
Match or Mismatch:

Learning and Inertia in School Choice

Yusuke Narita∗†

August 2, 2016 (First Public Version: October 2015)
Click Here for the Latest Version

Abstract

Centralized matching markets are designed assuming that participants make well-

informed choices upfront. However, this paper uses data from NYC’s school choice

system to show that families’ choices change after the initial match as they learn about

schools. I develop an empirical model of evolving demand for schools under learning,

endowment effects in response to prior assignments, and switching costs. These model

components are identified by using admissions lotteries and other institutional features.

The estimates suggest that there are even more changes in underlying demand than

in observed choices, undermining the welfare performance of the initial match. To al-

leviate the welfare cost of demand changes, I theoretically and empirically investigate

dynamic mechanisms that best accommodate choice changes. These mechanisms im-

prove on the existing discretionary reapplication process. In addition, the gains from

the mechanisms drastically change depending on the extent of demand-side inertia

caused by switching costs. Thus, the gains from a centralized market depend not only

on its design but also on demand-side frictions (such as demand changes and inertia).
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1 Introduction

From public housing to entry-level labor markets to school choice, centralized matching

markets are a prominent form of public policy. These markets are usually designed assuming

that participants make well-informed choices upfront, anticipating what they will demand

in the future. Little is known, however, about whether this assumption holds in practice.

In this paper, I study how families’ demand for schools evolves using data from NYC’s

high school choice system, which serves more than 90,000 families applying for 700 schools

each year. I develop a framework to recover families’ evolving demand under learning and

switching costs, where demand is also allowed to change in response to prior assignments. I

use the estimated framework to quantify demand changes and their welfare consequences.

My analysis uses administrative panel data from NYC’s high school choice system, con-

sisting of the centralized first-round in December and a discretionary reapplication process

in April. The data records families’ participation decisions as well as rank-ordered school

choices both in the first-round and the reapplication process, allowing me to trace the dy-

namics of school choices.

In Section 2, I demonstrate that contrary to the premise of well-informed upfront choices,

families’ choices change after the initial match as they learn about schools. About 7% of

families reapply and at least 70% of these reapplicants reverse choice (preference) orders over

schools between the first round and the reapplication process. Most choice reversals can be

rationalized only by real demand changes and not by strategic behavior with unchanged

demand.1 These choice changes appear to be mainly caused by learning. Most families

self-report that they change their choices because of new information about schools or their

preferences about schools. Moreover, consistent with their self-reports, families’ choices be-

come more correlated with and responsive to school characteristics. In particular, compared

with initial applications, reapplications rank schools that are closer to families’ homes and

that are academically no worse.

The above choice changes provide only a lower bound on the amount of changes in un-

derlying demand. There may or may not be additional unobserved demand changes. For

families who do not reapply, their behavior does not directly reveal demand changes. How-

1I say an applicant exhibits choice reversals if the following holds: In the reapplication process, she
attempts to switch from the first-round assignment s to another school that is unranked or ranked below s
in the preference list she reports in the first-round market. I say an applicant exhibits surely nonstrategic
choice reversals if she exhibits choice reversals and does not exhaust her first-round preference, i.e., rank 11
or fewer schools though she could have ranked up to 12 schools. I show that (1) 71% of reapplicants exhibit
choice reversals, (2) about 80% of the choice reversals are surely nonstrategic, and (3) surely nonstrategic
choice reversals are consistent with optimal behavior only if intrinsic preferences and demand change between
the first round and the reapplication process.
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ever, some families may experience demand changes but not reapply because of “switching

costs” or “reapplication costs,” in which case demand changes exist but are not directly

observed. For example, the time cost of filling out a paper application form may constitute

reapplication costs.

To distinguish these scenarios and recover underlying evolving demand, the core part of

this paper in Section 3 develops a structural model of dynamic school choice. The model

incorporates demand changes by learning and reapplication costs. I also let demand change

in response to initial assignments in the first round. Specifically, I allow the utility of the

first-round assignment to change by some positive or negative amount, which can differ

across applicants. Such demand responses are likely if families obtain more information

about their initial assignments or if they experience psychological endowment effects about

them. I provide a strategy to distinguish these behavioral elements by exploiting three

institutional features. First, because of capacity constraints, many applicants are initially

assigned to a school other than the most preferred school. Second, the assignments to the

most preferred and less preferred schools are partly random, thanks to admissions lotteries

used in the first-round assignment mechanism. Finally, reapplicants make new choices that

are rank-ordered. These features allow me to decompose observed behavior into the model

components (demand changes, reapplication costs, and demand changes in response to prior

assignments.).

Intuitively, the identification logic is as follows. For simplicity, let me ignore demand

responses to initial assignments and assume that there are only two preference ranks, the

first choice and the lower choice. Many applicants are “lower-choice non-reapplicants,” who

are initially assigned to their old lower choice but do not reapply, due either to reapplication

costs or demand changes. This fact allows me to measure the total effects of demand changes

and reapplication costs. There are also “first-choice reapplicants,” who are initially assigned

to their old first choice but reapply, which must be because of demand changes. Other

applicants assigned to their first choice may also experience demand changes but be locked

in by reapplication costs. The fraction of reapplicants among all applicants assigned to

the first choice thus tells us the difference between the amounts of demand changes and

reapplication costs.

Now suppose that admissions lotteries in the first-round mechanism guarantee that ini-

tial assignments are randomly assigned and applicants assigned to the first-choice and lower-

choice are comparable people with similar demand changes and reapplication costs. I can

compare the fractions of lower-choice non-reapplicants and first-choice reapplicants to mea-

sure the amount of reapplication costs. Heuristically,
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(fraction of non-reapplicants among applicants assigned to the initial lower choice)

-(fraction of reapplicants among applicants assigned to the initial first choice)

=(demand changes+reapplication costs)-(demand changes-reapplication costs)

=2×reapplication costs,

which separates reapplication costs from demand changes. The precise implementation of

this argument generates complications related to more than two preference ranks, admissions

lotteries embedded in assignment mechanisms, and demand responses to initial assignments.

Solutions for these challenges are detailed below.

I estimate the model and find a significant role of learning, reapplication costs, and

demand responses to initial assignments. Crucially, as detailed in Section 4, the estimates

suggest that there are substantially more changes in underlying demand than in observed

choices. These hidden demand changes are masked by reapplication costs, which prevent

families from reapplying and expressing demand changes.2

As a result, the welfare cost of ignoring demand changes is large. To measure the welfare

cost, I compare the real first-round assignment based on old demand with the counterfactual

“frictionless benchmark.” The frictionless benchmark is defined as what would have been

produced by the same first-round assignment mechanism, had families made choices based

on their new demand after learning. Since the two differ only in whether families’ choices

are based on old or new demand, the difference between the two captures the welfare costs of

ignoring demand changes by learning.3 The real and frictionless assignments turn out to be

significantly different. Specifically, the two assignments give different allocations (schools)

to a majority of families; the average welfare loss under the real first-round assignment

compared with the frictionless benchmark is more than 1-mile-equivalent, when I measure

it by new demand assumed to be quasi-linear in the distance between the family and the

school locations.4 This magnitude corresponds to more than .15 standard deviations in the

distribution of utilities from schools for each applicant. Demand changes thus undermine

the welfare performance of the initial match that ignores demand changes.

The large welfare cost of ignoring demand changes motivates me to investigate ways to

2Demand responses to initial assignments also lower the reapplication rate. The estimates show that
families tend to get to prefer initially assigned schools more, compared with other schools. This satisfaction
with initial assignments lowers the reapplication rate.

3Except applicants’ choices, every other input is unchanged between the real first-round assignment and
the frictionless benchmark. For example, school capacities and their preferences or priorities over applicants
are fixed.

4The 1-mile-equivalent utility unit can be interpreted as corresponding to traveling 1 mile every school
day during the high school years. Also, I use new demand as my welfare measure because it is demand after
leaning at a point in time closer to enrollment periods; new demand is thus expected to be a better welfare
measure than old demand is.
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alleviate the cost by accommodating demand changes. As already explained, NYC runs a

discretionary, human-driven reapplication process. It is also possible to run a centralized

algorithm for the reapplication process. I build a dynamic version of the school-student

assignment model, analyze centralized designs of the reapplication process, and show that

the centralized reapplication processes are the “best possible” mechanisms to accommodate

choice changes. I evaluate how well the discretionary and centralized reapplication processes

alleviate the welfare cost of ignoring demand changes. I find that both types of reapplication

processes produce welfare gains, but the centralized reapplication processes are more effective

and produce gains more than twice as large as those from the discretionary process.

This evaluation of reapplication processes takes estimated reapplication costs as given.

There are technological changes and school districts’ and social entrepreneurs’ initiatives that

may ease reapplication costs (e.g., online systems for more easily making and updating school

choices). To measure the potential effects of such demand-side changes or interventions, I

finally investigate how the performance of reapplication processes depends on reapplication

costs and the resulting demand-side inertia. I find that the gains from the centralized

reapplication mechanisms change by several times depending on the extent of demand-side

inertia, which governs how much demand changes are revealed in reapplications.

These findings show that learning causes significant demand changes, which in turn un-

dermine the welfare performance of the initial match and result in the large welfare cost

of ignoring demand changes. Dynamic reapplications processes, especially centralized ones,

help alleviate the welfare loss by accommodating changing demand. In addition, the gains

from the mechanisms substantially change depending on the extent of demand-side inertia

caused by reapplication costs. Thus, in the dynamic real world, the gains from a centralized

market depend not only on its design but also on demand-side frictions such as demand

changes (arising from learning) and inertia (caused by reapplication costs). This sheds

empirical light on the potential importance of demand-side interventions that attempt to

alleviate these frictions (e.g., applications for more easily searching school characteristics,

online systems for more easily updating school choices).5

Related Literature. This paper is a first empirical study on the welfare performance of

a dynamic centralized matching market. For that purpose, I develop an empirical model

5Many school districts and social entrepreneurs have been launching such initia-
tives. For example, see http://www.dnainfo.com/new-york/20131113/washington-heights/

six-apps-launch-guide-families-through-high-school-admissions-process and http:

//izonenyc.org/initiatives/innovate-nyc-schools/#scdc. However, aside from a few field ex-
periments in Hastings and Weinstein (2008) and Andrabi et al. (2015), little is known about the effects of
such demand-side interventions.
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of evolving demand for schools under learning, reapplication costs, and demand changes in

response to prior assignments, which have been studied in labor and public economics and

industrial organization. I propose a novel approach to identify and estimate the different

model elements using institutional features of centralized school choice systems. Finally, I

combine the estimated model with a theoretical analysis of dynamic centralized matching

markets to conduct welfare analysis.

More specifically, this paper combines and contributes to four different strands of the

literature. First, the descriptive analysis of evolving school choices uses a revealed preference

idea and relates to the economics and psychology literatures on revealed preference changes

in the field, e.g., see papers reviewed in Blundell (1988) and Varian (2006) as well as more

recent papers including Abaluck and Gruber (2011), Echenique et al. (2011), and Choi

et al. (2014). These papers mainly focus on econometric difficulties in the detection and

interpretation of preference changes.6

Second, my analysis suggests that school choice changes appear to be primarily caused by

frictions in initial choices and learning about schools. This suggested importance of frictions

in school choices echoes existing studies such as Hastings and Weinstein (2008), Jochim et

al. (2014), Andrabi et al. (2015), Wiswall and Zafar (2015), and Hastings et al. (2015).7

Similar findings are also present in non-education contexts (Fang et al., 2008; Kling et al.,

2012; Handel and Kolstad, 2015). Unlike these studies, I study the dynamics of frictions

and learning within the same applicant or family. In this respect, this paper relates to non-

education papers like Farber and Gibbons (1996), Ketcham et al. (2012), and Ketcham et

al. (2015) on learning.

Third, my empirical model is a model of dynamic school choice with frictions in initial

choices, reapplication costs, and demand responses to initial assignments. My model is

thus at the intersection of empirical school choice models, demand models with frictions,

and those with switching costs (or “state dependence” or “brand loyalty”), which have

heretofore been applied only to non-education settings such as labor supply, insurance, and

6I am more interested in welfare consequences of demand changes in dynamic centralized markets. To
my knowledge, few papers investigate any pervasive effects of changes during administrative time delays.
An exception is Autor et al. (2015), who study the effect of administrative decision time on the labor force
participation and earnings of disability insurance applicants. Also, existing studies on decentralized matching
markets emphasize the importance of demand changes in their discussion of unravelling. See Roth (2002)
for an overview.

7NYC’s former deputy director of high school enrollment also points to potential fric-
tions in the school choice process: “Given how massive the New York City process is,
(...) the process by which those choices are made remains complicated, and very much de-
pends on expertise or the ability to spend an excessive amount of time understanding how
it works. Many students still go without either.” (http://ny.chalkbeat.org/2015/08/07/
why-high-school-admissions-actually-doesnt-work-for-many-city-students-and-how-it-could/

#.VdP8ZHj5q20)
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retail industrial organization.8 Existing models of switching costs, state dependence, and

brand loyalty include Shum (2004), Card and Hyslop (2005), papers reviewed in Farrell

and Klemperer (2007), Dube et al. (2009), Bronnenberg et al. (2012), Abaluck and Gruber

(2013), Handel (2013), Ho et al. (2015), Sudhir and Yang (2014), and Hortacsu et al. (2015).

Demand under choice frictions is studied by Chetty (2012), Handel and Kolstad (2015), and

Spinnewijn (2015) among others. Models of school choice include Manski and Wise (1983),

Epple et al. (2006), Bayer et al. (2007), Hastings et al. (2008), Ajayi (2013), Neilson (2013),

Casalmiglia et al. (2014), He (2014), Walters (2014), Abdulkadiroğlu et al. (2015), Agarwal

and Somaini (2015), Dinerstein and Smith (2015), and Kapor (2015).

Finally, this paper’s theoretical analysis of centralized dynamic reapplication processes

relates to the literature on the design of school-student assignment mechanisms, initiated

by Abdulkadiroğlu and Sönmez (2003), building on the classic two-sided matching problem

(Roth and Sotomayor, 1990). Their model is extended and applied by Abdulkadiroğlu et al.

(2009) to analyze the NYC institution, but both papers consider only static models and avoid

dynamic considerations. By contrast, I use a dynamic model to take demand changes into

considerations. In this sense, this paper’s theoretical analysis shares some attributes with

recent papers on dynamic aspects of matching market design, e.g., Ünver (2010), Pereyra

(2013), Dur and Kesten (2014), Kennes et al. (2014), Kurino (2014), Anderson et al. (2015),

Akbarpour et al. (2015), Baccara et al. (2015), Leshno (2015), and Kadam and Kotowski

(2015). This paper differs, however, because these studies exclude demand changes or use

additional structures (e.g., binary preferences) to analyze their applications, which makes

it difficult to apply them to analyze this paper’s problem. More importantly, none of the

above theoretical papers connects theory to data.

2 A First Look at Evolving Choices

2.1 Evolving School Choices in NYC

I start by documenting how families’ school choices evolve over time. My analysis uses

administrative panel data from the public high school choice system in NYC for the 2004-5

school year. This system contains more than 700 high school programs of various types across

Greater New York. Some schools are academically selective, while others put emphasis on

8My model is also related to demand models with learning (see Ching et al. 2013 for a review), but different
in that these learning models usually consider forward-looking consumers who try to learn the quality of
frequently-used products (e.g., detergents) by experimenting with multiple products. This learning-by-
experimentation aspect seems secondary in my context of education, where it is not easy to switch from one
school to another.
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the arts. 8th (and some 9th) graders living in NYC may apply to these schools. Each year,

about 90,000 families apply, and most of them are admitted by some school. This system

has been organizing applications and selections via the following centralized procedure:

(1) Each applicant ranks up to 12 schools in the order of her preference.

(2) Each school ranks applicants using its preference or priority as well as lottery numbers.

(3) NYC runs a strategy-proof algorithm (the “deferred acceptance” algorithm) on appli-

cants’ and schools’ preferences to make an initial assignment of applicants to schools.9

On top of this initial match, the system has an additional reapplication process. After

being informed of the initially assigned school, any applicant is allowed to reapply against

the assigned school if she is not satisfied with it. A reapplicant needs to fill out a paper

reapplication form with a written reason for reapplying and turn it in to the guidance

counselor at her middle school. In the reapplication, she is asked to rank up to 3 other

schools she currently prefers over the initial assignment. She can rank the same schools as

in the initial application. The initial assignment is guaranteed, i.e., if her reapplication is

rejected, she is assigned her initially assigned school.

The timeline of initial applications and reapplications is available in Figure 1. Applicants

make initial applications during November and December. After the announcement of the

initial assignment, some families file reapplications during April and May. For reapplicants,

the time interval between their initial application dates and reapplication dates are of mean

153.8 days and standard deviation 7.7 days (Appendix Figure A.1). Thanks to the reappli-

cation process, for those who reapply, I observe their school choices at two different points

in time, which allows me to investigate how their demand for schools evolves.10

About 7% (6430 applicants) of 91289 applicants reapply (Table 1). NYC accepts and re-

assigns 21% of reapplications to other schools in a discretionary, human-driven reapplication

9The details of the algorithm will be explained in Appendix A.4.
10After the initial application process described below, there is the “supplementary round” for stu-

dents who are not matched in the initial match. I exclude the supplementary round from the analysis
because the supplementary round lets students rank only schools they do not rank in the initial appli-
cation process, which makes it impossible to observe any clear choice changes or reversals between the
initial application process and the supplementary round. In addition, the separate system that NYC
uses for allocating seats in selective “specialized programs” or exam schools, is also outside the scope
of my analysis because the system does not provide information about dynamic choice changes. I also
exclude from my analysis those applicants who enroll in schools other than their initial assignments
through over-the-counter bargaining, because I observe little information about it. Finally, my descrip-
tion below is for school year 2004-5 and parts of it may not be applicable to the current institution.
Nevertheless, NYC keeps using similar discretionary reapplication processes even in recent years. See
http://insideschools.org/blog/item/1000804-kids-win-one-third-of-hs-appeals#.
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process. To measure choice changes, I say an applicant exhibits choice reversals if she reap-

plies against her initially assigned school s by ranking another school that is ranked below

s or unranked in her initial application.11 Among those who reapply, 71% (4564 applicants)

exhibit choice reversals. This number is about 5% of the whole population.12

Crucially, most choice reversals can be rationalized only by intrinsic demand or prefer-

ence changes. I say an applicant exhibits surely nonstrategic choice reversals if she exhibits

choice reversals and ranks 11 or fewer schools in her initial application, even though she

could have ranked up to 12 schools. Surely nonstrategic choice reversals are consistent with

optimal behavior only if there are intrinsic demand changes between the first round and the

reapplication process. To see this, suppose to the contrary that an applicant exhibits surely

nonstrategic choice reversals but does not experience demand changes. Let s be her initial

assignment and t be any other school that (1) she ranks in her reapplication, but (2) she

ranks below s or does not rank in her initial application. If she prefers s to t, then she would

be better off by dropping t from her reapplication. If she prefers t to s, then she would

gain by ranking t ahead of s in her initial application: The deferred acceptance algorithm in

the initial application process is known to be strategy-proof for applicants and guarantees

this property (Abdulkadiroğlu and Sönmez, 2003). Thus, surely nonstrategic choice rever-

sals can be rationalized only by real demand changes. Table 1 shows that about 80% of

choice reversals are surely nonstrategic. This fact suggests that most choice reversals in the

reapplication process reflect real demand changes rather than strategic behavior.

2.2 Choice Frictions and Learning

Characteristics of all applicants, reapplicants, reapplicants who exhibit choice reversals are

in Table 2. Those who reapply (and exhibit choice reversals) look similar to the average

applicant, though the former is slightly more likely to be a female 8th grader and have lower

test scores. Why do these similar looking applicants reapply? There are many potential

reasons, such as mistakes in initial applications, changes in the life situation (e.g., moving),

changes in the information about schools, changes in intrinsic tastes and preferences, and

peer effects related to which schools siblings, friends, and bullies are assigned.

To understand the relative importance of these factors, Figure 2 provides a breakdown of

11Note that I do not include choice reversals among other schools than the initially assigned school s. For
example, there are cases where an applicant prefers t(6= s) to u(6= s) in the initial application, but prefers u
to t in the reapplication. I ignore these cases to make my calculation conservative.

12As another look at this fact, Appendix Figure A.2b shows that many applicants reapply after being
assigned to their top choices. Also, Appendix Figure A.2a shows that the first choice market shares of
schools change from the first round to the reapplication process, where the first choice market share of a
school is the fraction of applicants who rank it first among all applicants who make a first choice.
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reapplication reasons self-reported by reapplicants. Panel (a) shows that the vast majority

of reapplicants claim that they reapply because of new information or learning about school

characteristics or their preferences about school characteristics. For example, many families

claim that they were not aware of how far away the initially assigned school is or how

painful it is to travel to the initial assigned school. Only a small fraction (less than 5% each)

ascribes their reapplications to other potentially important factors, such as mistakes in initial

applications and moving after initial applications. This provides suggestive evidence that

the main factor for evolving demand is frictions in the initial choice process and learning

about schools.13

Panel (b) provides a further breakdown of the largest category of new information. This

further breakdown shows that a variety of observable and unobservable school characteristics

matter. Nevertheless, only a tiny fraction of reapplicants claim that they reapply because

they do or do not want to enter the same school as particular siblings or friends or bul-

lies; as far as reapplication decisions are concerned, peer effects do not seem quantitatively

important.

Consistent with their self reports, families’ choices become more correlated with and

responsive to school characteristics in reapplications. Table 3 documents that, compared with

initial applications, reapplications rank schools that are more than 20% closer to families’

homes. These distance reductions come without sacrificing academic achievement level, as

shown in lower rows. This pattern holds across demographic groups (Appendix Table A.2).

In Table 4, to incorporate other horizontal characteristics, I run the following descriptive

regression:

yts = btXs + ets,

where yts is the first choice market share of school s in round t, which is the first round or

the reapplication process, where the first choice market share of a school is the fraction of

applicants who rank it first among all applicants who make a first choice. Xs is a vector

of observable characteristics of school s, which do not change from the first round to the

reapplication process.

Table 4 shows R2’s from the above regression for the first round and the reapplication

process. Across various specifications of Xs, R
2 is always higher in the reapplication process;

reapplications appear to be more attentive or responsive to observable school characteristics

than initial applications do. I checked to ensure that this pattern is robust to many specifi-

13Since the reapplication process is discretionary, some of the self-reported reapplication reasons may be
contaminated by strategic reporting. However, there seems to be no clear reason to expect that strategic
reporting overstates the new information category because other reasons, such as moving and mistakes,
sound more legitimate.
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cations with different school characteristics and their interactions. The R2 increase is almost

always present across demographic groups defined by baseline test scores and race (Appendix

Table A.1).14 Note that Tables 3 and 4 and Figure 2 use mutually exclusive aspects of the

data: While Figure 2 classifies self-reported reasons for reapplications, Tables 3 and 4 cor-

relate families’ school choice behavior with observable school characteristics. Tables 3 and

4 thus provide another independent support for the possibility that families become more

informed of observable school characteristics or their preferences about them as time goes by.

The above descriptive analysis documents that a significant fraction of families change

their school choices mainly because of learning about schools. This analysis has several lim-

itations, however. I cannot extrapolate the suggestive findings on learning (Tables 3 and 4

and Figure 2a) to the whole population since they are based on self-selecting reapplicants.

More importantly, the descriptive analysis depends entirely on observed choice changes, but

observed choice changes may underestimate changes in latent demand. In particular, for

families who do not reapply, their behavior does not directly reveal demand changes. How-

ever, some families may experience demand changes but not reapply because of “switching

costs” or reapplication costs, in which case demand changes exist but are not directly ob-

served. For example, the time cost of filling out a paper application form may constitute a

reapplication cost.

To distinguish these scenarios and recover underlying evolving demand, it is necessary

to model how learning and the resulting demand changes do or do not come to the surface

as observed choice changes in the presence of potential reapplication costs. I next integrate

key pieces of the descriptive analysis into a structural model of dynamic school choice with

learning and reapplication costs.

3 Uncovering Evolving Demand

3.1 Dynamic School Choice under Learning and Switching Costs

To recover underlying evolving demand that is not necessarily reflected in observed choice

behavior, this section develops a structural model of dynamic school choice. The model

incorporates demand changes by learning and reapplication costs. In addition, the model

allows demand to change in response to initial assignments in the first round. Specifically, I

allow the utility of the first-round assignment to change by a positive or negative amount,

14These R2 increases may be trivial if initial applications shares are more dispersed. However, the standard
deviation of market shares changes little between the two periods (0.0028 for initial application shares and
0.0027 for reapplication shares).
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which can be heterogenous across applicants. Such demand responses are likely if families

experience psychological endowment effects about their initial assignments or get more in-

formation about them.

Demand Before and After Learning. The random utility of school s for applicant a in

period 0 (the initial application process) is

U0
as = U0

s + ΣK
k=1βak(1 + fak)Xask + ε0as, (1)

where U0
s is a school-specific effect, Xas ≡ (Xask)k=1,...,K is a vector of (interactions of) a’s

and s’s observable characteristics (e.g., the distance between a’s and s’s locations), βa ≡
(βak)k=1,...,K is a vector of preference coefficients, and ε0as is an unobserved utility shock.

fa ≡ (fak)k=1,...,K is the only non-standard term and stands for frictions a faces about how

to value characteristicsXas in the initial application process. I interpret each βak(1+fak)Xask

as a’s perceived valuation of Xask in t = 0. fak can be positive or negative and heterogenous

across different characteristics. Two interpretations of this specification are possible. The

first interpretation is that fak is frictions about preferences βak and an applicant may not

know her preferences about characteristics Xask, e.g., how painful it is to travel a certain

distance. The alternative interpretation is that fak is frictions about characteristics Xask

and an applicant may not know Xask, e.g., the distance to schools. Both interpretations

and their combinations are consistent with the descriptive analysis and result in the same

welfare implications below. I prefer the first interpretation; see “Discussions on Modeling

Decisions” at the end of this section for an additional discussion. The modeling of the friction

is motivated by Figure 2a and Tables 3 and 4, which suggest that applicants face frictions

about observable school characteristics or their preferences about school characteristics in

the initial application process. I assume that each applicant a’s initial preference �0
a is based

on perceived utilities U0
as’s subject to frictions, i.e., s �0

a s
′ only if U0

as > U0
as′ .

15

After the initial application, NYC runs the (applicant-proposing) deferred acceptance

algorithm to give an initially assigned school s0a to each applicant a. During and after the

match-making process, applicants’ perceived utilities change. The random utility of school

s for applicant a in period 1 (the reapplication process) is

Ū1
as = U1

s + βaXas + ε1as︸ ︷︷ ︸
≡U1

as

+γa1{s = s0a}. (2)

The first three terms are similar to those in initial utilities U0
as except that the frictions

15I assume s �0
a s′ for any ranked school s and unranked school s′. See “Discussions on Modeling Decisions”

at the end of this section for discussions about this truth-telling assumption.
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are normalized to zero,16 and school-specific effects U1
s ≡ U0

s + Us and unobserved utility

shocks ε1as ≡ ε0as + εas are subject to new unobserved shocks Us and εas, respectively. I allow

U1
s and ε1as to differ from U0

s and ε0as, respectively, to accommodate the fact that demand

changes are sometimes related to unobserved school characteristics such as how nice current

students are (Figure 2b). As a result of this specification, unobserved utility shocks ε0as and

ε1as are serially correlated for each applicant a. This is reasonable given the interpretation

of unobserved utility shocks εtas as the sum of unobserved utility components in period t

and that the unobserved determinants of utilities for an applicant are likely to be serially

correlated.

The last term γa1{s = s0a}, which is turned on if and only if school s is applicant a’s

initial assignment s0a, captures the possibility that an applicant’s utility from the initially

assigned school may evolve differently than utilities from other schools do. For example,

applicants may get more information about the initially assigned school than they would

with other schools. Or they may begin to prefer the assigned school more because it admits

them, or they get used to it (habit formation or endowment effects). I call γa the initial

assignment effect.

Model of Reapplications 1: Rational Expectation. Each applicant decides whether to

reapply based on how preferable the initial assignment s0a is with respect to new demand

Ū1
as’s. Recall that there are factors that may prevent applicants from reapplying, for example,

the time cost of making and submitting a reapplication. In fact, each reapplicant needs

to fill out a paper reapplication form with a written reason for reapplying, and turn it

in to the guidance counselor at her middle school. I consider two models to incorporate

such “reapplication costs” or “switching costs”. I call these models the rational expectation

model and the naive free expectation model. The rational expectation model allows for

school-specific reapplication acceptance probabilities, but assumes “rational” expectation

about applicants’ expectations about reapplication acceptance probabilities. The naive free

expectation model does not need the rational expectation assumption, but assumes that

reapplicants form simplistic beliefs about how the reapplication process works.

The first rational expectation model consists of two layers. The first layer is about

reapplication acceptance probabilities. In the reapplication process, each applicant a who

reapplies with new preference (s1, s2, s3) is re-assigned to at most one of schools s1, s2, and s3.

Since there is no accurate algorithmic description of discretionary reapplication acceptance

decisions by NYC, I suppose that the (mutually exclusive) re-assignment probabilities can

16In reality, some of the frictions are likely to remain even in the reapplication process. I need to assume
it away as a normalization, however, since the data contains only two periods.
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be approximated by the following descriptive model. For each i = 1, 2, 3,

Pr(a is re-assigned to si)

=

 Pr(b0 + bXXasi + bWW asi + ξasi ≥ 0) if si 6= ∅

0 if si = ∅,

where Xas is the characteristics of a and s used in the utility model, and ξas ∼iid EV (I)

(logit) with usual variance normalization to π2/6. (Results from a probit version are similar.)

W as contains additional factors that may affect reapplication acceptance decisions by NYC:

a measure of how oversubscribed or popular s is (the number of applicants rejected by s

in the initial application process), an indicator that a ranks s in the initial application,

and another indicator that a is rejected by s in the initial application process. Let pasi
be the estimate of Pr(a is re-assigned to si) I obtain by applying the above model to the

reapplication acceptance data.

The second step consists of applicants’ reapplication decisions given acceptance probabil-

ities in the first step. I assume that applicant a reapplies if there is a combination of schools

(s1, s2, s3) such that (a) for all i = 1, 2, 3, si is a school other than s0a or empty, (b) si 6= sj

or si = sj = ∅ for all i 6= j, and (c)

Σ3
i=1pasiŪ

1
asi

+ (1− Σ3
i=1pasi)Ū

1
as0a

− Ū1
as0a︸ ︷︷ ︸

expected benefit from reapplying

> ca︸︷︷︸
cost

⇔ Σ3
i=1pasiU

1
asi

− Σ3
i=1pasiU

1
as0a

> ca + γaΣ
3
i=1pasi ≡ c̄a

⇔ Σ3
i=1pasiU

1
asi

> Σ3
i=1pasiU

1
as0a

+ c̄a, (3)

where ca is the reapplication cost.17 This model imposes the rational or sophisticated expec-

tation assumption that each applicant believes that she is accepted by schools s1, s2, and

s3 with mutually exclusive probabilities pas1 , pas2 , and pas3 , respectively. This assumption is

unavoidable since there seems to be no way to identify subjective pasi for each (a, si) pair.

The condition for reapplying can be written as in the last line of (3), a discrete choice with

switching costs c̄a. I use “switching costs” to mean such combinations of reapplication costs

and initial assignment effects, which I will separately identify.

If reapplying, applicant a ranks schools (s1, s2, s3) to maximize the expected benefit in

the left hand side of (3), i.e., schools with largest pasU
1
as. I also assume that if applicant a

17A small fraction of applicants are not assigned to any school in the initial match. The above model is
not well-defined for these unassigned applicants since s0a = ∅ for them. For them, I assume the following
model for the utility of the outside option ∅: U1

a∅ = U1
∅ + εa∅ where U1

∅ is the outside-option-specific constant
and εa∅ is an unobserved utility shock. I make the same assumption for the second model below.
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reapplies but does not exhaust her new preference list, i.e., a ranks less than three schools

in �1
a, any unranked school is less preferred to the guaranteed initial assignment s0a in Ū1

as.

The above reapplication acceptance model has limitations. For example, ideally, I would

let bi be heterogeneous across schools or applicants. However, this is infeasible because there

are more than 700 schools, while only about 6000 applicants reapply, and each reapplicant

ranks at most three schools in the reapplication. Instead, I include rich attributes of ap-

plicants and schools in Xas and W as. I also have to exclude the effects of s′ 6= s on the

probability that applicant a’s reapplication for school s is accepted. If acceptance probabil-

ity pasi depends not only on school si but also on sj, then the maximizer of the expected

benefit of reapplying is not necessarily schools with largest pasU
1
as. To find the maximizer,

I need to search over all possible combinations of up to 3 schools. Since there are more

than 700 schools, the number of such combinations is prohibitively large, making estimation

intractable. Due to these difficulties, I resort to the above simplified model.18

Model of Reapplications 2: Naive Free Expectation. The main concern with the rational

expectation model is that it imposes rational expectations. To deal with this issue, I also

consider an alternative model that does not assume rational expectations, but instead as-

sumes naive beliefs about how the reapplication process works. In the alternative model,

applicant a does not reapply if

pa(maxs 6=s0a
Ū1
as − Ū1

as0a
)︸ ︷︷ ︸

expected benefit from reapplying

< ca︸︷︷︸
cost

(> 0)

⇔ maxs 6=s0a
U1
as − U1

as0a
< ca/pa + γa ≡ c̃a

⇔ U1
as0a

+ c̃a > U1
as for any s 6= s0a, (4)

where ca is the reapplication cost and pa is a’s subjective probability that a’s reapplication is

accepted. I do not assume pa to be the same as the real reapplication acceptance probability.

This model imposes a simplifying assumption that the expected benefit from reapplying

is expressed as pa times the utility difference between the initial assignment and the new

most preferred school. If s0a is a’s most preferred school in Ū1
as, i.e., maxsŪ

1
as = Ū1

as0a
, then

the left hand side of the second line of (4) is negative and so a never reapplies. Otherwise, a

reapplies when the expected benefit from doing so exceeds the reapplication cost ca. Again,

the condition can be written as in the last line of (4), a discrete choice with switching costs

c̃a.

18In general, the above model can cause internal inconsistencies Σ3
i=1pasi > 1. In my data, however,

reapplication acceptances are rare, and estimated pasi is almost always less than 0.2. As a result, Σ3
i=1pasi > 1

never happens.
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For those who reapply, I observe new rank-ordered preference �1
a and assume that each

reapplicant submits �1
a based on Ū1

as’s, i.e., s �1
a s′ only if Ū1

as > Ū1
as′ . As in the rational

expectation model, I also assume that if a reapplies but does not exhaust her new preference

list, i.e., applicant a ranks less than three schools in �1
a, any unranked school is less preferred

to the guaranteed initial assignment s0a in Ū1
as.

Comparing the two models, the rational expectation model allows for school-specific

reapplication acceptance probabilities, while assuming rational expectation. The naive free

expectation model does not need the rational expectation assumption, but assumes that

reapplicants form simplistic beliefs about how the reapplication process works. These two

models are thus expected to be complementary and serve as robustness checks for each other.

I estimate both models and show that the key results hold under both models. Before moving

on to identification and estimation, however, I need to discuss other important modeling

decisions.

Discussions of Modeling Assumptions

Choice Frictions and Learning. The key modeling decision about the evolving utility model is

how to model frictions in initial choices. My model specifies them as βak(1+fak)Xask. Ideally,

I would like to make frictions fak more flexible, for example, fask that is heterogeneous not

only across applicants a and characteristics k, but also across schools s. Alternatively, an

additive specification βak(Xask + fask) may be another more flexible way to model frictions.

In such more flexible models, βak(1 + fask) or βak(1 +
fask
Xask

) (note that βak(Xask + fask) =

βak(1 +
fask
Xask

)Xask) performs the same role as the taste coefficient on Xask in usual discrete

choice models with no frictions.

However, it is unclear how I can identify the distribution of such coefficients that depend

not only on a but also on s. For example, consider a static discrete choice model with no

frictions Uas = βasdas + εas where das is the distance, which is always positive. For each a,

consider any preference coefficients (βas)s such that (1) each βas is so large that the effect of

εas on choice probabilities is negligible and (2) βas1 > βas2 > ..., where si is a’s observed i-th

choice. Any such (βas)s can rationalize a’s observed choices, making identification impossible

without a particular parametric assumption. To avoid the potential lack of identification, I

make fak independent from s.19 Even under this restriction, fak allows for rich heterogeneity

19This discussion relates to recent attempts to identify and estimate discrete choice models with measure-
ment errors, since frictions about Xask or βak can be reinterpreted as measurement errors in Xask. See Hu
(2015) for a review.
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across a and k.

Yet another potential way to model frictions and learning is to introduce “consideration

sets”, i.e., subsets of schools applicants consider when they make initial choices. See Goeree

(2008) for an existing empirical model of consideration sets. There is not enough variation

in my data to allow for both frictions fak and consideration sets. Given a choice between

frictions and consideration sets, I prefer frictions for several reasons. First, consistent with

the friction specification, self-reported reasons for reapplications mention the initial lack of

knowledge about school characteristics or their preferences about school characteristics more

often than the initial lack of knowledge about the presence of particular schools. Second, for

inferring a consideration-set-formation process, I need some variation that makes different

schools more or less likely to enter consideration sets. However, it is unclear if time-series

variation in my data is enough, since the contrast between initial applications and reapplica-

tions contains no variation across schools. For these reasons, this paper focuses on frictions

fak, and I leave a consideration-set approach for future research.

Deliberate Reapplication Decisions. My reapplication model assumes that families make

reapplication decisions by deliberately comparing their initial assignments with other schools

according to their new demand. A potential concern is that reapplication decisions may be

primarily driven by less systematic factors (e.g., inattention unrelated to initial assignments).

However, there are several descriptive facts showing that, consistent with my model, families’

reapplication behavior responds to the desirability of their initial assignments. For example,

the more preferred school an applicant is initially assigned, the less likely she is to reapply

(Figure 4); this correlation is always present across many subgroups defined by demographic

characteristics and first-round application behavior (Appendix Figure A.5). The next iden-

tification section will detail these facts. Appendix A.3.1 further shows that this correlation

is causal and structural. This suggests that many applicants, including those who do not

reapply, compare their initial assignments and other schools.

In addition, the amount of choice reversals reapplicants exhibit is strongly correlated

with the preference rank of their initially assigned school (Figure 3). These correlations are

also consistent with my model. In my framework, the more preferred school an applicant

is initially assigned, the smaller the expected benefit of reapplying is for her. Thus, those

assigned to more preferred initial assignments need to experience larger demand changes to

find it worth reapplying, compared with those assigned to less preferred initial assignments.

As a result, conditional on reapplying, the amount of observed choice reversals, which reflect

demand changes, should be decreasing in the preference rank of the initially assigned school,

implying a pattern as in Figure 3.
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These facts suggest that many families behave in ways consistent with deliberate reap-

plication decisions. If some people behave according to inattention unrelated to initial as-

signments, their behavior is likely to be absorbed by reapplication costs in my model. This

misspecification concern is common in empirical studies on switching costs.

Truthful Behavior in Initial Applications. The model assumes that each applicant makes

the initial preference �0
a as a non-strategic rank-ordered discrete choice based on old utilities

U0
as’s. This should be a reasonable assumption since (1) a majority of applicants (more than

70%) do not exhaust preference lists and rank 11 or fewer schools, and (2) the deferred

acceptance algorithm used in the initial application process is strategy-proof for applicants

and guarantees that the above truthful behavior is always optimal for any applicant who

does not exhaust her preference list. Even for those who exhaust their preference lists, the

deferred acceptance algorithm makes it always optimal for any applicant to truthfully report

her relative preference order over ranked schools.

The above discussion ignores the presence of the reapplication process. In principle,

applicants may strategize in initial applications for switching to a more preferred school in the

reapplication process. However, such strategic behavior is unlikely to benefit reapplicants:

The reapplication acceptance rate is low (21%), and it is rare that reapplicants can switch

to more preferred schools. Also, the reapplication process is a discretionary process with no

algorithmic rule. It is thus unclear how to strategize in initial applications to benefit in the

reapplication process. For example, one may suspect that in the reapplication process, it

may be easier to be transferred to a school that is not ranked in initial applications, making

it profitable to strategically drop some schools from initial applications. However, in the

data, reapplication acceptances are more likely to be given to schools ranked in the first

round.

Finally, there is an additional tractability consideration that forces me to ignore potential

strategic behavior. With strategic behavior, I need to consider applicants’ choices over com-

binations (lists) of schools, but the number of such combinations is prohibitively large in my

setting with hundreds of schools. In light of these computational and conceptual reasons,

I assume away strategic behavior in initial applications. Existing studies also use similar

truth-telling assumptions (Hastings et al., 2008; Ajayi, 2013; Abdulkadiroğlu et al., 2015).

Outside Option. I do not explicitly model the outside option because it is unclear whether

the data is informative about the outside option. Many applicants do not exhaust their initial

preference lists, but it does not necessarily mean that all unranked schools, which are almost

all of NYC schools, are less preferred over the outside option for them. A more reasonable
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interpretation seems to be that they are optimistic and expect that they will be assigned to

one of the ranked schools for sure; see Robbins (2011) for an article that reports about such

optimistic families. In this scenario, the data does not provide any information about the

comparison between the outside option and NYC schools. I thus refrain from modeling the

outside option.

3.2 Identification

My model allows for preferences (βa), frictions in initial choices (fa), reapplication costs

(ca), and initial assignment effects (γa). This flexibility may create an identification concern,

because it is often difficult to separately identify heterogenous preferences and switching

costs (Chamberlain, 1983; Heckman, 1991). In fact, no other model reviewed in the related

literature seems to allow for all of the above model components simultaneously. This section

explains which aspects of my data allow me to distinguish the model components. For brevity,

I focus on the above key parameters and ignore school-specific effects U t
s and unobserved

utility shocks εtas.

By identification results for standard discrete choice models with no frictions (Matzkin,

2007; Manski, 2009; Berry and Haile, 2015; Fox et al., 2012), the data on initial preferences�0
a

identifies the distribution of βak(1 + fak): It is because in initial utilities U0
as, the composite

term βak(1 + fak) has the same role as the preference coefficient in standard models. 20

However, it is not possible to separate out preferences βa and frictions fa by the initial

application data alone: insensitivity of choices to a certain characteristic (e.g., academic

performance) may be because of weak preferences for it or frictions about it.

I need to use the data on reapplications to distinguish frictions fa and preferences βa. Let

me use the term demand changes to mean utility changes by frictions about characteristics

Xas, i.e., fakβakXask’s. In combination with already-identified βak(1 + fak), identification of

demand changes is enough to separate out frictions fa and preferences βa. The identification

of demand changes is aided by the increase in the correlation between characteristics Xas

and choices induced by U t
as from t = 0 to t = 1 (recall Tables 3 and 4). The difficulty

is that reapplication behavior is subject to switching costs (c̄a in the rational expectation

model and c̃a in the simplistic free expectation model). It is usually hard to separate demand

20My empirical setting has an additional advantage in that the initial application process is the first time
for applicants to choose among schools in the system. This means that the initial application process is the
initial period of the dynamic school choice process I try to model. Initial applications �0

a are not subject
to any switching costs or state dependence stemming from prior choices. As a result, I do not need to be
concerned about the econometric initial condition problem, which plagues usual dynamic choice models where
the econometrician does not observe initial choices (Chamberlain, 1983). This enables the identification of
βak(1 + fak).
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changes from switching costs, because the low rate of choice changes, which we observe in

most settings including mine, is usually consistent both with small demand changes and large

switching costs (Chamberlain, 1983; Heckman, 1991). The main identification challenge is

thus how to separately identify demand changes and switching costs. Moreover, I need to

resolve an additional difficulty of how to decompose switching costs into reapplication costs

ca and initial assignment effects γa.
21

To overcome these challenges, I exploit the following three institutional features of cen-

tralized school choice systems, including NYC’s.

(1) Capacity constraints. Due to capacity constraints, many applicants are initially as-

signed to a school other than the most preferred school.

(2) Partially random initial assignments. In the first-round assignment mechanism, to de-

termine initially assigned schools s0a, the algorithm uses student and school preferences,

but school preferences are coarse or weak in that a school’s preference is indifferent

among many students. NYC draws random lottery numbers to break ties or indiffer-

ences, and uses the resulting strict school preferences to compute initial assignments.

This use of admissions lotteries makes initial assignments partially random.

(3) Rank-ordered reapplication preferences. Reapplicants make new, rank-ordered school

choices in their reapplications, as explained in section 2.1.

Demand Changes and Switching Costs. Intuitively, the identification logic is as follows.

For simplicity, let me ignore demand responses to initial assignments and focus on demand

changes and reapplication costs. Assume that there are only two preference ranks, the first

choice and the lower choice. Many applicants are “lower-choice non-reapplicants,” who are

initially assigned to their old lower choice but do not reapply, due either to reapplication costs

or demand changes. This fact allows me to measure the total effects of demand changes and

reapplication costs. There are also “first-choice reapplicants,” who are initially assigned to

their old first choice but reapply, which must be due to demand changes. Other applicants

assigned to their first choice may also experience demand changes but are locked in by

reapplication costs. The fraction of first-choice reapplicants in all applicants assigned to the

first choice thus tells me the difference between the effects of demand changes and switching

costs.

21The rational expectation model of reapplications involves an additional complication that reapplication
decisions and preferences are based on utilities Ū1

as weighted by reapplication acceptance probabilities pas.
Identification results for discrete choice models with similar complications appear in, e.g., Agarwal and
Somaini (2015).
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Now suppose that admissions lotteries in the first-round mechanism guarantee that ini-

tial assignments are randomly assigned and that applicants assigned to the first-choice and

lower-choice are comparable people with similar demand changes and reapplication costs. I

can compare the fractions of lower-choice non-reapplicants and first-choice reapplicants to

measure the amount of reapplication costs. Heuristically,

(fraction of non-reapplicants among applicants assigned to the initial lower choice)

-(fraction of reapplicants among applicants assigned to the initial first choice)

=(demand changes+reapplication costs)-(demand changes-reapplication costs)

=2×reapplication costs,

which separates reapplication costs from demand changes.

More precisely, thanks to institutional feature 1 (capacity constraints), I can compute

moments like Figure 4a, where the solid black line relates the preference rank (with respect

to initial �0
a) of the initially assigned school s0a to the conditional probability of reapplying.

The line is upward-sloping, i.e., the more preferred school an applicant is assigned, the less

likely she is to reapply.

This moment turns out to contain information to separate demand changes and switching

costs. To illustrate this, let me start with the question of what the line should look like if

there were no demand changes (ΣK
k=1βakfakXask = 0) and no switching costs (c̄a = 0 or

c̃a = 0). The answer is the dotted red line in Figure 4a: If an applicant is assigned the

old first choice, it remains to be the new first choice by the no-demand-change assumption,

and there is no reason for her to reapply. If an applicant is assigned an old lower choice,

by the no-demand-change assumption, the initially assigned school remains to be different

from the new first choice. Thus, she should reapply as long as there is no switching cost,

since reapplying gives her a positive probability of being re-assigned to a more preferred

school without risking the initial assignment. (The initial assignment is guaranteed even if

an applicant reapplies, as explained in Section 2.1.)22 This hypothetical dotted line under no

demand changes and no switching costs is different from the real solid line. The discrepancy

between the two has to be caused by demand changes or switching costs.

To distinguish demand changes and switching costs, I use institutional feature 2 (partially

random initial assignments). For simplicity, start by assuming that initial assignments are

purely random. After illustrating the identification logic in this simplified case, I explain how

22This reasoning assumes that the probability of a reapplication acceptance is positive for all possible
preference ranks of the initial assignment. Appendix Figure A.4 confirms that this is the case in the data.
Estimated pasi for the rational expectation model is also always positive.
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to extend the identification logic to the case with real partially random initial assignments.

Let me consider the question of what the black solid line should look like under no switching

costs but with potential demand changes. To answer this, in Figure 4b, consider the solid

short red arrow above “1” on the x axis. Let R be the length of the solid red arrow.

R

≡ Pr(a reapplies|s0a is a’s old 1st choice)

= ΣK≥2 Pr(a’s old K-th choice=a’s new 1st choice| s0a is a’s old 1st choice)

(by the assumption that there are no switching costs)

= ΣK≥2 Pr(a’s old K-th choice=a’s new 1st choice| s0a is a’s old K-th choice)

(by random assignment of s0a)
23

= ΣK≥2 Pr(a does not reapply| s0a is a’s old K-th choice)

(by the assumption that there are no switching costs)

≡ B,

where B is defined as the sum of the lengths of the dotted blue arrows in the figure. However,

Figure 4b shows that the sum of the lengths of the dotted blue arrows B (9.510) is larger

than the length of the solid red arrow R (0.025). This means that, regardless of the amount

of demand changes, the no-switching-cost assumption leads to a contradiction with the data.

In contrast, if there are switching costs (c̃a > 0), the model’s requirement changes to

R

< ΣK≥2 Pr(a’s old K-th choice=a’s new 1st choice| s0a is a’s old 1st choice)

< ΣK≥2 Pr(a does not reapply| s0a is a’s old K-th choice)

≡ B,

where previous equalities change to inequalities because additional people stop reapplying

because of positive switching costs. The inequalities are consistent with Figure 4b. In this

23This step assumes that the preference rank of the randomly assigned initial assignment s0a does not have
direct effects on demand changes βakfak. Analogous assumptions are implicitly made in existing studies of
switching costs reviewed in the related literature section in the following sense. In general, the separation of
switching costs from heterogenous preferences needs two assumptions: (i) The status quo alternative as the
source of switching costs is (at least partly or conditionally) randomly assigned. (ii) The status quo does not
have direct effects on any demand or preference changes. Existing studies use the contrast between active
vs passive choice periods or variation in supply-side advertisements to defend (i). In addition, they need (ii)
and usually assume that all demand changes are exogenous. By contrast, my approach as outlined above
uses a really random assignment to guarantee (i). In addition, while I need to assume that the preference
rank of the randomly assigned initial assignment s0a does not have direct effects on βakfak, I allow for a
certain direct effect of s0a on new demand through initial assignment effects γa1{s = s0a}.

22



way, the discrepancy between the solid red arrow R (the probability of reapplying conditional

on being initially assigned the old first choice) and the dotted blue arrows B (the sum of the

probabilities of not reapplying conditional on being assigned to old non-first choices) has to

be driven by switching costs and not by demand changes, telling us the amount of switching

costs.

Figures 4c and 4d summarize the separate identification of switching costs and demand

changes. Starting from the solid black line, move it up until the point where the solid red

arrow and the dotted blue arrows are balanced. The new dotted blue line with triangle

markers describes such a point. The difference between the solid black line and the dotted

blue line with triangle markers has to be due to switching costs, while the remaining difference

between the two dotted lines is due to demand changes. Figure 4d thus suggests both

significant demand changes and significant switching costs.

The above discussion shows that the probability of reapplying conditional on the pref-

erence rank of the initial assignment reveals the amount of demand changes and switching

costs. Appendix Figures A.5a and A.5b use this logic to suggest that different demographic

groups face different amounts of demand changes and switching costs. Racial minorities and

academically struggling families exhibit flatter gradients, a sign of larger demand changes

by learning.24 Given this, I let the distribution of demand changes and switching costs as

well as the other parameters heterogeneous across demographic groups in the estimation.

In contrast, I find little heterogeneity among students with different initial assignments or

different types of initial application behavior (Appendix Figures A.5c and A.5d). This may

suggest that conditional on the preference rank of the initially assigned school, its identity

may not matter for the amount of switching costs and demand changes.

Handling Partial Randomization. The above identification logic is under the simplifying

assumption that initial assignments are completely randomly assigned. In the NYC school

choice system, however, initial assignments are not purely random since they are confounded

by non-random preferences of applicants and their priorities at schools. Nevertheless, the

above identification logic extends to the more complicated real case with partially random

initial assignments.

NYC creates initial assignments via the deferred acceptance algorithm that uses many

inputs such as preferences, priorities, lottery numbers, and capacities (see Section 2 and

Appendix A.4). Depending on these factors, different applicants have different assignment

probabilities at schools. Yet, there is a way to find a set of applicants who share the same

24This sheds additional light on heterogeneity of school choice behavior across demographic groups. See
Hastings et al. (2008) and Nathanson et al. (2013) among others for related findings.
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assignment probability at any school. Let me refer to a student’s entire preference list and

priorities at all schools as her type. The deferred acceptance algorithm treats students of

the same type symmetrically in that everyone of a given type faces the same probability of

assignment to any school. This is because the only information about a student the algorithm

uses is her preference, priorities, and lottery number; conditional on type, therefore, all that

remains to determine her assignment is her lottery number, which is independently and

identically distributed across students.

This gives me a way to extend the identification analysis in Figure 4 to the case with

partially random initial assignments: I can simply repeat the same analysis conditional on

each type to separately identify switching costs and demand changes for that type. Switching

costs and demand changes are thus allowed to be heterogenous across different types without

sacrificing identification. As far as identification is concerned, partial randomization does

not cause any serious problem. The empirical implementation of the identification argu-

ment in Figure 4d is also robust to the explicit consideration of imperfectly random initial

assignments. Appendix Figure A.6 provides a structural/causal version of Figure 4d that

incorporates partially random assignment.

Initial Assignment Effects and Reapplication Costs. Now that I have explained how to

identify βa (preferences), fa (frictions in initial choices), and switching costs, the final step

is to decompose switching costs into reapplication costs ca and initial assignment effects γa.

Conditional on reapplying, reapplication costs ca are sunk and do not affect new preferences

reported in reapplications. On the other hand, initial assignment effects γa remain to affect

new preferences since they directly enter the utility of the initial assignment s0a. I use this fact

and institutional feature 3 (rank-ordered reapplication preferences) to derive the following

two restrictions on γa: (1) If applicant a reapplies to switch from initial assignment s0a to s,

then U1
s > U1

s0a
+ γa. (2) If applicant a reapplies but does not exhaust her new preference,

i.e., rank only one or two schools, then U1
s0a
+ γa > U1

s for every unranked school s. These

restrictions involve initial assignment effects γa but not reapplication costs ca, allowing me

to separate out initial assignment effects γa. New preferences contain a lot of information

about initial assignment effects γa since every reapplicant prefers some schools over the initial

assignment s0a, while about 40% of reapplicants do not exhaust new preferences, implying

that they prefer the initial assignment s0a over unranked schools.
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3.3 Estimation

In the estimation, characteristics Xas include those frequently mentioned in reapplication

reasons: the road distance between applicant a’s and school s’s locations, school s’s academic

performance, type, size, and age. See Appendix A.1 for the construction of these variables.

For computational tractability and finite sample statistical precision, I need to impose dis-

tributional assumptions common to empirical discrete choice models. Let ga be applicant a’s

demographic group defined by whether a is white/asian or black/hispanic and whether a’s

grade 7 reading grade category is high/middle or low (four groups in total). I assume that

• the period 0 coefficient βak(1 + fak) on Xask is iid according tologN(µga
0k, σ

ga
0k) for negative distance or high academic performance

N(µga
0k, σ

ga
0k) for any other characteristic,

• the change in the coefficient due to learning is βakfak ∼iid N(µga
1k, σ

ga
1k),

• U0
s ∼iid N(0, σga

0 ),

• Us ∼iid N(0, σga
1 )25,

• γa ∼iid N(µga
γ , σga

γ ),

• ca ∼iidtruncated N(µga
c , σga

c ) in the rational expectation model, and

• ca/pa ∼iidtruncated N(µga
c , σga

c ) in the naive free expectation model.

Note that motivated by heterogeneity across demographic groups in key descriptive moments

(Appendix Figure A.5 and Appendix Table A.1), the whole parameter vector is allowed to

be heterogeneous across demographic groups. I assume ε0as, εas ∼iid EV (I) (logit) with usual

variance normalization to π2/6.26

These assumptions make the model within each period a random coefficient logit model,

which allows for flexible substitution patterns among schools (Train 2009 chapter 6). Ap-

pendix A.3.2 derives a partly analytical joint likelihood function for a sequence of initial

application preferences in t = 0 to reapplication decisions and preferences in t = 1. This

25It is computationally prohibitive to separately estimate U t
s for each school s since the sample contains a

large number of schools. Instead, I adopt this random effects specification in the spirit of Rossi et al. (1996)
and Abdulkadiroğlu et al. (2015).

26It is possible and more desirable to estimate the variance of εas rather than assuming it. Computational
difficulties prevent me from reporting results from such an extension in this draft, however. I verified that
the results reported below are robust (i.e., changes are less than 10%) to ignoring εas and using only the
other parts of demand changes.
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likelihood function is parametrized by θ ≡ ((µg
0k, σ

g
0k, µ

g
1k, σ

g
1k)k=1,...,K , σ

g
0 , σ

g
1 , µ

g
γ, σ

g
γ, µ

g
c , σ

g
c )g∈G

where G is the set of the four demographic groups defined above.

I estimate parameter θ using maximum simulated likelihood with 400 simulations using

scrambled randomized Halton draws (Train 2009 chapter 9). The number of simulations

appears to be enough for convergence because the estimates change little from 200 simulations

to 400 simulations. I compute standard errors using the information identity with the Hessian

being estimated by the outer product of the gradient of the simulated likelihood at the

estimated parameter θ̂ (Train 2009 chapter 9). I assume the utility function U1
as to be quasi-

linear in distance and will often measure results by distance-equivalent utilities in t = 1.

This estimation procedure uses admissions lotteries as follows. The likelihood involves

initial assignments s0a’s as arguments, and I substitute realized initial assignments s0a’s in

the data into the likelihood.27 As explained in the last identification section, these initial

assignments s0a’s are conditionally randomly assigned by the first-round deferred acceptance

algorithm with admissions lotteries; I provide empirical support for conditionally random

assignment in Appendix A.3.1. As a result, consistent with the identification argument

using randomness in initial assignments, the likelihood-based estimation procedure uses the

fact that initial assignments are conditionally random. Additional details of the estimation

procedure and the construction of the estimation sample are in Appendix A.3.2.

3.4 Estimates and Fit

The parameter vector θ are high dimensional and not easy to directly interpret. I summarize

key features of the estimated θ̂ here. (Appendix Tables A.6-A.9 show that many dimensions

of θ̂ are significant and exhibit sizable heterogeneity.) First, demand changes by learning are

an important feature of my empirical model. Figure 5a plots the distribution of estimated

demand changes due to learning about observable school characteristics, i.e., ΣK
k=1βakfakXask,

against estimated overall new utilities (Û1
as; the black distribution).28 This figure is based on

the estimated rational expectation model. As can be expected from the largeness of NYC,

overall utilities from schools are highly dispersed, and most and least preferred schools are

different by more than 50 mile-equivalent units. If there were no frictions and f̂a = 0, the

distribution of demand changes would be degenerate at the origin. This is far from the

case, and there are large demand changes, as shown in Figure 5a. Their magnitude is often

equivalent to multiple miles, though as expected it is smaller compared with the dispersion

27I do not simulate initial assignments since applicants make reapplication decisions and preferences con-
ditional on realized initial assignments s0a’s in the data.

28Recall that Var(ε1as)=Var(ε0as + εas) = 2Var(ε0as). When comparing period 0 and 1 utilities, I divide
period 1 utilities by 2 so that the variance of the unobserved utility shock stays the same between t = 0 and
t = 1.
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of overall utilities.

Despite these demand changes, and despite the fact that a majority of applicants are

initially assigned to a non-first-choice school, only a small fraction of applicants reapply. To

explain this fact, Figure 5b plots the distribution of estimated initial assignment effects (γ̂a;

the left blue distribution) and reapplication costs (ĉa; the left red distribution) by simulating

the estimated rational expectation model. The figure compares them against estimated

overall new utilities (Û1
as; the right black distribution). Estimated reapplication costs ĉa

and initial assignment effects γ̂a are often significant and positive: Applicants not only

face reapplication costs, but they also come to prefer their initially assigned schools more,

compared with other schools. Consequently, unless the initially assigned school turns out to

be much worse than a more preferred school, applicants do not find reapplying worthwhile,

which explains the low observed reapplication rate. Similar patterns for the alternative naive

free expectation model are reported in Appendix Figures A.7a and A.7b.

These estimation results confirm the suggestive descriptive evidence (in Sections 2 and

3.2) that there are demand changes by learning, but switching costs (combinations of reappli-

cation costs and initial assignment effects) prevent many demand changes from translating

into observed choice changes. In addition, since the structural estimates show that both

reapplication costs and initial assignment effects lower the reapplication rate, I can quantify

the relative contributions of learning, reapplication costs, and initial assignment effects to

reapplication behavior.

As an evaluation of how well the estimated model fits the data, I simulate the estimated

model and key moments 50 times, and compare the average simulated moments against the

real ones. Figure 6 plots the real first choice market shares of schools in the initial application

process against the simulated ones, where the first choice market share of a school is defined

as the fraction of applicants who rank it first among all applicants who make a first choice.

The real and simulated shares are highly correlated. On the reapplication behavior, Table

5 compares the most important moments — the fractions of reapplicants and those who

exhibit choice reversals — between the data and the estimated model. Both models mimic

the behavior of the data well in terms of these moments.

Finally, Table 6 compares the moment in Table 4 — changes in R2s from school-level

regressions of schools’ first choice market shares on observable school characteristics — be-

tween the data and the model. The model resembles the data in that reapplicants’ choices

become more correlated with and responsive to observable school characteristics from the

first round to the reapplication process. These results suggest that the estimated models do

decent jobs at matching key moments in the data.
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4 Welfare Consequences of Evolving Demand

4.1 Costs of Ignoring Demand Changes

Estimates of the structural model reveal many more demand changes than are suggested by

the low observed reapplication rates I showed in Section 2. To measure the amount of hidden

demand changes, Table 5 shows the fractions of reapplicants as well as those with choice

reversals in the counterfactual simulations of the estimated models without reapplication

costs ca (while keeping the estimated initial assignment effects γ̂a as they are). With no

reapplication costs, the reapplication rate increases from 7% in the data to 30-40%. More

importantly, a majority of the counterfactual reapplicants exhibit choice reversals, implying

that the fraction of applicants with underlying demand changes (more than 20%) is several

times larger than the fraction of those with choice reversals in the data (5%). These demand

changes are masked by reapplication costs.29 This finding is consistent with the suggestive

descriptive evidence of hidden demand changes in Figure 4.

As a result of these significant demand changes, the welfare cost of ignoring demand

changes is large. To measure the welfare cost, I compare the real first-round assignment

based on school choices induced by old demand U0
as with the counterfactual “frictionless

benchmark.” The frictionless benchmark is defined as what would have been produced by

the same first-round deferred acceptance algorithm, had families made choices based on their

new demand U1
as. Since the two differ only in whether families make choices based on old or

new demand, the difference between the two captures the welfare costs of ignoring demand

changes by learning.30

Table 7 summarizes welfare changes from the real first-round assignment to the fric-

tionless benchmark.31 The real first-round assignment and the frictionless benchmark are

29Initial assignment effects also lower the reapplication rate. As shown in Figure 5b, the estimates show
that initial assignment effects are often positive and large, meaning that families tend to get to prefer initially
assigned schools more, compared with other schools. This satisfaction with initial assignments lowers the
reapplication rate by more than 20%, which is computed as the difference between the real reapplication
rate and the counterfactual rate under no initial assignment effects γa = 0 (but with estimated reapplication
costs ĉa).

30Except applicants’ choices, every other input is unchanged between the real first-round assignment and
the frictionless benchmark. For example, school capacities and their preferences or priorities over applicants
are fixed.

31When simulating an assignment mechanism, I also simulate lottery numbers used by the mechanism to
break ties in priorities. Recall the explanation in Section 3.2 about the use of lottery numbers in the NYC
system, and see Appendix A.3.1 for further details. Furthermore, it is sometimes the case that an applicant’s
simulated preferences contain schools that the applicant does not rank in her real preference observed in the
data. For such pairs of applicants and schools, the data does not provide priority information. In such cases,
I simulate their priorities from the empirical distribution of priorities in the data. I do the same lottery
number and priority simulation for the other counterfactual exercises. Finally, I assume that each assigned
applicant experiences estimated initial assignment effect γ̂a from her assignment. The results change little
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significantly different. Specifically, the two assignments give different allocations (schools) to

a majority of families. Also, the average welfare loss under the real first-round assignment

compared with the frictionless benchmark is more than 1-mile-equivalent when I measure

it by new demand U1
as after learning, which is assumed to be quasi-linear in the distance

between the family and the school locations. The 1-mile-equivalent utility unit can be inter-

preted as corresponding to traveling 1 mile every school day during the high school years.

This magnitude corresponds to more than .15 standard deviation in the distribution of util-

ities from all schools for each applicant.32 Significant learning and demand changes thus

undermine the welfare performance of the initial match that ignores demand changes. This

illustrates that demand-side choice frictions and learning significantly affect the welfare gains

from a centralized market. This motivates me to investigate ways to accommodate demand

changes, to which I turn next.

4.2 Evaluating Reapplication Processes

The large welfare costs of ignoring demand changes motivate me to investigate ways to

alleviate the costs by accommodating demand changes. As already explained, NYC runs a

discretionary, human-driven reapplication process, presumably to improve families’ welfare

by flexibly accommodating changing needs. It is also possible to run a centralized algorithm

not only for the initial market but also for the reapplication process. This section evaluates

how well the discretionary and counterfactual centralized reapplication processes alleviate

the welfare cost of ignoring demand changes.

Theory

I start by introducing counterfactual centralized reapplication mechanisms. Appendix A.4

builds a dynamic version of the school-student assignment model, analyzes two centralized

designs of the reapplication process, and shows that they are the “best possible” mechanisms

to accommodate choice changes. The counterfactual mechanisms are what I call the dynamic

deferred acceptance mechanism and the deferred deferred acceptance mechanism. They are

easily implemented by applying the deferred acceptance algorithm to observed choice data.

To define the mechanisms, take as given applicants’ old preferences �0
A≡ (�0

a)a in initial

application, their new preferences �1
A≡ (�1

a)a (which I construct below), and school prefer-

even if I exclude initial assignment effects. The same treatment of initial assignment effects applies to the
other counterfactual exercises.

32I use new demand U1
as as my welfare measure since it is demand after leaning at a point in time closer

to enrollment periods; new demand is thus expected to be a better welfare measure than old demand U0
as.

In other words, in this and other counterfactual welfare analyses, I assume that frictions fa are welfare-
irrelevant.
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ences/priorities �S over applicants observed in the data. School preferences/priorities �S

are strict preferences/priorities after tie-breaking by lottery numbers. The dynamic deferred

acceptance mechanism determines an assignment as follows.33

(1) Compute the initial match DA(�0
A,�S) in the initial application process, where func-

tion DA(·, ·) maps each possible profile of applicant and school preferences into the

assignment produced by the deferred acceptance algorithm under these input prefer-

ences.

(2) Give an initial match guarantee to each applicant by modifying each school s’s prefer-

ence so that s most prefers applicants matched with s in step 1.

(3) Use modified school preferences/priorities �′
S and applicants’ reapplication preferences

�1
A to get DA(�1

A,�′
S) ≡ ϕDA

dynamic(�0
A,�1

A,�S) where ϕDA
dynamic(�0

A,�1
A,�S) denotes

the assignment under the dynamic deferred acceptance mechanism under input pref-

erences (�0
A,�1

A,�S).

On the other hand, the deferred deferred acceptance mechanism is the same as the dynamic

deferred acceptance mechanism except that I make no modification to school preferences/pri-

orities. That is, ϕDA
deferred(�0

A,�1
A,�S) ≡ DA(�1

A,�S) where ϕDA
deferred(�0

A,�1
A,�S) denotes

the assignment under the deferred deferred acceptance mechanism under input preferences

(�0
A,�1

A,�S).

Appendix A.4 provides a formal analysis of ϕDA
dynamic and ϕDA

deferred, and shows that they

are the “best possible” mechanisms to accommodate choice changes. Specifically, consider

the following criteria of how well a mechanism accommodates choices changes and caters to

new preferences (Appendix A.4 formally defines these properties):

(I) “Fairness (stability)” with respect to (�1
A,�S), i.e., no applicant-school pair “blocks”

the outcome under that mechanism and has an incentive to jointly deviate from it to

be matched with each other outside the mechanism.

(II) “Being less unfair (unstable)” than the initial match with respect to (�1
A,�S), i.e.,

it is always the case that any applicant-school pair blocking the outcome under that

mechanism also blocks the initial match.

(III) “Weak Pareto efficiency” with respect to �1
A, i.e., there is no other assignment that

every applicant strictly prefers over the outcome under that mechanism.

33Similar dynamic mechanisms have been discussed in existing studies (Pereyra, 2013; Coles et al., 2014;
Kadam and Kotowski, 2015). The empirical and theoretical analysis in this paper does not appear to have
an analog in their analyses.
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(IV) “Always Pareto dominating the initial match” with respect to �1
A.

(V) “Dynamic strategy-proofness,” i.e., any preference manipulation by any applicant in

any period is never strictly profitable with respect to that applicant’s preference in

that period.

In terms of these properties, ϕDA
dynamic and ϕDA

deferred are the best possible mechanisms,

as the the following result (shown in Appendix A.4) implies. This result motivates using

ϕDA
dynamic and ϕDA

deferred as the canonical centralized reapplication mechanisms.

Proposition 1 1.A) ϕDA
dynamic satisfies (II) being less unfair than the initial match, (III)

weak Pareto efficiency, and (IV) always Pareto dominating the initial match (call this set of

desiderata A), but not others.

1.B) ϕDA
deferred satisfies (I) fairness, (II) being less unfair than the initial match, (III) weak

Pareto efficiency, and (V) dynamic strategy-proofness (call this set of desiderata B), but not

others.

2) Consider any possible dynamic mechanism ϕ. ϕ can satisfy only a subset of set A or B.

Discretionary vs Centralized Reapplication Processes

My counterfactual analysis studies how well the counterfactual centralized reapplication

processes improve on the initial match and alleviate the welfare costs of ignoring demand

changes. I also compare the centralized processes with the existing discretionary process.

There are two ways to implement this particular evaluation. First, I can evaluate the reap-

plication processes in a descriptive way, without resorting to the model. An alternative,

usual approach is to evaluate each reapplication process by simulating the estimated model.

I start with the descriptive evaluation and then compare it with the model-based evaluation.

For empirically implementing and evaluating counterfactual centralized mechanisms ϕDA
deferred

and ϕDA
dynamic, I need to define �1

a, applicant preferences in the reapplication stage. In the

descriptive counterfactual evaluation, I construct them as follows. If applicant a does not

reapply in the data, then assume that �1
a stays the same at �0

a (the preference that applicant

a submits in the initial application period). If a reapplies and reports a new reapplication

preference, then define �1
a as a’s reapplication preference followed by �0

a. For example, if

�0
a is (s1, s2) and a reapplies and ranks only s3 in her reapplication preference, then �1

a is

(s3, s1, s2). This construction of �1
a ignores all unobserved demand changes and uses only

observed reapplications and choice changes. Hidden demand changes (in Table 5) suggest

that �1
a may not be an appropriate welfare measure for applicants who do not reapply.

However, this is probably not a big problem for this particular evaluation of reapplication
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processes, because reapplication processes mainly affect reapplicants, for whom �1
a reflects

demand changes and is expected to be a reasonable welfare measure.34 I use �0
A and �1

A

created above (as well as school capacities and priorities in the data) to simulate ϕDA
dynamic,

ϕDA
deferred, and the discretionary reapplication process, and I compare them with the initial

match with respect to �1
A. Note that this procedure makes no use of the empirical model

and is based only on objects directly observed in the data.

The comparison between the discretionary reapplication process and the deferred and

dynamic deferred acceptance mechanisms is in Figure 7. Starting from the initial match as

the common status quo, each line plots the distribution of preference rank improvements

(with respect to �1
a) of the finally assigned school under each of the three reapplication

processes. Figure 7 shows that all reapplication processes produce welfare gains. More

importantly, the centralized reapplication processes are more effective and produce gains

more than twice as large as those from the discretionary reapplication process.

Table 8 summarizes this result and compares it with the results from an alternative evalu-

ation based on the estimated structural models. In the structural counterfactual evaluation,

I use the estimated models to simulate old and new utilities U0
as, U

1
as, reapplication costs ca,

initial assignment effects γa, and associated initial application preferences �0
A (over up to 12

schools) induced by U0
as. I then substitute the simulated initial application preferences (as

well as school capacities and priorities in the data) into the deferred acceptance algorithm

to obtain the initial match. I use this initial match and simulated U1
as, ca, and γa to simu-

late reapplication decisions. If applicant a reapplies, let �1
a be the reapplication preference

(over up to 3 schools) induced by U1
as, followed by �0

a (as in the descriptive evaluation).

Otherwise, define �1
a=�0

a. I then use �1
A and �0

A to compute the allocations under ϕDA
deferred

and ϕDA
dynamic. I compare the allocations produced by ϕDA

deferred and ϕDA
dynamic with the initial

match with respect to simulated U1
as under each simulation, and take the average over 50

simulations.

The descriptive and structural evaluations show similar gains from the centralized reap-

plication processes, as shown in Table 8. This provides additional support for the finding

that the centralized reapplication processes produce larger gains than those from the discre-

tionary reapplication process. This also provides some confidence to the use of the estimated

structural model for evaluating other counterfactual policies, for which no model-free or de-

scriptive evaluation is possible. An example of a counterfactual policy that innately needs the

estimated model is the frictionless benchmark (in Table 7) that accommodates all demand

34The discretionary reapplication process affects only reapplicants. Centralized reapplication processes
influence not only reapplicants but also others, but Appendix Figure A.8 shows that most of applicants
affected by centralized reapplication processes are reapplicants.
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changes, many of which are unobserved (as shown in Table 5).

Reapplication Processes and Demand-side Inertia

The centralized reapplication processes are shown to accommodate observed reapplications

and choice changes better than the discretionary reapplication process does. This evaluation

of the centralized reapplication processes takes estimated reapplication costs as given. On

the other hand, there are technological changes and school districts’ and social entrepreneurs’

initiatives that may ease reapplication costs (e.g., online systems for more easily making and

updating school choices).

To measure the potential effects of such demand-side interventions, I finally investigate

the performance of the centralized reapplication processes relative to their “frictionless imple-

mentation.” The frictionless implementation of the mechanisms is the hypothetical, possibly

infeasible implementation that turns off reapplication costs ca so that applicants express de-

mand changes with no barrier. The frictionless implementation is similar to the frictionless

benchmark in Table 7. In particular, the frictionless implementation of ϕDA
deferred is the same

as the frictionless benchmark. The frictionless implementation is not subject to demand-side

inertia due to reapplication costs, while the feasible centralized reapplication processes are;

the difference between the two thus captures the welfare effect of demand-side inertia (given

the market design fixed). For simulating and evaluating the frictionless implementation, I

need to use the estimated empirical model. The use of the estimated model for evaluating

the frictionless implementation is the same as that for the feasible implementation in Table

8, except that I set reapplication costs to ca = 0 when simulating the model to evaluate the

frictionless implementation.

The welfare effect of demand-side inertia is large, and the gains from the mechanisms

change by several times depending on the extent of demand-side inertia caused by reappli-

cation costs: Table 9 shows that starting from the counterfactual scenario with no switching

costs, estimated switching costs dilute the gains from the mechanisms by more than 50%.35

Because of inertia and the resulting low participation, the reapplication processes reveal

only a small fraction of the demand changes families experience as they learn. As a result,

the centralized reapplication processes achieve no more than 30% of the welfare gains from

their frictionless implementation, which responds to all the demand changes families would

35In Tables 8 and 9, welfare calculations do not include reapplication costs ca (but include initial assignment
effects γa). This choice is in order to make the comparison in Table 9 conservative and nontrivial: if welfare
calculations include ca, then turning off ca would trivially result in welfare improvements. Incorporating ca
does not change the qualitative comparison among reapplication systems in Tables 8 and 9 since reapplicants
experience reapplication costs under any reapplication system, and the welfare loss from reapplication costs
is cancelled out when I compare different reapplication systems.
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express if there were no demand-side inertia. This suggests that the gains from a dynamic

centralized market depend to a large extent on demand-side inertia that prevents families

from reapplying and expressing demand changes.

5 Conclusion and Future Directions

Centralized market-like institutions have become a widespread form of public policy. The

success of these markets hinges on the assumption that participants make well-informed

choices upfront. In this paper, I use data from NYC’s school choice system to evaluate

this assumption. I show that, contrary to the premise of well-informed upfront choices,

families’ choices change after the initial match as they learn about schools. To recover

underlying evolving demand, I develop an empirical model of evolving demand for schools

under learning, reapplication costs, and initial assignment effects. I exploit institutional

features of centralized school choice systems, especially admissions lotteries, to separately

identify these model components.

The estimates suggest that there are substantially more changes in underlying demand

than in observed choices. These significant demand changes undermine the welfare perfor-

mance of the initial match, and result in large welfare costs of ignoring demand changes.

The large welfare costs of ignoring demand changes motivate me to investigate dynamic

mechanisms, which I show can best accommodate choice changes in theory. I empirically

find that these mechanisms significantly improve on the existing discretionary reapplication

process and initial match. Also, the gains from the mechanisms change greatly depending on

the extent of demand-side inertia caused by reapplication costs. Thus, demand-side frictions

(such as learning, demand changes, and inertia) affect the gains from a centralized market

as much as its design.

The suggested importance of frictions in participants’ choices opens the door to many

empirical and methodological questions. An implication of my results is the potential im-

portance of demand-side technological changes or policy interventions that may alleviate

demand-side frictions (e.g., online systems for more easily making and updating school

choices, applications for more easily searching school characteristics). Little is known about

the effects of such demand-side interventions, aside from what Hastings and Weinstein (2008)

and Andrabi et al. (2015) report. Another related question is about the relationship between

dynamic choice behavior and subsequent outcomes. For example, few papers study whether

later, presumably better-informed school choices result in changes in academic achievement

and other behavioral outcomes.

Methodologically, this paper contributes to understanding families’ school choice dynam-
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ics. A variety of extensions are both possible and desirable. For example, extending the data

and model to more than two periods would make it possible to study the speed of learning

and the dynamics of inertia. Another potentially fruitful direction is to incorporate richer

aspects of learning, e.g., latent consideration sets families use when making choices, families’

anticipation and sophistication about future learning. Finally, while this paper focuses on

welfare analysis based on assignments or offers, it is probably more desirable to study wel-

fare from enrollment (rather than assignments as intermediate steps toward enrollment and

educational experience). I leave these challenging directions for future research.
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Abdulkadiroğlu, Atila and Tayfun Sönmez, “School Choice: A Mechanism Design

Approach,” American Economic Review, 2003, 93, 729–747.

, Nikhil Agarwal, and Parag Pathak, “The Welfare Effects of Coordinated School

Assignment: Evidence from the NYC High School Match,” 2015. Working Paper.

, Parag A. Pathak, and Alvin E. Roth, “Strategy-proofness versus Efficiency in

Matching with Indifferences: Redesigning the NYC High School Match,” American Eco-

nomic Review, 2009, 99 (5), 1954–1978.

Agarwal, Nikhil and Paulo Somaini, “Demand Analysis Using Strategic Reports: An

Application to a School Choice Mechanism,” 2015. Working Paper.

Ajayi, Kehinde F., “School Choice and Educational Mobility: Lessons from Secondary

School Applications in Ghana,” 2013. Working Paper.

Akbarpour, Mohammad, Shengwu Li, and Shayan Oveis Gharan, “Dynamic Match-

ing Market Design,” 2015. Working Paper.

Anderson, Ross, Itai Ashlagi, David Gamarnik, and Yash Kanoria, “A Dynamic

Model of Barter Exchange,” in “Proceedings of the Twenty-Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms” SIAM 2015, pp. 1925–1933.

Andrabi, Tahir, Jishnu Das, and Asim Ijaz Khwaja, “Report Cards: The Impact of

Providing School and Child Test Scores on Educational Markets,” 2015. Working Paper.

Autor, David, Nichole Maestes, Kathleen Mullen, and Alexander Strand, “Does

Delay Cause Decay? The Effect of Administrative Decision Time on the Labor Force

Participation and Earnings of Disability Applicants,” 2015. Working Paper.

Baccara, Mariagiovanna, SangMok Lee, and Leeat Yariv, “Optimal Dynamic Match-

ing,” 2015. Working Paper.

36



Bayer, Patrick, Fernando Ferreira, and Robert McMillan, “A Unified Framework

for Measuring Preferences for Schools and Neighborhoods,” Journal of Political Economy,

2007, 115(4), 588–638.

Berry, Steven and Philip Haile, “Identification in Differentiated Products Markets,”

2015. Working Paper.

Blundell, Richard, “Consumer Behaviour: Theory and Empirical Evidence — a Survey,”

Economic Journal, 1988, 98, 16–65.

Bronnenberg, Bart, Jean-Pierre Dube, and Matthew Gentzkow, “The Evolution

of Brand Preferences: Evidence from Consumer Migration,” American Economic Review,

2012, 102 (6), 2472–2508.

Card, David and Dean R Hyslop, “Estimating the Effects of a Time-Limited Earnings

Subsidy for Welfare-Leavers,” Econometrica, 2005, 73 (6), 1723–1770.

Casalmiglia, Caterina, Chao Fu, and Maia Güell, “Structural Estimation of a Model
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Figure 1: Timeline of the First-round and Reapplication Process
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Notes: In this figure, the left black histogram plots the distribution of dates at which applicants file initial
applications. The right red histogram does the same for reapplication dates conditional on those who reapply.
See Section 2.1 for discussions about this figure.

Table 1: Evolving School Choices

Notes: This table shows how many applicants reapply, exhibit any choice reversals, and exhibit surely
nonstrategic choice reversals between the first-round and the reapplication process. I say an applicant
exhibits choice reversals if she reapplies against her initially assigned school s by ranking another school
that is unranked or ranked below s in her initial application. An applicant exhibits surely non-strategic
choice reversals if she exhibits any choice reversals and does not exhaust her preference list (rank 11 or fewer
schools). As explained in the main text, surely non-strategic choice reversals can be rationalized only by real
demand changes. See Section 2.1 for discussions about this figure.
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Table 2: Characteristics of Applicants and Reapplicants

Notes: This table shows baseline characteristics of all applicants, applicants who reapply, applicants who
reapply and exhibit choice reversals between their initial applications and reapplications, and applicants
who reapply and are accepted. On “average preference rank of initial assignment,” I assume the preference
rank of being unassigned is 13, the worst possible rank plus one. Sample sizes in lower rows are smaller
than that in upper rows because some characteristics are missing for some applicants. The definitions of
test-score-related variables are in Appendix A.1. See Section 2.2 for discussions about this table.
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Figure 2: Self-reported Reasons for Reapplication

(a) Self-reported Reasons for Reapplication
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(b) Breakdown of “New Information”
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Notes: Panel 2a classifies self-reported reasons for reapplying into main categories. Panel 2b focuses on the
“New Information about Schools” category in Panel 2a and breaks it down into several sub-categories. “Dis-
tance” is different from “Moving” in that the former does not refer to any address change. The construction
of the categories are explained in Appendix A.2. See Section 2.2 for discussions about this figure.

Table 3: Growing Response of Choices to Distance and Academic Achievement

Notes: This table shows the average distance to and academic achievement level of ranked schools in initial
applications and reapplications. Schools with low academic performance are “schools in need of improvement”
in the official school brochure issued by NYC. Under the No Child Left Behind Act, New York State
establishes annual performance goals in Mathematics and English Language Arts for all NYC public schools.
Schools that do not meet these goals for two consecutive years are identified as schools in need of improvement.
See Section 2.2 for discussions about this figure.
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Table 4: Growing Response of Choices to School Characteristics

Notes: This table shows R2’s from school-level regressions of schools’ first choice market shares on various
sets of observable school characteristics. The first choice market share of a school is defined as the fraction
of applicants who rank it first among all applicants who make a first choice. Rows correspond to different
sets of school characteristics included in regressions. Columns correspond to different samples in different
periods used to compute market shares. The details of included characteristics are explained in Appendix
A.2. See Section 2.2 for discussions about this figure.

Figure 3: Falsification Check of the Empirical Model
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Notes: This figure correlates two measures of the amount of choice reversals with the preference rank of the
initially assigned school with respect to the initial preference (both are conditional on reapplicants). For
each applicant who reapplies after being initially assigned to s, the number of choice reversals is defined as
the number of schools t such that t is unranked or ranked below s in her initial application but ranked in
her reapplication. See Section 3.1 for discussions about this figure.
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Figure 4: Identification and Evidence of Demand Changes and Switching Costs
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Notes: These figures explain how I separately identify demand changes and switching costs from the solid
black line observed in the data. The solid black line correlates the conditional probability of reapplying to
the preference rank of the initially assigned school with respect to the initial preference. See Section 3.2 for
the identification argument using these figures.

46



Figure 5: Summary of Estimates

(a) Demand Changes due to Learning
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(b) Reapplication Costs & Initial Match Effects
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Notes: Based on the rational expectation model in Section 3.1, Panel 5a plots the distributions of estimated
overall new utilities (Û1

as) and latent demand changes caused by frictions about observable school character-
istics (ΣK

k=1βakfakXask) for all (applicant a, school s) pairs. Panel 5b plots the distributions of estimated

overall new utilities (Û1
as), estimated reapplication costs (ĉa), and estimated initial assignment effects (γ̂a).

Both panels are based on 50 simulations of the estimated model for each (applicant a, school s) pair. See
Sections 3.1 and 3.3 for the details of the model and the estimation method, respectively. See Section 3.4
for discussions about this figure.
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Figure 6: Fit (I) Initial Choices
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Notes: This figure correlates the real first choice market share of each school in initial applications with the
same share predicted by simulating the estimated model 50 times and averaging over them. The first choice
market share of a school is defined as the fraction of applicants who rank it first among all applicants. See
Section 3.4 for discussions about this figure.

Table 5: Fit (II) Reapplications, Choice Reversals, and Hidden Demand Changes

Notes: This table shows the fraction of applicants who reapply and exhibit choice reversals in the data and
the estimated models with and without reapplication costs. I say an applicant exhibits choice reversals if she
reapplies against her initially assigned school s by ranking another school that is unranked or ranked below
s in her initial application. Each column for a model is based on simulating the corresponding estimated
model 50 times and averaging over them. Simulation standard errors are in parentheses. See Sections 3.4
and 4.1 for discussions about this figure.
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Table 6: Fit (III) Growing Correlation between Choices and School Characteristics

Notes: Based on the rational expectation model, this table shows changes in R2’s from school-level regressions
of schools’ first choice market shares on observable school characteristics. The first choice market share of a
school is defined as the fraction of applicants who rank it first among all applicants who make a first choice.
Rows correspond to different sets of school characteristics included in regressions. Columns correspond to
different periods used to compute market shares. For the model, I compute predicted shares by simulating
the estimated model 50 times and averaging over them. See Section 3.4 for discussions about this figure.

Table 7: Welfare Costs of Ignoring Demand Changes

Notes: This table shows welfare changes from the real first-round assignment based on old demand to the
counterfactual “frictionless benchmark” that is defined as what would have been produced by the same
first-round assignment mechanism had families made choices based on their new demand after learning.
“Winners” (“losers”) are defined as applicants who be better (worse, respectively) off under the frictionless
benchmark, compared with the real first-round assignment with respect to new demand U1

as. Average utility
changes are also measured by new demand U1

as, which is assumed to be quasi-linear in the distance between
the family and the school locations. “Utility SD” is measured by the standard deviation in the distribution of
utilities from all schools for each applicant. Simulation standard errors over 50 simulations are in parentheses.
See Section 4.1 for discussions about this figure.
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Figure 7: Centralized vs Discretionary Reapplication Processes (I)
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Notes: In this figure, each line plots the distribution of improvements of the preference rank of the finally
assigned school under each of the three ways to accommodate observed choice changes: the real discretionary
reapplication process, the dynamic deferred acceptance mechanism, and the deferred deferred acceptance
mechanism. Section 4.2 defines the latter two mechanisms. The common status quo for these comparisons
is the initial assignment in the initial application process via the static deferred acceptance algorithm. The
preference rank in April is defined with respect to new preference �1

a defined in Section 4.2. This distribution
is conditional on applicants who get different assignments under the two mechanisms. The shaded area
around a line indicates the 95% simulation confident interval over 200 simulations of lottery numbers used
by the mechanisms to break ties in priorities. See Section 3.2 for details of the use of lottery numbers in
the NYC system. There is no shaded area around the black line for the real reapplication process since
I observed only one realization of the real reapplication process and it is not possible to simulate it. See
Section 4.2 for discussions about this figure.
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Table 8: Centralized vs Discretionary Reapplication Processes (II)

Notes: This table summarizes the effects of discretionary and centralized reapplication processes on family
welfare in the form of the fractions of winners and losers, who would be better and worse off, respectively,
by the introduction of each reapplication process compared with the initial match. The table also reports
the average utility change in distance-equivalent utility units. I define winners, losers, and utility changes in
terms of new utilities U1

as after learning (including initial assignment effects γa). “Utility SD” is measured
by the standard deviation in the distribution of utilities from all schools for each applicant. Each row for a
reapplication process is based on simulating the estimated model 50 times under the reapplication process
and averaging over the simulations. Simulation standard errors are in parentheses. Simulation standard
errors for the descriptive evaluation are negligible, as suggested by simulation standard errors in Figure 7.
The last two columns are based on the descriptive counterfactual analysis detailed in Figure 7. See Section
4.2 for discussions about this table.
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Table 9: Dynamic Reapplication Processes and Demand-side Inertia

Notes: This table summarizes the effects of discretionary and centralized reapplication processes on family
welfare in the form of the fractions of winners and losers, who would be better and worse off, respectively,
by the introduction of each reapplication process compared with the initial match. The table also reports
the average utility change in distance-equivalent utility units. “With no reapplication costs” means making
reapplication costs ca zero (while keeping initial assignment effects γa at the estimated value). I define
winners, losers, and utility changes in terms of new utilities U1

as after learning (including initial assignment
effects γa). “Utility SD” is measured by the standard deviation in the distribution of utilities from all
schools for each applicant. Each row for a reapplication process is based on simulating the estimated model
50 times under the reapplication process and averaging over the simulations. Simulation standard errors are
in parentheses. See Section 4.2 for discussions about this table.
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A Appendix

A.1 Data

Applications, reapplications, and assignments. The data come from the NYC Department

of Education (DOE) office. It contains information on students and their characteristics,

schools/programs and their characteristics, the initial rank-order preference lists submitted

by the students, students’ priority statuses at schools, the initial assignment of students

to schools, whether each student reapplies, the new rank-order preference lists submitted

by the students who reapply, and the dates of initial applications and reapplications. For

applicants who reapply, the data also contain written reapplication reasons as self-reported

by reapplicants.

Applicant characteristics. The records from the DOE contain the street address, previous

and current grade, gender, ethnicity, whether the student was enrolled in a public middle

school, scores in middle school standardized tests, limited English proficiency status, and

special education status. In addition, applicants are categorized into one of three categories

based on their score on the seventh grade standardized reading test: top 16 percent (high),

middle 68 percent (middle), and bottom 16 percent (low). This categorization is made

mainly for admissions at “educational option” programs, which I explain below. Applicants

are also categorized according to whether they are in the top 2% of the grade 7 English

Language Arts (ELA) test.

School/program characteristics. In the NYC high school system, there are three types of

schools: schools that actively evaluate applicants and submit a ranking to the mechanism;

schools that do not evaluate applicants, and instead order students by priorities, which are

determined not at the school, but by the DOE; and schools at which a fraction of seats are

reserved for students who are explicitly ranked by the school, while the rest are automatically

categorized into priority groupings set by the DOE. “Screened” and “audition” schools are

examples of the first type of school, at which staff review applicants based on criteria such as

seventh grade academic performance, attendance, disciplinary actions, auditions, portfolio

submissions, and interviews. “Unscreened” schools are examples of the second type of school.

Priorities are based on geographic location, current middle school, or other criteria. Finally,

the third class of schools, “educational option,” are permitted to rank students for half of

their positions, and are required to admit students according to priorities for the other half.

Nearly half of all schools are educational option, and more than half of total district capacity

is at schools that do not actively rank students. When priorities are used at unscreened

and educational option programs, many students fall into the same priority class. Ties or

indifferences within each priority group are broken by a single lottery commonly used by all
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schools.

“Low academic performance” is a dummy for being categorized as one of the “schools in

need of improvement” in the official school brochure issued by the DOE. Under the No Child

Left Behind Act, New York State establishes annual performance goals in Mathematics and

English Language Arts for all NYC public schools. Schools that do not meet these goals for

two consecutive years are identified as schools in need of improvement.

I say a school program is “new” if it was created in or after 2002. Otherwise, I call it “old.”

Program capacities are not provided in the data. I have estimated program capacities from

the assignment. Specifically, I define the capacity of a program as the number of students

assigned to it in the main application process; this method should be justified because most

schools reject at least some applicants in the application process and the capacity of any

of these schools should be the same as the number of applicants assigned to it. I say a

school is “tiny” if it is in the bottom 25% of the distribution of school capacities among

schools in the sample. “Small,” “medium,” and “large” correspond to 25-50%, 50-75%, and

75-100%respectively.

Distance. ArcGIS (with the address-set in the Business Analyst toolbox version 10.0) is

used to geocode student and school addresses and calculate the distance between them on

the road network. An exact match was first used to determine if a student’s address can

be geocoded precisely. If the results were unreliable, the student is assigned to the centroid

of the zip-code. The vast majority of students were placed at the roof-top level. The OD

Cost matrix tool in the Network Analyst toolbox was used to compute the distance by road

for each student-school pair. The road network is also obtained from the Business Analyst

toolbox.

A.2 A First Look at Evolving Choices: Details

A.2.1 Construction of Categories in Figure 2

For creating Figure 2, I randomly picked 10% of reapplication reasons and grouped them

into categories mentioned in the Figure. To deal with multiple reasons reported by a sin-

gle applicant, I first attached an equal weight of one to each reapplicant. When a single

reapplicant refers to multiple reasons, I divide the reapplicant’s weight equally across all

referred reasons. “Moving” contains all reasons that refer to address changes after the initial

application process. “Distance” includes the other distance-related reasons that do not refer

to address changes. “Mistake in Application” contains reasons that mention mistakes such

as misspelling program codes in the initial application or not intending to apply for the

initially assigned school. “Current students” contains reasons related to current students at
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the initially assigned school. For example, some families complain that current students are

so scary that they do not want to go to the initially assigned school.

A.2.2 Construction of Regressors in Table 4

In Table 4, “Location (borough) dummies” are full dummies for being in each of Manhattan,

Brooklyn, Queens, Bronx, and Staten Island. “Academic performance dummy” is the low

academic performance dummy defined in Appendix A.1. “Program type dummies” are full

dummies for program types explained in Appendix A.1. “Capacity dummies” are dummies

for “tiny”, “small”, and “medium” defined in Appendix A.1.

A.3 Uncovering Evolving Demand: Details

A.3.1 Identification: Details

Section 3.2 explains how to use admissions lotteries to separately identify switching costs

and demand changes. Figure 4 converts the identification logic into suggestive descriptive

evidence of significant demand changes and switching costs, but only under the simplifying

assumption that initially assigned schools are completely randomly assigned. In the NYC

school choice system, however, initial assignments are not purely random since initial assign-

ments also depend on non-random preferences of applicants and their priorities at schools.

This section extends the evidence of switching costs and demand changes in Figure 4 to the

more complicated real case with partially random initial assignments.

As already explained in Section 3.2, as far as identification is concerned, partial random-

ization does not cause any serious problem: I can repeat the same analysis as in Figure 4

conditional on each applicant type (i.e., entire preference list and priorities at all schools) to

separately identify switching costs and demand changes for that type. There is a problem,

however, when I try to extend the empirical implementation of the identification argument in

Figure 4 to partially random initial assignments. Since applicant type is a high-dimensional

object (e.g. with 750 schools, the number of possible preferences is 750 × 749 × 748 × ...),

few applicants usually share the same type in any reasonably sized data. This fact makes

it infeasible to draw a conditional-on-full-type version of Figure 4. I therefore need to re-

sort to a different strategy that conditions on something coarser to make initial assignments

random.

Following the standard notation in econometrics of program evaluation, let Das = 1 if

applicant a is assigned school s; Das = 0 otherwise. �0
a denotes applicant a’s old preference

a submits in her initial application. s �0
a s′ means applicant a prefers school s over s′ in
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her initial application. Let ρas be a’s priority at s (before tie-breaking by lotteries). De-

fine Firsts ≡ {a|s �0
a s′ for all school s′ 6= s and there exists applicant a′ such that ρas =

ρa′s and Das 6= Da′s} as the set of applicants who rank school s first and are in s’s “marginal

priority group” where some applicants are assigned s but others are not though all of them

share the same priority at s. Since all applicants in Firsts rank school s first and share

the same priority at s, whether they get assigned to s should be determined solely by their

lottery numbers. Therefore, assignments to school s within Firsts can be thought as if being

randomly assigned in a randomized controlled trial.

I use this strategy to create a structural or causal version of Figure 4 as follows. Let me

pool Firsts across all schools into a single sample ∪sFirsts. Within ∪sFirsts, consider the

following regression (linear probability model) or its nonlinear logit or probit version:

Ya = βDa + ΣsαsXas + εa,

where Ya ≡ 1{applicant a reapplies},Da ≡ 1{applicant a is assigned to her first choice school},
and Xas ≡ 1{applicant a ranks school s first}. By the above argument, Da is asymptot-

ically randomly assigned conditional on Xas’s (the identity of the first choice school) and

thus estimated β̂ from the above regression is causally or structurally interpretable. In fact,

Table A.3 confirms that conditional on being in ∪sFirsts and Xas’s (the identity of the first

choice school), baseline covariates are balanced between applicants who do and do not get

first choice offers. Such covariate balance is lost, however, if I run the same regression with

no controls. This suggests that Da is indeed conditionally randomly assigned as intended.

Table A.4 reports β̂ alongside the corresponding marginal effect estimates from the probit

and logit versions of the above regression. The causal effect of being assigned to the first

choice school on the probability of reapplying is precisely estimated and about 6%. The

omitted variable bias appears to be small and the descriptive effect of being assigned to the

first choice school on the probability of reapplying is about 7%.

Finally, let α̂ ≡ Σs|Firsts|α̂s

Σs|Firsts|
be the weighted average of α̂s across all schools with

the weight being the number of applicants in Firsts, who are randomly assigned to or

rejected by each school. Each α̂s is the conditional probability of reapplying conditional

on being assigned to a non-first-choice school and in Firsts. Recall that β̂ is a weighted

average of the causal effects of being assigned to the first choice school on the probability of

reapplying. Therefore, α̂ + β̂ and α̂ are (weighted averages of) the conditional probabilities

of reapplying conditional on being assigned to the first choice school and a non-first-choice

school, respectively, and in ∪sFirsts, where applicants are randomly assigned between the

first choice school and a non-first-choice school.
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Figure A.6 plots α̂+ β̂ and α̂ at x = 1 and x = lower, respectively, focusing on applicants

in ∪sFirsts. Since applicants in the sample ∪sFirsts used for creating Figure A.6 are purely

randomly assigned between the two points on the x axis, Figure A.6 can be interpreted as a

causal or structural version of Figure 4. By the logic in Figure 4 and Section 3.2, Figure A.6

structurally confirms that there are both significant switching costs and demand changes (at

least for the subpopulation of applicants I focus on).

More formally, I can test the presence of switching costs and demand changes. If there

were neither switching costs nor demand changes, all applicants assigned to a lower choice

school would reapply while none of applicants assigned to the first choice school would

reapply. This behavioral hypothesis corresponds to the statistical hypothesis that α+β = 0

and α = 1. Since α and β are linear combinations of linear regressions coefficients αs’s and

βs’s, null hypotheses H0 : α + β = 0 and H0 : α = 1 are linear hypotheses. I can test these

hypotheses by the usual Wald test.

Similarly, if there were no switching costs (but there may be demand changes), condi-

tional on being in ∪sFirsts,

α + β

= Pr(a reapplies|s0a is a’s old 1st choice)

= ΣK≥2 Pr(a does not reapply| s0a is a’s old K-th choice)

(by the same argument as in Section 3.2)

≥ ΣK≥2 Pr(a does not reapply| s0a is a’s old K-th choice)

×Pr(s0a is a’s old K-th choice| s0a is not a’s old 1st choice)

= 1− α,

where the inequality is because Pr(a does not reapply| s0a is a’s old K-th choice) ≥ 0 and

Pr(s0a is a’s old K-th choice| s0a is not a’s old 1st choice) ≤ 1. Thus, the behavioral hypoth-

esis of no switching costs corresponds to the statistical hypothesis that α + β ≥ 1− α.

Table A.5 shows that the Wald test rejects both the null hypothesis that there are no

switching costs (α + β = 1 − α) and the null hypothesis that there are neither switching

costs nor demand changes (α + β = 0 or α = 1).

A.3.2 Estimation: Details

Likelihood Derivation and Estimation Procedure

In this section, I derive partly analytical likelihood functions from my empirical models (in

Section 3.1) combined with the distributional assumptions in Section 3.3. The likelihood
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functions at the family level are computed for a sequence of choices from the initial appli-

cation period t = 0 to the reapplication period t = 1, since due to initial assignment effects

and reapplication costs, the likelihood of a choice in t = 1 depends on the choice and initial

assignment in the previous period t = 0. Let stal be applicant a’s l-th choice school in her

period t preference �t
a (t = 0, 1) and let #t

a be the number of schools a ranks in �t
a.

In period 0 (the initial application period), every applicant a in the sample submits �0
a

and it implies that U0
as0al

> U0
as for every l = 1, ...,#0

a and every s with s0al �0
a s, including

unranked schools. By the formula for logit choice probabilities (Train 2009 chapter 3), con-

ditional on (U0 ≡ (U0
s )s, (βak(1 + fak))k=1,...,K), the likelihood of observing �0

a is

L0
a ≡ Π

#0
a

l=1

exp(U0
s0al

+ ΣK
k=1βak(1 + fak)Xas0alk

)

Σs with s0al%
0
as
exp(U0

s + ΣK
k=1βak(1 + fak)Xask)

.

In period 1 (the reapplication process), even if applicant a does not reapply and does

not submit new preference �1
a, she provides useful information. In particular, in the rational

expectation model, applicant a reapplies if equation (3) in the main text holds, implying that

conditional on (U1 ≡ (U1
s )s, (βak(1 + fak))k, (βakfak)k, ε

0
a ≡ (ε0as)s, ca/pa, γa), the likelihood

of observing a’s non-reapplication is

L1,no reapp,rational
a ≡ 1−

∫
1{equation (3) holds}dFθ,

where Fθ is the distribution of utility function arguments, parametrized by θ. If applicant a

reapplies and submits �1
a, then it implies that (I) equation (3) holds, (II) pas1alU

1
as1al

> pasU
1
as

for each l = 1, ...,#1
a and every unranked s 6= s0a, and (III) if a does not exhaust her reap-

plication preference, i.e., #1
a < 3 (recall any reapplicant can rank up to three schools in her

reapplication preference), then U1
as0a

+ γa > U1
as for all s(6= s0a) which a does not rank in �1

a.

Thus, the likelihood of observing a’s reapplication and �1
a is

L1,reapp,rational
a

≡
∫
1{equation (3) holds} × Π

#1
a

l=11{pas1alU
1
as1al

> pasU
1
as for all unranked s 6= s0a}dF ′

θ︸ ︷︷ ︸
likelihood of (I) and (II) conditional on (III)

× [1{#1
a < 3}

exp(U1
s0a
+ ΣK

k=1βakXas0ak
+ γa + ε0as0a)

Σs unranked in �1
a
exp(U1

s + ΣK
k=1βakXask + 1{s = s0a}γa + ε0as)

+ (1− 1{#1
a < 3})]︸ ︷︷ ︸

likelihood of (III)

,

where F ′
θ is the distribution of relevant utility function arguments conditional on (III). If a

exhausts her reapplication preference, i.e., #1
a = 3, then F ′

θ is the same as the unconditional
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distribution.

In the naive free expectation model, not reapplying implies that U1
as0a

+ ca/pa + γa > U1
as

for every s 6= s0a. By the formula for logit choice probabilities, the likelihood of observing a’s

non-reapplication is

L1,no reapp,naive
a ≡

exp(U1
s0a
+ ΣK

k=1βakXas0ak
+ ε0as0a + ca/pa + γa)

Σsexp(U1
s + ΣK

k=1βakXask + 1{s = s0a}(ca/pa + γa) + ε0as)
.

If applicant a reapplies and submits �1
a, then it implies that (i) it is not the case that

U1
as0a

+ ca/pa + γa > U1
as for every s 6= s0a, (ii) U1

as1al
> U1

as for each l = 1, ...,#1
a and

every s with s1al �1
a s, and (iii) if a does not exhaust her reapplication preference, i.e.,

#1
a < 3 (recall any reapplicant can rank up to three schools in her reapplication prefer-

ence), then U1
as0a

+ γa > U1
as for all s( 6= s0a) which a does not rank in �1

a. Conditional on

(U1, (βak(1+fak))k, (βakfak)k, ε
0
a, ca/pa, γa), the likelihood of observing a’s reapplication and

�1
a is

L1,reapp,naive
a

≡
∫
(1− 1{U1

as0a
+ ca/pa + γa > U1

as for every s 6= s0a})
×Π

#1
a

l=11{U
1
as1al

> U1
as for every s with s1al �1

a s}dF ′
θ︸ ︷︷ ︸

likelihood of (i) and (ii) conditional on (iii)

× [1{#1
a < 3}

exp(U1
s0a
+ ΣK

k=1βakXas0ak
+ γa + ε0as0a)

Σs unranked in �1
a
exp(U1

s + ΣK
k=1βakXask + 1{s = s0a}γa + ε0as)

+ (1− 1{#1
a < 3})]︸ ︷︷ ︸

likelihood of (iii)

.

For each model, integrating over (U0,U1, (βak(1 + fak))k, (βakfak)k, ε
t
a, ca/pa, γa) and all ap-

plicants gives the full, unconditional likelihood as follows:

L(θ) ≡ Πa

∫
L0

a[1{a reapplies}L1,reapp
a + (1− 1{a reapplies})L1,no reapp

a ]dFθ.

For estimating θ under each model, I find θ̂ that maximizes the simulated version of the

logarithm of the likelihood function. More precisely, for easing the computational burden,

I take a two step procedure. The first step estimates the part of θ related to U0 and

βak(1 + fak) by maximizing the simulated version of the logarithm of the partial likelihood

Πa

∫
L0

adFθ. Taking the estimated part of θ as given, the second step estimates the remaining

part of θ by maximizing the simulated version of the logarithm of the remaining conditional

likelihood for period 1, i.e., Πa

∫
1{a reapplies}L1,reapp

a + (1− 1{a reapplies})L1,no reapp
a dFθ.

This two step approach is legitimate since (1) the estimation target of the first step (U0
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and βak(1 + fak)) is identified by period 0 preference �0
a alone, and maximizing the period

0 partial likelihood gives us consistent estimates with conservative standard errors, and (2)

the estimation target of the second step depends only on the period 1 conditional likelihood,

and standard results for estimators based on maximizing a partial or conditional likelihood

guarantee its consistency and asymptotic normality (Wong, 1986).

Finally, when simulating old utilities U0
as’s in the second step, I do so conditional on

applicant a’s observed initial application preference �0
a.

36 This conditional simulation seems

more appropriate than unconditional simulation for incorporating the fact that observed

initial assignment s0a (which is used in the estimation) is one of the twelve most preferred

schools in initial application preference �0
a and underlying old utilities U0

as’s. If I simulate old

utilities unconditionally, observed initial assignment s0a is often not such a preferred school

in simulated period 0 utilities (especially because the number of schools is large). I then

need large reapplication costs and initial assignment effects to explain the low reapplication

rate, which may result in overestimating reapplication costs and initial assignment effects.

Estimation Sample Construction

Schools. 755 school programs are ranked by some students in the initial application process.

Among them, I had to drop 5 schools that I could not geocode because because I did not

receive their address information. I also dropped applicants’ choices associated with these

dropped schools. This left 750 schools in the estimation and counterfactual sample.

Applicants. 91289 students make applications and submit preferences in the initial ap-

plication process. Starting from them, I needed to focus on students who rank at least one

in-sample school in the initial application process, since other students reveal no information

about their preferences over in-sample schools. I excluded students in the top 2 percent of

the grade 7 English language arts test score by the following reason: any students in the

top 2 percent are guaranteed assignment to their first choice if they rank a program of a

particular type, known as “educational option,” as their first choice. A student who does

not prefer an educational option program as her top choice may thus have an incentive to

strategize and rank it as her top choice so that she receives it. If so, their stated prefer-

ences do not follow the truth-telling assumption necessary for identification. I also had to

drop 9th graders, who participate in the mechanism for the second time and are potentially

subject to different types of learning or effects of a prior assignment on utilities, and stu-

dents from private schools, for whom I do not observe necessary demographic information.

36In particular, within each simulation, I first simulate βak(1+fak) and U0
s unconditionally and take them

as fixed. Then I simulate unobserved utility shocks ε0as’s conditional both on initial application preference
�0

a and the simulated values of βak(1 + fak) and U0
s so that the resulting period 0 utilities U0

as’s become
distributed conditional on initial application preference �0

a.
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Finally, I dropped students for whom no address information was available, because I could

not geocode them. As a result of this process, 76250 students remain in the estimation and

counterfactual sample.

Choices. A tiny number of choices are recorded without preference ranks. I had to drop

these choices.

A.4 Theory for the Counterfactual Analysis

A.4.1 Model

There are a finite set A of applicants and a finite set S of schools. Each school s ∈ S has a

strict preference/priority relation �s over the set of subsets of A. In many settings including

the NYC system, school priorities are coarse or weak and lotteries are used to break ties or

indifferences. In the theoretical analysis, I do not explicitly consider the tie-breaking process

and take ex post strict priorities as given.

I assume that the preference relation of each school is responsive with capacity qs (Roth

and Sotomayor, 1990), i.e.,

(1) For any a, ā ∈ A, if {a} �s {ā}, then for any A′ ⊆ Ar {a, ā}, A′ ∪ {a} �s A
′ ∪ {ā},

(2) For any a ∈ A, if {a} �s ∅, then for any A′ ⊆ A such that |A′| < qs, A
′ ∪ {a} �s A

′,

and

(3) ∅ �s A
′ for any A′ ⊆ A with |A′| > qs.

If a school’s preferences are responsive, then that school acts as if it has preferences over

individual applicants and a quantity constraint, and the school takes the available highest-

ranking applicants up to that quantity constraint. In addition, I assume that every applicant

is acceptable to every school because I am primarily interested in the assignment of applicants

to public schools as in the NYC system. The preference profile of all schools is denoted

by �S≡ (�s)s∈S. In this model, schools’ preferences can be interpreted as their intrinsic

preferences or priorities exogenously given by law or the authorities. In NYC, the former

interpretation is appropriate for some schools (e.g., “screened” schools) while the latter

interpretation is suitable for other schools (e.g., “unscreened” schools). The model and the

results are applicable to both interpretations.

On top of the above usual structure, the model specifies applicant preferences and allows

them to evolve over time. In particular, there are two periods, 0 and 1. I interpret period

0 as the currently used application period (e.g., December) and period 1 as a later point in

time that can potentially be used as an alternative application period (e.g., following April).
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In each period t = 0, 1, each applicant a ∈ A has a strict preference relation �t
a over S∪{∅},

where ∅ denotes the outside option of the applicant. I distinguish ∅ and ∅, where ∅ denotes

an outside option while ∅ is the empty set. �1
a may or may not be the same as �0

a. �1
A

is supposed to be a better measure of applicants’ welfare than �0
A is since �1

A is at a later

point in time and is likely to approximate better applicants’ preferences when they finally

experience educational services at assigned schools. Unless otherwise noted, I impose no

restriction on the relationship between �0
a and �1

a. The weak preference relation associated

with �t
a is denoted by %t

a and so I write s %t
a s̄ if either s �t

a s̄ or s = s̄. A preference profile

of all applicants in period t is denoted by �t
A≡ (�t

a)a∈A.

Matching and Its Properties. An outcome of the model is a matching, which is a vector

µ = (µa)a∈A that assigns each applicant a a seat at a school (or the outside option) µa ∈
A ∪ {∅}, and where each school s ∈ S is assigned at most qs applicants. I denote by

µs ≡ {a ∈ A : s = µa} the set of applicants who are assigned to school s.

Let me introduce several desirable properties of a matching. I often use “w.r.t.” to mean

“with respect to.” A matching µ is individually rational w.r.t. �t
A if µa %t

a ∅ for every a ∈ A.

µ is blocked by (a, s) ∈ A × S w.r.t. (�t
A,�S) if s �t

a µa and there exists A′ ⊆ µs ∪ a

such that A′ �s µs. (I denote singleton set {x} by x when there is no room for confusion.)

µ is fair (stable) w.r.t. (�t
A,�S) if it is individually rational w.r.t. �t

A and not blocked

w.r.t. (�t
A,�S). A matching µ is Pareto efficient for applicants w.r.t. �t

A if there exists

no matching µ′ such that µ′
a %t

a µa for all a ∈ A and µ′
a �t

a µa for at least one a ∈ A. µ

is weakly Pareto efficient for applicants w.r.t. �t
A if there exists no matching µ′ such that

µ′
a �t

a µa for all a ∈ A.

Mechanism and Its Properties. Given the set of applicants A and schools S, a (direct)

mechanism is a function ϕ that maps each (�0
A,�1

A,�S) into a matching. Since the domain

contains both �0
A and �1

A, this definition allows both for static and dynamic mechanisms.

The fact that NYC runs the discretionary reapplication process after the initial match sug-

gests that it is feasible to elicit preferences at two different points in time. For example, as

explained below, the current initial match mechanism in NYC is static while some of the

alternatives considered in this paper are dynamic; all of them can be described as exam-

ples of this definition. A mechanism ϕ is (weakly) Pareto efficient for applicants w.r.t. �t
A

if ϕ(�0
A,�1

A,�S) is (weakly) Pareto efficient w.r.t. �t
A for every (�0

A,�1
A,�S). ϕ is fair

(stable) w.r.t. (�t
A,�S) if ϕ(�0

A,�1
A,�S) is fair w.r.t. (�t

A,�S) for every (�0
A,�1

A,�S). I

introduce the following algorithm to compute a matching.
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Gale and Shapley’s (Applicant-Proposing) Deferred Acceptance (DA) Algorithm.

Consider any applicant preference profile �A, for example, �0
A or �1

A. Given (�A,�S), the

(applicant-proposing) deferred acceptance (DA) algorithm is defined as follows.

• Step 1: Each applicant a ∈ A applies to her most preferred acceptable school w.r.t.

�a (if any). Each school tentatively keeps the highest-ranking applicants up to its

capacity, and rejects every other applicant.

In general, for any step t ≥ 2,

• Step t: Each applicant a who was not tentatively matched to any school in Step

(t− 1) applies to her most preferred acceptable school w.r.t. �a that has not rejected

her (if any). Each school tentatively keeps the highest-ranking applicants up to its

capacity from the set of applicants previously tentatively matched to this school and

the applicants newly applying, and rejects every other applicant.

The algorithm terminates at the first step at which no applicant applies to a school. Each

applicant tentatively kept by a school at that step is allocated a seat in that school, result-

ing in a matching which I denote by DA(�A,�S). It is known that DA(�A,�S) is a fair

and weakly Pareto efficient matching with respect to (�A,�S) for any (�A,�S) (Roth and

Sotomayor, 1990; Abdulkadiroğlu and Sönmez, 2003).

As already explained in Section 2.1, the authorities in NYC ask applicants to submit

their preferences around Nov and Dec. They then apply the DA algorithm to the submitted

preferences to compute the matching. Recall that period 0 in my model corresponds to Nov

or Dec. This leads me to interpret the current initial match mechanism as ϕDA
initial(�0

A,�1
A

,�S) ≡ DA(�0
A,�S), i.e., the one that produces a matching by applying the DA algorithm

to applicant preference in period 0, �0
A. By the above properties of DA(�A,�S) with

respect to its input preferences, ϕDA
initial has nice properties such as fairness and weak Pareto

efficiency with respect to �0
A. However, the empirical analysis in Sections 2 and 3 suggests

that families’ preferences for schools change from t = 0 to t = 1. Under �1
A, therefore, ϕ

DA
initial

may not retain the desirable properties. In fact, I empirically show in Section 4 that ϕDA
initial

produces non-negligible efficiency losses under �1
A.

To improve on ϕDA
initial, Section 4.2 describes two alternatives mechanisms, the dynamic

deferred acceptance mechanism ϕDA
dynamic(�0

A,�1
A,�S) ≡ DA(�1

A,�′
S), where �′

S denotes

modified school priorities defined in Section 4.2. Precisely speaking, �′
S is defined as follows.

For all s,

• a �′
s a

′ for any a ∈ DAs(�0
A,�S) and any a′ 6∈ DAs(�0

A,�S) and
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• a′′ �′
s a′′′ if and only if a′′ �s a′′′ for any a′′, a′′′ 6∈ DAs(�0

A,�S) or any a′′, a′′′ ∈
DAs(�0

A,�S)

The deferred deferred acceptance mechanism ϕDA
deferred(�0

A,�1
A,�S) ≡ DA(�1

A,�S). If�0
A=�1

A

, i.e., there is no preference change, then both alternatives reduce to the current one, i.e.,

ϕDA
dynamic(�0

A,�1
A,�S) = ϕDA

deferred(�0
A,�1

A,�S) = ϕDA
initial(�0

A,�1
A,�S). Thus, neither of them

performs worse than the current one even if there is no preference change.

The next section provides a formal characterization of the relationship among these mech-

anisms. In particular, I show that ϕDA
dynamic and ϕDA

deferred are the only “best possible” mech-

anisms in terms of efficiency and fairness with respect to �1
A and strategy-proofness. This

result provides a theoretical foundation for considering these alternatives in the counterfac-

tual analysis.

A.4.2 Result

In addition to the usual fairness and efficiency properties defined above, I introduce additional

criteria to compare alternative reapplication mechanisms with ϕDA
initial, the status quo initial

match mechanism currently in place in many cities including NYC.

Definition 1. A mechanism ϕ always Pareto dominates another mechanism ϕ′ w.r.t. �t
A if

(1) for any (�0
A,�1

A,�S) and any a, ϕa(�0
A,�1

A,�S) %t
a ϕ′

a(�0
A,�1

A,�S) and (2) there are

(�0
A,�1

A,�S) and a such that ϕa(�0
A,�1

A,�S) �t
a ϕ

′
a(�0

A,�1
A,�S).

Definition 2. Amechanism ϕ is less unfair than another mechanism ϕ′ w.r.t. (�t
A,�S) if (1)

for any (�0
A,�1

A,�S) and any (a, s), if (a, s) blocks ϕ(�0
A,�1

A,�S) w.r.t. (�t
A,�S), then (a, s)

also blocks ϕ′(�0
A,�1

A,�S) w.r.t. (�t
A,�S) and (2) there are (�0

A,�1
A,�S) and (a, s) such

that (a, s) blocks ϕ′(�0
A,�1

A,�S) w.r.t. (�t
A,�S) but (a, s) does not block ϕ(�0

A,�1
A,�S)

w.r.t. (�t
A,�S).

In words, ϕ is less unfair than ϕ′ if it is always the case that any applicant-school pair

blocking the outcome under ϕ also blocks that under ϕ′. By definition, if ϕ is fair with

respect to (�t
A,�S) but ϕ

′ is not, then ϕ is less unfair than ϕ′ with respect to (�t
A,�S).

Another possible definition of being less unfair is the following: (1) for any (�0
A,�1

A,�S)

and any a, if there is s such that (a, s) blocks ϕ(�0
A,�1

A,�S) w.r.t. (�t
A,�S), then there is

s′ such that (a, s′) blocks ϕ′(�0
A,�1

A,�S) w.r.t. (�t
A,�S) (s

′ may or may not be the same

as s) and (2) there are (�0
A,�1

A,�S) and a such that there is s′ such that (a, s′) blocks

ϕ′(�0
A,�1

A,�S) w.r.t. (�t
A,�S) but for any s, (a, s) does not block ϕ(�0

A,�1
A,�S) w.r.t.

(�t
A,�S). The results below hold under either definition.
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All properties defined so far are about fairness or efficiency with respect to stated prefer-

ences. To make sure that stated preferences reflect true ones, I would also like a mechanism

to be incentive compatible.

Definition 3. A mechanism ϕ is dynamically strategy-proof if the following holds for any

(�0
A,�1

A,�S), any a, and any (�′0
a ,�′1

a ): ϕa(�0
A,�1

A,�S) %0
a ϕa(�′0

a ,�0
−a,�′1

a ,�1
−a,�S) and

ϕa(�0
A,�1

A,�S) %1
a ϕa(�0

A,�′1
a ,�1

−a,�S).

In words, under a dynamically strategy-proof mechanism, any preference manipulation by

any applicant in any period is never strictly profitable with respect to that applicant’s prefer-

ence in that period. I allow each applicant a to manipulate both �0
a and �1

a in t = 0 but only

�1
a in t = 1. This restriction is justified under the interpretation that �0

a is already reported

and fixed in t = 1. When ϕ is static, i.e., uses only �0
A or �1

A to compute the matching

ϕ(�0
A,�1

A,�S), usual static strategy-proofness is the same as dynamic strategy-proofness.

In principle, I can define dynamic strategy-proofness in a more restrictive way, e.g., for any

(�0
A,�1

A,�S) and any a and any (�′0
a ,�′1

a ), ϕa(�′0
a ,�0

−a,�′1
a ,�1

−a,�S) %t
a ϕa(�0

A,�1
A,�S)

for both t = 0, 1. In the presence of potential preference reversals between �0
a and �1

a,

however, this definition is so restrictive that it is not satisfied even by static strategy-proof

mechanisms such as ϕDA
initial (since it is possible ϕa(�′0

a ,�0
−a,�′1

a ,�1
−a,�S) �0

a ϕa(�0
A,�1

A,�S)

but ϕa(�0
A,�1

A,�S) �1
a ϕa(�′0

a ,�0
−a,�′1

a ,�1
−a,�S)).

I regard the following five as basic desirable properties of a mechanism in my dynamic

model with evolving preferences, where �1
a is the measure of applicants’ welfare. Note that

period 1 is closer to enrollment periods and the empirical analysis in the main body suggests

that �1
a appears to be subject to less severe information frictions about schools.

(I) Fairness with respect to (�1
A,�S)

(II) Being less unfair than ϕDA
initial with respect to (�1

A,�S)

(III) Weak Pareto efficiency with respect to �1
A

(IV) Always Pareto dominating ϕDA
initial with respect to �1

A

(V) Dynamic strategy-proofness

Properties (II) and (IV), which compare an alternative mechanism with ϕDA
initial, are important

since many cities including NYC are currently using ϕDA
initial as the status quo initial match.

ϕDA
initial satisfies only (V) among (I) to (V). My goal is thus to design reapplication mechanisms

that improve on ϕDA
initial and achieve (I)-(V). The following result shows that in terms of (I)-

(V), ϕDA
dynamic and ϕDA

deferred are the best possible mechanisms I can design.
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Proposition 1. 1.A) ϕDA
dynamic satisfies (II) being less unfair than the initial match, (III)

weak Pareto efficiency, and (IV) always Pareto dominating ϕDA
initial (call this set of desiderata

A), but not others.

1.B) ϕDA
deferred satisfies (I) fairness, (II) being less unfair than ϕDA

initial, (III) weak Pareto

efficiency, and (V) dynamic strategy-proofness (call this set of desiderata B), but not others.

2) Consider any possible mechanism ϕ. ϕ can satisfy only a subset of set A or B.

The proof is in Appendix A.4.3. Proposition 1 has several implications. First of all,

recall that ϕDA
initial does not satisfy any of desirable welfare properties (I)-(IV). Thus, (1.A)

and (1.B) say each of ϕDA
dynamic and ϕDA

deferred is better than ϕDA
initial and achieve some of welfare

properties (I)-(IV) in the presence of preference changes. (1.A) and (1.B) also demonstrate

certain tradeoffs between ϕDA
dynamic and ϕDA

deferred. Part (2) shows that these tradeoffs are

not resolvable, i.e., I cannot design a mechanism that is strictly better than any of the two

mechanisms in terms of the above desiderata. In this sense, ϕDA
deferred and ϕDA

dynamic are the

best possible alternatives I can obtain.

It may be useful to walk through what tradeoffs Proposition 1 embeds. A tradeoff

Proposition 1 implies is that (IV) Pareto dominating ϕDA
initial and (V) dynamic strategy-

proofness are incompatible. This is a version of the classic efficiency-incentive tradeoff.

There is another more important tradeoff. Proposition 1 also implies a tradeoff between (I)

fairness and (IV) always Pareto dominating ϕDA
initial. This is a version of yet another classic

tradeoff between efficiency and fairness.

To understand the implication of this efficiency-fairness tradeoff between (I) fairness and

(IV) always Pareto dominating ϕDA
initial, let me consider a weaker version of always Pareto

dominating ϕDA
initial. A mechanism ϕ is never dominated by another mechanism ϕ′ w.r.t. �t

A

if there is no (�0
A,�1

A,�S) such that ϕ′(�0
A,�1

A,�S) Pareto dominates ϕ(�0
A,�1

A,�S) w.r.t.

�t
A. If ϕ dominates ϕ′ w.r.t. �t

A, then ϕ is never dominated by ϕ′ w.r.t. �t
A. Thus ϕ

DA
dynamic

is never dominated by ϕDA
initial w.r.t. �1

A since ϕDA
dynamic always Pareto dominates ϕDA

initial w.r.t.

�1
A (by Proposition 1.A). In contrast, ϕDA

deferred is sometimes dominated by ϕDA
initial w.r.t. �1

A

(see Lemma 3 in Appendix A.4.3). Thus, the most obvious reapplication mechanism ϕDA
deferred

(waiting until period 1 and applying the DA algorithm to applicant preferences in period

1) may make all applicants worse off with respect to their preferences in period 1. More

generally, switching from ϕDA
initial to ϕDA

deferred produces “losers” who prefer ϕDA
initial while there

is no such loser in the case of ϕDA
dynamic. I empirically confirm and quantify this in Section 4.

Overall, Proposition 1 provides a theoretical basis for using ϕDA
deferred and ϕDA

dynamic as the

best possible reapplication mechanisms in my counterfactual analysis in Section 4, which in

turn empirically quantifies the effects of the two mechanisms.
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A.4.3 Proof of Proposition 1

1.A) ϕDA
dynamic always Pareto dominates ϕDA

initial w.r.t. �1
A since its construction always guar-

antees any applicant a a seat at school DAa(�0
A,�S) (if any) or a more preferred school w.r.t.

�1
a. It is weakly Pareto efficient w.r.t. �1

A since DA(�A,�S) is weakly Pareto efficient w.r.t.

input preferences �A for any (�A,�S) (Abdulkadiroğlu and Sönmez, 2003). It is less unfair

than ϕDA
initial w.r.t. (�1

A,�S) by the following Lemma 1. It violates the other two properties

by Lemma 2 and Corollary 1 proven below.

Lemma 1. ϕDA
dynamic is less unfair than ϕDA

initial w.r.t. (�1
A,�S).

Proof. Suppose (a, s) blocks ϕDA
dynamic(�0

A,�1
A,�S) w.r.t. (�1

A,�S), i.e., s �1
a ϕDA

dynamic,a(�0
A

,�1
A,�S) and a �s a′ for some a′ ∈ ϕDA

dynamic,s(�0
A,�1

A,�S). (Note that as long as s �1
a

ϕDA
dynamic,a(�0

A,�1
A,�S), it cannot be the case |ϕDA

dynamic,s(�0
A,�1

A,�S)| < qs by the construc-

tion of the DA algorithm.) It has to be the case

(ϕDA
dynamic,a′(�0

A,�1
A,�S) =)s = DAa′(�0

A,�S)(≡ ϕDA
initial,a′(�0

A,�1
A,�S)),

since otherwise a �s a
′ implies a �′

s a
′ and thus (a, s) blocks ϕDA

dynamic(�0
A,�1

A,�S) ≡ DA(�1
A

,�′
S) w.r.t. (�1

A,�′
S), a contradiction to the fact that no (a, s) blocks DA(�A,�S) w.r.t.

(�A,�S) for any (�A,�S). Then

s �1
a ϕ

DA
dynamic,a(�0

A,�1
A,�S) �1

a ϕ
DA
initial,a(�0

A,�1
A,�S),

where the second weak preference is because ϕDA
dynamic always Pareto dominates ϕDA

initial w.r.t.

�1
A. Combined with ϕDA

initial,a(�0
A,�1

A,�S) ≡ DAa′(�0
A,�S) = s, this means (a, s) also blocks

ϕDA
initial(�0

A,�1
A,�S) w.r.t. (�1

A,�S).

1.B) ϕDA
deferred ≡ DA(�1

A,�S) is fair w.r.t. (�1
A,�S) and weakly Pareto efficient w.r.t.

�1
A since DA(�A,�S) has these properties w.r.t. any input preferences (Abdulkadiroğlu

and Sönmez, 2003). Since ϕDA
initial is not fair w.r.t. (�1

A,�S), ϕ
DA
deferred’s fairness implies that

ϕDA
deferred is less unfair than ϕDA

initial w.r.t. (�1
A,�S). ϕDA

deferred is dynamically strategy-proof

since ϕDA
deferred is static and statically strategy-proof while for static mechanisms, dynamic

strategy-proofness is equivalent to static strategy-proofness. ϕDA
deferred does not always Pareto

dominate ϕDA
initial w.r.t. �1

A by Corollary 1 shown below.

2) This is implied by Lemma 2 and Corollary 1.
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Lemma 2. There is no mechanism that always Pareto dominates ϕDA
initial w.r.t. �1

A and is

dynamically strategy-proof.

Proof. Suppose to the contrary that there is a mechanism ϕ that satisfies the above two

properties. Since ϕ always Pareto dominates ϕDA
initial w.r.t. �1

A, there exist (�0
A,�1

A,�S) and

a such that ϕa(�0
A,�1

A,�S) 6= ϕDA
initial,a(�0

A,�1
A,�S).

Claim 1. There exist (�0
A,�1

A,�S) and a such that ϕDA
initial,a(�0

A,�1
A,�S) �0

a ϕa(�0
A,�1

A,�S

).

Proof. Otherwise, for any (�0
A,�1

A,�S) and any a with ϕa(�0
A,�1

A,�S) 6= ϕDA
initial,a(�0

A,�1
A

,�S), it is the case that ϕa(�0
A,�1

A,�S) �0
a ϕDA

initial,a(�0
A,�1

A,�S). This means that ϕ al-

ways Pareto dominates ϕDA
initial w.r.t. �0

A. Consider �′0
a : ϕa(�0

A,�1
A,�S), ∅. Since ϕDA

initial

is strategy-proof, ϕDA
initial,a(�′0

a ,�0
−a,�1

A,�S) = ∅. Since ϕ always Pareto dominates ϕDA
initial

w.r.t. �0
A, the CLAIM in Abdulkadiroğlu et al. (2009) implies that ϕa(�′0

a ,�0
−a,�1

A,�S) = ∅.
This means that �0

a is a profitable deviation for a w.r.t. �′0
a under ϕ when the true prefer-

ence profile is (�′0
a ,�0

−a,�1
A,�S), a contradiction to the assumption that ϕ is dynamically

strategy-proof. Thus, there exist (�0
A,�1

A,�S) and a such that ϕDA
initial,a(�0

A,�1
A,�S) �0

a

ϕa(�0
A,�1

A,�S).

For any a such that ϕDA
initial,a(�0

A,�1
A,�S) �0

a ϕa(�0
A,�1

A,�S), who exists by Claim 1, con-

sider the following preference: �′1
a : ϕ

DA
initial,a(�0

A,�1
A,�S), ∅. Since ϕa(�0

A,�′1
a ,�1

−a,�S) =

ϕDA
initial,a(�0

A,�1
A,�S) �0

a ϕa(�0
A,�1

A,�S), where the first equality is by the assumption that

ϕ always dominates ϕDA
initial. �′1

a is a profitable deviation for a w.r.t. �0
a at (�0

A,�1
A,�S), a

contradiction.

Definition 4. A school preference profile �S is acyclic if there exist no s1, s2 ∈ S and

a1, a2, a3 ∈ A such that

• a1 �s1 a2 �s1 a3 �s2 a1 and

• there exist (possibly empty) disjoint sets of students As1 , As2 ⊆ A r {a1, a2, a3} such

that |As1| = qs1 − 1, |As2| = qs2 − 1, a �s1 a2 for every a ∈ As1 and a′ �s2 a1 for every

a′ ∈ As2 .

Lemma 3. There is a mechanism that is fair w.r.t. (�1
A,�S) and never dominated by ϕDA

initial

if and only if �S is acyclic.

Proof. Acyclicity is sufficient because acyclicity guarantees that ϕDA
deferred is Pareto efficient

for applicants w.r.t. �1
A (Ergin, 2002) and so is not dominated by ϕDA

initial w.r.t. �1
A. For
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the necessity part, suppose to the contrary that though �S is cyclic, a mechanism that is

fair w.r.t. (�1
A,�S) is never dominated by ϕDA

initial. By the definition of acyclicity, there exist

s1, s2 ∈ S and a1, a2, a3 ∈ A such that a1 �s1 a2 �s1 a3 �s2 a1 and there exist (possibly

empty) disjoint sets of applicants As1 , As2 ⊆ Ar{a1, a2, a3} such that |As1| = qs1−1, |As2 | =
qs2 − 1, a �s1 a2 for every a ∈ As1 and a′ �s2 a1 for every a′ ∈ As2 . Consider the following

preference profile �t
A of applicants (With 3 or more schools, it is easy to expand this example

so that a2 ranks some school in period 0):

�t
a1

(t = 0, 1) : s2, s1, ∅,

�0
a2
: ∅,

�1
a2
: s1, ∅,

�t
a3

(t = 0, 1) : s1, s2, ∅,

�t
l (t = 0, 1) : s1, ∅,∀l ∈ As1 ,

�t
m (t = 0, 1) : s2, ∅,∀m ∈ As2 ,

�t
n (t = 0, 1) : ∅, ∀n ∈ A \ (As1 ∪ As2 ∪ {a1, a2, a3}).

ϕDA
initial(�0

A,�1
A,�S) matches {a3} ∪ As1 to s1, {a1} ∪ As2 to s2, and leaves all the other

applicants unmatched. ϕDA
deferred(�0

A,�1
A,�S) matches {a1} ∪ As1 to s1, {a3} ∪ As2 to s2,

and leaves all the other students unmatched. However, since s2 �t
a1

s1 and s1 �t
a3

s2 for

t = 0, 1, ϕDA
deferred(�0

A,�1
A,�S) is Pareto dominated by ϕDA

initial(�0
A,�1

A,�S) by the applicants

w.r.t. both �0
A and �1

A. Since any mechanism that is fair w.r.t. (�1
A,�S) is (weakly)

Pareto dominated by ϕDA
deferred(�0

A,�1
A,�S), this implies that any mechanism that is fair

w.r.t. (�1
A,�S) is Pareto dominated by ϕDA

initial w.r.t. both �0
A and �1

A, a contradiction.

Corollary 1. There is no mechanism that is fair w.r.t. (�1
A,�S) and Pareto dominates

ϕDA
initial w.r.t. �1

A.

A.4.4 Extension

Proposition 1 is based on Definition 3 of dynamic strategy-proofness. Definition 3 may

appear to be restrictive in that it allows applicants to jointly manipulate and commit to not

only �0
a but also �1

a in period 0. The following alternative, weaker definition of dynamic

strategy-proofness excludes such joint manipulations.

Definition 5. A mechanism ϕ is weakly dynamically strategy-proof if the following holds for

any (�0
A,�1

A,�S) and any a: (0) for any �′0
a , ϕa(�′0

a ,�0
−a,�1

A,�S) %0
a ϕa(�0

A,�1
A,�S) and

(1) for any �′1
a , ϕa(�0

A,�′1
a ,�1

−a,�S) %1
a ϕa(�0

A,�1
A,�S).
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In words, under a weakly dynamically strategy-proof mechanism, any myopic or one-shot

preference manipulation by any applicant in any period is never strictly profitable with

respect to that applicant’s preference in that period. Weak dynamic strategy-proofness thus

requires a mechanism to be always immune to any myopic manipulation. Weak dynamic

strategy-proofness is implied by dynamic strategy-proofness because the former allows for a

smaller set of potential manipulations than the latter. Parts (1.A) and (1.B) of Proposition

1 remain to hold even under weak dynamic strategy-proofness (instead of dynamic strategy-

proofness). It is open whether the remaining part (2) of Proposition 1 also remains correct.

Nevertheless, the following partial result is true.

Lemma 4. There is no mechanism that always dominates ϕDA
initial w.r.t. �1

A, is weakly

dynamically strategy-proof, and is weakly Pareto efficient w.r.t. �1
A.

The proof is in Appendix A.4.5. Lemma 4 and the proof of Proposition 1 imply that the

only potentially necessary modification to Proposition 1 when using weak dynamic strategy-

proofness is that there may exist a mechanism that always dominates ϕDA
initial with respect

to �1
A, is weakly dynamically strategy-proof, but is not weakly Pareto efficient w.r.t. �1

A

(and not fair with respect to �1
A). I do not consider such a mechanism in the counterfactual

analysis in Section 4 since even if it exists and I can construct it, the counterfactual analysis

is mainly interested in efficiency gains over ϕDA
initial and so prefers ϕDA

dynamic (which is weakly

Pareto efficient w.r.t. �1
A) over it (which has to be not weakly Pareto efficient w.r.t. �1

A).

A.4.5 Proof of Lemma 4

Suppose to the contrary that there is a mechanism ϕ that satisfies the above three properties.

Consider a problem with four applicants a1, a2, a3, a4 and four schools s1, s2, s3, s4 each of

which has the capacity of one. Their preferences are as follows:

�s1 : Anything with a3 �s1 a4 �s1 a1

�s2 : Anything

�s3 : Anything with a1 �s3 a3

�s4 : Anything with a4 �s4 a2

�0
a1
: s1, s2, s3, ...

�0
a2
: s4, s2, ...

�0
a3
: s3, s1, ...

�0
a4
: s1, s4, ...

�1
a1
: s1, s2, s3, ...

�1
a2
: s3, s4, s2, ...
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�1
a3
: s3, s2, s1, ...

�1
a4
: s3, s4, s1, ...

Note that ϕDA
initial(�0

A,�1
A,�S) =

(
a1 a2 a3 a4

s2 s4 s3 s1

)
and this matching is Pareto efficient

w.r.t. �1
A. By the assumption that ϕ always dominates ϕDA

initial w.r.t. �1
A, ϕ(�0

A,�1
A,�S) =

ϕDA
initial(�0

A,�1
A,�S) =

(
a1 a2 a3 a4

s2 s4 s3 s1

)
. Thus ϕa1(�0

A,�1
A,�S) = s2.

Now let me consider the following preference of a1:

�′0
a1
: s3, ...

Note that ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S) =

(
a1 a2 a3 a4

s3 s2 s1 s4

)
. This matching is not weakly

Pareto efficient w.r.t. �1
A since it is strongly Pareto dominated by

(
a1 a2 a3 a4

s1 s4 s2 s3

)
.

By the assumption that ϕ is weakly Pareto efficient w.r.t. �1
A and always dominates

ϕDA
initial w.r.t. �1

A, ϕ(�′0
a1
,�0

−a1
,�1

A,�S) has to be a matching that is weakly Pareto efficient

w.r.t. �1
A (and so ϕ(�′0

a1
,�0

−a1
,�1

A,�S) 6= ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S)) and Pareto dominates

ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S). I use the following fact.

Lemma 5. ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s1.

Proof. By construction of �1
a1
, ϕa1(�′0

a1
,�0

−a1
,�S) = s1 or s2 or s3. It is thus enough to

show ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) 6= s2 or s3.

First, ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) 6= s3 by the following reason: Suppose to the contrary

that ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s3. Inspections show that there is no matching µ such that

µa1 = s3 and µ Pareto dominates ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S) with respect to �1
A

37; thus

ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s3 implies that ϕ(�′0
a1
,�0

−a1
,�1

A,�S) does not Pareto dominates

37Suppose to the contrary that there is some matching µ such that µa1
= s3 and µ Pareto dominates

ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S) with respect to �1
A.

Case 1 : If µa4
�1

a4
ϕDA
initial,a4

(�′0
a1
,�0

−a1
,�1

A,�S) = s4, then µa4
= s3, which is the only school a4 strictly

prefers to s4 = ϕDA
initial,a4

(�′0
a1
,�0

−a1
,�1

A,�S). But this contradicts the assumption of µa1
= s3.

Case 2 : If µa3
�1

a3
ϕDA
initial,a3

(�′0
a1
,�0

−a1
,�1

A,�S) = s1, then µa3
= s2, since s2 and s3 are the

only schools a3 strictly prefers to s1 = ϕDA
initial,a3

(�′0
a1
,�0

−a1
,�1

A,�S) w.r.t. �1
a3

and µa1
= s3. Since

s2 = ϕDA
initial,a2

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S), it has to be the case µa2 = s4: s3 and s4 are the only schools

a2 strictly prefers to s2 = ϕDA
initial,a2

(�0
A,�′1

a1
,�1

A,�S) and µa1
= s3 by assumption. Then, since

s4 = ϕDA
initial,a4

(�0
A,�′1

a1
,�1

A,�S), it has to be the case that µa4 �1
a4

ϕDA
initial,a4

(�0
A,�′1

a1
,�1

A,�S). Thus this
case reduces to Case 1, a contradiction.
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ϕDA
initial(�′0

a1
,�0

−a1
,�1

A,�S), which contradicts the assumption that ϕ is weakly Pareto efficient

and always dominates ϕDA
initial w.r.t. �1

A.

Next, ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) 6= s2 by the following reason: Suppose to the contrary that

ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s2. Consider the following preference of a1:

�′1
a1
: s1, s3, ...

Note that ϕDA
initial(�′0

a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S) =

(
a1 a2 a3 a4

s3 s2 s1 s4

)
. This matching is not

weakly Pareto efficient w.r.t. (�′1
a1
,�1

−a1
) since it is strongly Pareto dominated by

(
a1 a2 a3 a4

s1 s4 s2 s3

)
w.r.t. (�′1

a1
,�1

−a1
). By the assumption that ϕ is weakly Pareto efficient w.r.t. (�′1

a1
,�1

−a1
) and

always dominates ϕDA
initial w.r.t. (�′1

a1
,�1

−a1
), ϕ(�′0

a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S) has to be a match-

ing that is weakly Pareto efficient w.r.t. (�′1
a1
,�1

−a1
) (and so ϕ(�′0

a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S

) 6= ϕDA
initial(�′0

a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S)) and Pareto dominates ϕDA

initial(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S).

This implies ϕa1(�0
A,�′1

a1
,�1

−a1
,�S) = s1 by the following reason: Inspections show that

there is no matching µ such that µa1 = s3 and µ Pareto dominates ϕDA
initial(�0

A,�′1
a1
,�′1

a1
,�1

−a1

,�S) w.r.t. (�′1
a1
,�1

−a1
) 38; thus ϕa1(�0

A,�′1
a1
,�′1

a1
,�1

−a1
,�S) = s3 (the only other match

for a1 than s1 by the construction of �′1
a1

and ϕDA
initial,a1

(�′0
a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S)) implies

that ϕ(�′0
a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S) does not Pareto dominates ϕDA

initial(�′0
a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S

Case 3 : If µa2
�1

a2
ϕDA
initial,a2

(�′0
a1
,�0

−a1
,�1

A,�S) = s2, then µa2
= s4, since s3 and s4 are the only

schools a2 strictly prefers to s2 = ϕDA
initial,a2

(�′0
a1
,�0

−a1
,�1

A,�S) w.r.t. �1
a2

and µa1 = s3. Then, since

s4 = ϕDA
initial,a4

(�0
A,�′1

a1
,�1

A,�S), it has to be the case that µa4
�1

a4
ϕDA
initial,a4

(�0
A,�′1

a1
,�1

A,�S). Thus this
case reduces to Case 1, a contradiction.

38Suppose to the contrary that there is some matching µ such that µa1 = s3 and µ Pareto dominates
ϕDA
initial(�0

A,�′1
a1
,�′1

a1
,�1

−a1
,�S) w.r.t. (�′1

a1
,�1

−a1
).

Case 1 : If µa4
�1

a4
ϕDA
initial,a4

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) = s4, then µa4

= s3, the only school a4 strictly

prefers to s4 = ϕDA
initial,a4

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) w.r.t. �1

a4
. But this contradicts the assumption of

µa1 = s3.

Case 2 : If µa3
�1

a3
ϕDA
initial,a3

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) = s1, then µa4

= s2, since s2 and s3 are the

only schools a3 strictly prefers to s1 = ϕDA
initial,a3

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) w.r.t. �1

a3
and µa1 = s3 by

assumption. Since s2 = ϕDA
initial,a2

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S), it has to be the case µa2

= s4: s3 and

s4 are the only schools a2 strictly prefers to s2 = ϕDA
initial,a2

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) and µa1

= s3
by assumption. Then, since s4 = ϕDA

initial,a4
(�0

A,�′1
a1
,�′1

a1
,�1

−a1
,�S), it has to be the case that

µa4
�1

a4
ϕDA
initial,a4

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S). Thus this case reduces to Case 1, a contradiction.

Case 3 : If µa2 �1
a2

ϕDA
initial,a2

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) = s2, then µa4 = s4, since s3 and s4 are the only

schools a2 strictly prefers to s2 = ϕDA
initial,a2

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S) w.r.t. �1

a2
and µa1

= s3 by assumption.

Since s4 = ϕDA
initial,a4

(�0
A,�′1

a1
,�′1

a1
,�1

−a1
,�S), it has to be the case µa4 �1

a4
ϕDA
initial,a4

(�0
A,�′1

a1
,�′1

a1
,�1

−a1

,�S). Thus this case reduces to Case 1, a contradiction.
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), which contradicts the assumption that ϕ Pareto dominates ϕDA
initial w.r.t. (�′1

a1
,�1

−a1
). Thus

ϕa1(�′0
a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S) = s1, but this means

ϕa1(�′0
a1
,�0

−a1
,�′1

a1
,�1

−a1
,�S) = s1 �1

a1
s2 = ϕa1(�′0

a1
,�0

−a1
,�1

A,�S),

a contradiction to the assumption that ϕ is dynamically strategy-proof. Therefore it has to

be the case that ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) 6= s2.

Recall that by construction of �1
a1
, ϕa1(�′0

a1
,�0

−a1
,�1

A,�S) = s1 or s2 or s3. Thus the

above discussions imply ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s1.

Lemma 4 and the paragraph right after the preference descriptions show

ϕa1(�′0
a1
,�0

−a1
,�1

A,�S) = s1 �t
a1

s2 = ϕa1(�0
A,�1

A,�S) for t = 0, 1,

which contradicts the assumption that ϕ is dynamically strategy-proof. Note that this proof

shows a stronger result than necessary in that �′0
a1

is a profitable manipulation w.r.t. both

�0
a1

and �1
a1
.
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Figure A.1: Timeline of the First-round and Reapplication Process: Details

Mean=153.8 (SD=7.7)
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Notes: This figure draws the histogram of the difference between the date at which the initial application is
filed and the date at which the reapplication is filed (both are conditional on reapplicants). See Section 2.1
for discussions about this figure.

Figure A.2: Evolving School Choices: Details

(a) Changing Market Shares of Schools
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(b) Reapplications After Getting Top Choices
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Notes: Panel A.2a plots the first choice market share of each school in initial applications (the x axis)
and reapplicants (the y axis), where the first choice market share of a school is defined as the fraction of
applicants who rank it first among all applicants who make a first choice. I compute both the old and new
shares conditional on reapplicants. Panel A.2b correlates the number of reapplicants with the preference
rank of the initially assigned school with respect to the initial preference. See Section 2.1 for discussions
about this figure.
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Figure A.3: Self-reported Reasons for Reapplication: Details

(a) Self-reported Reasons for Reapplication:
Reapplicants with Choice Reversals

Mistake in Application

Moving
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New Information
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(b) Breakdown of “New Information”
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Neighborhood/
Current Students/

Achievement

Sibling/Friend/Bully

Notes: Panel A.3a classifies self-reported reasons for reapplication conditional on applicants who reapply and
exhibit choice reversals. Panel A.3b focuses on the “new information” category in Panel A.3a and breaks it
down into sub-categories. “Distance” is different from “Moving After Application” in that the former does
not refer to any address change. See also Section 2.2 for discussions about this figure.

Table A.1: Learning about Schools: Details

Notes: This table shows the last column in Table 4 conditional on each demographic group. The details of
included characteristics are in Appendix A.2. See also Section 2.2 for discussions about this table.
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Figure A.4: Empirical Probability of Reapplication Acceptance
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Notes: Panel A.4 correlates the probability of reapplication acceptance (being accepted by some school)
conditional on reapplying with the preference rank of the initially assigned school with respect to the initial
preference. See Section 3.2 for discussions about this figure.

77



Figure A.5: Robustness & Heterogeneity of Demand Changes & Switching Costs

(a) Heterogeneity across Baseline Test Scores
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(b) Heterogeneity across Races
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(c) Homogeneity across Old 1st Choice Schools
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(d) Homogeneity across Initial Assignments
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Notes: These figures correlate the conditional probability of reapplying to the preference rank of the initially
assigned school with respect to the initial preference conditional on a group defined by a baseline charac-
teristic. Combined with the logic in Figure 4 and Section 3.2, they suggest the (absence of) heterogeneity
of demand changes and switching costs across groups. The construction of the groups are in Appendix A.1.
See Section 3.2 for discussions about these figures.
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Table A.3: Covariate Balance Between Applicants with and without First Choice Offers

Notes: This table reports estimates of the causal effect of being assigned to the first choice school on
baseline covariates based on the linear probability model described in the main text. “Descriptive OLS” is
the regression of the reapplication dummy on the first choice assignment dummy with no control or sample
restriction. Standard errors are in parentheses. See Section 3.2 and Appendix A.3.1 for discussions about
this table.
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Table A.4: Causal Effect of Being Assigned to the First Choice School on Reapplying

Notes: This table reports estimates of the causal effect of being assigned to the first choice school on the
probability of reapplying based on the linear probability, probit, and logit models described in the main text.
“Descriptive OLS” is the regression of the reapplication dummy on the first choice assignment dummy with
no control or sample restriction. Standard errors are in parentheses. See Section 3.2 and Appendix A.3.1
for discussions about this table.

Figure A.6: Evidence of Demand Changes and Switching Costs: Structural Version
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Notes: This figure illustrates how to separately identify switching costs and demand changes from the solid
black line observed in the data. The solid black line correlates the conditional probability of reapplying
to the preference rank of the initially assigned school with respect to the initial preference conditional on
applicants who are randomly assigned to their first and lower choice schools. As detailed in the main text,
α̂+ β̂ and α̂ are estimates of the conditional probabilities of reapplying conditional on being assigned to the
first choice school and a non-first-choice school, respectively, in ∪sFirsts, where applicants are randomly
assigned between the first choice school and a non-first-choice school. Combined with the logic in Figure 4
and Section 3.2, this suggests the presence of both switching costs and demand changes. See Section 3.2 and
Appendix A.3.1 for discussions about this figure.
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Table A.5: Tests of Switching Costs and Demand Changes

Notes: This table reports results of Wald tests of the null hypothesis that there are no switching costs or the
hypothesis that there are neither switching costs nor demand changes. See Appendix A.3.1 for discussions
about this table.
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Table A.7: Estimates from the Rational Expectation Model: Reapplication Costs and Initial
Assignment Effects

Notes: Based on the rational expectation model, this table shows the estimates of the mean and standard
deviation of reapplication costs ca and initial assignment effects γa. Standard errors are in parentheses. See
Sections 3.1 and 3.3 for the details of the model and the estimation method, respectively. See Section 3.4
for discussions about this table.

Figure A.7: Summary of Estimates: Naive Free Expectation Model

(a) Demand Changes due to Learning
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Notes: Based on the naive free expectation model in Section 3.1, Panel 5a plots the distributions of estimated
overall new utilities (Û1

as) and latent demand changes due to frictions about observable school characteristics
(ΣK

k=1βakfakXask) for all (applicant a, school s) pairs. Panel 5b plots the distributions of estimated overall

new utilities (Û1
as), estimated reapplication costs (ĉa), and estimated initial assignment effects (γ̂a). On ĉa,

it plots values implied by the estimated value of ca/pa and the rational expectation assumption that pa is
equal to the empirical probability of reapplication acceptance. Both panels are based on 50 simulations of
the estimated model for each (applicant a, school s) pair. See Sections 3.1 and 3.3 for the details of the
model and the estimation method, respectively. See Section 3.4 for discussions about this figure.

83



T
ab

le
A
.8
:
E
st
im

at
es

fr
om

th
e
N
ai
ve

F
re
e
E
x
p
ec
ta
ti
on

M
o
d
el
:
P
re
fe
re
n
ce
s
an

d
F
ri
ct
io
n
s

N
o
te
s:

T
h
is

ta
b
le

sh
ow

s
th
e
es
ti
m
at
es

of
th
e
m
ea
n
an

d
st
an

d
ar
d
d
ev
ia
ti
on

of
(β

a
k
(1

+
f a

k
))

k
(t
h
e
co
effi

ci
en
t
on

X
a
s
k
in

t
=

0)
an

d
(β

a
k
f a

k
) k

(t
h
e

co
effi

ci
en
t
in

t
=

1)
.
S
ta
n
d
ar
d
er
ro
rs

ar
e
in

p
ar
en
th
es
es
.
S
ee

S
ec
ti
on

s
3.
1
an

d
3.
3
fo
r
th
e
d
et
ai
ls
of

th
e
m
o
d
el

an
d
th
e
es
ti
m
at
io
n
m
et
h
o
d
,
re
sp
ec
ti
v
el
y.

A
p
p
en
d
ix

A
.1

ex
p
la
in
s
th
e
co
n
st
ru
ct
io
n
of

va
ri
ab

le
s.

S
ee

S
ec
ti
on

3.
4
fo
r
d
is
cu
ss
io
n
s
ab

ou
t
th
is

ta
b
le
.

84



Table A.9: Estimates from the Naive Free Expectation Model: Reapplication Costs and
Initial Assignment Effects

Notes: This table shows the estimates of the mean and standard deviation of scaled reapplication costs ca/pa
and initial assignment effects γa. Standard errors are in parentheses. See Sections 3.1 and 3.3 for the details
of the model and the estimation method, respectively. See Section 3.4 for discussions about this table.

Figure A.8: Centralized vs Discretionary Reapplication Processes (I): Details

(a) Dynamic DA Mechanism
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(b) Deferred DA Mechanism
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Notes: In Panel (a), the dotted line plots the distribution of the improvement of the preference rank of the
finally assigned school under the dynamic deferred acceptance mechanism compared with the initial match.
The preference rank is defined with respect to new preference �1

a defined in the main text. This distribution
is conditional on applicants who get different assignments under the two mechanisms. The shaded area
below the dotted line plots the same distribution as the dotted line conditional on applicants who reapply.
Panel (b) does the same for the deferred deferred acceptance mechanism. The shaded area around each
dotted line indicates the 95% simulation confident interval over 200 simulations of lottery numbers used by
the mechanisms to break ties in priorities.
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