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Abstract

Rational expectations of agents on state transitions are crucial but restrictive in

Dynamic Discrete Choice (DDC) models. This paper analyzes DDC models where

agents’ beliefs about state transition allowed to be different from the objective state

transition. We show that the single agent’s subjective beliefs in DDC models can

be identified and estimated from multiple periods of observed conditional choice

probabilities. Besides the widely-used assumptions, our results require that the

agent’s subjective beliefs corresponding to each choice to be different and that the

conditional choice probabilities contain enough variations across time in the finite

horizon case, or vary enough with respect to other state variables in which sub-

jective beliefs equals objective ones in the infinite horizon case. Furthermore, our

identification of subjective beliefs is nonparametric and global as they are expressed

as a closed-form function of the observed conditional choice probabilities. Given

the identified subjective beliefs, the model primitives may be estimated using the

existing conditional choice probability approach.
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1 Introduction

For many years great effort has been devoted to the study of identifying dynamic discrete

choice (DDC) models. A ubiquitous assumption for identification in this literature is

rational expectations of agents, i.e., they have perfect expectations on law of motion for

state variables. This strong assumption is inconsistent with some recent empirical evidence

on comparison between agents’ subjective expectations and the objective probabilities of

state transition.1 Failure of the rational expectations assumption may induce biased

estimation of model primitives, e.g., agents’ preference, thus prediction of counterfactual

experiments would also be biased. A popular solution in empirical studies is to employ

data on agents’ subjective expectations instead of objective probabilities of transition in

estimation. Unfortunately, in many empirical contexts the data on agents’ subjective

expectations are not available.

In this paper, we analyze the nonparametric identification of DDC models where the

assumption of rational expectations is relaxed and agents’ subjective expectations are un-

observed. We show that the single agent’s subjective beliefs in DDC models can be iden-

tified and estimated from observed conditional choice probabilities in both finite-horizon

and infinite-horizon cases. Based on the insight of the underidentification results, e.g.,

Rust (1994) and Magnac and Thesmar (2002), we address identification of DDC models

by assuming the distribution of agents’ unobserved preference shocks and the discount

factor are known. Our methodology then identifies agents’ subjective probabilities on

state transition as a closed-form solution to a set of nonlinear moment conditions that are

induced from Bellman equations using the insight in Hotz and Miller (1993). Identifying

subjective beliefs in the case of finite-horizon relies on the variation of agents’ conditional

choice probabilities (CCP) in multiple time periods while the subjective beliefs are time-

invariant. In infinite-horizon DDC models, stationarity provides no variation of CCP. Our

identification strategy is to introduce additional an additional state variable whose tran-

sition probabilities are known to the agent. We then investigate the moment conditions

induced from Bellman equations by varying the realizations of this state variable.

A great advantage of our methodology is that agents’ subjective probabilities are

nonparametrically identified as a closed-form function of observed CCP. This implies a

multi-step procedure to estimate DDC models. We first follow the identification result

to obtain a nonparametric and global estimator of subjective beliefs from observed CCP.

Given the estimated subjective probabilities of state transition, the model primitives can

be estimated using the existing CCP approach (e.g., see Hotz and Miller (1993)).

Relaxing rational expectations in DDC models, or more generally in decision models is

of both both theoretical and empirical importance (see Aguirregabiria and Mira (2010) for

further discussions). Manski (2004) summarizes and advocates using data of subjective

1In a DDC setting, Wang (2014) finds some differences between the objective and the subjective

probabilities of two-year survival probabilities. Cruces et al. (2013) provide evidence of agents’ biased

perception of income distribution.
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expectations in empirical decision models. The literature along this line are growing re-

cently. For example, Van der Klaauw and Wolpin (2008) study Social Security and savings

using a DDC model where agents’ subjective expectations on their own retirement age

and longevity and future changes in Social Security policy are from surveys. Nevertheless,

to the best of our knowledge, this paper is the first to investigate the identifiability of

DDC models with subjective beliefs. In a different context, Aguirregabiria and Magesan

(2015) consider identification and estimation of dynamic games by assuming players’ be-

liefs about other players’ actions are not at equilibrium while rational expectations on

state transition are still assumed to hold.2

This paper contributes to a growing literature on (nonparametric) identification of

dynamic discrete choice models. Rust (1994) provide some non-identification results for

the case of infinite-horizon. Magnac and Thesmar (2002) further determine the exact

degree of underidentification and explore the identifying power of some exclusion restric-

tions. Fang and Wang (2015) also employ exclusion restrictions to identify a DDC model

with hyperbolic discounting. Hu and Shum (2012) consider identification of DDC models

with unobserved state variables. Abbring (2010) presents excellent review of on identifi-

cation of DDC models. Our paper is fundamentally different from these papers in that

they assume rational expectations to achieve identification. For the first time, we provide

rigorous identification results for DDC model with agents having subjective beliefs. Not

surprisingly, our results of identification and estimation can be applied to a wide array of

empirical studies where agents’ subjective expectations are crucial for their decisions but

unobserved.

2 DDC models with subjective beliefs

We consider a single agent DDC model with subjective expectations. In period t, an agent

makes the choice at from a finite set of actions A = {1, · · · , K}, K ≥ 2 to maximize her

expected lifetime utilities, based on her expectations of future state transitions.

State variables that the agent considers consist of both observable and unobservable

components, xt and εt, respectively. The observed state variable xt takes values in X ≡
{1, · · · , J}, J ≥ 2 and the unobserved state variable εt(at) may depend on choice at with

εt = (εt(1), · · · , εt(K)) and they are random preference shocks to actions. At the beginning

of each period, the state variables (xt, εt) are revealed to the agent who then chooses an

action at ∈ A. The instantaneous period utility function is u(xt, at, εt). Then the state

variables of the next period (xt+1, εt+1) are drawn conditional on (xt, εt) as well as the

2Relying on exclusion restrictions on payoff functions and the existence of a subset of state variables

on which subjective beliefs are equal to the objective ones, Aguirregabiria and Magesan (2015) identifies

payoff functions first, then recover subjective beliefs. Our paper is different from theirs in several aspects.

First, our paper relaxes rational expectations of agents by assuming agents’ subjective beliefs on state

transition may be different from the actual transition probabilities. Second, we explore variation of CCPs

to identify subjective beliefs of agents without information of payoff functions.
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agent’s decision at. The objective state transitions are denoted as f(xt+1, εt+1|xt, εt, at).
For simplicity, we impose the following widely used assumption regarding state transition

for DDC models.

Assumption 1 (i) The state variables evolve {xt, εt} following a first-order Markov pro-

cess; (ii) f(xt+1, εt+1|xt, εt, at) = f(xt+1|xt, at)f(εt+1).

In each period, the agent maximizes her expected utility as follows:

max
at

∑
τ=t,t+1,...

βτ−tE
[
u(xτ , aτ , ετ )|xt, at, εt

]
where β ∈ [0, 1] is the discount factor. The expectation is taken using the agent’s subjec-

tive beliefs.

Following Rust (1987), we make the following assumptions concerning the unobserv-

able component in the preferences.

Assumption 2 (i) u(xt, at, εt) = u(xt, at) + εt(at) for any at ∈ A; (ii) εt(a) for all t and

all a ∈ A are i.i.d. draws from mean zero type-I extreme value distribution

The additive separability of agents’ utility imposed in Assumption 2 (i) is widely used in

the literature. Assuming a known distribution of εt is due to the non-identificatification

results in Rust (1994) and Magnac and Thesmar (2002). The mean zero type-I extreme

value distribution is assumed for ease of exposition. Our identification holds for any

known distribution of εt.

Since the discount factor is not the focus of this paper, we assume β is known. We refer

to Magnac and Thesmar (2002) and Abbring and Daljord (2016) for the identification of

discount factor β.

Assumption 3 The discount factor β is known.

Let s(xt+1|xt, at) denote the agent’s subjective beliefs about future state transitions

conditional on her action at. In a standard DDC model, agents are assumed to have

correct beliefs about the state transition (rational expectations), i.e., their subjective

beliefs s(xt+1|xt, at) are the same as the objective state transition f(xt+1|xt, at). We

deviate from such a setting and allow the subjective beliefs to be different from the

objective beliefs. The subjective beliefs are a complete set of conditional probabilities

that satisfy Assumption 1 and the following two properties.

Assumption 4 (i)
∑

xt+1∈K s(xt+1|xt, at) = 1. (ii) s(xt+1|xt, at) ≥ 0.

Notice that in the DDC mode, the state transitions are still governed by the objective

probabilities f(xt+1|xt, at). Nevertheless, the observed choices {at}t=1,2,··· in general would

have different distributions from the case where agents have rational expectations.
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3 Closed-form identification of subjective beliefs

This section shows that the subjective beliefs are identified with a closed-form expression

and focuses on how the subjective beliefs may be uniquely determined by the conditional

choice probabilities. We consider a dynamic discrete choice model of finite horizon where

an agent has subjective beliefs about the state transition. We further impose the following

restriction on the utility function and the subjective beliefs.

Assumption 5 The subjective belief s(x′|x, a) and the utility function u(xt, at) are time-

invariant.

This assumption of time-invariant s(x′|x, a) is consistent with some theoretical expla-

nation, e.g., in Brunnermeier and Parker (2005) subjective beliefs are rationalized as a

solution of agents’ maximization problem. It is also widely imposed in the recent empir-

ical literature where agents’ subjective beliefs are one-time self-reported, e.g., see Wang

(2014).

In this dynamic setting, the optimal choice at in period t is

at = arg maxa∈A{vt(xt, a) + εt(a)}

where vt(x, a) is the choice-specific value function and the additively separability of vt(x, a)

and εt(a) is due to the assumption of additive separability of instantaneous period utility

function. Under assumptions 1-2 above, the ex ante value function at t can be expressed

as

Vt(xt) = − log pt(at = K|xt) + vt(xt, at = K)

≡ − log pt,K(xt) + vt,K(xt),

where the choice K can be substituted by any other choice in A.

Given that the state variable xt has support {1, 2, ..., J}, we define the vector of J − 1

independent subjective probabilities as follows:

Sat(xt) = [s(xt+1 = 1|xt, at), ..., s(xt+1 = J − 1|xt, at)]. (1)

Similarly, we define

− logpt,K = [− log pt,K(xt = 1), ...,− log pt,K(xt = J − 1)]′ − (− log pt,K(J))

vt,K = [vt,K(xt = 1), ..., vt,K(xt = J − 1)]′ − vt,K(J) (2)

The choice-specific value function may then be expressed as follows:

vt(xt, at) = u(xt, at) + β

∫
Vt(xt+1)s(xt+1|xt, at)dxt+1

= u(xt, at) + βSat(xt)(− logpt+1,K + vt+1,K) + β
[
− log pt+1,K(J) + vt+1,K(J)

]
.
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We take the difference of the choice-specific value function above between at = i and

at = K, and apply the results in Hotz and Miller (1993),

log

(
pt,i(xt)

pt,K(xt)

)
= β[Si(xt)− SK(xt)][mt+1 + vt+1] + [u(xt, i)− u(xt, K)], (3)

where t = 1, 2, · · · , T − 1. (3) allows us to further get rid of the utility function in the

relationship between choice-specific value function and CCPs,

∆ξt,i,K(xt) ≡ log
( pt,i(xt)
pt,K(xt)

)
− log

( pt−1,i(xt)
pt−1,K(xt)

)
= β[Si(xt)− SK(xt)][−∆ logpt+1,K + ∆vt+1,K ], t = 1, · · · , T − 1, (4)

where ∆pt+1,K = logpt+1,K − logpt,K and ∆vt+1,K = vt+1,K − vt,K . This equation holds

for each of x ∈ {1, 2, ..., J}. Next we put the equation above for all the values of xt in the

matrix form with the following definitions

Sa =


Sa(xt = 1)

Sa(xt = 2)
...

Sa(xt = J)

 (5)

and

∆ξt,i,K = [∆ξt,i,K(1), ...,∆ξt,i,K(J)]′.

Notice that matrix Sa is of dimension J × (J − 1). We then have a matrix version of (4)

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ]. (6)

We now focus on the value function corresponding to choice at = K and ∆vt+1,K . In the

matrix form, we have

∆vt,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K), (7)

where S̃K is a (J − 1)× (J − 1) matrix

S̃K =


1 0 ... 0 −1

0 1 ... 0 −1
...

. . .
...

0 1 −1

SK .
In summary, the choice probabilities are associated with subjective beliefs and value

functions through equation (6), and the choice-specific value function evolves as in equa-

tion (7). By eliminating the value functions in these two equations, we are able to find the

direct relationship between the observed choice probabilities and the subjective beliefs.

To proceed, we first impose a rank condition to the primitive matrices Si and SK ,
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Assumption 6 The J × (J − 1) matrix Si − SK has a full column rank of J − 1 for all

i ∈ A, i 6= K.

Assumption 6 guarantees that the generalized inverse of Si −SK , denoted as [Si −SK ]+

has a closed-form. Eliminating ∆vt+1,K in equation (6) leads to

βS̃K [Si − SK ]+∆ξt,i,K − [Si − SK ]+∆ξt−1,i,K = β∆ logpt,K , t = 3, · · · , T − 1. (8)

This equation implies that the choice probabilities are directly associated with the sub-

jective beliefs through a nonlinear system, which enables us to solve the subjective beliefs

with a closed-form. The nonlinear system above contains J − 1 equations for a given t,

and there are (J−1)×(J−1) and (J−1)×J unknown parameters in S̃K and [Si−SK ]+,

respectively.

Suppose we observe data for T = 2J + 2 consecutive periods, denote by t1, · · · , t2J .

We assume that the conditional choice probabilities satisfy

Assumption 7 Matrix ∆ξi,K is invertible, where

∆ξi,K =
[ ∆ξt1,i,K ∆ξt2,i,K ... ∆ξt2J ,i,K

∆ξt1−1,i,K ∆ξt2−1,i,K ... ∆ξt2J−1,i,K

]
.

This assumption is imposed on the observed probabilities and therefore directly testable.

However, this assumption also rules out the infinite horizon case, where the choice prob-

abilities are time-invariant. Under this assumption, [Si − SK ] and S̃K are solved with a

closed-form expression as follows:[
S̃K [Si − SK ]+, −β−1[Si − SK ]+

]
= ∆ logpK∆ξ−1i,K , (9)

where ∆ log pK =
[
∆ logpt1,K ,∆ logpt2,K , ...,∆ logpt2J ,K

]
. We may then solve for S̃K

and [Si −SK ] from the nonlinear system above. Once S̃K is identified, we have obtained

SK(x)− SK(J) for all x ∈ {1, 2, · · · , J}, x 6= J . In order to fully recover SK(x), we need

to pin down SK(J), then all the subjective probabilities are identified.

Assumption 8 There exist a state x = J and action a = K under which the agent’s

subjective beliefs are known, i.e., s(xt+1|xt = J, at = K) or SK(J) are known.

The restriction of known subjective beliefs imposed in assumption 8 is only required to

hold for a certain state and action. For example, the agent might have correct beliefs in

some extreme states, i.e., s(xt+1|J,K) = f(xt+1|J,K).

Finally, all the subjective beliefs s(xt+1|xt, at) are identified with a closed-form. We

summarize our identification results as follows:
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Theorem 1 Suppose that Assumptions 1–8 hold. Then the subjective beliefs s(xt+1|xt, at)
for xt, xt+1 ∈ {1, 2, ..., J} and at ∈ {1, 2, ..., K} are identified as a closed-form function

of conditional choice probabilities pt(at|xt), pt−1(at−1|xt−1), and pt−2(at−2|xt−2) for t =

t1, t2, ..., t2J .

Proof : See the Appendix.

Our identification results require at least 2J + 2 consecutive periods of observations

or 2J spells of 3 consecutive periods. Notice that we do not need to specify what the last

period T is, nor need the usual normalization of the utility function, e.g. u(x, a = K) = 0.

In empirical applications, we may focus on subjective beliefs of part of the state variables

and let other state variables follow the objective transition under the restriction

s(xt+1, wt+1|xt, wt, at) = s(xt+1|xt, at)f(wt+1|wt, at).

Such a restriction may help relieve the curse of dimensionality.

Alternatively, we show that the last J + 1 periods of observations may be sufficient

to identify the subjective beliefs if the conditional distribution s(xt+1|xt, at = K), and

therefore, S̃K , are known. We assume

Assumption 9 (i) s(xt+1|xt, at = K) = f(xt+1|xt, at = K); (ii) u(x, a = K) = 0.

Assumption 9(i) is stronger than Assumption 8 because it normalizes the whole condi-

tional distribution s(xt+1|xt, at = K) for all the values of xt. Nevertheless, the advantage

of such a normalization is that it reduces the number of observed periods required for

identification. Assumption 9(ii) is widely-used in this literature to identify DDC models,

e.g., Fang and Wang (2015) and Bajari et al. (2015).

Under Assumption 9, we may show

∆vT,K = −βS̃K(− logpT,K), (10)

and all the value functions ∆vt,K can be solved for through equation (7) recursively.

We then define

∆ξT−J+1
i,K =

[
∆ξT−J+1,i,K ∆ξT−J+2,i,K ... ∆ξT−1,i,K

]
(11)

∆vT−J+1 =
[

∆vT−J+1 ∆vT−J+2 ... ∆vT−1

]
(12)

where ∆vt ≡ (−∆ logpt,K + ∆vt,K). Equation (6) with t = T − J + 1, T − J + 2, ..., T

may be written as

∆ξT−J+1
i,K = β[Si − SK ]∆vT−J+1 (13)

We may then solve for Si under the following assumption:
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Assumption 10 The (J − 1)× (J − 1) matrix ∆vT−J+1 is invertible.

As shown above, Assumption 10 is imposed on the observed choice probabilities, and

therefore, is directly testable from the data. Given that we have identified the subjective

beliefs, the utility function u(x, a) is also identified. We summarize the result as follows:

Theorem 2 Suppose that Assumptions 1-6, 9, and 10 hold. Then the subjective belief

s(xt+1|xt, at) for xt, xt+1 ∈ {1, 2, ..., J} and at ∈ {1, 2, ..., K}, together with the utility func-

tion u(x,w, a), is identified as a closed-form function of conditional choice probabilities

pt(at|xt) for t = T − J, T − J + 1, ..., T .

Proof : See the Appendix.

In addition, combination of Theorems 2 and 2 implies that we may relax Assumptions

6 and 9(i) if the last 2J+2 periods of observations are available. We may relax Assumption

6 as follows: There exists an i ∈ A such that the J × (J − 1) matrix Si − SK has a full

column rank of J−1. Following the same proof of Theorem 1, one can show that this new

assumption is sufficient to identify S̃K using the last 2J+2 periods of observations. Thus,

there is no need to normalize the conditional distribution in this case as in Assumption

9(i) in Theorem 2.

4 The infinite horizon case

The previous identification strategy makes use of variations in conditional choice proba-

bility across time. In the infinite horizon case, unfortunately, such variations across time

are not available. Therefore, different assumptions are needed for the identification of

the subjective beliefs. We consider the case where there is an additional state variable

wt ∈ {w1, ..., wL}, on which the subjective beliefs are equal to the objective ones, i.e.,

rational expectations hold for wt.

We assume that the observed state variables includes {xt, wt} and that both the sub-

jective beliefs and the objective probabilities follow a first order Markov process. We

update the relevant assumptions as follows:

Assumption 1’ (i) The state variables {xt, wt, εt} follows a first-order Markov process;

(ii) f(xt+1, wt+1, εt+1|xt, wt, εt, at) = f(xt+1, wt+1|xt, wt, at)f(εt+1); (iii) u(xt, wt, at, εt) =

u(xt, wt, at) + εt(at) for any at ∈ A; (iv) εt(a) for all t and all a ∈ A are i.i.d. draws from

mean zero type-I extreme value distribution.

Since the choice probabilities become stationary in the infinite horizon case, the pre-

vious identification strategy for the finite horizon case is no longer applicable. To be

specific, Assumption 7 does not hold in this case. We have to focus on a class of models

where the subjective beliefs are equal to the objective state transitions for part of the

state variables, i.e., wt. We assume
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Assumption 2’ The subjective beliefs satisfy

s(xt+1, wt+1|xt, wt, at) = s(xt+1|xt, at)s(wt+1|wt, at) = s(xt+1|xt, at)f(wt+1|wt, at) (14)

For simplicity, we keep Assumption 9, which normalizes the utility function u(x,w, a =

K) = 0 and s(xt+1|xt, at = K) = f(xt+1|xt, at = K).

The choice-specific value function then becomes

v(x,w, a)

= u(x,w, a) + β

∫∫ [
− log pK(x′, w′) + vK(x′, w′)

]
s(x′|x, a)s(w′|w, a)dx′dw′. (15)

For x ∈ {x1, ..., xJ} and w ∈ {w1, ..., wL}, we define vector

ua = [u(x1, w1, a), ..., u(x1, wL, a), u(x2, w1, a), ..., u(x2, wL, a), ..., u(xJ , w1, a), ..., u(xJ , wL, a)]T .

We define vectors va, and log pK analogously. Let Sxa = [s(xt+1 = xj|xt = xi, at)]i,j and

F w
a = [s(wt+1 = wj|wt = wi, at)]i,j. In matrix form,

va = ua + β[Sxa ⊗ F w
a ]
[
− logpK + vK

]
. (16)

Similar to the case of finite horizon, we need a rank condition to identify the value

functions.

Assumption 3’ [I − β(F x
K ⊗ F w

K )] is invertible.

Under this assumption, the value function vK corresponding to action K is identified with

a closed-form

vK = [I − β(F x
K ⊗ F w

K )]−1[β(F x
K ⊗ F w

K )(− logpK)] (17)

where F x
K = [f(xt+1 = xj|xt = xi, at = K)]i,j.

Assumption 2’ implies that the state transition is separable with respect to xt and wt
so that we can consider the value function corresponding to action a as follows:

v(x,w, a) = u(x,w, a) + β

∫ [
− log p̃aK(x′, w) + ṽaK(x′, w)

]
s(x′|x, a)dx′ (18)

where

log p̃aK(x′, w) =

∫
log pK(x′, w′)f(w′|w, a)dw′

ṽaK(x′, w) =

∫
vK(x′, w′)f(w′|w, a)dw′. (19)
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Therefore, we have

ξi,K(x,w) = log
( pi(x,w)

pK(x,w)

)
= βSxi (x)[− log p̃iK(w) + ṽiK(w)]− βSxK(x)[− log p̃KK(w) + ṽKK (w)]

+u(x,w, i), (20)

where

Sxat(xt) = [s(xt+1 = 1|xt, at), ..., s(xt+1 = J |xt, at)]
log p̃iK(w) = [log p̃iK(1, w), ..., log p̃iK(J, w)]T

ṽiK(w) = [ṽiK(1, w), ..., ṽiK(J, w)]T .

For certain class of utility function, we are able to eliminate the utility function and reveal

a direct relationship between the subjective beliefs and the observed choice probabilities.

We consider a class of utility functions, which are linear in w, as follows:

Assumption 4’ u(x,w, a) = u1(x, a) + u2(x, a)w.

Suppose the support of w contains {0, 1, 2, ..., J + 1}. The second order difference of

u(x,w, a) with respect to w is zero with

∆2
wf(w) ≡ [f(w)− f(w − 1)]− [f(w + 1)− f(w)].

Taking the second order difference with respect to w leads to

∆2
wξi,K(x,w) = βSxi (x)[−∆2

w log p̃iK(w) + ∆2
wṽ

i
K(w)]

−βSxK(x)[−∆2
w log p̃KK(w) + ∆2

wṽ
K
K (w)]

≡ βSxi (x)ṽi(w)− βSxK(x)ṽK(w) (21)

With w ∈ {1, 2, ..., J}, we may obtain enough restrictions to solve for Sxi (x) under an

invertibility condition imposed on the observables. We assume

Assumption 5’ The J × J matrix Ṽ i is invertible, where Ṽ i = [ṽi(1), ṽi(2), ..., ṽi(J)].

This assumption is directly testable from the data because matrix Ṽ i only contains di-

rectly estimable entries. Under assumption 5’, we may solve for Sxi (x), i.e., s(xt+1|xt, at)
with a closed-form as follows:

Sxi (x) = β−1
(

∆2
wξi,K(x) + βSxK(x)Ṽ K

)(
Ṽ i
)−1

where ∆2
wξi,K(x) = [∆2

wξi,K(x, 1),∆2
wξi,K(x, 2), ...,∆2

wξi,K(x, J)]. Given that we have iden-

tified the subjective beliefs, the utility function u(x,w, a) is also identified from equation

(20). We summarize the results as follows:

Theorem 3 Suppose that Assumptions 3, 4, 5, 9, 1’, 2’, 3’, 4’, and 5’ hold. Then, the

subjective belief s(xt+1|xt, at) for xt, xt+1 ∈ {1, 2, ..., J} and at ∈ {1, 2, ..., K}, together

with the utility function u(x,w, a), is identified as a closed-form function of conditional

choice probabilities pt(at|xt, wt) and objective state transition f(wt+1|wt, at).

Proof : See the Appendix.
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5 Heterogeneous beliefs

Agents may display heterogenous beliefs about transition of the same state variable. We

show in this section that a DDC model with agents holding heterogenous subjective beliefs

can also be identified using the results in previous sections.

Suppose agents can be classified into L ≥ 2 types based on their heterogenous beliefs

and let τ ∈ {1, 2, ..., L} denote the unobserved type (heterogeneity). The subjective

beliefs can then be described as s(xt+1|xt, at, τ). In the meanwhile, the conditional choice

probability also depends on the heterogeneity τ as pt(at|xt, τ). We employ an identification

methodology for measurement error models to show that the observed joint distribution of

state variables and agents’ actions uniquely determines the conditional choice probability

pt(at|xt, τ) for all τ ∈ {1, 2, · · · , L}. Given the conditional choice probability pt(at|xt, τ),

we can apply the results in Theorems 1,2, or 3 to identify the heterogeneous beliefs

s(xt+1|xt, at, τ).

We start our identification with the following assumption.

Assumption 11 {at, xt, τ} follows a first-order Markov process.

The first-order Markov property of action and state variable are widely assumed in the

literature of DDC models.

The observed joint distribution is then associated with the unobserved ones as follows:

f(at+l, ..., at+1, xt+1, at, xt, at−1, ..., at−l)

=
∑
τ

f(at+l, ..., at+1|xt+1, τ)f(xt+1, at|xt, τ)f(τ, xt, at−1, ..., at−l). (22)

Let l be an integer such that J ≤ K l, where K and J are numbers of possible realizations

of at and τ , respectively.3 Suppose h(·) is a known function that maps the support of

(at+l, ..., at+1), Al to that of τ , i.e., {1, 2, ..., L}. This mapping We define

at+ = h(at+l, ..., at+1),

at− = h(at−1, ..., at−l).

For a fixed pair (xt, xt+1), we may consider at+, at, and at− as three measurements of

the unobserved heterogeneity τ and use the results in Hu (2008) to identify the objective

f(xt+1, at|xt, τ), which leads to conditional choice probability pt(at|xt, τ).4 It is worth

noting that we maintain that the support of at+ and at− is the same as that of τ just for

simplicity of our identification argument. Our results can be generalized straightforwardly

to that case where the support of at+ and at− is larger than that of τ .

For a given pair xt and xt+1 in X , we define a matrix

Mat+,xt+1,xt,at− = [f(at+ = i, xt+1, xt, at− = j)]i,j .

3This restriction is satisfied in most of the empirical application where K = 2 and J is not very large.
4 Similar results can also be found in Kasahara and Shimotsu (2009).
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Assumption 12 For all (xt+1, xt) ∈ X × X , matrix Mat+,xt+1,xt,at− has a full rank of L.

This identification strategy in Hu (2008) requires an eigenvalue-eigenvector decomposi-

tion of an observed matrix. The uniqueness of such a decomposition requires that the

eigenvalues are distinctive as follows:

Assumption 13 For all (xt+1, xt) ∈ X ×X , there exists a known function ω(·) such that

E
[
ω(at)|xt+1, xt, τ1

]
6= E

[
ω(at)|xt+1, xt, τ2

]
for any τ1 6= τ2 ∈ {1, 2, ..., L}. Without loss of generality, we assume E

[
ω(at)|xt+1, xt, τ

]
is increasing in τ .

To illustrate Assumption 13, we consider a binary choice, i.e, at ∈ {0, 1} and ω(·) is

an identity function. Then E
[
ω(at)|xt+1, xt, τ

]
= Pr(at = 1|xt+1, xt, τ). Suppose τ =

1, 2, · · · , L are ordered such that agents whose type is τ = L have the most “accurate”

subjective beliefs in the sense that their beliefs are the closest to the objective state

transition while τ = 1 have the lest accurate ones. Assumption 13 states that given that

state variable xt and xt+1 the probability of choosing action at = 1 is higher if an agent’s

subjective beliefs are closer to the objective ones.

We summarize the identification result in the following theorem.

Theorem 4 Suppose that Assumptions 11, 12, and 13 hold. Then, the joint distribution

f(at+l, ..., at+1, at, xt+1, xt, at−1, ..., at−l) uniquely determines the conditional choice proba-

bility pt(at|xt, τ).

Proof : See the Appendix.
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6 Appendix

Proof of Theorem 1

In this dynamic setting, the optimal choice at in period t is

at = arg maxa∈A{vt(xt, a) + εt(a)} (23)

where vt(xt, a) is the choice-specific value function. The ex ante value function at t can

be expressed as

Vt(xt) =

∫ ∑
a∈A

1{a = at}
[
vt(xt, a) + εt(a)

]
g(εt)dεt

= log
{∑

a∈A
exp

[
vt(xt, a)

]}
, (24)

where the second equality is obtained under the assumption that εt is distributed according

to a mean zero type-I extreme value distribution. The conditional choice probability is

for i ∈ A

pt(at = i|xt) =
exp

[
vt(xt, i)

]∑
a∈A exp

[
vt(xt, a)

] . (25)

We may further simplify Vt(xt) with i = K as follows:

Vt(xt) = − log pt(at = K|xt) + vt(xt, at = K)

≡ − log pt,K(xt) + vt,K(xt) (26)

Given that the state variable xt has support X = {1, 2, ..., J}, we define a row vector

of J − 1 independent subjective beliefs as follows:

Sa(xt) = [s(xt+1 = 1|xt, a), s(xt+1 = 2|xt, a), ..., s(xt+1 = J − 1|xt, a)] (27)

Notice that Sa(xt) contains the same information as s(xt+1|xt, a). We consider the choice-
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specific value function

vt(xt, at)

= u(xt, at) + β

∫
Vt+1(xt+1)s(xt+1|xt, at)dxt+1

= u(xt, at) + β

J∑
xt+1=1

[
− log pt+1,K(xt+1) + vt+1,K(xt+1)

]
s(xt+1|xt, at)

= u(xt, at) + β
J−1∑

xt+1=1

[
− log pt+1,K(xt+1) + vt+1,K(xt+1)

]
s(xt+1|xt, at)

+β
[
− log pt+1,K(J) + vt+1,K(J)

][
1−

J−1∑
xt+1=1

s(xt+1|xt, at)
]

= u(xt, at) + β
J−1∑

xt+1=1

[
− log pt+1,K(xt+1) + log pt+1,K(J)

+vt+1,K(xt+1)− vt+1,K(J)
]
s(xt+1|xt, at) + β

[
− log pt+1,K(J) + vt+1,K(J)

]
(28)

For convenience, we define

− logpt+1,K =


− log pt+1,K(xt+1 = 1) + log pt+1,K(J)

− log pt+1,K(xt+1 = 2) + log pt+1,K(J)

...

− log pt+1,K(xt+1 = J − 1) + log pt+1,K(J)

 (29)

vt+1,K =


vt+1,K(xt+1 = 1)− vt+1,K(J)

vt+1,K(xt+1 = 2)− vt+1,K(J)

...

vt+1,K(xt+1 = J − 1)− vt+1,K(J)

 (30)

The choice-specific value function may then be expressed as follows:

vt(xt, at)

= u(xt, at) + βSat(xt)(− logpt+1,K + vt+1,K) + β
[
− log pt+1,K(J) + vt+1,K(J)

]
(31)

The observed choice probabilities are associated with the choice-specific value function

ξt,i,K(x) = log
( pt,i(x)

pt,K(x)

)
= vt(x, at = i)− vt(x, at = K)

= β[Si(x)− SK(x)][− logpt+1,K + vt+1,K ] + [u(x, i)− u(x,K)]. (32)
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Since the one-period utility function is time-invariant, we may further consider

∆ξt,i,K(x) = log
( pt,i(x)

pt,K(x)

)
− log

( pt−1,i(x)

pt−1,K(x)

)
= β[Si(x)− SK(x)][− logpt+1,K + log pt,K + vt+1,K − vt,K ]

= β[Si(x)− SK(x)][−∆ logpt+1,K + ∆vt+1,K ], (33)

where

∆ logpt+1,K = log pt+1,K − logpt,K

∆vt+1,K = vt+1,K − vt,K (34)

This equation hold for each of x ∈ {1, 2, ..., J}. Next we put all these equations with

different values of x in the matrix form with the following definitions

Sa =


Sa(xt = 1)

Sa(xt = 2)

...

Sa(xt = J)

 (35)

and

∆ξt,i,K = [∆ξt,i,K(1), ...,∆ξt,i,K(J)]T (36)

Notice that matrix Sa is a J × (J − 1) matrix. We then have

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ]. (37)

We now focus on the value function corresponding to choice at = K and ∆vt+1,K ,

where

∆vt,K

= vt,K − vt−1,K

=


vt,K(xt = 1)− vt,K(J)

vt,K(xt = 2)− vt,K(J)

...

vt,K(xt = J − 1)− vt,K(J)

−


vt−1,K(xt−1 = 1)− vt−1,K(J)

vt−1,K(xt−1 = 2)− vt−1,K(J)

...

vt−1,K(xt−1 = J − 1)− vt−1,K(J)

 (38)

Equation (31) implies

[vt(x,K)− vt(J,K)]

= [u(x,K)− u(J,K)] + β
[
SK(x)− SK(J)

]
(− logpt+1,K + vt+1,K) (39)

Each element in the (J − 1)-by-1 vector ∆vt,K is for x ∈ {1, 2, ..., J − 1}

[vt(x,K)− vt(J,K)]− [vt−1(x,K)− vt−1(J,K)]

= β
[
SK(x)− SK(J)

]
(−∆ logpt+1,K + ∆vt+1,K) (40)
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In the matrix form, we have

∆vt,K = vt,K − vt−1,K
= βS̃K(−∆ logpt+1,K + ∆vt+1,K) (41)

where S̃K is a (J − 1)× (J − 1) matrix

S̃K =


SK(1)− SK(J)

SK(2)− SK(J)
...

SK(J − 1)− SK(J)

 . (42)

In fact,

S̃K =


1 0 ... 0 −1

0 1 ... 0 −1
...

. . .
...

0 1 −1

SK . (43)

In summary, the choice probabilities are associated with subjective beliefs and value

functions through

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ] (44)

And the choice-specific value function evolves as follows

∆vt,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K) (45)

By eliminating the value functions in these two equations, we are able to find the direct

relationship between the observed choice probabilities and the subjective beliefs.

Define J × (J − 1) matrix

M = [Si − SK ] (46)

The full rank condition in Assumption 6 guarantees that the generalized inverse M+ of

M is

M+ = (MTM)−1MT (47)

with M+M = I. Therefore,

M+∆ξt,i,K = β(−∆ logpt+1,K + ∆vt+1,K)

M+∆ξt−1,i,K = β(−∆ logpt,K + ∆vt,K)

= β[−∆ logpt,K + βS̃K(−∆ logpt+1,K + ∆vt+1,K)]. (48)
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Eliminating (−∆ logpt+1,K + ∆vt+1,K) leads to

S̃KM
+∆ξt,i,K − β−1M+∆ξt−1,i,K = ∆ logpt,K . (49)

That is

[S̃KM
+ − β−1M+]

(
∆ξt,i,K

∆ξt−1,i,K

)
= ∆ logpt,K . (50)

This equation implies that the choice probabilities may be directly associated with the

subjective beliefs. Furthermore, we may solve for the subjective beliefs with a closed-form.

In these J equations, S̃K contains (J − 1)× (J − 1) unknowns and M+ has (J − 1)× J .

Suppose we observe data for 2J equations. Define a (2J)× (2J) matrix

∆ξi,K ≡
[ ∆ξt1,i,K ∆ξt2,i,K ... ∆ξt2J ,i,K

∆ξt1−1,i,K ∆ξt2−1,i,K ... ∆ξt2J−1,i,K

]
(51)

and a (J − 1)× (2J) matrix

∆ logpK ≡
[
∆ logpt1,K ,∆ logpt2,K , ...,∆ logpt2J ,K

]
(52)

We have [
S̃KM

+, −β−1M+
]
∆ξi,K = ∆ logpK (53)

Under Assumption 7, [Si−SK ] and S̃K are solved with a closed-form expression with

a known β as follows:5[
S̃KM

+, −β−1M+
]

= ∆ logpK [∆ξi,K ]−1, (54)

[Si − SK ] = M

= (M+)T [M+(M+)T ]−1, (55)

and

S̃K = (S̃KM
+)M (56)

Given the definition of S̃K , we have identified SK(x)−SK(J) for x ∈ {1, 2, ..., J − 1}.
Assumption 8 normalizes SK(J) to a known distribution, and therefore, we fully recover

SK(x) for x ∈ {1, 2, ..., J}, i.e., SK . Therefore, all the subjective probabilities Si are

identified from [Si − SK ] with a closed-form. QED.

5 This equation also implies that Si and β can be identified if SK is known.
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Proof of Theorem 2

We observe the last J + 1 periods, i.e., t = T − J, T − J + 1, ..., T . Assumption 9

implies that SK is known and that u(x,K) = 0. The choice-specific value function may

then be expressed as follows:

vT (x,K) = u(x,K) = 0.

vT−1(x,K) = u(x,K) + βSK(x)(− logpT,K + vT,K) + β
[
− log pT,K(J) + vT,K(J)

]
= βSK(x)(− logpT,K) + β

[
− log pT,K(J)

]
(57)

Each element in the (J − 1)-by-1 vector ∆vT,K is

[vT (x,K)− vT (J,K)]− [vT−1(x,K)− vT−1(J,K)]

= 0− [vT−1(x,K)− vT−1(J,K)]

= −β[SK(x)− SK(J)](− logpT,K) (58)

Therefore, the vector ∆vT,K is

∆vT,K = −βS̃K(− logpT,K) (59)

Since SK , and therefore, S̃K , are known, we may identify ∆vt,K for all t = T −J + 1, T −
J + 2, ..., T recursively from

∆vt,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K). (60)

As shown in the proof of Theorem 1, the choice probabilities are associated with

subjective beliefs and value functions through

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ] (61)

Define

∆ξT−J+1
i,K =

[
∆ξT−J+1,i,K ∆ξT−J+2,i,K ... ∆ξT−1,i,K

]
(62)

∆vT−J+1 =
[

∆vT−J+1 ∆vT−J+2 ... ∆vT−1

]
(63)

where

∆vt ≡ (−∆ logpt,K + ∆vt,K).

Equation (61) for t = T − J + 1, T − J + 2, ..., T may be written as

∆ξT−J+1
i,K = β[Si − SK ]∆vT−J+1. (64)

Therefore, we may solve for Si as

Si = SK + β−1∆ξT−J+1
i,K

[
∆vT−J+1

]−1
21



under assumption 10. Given the subjective beliefs and u(x,K) = 0, we can solve for the

utility function from

log
( pt,i(x)

pt,K(x)

)
= β[Si(x)− SK(x)][− logpt+1,K + vt+1,K ] + [u(x, i)− u(x,K)]. (65)

QED.

Proof of Theorem 3

In the infinite horizon case, the choice-specific value function then becomes

v(x,w, a)

= u(x,w, a) + β

∫ ∫
V (x′, w′)s(x′, w′|x,w, a)dx′dw′

= u(x,w, a) + β

∫ ∫ [
− log pK(x′, w′) + vK(x′, w′)

]
s(x′, w′|x,w, a)dx′dw′ (66)

In particular, for choice a = K with u(x,w,K) = 0,

v(x,w,K) = β

∫ ∫ [
− log pK(x′, w′) + vK(x′, w′)

]
s(x′, w′|x,w,K)dx′dw′. (67)

For x ∈ {x1, ..., xJ} and w ∈ {w1, ..., wL}, we define vector

ua = [u(x1, w1, a), ..., u(x1, wL, a), u(x2, w1, a), ..., u(x2, wL, a), ..., u(xJ , w1, a), ..., u(xJ , wL, a)]T .

Similarly, we define vectors va, and logpK . Let Sxa = [s(xt+1 = xj|xt = xi, at)]i,j and

F w
a = [s(wt+1 = wj|wt = wi, at)]i,j. In matrix form, the equation above becomes

va = ua + β[Sxa ⊗ F w
a ]
[
− logpK + vK

]
(68)

We impose Assumption 9 to normalize the subjective belief corresponding to a = K to be

the objective ones, i.e., s(xt+1|xt, K) = f(xt+1|xt, K). The rank condition in Assumption

3’ implies that the value function vK corresponding to action K is identified with a

closed-form

vK = [I − β(F x
K ⊗ F w

K )]−1[β(F x
K ⊗ F w

K )(− logpK)] (69)

where F x
K = [f(xt+1 = xj|xt = xi, at = K)]i,j.

Assumption 2’ implies that the state transition is separable with respect to xt and wt
so that we can consider the value function corresponding to action a as follows:

v(x,w, a)

= u(x,w, a) + β

∫ ∫ [
− log pK(x′, w′) + vK(x′, w′)

]
s(x′, w′|x,w, a)dx′dw′

= u(x,w, a) + β

∫ ∫ [
− log pK(x′, w′) + vK(x′, w′)

]
s(x′|x, a)f(w′|w, a)dx′dw′

= u(x,w, a) + β

∫ [
− log p̃aK(x′, w) + ṽaK(x′, w)

]
s(x′|x, a)dx′ (70)
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where

log p̃aK(x′, w) =

∫
log pK(x′, w′)f(w′|w, a)dw′

ṽaK(x′, w) =

∫
vK(x′, w′)f(w′|w, a)dw′. (71)

Therefore, we have

ξi,K(x,w) = log
( pi(x,w)

pK(x,w)

)
= v(x,w, i)− v(x,w,K)

= βSxi (x)[− log p̃iK(w) + ṽiK(w)]− βSxK(x)[− log p̃KK(w) + ṽKK (w)]

+u(x,w, i), (72)

where

Sxat(xt) = [s(xt+1 = 1|xt, at), ..., s(xt+1 = J |xt, at)]
log p̃iK(w) = [log p̃iK(1, w), ..., log p̃iK(J, w)]T

ṽiK(w) = [ṽiK(1, w), ..., ṽiK(J, w)]T .

Assumption 4’ imposes a linear structure on the utility function such that u(x,w, a) =

u1(x, a) + u2(x, a)w. Suppose the support of w contains {0, 1, 2, ..., J + 1}. The second

order difference of u(x,w, a) with respect to w is zero with

∆2
wf(w) ≡ [f(w)− f(w − 1)]− [f(w + 1)− f(w)].

Taking the second order difference with respect to w leads to

∆2
wξi,K(x,w) = βSxi (x)[−∆2

w log p̃iK(w) + ∆2
wṽ

i
K(w)]

−βSxK(x)[−∆2
w log p̃KK(w) + ∆2

wṽ
K
K (w)] (73)

With w ∈ {1, 2, ..., J}, we may obtain enough restrictions to solve for Sxi (x) under an

invertibility condition imposed on the observables. Define

Ṽ i = [ṽi(1), ṽi(2), ..., ṽi(J)],

ṽi(w) = [−∆2
w log p̃iK(w) + ∆2

wṽ
i
K(w)],

∆2
wξi,K(x) = [∆2

wξi,K(x, 1),∆2
wξi,K(x, 2), ...,∆2

wξi,K(x, J)],

Equation (73) for w ∈ {1, 2, ..., J} can be written as

∆2
wξi,K(x) = βSxi (x)Ṽ i − βSxK(x)Ṽ K

Under Assumption 5’, we may solve for Sxi (x), i.e., s(xt+1|xt, at) with a closed-form as

follows:

Sxi (x) = β−1
(

∆2
wξi,K(x) + βSxK(x)Ṽ K

)(
Ṽ i
)−1

.
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Given the subjective beliefs, we can solve for the utility function u(x,w, a) from equation

(72). QED.

Proof of Theorem 4 The first-order Markov process {at, xt, τ} satisfies

f(at+, xt+1, at, xt, at−) =
∑
τ

f(at+|xt+1, τ)f(xt+1, at|xt, τ)f(τ, xt, at−), (74)

with at+ = h(at+l, ..., at+1) and at− = h(at−1, ..., at−l). Integrating with respect to ω(at)

leads to ∫
ω(at)f(at+, xt+1, at, xt, at−)dat

=
∑
τ

f(at+|xt+1, τ)
[ ∫

ω(at)f(xt+1, at|xt, τ)dat

]
f(τ, xt, at−). (75)

Note that we have reduced the support of at+l, ..., at+1 to that of τ by the mapping

h(·). We define the following matrices

Mat+,xt+1,ω,xt,at− =
[ ∫

ω(at)f(at+ = i, xt+1, at, xt, at− = j)dat

]
i,j

Mat+,xt+1,τ =
[
f(at+ = i, xt+1, τ = j)

]
i,j

Mτ,xt,at− =
[
f(τ = i, xt, at− = j)

]
i,j

Dxt+1,ω|xt,τ = Diag
{∫

ω(at)f(xt+1, at|xt, τ = 1)dat, ...,

∫
ω(at)f(xt+1, at|xt, τ = L)dat

}
Dxt+1|xt,τ = Diag

{
f(xt+1|xt, τ = 1), ..., f(xt+1|xt, τ = L)

}
Dω|xt+1,xt,τ = Diag

{∫
ω(at)f(at|xt+1, xt, τ = 1)dat, ...,

∫
ω(at)f(at|xt+1, xt, τ = L)dat

}
.

(76)

Equation (75) is equivalent to

Mat+,xt+1,ω,xt,at− = Mat+,xt+1,τDxt+1,ω|xt,τMτ,xt,at− . (77)

Similarly, we have

Mat+,xt+1,xt,at− = Mat+,xt+1,τDxt+1|xt,τMτ,xt,at− , (78)

where the matrices are defined analogously to those in (76) based on the following equality∫
f(at+, xt+1, at, xt, at−)dat =

∑
τ

f(at+|xt+1, τ)
[ ∫

f(xt+1, at|xt, τ)dat

]
f(τ, xt, at−).
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Assumption 12 implies that matrices Mat+,xt+1,τ , Dxx+1|xt,τ , and Mτ,xt,at− are all invertible.

We may then consider

Mat+,xt+1,ω,xt,at−M
−1
at+,xt+1,xt,at− = Mat+,xt+1,τDxx+1,ω|xt,τD

−1
xt+1|xt,τM

−1
at+,xt+1,τ

= Mat+,xt+1,τDω|xt+1,xt,τM
−1
at+,xt+1,τ

(79)

This equation above shows an eigenvalue-eigenvector decomposition of an observed ma-

trix on the left-hand side. Assumptions 13 guarantee that this decomposition is unique.

Therefore, the eigenvector matrix Mat+,xt+1,τ , i.e., f(at+|xt+1, τ) is identified. The distri-

bution f(xt+1, at|xt, τ), and therefore f(at|xt, τ) = pt(at|xt, τ), can then identified from

equation (74) due to the invertibility of matrix Mat+,xt+1,τ . QED.

25


	Introduction
	DDC models with subjective beliefs
	Closed-form identification of subjective beliefs
	The infinite horizon case
	Heterogeneous beliefs
	Appendix

