

capture the perceived ambiguity of the market maker. Second, instead of Bayesian updating

(BU) we use generalized Bayesian updating (GBU) which is an appropriate updating rule for

non-additive probabilities. Third, we use the Choquet expectation w.r.t. (with respect to) a non-

additive probability instead of the classic Lebesgue expectation w.r.t. a probability measure.

There are several motivations of this extension.

First, the standard market microstructure theory models are designed for well-defined gam-

bles where a single probability distribution captures the total uncertainty of the decision maker.

This is sharply in contrast with real life decision situation where ambiguity (i.e. unmeasurable

uncertainty) plays an important role. We know from a growing body of research in decision

theories that ambiguity matters for the decision-making purposes.2 An ambiguity-sensitive de-

cision maker does not act as if there is a single probability distribution of states of nature; in-

stead, the decision maker’s confidence in the probability assessment is relevant for the decision-

making. In the case of uncertainty, one rule in the realm of probability theory is that if the

sample space is partitioned into k symmetric events, then the probability of each event is 1/k.

Consider Schmeidler (1989) coin example; if each of the symmetric and complementary uncer-

tain events is assigned an index of 3/7, the number 1/7 (1 - (3/7 + 3 /7)) would then indicate

2 The idea of unmeasurable uncertainty dates back to Knight (1921) and Keynes (1921), where they distinguish
between risk (when relative odds of the events are known) and uncertainty (when the degree of knowledge only
allows us to work with estimates). Ellsberg (1961) provides experimental evidence to the tentative ideas of Knight
and Keynes. The behavior of uncertainty-aversion documented by Ellsberg (1961) has been first axiomatized in
the decision making context by Choquet expected utility of Schmeidler (1989) and Maxmin expected utility of
Gilboa and Schmeidler (1989). Since then, different approaches such as unanimity preferences of Bewley (2002),
smooth preferences of Klibanoff, Marinacci and Mukerji (2005), variational preferences of Maccheroni, Marinacci
and Rustichini (2006) have been taken to model ambiguity. We refer to Gilboa and Marinacci (2016) and Epstein
and Schneider (2008) for extensive surveys of the literature.
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the decision maker’s loss of confidence in the probability assessment. This simple example

shows the account of uncertainty that is captured by non-additive probabilities (i.e. Choquet

capacities) cannot be represented by additive probabilities.

Second, modeling ambiguity in this context pushes the market microstructure theory beyond

the Bayesian paradigm and arguably, explores the intersection between market microstructure

theory and behavioral finance. Perhaps, the most relevant cognitive and behavioral bias used

in behavioral finance for our purposes is probability matching.3 Consider a repeated coin toss

guessing game in which the coin is biased 60% head and 40% tail: if you are correct, you win $1

and otherwise lose $1. A typical Bayesian (homo economicus) would argue to bet on the head all

the time. However, humans tend to randomize between heads and tails where the randomization

matches the probability of the biased coin. Pushing the boundaries of market microstructure

theory beyond the Bayesian paradigm allows us to adapt the market microstructure literature to

the phenomena like probability matching.

Our third motivation takes its roots from the empirical facts about the behavior of financial

markets during financial turmoils. Financial crisis is often associated with a decrease in liquid-

ity and extreme market inefficiency. It is adequate to provide an excerpt from Scholes (2000)

to delineate our third motivation: “In periods of extreme market stress...many statistically un-

correlated activities using historical data exhibited high degrees of association. For example,

in 1998 the spreads over treasuries widened on U.S. AAA bonds, AAA commercial mortgage

pools, credit instruments, country risks, and swap contracts. On 21 August 1998, one week

after Russia defaulted on its debt, swap spreads shot up from 60 basis points to 80 basis points

in one day.”

Lastly, the “invariance principle” of Kyle and Obizhaeva (2016) suggests the trade size is an

endogenous factor that depends on price volatility. Gradojevic, Erdemlioglu and Gençay (2017)

find that large orders in an electronic spot foreign exchange market are likely to be placed by

informed traders during increased price volatility episodes, the finding which is consistent with

the “invariance principle”. However, little is known about any specific quantitative association

3 One of the earliest papers to document this phenomenon is Grant, Hake and Hornseth (1951). Recent literature in
experimental psychology suggests that the probability matching is not a strategy per se, but rather another outcome
of people’s misperception of randomness. The literature also suggests that there might be a smart potential behind
probability matching by documenting that probability matchers actually have a higher chance of finding a pattern
if one exists. In this paper we refrain from addressing normative vs. descriptive discussion. See Aliyev and He
(2016) for the discussion.
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between the size of individual trades and uncertainty in the financial system. An extension to

different trade sizes is motivated by the lack of theoretical analysis on the response of trade size

to an additional uncertainty in financial markets.

There is a respectable body of the literature dealing with axiomatic foundations of the non-

Bayesian decision theory and behavioral finance. However, our aim in this paper is to exam-

ine their relevance in the context of market microstructure. In that regard, this paper mainly

contributes to the literature that studies the implications of informational ambiguity on mar-

ket microstructure. Closest to us are Routledge and Zin (2009), Ozsoylev and Werner (2011)

and Xia and Zhou (2014) that study ambiguity-averse market makers and liquidity. There are

some differences in the settings as well as the implications. By assuming a monopolist market

maker with an uncertainty-averse utility function, Routledge and Zin (2009) follow Epstein and

Wang (1994) to capture model uncertainty. They show that non-competitive market making

and relatively large discrete trades, rather than ambiguity and ambiguity aversion, are neces-

sary to generate illiquidity that are significantly different from the standard Savage expected

utility models. Ozsoylev and Werner (2011) extend the framework of Vives (1995a, 1995b)

to the case of ambiguous information. However, they rely on the non-participation of market

makers. Xia and Zhou (2014) adopt the smooth ambiguity model of Klibanoff et al. (2005),

U = E[φ(E[u(w)])], with exponential-power specification (u, φ) for tractability. All of these

papers focus on ambiguity-averse market maker through utility specification. The use of neo-

additive capacity in this paper allows us to look at ambiguity-attitude without utility specifi-

cation. Besides the simplicity and generality of our approach, some of the results obtained in

this setting are different from the one found through utility specification. For example, Xia and

Zhou (2014) find a negative relation between ambiguity aversion and the bid-ask spread while

we show that it can be opposite for a given level of informational ambiguity. There are some re-

lated papers on theoretical microstructure literature that study ambiguity of traders and its effect

on market microstructure as oppose to the informational ambiguity of the market maker. Ford et

al. (2013) consider a similar and simplified sequential trading model in which informed traders

have informational ambiguity and show that ambiguity and attitudes to it can lead to herd and

contrarian behavior causing the market to break down. When the extreme uncertainty of traders

can be characterized by incomplete preferences over portfolios, Easley and O’Hara (2010a) use

Bewley’s decision making under uncertainty to explain market illiquidity and freeze during the
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GFC. Easley and O’Hara (2010b) focus on market design to reduce ambiguity and hence in-

crease market participation. With two types of traders in their model, sophisticated traders with

rational expectations and unsophisticated traders with informational ambiguity, they show that

how specific design of the market can benefit investors.

In this paper, we focus on the effects of informational ambiguity and ambiguity attitude of the

market maker on security prices. To this end, we simplify the traders’ side to easily convey the

main message. Since we use the quote driven framework of Glosten and Milgrom (1985) and

Easley and O’Hara (1987), our theoretical findings can be tested in NASDAQ Stock Market,

London Stock Exchnage’s SEAQ (Stock Exchange Automated Quotation system) and CBOE.

The paper proceeds as follows. In the next section, we provide a preliminary introduction

on non-additive probabilities, GBU under ambiguity and Choquet expectation. We then present

the model and the equilibrium concept. In section 4, we first present our equilibrium results on

a simple illustrative example, then generalize and provide economic explanations. In section 5,

we extend our analysis to different order sizes. In section 6, we briefly discuss the implications

and conclude. Proofs are collected in the Appendix.

2. PRELIMINARIES

We assume that the uncertainty of the decision maker can be described by a non-empty set

of finite states, denoted by S. A non-additive probability is a real-valued set function defined

on the set of events E of the sample space S that is normalized (v(∅) = 0, v(S) = 1) and

monotonic (for all A, B in E , A ⊆ B ⇒ v(A) ≤ v(B)). In our analysis, we specifically use

neo-additive capacities of Chateauneuf, Eichberger and Grant (2007) to capture the ambiguity

of the environment and ambiguity attitude of the market maker. Given an additive probability

π on E , a neo-additive capacity is defined to be v(A) = (1− δ) · π(A) + δ · α for ∅ ( A ( S

and (α, δ) ∈ [0, 1]. The parameter δ is a measure of ambiguity and the parameter α measures

the individuals attitude to it. With this formulation, δ = 1 corresponds to fully ambiguous

information and α = 0 to fully ambiguity-averse attitude. The GBU rule of updating neo-

additive capacities is defined to be4

4 The term GBU rule is due to Walley (1991). The rule is also called the Dempster-Fagin-Halpern rule (Dempster
(1967), Fagin and Halpern (1991)). Eichberger, Grant and Kelsey (2007) use the decision theoretic framework of
Pires (2002) to axiomatize GBU rule. Horie (2013) provides a relaxation on one of their axioms. Eichberger, Grant
and Kelsey (2010) apply different updating rules to neo-additive capacities and find that GBU updated neo-additive
capacity stays the same capacity with the same ambiguity attitude.
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v(A|B) =
v(A ∩B)

v(A ∩B) + 1− v(A ∪Bc)
. (1)

It is straightforward to check that Eq. (1) reduces to the original BU when v is additive. Ad-

ditivity implies 1 − v(A ∪ Bc) = v(Ac ∩ B), and applying additivity again yields v(A ∩

B) + v(Ac ∩ B) = v(B), and hence BU. The last addition to our model is Choquet expec-

tation w.r.t. a non-additive probability instead of the classic Lebesgue expectation w.r.t. a

probability measure. Without loss of generality, we rank a non-negative function f on S as

f(s1) ≥ f(s2) ≥ ... ≥ f(sn) and f(sn+1) = 0. From Choquet (1953), the Choquet expectation

(i.e. integral) of the non-negative function f on S w.r.t. a non-additive probability v is given by

Ev[f ] :=

∫
S
f · dv =

n∑
k=1

(
f(sk)− f(sk+1)

)
· v
(
{s1, s2, ..., sk}

)
. (2)

To provide an intuition, we consider the following example.

Example 2.1. Consider an asset (a) that pays either $2 in low state (l) or $5 in high state (h)

with non-additive probabilities of vl = 0.2 and vh = 0.4 respectively. The (Choquet) expected

payoff of buying a unit of this asset is given by Ev[ab] = 0.6 · 2 + 0.4 · 5 = 3.2. The (Choquet)

expected payoff of selling a unit of this asset is given byEv[as] = 0.2 ·(−2)+0.8 ·(−5) = −4.4.

3. THE MODEL OF AMBIGUOUS MARKET MAKING

We consider a simplification of the sequential trade GM model presented in O’Hara (1995)

under informational ambiguity. There are three classes of risk-neutral market participants: in-

formed (I) traders, uninformed (U) traders, and a competitive and ambiguity-sensitive market

maker (M). There is one security with a value V that is either low (Vl) with probability of πl or

high (Vh) with probability of πh = 1− πl. For brevity, we omit the time subscripts throughout

the paper. Informed traders know the value of outcome and the proportion of informed traders’

population is µ. The neo-additive capacities (i.e. beliefs) of the low and high outcomes for the

market maker are vl = (1−δ)·πl+δ ·α and vh = (1−δ)·(1−πl)+δ ·α respectively. The amount

of probability “lost” by the presence of ambiguity is 1 − vl − vh = δ · (1 − 2α), representing

the perceived ambiguity or the confidence in probability assessment. It essentially measures the

deviation of the measure v = {vl, vh} from the additivity of probability measure π = {πl, πh}.

One can also think of the capacity v as a “squeeze” of the original probability measure π when
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α = 0. By characterizing the uncertainty of the market maker with neo-additive capacities, we

adopt Choquet Expected Utility framework of Schmeidler (1989). The value of the security is

determined by a random draw of nature at the opening of the market and revealed after the mar-

ket closes without being affected by trade. The market maker posts bid (Bα,δ) and ask (Aα,δ)

prices that equal to the expected value of the asset, conditional on the type of the order. Then a

trader is drawn at random from the population. If the trader is informed, she buys (b) if V = Vh

and sells (s) if V = Vl with certainty. If the trader is uninformed, he buys and sells with equal

probabilities. The event tree for the trading decision is given in Fig. 1.

FIGURE 1. The event tree for the basic sequential trade model with ambiguity

In the figure, I and U denote the arrivals of informed and uninformed traders. A buy is a

purchase of one unit at the ask price Aα,δ and a sell is a sale of one unit at the bid price Bα,δ.

The values we attach to the first arrow are the Choquet belief (v) of the indicated transition as

opposed to the probability (π). Then for the market maker, the unconditional beliefs of buy and

sell orders are vb = (1− δ) · πb + δ · α and vs = (1− δ) · πs + δ · α respectively. The structure

of the economy is a common knowledge.

Consider a competitive market maker with zero expected profit (due to Bertrand competition)

who does not know whom he is trading with. He, therefore, sets ask price as Ev[V |b] and bid

price as Ev[V |s] by revising his beliefs v(·|·) with GBU. Given the submitted buy (sell) order,

he revises his beliefs of Vl accordingly.

Lemma 3.1. [Eichberger et al. (2010)] Fix a conditioning event a ∈ S = {b, s} and uncondi-

tional neo-additive capacity, vl characterized by < πl, δ, α >. Assume πa > 0. Then the GBU

updated capacity val is also a neo-additive capacity characterized by < πal ,∆a, α >, where

∆a = δ/
(
(1− δ) · πa + δ

)
and πal is a Bayesian update of πl conditional on a.
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Lemma 3.1 tells us that the market maker’s updated belief of Vl conditional on the order type,

a ∈ {b, s}, is given as val =
(
1−∆a

)
·πal +∆a ·α. Similar results hold for the revised beliefs of

Vh. The updated ambiguity measure ∆a is an increasing function of original ambiguity measure

δ. Note that the revised beliefs reduce to original posterior probabilities updated by BU when

δ = 0. Also note that ∂val
∂δ
≤ 0 for α ≤ πal , implying the revision in beliefs is stronger when

the market maker is becoming less confident about his probability assessment. Unless val = 1,

the market maker will tilt his belief revisions downward or upward depending on his ambiguity

attitude. The tilt will be downward (upward) when the market maker is more (less) ambiguity

averse. This type of tilting the updated measure is characterized as a behavioral bias in behav-

ioral finance literature. There is still no consensus on the normativeness or descriptiveness of

the Ellsberg type behavior. Next we define the equilibrium for our economy.

Definition 3.2. An equilibrium consists of the the marker maker’s prices, informed traders’

trading strategies, and posterior beliefs such that:

(C1) the bid and ask prices satisfy the zero-profit condition, given the market maker’s poste-

rior beliefs;

(C2) Informed traders’ optimal trading strategies correspond to the buy order when they have

a high signal and sell order when they have a low signal.

(C3) The market maker’s belief satisfies GBU.

4. AMBIGUITY, AMBIGUITY AVERSION, AND BID-ASK SPREAD

Our analysis makes economic and methodological advances over previous research on se-

quential trade models. We take the intrinsic ambiguity of the real world information into ac-

count on the market maker side. This allows us to see the impact of ambiguity and ambiguity

attitude of the market maker on security prices.

In this framework, the market maker with informational ambiguity must decide what to do

when asked for a quote. At the beginning of the trading, the market maker must determine his

initial prices of the traded asset. In equilibrium, these quotes must yield the market maker zero

expected profit on each trade. However, the expectation is not solely probabilistic since the

market maker has informational ambiguity. We focus on the case of 0 ≤ α ≤ 1/2, in which

α = 0 correspond to fully ambiguity-aversion. This essentially means the missing probability

measure δ · (1 − 2α) ≥ 0 and v(Vl) + v(Vh) ≤ 1. Inventory cost is not considered. The
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ambiguity-sensitive market maker with 0 ≤ α ≤ 1/2 and zero profit, sets the bid/ask prices and

spread, respectively, as

Bα,δ = Ev[V |s] =
[
vsl + ∆s · (1− 2 · α)

]
· Vl + vsh · Vh

=Vl + vsh · (Vh − Vl),
(3)

Aα,δ = Ev[V |b] =vbl · Vl +
[
vbh + ∆b · (1− 2 · α)

]
· Vh

=Vh − vbl · (Vh − Vl),
(4)

Sα,δ = (1− vbl − vsh) · (Vh − Vl). (5)

Eqs. (3) and (4) directly follow from the definition of Choquet expectation. The intuition is

provided by example 2.1. Since Vh > Vl for buying and (−Vl) > (−Vh) for selling purposes,

the minimum probability when evaluating an expectation is the probability in the core of (v) that

puts the most possible weight on Vl and (−Vh) respectively. Therefore, the missing probability

measures ∆s · (1− 2α) and ∆b · (1− 2α) are added to vsl and vbh in the calculation of Bα,δ and

Aα,δ respectively. The original probabilistic bid/ask prices and spread are given, respectively,

as

B = Vl + πsh · (Vh − Vl) = Vh − πsl · (Vh − Vl), (6)

A = Vh − πbl · (Vh − Vl) = Vl + πbh · (Vh − Vl), (7)

S = (1− πbl − πsh) · (Vh − Vl) = (πbh + πsl − 1) · (Vh − Vl). (8)

4.1. An illustrative example. Before we look at the general comparison of ambiguous and

probabilistic bid-ask spreads, it may be a source of insight to study our economy in a simple

example in which we set πl = 1/2 and Vh − Vl = 1. It is well-known that the bid-ask spread of

GM model corresponds to µ in this scenario. In the classic framework, the spread stems from

the probability of informed trading due to adverse selection costs. In our framework, the spread

is characterized by 1−vbl −vsh. Substituting the values of vbl and vsl yields the ambiguous bid-ask

spread as (1 − ∆) · µ + ∆ · (1 − 2 · α), where ∆ = ∆b = ∆s = 2δ
1+δ

. This formulation has

an intuitive explanation. Let φ ∈ [0, 1] be a normalized ambiguity aversion characterized by

φ = (1 − 2 · α) where 0 and 1 characterize no ambiguity aversion and full ambiguity aversion

respectively. Then the ambiguous bid-ask spread is characterized by the “effective” probability

of informed trading

Sα,δ = µα,δ = µ+ ∆ · (φ− µ). (9)
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When the market maker has no informational ambiguity the “effective” probability of in-

formed trading, µα,δ, is the same as the probability of informed trading, µ (i.e. the ambiguous

bid-ask spread is the same as its classical counterpart). The ambiguous bid-ask spread is fully

characterized by the normalized degree of ambiguity aversion of the market maker when he has

full informational ambiguity. When the degree of ambiguity aversion, φ, exceeds the informa-

tion share of the market, µ, then µα,δ > µ holds, and hence a widened bid-ask spread. However,

when the degree of ambiguity aversion is less than the information share of the market, the

market maker sets the spread lower than the probabilistic spread. We provide the extreme cases

of informed trading in Fig. 2 to see how the “effective” probability of informed trading evolves

over time w.r.t. to the changes in informational ambiguity, δ, and the normalized degree of

ambiguity aversion, φ.

(A) µ = 0 (B) µ = 1

FIGURE 2. Ambiguous and probabilistic bid-ask spreads

Fig. 2 (A) shows the ambiguous and probabilistic bid-ask spreads when the market maker

believes that there is no informed trading in the market (i.e. S = 0), while Fig. 2 (B) shows

the case of full informed trading (i.e. S = 1). We observe that the ambiguous bid-ask spread

changes due to the changes in informational ambiguity and ambiguity aversion of the market

maker, while probabilistic spread stays constant. Particularly, in Fig. 2 (A) as the informational

ambiguity increases for the small degree of ambiguity aversion, φ > 0, the market maker’s

“effective” probability of informed trading increases with his informational ambiguity. Only

in extreme informational ambiguity, δ = 1, irrespective of the probability of informed trading,

the “effective” probability is solely determined by his degree of ambiguity aversion φ. He,

therefore, sets the maximum spread when he is fully ambiguity averse, φ = 1, under full in-

formational ambiguity. In Fig 2 (B) the “effective” probability of informed trading, µα,δ, only

matches to the probability of informed trading, µ, when the market maker is fully ambiguity
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averse, φ = 1, or there is no informational ambiguity, δ = 0, since the probability of informed

trading takes its maximum value. Fig. 2 (A) and (B) also elucidate the fact that for a given level

of informational ambiguity, the degree of ambiguity aversion required for the market maker to

have equal ambiguous and probabilistic bid-ask spreads is dependent on the market parameters.

Next we turn to the general case. Intuition of the simple illustrative example is also applicable

to the general case. In this market, only one form of equilibria can occur where the bid/ask prices

and the spread are given as Eqs. (3), (4) and (5). Equilibrium bid/ask prices and the spread of

the ambiguity-sensitive market maker is summarized in the following proposition.

Proposition 4.1. [Equilibrium Prices] Suppose equilibrium bid and ask prices exist satisfying

the zero expected profit conditions in both ambiguous and unambiguous cases;

Bα,δ = Ev[V |s], Aα,δ = Ev[V |b],

B = Eπ[V |s], A = Eπ[V |b].

Then the competitive and ambiguity-sensitive market maker sets bid and ask prices as a convex

combination of original probabilistic bid and ask prices, and a Hurwicz criterion,

Bα,δ = [1−∆s] ·B + ∆s · [α · Vh + (1− α) · Vl
]
, (10)

Aα,δ = [1−∆b] · A+ ∆b · [(1− α) · Vh + α · Vl], (11)

and the bid-ask spread takes the form of

Sα,δ = S +

[
∆b ·

(
πbl − α

)
−∆s ·

(
α− πsh

)]
·
(
Vh − Vl

)
, (12)

where S denotes the original probabilistic bid-ask spread.

We stress the importance of Proposition 4.1 by rewriting Eqs. (10) and (11) in different forms

and comparing to the original Glosten and Milgrom (1985);

Bα,δ = B + ∆s · [(α− πsh) · (Vh − Vl)
]
, (13)

Aα,δ = A+ ∆b · [(πbl − α) · (Vh − Vl)] (14)

In the classic case, it is necessarily the case that expectations of V are revised upward in

response to specialist sales, and revised downward in response to specialist purchases. In the

case of ambiguous market making, there is an “ambiguity premium effect” on this revisions
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when α ≤ min{πsh, πbl }. This is so because the ask and bid prices are the revised Choquet

expectations. The revision is linear with updated ambiguity of the environment and ambiguity

attitude of the market maker. This is why, for the fully ambiguity-averse market maker case,

when the conditional probabilities are non-zero, the bid price is lower than original probabilistic

bid price, and the ask price is higher than original probabilistic ask price, and hence a widened

bid-ask spread.

Fig. 3 illustrates the equilibrium bid-ask spread with informational ambiguity given in Propo-

sition 4.1 and its probabilistic counterpart for the given values of Vl, Vh, πl and µ. For com-

parison, we cut through the bid-ask spread with informational ambiguity by the probabilistic

bid-ask spread and obtain two distinct areas of the ambiguous bid-ask spread.

FIGURE 3. Ambiguous and probabilistic bid-ask spreads for Vl = 0, Vh =
1, πl = 0.35 and µ = 0.55.

In the figure, the highest and lowest spreads correspond to fully ambiguity-averse (α = 0)

and no ambiguity-averse (α = 1/2) cases when the market maker is in the environment of full

informational ambiguity. There is also a combination of ambiguity (δ) and ambiguity attitude

(α) that generates a bid-ask spread that is equal to the original probabilistic bid-ask spread of

the GM model. Let us formalize this observation.

Definition 4.2. A “bid-ask spread neutrality curve” is a combination of informational ambigu-

ity, δ∗, and ambiguity attitude, α∗, that makes an equilibrium ambiguous bid-ask spread, Sα,δ,

the same as the standard probabilistic bid-ask spread, S.

The curve separates the ambiguous bid-ask spread into “ambiguity premium” and “ambiguity

discount” areas. An “ambiguity premium” area adds premium over the original probabilistic

bid-ask spread, while an “ambiguity discount” area reduces the probabilistic bid-ask spread due

to the optimistic behavior of the market maker. The combination of α∗ and δ∗ that generates a
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“bid-ask spread neutrality curve” is given in the following lemma. This curve essentially sets

an upper (lower) bound for α that yields an “ambiguity premium” (“ambiguity discount”) over

the probabilistic spread.5

Lemma 4.3. In equilibrium, there is an ambiguity attitude, α∗, dependent on the market pa-

rameters which equalizes the ambiguous and probabilistic bid-ask spreads and divides the am-

biguous spread into ambiguity premium, α < α∗ and ambiguity discount, α > α∗, areas.

α∗ = w · πbl + (1− w) · πsh, (15)

where w = (πs + δ∗ · πb)/(1 + δ∗).

Lemma 4.3 is similar in nature with the illustrative example. Recall that in the illustrative

example a “bid-ask spread neutrality curve” is obtained when the normalized ambiguity aver-

sion equals the information share in the market (i.e. φ = µ), since it makes the “effective”

probability of informed trading, µα,δ, the same as the probability of informed trading, µ. The

intuition goes similarly: Suppose the probabilistic and ambiguous bid-ask spreads in Eq. (12)

are given as Sα,δ = β · µα,δ · (Vh − Vl) and S = β · µ · (Vh − Vl) respectively for a given

market parameter β. The condition (15) is necessary and sufficient condition that equalizes the

“effective” probability of informed trading, µα,δ, and the information share of the market, µ.

Under full informational ambiguity, the condition is the half of the sum of probabilities of low

outcome conditional on a buy order and high outcome conditional on a sell order. Otherwise,

the condition corresponds to the weighted average of the same sum. When there is no infor-

mational ambiguity, the weights are simply probabilities of sell and buy orders respectively.

There is also an inverse relation between α∗ and δ∗. For the bid-ask spread under informational

ambiguity to be greater than the probabilistic bid-ask spread, the market maker must be more

5 One should note that our definition of neutrality only equalizes the ambiguous and probabilistic bid-ask spreads,
not the bid/ask prices. In that sense, we can differentiate between the “strict form neutrality” where the ambiguous
bid/ask prices (naturally the spread) are equalized to the probabilistic bid/ask prices and the “weak form neutrality”
where only the bid-ask spreads are equalized. The strict form bid-ask spread neutrality for the ambiguity averse
market maker is only attained when α = πs

h = πb
l = (1− µ)/2. This is only the case when πl = 1/2. In general,

we refer to a bid-ask spread neutrality in the weak sense. The market maker can be a “weak form neutral” by
increasing or decreasing the bid/ask midpoint. It turns out that the necessary and sufficient condition to be a “weak
form of bid-ask spread neutral” by increasing (decreasing) the midpoint is πl > 1/2 (πl < 1/2). That means, if
the ambiguity-averse market maker wants to maintain the ambiguous bid-ask spread the same as the probabilistic
bid-ask spread, for not to expose himself to adverse selection, he increases (decreases) the bid-ask midpoint when
the fundamentals suggest otherwise.
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ambiguity averse as the informational ambiguity increases. As discussed, when πl = 1/2 the

condition corresponds to α∗ = (1− µ)/2.

Next we elaborate on the most important special cases of our model.

Case 1 [δ = 0]: It is clear from the illustrative example that when πl = 1/2 the ambiguous

bid-ask spread without informational ambiguity collapses to its original probabilistic counter-

part. This result holds for the other values of πl when the market maker has full confidence (i.e.

no perceived ambiguity) in his probability assessment (and naturally no attitude to it). In this

case, the marker maker assigns additive probability of πl and 1 − πl to Vl and Vh respectively.

Then A ≥ B directly follows from Glosten and Milgrom (1985) and Eq. (10), (11), and (12)

collapse to their probabilistic counterparts, respectively, as

B =
[(1 + µ) · πl] · Vl + [(1− µ) · (1− πl)] · Vh

1− (1− 2 · πl) · µ
, (16)

A =
[(1− µ) · πl] · Vl + [(1 + µ) · (1− πl)] · Vh

1 + (1− 2 · πl) · µ
, (17)

S =
4 · (1− πl) · πl · µ · (Vh − Vl)

1− (1− 2 · πl)2 · µ2
. (18)

In the symmetric case, πl = πh = 1/2, A−B = µ · (Vh− Vl). The spread is determined by the

difference between Vh and Vl weighted by the proportion of the informed traders in the market.

Case 2 [α = 0]: Suppose the market maker is fully ambiguity-averse in the presence of

informational ambiguity. It follows from Eqs. (13) and (14) that Vl ≤ Bα,δ ≤ B and A ≤

Aα,δ ≤ Vh. The value of Bα,δ (Aα,δ) fluctuates between B and Vl (A and Vh) depending on

the ambiguity parameter δ. An additional informational ambiguity adds an additional premium

over the bid-ask spread by reducing the bid and increasing the ask prices.

Case 3 [δ = 1]: Suppose the ambiguity-sensitive market maker has full informational am-

biguity. Then his bid and ask prices correspond to Bα,δ = αVh + (1 − α)Vl and Aα,δ =

(1 − α)Vh + αVl. The market maker makes decisions fully based on his optimism and pes-

simism irrespective of the proportion of informed traders in the market.

Case 4 [δ = 1 and α = 0]: This case illustrates a fully ambiguity averse market maker with

full informational ambiguity. In this case, the market maker has no belief in his probability as-

sessment (no evidence in the sense of Dempster-Shafer theory6), v(Vl) = v(Vh) = 0. Therefore,

the bid and ask prices correspond to Vl and Vh respectively and the spread takes its maximum

6 See Dempster (1967) and Shafer (1976).



16

value. Case 4 essentially suggests some intuition about the widening spread, drying liquidity

and price inefficiency when there is a major ambiguous shock to the economy with the very

ambiguity averse market maker.

Case 5 [α = 1/2]: Suppose the market maker has no ambiguity aversion with α = 1/2. Then

he acts as if he has a probability measure since the missing probability measure, δ · (1−2 ·α), is

zero. Depending on the value of conditional probabilities, the market maker can either increase

or decrease the bid-ask spread. For example, when πsh ≤ 1/2 and πbl ≤ 1/2, it follows that

vsh ≥ πsh and vbl ≥ πbl . Hence, Bα,δ ≥ B and Aα,δ ≤ A. The opposite is also true. By Lemma

4.3, one can obtain the lower bound for the informational ambiguity for the bid-ask spread

under informational ambiguity to be greater than the bid-ask spread under the probabilistic

information and the bound takes the form of

δ∗ =
1/2− (πbl · πs + πsh · πb)
(πbl · πb + πsh · πs)− 1/2

. (19)

Case 6 [δ = 1 and α = 1/2]: This case always yields conditional beliefs of vsh = 1/2 and

vbl = 1/2. Therefore, the bid and ask prices of the market maker converge to (Vl + Vh)/2 as if

πsh = 1/2 and πbl = 1/2 with principle of insufficient reason and the spread converges to zero.

Proposition 4.1 and Lemma 3.1 give rise to several important corollaries.

Corollary 4.4. For any non-zero level of informational ambiguity,

(i) higher ambiguity-aversion of the market maker always leads to higher bid-ask spread and

(ii) the bid-ask spread of sufficiently ambiguity-averse market maker is always higher than

original probabilistic bid-ask spread.

Corollary 4.4 (i) is intuitive. As the market maker becomes more pessimistic about the uncer-

tainty that he can not quantify by probability theory, he charges an extra spread. This is related

to our second motivation in the sense that the market maker tries to look for patterns in the

value of the security. But when he can not distinguish the pattern (or at least pessimistic about

distinguishing the pattern), he sets an extra spread. The opposite is true for the optimistic case.

Corollary 4.4 (ii) is a natural extension of (i). Since, higher ambiguity aversion monotonically

increases the bid-ask spread, a sufficiently ambiguity averse market maker (i.e. α < α∗) sets

the ambiguous bid-ask spread higher than the original probabilistic bid-ask spread.
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Corollary 4.5. For a sufficiently ambiguity-averse market maker,

(i) incremental informational ambiguity adds “ambiguity premium” to the bid-ask spread, and

(ii) the magnitude of “ambiguity premium” is decreasing by the incremental informational am-

biguity.

Corollary 4.5 (i) is directly related to our third motivation. Historical flight-to-liquidity

episodes such as shorting ban, transaction taxes or in extreme, market crashes are often as-

sociated with substantial liquidity drop. Corollary 4.5 (i) explains a possible channel of the

drop in market liquidity measured by the bid-ask spread. In extreme informational ambiguity,

a fully ambiguity averse market maker sets the maximum spread between two possible values

of Vl and Vh. Since there is no room for exploiting private information, in that case, informed

traders stop trading and the trading volume collapses. This is indeed what has happened during

the recent financial crisis. Although the market makers continued to post bid and ask prices

on mortgage-backed securities and collateralized debt obligations, the trading volume of these

securities decreased substantially (Easley and O’Hara (2010a)). Corollary 4.5 (ii) shows the

concavity of ambiguity premium w.r.t. the informational ambiguity.

5. DIFFERENT ORDER SIZES

In this section we examine the question “how informational ambiguity and ambiguity atti-

tude affect security prices with different order sizes”. Easley and O’Hara (1987) argue that the

size of the trade affects the prices by revealing the type of the market participants to the mar-

ket maker.7 Their model results in two different type of equilibria: A separating equilibrium

prevails, if informed traders trade only large quantities and separate themselves from small un-

informed traders. A pooling equilibrium prevails, if informed traders trade either small or large

quantities. We adopt the same methodology and analyze the separating and pooling equilibria

under the case of an informationally ambiguous market maker. We keep the assumptions of

our ambiguous market making model in section 4. However, order can be two different sizes

with 0 < b1 < b2 and 0 < s1 < s2. We add an ambiguity to the probability assessment of the

market maker in the same way we added in section 4. The market maker has to set prices tak-

ing into account that informed traders can trade different quantities depending on their private

information. Informed’s trading strategy is also dependent on the market maker’s pricing rule.

7 The same argument follows in Ozsoylev and Takayama (2010).
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5.1. The Separating Equilibrium. In this market the market maker must calculate the condi-

tional values of vl and vh given the type and size of the trade. He updates his beliefs by GBU.

The market maker’s probabilistic expectations of informed and uninformed traders in the mar-

ket stay as µ and 1− µ. That means information event occurs with the probability of µ. We let

γ denote the market maker’s expectation of the fraction of informed traders who submit large

orders. In the separating equilibrium, the orders submitted by the informed can only be large

orders. Precisely, γ proportion of informed submit b2 if they have a high signal and s2 if they

have a low signal, and 1− γ proportion do not trade. The market maker expects uninformed to

submit b2, s2 with equal probabilities of θ/2 and b1, s1 with equal probabilities of (1 − θ)/2.

The event tree for the first trade in the separating equilibrium case is given in Fig. 4

FIGURE 4. A separating event tree with ambiguity and different order sizes

The intuition of Easley and O’Hara (1987) loosely applies in our setting as well, though

addition of an informational ambiguity shows that the analysis is not straightforward as it seems.

Without informational ambiguity, the market maker does not update his probabilistic belief

when there is small buy or sell orders in the separating equilibrium case (πb1l = πs1l = πl).

That means if the market is characterized by a separating equilibrium, small trades can not

be information based. However, with an informational ambiguity the market maker’s beliefs

conditional on the small trades are

vb1l = (1−∆b1) · πl + ∆b1 · α = πl −∆b1 · (πl − α), (20)

vs1l = (1−∆s1) · πl + ∆s1 · α = πl −∆s1 · (πl − α) (21)
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where ∆b1 and ∆s1 follow from Lemma 3.1. Eqs. (20) and (21) elucidate that although the

probability is not updated with small trades, the informational ambiguity of the market maker

is updated with small trades. So, in our setting small trades are only information based to the

extent that they affect informational ambiguity. However, this is not the case for large trades.

For large trades the conditional probabalities as well as informational ambiguity are updated as

vb2l =

(
(1− µ)θ

2µγ(1− πl) + (1− µ)θ

)
· πl −∆b2 ·

[
(1− µ)θ

2µγ(1− πl) + (1− µ)θ
· πl − α

]
, (22)

and

vs2l =

(
2µγ + (1− µ)θ

2πlµγ + (1− µ)θ

)
· πl −∆s2 ·

[
2µγ + (1− µ)θ

2πlµγ + (1− µ)θ
· πl − α

]
. (23)

Given the conditional beliefs for both small and large trades, the market maker sets the bid

and ask prices for each trading quantity. Let Bi
α,δ, A

i
α,δ and Bi, Ai denote the bid and ask prices

of the market maker given the trade size i = 1, 2 with and without informational ambiguity

respectively. By Eqs. (13) and (14),

Bi
α,δ = Ev[V |si] = Bi + ∆si · (α− π

si
h ) · (Vh − Vl), (24)

Aiα,δ = Ev[V |bi] = Ai + ∆bi · (π
bi
l − α) · (Vh − Vl). (25)

Eqs. (24) and (25) indicate the effect of an informational ambiguity on the bid-ask spread

when the sufficiently ambiguity-averse market makers also learn the occurrence of information

from the quantity traded. The learning is perfect without informational ambiguity, and it yields

a result of widened bid-ask spread with increased trade size. There is an additional “ambiguity

premium” on top of the informational block trade effect when the market maker has a sufficient

level of ambiguity aversion. However, Eqs. (24) and (25) also indicate that without a sufficient

level of ambiguity aversion (i.e. if he is sufficiently optimistic about the unquantifiable uncer-

tainty), the market maker could offset the informational block trade effect on the bid-ask spread.

Optimistic probability matching behavior would justify this type of behavior.

In the separating equilibrium, the market maker sets the prices by assuming that informed

traders only choose to trade large quantities. On the existence of a separating equilibrium,

the profit maximization condition of informed must always correspond to large trades, since

informed’s trading strategy is also dependent on the pricing rule. For informed traders with
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high and low signal a separating equilibrium exists if and only if

b2 · [Vh − A2
α,δ] ≥ b1 · [Vh − A1

α,δ], (26)

s2 · [B2
α,δ − Vl] ≥ s1 · [B1

α,δ − Vl] (27)

are satisfied. Let ξb and ξs denote the lower bounds of large buy to small buy order ratio

and large sell to small sell order ratio for the existence of a separating equilibrium without

informational ambiguity. Easley and O’Hara (1987) show that separating equilibria on both

side of the market exist if and only if

ξb =
πl

πb2l
and ξs =

πh
πs2h

, (28)

where πb2l =
( (1−µ)θ
2µγ(1−πl)+(1−µ)θ

)
πl and πs2h =

( (1−µ)θ
2µγπl+(1−µ)θ

)
πh. Similarly, let ξbα,δ and ξsα,δ denote

the lower bounds of large buy to small buy order ratio and large sell to small sell order ratio

with informational ambiguity. The existence of a separating equilibrium with informational

ambiguity is given in the following proposition.

Proposition 5.1. [Ambiguous separating equilibrium] There is an equilibrium on the ask side,

if and only if
b2
b1
≥ ξbα,δ =

πl −∆b1 ·
(
πl − α

)
πb2l −∆b2 ·

(
πb2l − α

) , (29)

and there is an equilibrium on the bid side if and only if

s2
s1
≥ ξsα,δ =

πh −∆s1 ·
(
πh − α

)
πs2h −∆s2

(
πs2h − α)

) . (30)

In what follows we mainly focus on the ask side. The bid side is symmetric. Proposition 5.1

clarifies that the bounds for the existence of the separating equilibrium are tilted due to the am-

biguity and ambiguity attitude of the market maker. For a sufficiently ambiguity averse market

maker, the direction of the tilt is determined by the probabilities of large and small buy orders.

If the probability of large buy order is greater than the probability of small buy order, then the

lower bound of large buy to small buy order ratio, ξbα,δ, for the existence of the separating equi-

librium is pulled further down. When the market maker has full informational ambiguity, the

lower bound of the ratio becomes 1. That means under full informational ambiguity, the market

maker will post his quotes as if there is a separating equilibrium no matter what the ratio is and
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the informed with a high signal will only buy large quantities. This is also true on the bid side.

This finding is also consistent with the empirical evidence of Gradojevic et al. (2017) who find

that large orders are likely to be placed by informed traders during increased price volatility

episodes. High informational ambiguity is often associated with the increased price volatility.

The results are summarized in the following corollary.

Corollary 5.2. (i) For a sufficiently ambiguity-averse market maker, the necessary and suffi-

cient conditions for the existence of a separating equilibrium is lower than its unambiguous

counterparts, if πb2 ≥ πb1 and πs2 ≥ πs1 respectively. (ii) Under full informational ambiguity,

the market maker always considers the market as a separating equilibrium.

5.2. The Pooling Equilibrium. Similar to the unambiguous case, if the necessary and suffi-

cient conditions of ambiguous separating equilibrium are violated on either side of the market,

then there can be no separating equilibrium on that side of the market. Analogously, there will

be an ambiguous pooling equilibrium. For the pooling equilibrium, the market maker’s expecta-

tions of the fractions of uninformed trades are the same as the separating equilibrium. However,

informed trading appears to be in both large and small quantities with probabilities of γ and

1 − γ respectively. The event tree for the first trade in the pooling equilibrium case is given in

Fig. 5.

FIGURE 5. A pooling event tree with ambiguity and different order sizes

Three conditions must also satisfy to have an ambiguous pooling equilibrium.

(i) An informed trader must be indifferent between trading a large and a small quantities.

Assume that an informed trader has received a high signal. Then she must expect equal
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profits from buying small and large quantities with the ask prices of A1
α,δ and A2

α,δ.

b2 · [Vh − A2
α,δ] = b1 · [Vh − A1

α,δ] (31)

(ii) The market maker must satisfy zero expected profit condition. This is equivalent to

Eqs. (24) and (25) where Bi, Ai are calculated in a standard way, and conditional

probabilities are Bayesian.

(iii) It must be possible to choose γ and simultaneously satisfy the equal profit condition for

any informed traders and the zero-profit condition for the market maker.

Let ξbα,δ and ξsα,δ (with a slight abuse of notation) denote the upper bounds of the large buy

to small buy order ratio and large sell to small sell order ratio for the existence of ambiguous

pooling equilibrium respectively. Then it is not surprising that the upper bounds of ambiguous

pooling equilibrium correspond to the lower bounds of ambiguous separating equilibrium on

either side of the market as in the unambiguous case.

Proposition 5.3. [Ambiguous Pooling equilibrium] There is an equilibrium on the ask side if

and only if
b2
b1
< ξbα,δ =

πl −∆b1 ·
(
πl − α

)
πb2l −∆b2 ·

(
πb2l − α

) , (32)

and there is an equilibrium on the bid side if and only if

s2
s1
< ξsα,δ =

πh −∆s1 ·
(
πh − α

)
πs2h −∆s2 ·

(
πs2h − α)

) . (33)

Similar logic applies to Proposition 5.3. When the probability of large buy order is greater

than the small buy order, the market maker lowers the upper bound of the large buy to small

buy order ratio for the existence of a pooling equilibrium on the ask side. Similarly, under

full informational ambiguity, the ratio corresponds to 1 and the ambiguity averse market maker

assume the market as a separating equilibrium. We summarize the corollaries of the proposition

as follows.

Corollary 5.4. (i) For a sufficiently ambiguity-averse market maker, the necessary and suffi-

cient conditions for the existence of a pooling equilibrium is lower than its unambiguous coun-

terparts, if πb2 ≥ πb1 and πs2 ≥ πs1 respectively. (ii) Under full informational ambiguity, there

is no pooling equilibrium on either side of the market.
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6. DISCUSSION

“Clarice, does this random scattering of sites seem overdone to you? Doesn’t it seem desper-

ately random? Random past all possible convenience? Does it suggest to you the elaborations

of a bad liar? In Thomas Harris’s “The Silence of the Lambs”, an imprisoned murderous psy-

chiatrist Dr. Hannibal Lecter helps FBI agent Clarice Starling to solve a serial killer Buffalo Bill

case. Buffalo Bill by being too random unintentionally helps Clarice to discover a pattern. The

example is in sharp contrast with the tongue-in-cheek assumption of a purely random Bayesian

decision making of market makers in the standard market microstructure theory. We don’t find

it amusing to compare Buffalo Bill to high skilled modern specialists. Nevertheless, we believe

behaviors like probability matching are intrinsic (evolutionary if you like to call it) nature of

human decision making. The example shows that it is difficult to find a pure randomness on

the phenomena related to human decision making and what is important is how we react to this

non-randomness. The degree of ambiguity aversion and ambiguity seeking (i.e. optimism and

pessimism) is an indispensable part of human decision making. Therefore, pushing the bound-

aries of the market microstructure theory beyond the Bayesian paradigm clearly has a potential

to explain certain phenomena that we otherwise label as anomalies.

Conventionally, a trading cost is attributed to the order-processing cost, inventory control

cost, and adverse selection components. However, an informational ambiguity of the market

makers in our setting can make trading more or less costly for market participants depending

on the ambiguity attitude of the market makers. The questions like “what is the average level

of ambiguity attitude?”, “does the ambiguity attitude changes in different situations?, and “is

there a way to disentangle between informational ambiguity and ambiguity attitude in the mar-

ket data?” still stay challenges for future researchers. These questions have affirmative answers

in an experimental setting and there has been some progress lately. For example, Kilka and

Weber (2001) examine the properties of the probability weighting functions. Du and Budescu

(2005) confirm that individuals’ ambiguity attitudes are malleable, contingent on the dimen-

sion salience and the reference domain. Trautmann, Vieider and Wakker (2008) find that being

observed by others leads to stronger ambiguity aversion, questioning the normative appeal of

ambiguity neutrality in social settings. Chakravarty and Roy (2009) find that subjects are am-

biguity neutral over gains and mildly ambiguity seeking over losses. Baillon and Bleichrodt
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(2015) observe a fourfold pattern of ambiguity attitudes: ambiguity aversion for likely gains

and unlikely losses and ambiguity seeking for unlikely gains and likely losses. König-Kersting

and Trautmann (2016) find that in the agency conditions, ambiguity attitudes of participants are

same as in decisions for their own account. In contrast, Voorhoeve et. al. (2016) find that a

switch from a gain to a loss frame does not lead to a switch from ambiguity aversion to am-

biguity neutrality or ambiguity seeking. The list is not exhaustive. However, the experimental

literature has not still decided the ambiguity attitude patterns for general human subjects, let

alone their small subsets such as high-skilled individuals.

We consider the market makers who have Choquet preferences with neo-additive capacities

and use the GBU updating rule. The usual “money pump” argument in this line of research is

that such individuals will persistently lose money in financial markets and will not survive in the

market for a long time. This argument does not apply to Choquet preferences. CEU preferences

satisfy standard rationality conditions (i.e. they are complete, reflexive, transitive and respect

state-wise dominance). Our equilibrium is also such that the expectation of the market maker’s

profit is zero. So, our market maker is not disadvantaged in a static context.

However, the violations of dynamic consistency are possible due to using neo-additive ca-

pacities in a dynamic set up. Eichberger, Grant and Kelsey (2005) show that the necessary and

sufficient condition for CEU preferences to be dynamically consistent is additive beliefs over

the final stage in the filtration, the property which neo-additive capacities do not satisfy. Also,

early work by Epstein and Le Breton (1993) shows that dynamically consistent beliefs must

be Bayesian. GBU updated beliefs can not be dynamically consistent in the classic economics

sense. Therefore, we do not claim that our analysis rationalizes (in the classic sense) the be-

haviors outlined in the paper. Nevertheless, our analysis has straightforward implications for

the price (in)efficiency and market (il)liquidity due to informational ambiguity and ambiguity

attitude.

The ambiguity of the participants is not out of the picture in the standard sequential trading

models. It implicitly takes the value of “zero” when beliefs are additive. Hence, it seems

intuitive to incorporate “non-zero” valued ambiguity of the market makers into the standard

microstructure models. In the worst case scenario, this extension provides a comparative static

purpose if someone does not agree with the parametric ambiguity approach. It also seems

intuitive to extend the existing static setting to a dynamic set-up. However, the issues like
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“dynamic inconsistency” would be more severe in the dynamic setup. We believe that the

primary results of our paper would remain true under more complex scenarios.
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APPENDIX

Proof of Lemma 3.1.

Proof. We provide the proof conditional on a buy order to make the paper self-contained. It is

similar conditioning on a sell order.

vbl =
v(Vl ∩ b)

v(Vl ∩ b) + 1− v(Vl ∪ s)

=

(
1− δ

)
π
(
Vl ∩ b

)
+ δα[(

1− δ
)
π
(
Vl ∩ b

)
+ δα

]
+ 1−

[(
1− δ

)
π
(
Vl ∪ s

)
+ δα

]
=

(
1− δ

)
π
(
Vl ∩ b

)
+ δα(

1− δ
)
π
(
Vl ∩ b

)
+ 1−

(
1− δ

)(
πl + πs − π(Vl ∩ s

)
=

(
1− δ

)
π
(
Vl ∩ b

)
+ δα

1− (1− δ)πs
=

(
1− δ

)
π
(
Vl ∩ b

)
+ δα

(1− δ)πb + δ

=

(
1− δ

)
πb(

1− δ
)
πb + δ

·
π
(
Vl ∩ b

)
πb

+
δ(

1− δ
)
πb + δ

· α =
(
1−∆b

)
· πbl + ∆b · α

(A-1)

�

Proof of Proposition 4.1.

The proof follows from the definition of Choquet expectation and zero profit conditions.

Bα,δ = Ev[V |s] =
[
vsl + ∆s · (1− 2α)

]
· Vl + vsh · Vh = Vl + vsh · (Vh − Vl)

= Vl +
[(

1−∆s

)
· πsh + ∆s · α

]
· (Vh − Vl)

= Vl + πsh · Vh −∆s · πsh · Vh + ∆s · α · Vh − πsh · Vl + ∆s · πsh · Vl −∆s · α · Vl

= [1−∆s] · [πsh · Vh + πsl · Vl] + ∆s · [α · Vh + (1− α) · Vl]

= [1−∆s] ·B + ∆s · [α · Vh + (1− α) · Vl]

(A-2)

Ask price follows a similar calculation. The only difference in the calculation of Choquet

expectation for the ask price is to recognize the relevant minimizing probability when evaluating

expectation as the probability in the core of (v) that puts most weight on Vh as oppose to Vl.

Aα,δ = Ev[V |b] = vbl · Vl +
[
vbh + ∆b · (1− 2α)

]
· Vh = Vh − vbl · (Vh − Vl)

= Vh −
[(

1−∆b

)
· πbl + ∆b · α

]
· (Vh − Vl)

= Vh − πbl · Vh + ∆b · πbl · Vh −∆b · α · Vh + πbl · Vl −∆bπ
b
l · Vl + ∆b · α · Vl

= [1−∆b] · [πbh · Vh + πbl · Vl] + ∆b · [(1− α) · Vh + α · Vl]

= [1−∆b] · A+ ∆b · [(1− α) · Vh + α · Vl],

(A-3)
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The bid-ask spread follows from the difference of Eqs. (A-3) and (A-2).

Sα,δ = Aα,δ −Bα,δ = [1−∆b] · A+ ∆b · [(1− α) · Vh + α · Vl]− [1−∆s] ·B

−∆s · [α · Vh + (1− α) · Vl]

= A−B︸ ︷︷ ︸
S

+

[
∆b ·

(
πbl − α

)
−∆s ·

(
α− πsh

)]
·
(
Vh − Vl

) (A-4)

�

Proof of Lemma 4.3.

The proof directly follows from Proposition 4.1. Since Vh > Vl, for Sα,δ = S to hold,

∆b ·
(
πbl − α

)
−∆s ·

(
α− πsh

)
= 0 must hold. We now substitute the values of

∆b = δ/
(
(1− δ)πb + δ

)
and ∆s = δ/

(
(1− δ) · πs + δ

)
.

Then,

δ∗(
(1− δ∗)πb + δ∗

) · (πbl − α∗)− δ∗(
(1− δ∗) · πs + δ∗

) · (α∗ − πsh) = 0. (A-5)

After rearranging Eq. (A-5), we obtain

α∗ =

πbl(
(1−δ∗)πb+δ∗

) +
πsh(

(1−δ∗)πs+δ∗
)

1(
(1−δ∗)πs+δ∗

) + 1(
(1−δ∗)πb+δ∗

) =
πbl ·

[
(1− δ∗) · πs + δ∗

]
+ πsh ·

[
(1− δ∗) · πb + δ∗

]
(1− δ∗) · πb + δ∗ + (1− δ∗) · πs + δ∗

=
πbl ·

[
πs + δ∗ · πb

]
+ πsh ·

[
πb + δ∗ · πs

]
(1− δ∗) · πb + δ∗ + (1− δ∗) · πs + δ∗

=
πbl · πs + πsh · πb + δ∗ · (πbl · πb + πsh · πs)

(πb + πs)− δ∗ · (πb + πs) + 2δ∗

=
(πs + δ∗ · πb)

(1 + δ∗)
· πbl +

(πb + δ∗ · πs)
(1 + δ∗)

· πsh.

(A-6)

Now we denote w =
(
πs + δ∗ · πb

)
/
(
1 + δ∗

)
and exploit the fact that πb + πs = 1 to obtain

α∗ = w · πbl + (1− w) · πsh. (A-7)

�

Proof of Corollary 4.4.

(i) higher ambiguity-aversion of the market maker always leads to higher bid-ask spread

means that ∂Sα,δ
∂α
≤ 0. We complete the proof by differentiating Eq. (A-4) w.r.t α,

∂Sα,δ
∂α

= [−∆b −∆s] · (Vh − Vl) ≤ 0, (A-8)

since since Vh > Vl and 0 < ∆b ≤ 1 and 0 < ∆s ≤ 1.
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(ii) the bid-ask spread of a sufficiently ambiguity-averse market maker is always higher than

original probabilistic bid-ask spread means that there is a threshold value of α, that is below

this value the ambiguous bid-ask spread is always (irrespective of informational ambiguity)

wider than the probabilistic bid-ask spread. Since from (i) increasing ambiguity-aversion of the

market maker monotonically increases the bid-ask spread in equilibrium, there exists a threshold

level α∗, that is below this level the bid-ask spread is always higher than original probabilistic

bid-ask spread. From Eq. (A-4), the threshold α∗ ≤ min{πsh, πbl } satisfies Sα,δ ≥ S.

�

Proof of Corollary 4.5.

(i) For a sufficiently ambiguity-averse market maker, incremental informational ambiguity

adds “ambiguity premium” to the bid-ask spread means ∂Sα,δ
∂δ
≥ 0, where the sufficiency of

ambiguity aversion is determined by α ≤ min{πsh, πbl }. We first substitute the values of

∆b = δ/
(
(1− δ) · πb + δ

)
and ∆s = δ/

(
(1− δ) · πs + δ

)
.

into Eq. (A-4) and then differentiate Sα,δ w.r.t δ as

∂Sα,δ
∂δ

=
∂

∂δ

[
S +

(
δ

(1− δ) · πb + δ
· (πbl − α)− δ

(1− δ) · πs + δ
· (α− πsh)

)
· (Vh − Vl)

]
=

[
(πbl − α) ·

( 1

(1− δ) · πb + δ
· (1− δ · πs

πb + δ · πs
)
)

+ (πsh − α) ·
( 1

(1− δ) · πs + δ
· (1− δ · πb

πs + δ · πb
)
)]
· (Vh − Vl) ≥ 0

for α ≤ min{πsh, πbl }.

(A-9)

(ii) For a sufficiently ambiguity-averse market maker, the magnitude of “ambiguity premium”

is decreasing by the incremental informational ambiguity means ∂2Sα,δ
∂δ2

≤ 0 with the same

sufficiency condition. Differentiationg Eq. (A-9) w.r.t δ again

∂2Sα,δ
∂δ2

=
2 · πs · (πbl − α)(
(1− δ) · πb + δ

)2 · ( δ · πs
πb + δ · πs

− 1
)

+
2 · πb · (πsh − α)(
(1− δ) · πs + δ

)2 · ( δ · πb
πs + δ · πb

− 1
)
≤ 0

(A-10)

for α ≤ min{πsh, πbl }.

�
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Proof of Proposition 5.1.

We prove the separating equilibrium on the ask side. That means we assume informed traders

with high signals. A similar calculation follows on the bid side if informed have low signals.

From Eq. (26), we know
b2
b1
≥

[Vh − A1
α,δ]

[Vh − A2
α,δ]

= ξbα,δ, (A-11)

We now substitute the values of A1
α,δ and A2

α,δ from Eq. (25) to obtain

ξbα,δ =
Vh − A1 −∆b1 · [πb1l − α](Vh − Vl)
Vh − A2 −∆b2 · [πb2l − α] · (Vh − Vl)

. (A-12)

A1 and A2 are the ask prices conditional on small buy and large buy orders respectively.

They can be obtained by the zero expected profit condition of Glosten and Milgrom (1985) with

Lebesgue expectations. Substituting the values of A1 and A2 from Eq. (7),

ξbα,δ =
πb1l · (Vh − Vl)−∆b1 · [πb1l − α] · (Vh − Vl)
πb2l · (Vh − Vl)−∆b2 [π

b2
l − α] · (Vh − Vl)

=
πb1l −∆b1 · [πb1l − α]

πb2l −∆b2 · [πb2l − α]
=

πl −∆b1 · [πl − α]

πb2l −∆b2 · [πb2l − α]

(A-13)

completes the proof.

�

Proof of Corollary 5.2.

(i) For a sufficiently ambiguity-averse market maker,

ξbα,δ ≤ ξb if πb2 ≥ πb1 and ξsα,δ ≤ ξs if πs2 ≥ πs1 .

This means that with informational ambiguity, the large buy (sell) to small buy (sell) order ratio

needed for the market maker to assume that the market is in the separating equilibrium is less

than its unambiguous counterpart, if the probability of large buy (sell) order is greater than the

small buy (sell) order. To prove the ask side, we first substitute the values of

∆b1 = δ/
(
(1− δ) · πb1 + δ

)
and ∆b2 = δ/

(
(1− δ) · πb2 + δ

)
,

into Eq. (A-13) and obtain

ξbα,δ =
πl −∆b1 · [πl − α]

πb2l −∆b2 [π
b2
l − α]

=
πl − δ

(1−δ)·πb1+δ
· [πl − α]

πb2l − δ
(1−δ)·πb2+δ

· [πb2l − α]
. (A-14)
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We know in Eq. (A-14), πl > πb2l = ( (1−µ)θ
2µγ(1−πl)+(1−µ)θ ) · πl. Therefore, it is sufficient to

assume πb2 ≥ πb1 for ξbα,δ to be less than ξb = πl

π
b2
l

, if α ≤ πb2l . The proof for the bid side follows

similar steps.

(ii) Under full informational ambiguity, the market maker always considers the market as a

separating equilibrium means that (M) will assume that informed traders separate themselves,

if the large buy (sell) order is greater than small buy (sell) order which is always true. The result

of the ask side immediately follows from Eq. (A-14) after substituting δ = 1.

�

Proof of Proposition 5.3.

Suppose the necessary and sufficient condition for the existence of the separating equilibrium

is violated on the ask side of the market. That means b2
b1
< ξbα,δ. Since informed traders are in-

different between buying small and large quantities by condition (i) (Eq. (31)) in the pooling

equilibrium, by condition (iii) the modeler can choose γ that satisfies both the profit maximiza-

tion of informed traders and zero expected profit condition of the market maker and hence a

pooling equilibrium with the necessary and sufficient condition of

b2
b1
<

πl −∆b1 · [πl − α]

πb2l −∆b2 · [πb2l − α]
= ξbα,δ. (A-15)

The analysis for the bid side is symmetric.

�

Proof of Corollary 5.4

(i) For a sufficiently ambiguity-averse market maker,

ξbα,δ ≤ ξb if πb2 ≥ πb1 and ξsα,δ ≤ ξs if πs2 ≥ πs1 .

The proof is same as the proof of Corollary 5.2. We first substitute the values of ∆b1 and

∆b2 into Eq. (A-15), exploit the fact that πl > πb2l and assume a sufficiently ambiguity-averse

market maker with α ≤ πb2l to obtain a sufficiency condition of πb2 ≥ πb1 for ξbα,δ ≤ ξb.

(ii) Under full informational ambiguity, there is no pooling equilibrium on either side of the

market. We substitute ∆b1 = ∆b2 = 1 in Eq. (A-15) and obtain ξα,δ = 1. Since the large buy to

small buy order ratio can not be less than 1, the pooling equilibrium can not prevail under full

informational ambiguity.

�
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