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1 Introduction

A central empirical success of prospect theory (Kahneman and Tversky (1979); Tversky

and Kahneman (1992)) is its ability to explain major puzzles in �nancial economics. For

example, Benartzi and Thaler (1995) show that prospect theory can help in understanding

the equity premium puzzle, and Barberis, Huang, and Santos (2001) demonstrate how a

dynamic prospect theory framework can simultaneously generate a high equity premium,

predictability of equity returns, and excess volatility. In these and other settings, prospect

theory o�ers a rigorous and testable alternative framework to more traditional asset pricing

theories (see, e.g., Barberis (2013) for a recent survey).

In this paper, we show that prospect theory can also help us understand one of the

most important recent asset pricing puzzles: the variance premium. The variance premium,

de�ned as the di�erence between the option-implied and the expected realized variance of

stock returns, is strongly positive, on average, and time varying. Theoretically, the variance

premium is a major puzzle because the standard consumption-based model with constant

relative risk aversion (CRRA) preferences cannot generate a nonzero variance premium, irre-

spective of the risk aversion level and even when consumption variance varies over time (see,

e.g., Drechsler and Yaron (2011)).

Empirically, the variance premium is a �rst-order phenomenon. For example, Coval and

Shumway (2001), Driessen and Maenhout (2007), and Eraker (2013) �nd that the Sharpe

ratio for volatility-selling strategies, such as shorting straddles, which e�ectively bet on the

variance premium, is at least twice the Sharpe ratio of the underlying equity index.1 If the

equity premium is a puzzle, then, by this metric, the variance premium is an even bigger

puzzle.

In this paper we show that cumulative prospect theory (CPT) can explain the variance

premium puzzle. The key insight we use is that the variance premium can be written as the

1See also Bakshi and Kapadia (2003), Jiang and Tian (2005), Bakshi and Madam (2006), Carr and Wu
(2009), Bollerslev et al. (2011), and Bollerslev et al. (2009), among others, for further evidence on the variance
premium.
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expected return on a portfolio of calls and puts with di�erent strike prices. As a consequence,

pricing the underlying options accurately is a su�cient condition for explaining the variance

premium. Our central result is that a calibrated equilibrium model with CPT investors can

generate option prices close to those observed in the data. We therefore show that CPT

can explain the variance premium by solving the more general problem of accurately pricing

options, and, in particular, out-of-the-money (OTM) call and put options.

The central intuition, formalized in a theoretical CPT model below, can be easily ex-

plained. Start with the standard pricing equation as in Cochrane (2005) applied to investors

with CRRA preferences:

s0 = E(x)/Rf + cov
(
mCRRA, x

)
, (1.1)

which says that the price s0 of an asset with payo� x is equal to its expected payo� discounted

at the risk-free rate Rf , plus a risk correction given by the well-known covariance between

the asset's payo� and the pricing kernel mCRRA. A negative covariance corresponds to a

positive risk premium. In case of CRRA preferences, the pricing kernel depends positively

on the marginal utility of the investor.

Even though the CRRA pricing kernel is widely used, it does not explain observed option

prices. To illustrate the disconnect between model and data, Figure 1 plots observed average

option returns for di�erent maturities (black squares) against option returns implied by a

standard CRRA-model that we formalize below (blue x-es). Panel A shows that the CRRA

model is a complete failure when pricing calls. First, because call options pay o� when

investors' marginal utility is low, the model predicts that calls should have positive expected

returns. In the data, however, calls across all strike prices have negative returns. Second,

Panel A of Figure 1 shows that, in the data, returns from investing in call options decrease

for higher strike prices, whereas equation (1.1) implies that OTM call prices should increase

because they pay o� in the states with the lowest marginal utility. The CRRA model thus

fails on two fronts: it predicts the wrong sign on call option returns and, on top, it predicts
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the wrong sign on the relation between call option returns and moneyness.

Panel B of Figure 1 presents analogous results for put returns. Qualitatively, the standard

CRRA model does better on put returns than it does on calls. In particular, the model is

consistent with the observed negative returns on puts, and it correctly predicts that OTM

puts have the lowest returns. Quantitatively, however, the model �t is as bad as for call op-

tions. For reasonable parametrizations, standard CRRA models predict dramatically higher

returns for puts, and especially OTM puts, than those observed. In Figure 1, this is re�ected

by the vertical di�erence between the data (black squares) and CRRA-implied values (blue

x-es).

While the put option challenge has received a fair amount of attention in the existing

literature (see, amongst many others, Bondarenko (2003a,b), Jones (2006), and Santa-Clara

and Saretto (2009)), there is comparatively little work on the call option challenge (e.g.,

Bakshi et al. (2010) and Constantinides et al. (2013)).2 This lack of attention is notable

because, from a conceptual standpoint, the CRRA model does not even get the direction of

call prices as a function of moneyness right.

In the theory part of the paper we show that when investors have CPT preferences the

pricing equation (1.1) can be written as

s0 = E(x)/Rf + cov
(
mCRRA, x

)
+ cov

(
mCPT , x

)
, (1.2)

which says that the price of an asset is the discounted expected value, plus the CRRA risk

correction, plus an additional covariance term. This additional covariance term depends on

mCPT , which we label the �CPT pricing kernel.� Figure 2 plots mCPT as a function of equity

index returns. The crucial feature of the CPT pricing kernel is that it has a U-shape, which

implies that the price of an asset is high if it pays o� in extreme states of the world, irrespective

of whether those states are good or bad. The CPT model therefore predicts simultaneously

2These two articles document the return patterns for both put and call options and propose reduced-form
models to explain these patterns, but do not explore preference-based explanations for these patterns.
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higher prices and lower returns for OTM call options and OTM put options. For comparison,

Figure 2 also plots mCRRA, which is monotonically decreasing, and can therefore not explain

higher prices for OTM calls. Figure 1 illustrates our CPT model's �t. The CPT model-

implied option returns (red crosses) line up remarkably well with the actual data for both

puts and calls, which stands in sharp contrast to the poor �t of the CRRA model. Because

pricing returns of puts and calls is a su�cient condition for explaining the variance premium,

the results in Figure 1 also shows that the CPT model explains the variance premium puzzle.

An attractive feature of the framework captured by equation (1.2) is that it allows us to

explain two separate puzzles�why returns of OTM puts are so low and why returns of OTM

calls are so low�using one unifying mechanism. A second advantage of equation (1.2) in

terms of theory building is that it nests the standard CRRA model as a special case, which

allows us to directly compare the standard model and our proposed extension. Finally, it is

important to note that equation (1.2) is not an ad hoc pricing kernel devised to explain a

particular puzzle. Rather, as we formally show below, it is the pricing kernel that arises in

an equilibrium with CPT preferences.

The key driver of the second covariance term is the probability weighting feature of

CPT. Probability weighting is a non-linear transformation of objective probabilities whose

main implication for our setting is that the tails of a distribution are overweighted when

evaluating its attractiveness. Intuitively, probability weighting is a modeling device that

captures demand for lottery tickets and insurance through the same underlying mechanism.

Probability weighting is relevant in the context of option pricing because OTM calls and

OTM puts, like lottery tickets and insurance, pay o� in unlikely states of the world.

An extensive literature in decision science documents that probability weighting is a per-

vasive trait of human decision making (see, e.g., Epper and Fehr-Duda (2012)). Barberis

(2013) surveys a growing literature in �nance and economics on probability weighting, and

writes that �in risk-related �elds of economics, such as �nance, insurance, and gambling,

there is now more empirical support for probability weighting than for loss aversion, an ar-
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guably better-known component of prospect theory.� Introducing probability weighting into

the discussion on the variance premium and the overpricing of OTM options, as well as

documenting its quantitative impact on both, is new and a main contribution of this study.

Our paper proceeds as follows. We �rst introduce an equilibrium asset pricing model

with CPT preferences in Section 2. The model builds on the work of Barberis et al. (2001),

who consider a representative agent model in which the agent's preferences are the sum of a

CRRA utility function and a gain-loss prospect theory utility function. Because our focus is

on pricing options, we do not explicitly model consumption and dividends but directly depart

from a lognormal distribution of stock market returns. We show that the resulting model

yields the equilibrium pricing equation (1.2) above, which allows us to derive the expected

return on the stock market index and on a range of options on the index. We can then derive

the model-implied variance premium from these equilibrium returns.

A key advantage of the model is that it is very tractable. In addition, the model-implied

portfolio weights are unique, �nite, and wealth-independent. Exploding portfolio weights

are a well-known shortcoming of existing CPT portfolio choice models (see, e.g., Barberis

and Huang (2008); Bernard and Ghossoub (2010)). Even more importantly, we can prove

that if, and only if, the CRRA component of preferences is given by log-utility, the CPT

investor behaves like a one-period myopic investor, even when returns are not iid. This

result, which generalizes results by Merton (1969) and Samuelson (1969) to a CPT setting,

is interesting because it clari�es when insights obtained for a one-period setting extend to a

multi-period setting. For example, this theoretical result allows us to study a setting with

non-i.i.d. returns using a conditional one-period equilibrium model.

In Section 3, we bring the model to the data. Based on S&P 500 equity returns and

S&P option prices from 1996 to 2010, we construct monthly call and put option returns for

13 di�erent strike levels. Using GMM, we show that the model yields a very good �t for

the cross-section of expected option returns, and, therefore, for the variance premium. All

our tests show that probability weighting is the central determinant of the model's �t, and
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our tests formally reject the null hypothesis of no probability weighting. In our benchmark

setup, the estimate of the Tversky-Kahneman probability distortion parameter is 0.67, and

thus very similar to values found for subjects in lab experiments.

When we allow for separate distortions for gains and losses, we �nd that distorting prob-

abilities in both tails is important. Distorting only gains yields an acceptable �t for calls, but

the model then fails to explain puts well. Distorting only the probability of losses yields the

opposite result. As we explain in greater detail below, the ability to distort also the right tail

of the distribution distinguishes our CPT model from well-known alternative approaches to

explain the variance premium in the literature that focus on the left tail (e.g., rare disasters,

long-run risks, etc.). It also highlights why our strategy of solving the variance premium puz-

zle by solving the option pricing puzzle (the su�cient condition for the variance premium)

is informative: any model that focuses on distorting either marginal utility or probabilities

only on the downside is likely to fail to price call options well, even though the model may

�t the variance premium.

In Section 4, we show that the model can also generate meaningful time variation in the

variance premium. We focus on three potential drivers: time-varying equity return volatility,

time-varying probability distortion, and time-varying loss aversion. The estimated model

yields intuitive time-series patterns in loss aversion and probability weighting. The main

�nding, however, is that, with time-varying volatility, the CPT model successfully captures

the dynamics of the variance premium, even when probability distortion is kept �xed at the

benchmark value. Hence, we do not need time variation in investor preferences to explain the

time variation in the variance premium. The intuition for this result is straightforward: the

power of probability weighting comes from overweighting the tails of the wealth distribution.

Higher return volatility translates into thicker tails, which, in turn, are then overweighted

more. As a result, the variance premium is positively correlated with the volatility level, in

line with empirical observations.
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1.1 Related Literature

Our paper contributes to the literature that studies the usefulness of prospect theory in

�nance and to a growing number of recent papers exploring the usefulness of probability

weighting in asset pricing contexts (see Barberis (2013) for a recent survey). Related pa-

pers that use a prospect theory framework with probability weighting include Driessen and

Maenhout (2007), who empirically investigate portfolio choice of CPT-style investors when

options are part of the asset menu; Barberis and Huang (2008), who theoretically investigate

the pricing of assets with positively skewed returns; and De Giorgi and Legg (2012), who

examine dynamic portfolio choice with narrow framing and probability weighting. Several

empirical asset pricing studies provide evidence that is consistent with a role for CPT's prob-

ability weighting feature (for example, Green and Hwang (2012) for IPOs, Boyer and Vorking

(2014) for stock options, and Ilmanen (2012) for a recent survey). Polkovnichenko and Zhao

(2013) and Kliger and Levy (2009) are related papers that also use index options prices to

identify CPT parameters. However, none of the above papers focus on the variance premium.

To the best of our knowledge, our paper is the �rst to apply prospect theory to understand

the variance premium and the related puzzle of the overpricing of OTM put and call options.

We also contribute to the recent literature that studies potential explanations for the

variance premium puzzle. Relative to the CRRA-lognormal benchmark model, most work

in this literature modi�es either the data generating process, which makes extreme events

more likely; investor preferences, which makes investors care more about extreme states of

the world; or investor beliefs, which makes investors perceive extreme states as more likely

than they are. For example, Gabaix (2012) shows how a model with time-varying disaster

risk generates a positive variance premium even under CRRA preferences. Shaliastovich

(2015) develops a long-run risk model in which consumption growth remains conditionally

gaussian but whose expected growth rate has to be learned via a �recency�-biased updating

procedure. In his model, expected consumption growth and its uncertainty are time-varying,

while uncertainty is subject to jumps. The model predicts OTM put options to be expen-
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sive relative to at-the-money (ATM) options, as the former hedge con�dence jump risks.

Other papers make adjustments to both beliefs and preferences. Several authors combine the

long-run risk approach of Bansal and Yaron (2004), which features recursive preferences and

persistent time variation in consumption and dividend volatility, with nonlinear dynamics

in fundamentals, such as volatility-of-volatility (Bollerslev et al. (2009), Londono (2014)) or

jumps (Drechsler and Yaron (2011)). Instead, Du (2011) combines rare jumps in fundamen-

tals with habit preferences as in Campbell and Cochrane (1999). Bekaert and Engstrom

(2016) show how a positive variance premium can emerge through a combination of pref-

erences with habit formation and Bad Environment-Good Environment (BEGE) dynamics

for consumption. Drechsler (2013), building on the model of Liu et al. (2005), shows how

time-varying model uncertainty can amplify the impact of jumps on equity and variance risk

premia. Schreindorfer (2014) proposes a model with generalized disappointment aversion and

regime-switches in volatility of consumption and dividends. This model generates substan-

tial equity and variance premiums and high put option prices. Finally, Jin (2015) develops

a dynamic equilibrium model in which beliefs about crash risk vary over time, with periods

where investors overestimate the likelihood of a crash. This model generates variation in

(crash) risk premiums over time, and predicts that the crash risk premium increases after

a crash. The latter prediction is consistent with our empirical �ndings in the time-varying

setting in Section 4.

There are a number of key di�erences between all these approaches and our paper. First,

our model with CPT preferences generates a substantial variance premium even when asset

returns are iid lognormal. As such, rare disaster models, such as the one in Gabaix (2012),

present the polar opposite to our approach. These models maintain the CRRA nature of

preferences, but change the return generating process. Second, previous work predominantly

focuses on the left tail of the distribution, both in terms of the data generating process

and preferences, and on the overpricing of OTM put options. Instead, our CPT model, via

the probability weighting feature, can speak to both tails of the distribution, and as such
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explains the overpricing not only of OTM put options but also of OTM call options. Third,

an important and potentially testable di�erence is that the above models are necessarily

dynamic, whereas the CPT model can generate a variance premium even in a one-shot game

with known probabilities. It is therefore possible that some of the variance premium is driven

by a fundamentally di�erent mechanism than suggested by the existing literature.

The remainder of this paper is organized as follows. Section 2 introduces a one-period

version of our model. In Section 3, we perform a comparative static exercise that conveys the

intuition for most of the results that follow. We then use a more formal GMM approach to

match our CPT model to actual data in an unconditional setting. In Section 4, we explore

the ability of CPT to characterize the time-varying nature of the variance premium. Section

5 concludes.

2 The Model

We start our analysis by considering a simple representative agent model with preferences

given by a mixture of terminal wealth expected utility and gain-loss cumulative prospect

theory (CPT) utility, the most parsimonious model that allows us to derive our key insights.

The next subsection de�nes the investor's preferences. Subsection 2.2 solves a standard

portfolio problem for these preferences in a static setting and discusses dynamic extensions,

which are detailed in the appendix. Subsection 2.3 employs these results to derive the pricing

kernel of the economy. Subsection 2.4 explains the relationship between option prices and

the variance premium, in general and as predicted by our model.

2.1 Preferences

The representative agent's total utility is given by a weighted sum of the expected utility over

terminal wealth WT and a CPT utility over the gain or loss XT . The �nal gain or loss is

de�ned as XT = WT −WRef,T , where WRef denotes the reference point (Markowitz (1952)),
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which determines whether terminal wealth levels are perceived as gains (WT ≥ WRef ) or

losses (WT < WRef ). Formally, total utility is represented by

Ψ(WT , XT ) = EU [WT ] + bTCPT [XT ] (2.1)

where bT ≥ 0 is a scaling term that governs the relative importance of the expected utility

part, EU [WT ], and the CPT part, CPT [XT ]. For the expected utility part, we assume

that EU [WT ] = E[U(WT )] satis�es constant relative risk aversion (CRRA), i.e., the utility

function U is given by

U(WT ) =


W 1−γ
T

1−γ

lnWT

for
γ 6= 1

γ = 1
, (2.2)

where γ is the risk aversion coe�cient. Next, we de�ne the CPT part. To this means, �rst,

let v denote the value function (sometimes also called a utility function), which is de�ned

over gains and losses XT . We assume that v takes the piece-wise linear form

v(XT ) =

 XT

λXT

for
XT ≥ 0

XT < 0
, (2.3)

where λ ≥ 1 is called the loss aversion parameter. For example, if λ = 2, then a decrease

of terminal wealth beneath the reference level by one (XT = WT −WRef = −1) feels twice

as bad as a gain of one beyond the reference level (XT = 1) feels good. Second, in CPT,

probabilities may be processed non-linearly. We de�ne probability weighting functions w+and

w−, for gains and losses respectively, by

w− (p) =
pc1

[pc1 + (1− p)c1 ]1/c1
, (2.4)

w+ (p) =
pc2

[pc2 + (1− p)c2 ]1/c2
,
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where c1, c2 ∈ [0.28; 1] in equation (2.4) control the curvature of each weighting function.3

The weighting functions are inverse-S shaped, which means that probabilities close to zero

are overweighted (w(p) > p), while probabilities close to 1 are underweighted (w(p) < p). The

cumulative prospect theory of Tversky and Kahneman (1992), however, distorts cumulative

and decumulative probabilities rather than marginal probabilities p to obtain decision weights

for each state. Intuitively, using decision weights instead of distorted marginal probabilities,

leads to an overweighting of unlikely and extreme states, i.e., the tails of the distribution.

Formally, assume that there are N discrete states of the world at time T , each occurring with

objective probability pi, and that each state is associated with a speci�c �nal wealth level

WT,i. All states are then ordered (�ranked�, see, e.g., Quiggin (1982)) from worst to best and

related to the investor's reference point WRef : W1 ≤ ... ≤ Wk−1 ≤ WRef ≤ Wk ≤ ... ≤ WN .

Then, the decision weight πi of state i is given by:

πi = w− (p1 + ...+ pi)− w− (p1 + ...+ pi−1) for 2 ≤ i ≤ k

πi = w+ (pi + ...+ pN)− w+ (pi+1 + ...+ pN) for k + 1 ≤ i ≤ N − 1,

where π1 = w− (p1) and πN = w+ (pN) . The CPT value of the gain or loss XT is then

computed as

CPT (XT ) =
N∑
i=1

πiv(XT,i). (2.5)

We now discuss some special cases of our preference model. Like Barberis et al. (2001)

(BHS; see also K®szegi and Rabin (2006)), we assume that the investor's total utility is given

by a weighted sum of expected utility and a gain loss utility term. The main departure from

BHS is that our gain-loss utility term incorporates probability weighting. This additional

feature will be the key driver of our results. When c1 = c2 = 1, the weighting functions in

2.4 are given by w+(p) = w−(p) = p, so that overall utility is the sum of terminal wealth

and gain-loss utility, as is the case in BHS. For b = 0, our preference speci�cation nests

3The lower bound is a technical condition that ensures that decision weights are positive (Rieger and
Wang (2006) and Ingersoll (2008)).
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pure expected utility. Following BHS, we make the assumption that gain-loss utility scales

with wealth according to b = b̂W−γ
T for some b̂ ≥ 0. Moreover, following the prior literature

(e.g., Barberis and Xiong (2009, 2012)), we assume that WRef = W0R
f , i.e., the investor

experiences positive gain-loss utility if and only if her investment yields more than the risk-

free return.

2.2 The Investor's Problem

We consider a simple market with the following assets: (i) a risk-free asset with a constant

and exogenously given gross return Rf ; (ii) equity that pays xEi in state i of the world at

time T , which occurs with probability pi; and (iii) D derivatives on equity, where derivative

d ∈ {1, . . . , D} pays xdi in state i of the world at time T . The derivatives are in zero net

supply, and we normalize the supply of equity to be one. The expected gross returns on

equity, E[RE], and on each derivative d, E[Rd], are to be determined in equilibrium. The

prices sd0 of the derivatives can then be obtained as sd0 =
E[xd]
E[Rd]

. The representative investor's

problem is to choose a one-period optimal portfolio with positions in the risky asset, αE,

each derivative d, αd, and the risk-free asset, such that she maximizes her total utility,

max
αd,αd

Ψ(WT , XT ). (2.6)

Given the investor's initial wealth W0, her terminal wealth is given by

WT =

[
(1− αE −

∑
d

αd)R
f + αER

E +
∑
d

αdR
d

]
W0

=

[
(Rf + αE(RE −Rf )) +

∑
d

αd(R
d −Rf )

]
W0,

and, accordingly, the gain or loss experienced is

XT =

[
αE(RE

i −Rf ) +
∑
d

αd(R
d −Rf )

]
W0.

12



The �rst-order condition (FOC) that determines the optimal weight in equity (the FOCs for

the derivative shares are determined analogously) is given by4

0 = E[U ′(WT )] + b̂W−γ
0

N∑
i=1

πiv
′(XT,i)

=
∑
i

(RE
i −Rf )

[
pi(W0(Rf + αE(RE

i −Rf )))−γ + b̂W−γ
0 πi(1 + (λ− 1)1XT,i<0)

]
=

∑
i

(RE
i −Rf )

[
pi(R

f + αE(RE
i −Rf ))−γ + b̂πi(1 + (λ− 1)1XT,i<0)

]
, (2.7)

where the indicator function 1XT,i<0 is equal to one if the investment in state i yields a loss

and equal to zero otherwise. It is easy to verify that the second-order condition is satis�ed,

and therefore:

Proposition 1. The investor's optimal portfolio weights are unique, �nite, and wealth-

independent.

The �niteness of the the portfolio weights is noteworthy. In a standard portfolio problem

framework with pure CPT preferences (and no terminal wealth utility) that is otherwise iden-

tical to ours, Bernard and Ghossoub (2010) show that in�nite leverage is optimal whenever

the expected return of the risky asset exceeds that of the riskless asset. A similar issue arises

in the pure CPT model of Barberis and Huang (2008). Due to the rational terminal-wealth

utility part, our model always results in a non-degenerate solution to the investor's max-

imization problem. Moreover, as in the model of BHS without probability weighting, our

choice of b ensures that the portfolio weights are wealth independent. In other words, the

wealth-independency property known from CRRA models carries over to our extended CPT

model model with probability weighting.

In Appendix A, we extend the above model to a multi-period setting and prove the

following result:

4For simplicity of presentation (i.e., to avoid case distinctions in the formulas), we ignore the technical
issue of v not being di�erentiable at the reference point.
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Proposition 2. Consider a multi-period version of the model above where the investor has

CRRA terminal wealth utility, can trade each period, and, in addition, experiences prospect

theory utility over portfolio gains and losses each period. The investor's optimal portfolio

weights are myopic if, and only if, the investor has log utility.

Myopia means that the investor's portfolio choice in each period is independent of her

investment horizon. In that case, the investor's portfolio weights remain unchanged com-

pared to the one-period model. Note that the proposition does not assume that returns

are independently and/or identically (iid) distributed. If returns are iid, then the investor

chooses the same weights each period. The result generalizes Merton (1969) and Samuelson

(1969), who �nd that portfolio choice is myopic for investors with log utility as well as for

investors with general CRRA utility when returns are iid. When the investor, additionally,

has gain-loss prospect theory utility as in our model, this latter result no longer holds true.

While we believe that Proposition 2 is of interest in its own right, it also adds some

generality to the results in this paper. In the next subsection, we derive a pricing kernel

for our economy. For simplicity of presentation, we do this in a one-period setting. From

Proposition 2, it follows that this pricing kernel remains unchanged in a multi-period setting

when the investor has log utility so that our results are not necessarily restricted to a one-

period setting.

2.3 Equilibrium Pricing Kernel and Equity Risk Premium

The key to deriving the equity risk premium in our model is to note that, as derivatives are in

zero net supply, market clearing requires αE = 1 and αd = 0 for all d. Upon substituting these

equilibrium weights into the wealth constraint WT = W0R
E as well as into XT = RE − Rf ,
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the FOC becomes:

0 =
∑
i

(RE
i −Rf )

[
pi
(
RE
i

)−γ
+ b̂πi(1 + (λ− 1)1REi <Rf )

]
⇐⇒ 0 =

∑
i

pi(R
E
i −Rf )

[(
RE
i

)−γ
+ b̂

πi
pi

(
1 + (λ− 1) 1REi <Rf

)]
(2.8)

⇐⇒ 0 = E
[
(RE −Rf )

[
mCRRA +mCPT

]]
, (2.9)

where mCRRA and mCPT refer to the random variables that, in state i, yield outcome
(
RE
i

)−γ
and b̂πi

pi

(
1 + (λ− 1) 1REi <Rf

)
, respectively. The random variable m := mCRRA + mCPT in

equation (2.9) is a pricing kernel that can be used to price any asset in the economy that is

in zero net supply�in equilibrium, the representative investor will not hold such assets in

her portfolio. Recalling that Rd = xd/sd0, it follows that (see, e.g., Cochrane (2005), p.13,

equation (1.8)) sd0 = E[xd]
Rf

+ cov(m,xd) so that we have proven the following result:5

Proposition 3. The equilibrium price of derivative d in the above model is given by

sd0 =
E[xd]

Rf
+ cov(mCRRA, xd) + cov(mCPT , xd). (2.10)

Figure 2 illustrates the two components of the pricing kernel. The price of each derivative

is given by its discounted expected payo� plus the covariance of the pricing kernel with

the payo�. If b̂ = 0, then mCPT = 0, and the second covariance term vanishes. Since

mCRRA =
(
RE
)−γ

describes the investor's marginal utility from equity returns,mCRRA is large

when equity payout is low. Accordingly, the prices of derivatives whose payo�s correlate with

the market cov(mCRRA, xd) > 0 are lower. As such, calls should have low prices while puts

should have high prices. When b̂ > 0, derivative prices are in�uenced by a second covariance

5Proposition 3 holds when the pricing kernel is used to also price the risk-free asset. In the empirical
analysis, we do not price the risk-free asset. Instead, we take the (observed) risk-free rate as given and focus
directly on excess returns as in equation (2.9). Note that, to match any given risk-free rate level, our model
can be generalized by scaling the total utility function (and hence the pricing kernelmCRRA +mCPT ) with
an additional free parameter. Since this would not a�ect equation (2.9), this would not change any of our
results.
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term cov(mCPT , xd). The prospect theory part of the pricing kernel, mCPT , is relatively

larger when πi
pi
> 1 and/or when the equity payo� is experienced as a loss (i.e., when the

equity return is smaller than Rf ). First, as regards the e�ect of probability weighting, it can

be shown that πi
pi

is approximately equal to the derivative of the weighting function used in

the computation of πi. Recalling the inverse-S-shaped form of the weighting functions, the

derivatives are large for both small and large probabilities. Taking into account the ranking

of states according to the investor's terminal wealth when computing the decision weights

πi, this means that the pricing kernel is increased in states of extreme equity payouts, both

large and small. Second, the factor
(

1 + (λ− 1) 1REi <Rf
)
increases the CPT contribution to

marginal utility by the constant loss aversion parameter λ if and only if state i is a loss state,

thus leading to a discontinuity in the pricing kernel. Overall, the novel pricing kernel derived

above results in lower expected returns of assets that pay in extremely bad and/or extremely

good states (while, under standard CRRA, expected returns are larger the worse the state),

and expected returns are lower for loss states than for gain states.

2.4 The Model-Implied Variance Premium

In this subsection, we de�ne the variance premium and derive a new intuitive expression for

the variance premium in terms of expected option returns.

As is common in the literature, we de�ne the variance premium as the di�erence between

the risk-neutral and the actual expected variance of the equity market return (see, e.g.,

Bollerslev et al. (2009)). Speci�cally, de�ne the actual probability measure P as the measure

under which the actual equity payo�s xEi are generated, and Q as the risk-neutral measure

under which equity and derivatives are priced. The variance premium is then de�ned by

V P ≡ V Q − V P

=
∑
i

qi
[
ln
(
RE
i

)
− EQ

[
ln
(
RE
i

)]]2 −∑
i

pi
[
ln
(
RE
i

)
− EP

[
ln
(
RE
i

)]]2
, (2.11)
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where pi and qi denote the actual and risk-neutral probability of state i, respectively. If

investors were risk-neutral, P and Q would be identical and the variance premium would be

equal to zero. Hence, the variance premium depends on investor preferences about variation

in equity returns.

In our model, the risk-neutral probability for state i is given by

qi = pi

[
mCRRA
i +mCPT

i

]
EP [mCRRA +mCPT ]

. (2.12)

Using the expressions for mCRRA
i + mCPT

i from equation (2.9) and with an assumption on

the actual distribution of returns, we can calculate the model-implied variance premium.

Equation (2.12) shows how the di�erence between the actual and risk-neutral probability

is determined by the preferences of the investor and illustrates how our setting di�ers from

more traditional models. In addition to the standard component in traditional CRRA-based

asset pricing models given by mCRRA
i , the risk-neutral probability qi depends on the CPT

part of the pricing kernel, mCPT
i .

The following proposition shows that the variance premium and expected option returns

are closely related:

Proposition 4. De�ne Rc(K) and Rp(K) as the return on a call and put option with

strike K, respectively. If there are no arbitrage opportunities, we have

V P ≈
sE0ˆ

0

vp (K)EP
[
Rp (K)−Rf

]
dK +

∞̂

sE0

vc (K)EP
[
Rc (K)−Rf

]
dK, (2.13)

where vc(K) and vp(K) are scalars whose expressions are given in Appendix B.

Proposition 4 shows that the variance premium is a weighted average of the expected

returns on OTM put and call options across strikes, since equation (2.13) integrates over put

options for strikes K < sE0 and over call options for strikes K > sE0 . In Appendix B, we show
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that the weights vc(K) and vp(K) are e�ectively always negative. Hence, one can �earn�

the variance premium by selling put and call options with various strikes. The resulting

strategy forms a portfolio of short positions in so-called �strangles,� where each strangle is

a combination of an OTM put and an OTM call option. The variance premium, V Q − V P ,

thus represents the expected pro�t on this portfolio, which e�ectively sells both insurance

against bad states of the world and provides a lottery-like payo� in the good states of the

world. Hence, the variance premium re�ects information about the compensation received in

extreme states of the underlying asset (the equity market in case of index options), as these

very negative and positive outcomes determine the value of OTM puts and calls, respectively.

Equation (2.13) thus shows that the pricing of both tails of the return distribution a�ects

the variance premium.

An important fact in our setting is that equation (2.13) is �model-free� in the sense that

it does not require assumptions on preferences or distributions. The only assumption is the

absence of arbitrage opportunities. Hence, the approximation holds both in the data, as

well as in the model. We can thus write the di�erence between the model-implied variance

premium, V PCPT , and the observed variance premium, V̂ P , as follows

V PCPT−V P̂ ≈
sE0ˆ

0

vp (K)
(
EP
CPT [Rp (K)]− Ê [Rp (K)]

)
dK+

∞̂

sE0

vc (K)
(
EP
CPT [Rc (K)]− Ê [Rc (K)]

)
dK,

(2.14)

where EP
CPT [R] denotes the expected return implied by the model and Ê[R] the sample

average return.6 Thus, if the model-implied option returns exactly match the option returns

in the data, then the variance premium is the same for both model and actual data. Pricing

the cross-section of OTM options is therefore a su�cient condition for �tting the variance

premium.7 The equation also shows that a model can exactly match the variance premium

6In small samples equation (2.14) is subject to sampling error in the estimates of average returns and the
variance premium.

7There are two minor caveats to this reasoning. First, equation (2.13) is only an approximation. We
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while, at the same time, generating completely counterfactual option prices. Thus, �tting

the variance premium by �tting options, as we do in this paper, is a stricter test than �tting

only the variance premium.

Finally, as an important point of reference for our subsequent analysis, note that the

variance premium is zero for the CRRA case. If the market payo� xE and hence the terminal

wealth of the investor WT have a lognormal distribution, and if the representative agent has

pure CRRA preferences (b = 0), Samuelson and Merton (1969) and Rubinstein (1976) show

that call and put options are priced by the Black-Scholes formula, even though the investor is

not allowed to trade during time 0 and T . This directly implies that the risk-neutral variance,

as implied by option prices, equals the actual equity return variance and, hence, the variance

premium is equal to zero.8

3 Empirical Results

This section explores the ability of the CPT model described in section 2 to �t the data. We

�rst show that the model yields a good �t for observed option prices for a plausible set of

input parameter values, which implies that the model also yields a good �t for the variance

premium under those parameters. We then conduct a comparative statics exercise that

conveys the intuition for most of the results that follow. Finally, we use a GMM approach

to match the CPT model to the data.

show in Appendix B that the approximation error is equal to the di�erence between central and non-central
second moments. For our application, this term is numerically small, as we focus on one-month returns�it
is equal to 1.3 in our benchmark model, while empirically the variance premium is equal to 157.4. Second,
empirically, we only have options for a �nite number of strike prices.

8Brennan (1979) in fact shows that CRRA preferences are the only preferences that lead to the Black-
Scholes formula in a setting with discrete trading and lognormal returns. Thus, only CRRA preferences
generate a zero variance risk premium. The intuition for this result is that CRRA investors, when faced with
constant investment opportunities and lognormal equity returns, optimally choose a constant equity exposure
even over longer horizons. Hence, these investors are not interested in dynamic trading over time. Given
that options are equivalent to dynamic trading strategies, these investors thus price options in the same way,
irrespective of whether they are allowed to trade continuously (the Black-Scholes world) or not. Drechsler
and Yaron (2011) show that CRRA preferences generate a zero variance premium also in a multi-period
setting with long-run risk.
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3.1 Data

Our main dataset consists of daily closing midquotes of S&P 500 index options for various

strikes and maturities obtained from the OptionMetrics database from January 1996 to Oc-

tober 2010. OptionMetrics creates a �surface� of interpolated option prices for �xed levels of

the Black-Scholes delta and for �xed maturities (30 calendar days, 60 days, etc.) for both

puts and calls. We focus on 30-day options because these are the most liquid and the ones

most frequently used in the literature. On each day and for both put and call options, we

construct the return on buying an option and holding it to maturity, i.e., for 30 calendar

days. This yields a panel containing the returns on 26 options across deltas. Of these 26

options, 13 are calls with deltas ranging from 0.2 to 0.8 (from OTM to in-the-money (ITM)),

and 13 are puts with delta ranging from -0.8 to -0.2 (from ITM to OTM).

Table 1 presents summary statistics for option returns. The observed values reported in

Figure 1 (black squares) are identical to the numbers in Table 1 except for the fact that deltas

are replaced by the average moneyness of the options (K/S0) for a given delta. The observed

option returns are in line with the documented stylized facts in the literature (e.g., Coval

and Shumway (2001); Jones (2006); Driessen and Maenhout (2007); Bakshi et al. (2010);

Constantinides et al. (2013)). First, average call option returns are negative. This is in

contrast to predictions from a standard CAPM or a model with pure CRRA preferences,

which imply positive call option returns, because call options have a positive exposure to the

underlying equity index. Second, put options have strongly negative average returns. For

example, for deep OTM put options, the average return is about −53% per month.

In addition to option returns, we also construct the corresponding S&P 500 index returns

for the 30-day holding period at a daily frequency. This gives an average return of 0.58% per

30 calendar days and a standard deviation of 5.18% per month. The average 1-month T-bill

rate over the sample period is 0.25%, which gives an in-sample equity premium of 0.33% per

month.

The variance premium in the data is calculated as the di�erence between the risk-neutral

20



expected variance, V Q, and the actual expected variance of equity index returns, V P . We

follow the existing literature and use the square of the VIX as our measure of risk-neutral

expected variance (e.g., Bollerslev et al. (2009), Carr and Wu (2009)).9 To calculate the

actual expected variance, V P , we regress realized variance, calculated using daily returns

over the last 22 trading days, on the one-month-lagged realized variance and the square of

the VIX level at the beginning of the month over which the realized variance is measured.

The expected realized variance is then calculated as the forecast implied by this regression

model (see Londono (2014)). In our sample, the annualized average of the squared VIX

equals 572.5%2, and the annualized average actual expected variance equals 415.1%2. This

gives an average variance premium of 157.4%2, which is similar to values found in the related

literature (e.g, Bollerslev et al. (2009); Londono (2014)).

3.2 Benchmark Parametrization and Model-implied Variance Pre-

mium

Before we estimate the model parameters with GMM, we assess the implications of our model

for a benchmark parametrization. We assume that the equity return, RE, is lognormally

distributed with parameters µE = E
(
RE
)
, which is to be determined endogenously, and

volatility σE.
10 We assume a one-period constant risk-free rate of Rf = 0.25% and an

unconditional volatility of equity returns of σE = 5.18%, which are, respectively, the observed

unconditional mean of the risk-free rate approximated by the U.S. 1-month T-bill rate and

the unconditional monthly volatility of the S&P 500 index returns over our sample period.

We parametrize preferences using standard values in the literature. Speci�cally, follow-

ing Tversky and Kahneman (1992), we use a loss aversion parameter of λ = 2.25 and, to

parametrize the probability weighting function in equation (2.4), we use c1 = c2 = 0.65. We

9Formally, this risk-neutral variance is given by the integrated variance of continuous-time returns over a
given time period. We work in discrete time. If the continuous-time returns are uncorrelated over time, this
integrated variance equals the variance of the return over a discrete time period.

10We use a discrete approximation of the lognormal distribution, taking a grid of 500 potential outcomes
for the one-month-ahead equity return ranging from -50% to 150%.
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use a benchmark coe�cient of relative risk aversion of γ = 1, which implies log utility for the

CRRA component of the total utility function of the investor. Because the overall risk aver-

sion of the investor is governed by both the CRRA component and the gain-loss component

of equation (2.6), our model with γ = 1 is less restrictive compared to a pure CRRA model.

Finally, we need to make an assumption on the parameter b which governs the relative

importance of the CRRA and gain-loss utility components. In the absence of clear guidance

from the existing literature, we assume b ' 0.65, which, in combination with the other

parameters in the benchmark speci�cation, makes CPT's contribution to the value function

equal to 50%.11 We later show that our main results on the variance premium are robust to

di�erent values for b.

Based on these inputs, we can calculate the model-implied variance premium as follows.

First, we solve equation (2.9) for the return on equity E
(
RE
)
. Second, once E

(
RE
)
is

�xed, we use the pricing kernel given by equation (2.9) to price the cross-section of options.

Finally, we use the relation derived in Proposition 4 to compute the variance premium from

the option prices calculated in the previous step.12

For the benchmark parameters in this section, we thus obtain an annualized value for the

variance premium of 162.4%2. This is remarkably close to the actual value of 157.4%2 in the

data. The CPT model can thus generate a variance premium similar to empirically observed

levels for a plausible set of input parameters.

3.3 Comparative Statics

Since a pure CRRA model yields a zero variance premium, it follows that the good �t of the

CPT model documented in the previous section must be due to the CPT component in the

investor's total utility function. In this section, we use comparative statics to show which

CPT parameters drive the model's ability to generate a variance premium.

11The contribution of CPT to the total utility function is calculated as bCPT (XT )
Ψ(WT ,XT ) , see equation (2.6).

12Equivalently, one could also derive the VP by computing the risk neutral probabilities and then using
equation (2.11).
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We start with the scale parameter b, which governs the weight of the CPT component in

the investor's utility function. Panel A of Figure 3 shows model-implied variance premiums

for values of b ranging from zero, in which case the CPT contribution to the investor's utility

is also zero, to in�nity, in which case the CPT contribution approaches 100%. The black line

in Panel A shows that varying b induces economically signi�cant variation in the variance

premium. As b approaches zero, the VP approaches zero. The VP increases monotonically

with b and reaches a level above 300 for b→∞, which is about twice the level of the variance

premium observed in the data.

The red line in Panel A of Figure 3 provides a �rst indication about the deeper drivers

of CPT's ability to �t the variance premium. The red line is constructed identically to the

black line, with the di�erence being that probability weighting is set to zero (c1 = c2 = 1),

such that the decision weights used by the investor coincide with the actual probabilities.

Once we switch probability weighting o�, the model completely loses its ability to generate a

substantial VP. This �nding indicates that it is not loss aversion which induces the VP, but

instead probability weighting.

Panel B of Figure 3 explores the importance of probability weighting in greater detail. In

that panel, we �x the scaling parameter b at its benchmark value of 0.65, and vary probability

weighting from 0.4 (strong weighting) to 1 (no weighting). We again �nd that varying the

degree of probability weighting induces substantial changes in the model-implied VP, with

values ranging from about 0%2(for the case of no probability weighting) to 400%2 (for the

case of strong weighting). These results show that probability weighting is the central driver

of the VP in this model.

The mechanism underlying the e�ect of probability weighting on the variance premium

is straightforward. In the presence of probability weighting, the state prices of extreme

outcomes increase as the investor attaches a higher decision weight to these states. Intuitively,

investors with probability weighting �nd insurance and lottery tickets attractive, and are thus

willing to pay higher prices for OTM put and call options. Equivalently, buying strangles
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is very attractive for a CPT investor, because straddles provide both lottery and insurance.

By Proposition 4, higher prices for strangles, which are the result of stronger probability

weighting, imply a positive variance premium.

Contrasting the strong e�ect of probability weighting, Panel C shows that the variance

premium hardly moves with the loss aversion parameter. For the benchmark set of param-

eters, we �nd a weakly positive relation between λ and the variance premium. On the one

hand, loss-averse agents are willing to pay a higher price to hedge themselves against the

risk of extreme outcomes. On the other hand, as equation (2.9) shows, more loss aversion

increases the equilibrium expected return on the risky asset, which makes extremely positive

returns more likely and negative returns less likely. This, in turn, makes calls more expensive

and puts less expensive. The overall e�ect of loss aversion on the variance premium will

thus depend on which e�ect dominates. Our results in Panel C show that, qualitatively, the

�rst e�ect dominates. Quantitatively, however, loss aversion has only a minor e�ect on the

variance premium.

3.4 GMM Estimation

We now provide more formal evidence on the ability of our CPT model to match the data.

Speci�cally, we use GMM to estimate optimal preference parameters θ = [γ, λ, b, c1, c2], under

di�erent sets of parameter restrictions.

3.4.1 GMM Speci�cation

We estimate optimal preference parameters θ using the following set of moment conditions:
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g(θ) =



µE (θ)− T−1
∑T

1 R
E
t

V P (θ)− T−1
∑T

1 V Pt

µp,1(θ)− T−1
∑T

1 R
p,1
t

..

µp,13(θ)− T−1
∑T

1 R
p,13
t

µc,1(θ)− T−1
∑T

1 R
c,1
t

....

µc,13(θ)− T−1
∑T

1 R
c,13
t



,

where µE (.), µp (.), and µc (.) are the model-implied equilibrium expected returns for equity,

calls, and puts (indexed by their strike prices), respectively, and V P (.) is the model-implied

variance premium, all matched to their empirical counterparts in our sample. Then, we

�nd θ̂ that minimizes the GMM goal function V F = g(θ)′Wg(θ), where W is the weighting

matrix for the moment conditions. The weighting matrix gives an equal weight of 1/4 to

the equity, call, put, and variance premium moments. We calculate Newey-West corrected

standard errors for the estimated parameters to account for potential autocorrelation and

heteroskedasticity in the residuals due to overlapping returns as we construct holding-to-

maturity returns each day. Thus, we can do inference on the estimated parameters by

exploiting that

θ̂ ∼ N(θ, V/T ),

where V = [G′WG]−1G′WSWG[G′WG]−1, G = δg/δθ′, and S is the standard Newey-West-

corrected covariance matrix.

3.4.2 GMM Baseline Results

Table 2 presents our baseline GMM estimates. As a point of reference, speci�cation (1) sets

b = 0 and γ = 1 which means our model collapses to the pure CRRA case with log utility.
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Not surprisingly, the statistics shown in Table 2 re�ect the inability of the CRRA model to

�t the option data. The average put option return estimated in this case is -6.2%, while the

�rst column shows that the return in the data is -24.7%. The model does even worse on

calls. While the model predicts a positive 7.1% average call return, the data yield a negative

-12.7%. The blue x-es in Figure 1, which we have already discussed in the introduction, show

the model-implied returns from speci�cation (1) for each of our 26 options.

The variance premium is zero in speci�cation (1), as it should be for the CRRA model.

Finally, the CRRA model slightly undershoots the equity premium, but note that we do not

model consumption, so �tting the equity premium is less of an achievement than it otherwise

would be. The real test in our setting is pricing the cross-section of option returns, and the

CRRA model fails this test.

Because the VP is guaranteed to be zero in a CRRA model regardless of the coe�cient

of risk aversion, using alternative values of γ would not meaningfully alter any conclusions.

We will thus restrict γ to be equal to one in the remainder of the paper.13 This assumption

has two advantages. First, by virtue of Proposition 2, the results we derive for a one-period

CPT setting remain valid for a multi-period version of the model in which the investor is

allowed to adjust portfolio weights each period. Second, because γ captures the curvature of

the CRRA part of the investor's utility function, and because λ captures the concavity of the

gain-loss part of the utility function, identifying γ and λ separately is empirically challenging.

By restricting γ = 1, we can get better estimates of loss aversion λ.

Speci�cation (2) estimates the CPT model. We start by restricting probability weighting

to be the same for losses and gains (c1 = c2 = c), a restriction we relax below. The CPT

model matches the variance premium almost perfectly with a value of 157.28%2, relative to

157.38%2 in the data. At the same time, it also �ts the underlying option returns very well.

For example, the average call return is -13.3% in the model, compared to -12.7% in the data,

and the average put return in the model is -25.4%, compared to -24.7% in the data. The

13To �t the equity premium γ = 1 is also a reasonable assumption. This is because we �nd that a pure
CRRA model with a value of γ = 1.22 exactly �ts the equity premium in our sample.
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red +es in Figure 1 show the model-implied returns from speci�cation (2) for each of our 26

options and con�rm that the model is successful at pricing all options across the spectrum

of strike prices. Finally, comparing the value of the GMM goal function VF, which can be

thought of as a weighted average of the error for each of the moment conditions, shows that

the CPT model is orders of magnitude more accurate than the CRRA model (V F = 1.68

and V F = 6, 846.5, respectively).

Next we discuss the parameter estimates. We estimate loss aversion and probability

distortion in speci�cation (2), while we �x the scale parameter b so that the contribution

of CPT to the utility function is 50%. The key result is that probability weighting, c, is

very precisely estimated at 0.67. This number is interesting for two reasons. First, the

p-value implies that the estimated 0.67 is signi�cantly di�erent from the benchmark case

of no probability weighting (c = 1). We can thus formally reject the null hypothesis of

no probability weighting. We show, in Subsection 3.4.3, that this conclusion is essentially

independent of the value we pick for b. Second, the degree of probability distortion of 0.67

is remarkably close to the benchmark value originally reported by Tversky and Kahneman

(1992), as well as to prominent values used in the literature (for example, Barberis and Huang

(2008) use 0.65).

When estimating speci�cation (2), we �xed the scale parameter b. The reason is that

it is empirically hard to jointly identify b and c with su�cient precision, even though the

two parameters are conceptually distinct. Intuitively, the problem arises because �too little�

probability weighting can be compensated for by giving a higher weight to the CPT part in

the utility function. Conversely, even extreme levels of probability weighting do not matter

much if the CPT component enters the investor's total utility function with only little weight.

In Appendix C, we document this identi�cation issue more formally using Gentzkow and

Shapiro (2015) sensitivities. We caution that, because we have �xed the scale parameter,

our benchmark estimate for c is not a fully independent estimate of probability weighting.

But we nevertheless argue that these estimates constitute strong evidence suggesting that
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probability weighting can help us understand observed option prices. To the extent that

a CPT contribution of 50% is considered a reasonable number, the 0.67 estimate suggests

that levels of probability weighting measured from the lab are externally valid for actual

option investors. Conversely, to the extend that the lab estimates of probability weighting

are considered valid starting points for examining �eld data, the results in speci�cation (2)

show that assuming a 50% CPT contribution would make the model consistent with the data.

3.4.3 GMM Extensions and Robustness

In Table 3, we present results for alternative assumptions about the CPT contribution, which

is governed by the parameter b. In speci�cations (2) to (4), we �x b at a low value of 0.3, which

implies a CPT contribution of about 18%; a value of 5, which implies a CPT contribution of

85%; and a very high value of 100, which implies a CPT contribution of 99%.

There are several insights. First, the loss aversion estimate is largely insensitive to changes

in the CPT contribution. Combined with the fact that we assume γ = 1, this implies that

overall risk aversion, and therefore the model-implied equity premium, remains remarkably

constant.

Second, the probability weighting estimate varies across speci�cations in a way that is

expected. If the contribution of CPT to the utility function is high, less probability weighting

is needed to �t options well, and vice versa, for low CPT contributions, substantial degrees

of probability weighting are needed to �t the data. Remarkably, even as the CPT contribu-

tion becomes very high, the estimated probability weighting parameter does not approach

the no-probability-weighting value of 1, but, rather, approaches a value of about 0.8. Es-

timated probability weighting parameters in Table 3 range between 0.49 and 0.79, which

is not unreasonable given estimates in the related decision science literature (e.g., Camerer

and Ho (1994) estimate a value of 0.56, and Wu and Gonzalez (1996) estimate 0.71 [check

Stott (2006) Table 5]). Echoing our earlier argument, the estimates in Table 3 imply that

for arguably plausible levels of the CPT contribution (18 to 99%), the CPT model yields
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probability weighting estimates that are in the same region as estimates found in lab studies.

Third, and importantly, across all speci�cations, we can statistically reject the hypothesis

of no probability weighting. Hence, while the value we pick for b has an in�uence of the degree

of probability weighting, it does not change the central conclusion that probability weighting

is the central ingredient to �tting the data. Finally, speci�cations (2) to (4) show that the

CPT model yields an excellent �t of the variance premium and the underlying options in all

cases, with only minor variation between the di�erent models. In sum, from speci�cations

(2) to (4), we conclude that our central �ndings are robust for reasonable values of b.

Speci�cation (5) in Table 3 jointly estimates b, λ, and c. Based on the point estimates of

these parameters, our previous conclusions remain completely unchanged. The GMM goal

function indicates that the model now �ts the data even better, with only minimal remaining

pricing errors for both options and the variance premium. The model yields an estimated

value for b of 0.44, which implies a CPT contribution of about 27%. The associated estimate

for the probability weighting parameter is c = 0.56, and thus identical to the value estimated

by Camerer and Ho (1994) in the lab. While these results are reassuring, one caveat is that

it is very hard for the model to cleanly identify b and c simultaneously with high degrees of

con�dence. Consistent with the evidence from the Gentzkow and Shapiro (2015) sensitivities

in Appendix C, the p-values are above standard levels.

In a �nal set of tests, in Table 4 we show that our results are not speci�c to lognormal

equity index returns. First, we use a normal distribution of returns instead of a lognormal

distribution, where the volatility is again matched to the equity return data. Speci�cation

(2) shows that we obtain very similar GMM estimates for the preference parameters and a

very similar �t to the variance premium and option returns. In another speci�cation, we

consider the class of skewed student-t distributions, which are �exible enough to match the

skewness and kurtosis observed in actual equity return data via a skewness parameter ξ and

a kurtosis parameter ν.14 Speci�cation (3) shows that, despite allowing for negative skewness

14The normal distribution is a special case of the skewed-t distribution with ξ = 1 and ν =∞. In Appendix
D, we describe in detail how we estimate the parameters of this distribution using Maximum Likelihood on
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and fat tails in the equity return distribution, we �nd a level of probability distortion that is

only slightly lower than in our benchmark case�a higher c = 0.74, compared to c = 0.67 in

the benchmark model. This estimate is still statistically di�erent from the no distortion case

(c = 1) at any reasonable con�dence level. The model-implied equity and variance premiums

are very similar to those in the benchmark CPT speci�cation, and the model prices calls

and puts well. The GMM goal function has a low value of 2.57. Hence, we conclude that,

while assuming a lognormal distribution for equity returns is a natural starting point for our

analysis, nothing of substance hinges upon this assumption.

3.4.4 Distortion on the Downside versus Distortion on the Upside: c1 6= c2

We now relax the assumption that c1 = c2 and allow for di�erential levels of probability

weighting for losses (the �downside�) and gains (the �upside�). These results are shown

in Table 5, speci�cation (2). We �nd that the model �ts the data now only marginally

better, which implies that c1 = c2 is not particularly restrictive. In terms of probability

weighting estimates, the results show that the model-implied weighting on the downside

becomes more pronounced, while the weighting on the upside becomes less pronounced than

in the benchmark case c1 = c2 = 0.67. However, quantitatively, at c1 = 0.64 and c2 = 0.70,

the optimal values are very close to the benchmark. Importantly, both parameters remain

signi�cantly di�erent from the no-probability-weighting case at any conventional signi�cance

level.

Speci�cations (3) and (4) of Table 5 present results for the case of weighting probabilities

only on the downside, or only on the upside, respectively. Both models perform well in terms

of �tting the variance premium. However, the results also show that this good �t of the VP

masks severe problems of the model when �tting the cross-section of options. In speci�cation

(3), when only losses are weighted, the model is far o� the mark for call option returns

(3.96% for the average OTM call versus 21.0% in the data). In speci�cation (4), when only

the equity return data. We �nd that the estimated return distribution exhibits negative skewness (ξ < 1)
and substantial kurtosis (ν = 6.33).
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gains are weighted, we see the opposite pattern, namely that the model now undershoots for

put returns (24.86% for the average OTM put versus 36.08% in the data). This pattern is

intuitive. By switching probability weighting o� entirely, we are, e�ectively, pricing options

as we would under the CRRA model. Hence, the restricted CPT model that only weights

probabilities on the downside (upside) inherits the CRRA model's poor �t for calls (puts).

Figure 4 documents this result for the individual options in our data. Distorting only on the

downside does reasonably well for puts (the x-es in Panel B). For calls, however, the relation

between model-implied call returns is convex and upward-sloping for deep OTM calls, which

is opposite to the concave and downward-sloping relation observed in the data (black squares

in Panel A). The analogous pattern emerges for weighting probabilities only on the upside.

The reason why option returns implied by our model can be strongly o� even when we

provide a good �t for the VP is that the VP is a weighted sum of expected option returns

across strikes (equation (2.13)). Because the VP is a weighted sum, the model can still

produce a good �t for the VP if the �tting errors for expected option returns cancel out

across all options. These results suggest that comparing models based on their ability to �t

the VP alone may not be a very informative test because many such models can �t the VP

only at the expense of generating counterfactual option returns for at least a subset of the

options. This reinforces our belief that implementing the stricter test of pricing the cross-

section of options is much more informative about which models researchers should rely on

than tests that focus on the VP alone. The GMM goal functions re�ect this as well, as they

are substantially higher for speci�cations (3) and (4), relative to speci�cation (2)�a value

of 54.80 and 39.85 versus a value of 1.36.

The results in Table 5 also provide additional insight into the workings of the model. What

is notable is the fact that both speci�cations (3) and (4) feature rather extreme degrees of

probability weighing. Because the VP can be thought of as a portfolio of strangles, and

because strangles generate a positive return when there is demand for both lottery and

insurance, the absence of a preference for lottery-like payo�s (induced by weighting on the
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upside) requires an extreme desire for insurance to still induce high enough strangle returns,

which implies an extreme degree of probability weighting in the model. In the absence of a

desire for insurance, an analogous pattern emerges.

Combined, the results in this section show that distorting probabilities in both tails

of the equity return distribution is important. Distorting only one tail yields substantial

pricing errors for individual options. The ability to price both puts and calls using only one

underlying driver, probability weighting, is a particular advantage of the CPT model. In

contrast, prominent alternative models which can also generate a variance premium, like rare

disaster models or long-run risk models, are not well suited to pricing calls well, since they

focus on the downside only.

4 Time-Varying Variance Premium

In the previous section, we showed that the CPT model can match the unconditional level

of the variance premium as well as the cross-section of option returns when allowing for

probability distortion. We now investigate whether the CPT model can also capture the

substantial movement of the variance premium over time. We focus on time variation in

three key parameters: equity return volatility, probability distortion, and loss aversion. We

�rst explore the impact of the level of equity volatility using a comparative statics exercise.

We then extend the GMM method introduced in Section 3.4 to a time-varying setting.

By introducing time-varying volatility we deviate from the assumption of iid equity returns

that we used up to this point. However, Proposition 2 shows that we can still use the one-

period setup even when returns are not iid, with the only di�erence that all expectations are

conditional upon the volatility level at the beginning of the period.
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4.1 Comparative Statics: The Impact of Volatility

In the unconditional analysis in Subsection 3.4, we set volatility equal to the average historical

one-month volatility of the S&P 500. But, in the data, volatility varies substantially over

time. Because volatility governs the thickness of the tails of the investor's wealth distribution,

volatility is closely linked to the model-implied variance risk premium.

Figure 5 shows that the model-implied variance premium depends strongly on the level

of equity volatility, and increases whenever volatility increases. The model-implied variance

premium nearly triples when monthly equity volatility is set at 10% (about 35% annually)

rather than at the benchmark level of 5.18% (about 18% annually), and drops substantially

for very low levels of volatility. This pattern is intuitive, as higher volatility leads to more

extreme outcomes, which are overweighted by CPT investors, and thus leads to an even

higher model-implied variance premium. The �gure also shows that high volatility alone is

not su�cient to generate a variance premium. Only when coupled with probability weighting

does higher volatility lead to a higher variance premium.

4.2 Time-Varying CPT Setting

Volatility and probability weighting govern how likely extreme events are and how much

they are overweighted, respectively. Figures 3 and 5 show that both parameters play a key

role in the CPT model's ability to generate a variance premium. We now explore whether

allowing for time-variation in volatility and probability weighting enables the CPT model to

also match the time-series pattern of the variance premium. Motivated by Barberis et al.

(2001), we also allow for time variation in loss aversion.

We start by calculating the conditional monthly equity market variance, ht = Vt [rt+1],

as the integrated variance based on a simple GARCH(1,1) model estimated on daily returns
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over the 1996-2011 period.15 The estimated GARCH(1,1) speci�cation is

ht+1 = 1.38e− 06 + 0.91ht + 0.08 (rt − µ)2 , (4.1)

where rt represents daily equity returns. All estimated parameters are statistically signi�cant

at the 1% con�dence level. Consistent with previous evidence, we �nd the daily conditional

variance process to be highly persistent and stationary. To calculate the conditional variance

for the next month, we simply take the sum of the model-implied predictions of the variance

for all days over the next month (�integrated variance�).

To model time variation in loss aversion, we closely follow Barberis et al. (2001) who posit

that loss aversion varies with the recent performance of the representative agent's portfolio.

Speci�cally, loss aversion depends on a state variable zt as follows:

λt = λ̂+ κλ(zt − z̄t), (4.2)

where λ̂ is the unconditional estimate the loss aversion parameter, z̄t is the average of zt,

and κλ is the sensitivity of loss aversion to recently realized gains and losses as measured

by zt. Following BHS, we assume that the representative agent compares the current price

of the risky asset with a benchmark level, where the benchmark level of the price responds

sluggishly to changes in the value of equity. The sluggishness is de�ned in BHS as follows:

�when the stock price moves up by a lot, the benchmark level also moves up, but by less.

Conversely, if the stock price falls sharply, the benchmark level does not adjust downwards

by as much.� Formally:

zt+1 = η(zt
RE

RE
t+1

) + (1− η), (4.3)

15Although we believe that the integrated variance from a GARCH process is a good approximation of
the actual variance, in unreported results (available on request), we show that the results in this section are
robust to alternative conditional variance methods, such as an exponentially weighted moving average or,
even more simply, last month's realized variance.
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where RE is a �xed parameter calibrated to guarantee that half of the time the agent has prior

gains (RE
t > RE) and the rest of the time she has prior losses (RE

t < RE). The parameter η

measures the degree of sluggishness, which can be interpreted as the agent's memory horizon.

We assume η = 0.5, which implies that the half life of the representative agent's memory is

1 month.

In the absence of clear guidance from the existing literature, we model time variation

in probability weighting in close analogy to time variation in loss aversion. Speci�cally, we

posit:

ct = ĉ+ κc(zt − z̄t), (4.4)

where ĉ is the unconditional estimate of probability distortion, and κc is the sensitivity of

probability distortion to recently realized gains and losses as measured by zt. We consider

models that restrict the level of probability weighting to be the same on the downside and on

the upside as well as a more �exible model in which probability weights for gains and losses

can have di�erent sensitivities to the state variable zt.

4.3 Estimation Method and Results

We extend the moments in the GMM procedure in Section 3.4 to a time-varying setting

as follows. At each point in time t, we compare the model-implied equity and variance

premiums to empirical estimates of the time-t conditional equity and variance premiums.

The conditional variance premium at any time t is estimated as the di�erence between the

square of the VIX at time t and the time-t expectation of the realized variance, as explained in

Section 3.4. To obtain an estimate for the conditional equity premium, we use two methods.

In the �rst, the Price-Dividend (PD)-based method, we perform a predictive regression of

monthly S&P 500 returns on the PD ratio and use the �tted values of this regression to
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obtain the empirically observed conditional equity premium at each point in time. In the

second method, the PD-and-VP-based method, we add the variance risk premium to the

predictive regression of S&P 500 returns.16 We use the same two methods for modeling the

conditional expectations of the option returns. To reduce the computational burden implied

by the time-varying setting, we use monthly, instead of daily data, and consider only 10 deltas

for the options�5 for the puts and 5 for the calls�instead of 26. We thus obtain a panel

of errors by comparing, at each point in time (month), the model-implied and empirically

observed values for the equity premium, variance premium, and option returns. The moment

conditions are thus given by:

gt(κc, κλ) =



µE,t (κc, κλ)− Et(RE
t+1)

V Pt (κc, κλ)− Et(V Pt+1)

µp,1,t(κc, κλ)− Et(Rp,1
t+1)

..

µp,5,t(κc, κλ)− Et(Rp,13
t+1 )

µc,1,t(κc, κλ)− Et(Rc,1
t+1)

..

µc,5,t(κc, κλ)− Et(Rc,13
t+1)



.

All parameters in the model are �xed at their unconditional GMM estimates except for κc

and κλ, which we estimate by minimizing the sum of the squared errors in the above moment

conditions. We sum across assets and over time using the same weighting of the equity

premium, variance premium, and put and call returns as for the moment conditions de�ned

in Section 3.4. To avoid numerical problems, we use a grid of values for κc and κλ to identify

the values that minimize the weighted sum of the squared errors for each speci�cation.

Table 6 presents the results for alternative speci�cations of the time-varying CPT setting.

For each speci�cation, we report parameter estimates as well as the value function divided

16The model in Bollerslev et al. (2009) implies that the variance premium has predictive power for equity
returns, an implication for which they �nd empirical evidence.
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by the number of months and the model's �t for the equity premium, the variance premium,

and an aggregate for put and for call returns.

Our point of departure is a restricted model in which only the equity return volatility is

time varying, while the CPT parameters are �xed at their unconditional estimates. That is,

we set κc = κλ = 0. This model isolates the impact of time-variation in volatility on the �t

of the model. Speci�cations (1) and (2) in Table 6 present estimation results for this simple

model using the PD and PD-and-VP methods for calculating �observed� expected returns,

respectively, and panels B and C of Figure 6 compare the model-implied with the observed

equity premium with the observed one for the PD and the PD-and-VP methods, respectively.

Panel A of Figure 6 shows that this simplest version of the conditional CPTmodel �ts the level

and dynamics of the variance premium remarkably well, although it seems to overestimate the

variance premium in late 2008, around the collapse of Lehman Brothers, because the equity

return volatility is unusually elevated in this period. The model also provides a reasonable

�t of the equity premium, although it misses some of its larger movements, especially when

observed equity premia are generated using the PD-and-VP-based equity premium.

The model also �ts the time variation in expected option returns well. Speci�cations (1)

and (2) in Table 6 show that the mean absolute error for the option returns (over time and

across strikes) is 10.63% and 8.51% for calls and puts, respectively, for the PD-based equity

premium, and 10.98% and 8.63% for calls and puts, respectively, for the PD-and-VP-based

equity premium. In unreported results, we show that the residuals for option returns are of

a similar magnitude irrespective of the degree of moneyness. However, the model seems to

systemically underestimate the expected return of puts (and overestimate that of calls) in late

2008, precisely when we also overestimate the variance premium. In sum, when we keep all

preference parameters constant over time, a CPT model with time-varying equity volatility

generates a remarkably good �t of the time-series variation in the variance premium.

Turning to the setting with time-varying loss aversion (speci�cation (3) in Table 6), we

�nd that our estimate of κλ is positive, which implies a positive sensitivity of loss aversion to

37



recent losses. Our estimate thus supports one of the key assumptions in BHS, namely that

loss aversion increases after losses. The estimate for κλ generates a moderate range in loss

aversion, from about 1 to 1.65. However, this variation has a minor e�ect on the �t to the

equity and variance premiums and to the option returns moments. This small e�ect is not

surprising, as the variance premium and option returns are not very sensitive to the degree

of loss aversion to begin with (see Section 3.3).

A setting with time-varying probability distortion (speci�cation (4)) yields a negative

estimate of κc, which implies that the probability distortion increases (lower c) following

losses (high z). The negative sensitivity of c to recent realized gains and losses is in line with

the model of Jin (2015), which predicts that after a crash, investors are likely to overestimate

the probability of another crash, leading to higher OTM put prices and a higher variance

premium. However, the economic magnitude of the estimate of κc is small. Given that zt

ranges from 0.95 to 1.20 in our sample, with a sample average very close to 1, κc = −0.04

implies that the distortion parameter ranges between 0.66 and 0.67 over the sample period.

Not surprisingly, the �t of the model with time variation in the distortion is very close to the

�t of the model with constant parameters.

A setting in which both λ and c are time varying (speci�cation (5)) yields a very similar

sensitivity of loss aversion and a slightly higher sensitivity of probability distortion to recent

losses. However, the improvement in the �t with respect to the previous speci�cations is

rather small.

Finally, a setting with asymmetric probability distortion in the left and right tails yields

di�erent sensitivities to recent gains and losses. In particular, the sensitivity of c1 is negative,

while that of c2 is positive, which suggests that, following recent losses, agents distort more

the left tail of the distribution and distort less (closer to 1) the right tail. This is again in line

with the model of Jin (2015). Moreover, the range of variation of the distortion parameter

is much wider than for the models with symmetric distortion�c1 ranges between 0.54 and

0.67, while c2 ranges between 0.66 and 0.87.
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Overall, the main implication of the time-varying setting is that even a model with con-

stant CPT parameters can generate substantial variation in the variance premium once we

take into account the interplay between volatility and probability weighting. This is a very

attractive feature of the model, as it means that we can make progress explaining the time-

series pattern of the variance premium without needing to use any additional degrees of

freedom for making CPT parameters time dependent. All we need is a positive degree of

probability weighting and time-variation in volatility observed in the actual data.

5 Conclusions

This paper investigates the potential of prospect theory to capture both the level and dy-

namics of the variance premium. We extend the representative investor model of Barberis

et al. (2001), where the investor's preferences are the sum of a CRRA utility function and a

prospect theory value function, by incorporating probability weighting. Probability weight-

ing is an integral part of cumulative prospect theory (CPT, Tversky and Kahneman (1992)).

The central �nding in our paper is that a CPT model with probability weighting can generate

a variance premium similar to the values observed in the data for plausible parametrizations.

In our benchmark speci�cation, when we estimate the preference parameters from our theo-

retical model using GMM on S&P 500 equity and options data from 1996 to 2010, we obtain

an estimate for the probability distortion parameter of 0.67, which is remarkably close to

standard values used in the literature.

We show that a su�cient condition for �tting the variance premium is to correctly price

the cross-section of options on the equity index. While the standard CRRA-lognormal model

fails this stricter test, we show the CPT model is very successful with probability weighting,

but not without it. An advantage of the CPT model is that it can provide a unifying

explanation for two well-known option pricing puzzles�the low returns on OTM puts and

the low returns on OTM calls�by incorporating only one additional modeling ingredient:
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probability weighting.

We then extend the static benchmark setting and explore the model's ability to generate

time variation in the variance premium. We �nd that the dynamic version of our model

performs remarkably well once we allow for time-varying volatility, even when probability

weighting is �xed. A second main insight from our paper is therefore that combining prob-

ability weighting (overweighting of extreme returns) and time-variation in volatility (the

presence of extreme returns) yields a parsimonious model that matches key aspects of the

time-series behavior of the variance premium.

Our �ndings have a number of potentially important implications for future research.

In particular, relative to the standard CRRA-lognormal model, which cannot generate a

variance premium, we show that one can explain the variance premium by keeping returns

iid and changing only the representative agent's preference structure. This is in contrast to

much of the existing literature, which changes properties of the return generating process.

In contrast to approaches that rely on dynamics, the CPT model can generate a variance

premium even in a one shot game with known probabilities. It is therefore possible that some

of the variance premium is driven by a fundamentally di�erent mechanism than suggested

by the existing literature.
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Table 2: Unconditional Setting, GMM Estimated Parameters

This table reports GMM estimates for the degree of loss aversion, λ, and probability distortion, c (c1 = c2),
for alternative speci�cations. In all speci�cations, the reference level, WRef , is assumed equal to the risk-
free rate (0.25%) and the the level of risk aversion, γ, is �xed at 1. For the benchmark CPT speci�cation
(speci�cation (2)), the scale, b, is �xed at 1.03, which is the scale that yields a 50% contribution of the CPT
value function to the utility function. The p-values to test the hypotheses λ = 1 and c = 1 are reported in
brackets. The p-values are calculated using Newey-West standard errors. For each speci�cation, we report

CPT's contribution to the utility function, which is calculated as bCPT (XT )
Ψ(WT ,XT ) (see equation (2.6)). We also

compare the observed variance and equity risk premiums, the average model-implied call and put returns,
and the average model-implied OTM call and put returns with those implied by each alternative speci�cation.
The overall �t is summarized by the value function (VF) evaluated at the optimum. Finally, we report the
level of risk aversion (RA) that would be needed in the no-CPT case (b=0) to obtain the model-implied
equity premium. These parameters are estimated applying GMM to returns on the S&P 500 and on S&P
500 call and put options with di�erent strikes and 30-days to maturity and to the variance premium. The
weighting matrix gives an equal weight of 1/4 to the equity, call, put, and variance premium moments. The
sample period runs from January 1996 to October 2010.

(1) (2)
CRRA Benchmark

Observed Log-Utility CPT

γ (risk aversion) 1 1

- -

b (scale) 0 1.03

λ (loss aversion) 1.16

[0.38]

c (distortion losses) 0.67

[0.00]

CPT contribution (%) 0 50.00

Variance Premium (%2) 157.38 0 157.28

Equity Premium (%) 0.33 0.26 0.28

Average call return (%) -12.67 7.06 -13.34

Average put return (%) -24.70 -6.17 -25.44

Average OTM call return (%) -19.61 8.44 -21.00

Average OTM put return (%) -36.08 -7.69 -35.94

VF 6846.48 1.68

RA without CPT 1 1.10
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Table 3: Unconditional Setting, GMM Estimated Parameters, Alternative Scales

This table reports GMM estimates for the degree of loss aversion, λ, and probability distortion, c (c1 = c2), for
alternative values of b, the scale parameter controlling the contribution of the CPT component. Speci�cation
(5) reports the estimates for a speci�cation in which the scale is also estimated. In all speci�cations, the level
of risk aversion, γ, is �xed at 1 and the reference level,WRef , is assumed equal to the risk-free rate (0.25). For
each speci�cation, we also report CPT's contribution to the total utility function, the model-implied variance
and equity risk premiums, the average model-implied call and put returns, the average model-implied OTM
call and put returns, the value function (VF) evaluated at the optimum, and the level of risk aversion (RA)
that would be needed in the no-CPT case to obtain the model-implied equity premium. These parameters
are estimated applying GMM to returns on the S&P 500 and on S&P 500 call and put options with di�erent
strikes and 30-days to maturity and to the variance premium. The weighting matrix gives an equal weight of
1/4 to the equity, call, put, and variance premium moments. The sample period runs from January 1996 to
October 2010. The p-values to test the hypotheses λ = 1, b = 0, and c = 1 are reported in brackets. These
p-values are calculated using Newey-West standard errors.

(1) (2) (3) (4) (5)

Observed Benchmark Low b High b Estimate b

γ (risk aversion) 1 1 1 1 1

b (scale) 1.03 0.3 5 100 0.44

- - - - [0.25]

λ (loss aversion) 1.16 1.19 1.16 1.15 1.18

[0.38] [0.43] [0.29] [0.25] [0.44]

c (distortion) 0.67 0.49 0.76 0.79 0.56

[0.00] [0.00] [0.00] [0.00] [0.11]

CPT contribution (%) 50.00 18.46 83.66 99.04 27.28

Implied Variance Premium (%2) 157.38 157.28 157.57 157.16 157.12 157.46

Implied Equity Premium (%) 0.33 0.28 0.27 0.28 0.28 0.27

Average call return (%) -12.67 -13.34 -11.42 -13.98 -14.17 -12.30

Average put return (%) -24.70 -25.44 -23.86 -25.96 -26.09 -24.56

Average OTM call return (%) -19.61 -21.00 -18.20 -22.05 -22.37 -19.45

Average OTM put return (%) -36.08 -35.94 -34.23 -36.33 -36.38 -35.03

VF 1.68 1.41 2.94 3.44 0.97

RA without CPT 1.10 1.07 1.12 1.12 1.08
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Table 4: Unconditional Setting, GMM Estimated Parameters, Alternative Equity

Return Distributions

This table reports GMM estimates for the degree of loss aversion, λ, and probability distortion, c (c1 = c2), for
equity return distributions alternative to the benchmark lognormal distribution. In particular, we compare
the benchmark lognormal distribution with a normal distribution (speci�cation (2)) and with a skewed-
t distribution (speci�cation (3)). For the skewed-t distribution, the parameters driving the skewness and
kurtosis�ξ and υ, respectively�are calibrated to match the observed monthly equity returns (see Appendix
B). In all speci�cations, the level of risk aversion, γ, is �xed at 1, the scale, b, is �xed at 1.03, the scale
that yields a 50% contribution of the CPT value function for the benchmark speci�cation (speci�cation (1)),
and the reference level, WRef , is assumed equal to the risk-free rate (0.25%). For each speci�cation, we
also report CPT's contribution to the utility function, the model-implied variance and equity risk premiums,
the average model-implied call and put returns, the average model-implied OTM call and put returns, the
value function (VF) evaluated at the optimum, and the level of risk aversion (RA) that would be needed
in the no-CPT case to obtain the model-implied equity premium. These parameters are estimated applying
GMM to returns on the S&P 500 and on S&P 500 call and put options with di�erent strikes and 30-days
to maturity and to the variance premium. The weighting matrix gives an equal weight of 1/4 to the equity,
call, put, and variance premium moments. The sample period runs from January 1996 to October 2010. The
p-values to test the hypotheses λ = 1 and c = 1 are reported in brackets. These p-values are calculated using
Newey-West standard errors.

(1) (2) (3)

Benchmark Normal Skewed-t

γ (risk aversion) 1 1 1

b (scale) 1.03 1.03 1.03

ξ 0.84

υ 6.33

λ (loss aversion) 1.16 1.12 1.11

[0.38] [0.44] [0.45]

c (distortion) 0.67 0.68 0.74

[0.00] [0.00] [0.00]

CPT contribution (%) 50.00 49.51 50.54

Implied Variance Premium (%2) 157.28 157.32 157.56

Implied Equity Premium (%) 0.28 0.55 0.29

Average put return (%) -25.44 -25.26 -23.91

Average call return (%) -13.34 -13.15 -11.79

Average OTM call return (%) -21.00 -20.67 -19.17

Average OTM put return (%) -35.94 -35.62 -33.72

VF 1.68 1.63 2.57

RA without CPT 1.10 2.12 1.14
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Table 5: Unconditional Setting, GMM Estimated Parameters, Asymmetric Dis-

tortion

This table reports GMM estimates for the degree of loss aversion, λ, and probability distortion for gains and
losses, c1 and c2, respectively, for alternative speci�cations. In all speci�cations, the reference level, WRef ,
is assumed equal to the risk-free rate (0.25), the level of risk aversion, γ, is �xed at 1, and the scale, b, is
�xed at 1.03, which is the scale that yields a 50% contribution of the CPT value function to the total utility
function for the benchmark speci�cation (speci�cation (1)). The p-values to test the hypotheses λ = 1, and
c = 1 are reported in brackets. The p-values are calculated using Newey-West standard errors. For each
speci�cation, we also report CPT's contribution to the utility function, the model-implied variance and equity
risk premiums, the average model-implied call and put returns, the average model-implied OTM call and put
returns, the value function (VF) evaluated at the optimum, and the level of risk aversion (RA) that would
be needed in the no-CPT case to obtain the model-implied equity premium. These parameters are estimated
applying GMM to returns on the S&P 500 and on S&P 500 call and put options with di�erent strikes and
30-days to maturity and to the variance premium. The weighting matrix gives an equal weight of 1/4 to the
equity, call, put, and variance premium moments. The sample period runs from January 1996 to October
2010.

(1) (2) (3) (4)

Benchmark Asymmetric

CPT CPT

γ (risk aversion) 1 1 1 1

b (scale) 1.03 1.03 1.03 1.03

λ (loss aversion) 1.16 1.11 1.00 1.79

[0.38] [0.45] [0.50] [0.05]

c1 (distortion losses) 0.67 0.64 0.46 1

[0.00] [0.00] [0.00] -

c2 (distortion gains) 0.70 1 0.47

[0.00] - [0.00]

CPT contribution (%) 50.00 49.32 46.96 54.60

Implied Variance Premium (%2) 157.28 157.30 157.61 157.33

Implied Equity Premium (%) 0.28 0.26 0.50 0.42

Average call return (%) -13.34 -13.28 -3.13 -10.99

Average put return (%) -25.44 -25.31 -29.68 -22.50

Average OTM call return (%) -21.00 -20.30 -3.69 -23.07

Average OTM put return (%) -35.94 -27.79 -45.28 -24.86

VF 1.68 1.36 54.80 39.65

RA without CPT 1.10 1.03 1.93 1.63
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Table 6: Time-Varying Setting, GMM Estimated Parameters

This table shows the estimated parameters and the model's �t for alternative speci�cations of the time-
varying CPT setting. Speci�cations (1) and (2) do not allow for time variation in the CPT parameters.
Speci�cation (1) uses the PD-based method to calculate the observed equity premium, wherein the expected
equity returns are calculated using an in-sample forecast from the PD ratio. In all other speci�cations, the
observed equity premium is calculated as an in-sample forecast from the PD ratio and the variance premium
(PD-and-VP-based method). For every speci�cation, we report the value function divided by the number
of months (Avg. VF). The value function is calculated as a weighted average of the squared residuals for
the variance and equity premiums as well as for the 10 options considered in the time-varying setting. We
also report a decomposition of the model's �t into its variance premium, equity premium, and option return
components. For each component, the �t is calculated as the mean absolute error. In speci�cations (1) to
(5), we assume λ = 1.16, and c = 0.67�the parameters in the benchmark unconditional setting (speci�cation
(2) in Table 2). In speci�cation (6), we assume λ = 1.11, c1 = 0.64, and c2 = 0.70�the parameters in the
asymmetric unconditional setting (speci�cation (2) in Table 2). In all speci�cations, we assume γ = 1 (risk
aversion) and η = 0.5 (agent's memory). The time-varying volatility is calculated as the integrated volatility
based on a GARCH(1,1) method (see Section 4.2).

(1) (2) (3) (4) (5) (6)

EP Method PD PD and VP

κλ (loss aversion) 2.57 2.60

κc1 (distortion) -0.04 -0.12 -0.70

κc2 1.01

Avg. VF 91.07 91.10 87.32 90.03 87.27 89.62

EP �t (%) 0.39 0.46 0.51 0.54 0.51 0.53

VP �t (%2) 108.42 108.42 96.69 98.94 99.93 98.17

Put �t (%) 8.51 8.63 8.63 8.74 8.63 8.68

Call �t (%) 10.63 10.98 10.99 11.08 10.99 10.98

52



Figure 1: Average Option Returns and Model Fit

This �gure compares the average observed 30-day return for all options in our sample with the ones �tted

by our benchmark CPT representative agent model (speci�cation (2) in Table 2) and by a CRRA model�a

restricted CPT model with c = 1 and b = 0 (speci�cation (1) in Table 2). The sample is comprised of daily

S&P 500 index option returns from 1996 to 2010 for various strike prices. Of the 26 options in the sample,

13 are calls, with deltas from 0.2 to 0.8 (from OTM to ITM). The other 13 are puts, with delta from -0.8 to

-0.2 (from ITM to OTM). The �gure below presents results by average moneyness (K/S0) for a given delta,

separately for calls (Panel A) and puts (Panel B).
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Figure 2: Pricing Kernel

This �gure shows the CRRA and CPT components of the pricing kernel implied by our CPT setting (see

equation (2.9)) as a function of market returns (RE). To create the �gure, we assume the following set

of parameters. The reference level, WRef , is assumed equal to the risk-free rate (0.25%); the level of risk

aversion, γ, is �xed at 1; the scale, b, is �xed at 1.03, which is the scale that yields a 50% contribution of the

CPT value function to the utility function for this set of parameters; the parameter driving the probability

weighting, c1 = c2 = c, is �xed at 0.67. These are the parameters obtained in the benchmark GMM estimation

(see Table 2).
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Figure 3: CPT-Implied Variance Premium for Alternative Preference Parameter

Values

This �gure shows the annualized CPT-implied variance premium for alternative values of the scale, b, prob-
ability distortion, c, and loss aversion, λ, parameters, in panels A to C, respectively. In the CPT setting, the
representative agent's preference combines CRRA and CPT functions (equation (2.1)) and the probabilities
are distorted, as explained in Section 2. The variance premium is de�ned as the di�erence between the risk-
neutral and the expected realized variance of equity returns, as explained in Section 2.4. For the benchmark
setup (the bold line), we set c = 0.65 , b = 0.65, and λ = 2.25, unless otherwise indicated in the panel. We
additionally assume γ = 1.
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Figure 4: Average Option Returns and Model Fit for CPT models with Asym-

metric Probability Distortion

This �gure compares the average observed 30-day return for all options in our sample with the ones �tted by a

CPT representative agent model with asymmetric probability distortion (c1 6= c2), a model in which only the

left tail of the distribution is distorted (c2 = 1), and a model in which only the right tail of the distribution

is distorted (c1 = 1) (speci�cations (2), (3), and (4) in Table 5, respectively). Our sample includes 26 option

returns grouped across strikes (or deltas). Of these 26 options, 13 are puts (panel A), with delta from -0.8 to

-0.2 (from ITM to OTM). The other 13 are calls (panel B), with delta from 0.2 to 0.8 (from OTM to ITM).
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Figure 5: CPT-Implied Variance Premium for Alternative Volatility Levels

This �gure shows the annualized CPT-implied variance premium (see Figure 3) for three di�erent values of
monthly equity volatility: 2% (low), 5.18% (benchmark), and 10% (high). Panels A to C show, respectively,
the e�ect of volatility combined with that of the scale, b, probability distortion, c, and loss aversion, λ, for
the CPT-implied variance premium. For the benchmark setup (the bold line), we set c = 0.65, b = 0.65, and
λ = 2.25, unless otherwise indicated in the panel. We additionally assume γ = 1.
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Figure 6: Observed vs. CPT-Implied Equity and Variance Premiums

This �gure compares the observed equity and variance risk premiums with those implied by a CPT setting in

which the model's CPT parameters are constant and the stock return volatility is time varying (speci�cations

(1) and (2) in Table 6). The variance premium, in panel A, is calculated as the di�erence between the square

of the VIX and the expected realized variance (see Section 3.4). The expected realized variance is calculated

as an in-sample forecast of the stock return variance using the lagged stock return variance and the square

of the VIX. The CPT-implied equity and variance risk premiums are calculated as explained in Section 2.4.

In panel B, the observed equity premium is calculated as an in-sample forecast of equity returns from the

price-dividend ratio (PD-based), while, in panel C, we add the variance risk premium as a predictor of equity

returns (PD and VP-based).
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Appendix

A Proof of Proposition 2

Without loss of generality, we focus on one risky asset (equity).17

The investor's problem is now given by

max
αE0 ,...,α

E
T−1

V = E[U(WT )] +
T−1∑
t=0

btCPT (Xt+1)

where as before we follow Barberis et al. (2001) and let the weight on the prospect theory

utilities be given by a multiple of current period's marginal utility of wealth, i.e., by bt =

b̂W−γ
t . The investor's budget constraint is

Wt+1 = Wt(α
E
t rt+1 +Rf ), t = 0, . . . , T − 1

where rt+1 := RE
t+1 − Rf denotes the excess return in from period t to period t + 1. The

portfolio gain or loss each period is thus given by

Xt+1 = Wt+1 −WtR
f = Wtα

E
t rt+1, t = 0, . . . , T − 1.

Let us �rst consider the log-utility case (γ = 1), whose proof is simple and intuitive. In that

case, the investor seeks to maximize

V = E[log((W0ΠT−1
t=0 (αEt rt+1 +Rf ))] +

T−1∑
t=0

btCPT (Wtα
E
t rt+1)

= E[logW0 +
T−1∑
t=0

log(αEt rt+1 +Rf )] +
T−1∑
t=0

b̂W−1
t CPT (Wtα

E
t rt+1)

17Not introducing d = 1, ..., D derivatives (with portfolio shares αdt for derivative d in period t) simpli�es
the notation in the following derivation signi�cantly and does not cause any loss of economic insight.
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Since the CPT functional is homogeneous of degree 1 it follows that CPT (Wtα
E
t rt+1) =

Wtα
E
t CPT (rt+1). For this reason, the decision variables αEt are no longer nested within the

CPT functional. It follows that

V = logW0 +
T−1∑
t=0

E[log(αEt rt+1 +Rf )] +
T−1∑
t=0

αEt b̂CPT (rt+1)

= logW0 +
T−1∑
t=0

(
E[log(αEt rt+1 +Rf )] + αEt b̂CPT (rt+1)

)
.

The objective functional is thus additively separable in the decision variables so that the

FOC for each αEt is independent of the αEs , s 6= t and structurally identical. In particular,

the weights αEt do not depend on the period t itself or on the number of periods remaining �

the myopia result. When returns are iid, we further have thatαE0 = . . . = αET−1, so that the

investor does not rebalance her portfolio.

Now consider the case of general CRRA utility, which we prove by dynamic programming.

Let τ denote the number of periods that remain from current time t so that T = t+ τ . The

value of the agent's problem at time t is given by

V (τ,Wt) = max
{αEs }

t+τ−1
s=t

Et

[
W 1−γ
t+τ

1− γ
+

t+τ−1∑
s=t

bsCPT (rs+1α
E
s Ws)

]

= max
{αEs }

t+τ−1
s=t

Et

[
W 1−γ
t+τ

1− γ
+

t+τ−1∑
s=t

b̂αEs W
1−γ
s CPT (rs+1)

]

where, similarly to the log case, we exploited the fact that the CPT preference functional

is homogeneous of degree 1. The problem has become one of maximizing terminal wealth

expected utility plus a sum of �ow utilities, which are linear in the decision variable. In

particular, letting ct+1 := b̂CPT (rt+1), the time-t value of next period's �ow utility is given

by πt+1 := ct+1α
E
t W

1−γ
t . By the dynamic programming principle, the investor's problem at
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time t can be written as

V (τ,Wt) = max
αEt

Et

 max
{αEs }

t+τ−1
s=t+1

Et+1

[
W 1−γ
t+τ

1− γ
+

t+τ−1∑
s=t+1

cs+1α
E
s W

1−γ
s

]
︸ ︷︷ ︸

V (τ−1,Wt(αEt rt+1+Rf ))

+ αEt ct+1W
1−γ
t︸ ︷︷ ︸

πt+1(αEt ,Wt,ct+1)



subject to the terminal condition V (0,Wt+τ ) =
W 1−γ
t+τ

1−γ + ct+ταt+τ−1W
1−γ
t+τ−1. This means that

τ periods before the model ends, the value of the problem is determined by the problem's

continuation value next period, V (τ − 1,Wt(α
E
t rt+1 + Rf )), plus next periods �ow utility,

πt+1(αEt ,Wt, ct+1). The notation indicates that the continuation value is that of τ −1 periods

before the end, where wealth from the previous period has changed to Wt(α
E
t rt+1 +Rf ). This

continuation value includes the expected �ow utilities on from two periods in the future while

the value of next period's �ow utility is a deterministic function of the time t portfolio weight

and current period wealth. Continuing,

V (τ,Wt) = max
αEt

Et

[
max

{αEs }
t+τ−1
s=t+1

Et+1

[
(Wt

∏t+τ−1
s=t (αEs rs+1 +Rf ))

1−γ

1− γ
+

t+τ−1∑
s=t+1

cs+1α
E
s W

1−γ
s

]
+ αEt ct+1W

1−γ
t

]

= max
αEt

Et

[
αEt ct+1W

1−γ
t +

(Wt(α
E
t rr+1 +Rf ))

1−γ

1− γ
·

max
{αEs }

t+τ−1
s=t+1

Et+1

[
(
t+τ−1∏
s=t+1

(αEs rs+1 +Rf ))
1−γ +

t+τ−1∑
s=t+1

cs+1α
E
s W

1−γ
s (1− γ)

W 1−γ
t+1

]]

= max
αEt

W 1−γ
t Et

[
αEt ct+1 +

(αEt rt+1 +Rf )
1−γ

1− γ
·

max
{αEs }

t+τ−1
s=t+1

Et+1

[
(
t+τ−1∏
s=t+1

(αEs rs+1 +Rf ))
1−γ +

t+τ−1∑
s=t+1

cs+1α
E
s W

1−γ
s (1− γ)

W 1−γ
t+1

]]
.

With some standard manipulations one can show that

t+τ−1∑
s=t+1

cs+1α
E
s W

1−γ
s (1− γ)

W 1−γ
t+1

= (1− γ)
t+τ−1∑
s=t+1

cs+1α
E
s

s∏
s̃=t+2

(αEs̃ rs̃+1 +Rf )
1−γ,
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where we use the convention that
∏t+1

s̃=t+2(xs̃rs̃+1 +Rf )1−γ ≡ 1. Therefore, we obtain

V (τ ,Wt) = max
αEt

W 1−γ
t Et

[
αEt ct+1 +

(αEt rt+1 +Rf )
1−γ

1− γ
·

max
{αEs }

t+τ−1
s=t+1

Et+1

[
t+τ−1∏
s=t+1

(αEs rs+1 +Rf )
1−γ + (1− γ)

t+τ−1∑
s=t+1

cs+1α
E
s

s∏
s̃=t+2

(αEs̃ rs̃+1 +Rf )
1−γ

]]

and see that the problem is homogeneous in current wealth so that, without loss of generality,

we let Wt ≡ 1. Thus,

V (τ,Wt) = max
αEt

Et

[
αEt ct+1︸ ︷︷ ︸
πt+1

+
(αEt rt+1 +Rf )

1−γ

1− γ︸ ︷︷ ︸
=:ut+1

·

max
{αEs }

t+τ−1
s=t+1

Et+1

[
t+τ−1∏
s=t+1

(αEs rs+1 +Rf )
1−γ + (1− γ)

t+τ−1∑
s=t+1

cs+1α
E
s

s∏
s̃=t+2

(αEs̃ rs̃+1 +Rf )
1−γ

]
︸ ︷︷ ︸

=:ψt+1(τ−1)

]

Note that portfolio weight αEt depends on the investment horizon τ through the next-period

term �horizon-e�ect term� ψt+1(τ − 1), which we now study in more detail. First, observe

that

ψt(τ) = max
{αEs }

t+τ−1
s=t

Et+1

[
t+τ−1∏
s=t

(αEs rs+1 +Rf )
1−γ + (1− γ)

t+τ−1∑
s=t

cs+1α
E
s

s∏
s̃=t+1

(αEs̃ rs̃+1 +Rf )
1−γ

]
·

W 1−γ
t ≡1︷︸︸︷
11−γ

Plugging this in above leads to the recursion

ψt(τ)

1− γ
= max

αEt

Et

[
αEt ct+1︸ ︷︷ ︸
πt+1

+
(αEt rr+1 +Rf )

1−γ

1− γ︸ ︷︷ ︸
ut+1

·

max
{αEs }

t+τ−1
s=t+1

Et+1

[
t+τ−1∏
s=t+1

(αEs rs+1 +Rf )
1−γ + (1− γ)

t+τ−1∑
s=t+1

cs+1α
E
s

s∏
s̃=t+2

(xs̃rs̃+1 +Rf )
1−γ

]
︸ ︷︷ ︸

ψt+1(τ−1)

]
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or likewise

ψt(τ) = max
αEt

Et

[
αEt ct+1(1− γ)︸ ︷︷ ︸

πt+1

+(αEt rt+1 +Rf )
1−γ · ψt+1(τ − 1)

]
.

We see that when γ 6= 1 the optimal portfolio weight αEt depends on the investor's horizon τ,

i.e., is non-myopic. We now show that even when returns are independent and/ or identically

distributed, investment is non-myopic. When the rt+1 are independent, because ψt+1(τ − 1)

is free of αEt we have

ψt(τ) = max
αEt

αEt ct+1(1− γ) + Et

[
ψt+1(τ − 1)

]
·max
αEt

Et

[
(αEt rt+1 +Rf )

1−γ

]
.

The maximizing αEt satis�es

ct+1(1− γ) + Et

[
ψt+1(τ − 1)

]
· Et

[
(αEt rt+1 +Rf )

−γr

]
= 0.

We see now that if, and only if, γ = 1 , we can divide by Et[ψt+1(τ − 1)] so that each αEt

satis�es

Et

[
(αEt rt+1 +Rf )

−γrt+1

]
= 0.

This observation is consistent with the previous result that αEt is time- (and thus horizon-)

independent in the log-utility case, γ = 1.18 For all other CRRA utilities, we have shown

that the αEt are time- and horizon-dependent.

18Note, however, that the proof for general γ does not nest the proof for γ = 1, because it involves
expressions with 1− γ in the denominator.
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B Proof of Proposition 4

Without loss of generality, we work in a setting with an in�nite number of outcomes for the

equity payo� xE > 0 at time T . As shown by, for example, Bakshi et al. (2003) and Carr and

Madan (2001), any continuous and twice-di�erentiable payo� function G(xE) can be written

as

G(xE) = G(x̄) +G′(x̄)(xE− x̄) +

∞̂

x̄

G′′(K)max(xE−K, 0)dK+

x̄ˆ

0

G′′(K)max(K−xE, 0)dK

(A.1)

for any value of x̄. This equation shows that any payo� function can be replicated by an

equity position and a position in an in�nite number of call and put options with di�erent

strike prices. If there are no arbitrage opportunities, a risk-neutral measure exists and the

risk-neutral expected value of the payo� function G can then be written as a function of call

and put prices

EQ
[
G(xE)

]
= G(x̄)+G′(x̄)(RfsE0 −x̄)+

∞̂

x̄

G′′(K)RfC(K)dK+

x̄ˆ

0

G′′(K)RfP (K)dK (A.2)

where we use the risk-neutral pricing equations for equity, sE0 = 1
Rf
EQ
[
xE
]
, call options

with strike K, C(K) = 1
Rf
EQ
[
max(xE −K, 0)

]
, and put options with strike K, P (K) =

1
Rf
EQ
[
max(K − xE, 0)

]
. Similarly to equation (A.2) for the risk-neutral expectation, we can

compute the expected value of the payo� function G under the physical measure P as

EP
[
G(xE)

]
= G(x̄) +G′(x̄)(E[xE]− x̄) (A.3)

+

∞̂

x̄

G′′(K)E
[
max(xE −K, 0)

]
dK +

x̄ˆ

0

G′′(K)E
[
max(K − xE, 0)

]
dK
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Now choose G(xE) =
(
ln
(
xEi
sE0

))2

, and by subtracting (A.2) from (A.4) it directly follows

that

EQ

[(
ln

(
xEi
sE0

))2
]
− EP

[(
ln

(
xEi
sE0

))2
]

= −G′(x̄)sE0

(E[xE]

sE0
−Rf

)
(A.4)

−
∞̂

x̄

G′′(K)C(K)
(E[max(xE −K, 0)]

C(K)
−Rf

)
dK

−
x̄ˆ

0

G′′(K)P (K)
(E[max(K − xE, 0)]

P (K)
−Rf

)
dK

with G′(x) = 2ln
(
x
sE0

)
1
x
and G′′(x) = 2

x2

(
1− ln

(
x
sE0

))
. We choose x̄ = sE0 , so G

′(x̄) = 0.

De�ning

Rp(K) = E
[
max(K − xE, 0)

]
/P (K)

and

Rc(K) = E
[
max(xE −K, 0)

]
/C(K)

and de�ning weights

vc (K) = −G′′(K)C(K)

and

vp (K) = −G′′(K)P (K)

then yields the right hand side of equation (2.13) in the main text.

To see that the right hand side of equation (2.13) is an approximation to the variance

premium, note that adding

EP
[
ln
(
RE
)]2 − EQ

[
ln
(
RE
)]2

to both sides of equation (A.4) above yields the variance premium exactly, as can be seen
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by comparing the left hand side of the resulting equation with the de�nition of the variance

premium in equation (2.11) in the main text. This term arises due to the di�erence between

central and non-central second moments. For our application, this term is numerically small

as we focus on one-month returns: it is equal to 1.3 in our benchmark model, while empirically

the variance premium is equal to 157.4. Equation (2.13) omits this term, which is why it

becomes an approximation to the variance premium.

Finally, note that choosing x̄ = sE0 implies that equation (2.13) includes only OTM put

and call options. It thus follows directly that the weights vc (K) and vP (K) are negative for

any reasonable value of K. Only for deep OTM call options with strikes above sE0 e
1 will the

weight become positive.
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C Gentzkow and Shapiro (2015) Sensitivities

To assess how well the di�erent parameters in our CPT model are identi�ed, we calculate

the Gentzkow and Shapiro (2015) sensitivities which capture the sensitivity of the parameter

estimates to the moment conditions. Formally, these are de�ned as the coe�cients of a

regression of the estimator θ̂ on the moment conditions ĝ. In a GMM setting, Gentzkow and

Shapiro (2015) show that the sensitivities Λare given by

Λ = −(G′WG)−1G′W (A.1)

where G = δg/δθ′ and W is the GMM weighting matrix. Intuitively, the sensitivities

measure how a change in a given moment condition a�ects the estimate of a parameter and

thus capture how informative each moment condition is about a parameter. In addition, if

two parameters have very similar sensitivities, it will be hard to separately identify these

parameters from the given set of moment conditions. Gentzkow and Shapiro (2015) propose

to standardize the sensitivities by the asymptotic variance of the estimators

Λ̄ij = Λij
V ar(ĝj)

V ar(θ̂i)
. (A.2)

In Figure D.1 we plot these standardized sensitivities for the case where we estimate b, λ,

and c (panel A), and for the benchmark case where we �x b and estimate only λ and c (panel

B). We see in panel A that the sensitivities of b and λ are very similar. As discussed in Section

3.4.2 this problem arises because �too little� probability weighting can be compensated for by

giving a higher weight to the CPT part in the utility function. Conversely, even extreme levels

of probability weighting do not matter much if the CPT component enters the investor's total

utility function with only little weight. Once we �x b, panel B shows that we can separately

identify λ and c as their sensitivities di�er substantially across moments. In particular, the

variance premium a�ects the estimator for c much more than the estimator for λ, in line with

the comparative statics analysis in Section 3.3.
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D Alternative Stock Returns Distribution: Skewed-t Dis-

tribution

In Section 3.4.2, we investigate to what extent our baseline results are robust to using a

skewed fat-tailed distribution instead of a standard lognormal distribution for stock returns.

In this appendix, we �rst introduce the standardized skewed-t distribution (see, for example,

Lambert et al. (2012) and Bauwens and Laurent (2002)). Then, we report the Maximum

Likelihood estimates for the key parameters of these distribution using our sample of S&P

500 returns.

The return on the S&P 500, rt, follows the process

rt = µ+ εt (A.1)

εt = σςt, (A.2)

where the random variable ςt is SKST (0, 1, ξ, v) distributed; that is, it follows a standardized

skewed-t distribution with parameters v > 2 (the number of degrees of freedom) and ξ > 0

(a parameter related to skewness). The density of this function is given by

f (ςt|ξ, v) =


2

(ξ+ 1
ξ )
sg [ξ (sςt +m) |v]

2

(ξ+ 1
ξ )
sg [ξ (sςt +m) /ξ|v]

if ςt < −m/s

if ςt > −m/s
, (A.3)

where g (.|v) is a symmetric (zero mean and unit variance) Student-t density with v degrees

of freedom, denoted x ∼ ST (0, 1, v), de�ned by

g (x|v) =
Γ
(
v−1

2

)√
π (v − 2)Γ

(
v
2

) [1 +
x2

v − 2

]−(v+1)/2

(A.4)

where Γ (.) is an Euler's gamma function.

The constants m = m (ξ, v) and s =
√
s2 (ξ, v) are, respectively, the mean and standard
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deviation of the non-standardized skewed-t density, SKST (m, s2, ξ, v), and are de�ned as

follows:

m (ξ, v) =
Γ
(
v−1

2

)√
v − 2

√
πΓ
(
v
2

) (
ξ − 1

ξ

)
(A.5)

s2 (ξ, v) =

(
ξ2 +

1

ξ2
− 1

)
−m2. (A.6)

The parameters ξ and v are related to the distribution's skewness and kurtosis. Because ξ2

can be shown to be equal to the ratio of the probability masses above and below the mode,

the distribution has zero skewness when ξ = 1, negative skewness when ξ < 1, and positive

skewness when ξ > 1. The fatness of tails (kurtosis) decreases with the degrees of freedom

parameter, v, but converges to a skewed normal as v → ∞. When v → ∞ and ξ = 1, this

distribution collapses to a standard normal distribution.

Table C.1 reports estimates and standard errors for θ = (µ, σ, ξ, v), using monthly log

returns on the S&P 500 over the period running from 1960 to 2011. All parameters are

statistically signi�cant at the 1% level. ξ is signi�cantly below 1, implying negative skewness.

The ratio of the probability masses above and below the mode is equal to ξ2 = 0.71, implying

that the degree of negative skewness is also important in economic terms. The estimated

degrees of freedom parameter, v, equals 6.33, indicating that the return distribution is not

only left skewed but also fat tailed.

Table C.1: Parameters of the Skewed-t Distribution

This table reports the estimated parameters for the Skewed-t distribution described in equations (B.1) to
(B.6). The standard errors are reported in parenthesis.

µ σ ξ v

Estimate 0.0077 0.0437 0.8448 6.3301

(s.e.) (0.0017) (0.0019) (0.0487) (1.5862)
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Figure D.1: Sensitivity of CPT Parameter Estimates to Sample Moments

This �gure shows the standardized sensitivities of the CPT parameter estimates to the following sample

moments: the equity premium, the variance premium, and the put and call option returns. To facilitate the

interpretation of sensitivities, option returns are orthogonalized with respect to the equity and the variance

premium. Panel A shows the sensitivities for the setting in which the scale is also estimated (speci�cation

#6 in Table 3), while panel B shows the sensitivities for the benchmark CPT setting (speci�cation (1) in

Table 3). Standardized sensitivities are calculated following Gentzkow and Shapiro (2015) as the sensitivity

of the expected value of each parameter to a one-standard-deviation change in the realization of each moment

condition.
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