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ABSTRACT

We exploit the link between deviations from uncovered interest rate parity

(UIP), long-run relative purchasing power parity (PPP), and deviations from

real rate equality, to develop more powerful tests of the predictive power of

real exchange rates for excess currency returns. Assuming long-run relative

PPP, we obtain much stronger evidence of predictability than if we test UIP

in isolation. The real exchange rate is also the main driver of long-horizon

UIP deviations and a dominant fraction of the real exchange rate variance is

due to UIP deviations. Modified versions of the “habit” and “long-run risks”

models qualitatively replicate these findings.
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A useful tool to analyze exchange rate movements is the following present

value representation of the real exchange rate (see, for example, Froot and

Ramadorai, 2005, and Engel, 2016):

s̃t − E(s̃t) = −
∞∑
i=1

Et(ξt+i) +
∞∑
i=1

Et(dr̃t+i), (1)

where s̃t is the log real exchange rate, which measures deviations from pur-

chasing power parity (PPP); ξt is the log currency return, in excess of the

differential between the domestic and foreign nominal interest rate; and dr̃t

is the real log bond return differential between the foreign and the domestic

country. Note that by assuming that E(s̃t) is well-defined, we are effectively

assuming that relative PPP holds in the long-run. The two terms on the right

hand side (r.h.s.) of (1) capture infinite-horizon cumulative deviations from

uncovered interest rate parity (UIP) and real rate equality (RRE), respectively.

Equation (1) above highlights the fact that real exchange rate fluctua-

tions are affected by two factors: deviations from UIP (“risk premia”) and

deviations from RRE (“fundamentals”). Expectations of more “traditional”

macro variables—money-growth, inflation, and GDP-growth differentials, for

example—may still matter in the determination of real exchange rates accord-

ing to (1), but they can only do so through their effect on risk premia and

fundamentals.

Equation (1) motivates the first research question addressed in this pa-

per: do real exchange rates predict (negatively) excess currency returns?

This seems a natural and important question, and, yet, the literature has

mainly focused on other instruments—most notably, the nominal interest rate

differential—to characterize the time variation in currency risk premia. More-

over, the existing evidence on the predictive ability of real exchange rates is
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weak; see for example, the review article by Rossi (2013). A closely related

question is whether real exchange rates predict (positively) real bond return

differentials: under the UIP null, the first term on the r.h.s. of (1) is constant,

and, accordingly, any variation of the real exchange rate reflects RRE devia-

tions, i.e., fundamentals. This also seems a natural question to address, but

the literature has mainly focused on other macro variables that exchange rates

may predict, such as differentials in money supply, output, price level, and in-

terest rates (e.g., Engel and West, 2005). Finally, both the predictability of

excess currency returns and the predictability of real bond return differentials

are directly related to the determinants of the variance of the real exchange

rate. While several studies have performed variance decomposition exercises

for stock returns and dividend yields (e.g., Campbell and Shiller, 1988, and

Cochrane, 2008), very little work has been done in the international finance

context.

Our paper addresses the questions above using monthly data for a panel of

34 currencies (and five currency “baskets”) over the December 1983–April 2012

sample period. First, we perform both a “direct” test and an “indirect” test

of the UIP null hypothesis that excess log currency returns are unpredictable.

The direct test investigates whether the instruments have predictive power

with respect to excess currency returns. The indirect test investigates whether,

given long-run relative PPP, real bond return differentials are predictable in a

way consistent with the UIP null. In other words, UIP, together with long-run

relative PPP, implies deviations from the RRE null. We test whether these

implied deviations from RRE are borne out in the data. The indirect test

we develop here is a multivariate and multi-period generalization of the test

of stock return predictability developed by Cochrane (2008). The extension

of Cochrane (2008) to a multi-variate setting is especially useful as it allows

2



to compare the predictive power of several instruments and to analyze the

implications of no-arbitrage models featuring several state variables.

Second, we test UIP in the context of implied infinite-horizon regressions.

Specifically, we test whether the infinite-horizon cumulative UIP deviation—

the first infinite sum on the r.h.s of (1)—is time varying as a function of the

real exchange rate and other instruments. Third, we use the present value

representation (1) to decompose the variance of the real exchange rate into

shares due to risk premia and fundamentals, respectively.

Our empirical results, based on bootstrap inference, are easily summarized.

We find little direct evidence of predictive power of the real exchange rate.

For example, at the three-month horizon, the no-predictability null is rejected

in only seven out of 39 currencies and currency baskets. Conversely, in the

indirect tests, there is significant evidence of predictability in 37 out of 39

tests. In other words, assuming long-run relative PPP, the evidence from RRE

regressions reinforces the evidence of UIP deviations. The infinite-horizon

regressions are also supportive of the predictive power of the real exchange

rate: it is significant in 12 out of 34 tests. Results are similar, although

statistically much more significant, in a panel-regression setting. In particular,

the panel-regression estimates quantify at 93% the risk premium share of the

variance of the real exchange rate.

A size and power study demonstrates that the indirect and infinite-horizon

tests are substantially more powerful than the standard direct tests. We also

show that our results are robust to possible spurious-regression biases, alter-

native parameterizations of the indirect null, the correction for small-sample

biases in the parameterization of the null hypothesis, the inclusion of addi-

tional predictors, and the use of alternative reference currencies.

Having established that i) real exchange rates do predict excess currency
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returns, and ii) that the risk premium component dominates real exchange rate

variation, in the second part of the paper, we relate our analysis to the im-

plications of no-arbitrage models of exchange rate determination, specifically,

the “habit” and “long-run risks” models. We discuss the economic mecha-

nisms driving the predictive power of the real exchange rate in the two models

and we derive population values for regression and infinite-horizon statistics.

Both models replicate the result that the real exchange rate (nominal interest

rate differential) predicts negatively (positively) excess currency returns and

the fact that indirect tests of UIP are more powerful than direct tests. Both

models also imply that most of the real exchange rate variability is due to risk

premia, rather than fundamentals, although they overstate the magnitude of

the effect. Indeed, both models imply a negative covariance between the real

exchange rate and the differential between foreign and domestic real interest

rates, leading to a negative fundamental variance share and a risk-premium

share in excess of 100%.

The paper is organized as follows: Section 1 discusses the contribution of

our paper relative the related literature. Section 2 illustrates the empirical

methodology. Section 3 illustrates the empirical analysis. Section 4 discusses

the empirical implications of the two theoretical models. Section 5 concludes.

In the interest of space, several derivations and detailed discussions are rele-

gated to the Internet Appendix.

1 Related literature

The literature on exchange rate determination and predictability is vast. This

section focuses on the four studies that are most closely related to the present
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paper.1 Froot and Ramadorai (2005) use the real exchange rate as a predictor

of currency returns, in the context of a VAR estimated with daily data in a

panel setting, for the sample from June 20, 1994, to February 9, 2001. Follow-

ing Campbell (1991), they decompose the variance of innovations in currency

returns into shares attributable to risk premium news and fundamental news,

finding that risk premium news dominates. Their focus is different from ours,

though, as they do not concentrate on the predictive power of the real exchange

rate, but on the effect of net order flow on currency prices. In addition, they

do not perform indirect tests of predictability, nor do they report or make

inference on implied infinite-horizon regression coefficients.

Engel and West (2005) study the relation between exchange rates and

macro variables, using quarterly data for the January 1974–September 2001

sample. They investigate whether nominal currency returns Granger-cause

macro variables (differentials in nominal money growth, inflation, nominal

interest rates, and GDP growth), finding some supportive evidence. Moreover,

similarly to our variance decomposition exercise, they test whether nominal

currency returns are correlated with changes in the present values of several

macro variables, finding that in most cases the correlations are insignificant.

We improve upon their analysis by providing a framework—the present value

representation in equation (1)—that identifies the real bond return differential

as the single macro variable being anticipated by exchange rates. This unifying

framework allows us to relate the predictive power of real exchange rates for

excess currency returns and real bond return differentials, respectively, to the

roles of risk premia and fundamentals in determining (real) exchange rate

variation.

1For a summary of the main strands of the literature on currency price determination
and further discussion of the contribution of our paper, see the Internet Appendix (Section
IA.1).
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Evans (2012) also starts from a present value representation of the log

real exchange rate. His empirical analysis attributes most of the variance

of changes in log real exchange rates to “dark matter.” Differently from our

study, Evans (2012) models the real exchange rate as a non-stationary variable,

assuming that investors constantly update their expectation of infinite-horizon

deviations from absolute PPP. Hence, what he denotes as dark matter is the

combined effect of changes in risk premia and revisions of expected infinite-

horizon PPP deviations, and he does not distinguish between the two effects.

When we apply the methodology of Evans (2012) to our setting, and we dis-

tinguish between the two effects, we find that virtually all of the variability of

changes in real exchange rates is due to revisions of expected infinite-horizon

PPP deviations. This result seems implausible, and we attribute it mainly to

the misspecification of the joint dynamics of the real exchange rate, currency

returns, and inflation differentials.2

Finally, Engel (2016) studies the relation between the infinite-horizon cu-

mulative UIP deviation and the current expected real bond return differential.

He finds that the covariance between the two quantities is negative: high real-

interest-rate currencies tend to experience low cumulative excess returns in the

long run. This result stands in contrast with the well-documented deviations

from UIP: high real-interest-rate currencies tend to experience high excess re-

turns in the short run. Engel (2016) demonstrates that the two stylized facts

cannot be accommodated by existing equilibrium models. Our analysis dif-

fers from that of Engel (2016) because we focus on the relation between the

infinite-horizon cumulative UIP deviations and the real exchange rate, rather

than the expected real bond return differential. Indeed, we show that the real

2Interestingly, the theoretical model put forward by Evans (2012) postulates that the
real exchange rate has a stationary steady-state distribution and, hence, the share of the
variability of changes in real exchange rates due to the revision of infinite-horizon PPP
deviations is nil.
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exchange rate is the most robust predictor of infinite-horizon cumulative UIP

deviations. Moreover, our panel-data results show that, once we control for

the real exchange rate, the sign of the coefficient of the nominal or real interest

rate differential remains positive as we extend the return horizon.

2 Methodology

2.1 Preliminaries

Let rt and rft denote the continuously-compounded domestic and foreign nom-

inal risk-free rates and let drt ≡ rft − rt denote the interest rate differential.

Throughout, the superscript f denotes a variable of the foreign country, and d

denotes the differential between foreign and domestic variables: dX ≡ Xf−X.

∆ denotes first differences: ∆Xt ≡ Xt−Xt−1. Finally X̃ denotes a real quan-

tity, and X̂ denotes an estimate.

Let st denote the log of the directly quoted nominal exchange rate and let

ξt+1 ≡ st+1 − st + drt denote the time-t + 1 excess log currency return, i.e.,

the log currency return in excess of the cost of carry (−drt). Our empirical

analysis focuses on testing the null hypothesis that:

Et(ξt+1) = E(ξt+1). (2)

We denote this null hypothesis the UIP null.

Let pt and pft denote the log domestic and foreign price levels. We define

the log real exchange rate s̃t as:

s̃t ≡ st + pft − pt. (3)
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Note that if absolute PPP holds, the real exchange rate equals one, and the

log real exchange rate equals zero. Taking first differences of (3), we have:

∆s̃t+1 ≡ s̃t+1 − s̃t = st+1 − st + pft+1 − p
f
t − (pt+1 − pt)

≡ st+1 − st + πft+1 − πt+1 = st+1 − st + drt − drt + dπt+1

≡ ξt+1 − dr̃t+1, (4)

where πt+i and πft+i are the domestic and foreign continuously-compounded

inflation rates, respectively, dπt+1 ≡ πft+1 − πt+1 is the inflation differential,

and dr̃t+1 ≡ drt − dπt+1 is the real bond return differential.

2.2 Finite-horizon direct and indirect tests

The present value representation (1) motivates the real exchange rate as a

predictor of excess currency returns. To the extent that currency risk premia

exhibit serial correlation, the excess currency return should also be used as a

predictor. Moreover, given the evidence from existing studies, we also include

the interest rate differential as a predictor. Finally, the inflation differential

is also a natural candidate as a predictor, as inflation is one of the macro

variables typically considered in the international finance literature (see, for

example, Engel and West, 2005). Hence, we define: zt ≡ [s̃t, ξt, drt, dπt, x
>
t ]>,

where xt is a vector of K possible additional instruments. We then estimate

the monthly predictive regressions—the “UIP” regressions corresponding to

the direct tests of UIP:

ξH,t+H = αξ,H + β>ξ,Hzt + eξ,t+H , (5)

where ξH,t+H ≡
∑H

h=1 ξt+h is the roll-over H-month excess return.
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We test the individual null hypotheses:

βξ,H,k = 0, (6)

where βξ,H,k is the k-th element of βξ,H , and k = 1, . . . , K + 4. In addition, we

test the joint null hypotheses:

βξ,H = 04+K . (7)

Following Lustig, Roussanov, and Verdelhan (2014), we can also predict

the excess return on baskets of currencies. In this case, the dependent and in-

dependent variables in (5) are replaced by their cross-sectional averages across

currencies in the basket.

We now turn to the indirect tests of UIP, by noticing that the null hy-

potheses above ((6) or (7)) have implications for the coefficients of regressions

predicting real bond return differentials. In fact, consider the identity:

ξH,t+H ≡ ∆s̃H,t+H + dr̃H,t+H , (8)

where ∆s̃H,t+H ≡
∑H

h=1 ∆s̃t+h = s̃t+H − s̃t, and dr̃H,t+H =
∑H

h=1 dr̃t+h. We

have the “PPP” and “RRE” regressions:

∆s̃H,t+H = α∆s̃,H + β>∆s̃,Hzt + e∆s̃,t+H (9)

dr̃H,t+H = αdr̃,H + β>dr̃,Hzt + edr̃,t+H , (10)

where, from (8), dr̃H,t+H = ξH,t+H −∆s̃H,t+H , and βdr̃,H = βξ,H − β∆s̃,H .

Hence, we now consider the implications that the UIP null, jointly with a

choice of β∆s̃,H consistent with long-run relative PPP, has for deviations from
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RRE. Specifically, we assume β∆s̃,H,k = β̄∆s̃,H,k (k denoting the element of the

corresponding vector, as in (6), and a bar denoting an assumed value), and

combine the restrictions (6) to obtain:

βdr̃,H,k = −β̄∆s̃,H,k; (11)

whereas combining (7) and the assumption β∆s̃,H = β̄∆s̃,H , we obtain the joint

restrictions:

βdr̃,H = −β̄∆s̃,H . (12)

In other words, if we assume that excess currency returns are not predictable,

whereas the appreciation of the real exchange rate is predictable, then real

bond return differentials must be predictable. Hence, we can test (6) and

(11)—or (7) and (12)—both separately and jointly. This approach extends

the analysis of Cochrane (2008), who only tests the two hypotheses separately.

It is easy to see why testing the indirect null can be more powerful in

uncovering evidence of predictability. Consider the direct null in equation (7).

Given the definition of ξH,t+H in equation (8), we can rewrite (7) as:

βdr̃,H + β∆s̃,H = 04+K . (13)

On the other hand, the indirect null in equation (12) can be written as:

βdr̃,H + β̄∆s̃,H = 04+K . (14)

Hence, by testing the indirect null, the econometrician takes a stand on β∆s̃,H

and “eliminates” the effect on β̂ξ,H of the sampling variability in β̂∆s̃,H and

of the sampling covariability between β̂dr̃,H and β̂∆s̃,H . Also note that the
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estimates of the left-hand side of (13) and (14) are not perfectly correlated

and, hence, there are potential power gains from testing the direct and indirect

null hypotheses jointly, as discussed above.

2.3 Infinite-horizon tests

We assume that zt follows a stationary VAR(1):3

zt = A+Bzt−1 + vt, (15)

where the eigenvalues of B lie inside the unit circle. It is worth noting that if

we replace zt with [s̃t,∆st, dπt]
> in the VAR above, we obtain a conventional

error correction model (ECM). In the ECM, st and pft − pt are co-integrated

with co-integrating vector [1, 1]> and, as in our VAR, s̃t is stationary (see

Jordà and Taylor, 2012, and Engel, 2016). Relative to the ECM, the VAR in

(15) differs by including the dynamics of the interest rate differential, drt.

Based on the VAR in (15), we compute the theoretical regression coeffi-

cients from projecting infinite-horizon cumulative excess returns on the real

exchange rate and other instruments:

β̂>ξ,∞ = β̂>ξ,1(I − B̂)−1. (16)

Hence, we can test the individual restrictions, βξ,∞,k = 0, and the joint restric-

tion:

βξ,∞ = 04+K . (17)

3Note a restricted version of this VAR is used to generate bootstrap samples under the
UIP null; see the Internet Appendix (Section IA.2) for details.
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Note that, in the infinite-horizon setting, the indirect restriction (12) takes

the form βdr̃,∞ = −β̄∆s̃,∞, or, equivalently, βdr̃,∞ + β̄∆s̃,∞ = 04+K . It is easy

to show that this indirect restriction is equivalent to the direct restriction (17)

above and the indirect test does not add any information, i.e, does not help

reduce sampling errors. Given the assumed stationarity of s̃t, the conditional

expectation Et(s̃t − s̃∞) changes in a one-to-one fashion in the opposite di-

rection of s̃t. Hence, regardless of the assumed process for ∆s̃t, the vector

of infinite-horizon regression coefficients β̄∆s̃,∞ equals −ι1 ≡ −[1 0 0 0 0>K ]>,

and β̂dr̃,∞ + β̄∆s̃,∞ = β̂dr̃,∞ − ι1.4 It follows from equations (13) and (14) that

testing the indirect restriction βdr̃,∞ − ι1 = 04+K is equivalent to testing the

direct restriction βξ,∞ = 04+K .

Using the VAR in equation (15), we can revisit the present value represen-

tation of the real exchange rate in equation (1). We have:

s̃t − E(s̃t) = −
∞∑
i=1

Et(ξt+i − dr̃t+i)

= −
∞∑
i=1

Et[ξt+i − E(ξt)] +
∞∑
i=1

Et[dr̃t+i − E(dr̃t)]−
∞∑
i=1

[E(ξt)− E(dr̃t)]

= −
∞∑
i=1

Et[ξt+i − E(ξt)] +
∞∑
i=1

Et[dr̃t+i − E(dr̃t)]

= −β>ξ,∞[zt − E(zt)] + β>dr̃,∞[zt − E(zt)], (18)

where, given the assumed stationarity of s̃t, E(ξt)−E(dr̃t) ≡ E(∆s̃t) = 0, and

β̂>dr̃,∞ = β̂>dr̃,1(I − B̂)−1. Therefore, we can decompose the variance of the real

exchange rate as:

var(s̃t) = cov(s̃t,−β>ξ,∞zt) + cov(s̃t, β
>
dr̃,∞zt); (19)

4This result follows directly from infinite-horizon versions of equations (8)–(10).
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to obtain:

1 =
cov(s̃t,−β>ξ,∞zt)

var(s̃t)
+

cov(s̃t, β
>
dr̃,∞zt)

var(s̃t)
, (20)

where the first term—the “risk premium variance share”—captures the share

of the variance due to changes in expected future risk premia, and the sec-

ond term—the “fundamental variance share”—captures the variance due to

changes in expected future real bond return differentials. In the case where

the real exchange rate is the only predictor, the decomposition in (20) simpli-

fies to:

1 = − βξ
1− ρs̃

+
βdr̃

1− ρs̃
, (21)

where βξ and βdr̃ are the coefficients of regressions of ξt+1 and dr̃t+1 on s̃t,

respectively, and where ρs̃ is the serial correlation coefficient of s̃t. In the

empirical analysis, we use the difference between the risk-premium variance

share in equation (20) and in the equation above, as an indicator of the role

of the real exchange rate in capturing the long-run dynamics of ξt. If the

difference is small, as it is in our sample, we can then conclude that the

real exchange rate alone captures most of the long-term dynamics of excess

currency returns.

Equation (21) is also useful in interpreting the implications of no-arbitrage

models of currency pricing. We find that both the habit and long-run risks

models imply a risk premium share of the volatility of the real exchange rate

that exceeds 100%. Since the variance-decomposition results in the univariate

and multi-variate settings are quite similar, based on (21), we can interpret

this implication of the two models as being due to the fact that they imply a

negative covariance between s̃t and dr̃t+1.
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3 Empirical analysis

3.1 Data and empirical strategy

Our dataset, available from Datastream, includes monthly observations, over

the period December 1983–April 2012, of foreign exchange rates, interest rates,

and (seasonally-unadjusted) consumer price indexes (CPIs) of the following 34

countries:5

G10 countries: Australia, Canada, Germany, Japan, New Zealand, Nor-

way, Sweden, Switzerland, and United Kingdom.

Non-G10 developed countries: Austria, Belgium, Denmark, Finland,

France, Greece, Ireland, Italy, Netherlands, Portugal, Singapore, and

Spain.

Emerging countries: Czech Republic, Hungary, India, Indonesia, Kuwait,

Malaysia, Mexico, Philippines, Poland, South Africa, South Korea, Tai-

wan, and Thailand.

In most of our tests, we parameterize the restricted VAR based on a panel-

data estimator, which uses data on all currencies and controls for currency-

specific fixed effects. The panel-data approach has two, related, advantages

relative to the estimation of separate VARs for each country. First, we employ

more data, and, as a result, we obtain much more precise estimates. Second,

the panel-data VAR estimates lead to stable dynamics of the state variables,

whereas some country-specific VAR estimates lead to unstable dynamics.6

5See the Internet Appendix (Section IA.3) for further details on the data set. Note that
the G10 countries are selected based on trading volume in the currency market, not on
measures of economic development. In addition, one of the G10 countries is the U.S. and,
hence, the list only contains nine countries.

6It is well documented that panel-data estimation leads to more reliable estimates of
exchange rate dynamics than pure time-series approaches: Mark and Sul (2001), Rapach
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We consider four finite investment horizons: one, three, six, and 12 months.

Wald statistics are Newey-West adjusted for heteroskedasticity and moving-

average serial correlation of order equal to the investment horizon minus one.

We report both asymptotic and bootstrap results, where the bootstrap infer-

ence is based on a bootstrap of the VAR residuals. We bootstrap the residuals

from the VAR equations, separately for each currency, but jointly across all of

the predictors for the same currency, to preserve properties of the joint dis-

tribution, such as asymmetry, fat tails, and cross-sectional dependence. The

number of bootstrap repetitions is 5,000. To minimize the possible bias intro-

duced by an arbitrary choice of starting values, in each bootstrap repetition

we employ a new starting value randomly drawn from the time series of zt,

and we also use a warm-up period of 60 months.

3.2 Results: individual currencies

We start with the results for 39 currencies and currency baskets in total.

Based on the bootstrap inference, the direct tests uncover only weak evidence

of predictability, whereas the evidence of predictability is very strong in the

indirect and joint direct/indirect tests. For example, at the three-month hori-

zon (Table 1), in the direct tests, the UIP null is rejected in seven, one, ten,

and zero instances, for the real exchange rate, excess currency return, interest

rate differential, and inflation differential, respectively.7 In the indirect tests,

on the other hand, the UIP null is rejected in 37, 34, 32, and 18 instances.

Similarly, in the joint direct-indirect tests, we see 36, 34, 33, and 16 rejections

(38 rejections in the joint test for all four predictors).

and Wohar (2002), and Jordà and Taylor (2012), all use panel-data vector ECMs, similar
to our VAR, to produce robust forecasts of exchange rates.

7In the interest of space, results at the other horizons are detailed in the Internet Ap-
pendix (Tables IA.1–IA.3).
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As the return horizon increases, the evidence from direct tests is similar,

with an increase in the predictive power of the inflation differential. In the

indirect tests, on the other hand, the predictive power of the real exchange

rate persists, whereas the predictive power of the other predictors—the excess

currency return and the inflation differential, in particular—diminishes. At

the 12-month horizon, for example, in the direct test, the UIP null is rejected

in nine, zero, 11, and 13 instances, for the real exchange rate, excess currency

return, interest rate differential, and inflation differential, respectively. In the

indirect test, on the other hand, the UIP null is rejected in 38, 23, 28, and four

instances. In the joint direct-indirect tests, at the 12-month horizon, we see

markedly lower rejection rates for the excess currency return and the inflation

differential. Interestingly, the number of rejections for the nominal interest

rate differential, 31, is higher than the number of rejections in either the direct

(11) or indirect (28) tests alone, showing how the joint implementation of the

direct and indirect tests can indeed improve the power to detect predictability

patterns.

Table 2 reports results for the infinite-horizon inference. Across curren-

cies, there are 12 rejections, out of 34 tests, for the real exchange rate, and

ten rejections for the nominal interest rate differential.8 Hence, for the real

exchange rate, the rejection rate (35%, i.e., 12 out of 34 test assets) is higher

than the rejection rates from the direct tests (at most 26%), but lower than

the rejection rates from the indirect tests (at least 95%). The excess currency

return and inflation differential, on the other hand, are significant in only one

and three tests, respectively. The joint tests lead to 13 rejections, the risk

premium variance share is significant in nine instances, and the increase in

variance share due to the addition of instruments to the real exchange rate is

8We have to exclude five currencies from the infinite-horizon analysis, because the cor-
responding VARs imply non-stationary dynamics.
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significant in seven instances.

In summary, we see much stronger evidence of predictability from the in-

direct and joint direct-indirect tests, than from the direct tests. Of the four

instruments, it is the real exchange rate to exhibit the strongest predictive

power, followed by the nominal interest rate differential. The infinite-horizon

tests also uncover more predictive power for the real exchange rate than the di-

rect tests, although not as much as the indirect and joint direct-indirect tests.

The evidence on the predictive power of the nominal interest rate differential

is consistent with the extensive existing evidence on deviations from UIP re-

viewed, for example, by Sarno (2005). On the other hand, the evidence on

the predictive power of the real exchange rate is largely a novel contribution

of this paper.

3.3 Results: panel evidence

Table 3 presents evidence based on the panel-regression estimation. Given

the large total number of observations—7,826 currency-month observations—

inference here is based on asymptotics, where standard errors are clustered

by currency and time. In the analysis presented here, we control for currency

fixed effects.9

As one would expect, imposing a panel structure on the data leads to sub-

stantial additional power in all tests. Panel A shows evidence of predictability

in the direct tests, especially strong for the real exchange rate and the interest

rate differential. In order to assess the economic magnitude of the effects, we

also compute the scaled regression coefficients, which give us effects on the de-

pendent variable in units of standard deviation, for a one-standard-deviation

change in the independent variable. While not tabulated here, the scaled

9We also experimented with both currency and time fixed effects, with analogous results.
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regression coefficients associated with the real exchange rate range between

−0.36 and −0.11, whereas the scaled coefficients associated with the inter-

est rate differential range between 0.07 and 0.12, corroborating the notion of

stronger predictive power of real exchange rates than interest rate differentials.

With the notable exception of the inflation differential, the evidence of predic-

tive power is confirmed in the indirect and joint direct-indirect tests (panels

B and C).

As to the infinite-horizon evidence, we have very strong rejections of the

UIP null for both the real exchange rate and the nominal interest rate differ-

ential. The risk premium variance share is a strongly significant 93%, and the

addition of other instruments to the real exchange rate further increases the

risk premium share only by 7%.10

It is worth noting that in this panel setting where we control for the real

exchange rate, the nominal interest rate differential predicts positively excess

currency returns at all horizons. Conversely, in untabulated results, the sign of

a regression of expected infinite-horizon excess currency returns on either the

nominal or real interest rate differential alone—i.e., not controlling for the real

exchange rate—is negative, consistent with the evidence of Engel (2016).11

Finally, we also performed the panel-data analysis separately for the three

groups of countries: G10, non-G10, and emerging. Results are qualitatively

similar to those obtained for a single panel of countries: the indirect tests un-

cover much stronger evidence of predictability than the direct tests, especially

for the real exchange rate; the implied infinite-horizon regression coefficients

are also especially significant for the real exchange rate; and a large fraction of

the variance of the real exchange rate can be attributed to changes in risk pre-

10The risk premium variance share in the single-predictor case is 86%, which, combined
with the 7% change in share, leads to the 93% overall share.

11While Engel (2016) focuses on the predictive role of the expected real bond return
differential, he finds similar results using the nominal interest rate differential.
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mia (between 82% and 100%), where the inclusion of instruments in addition

to the real exchange rate makes little difference (at most 9%).

3.4 Size and power

Two natural questions arise at this stage: First, does the bootstrap adjustment

lead to the correct inference? Second, are the indirect and infinite-horizon

tests indeed more powerful than the standard direct tests? To the best of our

knowledge, we are the first to perform a size and power study of the indirect

and infinite-horizon tests introduced by Cochrane (2008). We believe that this

is a valuable methodological contribution of our paper.

In summary, we find that the bootstrap correction of the inference is needed

and eliminates size distortions.12 We also find that the power of the indirect

and infinite-horizon test is substantially higher than that of the traditional

direct test. In particular, for the realistic predictability patterns simulated in

the power study, the indirect, joint direct-indirect, and infinite-horizon tests

seem especially apt at detecting predictability stemming from the real ex-

change rate. These findings further reassure us that we are indeed uncovering

new, and reliable, predictability patterns that would not be apparent using

standard methods.

3.5 Extensions and robustness checks

We perform several extensions of our analysis and we implement several robust-

ness checks of our baseline results:13 i) non-stationarity of the real exchange

rate; ii) correction of possible spurious-regression biases; iii) alternative choices

12See the Internet Appendix (Section IA.4) for details.
13In the interest of space, the details of this analysis can be found in the Internet Appendix

(Section IA.5).
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of β̄∆s̃,H ; iv) UIP null hypothesis parameterized according to currency-specific

VARs; v) correction of VAR parameter estimates for small-sample biases; vi)

controlling for additional predictors; vii) use of alternative approaches to boot-

strap; and viii) use of different reference currencies.

We find that the assumption of non-stationarity of the real exchange rate

leads to the implausible result that essentially 100% of the variance of the

monthly real exchange rate appreciation can be attributed to revisions of ex-

pected infinite-horizon PPP deviations. We also find that the predictability

patterns uncovered in this study are very robust, and that indirect and infinite-

horizon tests are crucial to uncover such predictability.

4 Implications of the theory

In studying the implications of the theory, we start by focusing on three uni-

variate predictability patterns that any model of currency returns should con-

front.14 First, the real exchange rate predicts negatively excess currency re-

turns. Second, the nominal interest rate differential predicts positively excess

currency returns. Third, the real exchange rate has a positive, albeit moder-

ate, predictive power for real bond return differentials. The first pattern is at

the center of the empirical analysis of the paper. The second pattern is the

violation of UIP studied in much of the existing literature on currency premia.

The third pattern is related to our finding that a small, but positive, share of

the variability of real exchange rates is due to fundamentals.

In the following, we briefly analyze the three patterns discussed above in

terms of a general no-arbitrage model of currency prices. Let dũt denote the

differential between the foreign and domestic log marginal utilities of con-

14These three patterns are supported by untabulated results of univariate panel-data
regressions.
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sumption. The differential between the foreign and domestic real log pricing

kernels is given by dm̃t ≡ ∆dũt. Absent arbitrage, we have ∆s̃t = dm̃t. Hence,

assuming stationarity of the log marginal utility differential, we have:

dũt − E(dũt) = −
∞∑
i=1

Et(dm̃t+i) = −
∞∑
i=1

Et(∆s̃t+i) = s̃t − E(s̃t). (22)

Assuming lognormality, symmetric economies, and homoskedastic and neutral

inflation (dσπ = dσm̃π = 0), as we do in the context of the two specialized

models below, we have Et(ξt+1) = −1
2
dσ2

m̃t and:15

cov[s̃t, Et(ξt+1)] = −1

2
cov(dũt, dσ

2
m̃t). (23)

The nominal interest rate differential equals drt = −dµmt− 1
2
dσ2

mt = −dµm̃t−
1
2
dσ2

m̃t + dµπt, where dmt is the nominal log pricing kernel differential, and we

have:

cov[drt, Et(ξt+1)] =
1

2
cov(dµm̃t, dσ

2
m̃t) +

1

4
var(dσ2

m̃t). (24)

Finally, the expected real bond return differential equals Et(dr̃t+1) = drt −

dµπt = −dµmt − 1
2
dσ2

mt − dµπt = −dµm̃t − 1
2
dσ2

m̃t and we have:

cov[s̃t, Et(dr̃t+1)] = −cov(dũt, dµm̃t)−
1

2
cov(dũt, dσ

2
m̃t). (25)

Equations (23)–(25) afford some general insights. First, we see that cov[s̃t, Et(ξt+1)] <

0 is not due to the stationarity of the real exchange rate (i.e, cov(dũt, dµm̃t) <

0), but it requires cov(dũt, dσ
2
m̃t) > 0—i.e., a positive relation between the

15Here and in the following, µXt, σXt, σXY t, and ρXY t denote the mean, standard devia-
tion, covariance, and correlation coefficient of the corresponding X and Y variables condi-
tional on time-t available information. In the absence of a time subscript, the moments are
to be interpreted as constant over time.
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differentials in the levels and in the variances of the marginal utilities in the

two countries. Second, a sufficient condition for cov[drt, Et(ξt+1)] > 0 is that

cov(dµm̃t, dσ
2
m̃t) > 0, which is unlikely to be the case if the real exchange rate

is stationary (cov(dũt, dµm̃t) < 0) and it predicts negatively excess currency

returns (cov(dũt, dσ
2
m̃t) > 0). Third, in order for cov[s̃t, Et(dr̃t+1)] > 0, we

need the mean reversion effect (−cov[dũt, Et(dm̃t+1)] > 0) to be stronger than

the relationship between the real exchange rate and the currency risk premium

(−1
2
cov(dũt, dσ

2
m̃t) < 0). In summary, it is unclear whether a single theoretical

model can deliver all three predictability patterns.16

In the next two sections, we re-examine the three univariate predictability

patterns discussed above, as well as the multi-variate predictability patterns

documented in the empirical analysis, in the context of two no-arbitrage mod-

els of currency returns, the habit model (Verdelhan, 2010) and the long-run

risks model (Bansal and Shaliastovich, 2013). Both models are modified rela-

tive to their original formulations to deliver a stationary real exchange rate.17

4.1 The habit model

4.1.1 Preferences and equilibrium quantities

The symmetric habit model Verdelhan (2010) assumes that the real log pricing

kernel differential equals:

dm̃t = −γ(∆dht + ∆dc̃t); (26)

16Indeed, the Internet Appendix (Section IA.7) shows that a single-factor affine model is
unable to contemporaneously match all three inequalities.

17A recent model of currency prices whose implications we do not pursue is the liquidity
model of Engel (2016). In his model, there is no direct channel connecting the real exchange
rate to expected excess currency returns: the connection between the two quantities only
takes place through the reaction function of monetary authorities in the two countries. See
the Internet Appendix (Section IA.6) for further discussion.
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where dht is the differential in log consumption surplus ratios, dht ≡ ln[(C̃f
t −

X̃f
t )/C̃f

t ] − ln[(C̃t − X̃t)/C̃t], where C̃f
t and C̃t are foreign and domestic real

per-capita consumption, respectively, and X̃f
t and X̃t are the foreign and do-

mestic external “habit” consumption, respectively; and dc̃t ≡ ln(C̃f
t /C̃t) is the

differential in real log per-capita consumption.18 We have:

s̃t − E(s̃t) = −γ(dht + dc̃t) = −γ[d ln(C̃t − X̃t)]. (27)

The equation above highlights how the real exchange rate is driven by the

differential in log excess consumption: what matters is not the differential in

the absolute consumption level, but the differential in consumption relative

to the external habit. Hence, two countries may have the same level of con-

sumption, but experience different marginal utilities of consumption because

of different external habit levels. In turn, the difference in marginal utilities

leads to deviations from PPP.

As in Verdelhan (2010), we have:19

Et(ξt+1) =
γ2σ2

εc

H̄2
dht, (28)

where H̄ is a “tuning” parameter. Note that dht affects the real exchange rate

and the currency risk premium in opposite directions. A higher differential in

the habit level of consumption increases both the differential in marginal utility

18The domestic representative agent’s intertemporal marginal rate of substitution and the
domestic economy’s pricing kernel is given by:

exp(m̃t) = β

(
C̃t − X̃t

C̃t−1 − X̃t−1

)−γ
= β

(
Ht

Ht−1

)−γ (
C̃t

C̃t−1

)−γ
,

where β is the time discount factor and Ht ≡ (C̃t − X̃t)/C̃t is the surplus consumption
ratio. Taking logs, we have m̃t = ln(β) − γ∆ht − γ∆c̃t, where ht ≡ ln(Ht) and c̃t ≡ ln C̃t.
Analogous expressions apply to the foreign economy.

19See the Internet Appendix (Section IA.8.1) for details.
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of consumption and the differential in the volatility of the marginal utility of

consumption. The first effect drives up the real exchange rate, whereas the

second effect drives down the currency risk premium. Indeed, the covariance

between the real exchange rate and the currency risk premium is given by:20

cov[s̃t, Et(ξt+1)] = −
γ3σ2

εc̃

H̄2
[var(dht) + cov(dht, dc̃t)]

= −
γ3σ2

εc

H̄2
{var(dht) + 2E[λ(ht)](1− ρεc̃εfc̃ )σ

2
εc̃
}. (29)

For our choice of parameters, this covariance is negative.

Turning to the nominal interest rate differential, we have:

drt = −bdht + γ(φc − 1)dc̃t + φπdπt, (30)

where b ≡ γ(1 − φh) −
γ2σ2

εc

H̄2 .21 Note that the second and third term in the

expression above are absent in the solutions of Verdelhan (2010): Verdelhan

(2010) does not impose the stationarity of the real exchange rate and derives

the real, rather than the nominal, interest rate differential.

Following Verdelhan (2010), we choose b < 0. Hence, an increase in dht

affects the nominal interest differential and the currency risk premium in the

same direction. The covariance between the two quantities equals:

cov[drt, Et(ξt+1)] =
γ2σ2

εc

H̄2
[−bvar(dht) + γ(φc − 1)cov(dht, dc̃t)]. (31)

For our choice of parameter values, the covariance above is positive, imply-

ing that the nominal interest rate differential predicts positively the excess

currency return.

20See the Internet Appendix (Section IA.8.2) for the derivation of the conditional moments
of dht.

21φX denotes the serial correlation coefficient of the X variable.
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Finally, the expected real bond return differential equals:

Et(dr̃t+1) = drt − φπdπt ≡ −bdht + γ(φc − 1)dc̃t. (32)

Note that dht affects the real exchange rate and the expected real bond re-

turn differential in opposite directions and the covariance between the two

quantities is given by:

cov[s̃t, Et(dr̃t+1)] = γbvar(dht)− γ2(φc − 1)var(dc̃t). (33)

For our choice of parameter values, the covariance above is negative and the

real exchange rate predicts the real bond return differential in the “wrong”

direction and the model implies a risk premium variance share of the real

exchange rate in excess of 100%.

4.1.2 Calibration

As in Verdelhan (2010) and Bansal and Shaliastovich (2013), we focus on

the implications of the model for the Dollar/British Pound exchange rate.

Following Verdelhan (2010) we set as baseline values: γ = 2, φh = 0.99,

and b = −0.01. Based on our data for the U.S. and U.K., we set (quarterly

frequency): φc = 0.97, φπ = −0.24, σεc̃ = 0.0066, σεπ = 0.0078, ρεfc̃ εc̃
= 0.44,

and ρεfπεπ = 0.24.

The results from the calibration exercise are reported in Table 4, where

we also consider the effect of deviations of γ and b from the baseline scenario:

“high” denotes a value twice as large as the baseline, whereas “low” denotes a

value equal to one half of the baseline value. The population PPP, UIP, and

RRE regression statistics are based on regressions with three regressors: s̃t, drt,

and dπt, since there are only three state variables in this model. Similarly, the
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infinite-horizon statistics are based on a VAR(1) modeling the joint dynamics

of s̃t, drt, and dπt.
22 We calculate population p-values associated with the

regression coefficients, assuming that the analysis is performed with a sample

of 96 quarterly observations, to match the number of quarterly observations

in the sample.

Across choices of parameter values, a few implications of the habit model

stand out. First, similarly to Verdelhan (2010), the model overstates the

volatility of changes in the (log) real exchange rate and the persistence of

the level of the (log) real exchange rate. This is a result of the fact that the

variable that dominates the variability of the log pricing kernel differential is

dht, which is very volatile and persistent. Second, in the UIP regressions, the

model underestimates the magnitudes the coefficients associated with the real

exchange rate and the nominal interest rate differential, although it reproduces

their signs. Consistent with the empirical evidence, the model implies that

the indirect test leads to a strong rejections of the UIP null, when focusing

on the real exchange rate. On the other hand, for the nominal interest rate

differential there is very little gain in power. Finally, the model overstates

the risk premium variance share: for example, 141% for the baseline choice of

parameters, as compared to a sample value of 60%. This result is due to the

fact that the the real exchange rate predicts negatively the real bond return

differential.

In summary, the habit model replicates a number of features of the data,

including the fact that indirect tests of UIP are more powerful than the direct

tests, and that a dominant portion of the variance of real exchange rates can

be attributed to risk premia. On the other hand, the model overstates the

22As shown in the Internet Appendix (Section IA.9), by employing as many instruments in
the VAR as the number of underlying state variables—three, in this case—the VAR-implied
variance decomposition coincides with the theoretical variance decomposition.
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volatility of real exchange rate appreciation, as well as the risk premium share

of the real exchange rate variance.

4.2 The long-run risks model

4.2.1 Preferences and equilibrium quantities

Following Bansal and Yaron (2004) and Bansal and Shaliastovich (2013), we

assume:

m̃t = constant− θ

ψ
∆c̃t + (θ − 1)r̃ct, (34)

where θ ≡ (1− γ)/(1− 1/ψ). ψ is the elasticity of intertemporal substitution;

and r̃ct is the rate of return on the portfolio that delivers aggregate consump-

tion, the “wealth portfolio.” Following the literature, we assume γ > 1 and

ψ > 1. As a result, we have θ < 0.

Given the assumptions above, we have the log real pricing kernel differen-

tial:23

dm̃t = −γ∆dc̃t +m>y (κdyt − dyt−1); (35)

where dyt ≡ [dc̃t dvt dπt]
> and my ≡ [mdc mdv 0]>, where dvt denotes the

differential in the conditional variance of log consumption in the two countries.

We also have:24

s̃t − E(s̃t) = −γdc̃t +m>y dyt = (−γ +mdc)dc̃t +mdvdvt. (36)

23See the Internet Appendix (Sections IA.10.1 and IA.10.2) for details of the assumptions
and solution.

24See the Internet Appendix (Section IA.10.3) for details.
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The differential in marginal utilities reflects not just the difference in current

consumption, but also the difference in equity valuations in the two countries.

This difference, in turn, is driven by the log consumption differential as well

as the volatility differential dvt. Hence, two countries may have the same

level of current consumption, but different expected consumption growth and

volatility of consumption growth, leading to deviations from PPP.

Turning to the currency risk premium, it is driven by the differential con-

sumption volatility process, dvt:

Et(ξt+1) = −1

2
m2
dcdvt. (37)

Given our choice of parameters, mdv > 0: an increase in consumption volatil-

ity reduces the valuation of the wealth portfolio, and an increase in the the

consumption volatility differential increases the foreign pricing kernel relative

to the domestic pricing kernel. Hence, the covariance:

cov[s̃t, Et(ξt+1)] = −1

2
mdvm

2
dcvar(dvt) (38)

is negative. The intuition for the result is that when dvt increases, both the

level and the volatility of the foreign pricing kernel increase, relative to the do-

mestic pricing kernel. The relative increase in the foreign pricing kernel drives

the real exchange rate higher, whereas the relative increase in the volatility of

consumption growth drives the currency risk premium lower, leading to the

negative covariance above.

The nominal interest rate differential equals:

drt = (−γ +mdc)(1− φc)dc̃t +

[
mdv(1− φv)−

1

2
m2
dc

]
dvt + φπdπt. (39)
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Note that the consumption volatility differential, dvt, affects the nominal inter-

est rate differential through two channels. First, an increase in dvt reduces the

valuation of the foreign wealth portfolio and increases its expected rate of re-

turn, relative to the domestic wealth portfolio. This effect drives down the ex-

pected pricing kernel differential—the two pricing kernels are inversely related

to the rate of return on the corresponding wealth portfolios—and drives up

the interest rate differential. Second, an increase in the consumption volatility

differential increases the precautionary savings motive in the foreign country

relative to the domestic country, driving down the interest rate differential.

As a result, we have:

cov[drt, Et(ξt+1)] =

[
1

2
m2
dc −mdv(1− φv)

]
1

2
m2
dcvar(dvt), (40)

whose sign depends on the sign of the quantity inside the square brackets. For

our choice of parameters, this quantity is positive.

Finally, the expected real bond return differential equals:

Et(dr̃t+1) = [(−γ +mdc)(1− φc)]dc̃t +

[
mdv(1− φv)−

1

2
m2
dc

]
dvt; (41)

and:

cov[s̃t, Et(dr̃t+1)] = (−γ +mdc)
2(1− φc)var(dc̃t)

+mdv

[
mdv(1− φv)−

1

2
m2
dc

]
var(dvt). (42)

Given our choice of parameter values, the covariance above is negative. Hence,

as in the habit model, a higher real exchange rate predicts a lower real bond

return differential, and a variance decomposition exercise attributes more than

100% of the variance of the real exchange rate to risk premium variation.
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Note that there is a parallel between the result above and the findings of

Engel (2016). Engel (2016) finds that both the habit and long-run risks mod-

els counterfactually imply that cov [Et(dr̃t+1), Et (
∑∞

i=1 ξt+1)] > 0.We find that

the habit and long-run risks models imply that cov [Et (
∑∞

i=1 dr̃t+i) , Et (
∑∞

i=1 ξt+1)] >

0, which is a necessary condition for more than 100% of the variance of the

real exchange rate to be explained by the time variation in risk premia.25

4.2.2 Calibration

Following Bansal and Shaliastovich (2013), we set γ = 12 and ψ = 1.81.

The mean equations for consumption growth and inflation are parameterized

similarly to the habit model. As to the process for the volatility of consumption

innovations, we follow Bansal and Shaliastovich (2013) and assume φv = 0.994

and ρεfv εv = 0.94.26 As in the case of the habit model, we consider the effect of

deviations of the preference parameters (γ and ψ) from the baseline scenario.

We derive population statistics for the UIP regressions and for the infinite-

horizon analysis and we assume that the instruments in the predictive re-

gressions and the VAR are: s̃t, drt and dπt. Similarly to the habit model,

across parameter choices, the long-run risks model matches some features of

the data, but misses other features; see Table 4. In particular, the model

roughly matches the predictive power of the nominal interest rate differential

for the excess currency return and, at least qualitatively, the improvement in

inference from the indirect tests. On the other hand, the model grossly over-

states the risk-premium share of the variance of the real exchange: 215% for

the baseline choice of parameters v. 60% in the data.

25Let Z = X + Y . For cov(Z,X) > var(Z) we need var(X) + cov(X,Y ) > var(X) +
var(Y ) + 2cov(X,Y ) and var(Y ) + cov(X,Y ) < 0, which is only possible if cov(X,Y ) < 0.

26See the Internet Appendix (Section IA.10.4) for details of the calibration of the volatility
process.
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5 Conclusions

We provide new evidence that real exchange rates contain important informa-

tion about currency risk premia, and that they vary over time mainly because

of time-varying expected risk premia, not changes in fundamentals. We per-

form multi-variate direct, indirect, joint, and infinite-horizon tests of the pre-

dictive power or the real exchange rate and a variance decomposition exercise.

While the direct tests uncover little predictive power, the indirect and joint

direct-indirect tests strongly reject the no-predictability null, with the real

exchange rate as the main predictor. The implied infinite-horizon regression

statistics also reject the no-predictability null, although not as strongly as

the indirect tests. The variance decomposition exercise shows that 93% of the

variability of the real exchange rate can be attributed to changing expectations

of future excess currency returns (panel-regression evidence). Moreover, the

real exchange rate alone captures most of the infinite-horizon predictability of

currency excess returns.

We relate our empirical findings to the implications of the habit and long-

run risks models. Both models reproduce the predictive ability of the real

exchange rate and the nominal interest rate differential for excess currency

returns, and the fact that indirect tests of UIP are more powerful than direct

tests. On the other hand, both models imply that the real exchange rate is

negatively related to expected real bond return differentials. As a result, they

substantially overstate the fraction of the volatility of the real exchange rate

due to risk premia.
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Table 1: Testing UIP, Baseline Case, Three-month Investment Horizon: Summary

This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), and joint tests (Panel C) of
the UIP null on all currencies and currency baskets. The four instruments considered are the real exchange rate
(s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential
(dπ). Each panel reports the numbers and the fractions of asymptotic tests or of bootstrap tests yielding
p-values smaller than 0.05.

Panel A: Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 7 1 10 0
Frac. of Boot. p < 0.05 0.18 0.03 0.26 0.00
No. of Assets: 39
Avg. Adj-R2: 0.05

Panel B: Indirect Tests

β̂dr̃,H,k = −β̄∆s̃,H,k

s̃ ξ dr dπ
No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 34 32 18
Frac. of Boot. p < 0.05 0.95 0.87 0.82 0.46
No. of Assets: 39

Panel C: Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 11 39 38 36 34 33 16
Frac. of Boot. p < 0.05 0.28 1.00 0.97 0.92 0.87 0.85 0.41
No. of Assets: 39
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Table 2: Testing UIP, Baseline Case, Infinite-horizon Regressions: Summary

This table summarizes the infinite-horizon regression results of all currencies and currency baskets with
stationary VAR processes, and reports the numbers and the fractions of tests yielding asymptotic or bootstrap
p-values smaller than 0.05. The four instruments considered are the real exchange rate (s̃), the one-month
excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ).

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 12 1 10 3 13 9 7
Frac. of Boot. p < 0.05 0.35 0.03 0.29 0.09 0.38 0.26 0.21
No. of Assets: 34
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Table 3: Testing UIP, Baseline Case, Panel Regressions

This table reports predictive regression estimates (Panels A and B), joint test statistics (Panel C), and infinite-
horizon regression estimates and variance shares (Panel D), obtained from panel regressions using all currencies
and controlling for currency fixed effects. The four instruments considered are the real exchange rate (s̃), the
one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ).
Asymptotic p-values, based on covariance matrix estimators clustered by both currency and time, are reported
in parentheses under each estimate or test statistic.

Panel A: Direct Tests

Explanatory Variables
Horizon s̃ ξ dr dπ

(Asy. p) (Asy. p) (Asy. p) (Asy. p)
1 -0.02 0.10 0.57 -0.01

(0.00) (0.03) (0.00) (0.97)
3 -0.07 0.17 1.26 0.02

(0.00) (0.00) (0.02) (0.91)
6 -0.15 0.19 2.55 0.63

(0.00) (0.05) (0.00) (0.02)
12 -0.29 0.20 3.68 1.90

(0.00) (0.06) (0.03) (0.00)

Panel B: Indirect Tests

β̂dr̃,H = −β̄∆s̃,H

Horizon s̃ ξ dr dπ
(Asy. p) (Asy. p) (Asy. p) (Asy. p)

1 0.00 0.03 0.76 -0.26
(0.00) (0.00) (0.00) (0.92)

3 0.01 0.06 1.30 -0.23
(0.00) (0.00) (0.00) (0.44)

6 0.01 0.08 2.00 -0.16
(0.00) (0.00) (0.00) (0.23)

12 0.01 0.09 3.33 -0.12
(0.00) (0.00) (0.00) (0.37)
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Panel C: Joint Tests

β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

Horizon β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ
Wald Wald Wald Wald Wald Wald Wald

(Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p)
1 26.56 1750.99 2009.41 663.44 122.68 53.57 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.99)
3 41.74 2886.28 3723.97 1390.38 66.26 255.73 0.69

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.71)
6 46.80 3650.29 4684.74 1871.06 39.89 36.60 6.83

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03)
12 38.16 3385.44 4283.45 1518.91 20.87 17.78 9.49

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

(Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p) (Asy. p)

-0.93 0.04 1.57 -0.14 817.16 0.93 0.07
(0.00) (0.01) (0.00) (0.07) (0.00) (0.00) (0.02)
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Table 4: Calibration

The table reports the empirical implications of the habit and long-run risks (LRR) models. The models are
calibrated for a sample of 96 quarterly observations. Panel A reports annualized summary statistics based
on quarterly observations. Panel B reports statistics of the UIP regression. Panel C reports infinite-horizon
statistics. “High” and “low” denote scenarios where a parameter is set to a value double or one half of its
baseline value, respectively. See the main text for further details.

Panel A: Summary Statistics

σ∆s̃ ρs̃ σdr σξ σdr̃
Habit, baseline 0.3395 0.9889 0.0081 0.3406 0.0203
Habit, high γ 0.4620 0.9885 0.0051 0.4625 0.0193
Habit, low γ 0.1929 0.9881 0.0079 0.1946 0.0202
LRR, baseline 0.1060 0.9940 0.0082 0.1082 0.0009
LRR, high γ 0.4527 0.9940 0.0278 0.4554 0.0006
LRR, low γ 0.0242 0.9934 0.0050 0.0306 0.0009
LRR, high ψ 0.1083 0.9940 0.0085 0.1105 0.0012
LRR, low ψ 0.1019 0.9939 0.0077 0.1040 0.0002
Sample 0.1027 0.8054 0.0051 0.1043 0.0881

Panel B: UIP Tests

R2 βξ,s̃ p(βξ,s̃ = 0) βξ,dr p(βξ,dr = 0) p(βdr̃,s̃ = −β̄∆s̃,s̃) p(βdr̃,dr = −β̄∆s̃,dr)
Habit, baseline 0.0089 −0.0129 0.7959 0.4286 0.9803 0.0000 0.6617
Habit, high γ 0.0058 −0.0115 0.4680 0.3846 0.9886 0.0000 0.7313
Habit, low γ 0.0133 −0.0150 0.5306 0.5000 0.9155 0.0000 0.2846
LRR, baseline 0.0133 −0.0107 0.8647 0.3252 0.9710 0.3218 0.8329
LRR, high γ 0.0132 −0.0105 0.9668 0.3207 0.9933 0.3076 0.8361
LRR, low γ 0.0085 −0.0110 0.6241 0.3353 0.8944 0.4197 0.8270
LRR, high ψ 0.0140 −0.0108 0.9342 0.3304 0.9855 0.6242 0.9139
LRR, low ψ 0.0118 −0.0103 0.7239 0.3144 0.9428 0.0482 0.6884
Sample 0.0689 −0.2096 0.0022 1.6850 0.1309 0.0000 0.0000
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Panel C: Infinite-horizon Statistics

Variance Share ξ ∆ Variance Share ξ Variance Share dr̃
Habit, baseline 1.4145 0.1448 −0.4145
Habit, high γ 1.1576 0.1491 −0.1576
Habit, low γ 1.8059 0.2936 −0.8059
LRR, baseline 2.1484 0.0101 −1.1484
LRR, high γ 2.1067 0.0005 −1.1067
LRR, low γ 2.2019 0.1975 −1.2019
LRR, high ψ 2.2021 0.0025 −1.2021
LRR, low ψ 2.0374 0.0414 −1.0374
Sample 0.6032 −0.2586 0.3968
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IA.1 Relation to other existing literature

Several studies have documented departures from uncovered interest rate parity and, specifically, the fact that interest
rate differentials predict excess currency returns. Early examples of this literature are Bilson (1981), Hansen and
Hodrick (1983), Fama (1984), and Hodrick (1987); while Lewis (1995), Engel (1996), and, more recently, Sarno (2005)
provide reviews of the literature. We contribute to this stream of literature by showing that indirect tests of (excess)
currency-return predictability uncover stronger evidence of predictive power not only for real exchange rates, but also
for interest rate differentials.

Among the many studies documenting a weak relation between currency returns and macro variables, we can recall
Meese and Rogoff (1983), Mark and Sul (2001), Rapach and Wohar (2002), and Groen (2005); also, see Sarno (2005)
and Engel, Mark, and West (2007) for reviews. Similarly, we also conclude that fundamentals explain little of the
(real) exchange rate variation. We improve upon the existing literature by identifying expectations of real bond return
differentials as the sole fundamental, and by quantifying the importance of fundamentals in a variance decomposition
exercise.

Several authors, on the other hand, have tested whether long-run relative PPP holds, i.e., whether the real exchange
rate is stationary; see, for example, Diebold, Husted, and Rush (1991), Cheung and Lai (1993), Lothian and Taylor
(1996), Frankel and Rose (1996), Wu (1996), Flood and Taylor (1996), Taylor and Sarno (1998), Papell (2002), Imbs,
Mumtaz, Ravn, and Rey (2005), and Engel (2012); and see Froot and Rogoff (1995), Taylor (1995), Rogoff (1996),
Sarno and Taylor (2002), Taylor and Taylor (2004), and Sarno (2005), for reviews. Although the evidence is somewhat
mixed, the consensus is that the real exchange rate indeed mean-reverts in the long run. Motivated by this finding, our
assumption of stationarity of the real exchange rate plays a key role in the parameterization of the indirect null, the
derivation of the infinite-horizon regression statistics, and the implementation of finite-sample inference.

Backus, Foresi, and Telmer (2001), Brandt, Cochrane, and Santa-Clara (2006), Leippold and Wu (2007), and Sarno,
Schneider, and Wagner (2012) attempt at reconciling the properties of currency returns with the properties of pricing
kernels. The properties of currency returns have also been studies in the context of general equilibrium models; see,
for example, Alvarez, Atkeson, and Kehoe (2002), Bacchetta and van Wincoop (2010), Verdelhan (2010), Bansal and
Shaliastovich (2013), and Gourio, Siemer, and Verdelhan (2013). Our analysis differs from these studies in that we
are not restricted by any single partial- or general-equilibrium model. Indeed, we only assume that foreign-currency
investors have rational expectations, and we rely on this assumption only in the infinite-horizon analysis.

Other studies have focused on time-series predictability patterns, beyond deviations from UIP; see, for example,
Beber, Breedon, and Buraschi (2010), Adrian, Etula, and Shin (2010), Jordà and Taylor (2012), Bakshi and Panayotov
(2013), Lustig, Roussanov, and Verdelhan (2014), and Della Corte, Ramadorai, and Sarno (2016). Jordà and Taylor
(2012) include the real exchange rate as an instrument in a predictive model. They find that a trading rule accounting
for deviations of the real exchange rate from its long-run mean (in addition to the interest rate and inflation differentials
and the lagged currency return) outperforms a rule that does not. Differently from the current paper, though, they do
not implement an indirect test of the predictive power of the real exchange rate, nor do they decompose the variance of
real exchange rates.1 There are also authors who have focused on cross-sectional predictability patterns, such as Lustig
and Verdelhan (2007), Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009), Ang and Chen (2010), Burnside,
Eichenbaum, and Rebelo (2011), Lustig, Roussanov, and Verdelhan (2011), Asness, Moskwitz, and Pedersen (2013),
and Menkhoff, Sarno, Schmeling, and Schrimpf (2016). The latter two studies use real exchange rates to sort portfolios,
finding that a portfolio long in undervalued currencies, and short in overvalued currencies, earns significant excess
returns: Asness, Moskwitz, and Pedersen (2013) measure under and overvaluation based on the lagged five-year change
in real exchange rates, whereas Menkhoff, Sarno, Schmeling, and Schrimpf (2016) adjust the level of the real exchange
rate for aggregate productivity and the quality of export goods. Our empirical exercises are very different as we focus
on time-series, rather than cross-sectional, predictability patterns.

1See also Qiu, Pinfold, and Rose (2011), who use changes in real exchange rates to predict currency returns.
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IA.2 Small-sample inference and parameterizing the indirect null

In testing the UIP null, we want to control for possible small-sample biases deriving from the high persistence of some
of the predictors. We also want to control for the effect of the correlation between innovations in the predictors and
innovations in the dependent variables: a possible “Stambaugh” bias (Stambaugh, 1999). In addition, in several of our
tests, we employ overlapping observations, which, coupled with the persistence of the predictors, also tend to generate
biases against the UIP null in small samples (see Valkanov, 2003, and Boudoukh, Richardson, and Whitelaw, 2008).
These biases need to be controlled for.

Finally, as discussed in Section 2.2, the joint null of no-predictability in excess currency returns and predictability of
changes in (log) real exchange rates has very specific implications for the predictability of real bond return differentials.
These restrictions need to be properly accounted for if we want to test the direct and/or indirect null hypotheses. To our
knowledge, this is the first paper to test UIP by performing small-sample inference, while at the same time accounting
for the extra restrictions on the dynamics of the instruments implied by the UIP null.2

Using (8) and (15), we have:

ξt+1 = A2 +B2zt + v2,t+1

= (A1 −A4) + [B1 + (ι3 − ι1)> −B4]zt + (v1,t+1 − v4,t+1), (IA.1)

where An is the n-th element of the A vector, Bn is the n-th row of the B matrix, and vn,t+1 is the n-th element of the
vt+1 vector. Hence, the definition of ξt implies:

A2 = A1 −A4 (IA.2)

B2 = B1 −B4 + (ι3 − ι1)> (IA.3)

v2,t+1 = v1,t+1 − v4,t+1. (IA.4)

The null hypothesis that we consider is that excess currency returns are unpredictable, Et(ξt+1) = E(ξt+1), which
means that, in (IA.1),

B2 = B1 + (ι3 − ι1)> −B4 = 0>4+K , (IA.5)

which, in turn, implies

B4 = B1 + (ι3 − ι1)>. (IA.6)

Moreover, (IA.1) implies:

ξt+1 = A2 + v2,t+1 = A1 −A4 + v1,t+1 − v4,t+1. (IA.7)

2Mark (1995), for example, also performs bootstrap inference on predictive regressions for currency returns by simulating an autoregressive
process. His instrument set, though, only includes the deviation of the exchange rate from its fundamental value—a function of nominal
money supply and real output—and, hence, he does not have to account for the indirect restrictions deriving from the UIP null. The same
comment applies to Killian (1999), who simulates an ECM. Indeed, the restrictions on the dynamics of the instruments implied by equation
(4) only apply when excess currency returns, real bond return differentials, and real exchange rates are all instruments included in the analysis.
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Hence, in the bootstrap exercise, we generate bootstrap samples of zt under the UIP null, according to the law of motion:

s̃bt+1 = Ā1 + B̄1z
b
t + vb1,t+1 (IA.8)

ξbt+1 = Ā2 + vb1,t+1 − vb4,t+1 (IA.9)

drbt+1 = Ā3 + B̄3z
b
t + vb3,t+1 (IA.10)

dπbt+1 = Ā1 − Ā2 + [B̄1 + (δ3 − ι1)>]zbt + vb4,t+1 (IA.11)

xbt+1 = Āx + B̄xz
b
t + vbx,t+1, (IA.12)

where Āx and vbx,t+1 are K × 1 vectors, and B̄x is a K × (4 +K) matrix. The bootstrap residuals vb1,t+1, vb3,t+1, vb4,t+1,

and vbx,t+1 are generated via a non-parametric bootstrap.

It is worth noting that when we test the indirect restrictions (11) and (12), we impose the consistency between short-
and long-run predictability patterns. Specifically, let B̄ denote the restricted autoregressive matrix consistent with the
UIP null, as per equations (IA.8)–(IA.12) above and set:

β̄>∆s̃,H = (B̄H)1 − ι>1 , (IA.13)

where (B̄H)1 denotes the first row of B̄H .3,4

IA.3 Data

The selection of countries follows Lustig, Roussanov, and Verdelhan (2014) and the grouping follows Ang and Chen
(2010). As in Ang and Chen (2010), we keep Germany after January 1999, to represent the Eurozone, drop Greece
after June 2000, and drop other Eurozone countries after January 1999. The spot exchange rate data are collected by
Reuters. We acquire exchange rates against the British Pound since they have the longest time series, and convert them
into exchange rates against the U.S. Dollar. The interest rates are Eurocurrency rates whenever available, otherwise
we compute covered interest rate parity implied interest rates. CPI data are at monthly frequency in most countries,
but at quarterly frequency in Australia and New Zealand, and, for these two countries, we linearly interpolate log CPI
observations to obtain monthly observations.

We use monthly log CPI growth to measure inflation. Note that there are issues of comparability of the CPI
data across countries: base-year differences and heterogeneity of the goods baskets. These issues are largely avoided
in our setting, because we only perform a time-series analysis: the differences in base year are eliminated by taking
log differences of the CPI. Moreover, to the extent that the heterogeneity in goods basket is constant over time and
has a only multiplicative effect on the CPIs of different countries, this effect is captured by the intercept terms in the
regression analysis. Indeed, these effects are also captured in the panel-regression setting, as currency-specific fixed
effects are controlled for.

We also construct five currency baskets, using the currencies of: (1) G10 countries, (2) non-G10 developed countries,
(3) developed countries (the union of G10 countries and non-G10 developed countries), (4) emerging countries, or (5) all
countries. The rules for basket construction are based on Ang and Chen (2010) and Lustig, Roussanov, and Verdelhan
(2014).

3In the empirical implementation, we set Ā1 = Â1, Ā2 = Â2, Ā3 = Â3, Āx = Âx, B̄1 = B̂1, B̄3 = B̂3, and B̄x = B̂x.
4While the procedure illustrated above allows us to generate bootstrap samples under the UIP null in equation (2), we are also interested

in generating bootstrap samples under the RRE null:

Et(dr̃t+1) = E(dr̃t). (IA.14)

This second null hypothesis implies that real exchange rates do not predict future real bond return differentials, and equivalently, that all the
variability in real exchange rates is due to changes in risk premia. Simulating this null hypothesis allows us to make inference on the second
term in (20).
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IA.4 Size and power

IA.4.1 Size study

The steps of the size study are:

1. simulate one sample from the restricted VAR estimated with panel data, where we bootstrap the residuals for the
Deutsche Mark;

2. perform asymptotic and bootstrap inference (5,000 draws) on the simulated sample;5

3. repeat 5,000 times.

The main results of the size study are easily summarized: after a bootstrap adjustment, the actual size of the tests
is very close to the nominal size. For example, at the three-month horizon, when the nominal size is 5%, the actual size
of the direct (indirect) tests is 4%, 4%, 5%, and 6% (4%, 5%, 5%, and 6%) for the real exchange rate, excess currency
return, nominal interest rate differential, and inflation differential, respectively. Importantly, the corresponding actual
sizes based on asymptotic inference can be significantly distorted: the corresponding rejection rates in direct (indirect)
tests are 15%, 5%, 10%, and 7% (12%, 6%, 9%, and 8%). Results are analogous for the joint direct-indirect test.

In the infinite-horizon inference, again we have that bootstrap-corrected rejection rates are quite close to the nominal
size of the tests, whereas, in some instances, the asymptotic inference leads to lower, rather than higher, rejection rates.
For example, for a 5% nominal size, the actual size of the bootstrap-adjusted tests is 4%, 4%, 4%, and 5%, for the
real exchange rate, excess currency return, nominal interest rate differential, and inflation differential, respectively. The
actual sizes of the asymptotic tests are, instead: 27%, 9%, 2%, and 1%.

IA.4.2 Power study

The steps of the power study are:

1. simulate one sample from the unrestricted VAR estimated with panel data, where we bootstrap the residuals for
the Deutsche Mark;

2. perform both asymptotic and bootstrap inference (5,000 draws) on the simulated sample;6

3. repeat 5,000 times.

The results of the power study are striking. Based on the bootstrap-adjusted inference, the power of the indirect test
is almost uniformly higher than the power of the direct test. For example, at the three-month horizon, for a nominal
size of 5%, the rejection rates in the bootstrap-adjusted direct test are 49%, 17%, 6%, and 7%, for the real exchange
rate, excess currency return, nominal interest rate differential, and inflation differential, respectively; the corresponding
values for the indirect test are 100%, 100%, 67%, and 15%. The power is especially high for the real exchange rate:
rejection rates in the indirect test are 100%, for all return horizons and nominal sizes. Results are similar for the joint
direct-indirect tests.

The power of the infinite-horizon tests is also substantially higher than that of the direct tests. For a nominal size
of 5%, the rejection rates in bootstrap-adjusted tests are 96%, 67%, 77%, and 27%, for the real exchange rate, excess
currency return, nominal interest rate differential, and inflation differential, respectively. In addition, the rejection rate
of the null of a zero risk premium variance share is 96%.

5The indirect test conditions on the parameters of the restricted VAR used to simulate the data in the first step. Similarly, the bootstrap
inference uses the parameters of the restricted VAR to generate bootstrap samples.

6As in the size study, the indirect test conditions on the parameters of the restricted VAR, and the bootstrap inference uses the parameters
of the restricted VAR to generate bootstrap samples.
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IA.5 Extensions and robustness checks

• Non-stationarity of the real exchange rate. In Section IA.1, we have reviewed literature that tests for the sta-
tionarity of the real exchange rate. We concluded that the consensus is that the real exchange rate is indeed
mean-reverting. We revisit the issue of real exchange stationarity in this section, by providing some further
discussion of the issue, and by amending our methodology to account for possible non-stationarity.

Our derivation of (1) relies on the assumption that the log real exchange rate—i.e., the deviation from absolute
PPP—is stationary and has a well-defined unconditional mean. In other words, we have assumed that relative PPP
holds in the long run and Et(s̃t+∞) = E(s̃t). Alternatively, one can follow Evans (2012), and assume that market
participants revise the conditional expectation of the infinite-horizon deviation from absolute PPP, Et(s̃t+∞), as
time goes by. Given that conditional expectations are martingales, the updating of expected infinite-horizon PPP
deviations leads to a unit-root component in the real exchange rate:

s̃t = −
∞∑
i=1

Et(ξt+i) +

∞∑
i=1

Et(dr̃t+i) + Et(s̃t+∞). (IA.15)

Following Evans (2012), we can take first differences of (IA.15), and rearrange, to obtain a decomposition of the
changes of the (log) real exchange rate:

∆s̃t = −∆

[ ∞∑
i=1

Et(ξt+i)

]
+ ∆

[ ∞∑
i=1

Et(dr̃t+i)

]
+ ∆Et(s̃t+∞). (IA.16)

The expression above, rather than (1), can then be used to decompose the variance of the changes of the real
exchange rate:

var(∆s̃t) = cov

{
∆s̃t,−∆

[ ∞∑
i=1

Et(ξt+i)

]}
+ cov

{
∆s̃t,∆

[ ∞∑
i=1

Et(dr̃t+i)

]}
+cov {∆s̃t,∆Et(s̃t+∞)} . (IA.17)

The second term in the r.h.s. of equation (IA.17) above captures the role of fundamentals in explaining changes
in real exchange rates. The first and third terms, on the other hand, capture the effects of what Evans (2012)
denotes as dark matter.

While Et(s̃t+∞) is not directly observable and the third term on the r.h.s. of (IA.15) cannot be computed, the
other two terms can be computed using a VAR analogous to (15), where the level of the real exchange rate,
s̃t, is replaced by its first differences, ∆s̃t. Hence, ∆Et(s̃t+∞) in (IA.16) can be computed as a residual, much
like the “cash-flow news” component of returns in the standard implementation of the Campbell (1991) return
decomposition.

Hence, we can compute the variance decomposition:

var(∆s̃t) = cov(∆s̃t,−∆β>ξ,∞zt) + cov(∆s̃t,−∆β>dr̃,∞zt) + cov[∆s̃t,∆Et(s̃t+∞)]. (IA.18)

Note that the variance decomposition above is more detailed than the decomposition in Evans (2012), in that we
distinguish between the variability of real exchange rate appreciation due to changes in the infinite-horizon risk
premia and the variability due to revisions of the expected infinite-horizon absolute PPP deviation. When we
implement the decomposition (IA.18) using estimates from a panel-data VAR, we find that essentially 100% of the
variance of the monthly real exchange rate appreciation can be attributed to the last term, cov[∆s̃t,∆Et(s̃t+∞)].
In other words, all the variability of changes in the real exchange rate is due to revisions of the expected infinite-
horizon PPP deviation.

This result does not seem plausible and we attribute it to an econometric problem, rather than to true revisions
of Et(s̃t+∞). The VAR in first differences proposed by Evans (2012) is misspecified because it misses the long-run
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dynamics of the real exchange rate due to the co-integration between the (log) nominal exchange rate and the
(log) price differential. Indeed, in the VAR in first differences, the lagged change in the real exchange rate impacts
the current change with a negative coefficient of −0.2, suggesting overdifferencing.

Since ∆Et(s̃t+∞) is calculated as a residual, the misspecification of the VAR translates into a large variability of
∆Et(s̃t+∞). Indeed, in his theoretical analysis, Evans (2012) assumes a stationary steady-state distribution of the
real exchange rate. As a result, in his model, the dark matter in real exchange rates is uniquely due to the effect
of risk premia, and cov[∆s̃t,∆Et(s̃t+∞)] = 0.

In addition to the variance-decomposition exercise, we also implement the direct and indirect predictability tests,
as well as the test of infinite-horizon cumulative UIP deviations. As in our baseline case that assumes real exchange
rate stationarity, the indirect tests uncover stronger rejections of UIP than the direct tests. On the other hand,
there is no significant evidence of infinite-horizon cumulative UIP deviations. This result is also suggestive that
the VAR in first differences is misspecified.

• Correction of possible spurious-regression biases. Following Ferson, Sarkissian, and Simin (2003), we simulate an
economy where zt (the vector including s̃t, ξt, drt and dπt) does not predict excess currency returns, whereas four
instruments, unobservable to the econometrician, predict excess currency returns in the same way as zt predicts
excess currency returns in the actual data.

Specifically, we assume that excess currency returns are unpredictable based on the observable instruments in
zt, but they are predictable based on a set of unobservable instruments yt. We also assume that yt predicts ξt+1

exactly in the same way as zt predicts ξt+1 in the data, and that yt also evolves over time in the same way as zt
in the data. Hence, in the bootstrap exercise, we generate bootstrap samples of zt and yt according to the law of
motion:

s̃bt+1 = Ā1 + B̄1z
b
t + vb1,t+1 (IA.19)

ξbt+1 = Ā2 + B̄2yt + vb1,t+1 − vb4,t+1 (IA.20)

drbt+1 = Ā3 + B̄3z
b
t + vb3,t+1 (IA.21)

dπbt+1 = Ā1 − Ā2 + [B̄1 + (δ3 − δ1)>]zbt − B̄2yt + vb4,t+1 (IA.22)

ybt+1 = Āy + B̄yy
b
t + vby,t+1, (IA.23)

where vby,t+1 is created by separately bootstrapping the innovations vt+1.7 The equation for the inflation differential
reflects the identity: dπt ≡ ∆s̃t − ξt + drt−1. Correcting for spurious regression bias leads to results that are very
similar to those obtained with the standard bootstrap inference.

• Alternative choices of β̄∆s̃,H . Instead of simply setting β̄∆s̃,H = β̂∆s̃,H , we choose several different values of β̄∆s̃,H ,
and we keep track of the p-values associated with the direct, indirect, and infinite-horizon tests. The values of
β̄∆s̃,H are chosen to be realistic: we draw 5,000 samples from the asymptotic distribution of the restricted panel-
VAR estimates, the B̄ matrix, but excluding draws that imply explosive dynamics. For each draw, we perform
the different tests and we report the sample test p-values and the root mean squared error (RMSE) of the p-values
across draws, relative to the sample value. As in the size and power study, the exercise is calibrated on the
Deutsche Mark. The results of our direct and joint direct-indirect tests are very robust across choices of β̄∆s̃,H ,
especially as far as the predictive power of the real exchange rate is concerned.

• UIP null hypothesis parameterized according to currency-specific VARs. We parameterize the null hypothesis
tested in the indirect tests conditioning on estimates from currency-specific restricted VARs, and we use currency-
specific restricted VARs to generate bootstrap samples under the null.8 Results are similar to those for the
baseline case. For example, in the indirect test, we have rejections in 91%, 61%, 83%, and 52% of the currencies
and currency baskets, for the real exchange rate, excess currency return, nominal interest rate differential, and

7We set Ā1 = Â1, Ā2 = Â2, Ā3 = Â3, Āy = Â, B̄1 = B̂1, B̄2 = B̂2, B̄3 = B̂3, and B̄y = B̂.
8Given the restriction that the dynamics of the restricted VAR is stationary, the cross-section of currencies and currency baskets drops

from 39 to 23, even in the finite-horizon tests.
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inflation differential, respectively (three-month horizon, 5% nominal size, bootstrap-adjusted inference). The
corresponding percentages for the baseline case are: 95%, 87%, 82%, and 46%. Similarly, in the infinite-horizon
tests, we have rejections in 48%, 13%, 17%, and 4% of the tests, whereas the corresponding baseline results are
35%, 3%, 29%, and 9%. Hence, conditioning on the noisier VAR estimates obtained separately for each currency
does not materially alter our results.

• Correction of VAR parameter estimates for small-sample biases. We correct the restricted panel-data VAR es-
timates as well as the estimates obtained from currency-specific restricted VARs, used to generate data under
the UIP null, for possible small-sample biases. Following Bekaert, Hodrick, and Marshall (1997), we use a Monte
Carlo simulation to correct the biases in the VAR estimates: we simulate the restricted VAR process using sample
slope estimates and innovations drawn from a multivariate normal distribution with zero mean and covariance
matrix equal to the sample covariance matrix of the residuals. We then estimate new VAR parameters using the
simulated data. After repeating many times, we add the difference between the original sample estimates and the
average of many simulated estimates to the original sample estimates, to obtain the bias-corrected VAR estimates.

In the case of the panel-data VAR, the small-sample bias is minimal, and all of our results are essentially unchanged.
In the case of currency-specific VARs, for the currencies exhibiting stationary dynamics (after bias adjustment of
the VAR coefficients), our results are qualitatively the same as those discussed in the previous point.

• Controlling for additional predictors. We check whether other predictors have predictive power, over and above
the existing four baseline predictors, and whether the addition of these predictors affects the inference on the real
exchange rate. The additional predictors are chosen based on the evidence of recent articles. We set K = 1, and
the extra predictor xt is one of the following variables:

– the average forward discount (Lustig, Roussanov, and Verdelhan, 2014);

– the growth rate of U.S. industrial production (Lustig, Roussanov, and Verdelhan, 2014);

– the real exchange rate appreciation (Qiu, Pinfold, and Rose, 2011);

– the yield curve level (i.e., the average of ten-year and one-month yields) differential, the yield curve slope
(i.e., the ten-year minus the one-month yield) differential, and the change of the yield curve level differential
(Ang and Chen, 2010);

– the “momentum” factor (the three-month cumulative currency excess return; Ang and Chen, 2010);

– the “value” factor (the five-year cumulative currency return; Ang and Chen, 2010).

In order to implement some of the exercises described above, we need to formulate the VAR dynamics when some
instruments are affine functions of other contemporaneous and lagged instruments. Specifically, assume that:

zt = A+Bzt−1 + Cwt−1 + vt, (IA.24)

where

wt = D + [F0 F1 · · · Fq]



zt

zt−1

...

zt−q


. (IA.25)
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We have:

wt = D + [F0 F1 · · · Fq]



A+Bzt−1 + Cwt−1 + vt

A+Bzt−2 + Cwt−2 + vt−1

...

A+Bzt−q−1 + Cwt−q−1 + vt−q



= D +

q∑
h=0

FhA+ [F0B F1B · · · FqB]



zt−1

zt−2

...

zt−q−1



+ [F0C F1C · · · FqC]



wt−1

wt−2

...

wt−q−1


+ [F0 F1 · · · Fq]



vt

vt−1

...

vt−q


. (IA.26)

We have the following first-order companion form of the VAR in equation (IA.24):

Zqt = A+ BZqt−1 + Vt, (IA.27)

where

Zqt ≡



zt

wt

zt−1

wt−1

...

zt−q

wt−q



, A ≡



A

D +
∑q

h=0 FhA

0

0

...

0

0



,
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B ≡



B C 0 0 . . . 0 0 0 0

F0B F0C F1B F1C . . . Fq−1B Fq−1C FqB FqC

I 0 0 0 . . . 0 0 0 0

0 I 0 0 . . . 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 . . . I 0 0 0

0 0 0 0 . . . 0 I 0 0



, Vt ≡



vt∑q
h=0 Fhvt−h

0

0

...

0

0



. (IA.28)

Interestingly, in direct tests, these additional predictors tend to exhibit little power: the rejections of the null of
no predictive power are at most 14% of the total number of tests, for the yield curve level and slope differentials
(three-month horizon, 5% nominal size, bootstrap-adjusted inference). Results are even weaker for the infinite-
horizon tests, where the rejections are at most 9% of the total, for the real exchange rate appreciation as the extra
predictor. The indirect tests, on the other hand, uncover more frequent rejections of the UIP null, in as many as
67% of the currencies and currency baskets, for the yield curve level and slope differentials. Importantly, though,
even after the addition of these extra predictors, the real exchange rate is still the strongest predictor in indirect,
joint direct-indirect, and infinite-horizon tests. In the indirect tests, for example, the rejections are between 90%
and 100% of the total; and in the infinite-horizon tests, the rejections are between 10% and 47% of the total.

• Use of alternative approaches to bootstrap. We experiment with the following alternative bootstrap settings, one
at a time:

– resampling VAR residuals with a block bootstrap, with block length dependent on the autocorrelation of the
residuals;

– resampling VAR residuals with a block bootstrap, with block length dependent on the autocorrelation of the
squares of residuals, to capture possible heteroskedasticity effects;

– simulating VAR innovations with Monte Carlo simulation under normality;

– a longer initial warm-up period (600 months);

– a higher number of bootstrap repetitions, 50,000.

All these modifications to the bootstrap inference make little difference to our results. In particular, the real
exchange rate still emerges as the most reliable predictor with rejections between 95% and 97% of the total
number of tests (5% nominal size, bootstrap-adjusted inference) in indirect tests at the three-month horizon, and
between 38% and 41% in infinite-horizon tests.

• Use of different reference currencies. We replicate our baseline analysis for different reference currencies: the
Japanese Yen, the Deutsche Mark, and the British Pound. In these exercises, variables are redefined from the
perspective of a Japanese, German, or British investor, respectively. As in the previous robustness checks, the
main message does not change. For example, the fractions of rejections (5% nominal size, bootstrap-adjusted
inference) for the real exchange rate are between 92% and 97% in indirect tests (three-month horizon). It is only
in the case of the British Pound as reference currency and the infinite-horizon tests that we see a significant drop
in the number of rejections: 9%. In this case, we also see few significant risk premium shares of the variance of
the real exchange rate: only 11%. For the Deutsche Mark and Japanese Yen as reference currencies, on the other
hand, the rejections in the infinite-horizon regressions are 41% and 66% of the total, respectively, and the risk
premium variance share is significant in 48% and 66% of the instances.
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IA.6 The liquidity model

In the liquidity model of Engel (2016), the representative agent derives immediate utility from holding liquid interest-
bearing assets, such as bank deposits and Treasury securities. Hence, in a representative agent economy, the Euler
equation pinning down the nominal interest rate is given by:

Et[exp(mt+1) exp(rt)] = 1− Lt, (IA.29)

where Lt denotes the current marginal liquidity services. Hence, we have:

drt = −dµmt −
1

2
dσ2

mt + dlt, (IA.30)

where dlt ≡ ln(1− Lft )− ln(1− Lt) ≈ Lt − Lft . The currency risk premium equals:9

Et(ξt+1) = Et(∆st+1) + drt

= dµmt − dµmt −
1

2
dσ2

mt + dlt

= −1

2
dσ2

mt + dlt. (IA.31)

Note that when the marginal utility of liquidity services is higher in the domestic country than in the foreign country,
both the interest rate differential and the currency risk premium are higher than in the absence of liquidity effects. In
Engel (2016), the monetary authority affects the marginal utility of liquidity services through open market operations:
by purchasing Treasury securities, and injecting money in the economy, the central bank increases the marginal utility
of the liquidity services of these securities and reduces their yield. As a result, a relatively expansionary domestic
monetary policy increases both drt and Et(ξt+1).

Following Engel (2016), we assume additively separable preferences over consumption and liquidity services and we
set dσ2

mt = 0. Moreover, we assume CRRA preferences over consumption. We have:

drt = γEt(∆dc̃t+1) + Et(dπt) + dlt (IA.32)

Et(ξt+1) = dlt (IA.33)

s̃t − E(s̃t) = −
∞∑
i=1

Et(ξt+i) +
∞∑
i=1

Et(drt+i−1 − dπt+i)

= −
∞∑
i=1

Et(dlt+i−1) +

∞∑
i=1

[γEt(∆dc̃t+i) + Et(dlt+i−1)]

= −γdc̃t. (IA.34)

Hence, differently from the habit and long-run risks models, in the liquidity model there is no direct channel for the real
exchange rate to predict excess currency returns. On the other hand, similarly to the other two models, one component
of the nominal interest rate differential—in this case, the liquidity differential—drives the currency risk premium.

Note, though, that a direct channel for real exchange rate to predict excess currency returns would arise if liquidity
services affected the marginal utility of consumption and, hence, dm̃t. Specifically, we would need: dm̃t = dm̃(dc̃t, dlt),

where ∂dm̃
∂dlt

> 0. In other words, we would need that an increase in domestic liquidity (recall that dlt ≈ Lt − Lft )
decreases the domestic marginal utility of consumption.

9We are using the no-arbitrage condition: ∆st+1 = dmt+1.
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IA.7 A general single-factor model

Assume:

dũt = φudũt−1 + dεũt (IA.35)

(σfut)
2 = σ0 + σ1dũt (IA.36)

σ2
ut = σ0 − σ1dũt. (IA.37)

We have:

dµm̃t = −(1− φu)dũt (IA.38)

dσ2
m̃t = 2σ1dũt. (IA.39)

Hence, we have:

s̃t = dũt (IA.40)

Et(ξt+1) = −σ1dũt (IA.41)

drt = (1− φu)dũt − σ1dũt + dµπt (IA.42)

Et(dr̃t+1) = (1− φu)dũt − σ1dũt; (IA.43)

and:

cov[s̃t, Et(ξt+1)] = −σ1var(dũt) (IA.44)

cov[drt, Et(ξt+1)] = −(1− φu)σ1var(dũt) + σ2
1var(dũt) (IA.45)

cov[s̃t, Et(dr̃t+1)] = (1− φu)var(dũt)− σ1var(dũt). (IA.46)

Hence, for cov[s̃t, Et(ξt+1)] < 0, we need σ1 > 0. For cov[drt, Et(ξt+1)] > 0, we need σ2
1 > (1 − φu)σ1, and for

cov[s̃t, Et(dr̃t+1)] > 0, we need (1− φu) > σ1. Obviously, the three conditions cannot co-exist.

IA.8 Habit model

IA.8.1 Forcing processes

In the original formulation of the model in Verdelhan (2010), the real log consumption differential dc̃t follows a random
walk. In order to achieve stationarity, we assume that domestic and foreign log consumption are co-integrated and
follow the process:10

∆c̃t = µc + kcdc̃t−1 + εc̃t (IA.47)

∆c̃ft = µc − kcdc̃t−1 + εfc̃t; (IA.48)

where 0 < kc < 1. We have:

dc̃t = (1− 2kc)dc̃t−1 + dεc̃t (IA.49)

≡ φcdc̃t−1 + dεc̃t.

As in Verdelhan (2010), dht follows the process:

dht+1 = φhdht + [λ(hft )εfc̃,t+1 − λ(ht)εc̃,t+1]

≡ φhdht + dεh,t+1; (IA.50)

10Indeed, in our analysis of the U.S. and U.K. economies, the empirical counterpart of dc̃t appears to be stationary.
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where 0 < φh < 1 and λ(.) is the “sensitivity” function defined as:

λ(ht) =
1

H̄

√
1− 2(ht − h̄)− 1, (IA.51)

where h̄ ≡ ln(H̄). As to the inflation differential, we assume:

dπt+1 = φπdπt + dεπ,t+1. (IA.52)

Innovations in consumption and inflation are assumed to be Gaussian and homoskedastic. In summary, we have:

dyt ≡


dc̃t

dht

dπt



=


φc 0 0

0 φh 0

0 0 φπ




dc̃t−1

dht−1

dπt−1

+


dεc̃t

dεht

dεπt


≡ Φdyt−1 + dεyt. (IA.53)

IA.8.2 Moments of the innovations

We have:

vart(dεh,t+1) = [λ(hft )2 + λ(ht)
2 − 2λ(hft )λ(ht)ρεcεfc

]σ2
εc (IA.54)

E[vart(dεh,t+1)] = 2{E[λ(ht)
2]− E[λ(hft )λ(ht)]ρεcεfc

}σ2
εc (IA.55)

E[covt(dεh,t+1, dεc̃,t+1)] = 2E[λ(ht)](1− ρεcεfc )σ2
εc ; (IA.56)

where:

E[λ(ht)
2] =

1

H̄2
+ 1− 2

H̄
E[
√

1− 2(ht − h̄)]; (IA.57)

and:

E[
√

1− 2(ht − h̄)] ≈ 1 +
1

2

∂2

∂h2
t

√
1− 2(ht − h̄)|ht=h̄ × var(ht)

= 1 +
1

2

E[λ(ht)
2]σ2

εc

1− φ2
h

; (IA.58)

which leads to:

E[λ(ht)
2] =

1

H̄2
+ 1− 2

H̄

{
1 +

1

2

E[λ(ht)
2]σ2

εc

1− φ2
h

}
; (IA.59)
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and:

E[λ(ht)
2] =

1 + 1
H̄2 − 2

H̄

1 + 1
H̄

σ2
εc

1−φ2
h

. (IA.60)

Moreover, we have:

E[λ(ht)] =
1

H̄

(
1 +

1

2

E[λ(ht)
2]σ2

εc

1− φ2
h

)
− 1; (IA.61)

and:

E[λ(hft )λ(ht)] ≈ λ(h̄)2 +

[
∂

∂hft
λ(hft )|

hft =h̄

] [
∂

∂ht
λ(ht)|ht=h̄

]
cov(hft , ht)

=

(
1

H̄2
+ 1− 2

H̄

)
+

1

H̄2
cov(hft , ht)

=

(
1

H̄2
+ 1− 2

H̄

)
+

1

H̄2

1

1− φ2
h

E[λ(hft )λ(ht)]ρεcεfc
σ2
εc . (IA.62)

Hence, we have:

E[λ(hft )λ(ht)] ≈
1
H̄2 + 1− 2

H̄

1− 1
H̄2

1
1−φ2

h
ρ
εcε

f
c
σ2
εc

. (IA.63)

IA.9 Theoretical v. VAR-implied quantities

The theoretical components of the variance of the real exchange rate are given by:

cov

(
s̃t,

∞∑
i=1

Et(ξt+i)

)
= b>E(ξ)(I − Φ)−1Σdydybs̃ (IA.64)

cov

(
s̃t,

∞∑
i=1

Et(dr̃t+i)

)
= b>E(dr̃)(I − Φ)−1Σdydybs̃, (IA.65)

where bE(ξ), bE(dr̃), bs̃ are the vectors of loadings of the expected currency return, expected real bond return differential,
and real exchange rate on the state variable differentials dyt.

On the other hand, the VAR-implied variance components are given by:

β>ξ,1(I −B)−1b>z Σzs̃ = β>ξ,1(I −B)−1b>z Σdydybs̃ (IA.66)

β>dr̃,1(I −B)−1b>z Σzs̃ = β>dr̃,1(I −B)−1b>z Σdydybs̃; (IA.67)

where bz is the matrix of loadings of the variables on the state variable differentials, where we assume we have as many
variables in the VAR as the number of instruments—bz is a square matrix—and βξ,1 and βdr̃,1 are the two sets of
theoretical regression coefficients, corresponding to UIP and RRE tests:

βξ,1 = (b>z Σdydybz)
−1b>z ΣdydybE(ξ) (IA.68)

βdr̃,1 = (b>z Σdydybz)
−1b>z ΣdydybE(dr̃). (IA.69)
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Hence, we have:

β>ξ,1(I −B)−1b>z Σzs̃ = b>E(ξ)Σdydybz(b
>
z Σdydybz)

−1(I −B)−1b>z Σdydybs̃

= b>E(ξ)(b
>
z )−1(I −B)−1b>z Σdydybs̃ (IA.70)

β>dr̃,1(I −B)−1b>z Σzs̃ = b>E(dr̃)Σdydybz(b
>
z Σdydybz)

−1(I −B)−1b>z Σdydybs̃

= b>E(dr̃)(b
>
z )−1(I −B)−1b>z Σdydybs̃. (IA.71)

We want to show that the theoretical variance shares coincide with the VAR-implied variance shares. Hence, we
need to show that:

(b>z )−1(I −B)−1b>z = (I − Φ)−1. (IA.72)

We have:

B = (b>z Σdydybz)
−1b>z Σdy−1dybz; (IA.73)

where:

Σdy−1dy = ΣdydyΦ
>. (IA.74)

Hence, we have:

B = (b>z Σdydybz)
−1b>z ΣdydyΦ

>bz = b−1
z Φ>bz; (IA.75)

and:

I −B = b−1
z bzb

−1
z bz − b−1

z Φ>bz = b−1
z (I − Φ>)bz; (IA.76)

and:

(I −B)−1 = b−1
z (I − Φ)−1bz. (IA.77)

Substituting, we have:

(b>z )−1(I −B)−1b>z = (b>z )−1b−1
z (I − Φ)−1bzb

>
z = (I − Φ)−1, (IA.78)

which proves the result.

IA.10 Long-run risks model

IA.10.1 Forcing processes

We model the mean equations for log consumption growth and inflation in the same way as we did for the habit model;
see equations (IA.50) and (IA.52)). Note that by imposing that domestic and foreign log consumption are co-integrated
we are inducing a persistent component in expected (log) consumption growth, precisely in the spirit of the long-run
risks model.

Following Bansal and Yaron (2004), we add heteroskedasticity in the innovations in realized consumption growth.
Specifically, we assume that εc̃t has conditional variance vt following the process:

vt = (1− φv)v0 + φvvt−1 + εvt, (IA.79)
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and an analogous expression holds for the foreign country. Hence, we have:

dvt = φvdvt−1 + dεvt. (IA.80)

Note that, as a result of the heteroskedasticity in realized consumption growth, expected consumption growth is also
heteroskedastic:

vart[Et+1(∆c̃t+2)] = k2
cvart(dc̃t+1)

= k2
c [v

f
t + vt − 2covt(εc̃f εc̃)]

= k2
c

(
vft + vt − 2

√
vft vtρvfv

)
, (IA.81)

where we have assumed that the correlation between εfc̃t and εc̃t, ρvfv, is constant.

In summary, we have: 
dc̃t

dπt

dvt

 ≡ dyt

=


φc 0 0

0 φπ 0

0 0 φv

×

dc̃t−1

dπt−1

dvt−1

+


dεc̃t

dεπt

dεvt


≡ Φdyt−1 + dεyt. (IA.82)

IA.10.2 Pricing kernel

Using a standard approximation (e.g., Campbell and Shiller, 1988), the log real return on the consumption portfolio
can be written as

r̃ct = κpct − pct−1 + ∆c̃t, (IA.83)

where κ is an approximation constant. Hence, the Euler equation for the rate of return on the consumption portfolio is
given by:

Et(m̃t+1 + r̃c,t+1) +
1

2
vart(m̃t+1 + r̃c,t+1) =

Et(m̃t+1 + κpct+1 − pct + ∆c̃t+1) +
1

2
vart(m̃t+1 + κpct+1 − pct + ∆c̃t+1) = 0; (IA.84)

where:

m̃t = constant− θ

ψ
∆c̃t + (θ − 1)r̃ct

= constant− γ∆c̃t + (θ − 1)(κpct − pct−1). (IA.85)
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Hence, we have:

m̃t + (κpct − pct−1) + ∆c̃t = constant− γ∆c̃t + (θ − 1)(κpct − pct−1) + (κpct − pct−1) + ∆c̃t

= constant + (1− γ)∆c̃t + θ(κpct − pct−1). (IA.86)

We conjecture:

pct = A0 +Adcdc̃t +Avvt +Asvsvt, (IA.87)

pcft = A0 −Adcdc̃t +Avv
f
t +Asvsvt, (IA.88)

where svt ≡ vft + vt. Substituting the conjectured log price-consumption ratio in the Euler equation, we have:

constant

+(1− γ)kcdc̃t

+θ(κAdcφc −Adc)dc̃t
+θ(κAvφv −Av)vt
+θ(κAsvφv −Asv)svt

+
1

2
[(1− γ)2k2

cvart(εc,t+1) + θ2κ2A2
dcvart(dεc,t+1) + 2(1− γ)kcθκAdccovt(dεc,t+1, εc,t+1)] = 0;

(IA.89)

where:

vart(dεc̃,t+1) = svt − 2covt(ε
f
c̃,t+1, εc̃,t+1) (IA.90)

covt(dεc̃,t+1, εc̃,t+1) = covt(ε
f
c̃,t+1, εc̃,t+1)− vt; (IA.91)

and:

covt(ε
f
c̃,t+1, εc̃,t+1) =

√
vft vtρv

≈ v0ρv +
1

2v0
ρv[(v

f
t − v0)v0 + (vt − v0)v0]

=
1

2
ρv(v

f
t + vt). (IA.92)

Hence, we have:

(1− γ)2k2
cvart(εc̃,t+1) + θ2κ2A2

dcvart(dεc̃,t+1) + 2(1− γ)kcθκAdccovt(dεc̃,t+1, εc̃,t+1) =

(1− γ)2k2
cvt + θ2κ2A2

dc(svt − ρvsvt + 2vt) + (1− γ)kcθκAdc(ρvsvt − 2vt); (IA.93)

and:

[(1− γ)kc + θAdc(κφc − 1)]dc̃t

+

[
θAv(κφv − 1) +

1

2
(1− γ)2k2

c + θ2κ2A2
dc − (1− γ)kcθκAdc

]
vt

+

{
θAsv(κφv − 1) +

1

2
[θ2κ2A2

dc(1− ρv) + (1− γ)kcθκAdcρv]

}
svt = 0. (IA.94)
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Matching coefficients, we have:

(1− γ)kc + θAdc(κφc − 1) = 0 (IA.95)

θAv(κφv − 1) +
1

2
(1− γ)2k2

c + θ2κ2A2
dc − (1− γ)kcθκAdc = 0 (IA.96)

θAsv(κφv − 1) +
1

2
[θ2κ2A2

dc(1− ρv) + (1− γ)kcθκAdcρv] = 0. (IA.97)

Hence, we have:

Adc = − (γ − 1)kc
θ(1− κφc)

(IA.98)

Av =
θ2κ2A2

dc + 1
2(1− γ)2k2

c − (1− γ)kcθκAdc

θ(1− κφv)
(IA.99)

Asv =
θ2A2

dc(1− ρv) + (1− γ)kcθκAdcρv
2θ(1− κφv)

. (IA.100)

Given the definitions of Adc and Av above, we have dm̃t = m>dydyt, where:

mdc = −2(θ − 1)Adc (IA.101)

mdv = (θ − 1)Av. (IA.102)

In the calibration exercise, we assume γ > 1 and ψ > 1. Hence, we have Adc > 0. For our choice of parameter values,
we also have Av < 0.

IA.10.3 The real exchange rate

Note that using the no-arbitrage condition ∆s̃t = dm̃t, the real log pricing kernel differential in (35), and the VAR in
(IA.82), we have:

s̃t − E(s̃t) = −
∞∑
i=1

Et(dm̃t+i)

= γι>1

( ∞∑
i=1

Φi −
∞∑
i=0

Φi

)
dyt −m>y (κΦ− I)

∞∑
i=0

Φidyt

= γι>1 [Φ(I − Φ)−1 − (I − Φ)−1]dyt −m>y [κΦ(I − Φ)−1 − (I − Φ)−1]dyt

= −γdc̃t +m>y (I − κΦ)(I − Φ)−1dyt; (IA.103)

which implies:

∆s̃t = −γ∆dc̃t +m>y (I − κΦ)(I − Φ)−1∆dyt. (IA.104)

On the other hand, from (35), the real log pricing kernel differential equals

dm̃t = −γ∆dc̃t +m>y (κdyt − dyt−1). (IA.105)

The two expressions above, (IA.104) and (IA.105), should be equal. This is true only if we set κ = 1.

IA.10.4 Calibrating the volatility process

Bansal and Shaliastovich (2013) parameterize the process for the conditional volatility of innovations in expected con-
sumption growth, as the innovation in consumption are assumed to be homoskedastic. In our setting, both the innova-
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tions in consumption growth and in expected consumption growth are heteroskedastic. We have:

var{vart[Et+1(∆c̃t+2)]} = var[vart(kcdc̃t+1)]

≈ var{k2
c [v

f
t + vt − 2

√
vft vtρvfv]}. (IA.106)

We approximate

√
vft vtρvfv as:

constant +
1

2
ρvfvv0(vft + vt). (IA.107)

Hence, we have:

var{k2
c [v

f
t + vt − 2

√
vft vtρvfv]} = var{k2

c (v
f
t + vt)(1− ρvfvv0)}

= k4
c (1− ρvfvv0)22var(vt)(1 + ρvfv). (IA.108)
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Table IA.1: Testing UIP, Baseline Case, One-month Investment Horizon: Summary

This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), and joint tests (Panel C) of the
UIP null on all currencies and currency baskets. The four instruments considered are the real exchange rate (s̃), the
one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ). Each panel
reports the numbers and the fractions of asymptotic tests or of bootstrap tests yielding p-values smaller than 0.05.

Panel A: Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 18 1 18 2
Frac. of Asy. p < 0.05 0.46 0.03 0.46 0.05
No. of Boot. p < 0.05 10 1 16 2
Frac. of Boot. p < 0.05 0.26 0.03 0.41 0.05

No. of Assets: 39

Avg. Adj-R2: 0.02

Panel B: Indirect Tests

β̂dr̃,H,k = −β̄∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 37 37 32 22
Frac. of Asy. p < 0.05 0.95 0.95 0.82 0.56
No. of Boot. p < 0.05 37 37 32 20
Frac. of Boot. p < 0.05 0.95 0.95 0.82 0.51

No. of Assets: 39

Panel C: Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 18 38 38 37 37 33 19
Frac. of Asy. p < 0.05 0.46 0.97 0.97 0.95 0.95 0.85 0.49
No. of Boot. p < 0.05 13 38 38 37 37 31 19
Frac. of Boot. p < 0.05 0.33 0.97 0.97 0.95 0.95 0.79 0.49

No. of Assets: 39
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Table IA.2: Testing UIP, Baseline Case, Six-month Investment Horizon: Summary

This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), and joint tests (Panel C) of the
UIP null on all currencies and currency baskets. The four instruments considered are the real exchange rate (s̃), the
one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ). Each panel
reports the numbers and the fractions of asymptotic tests or of bootstrap tests yielding p-values smaller than 0.05.

Panel A: Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 25 1 20 4
Frac. of Asy. p < 0.05 0.64 0.03 0.51 0.10
No. of Boot. p < 0.05 6 1 12 2
Frac. of Boot. p < 0.05 0.15 0.03 0.31 0.05

No. of Assets: 39

Avg. Adj-R2: 0.10

Panel B: Indirect Tests

β̂dr̃,H,k = −β̄∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 36 24
Frac. of Asy. p < 0.05 0.97 0.90 0.92 0.62
No. of Boot. p < 0.05 38 34 32 18
Frac. of Boot. p < 0.05 0.97 0.87 0.82 0.46

No. of Assets: 39

Panel C: Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 29 39 39 39 34 39 23
Frac. of Asy. p < 0.05 0.74 1.00 1.00 1.00 0.87 1.00 0.59
No. of Boot. p < 0.05 15 39 38 36 31 33 15
Frac. of Boot. p < 0.05 0.38 1.00 0.97 0.92 0.79 0.85 0.38

No. of Assets: 39
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Table IA.3: Testing UIP, Baseline Case, 12-month Investment Horizon: Summary

This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), and joint tests (Panel C) of the
UIP null on all currencies and currency baskets. The four instruments considered are the real exchange rate (s̃), the
one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ). Each panel
reports the numbers and the fractions of asymptotic tests or of bootstrap tests yielding p-values smaller than 0.05.

Panel A: Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 26 4 19 18
Frac. of Asy. p < 0.05 0.67 0.10 0.49 0.46
No. of Boot. p < 0.05 9 0 11 13
Frac. of Boot. p < 0.05 0.23 0.00 0.28 0.33

No. of Assets: 39

Avg. Adj-R2: 0.17

Panel B: Indirect Tests

β̂dr̃,H,k = −β̄∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 29 35 14
Frac. of Asy. p < 0.05 0.97 0.74 0.90 0.36
No. of Boot. p < 0.05 38 23 28 4
Frac. of Boot. p < 0.05 0.97 0.59 0.72 0.10

No. of Assets: 39

Panel C: Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 31 39 39 39 27 37 19
Frac. of Asy. p < 0.05 0.79 1.00 1.00 1.00 0.69 0.95 0.49
No. of Boot. p < 0.05 11 38 38 38 18 31 11
Frac. of Boot. p < 0.05 0.28 0.97 0.97 0.97 0.46 0.79 0.28

No. of Assets: 39
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Table IA.4: Size Study

This table reports the rejection ratios of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and
infinite-horizon tests (Panel D) of the UIP null, based on 5,000 simulated samples from the restricted VAR estimated
with panel data, where we bootstrap the residuals for the Deutsche Mark. The four instruments considered are the
real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation
differential (dπ). Each panel reports the probabilities of asymptotic tests or of bootstrap tests (with 5,000 bootstrap
repetitions for each sample) yielding p-values smaller than nominal significance levels of 0.01, 0.05, or 0.10. The restricted
VAR implies the hypotheses of indirect tests and joint tests, and determines the data-generating process in all bootstrap
tests.

Panel A: Direct Tests

Signif. Explanatory Variables
Horizon Level Test s̃ ξ dr dπ

1 1% Asy. 0.02 0.01 0.01 0.01
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.08 0.05 0.06 0.06
Boot. 0.05 0.05 0.05 0.05

10% Asy. 0.15 0.10 0.10 0.11
Boot. 0.10 0.09 0.09 0.10

3 1% Asy. 0.07 0.01 0.03 0.02
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.15 0.05 0.10 0.07
Boot. 0.04 0.04 0.05 0.06

10% Asy. 0.23 0.10 0.16 0.14
Boot. 0.10 0.10 0.10 0.11

6 1% Asy. 0.07 0.01 0.03 0.02
Boot. 0.00 0.01 0.01 0.01

5% Asy. 0.17 0.05 0.10 0.07
Boot. 0.04 0.05 0.04 0.05

10% Asy. 0.25 0.10 0.16 0.12
Boot. 0.09 0.09 0.10 0.10

12 1% Asy. 0.09 0.02 0.03 0.02
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.19 0.06 0.09 0.08
Boot. 0.04 0.05 0.04 0.05

10% Asy. 0.28 0.12 0.15 0.14
Boot. 0.08 0.11 0.08 0.11
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Panel B: Indirect Tests

Signif. β̂dr̃,H,k = −β∆s̃,H,k

Horizon Level Test s̃ ξ dr dπ

1 1% Asy. 0.01 0.01 0.01 0.01
Boot. 0.01 0.01 0.01 0.00

5% Asy. 0.06 0.05 0.05 0.04
Boot. 0.05 0.05 0.05 0.04

10% Asy. 0.12 0.09 0.09 0.09
Boot. 0.11 0.09 0.09 0.08

3 1% Asy. 0.04 0.02 0.03 0.02
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.12 0.06 0.09 0.08
Boot. 0.04 0.05 0.05 0.06

10% Asy. 0.19 0.10 0.15 0.15
Boot. 0.10 0.09 0.10 0.10

6 1% Asy. 0.04 0.02 0.03 0.03
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.12 0.06 0.10 0.11
Boot. 0.05 0.05 0.04 0.05

10% Asy. 0.21 0.12 0.15 0.16
Boot. 0.09 0.10 0.10 0.11

12 1% Asy. 0.07 0.04 0.03 0.04
Boot. 0.01 0.01 0.01 0.01

5% Asy. 0.14 0.08 0.09 0.11
Boot. 0.06 0.05 0.04 0.06

10% Asy. 0.22 0.14 0.17 0.18
Boot. 0.11 0.10 0.08 0.10

Panel C: Joint Tests

Signif. β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

Horizon Level Test β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

1 1% Asy. 0.02 0.01 0.02 0.03 0.02 0.01 0.01
Boot. 0.00 0.01 0.01 0.01 0.01 0.01 0.01

5% Asy. 0.07 0.07 0.08 0.10 0.06 0.05 0.06
Boot. 0.04 0.04 0.05 0.05 0.05 0.04 0.04

10% Asy. 0.13 0.11 0.15 0.16 0.11 0.11 0.11
Boot. 0.09 0.10 0.09 0.10 0.10 0.09 0.09

3 1% Asy. 0.06 0.05 0.12 0.09 0.02 0.04 0.03
Boot. 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5% Asy. 0.17 0.15 0.25 0.20 0.06 0.12 0.10
Boot. 0.04 0.04 0.05 0.05 0.05 0.04 0.06

10% Asy. 0.24 0.23 0.34 0.28 0.12 0.19 0.16
Boot. 0.09 0.10 0.10 0.10 0.10 0.09 0.11

6 1% Asy. 0.09 0.09 0.19 0.10 0.02 0.04 0.04
Boot. 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5% Asy. 0.20 0.19 0.34 0.23 0.09 0.12 0.12
Boot. 0.04 0.05 0.03 0.03 0.05 0.04 0.05

10% Asy. 0.29 0.27 0.45 0.31 0.13 0.22 0.18
Boot. 0.08 0.10 0.08 0.08 0.11 0.08 0.11

12 1% Asy. 0.15 0.14 0.32 0.14 0.04 0.06 0.05
Boot. 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5% Asy. 0.25 0.25 0.46 0.27 0.10 0.13 0.14
Boot. 0.04 0.05 0.04 0.04 0.06 0.05 0.05

10% Asy. 0.34 0.34 0.56 0.37 0.17 0.20 0.22
Boot. 0.09 0.10 0.10 0.09 0.10 0.08 0.10
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Panel D: Infinite-horizon Tests

Signif. Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
Level Test s̃ ξ dr dπ Wald Share Share

1% Asy. 0.20 0.03 0.00 0.00 0.27 0.19 0.01
Boot. 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5% Asy. 0.27 0.09 0.02 0.01 0.35 0.27 0.03
Boot. 0.04 0.04 0.04 0.05 0.03 0.04 0.04

10% Asy. 0.32 0.15 0.06 0.05 0.40 0.32 0.06
Boot. 0.11 0.09 0.10 0.11 0.08 0.11 0.09

27



Table IA.5: Power Study

This table reports the rejection ratios of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and
infinite-horizon tests (Panel D) of the UIP null, based on 5,000 simulated samples from the unrestricted VAR estimated
with panel data, where we bootstrap the residuals for the Deutsche Mark. The four instruments considered are the
real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation
differential (dπ). Each panel reports the probabilities of asymptotic tests or of bootstrap tests (with 5,000 bootstrap
repetitions for each sample) yielding p-values smaller than nominal significance levels of 0.01, 0.05, or 0.10. The restricted
VAR implies the hypotheses of indirect tests and joint tests, and determines the data-generating process in all bootstrap
tests.

Signif. Explanatory Variables
Horizon Level Test s̃ ξ dr dπ

1 1% Asy. 0.32 0.21 0.01 0.02
Boot. 0.16 0.19 0.01 0.02

5% Asy. 0.65 0.41 0.07 0.06
Boot. 0.48 0.40 0.06 0.06

10% Asy. 0.81 0.54 0.14 0.12
Boot. 0.68 0.52 0.13 0.11

3 1% Asy. 0.57 0.05 0.04 0.02
Boot. 0.18 0.05 0.02 0.01

5% Asy. 0.82 0.18 0.11 0.08
Boot. 0.49 0.17 0.06 0.07

10% Asy. 0.90 0.28 0.19 0.15
Boot. 0.68 0.27 0.12 0.13

6 1% Asy. 0.65 0.02 0.03 0.02
Boot. 0.17 0.01 0.01 0.01

5% Asy. 0.85 0.12 0.10 0.08
Boot. 0.50 0.10 0.05 0.06

10% Asy. 0.93 0.20 0.17 0.14
Boot. 0.69 0.19 0.09 0.11

12 1% Asy. 0.73 0.02 0.03 0.02
Boot. 0.14 0.01 0.01 0.01

5% Asy. 0.90 0.10 0.10 0.08
Boot. 0.48 0.08 0.04 0.05

10% Asy. 0.95 0.17 0.16 0.14
Boot. 0.69 0.14 0.09 0.10
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Panel B: Indirect Tests

Signif. β̂dr̃,H,k = −β∆s̃,H,k

Horizon Level Test s̃ ξ dr dπ

1 1% Asy. 1.00 1.00 0.63 0.01
Boot. 1.00 1.00 0.61 0.01

5% Asy. 1.00 1.00 0.82 0.05
Boot. 1.00 1.00 0.81 0.05

10% Asy. 1.00 1.00 0.90 0.11
Boot. 1.00 1.00 0.89 0.10

3 1% Asy. 1.00 1.00 0.59 0.09
Boot. 1.00 1.00 0.41 0.05

5% Asy. 1.00 1.00 0.76 0.22
Boot. 1.00 1.00 0.67 0.15

10% Asy. 1.00 1.00 0.83 0.32
Boot. 1.00 1.00 0.77 0.26

6 1% Asy. 1.00 0.97 0.38 0.15
Boot. 1.00 0.95 0.22 0.07

5% Asy. 1.00 0.99 0.57 0.29
Boot. 1.00 0.99 0.43 0.20

10% Asy. 1.00 1.00 0.68 0.36
Boot. 1.00 0.99 0.57 0.30

12 1% Asy. 1.00 0.61 0.21 0.14
Boot. 1.00 0.38 0.08 0.06

5% Asy. 1.00 0.79 0.38 0.24
Boot. 1.00 0.70 0.25 0.17

10% Asy. 1.00 0.88 0.50 0.31
Boot. 1.00 0.82 0.36 0.24

Panel C: Joint Tests

Signif. β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

Horizon Level Test β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

1 1% Asy. 0.35 1.00 1.00 1.00 1.00 0.55 0.01
Boot. 0.24 1.00 1.00 1.00 1.00 0.47 0.01

5% Asy. 0.62 1.00 1.00 1.00 1.00 0.76 0.06
Boot. 0.50 1.00 1.00 1.00 1.00 0.73 0.05

10% Asy. 0.75 1.00 1.00 1.00 1.00 0.85 0.13
Boot. 0.66 1.00 1.00 1.00 1.00 0.83 0.11

3 1% Asy. 0.48 1.00 1.00 1.00 1.00 0.51 0.10
Boot. 0.13 1.00 1.00 1.00 1.00 0.30 0.04

5% Asy. 0.70 1.00 1.00 1.00 1.00 0.71 0.20
Boot. 0.39 1.00 1.00 1.00 1.00 0.54 0.15

10% Asy. 0.82 1.00 1.00 1.00 1.00 0.80 0.31
Boot. 0.54 1.00 1.00 1.00 1.00 0.68 0.22

6 1% Asy. 0.56 1.00 1.00 1.00 0.94 0.35 0.17
Boot. 0.09 1.00 1.00 1.00 0.88 0.13 0.06

5% Asy. 0.76 1.00 1.00 1.00 0.98 0.52 0.30
Boot. 0.32 1.00 1.00 1.00 0.97 0.34 0.19

10% Asy. 0.86 1.00 1.00 1.00 0.99 0.63 0.41
Boot. 0.53 1.00 1.00 1.00 0.98 0.45 0.29

12 1% Asy. 0.69 1.00 1.00 1.00 0.53 0.20 0.16
Boot. 0.09 1.00 1.00 1.00 0.29 0.06 0.07

5% Asy. 0.84 1.00 1.00 1.00 0.74 0.37 0.28
Boot. 0.33 1.00 1.00 1.00 0.61 0.17 0.16

10% Asy. 0.90 1.00 1.00 1.00 0.82 0.46 0.35
Boot. 0.52 1.00 1.00 1.00 0.74 0.27 0.24
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Panel D: Infinite-horizon Tests

Signif. Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
Level Test s̃ ξ dr dπ Wald Share Share

1% Asy. 1.00 0.59 0.50 0.04 1.00 1.00 0.08
Boot. 0.85 0.29 0.62 0.13 0.91 0.86 0.92

5% Asy. 1.00 0.82 0.70 0.17 1.00 1.00 0.38
Boot. 0.96 0.67 0.77 0.27 0.98 0.96 0.97

10% Asy. 1.00 0.90 0.78 0.29 1.00 1.00 0.62
Boot. 0.98 0.81 0.83 0.36 0.99 0.98 0.98
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Table IA.6: Testing UIP, Correction for Spurious-regression Bias: Summary

This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D) of the null hypothesis that excess currency returns are unpredictable based on the observed
instruments but predictable based on other latent predictors with the same process as the observable instruments; see
Section IA.5. The four observable instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), and the inflation differential (dπ). Each panel reports the numbers and
the fractions of asymptotic tests or of bootstrap tests yielding p-values smaller than 0.05.

Panel A: 3-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 4 0 10 0
Frac. of Boot. p < 0.05 0.10 0.00 0.26 0.00

No. of Assets: 39

Avg. Adj-R2: 0.04

Panel B: 3-month Horizon, Indirect Tests

β̂dr̃,H,k = −β̄∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 35 33 31 7
Frac. of Boot. p < 0.05 0.90 0.85 0.79 0.18

No. of Assets: 39

Panel C: 3-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β̄∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β̄∆s̃,H,k

β̂dr̃,H = −β̄∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 8 39 38 35 32 32 8
Frac. of Boot. p < 0.05 0.21 1.00 0.97 0.90 0.82 0.82 0.21

No. of Assets: 39
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Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 0 8 0 13 10 14
Frac. of Boot. p < 0.05 0.38 0.00 0.24 0.00 0.38 0.29 0.41

No. of Assets: 34
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Table IA.7: Robustness to Different Choices of β̄∆s̃,H

This table reports sample asymptotic and bootstrapped p-values and their root mean squared errors (RMSEs) of direct
tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-horizon tests (Panel D) of the UIP null
using the Deutsche Mark data. The RMSEs are calculated based on 5,000 simulations. Each simulation uses the same
Deutsche Mark sample but draws a new restricted VAR from the asymptotic distribution of the panel-VAR estimates.
The new restricted VAR implies the hypotheses of indirect tests and joint tests, and determines the data-generating
process in the bootstrap tests (each uses 5,000 repetitions); see Section IA.5. The four instruments considered are the
real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation
differential (dπ).

Panel A: Direct Tests

Explanatory Variables
Horizon s̃ ξ dr dπ

1 Asy. p 0.01 0.32 0.11 0.50
RMSE 0.00 0.00 0.00 0.00
Boot. p 0.03 0.33 0.12 0.51
RMSE 0.01 0.01 0.02 0.01

3 Asy. p 0.00 0.14 0.07 0.98
RMSE 0.00 0.00 0.00 0.00
Boot. p 0.04 0.15 0.12 0.98
RMSE 0.01 0.02 0.04 0.00

6 Asy. p 0.00 0.54 0.02 0.65
RMSE 0.00 0.00 0.00 0.00
Boot. p 0.04 0.54 0.05 0.67
RMSE 0.01 0.03 0.03 0.01

12 Asy. p 0.00 0.26 0.01 0.01
RMSE 0.00 0.00 0.00 0.00
Boot. p 0.04 0.28 0.03 0.03
RMSE 0.01 0.04 0.03 0.01
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Panel B: Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

Horizon s̃ ξ dr dπ

1 Asy. p 0.00 0.00 0.00 0.00
RMSE 0.03 0.11 0.19 0.25
Boot. p 0.00 0.00 0.00 0.00
RMSE 0.03 0.11 0.19 0.25

3 Asy. p 0.00 0.00 0.00 0.00
RMSE 0.02 0.17 0.04 0.21
Boot. p 0.00 0.00 0.00 0.00
RMSE 0.02 0.17 0.05 0.22

6 Asy. p 0.00 0.00 0.00 0.00
RMSE 0.00 0.16 0.01 0.12
Boot. p 0.00 0.00 0.00 0.00
RMSE 0.01 0.17 0.02 0.13

12 Asy. p 0.00 0.00 0.00 0.02
RMSE 0.00 0.18 0.01 0.36
Boot. p 0.00 0.00 0.00 0.06
RMSE 0.00 0.19 0.01 0.36

Panel C: Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

Horizon β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

1 Asy. p 0.03 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.00 0.00 0.00 0.00 0.10 0.08 0.28
Boot. p 0.07 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.01 0.00 0.00 0.01 0.10 0.09 0.28

3 Asy. p 0.01 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.00 0.00 0.00 0.00 0.08 0.02 0.29
Boot. p 0.06 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.01 0.00 0.00 0.01 0.09 0.04 0.30

6 Asy. p 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.00 0.00 0.00 0.00 0.18 0.00 0.17
Boot. p 0.04 0.00 0.00 0.00 0.00 0.00 0.00
RMSE 0.01 0.00 0.00 0.01 0.20 0.01 0.19

12 Asy. p 0.00 0.00 0.00 0.00 0.00 0.00 0.01
RMSE 0.00 0.00 0.00 0.00 0.13 0.00 0.02
Boot. p 0.01 0.00 0.00 0.00 0.00 0.00 0.06
RMSE 0.01 0.00 0.00 0.00 0.17 0.00 0.05
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Panel D: Infinite-horizon Tests

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

Asy. p 0.00 0.51 0.18 0.36 0.00 0.00 0.13
RMSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Boot. p 0.03 0.56 0.13 0.34 0.04 0.02 0.00
RMSE 0.03 0.05 0.07 0.05 0.04 0.02 0.16
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Table IA.8: Testing UIP, Currency-specific VAR
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the restricted VAR is currency-specific; see Section IA.5. The four instruments considered
are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the
inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 14 2 8 0
Frac. of Asy. p < 0.05 0.61 0.09 0.35 0.00
No. of Boot. p < 0.05 5 0 5 0
Frac. of Boot. p < 0.05 0.22 0.00 0.22 0.00

No. of Assets: 23

Avg. Adj-R2: 0.04

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 21 16 21 13
Frac. of Asy. p < 0.05 0.91 0.70 0.91 0.57
No. of Boot. p < 0.05 21 14 19 12
Frac. of Boot. p < 0.05 0.91 0.61 0.83 0.52

No. of Assets: 23

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 12 22 21 21 15 19 11
Frac. of Asy. p < 0.05 0.52 0.96 0.91 0.91 0.65 0.83 0.48
No. of Boot. p < 0.05 7 21 21 21 14 18 10
Frac. of Boot. p < 0.05 0.30 0.91 0.91 0.91 0.61 0.78 0.43

No. of Assets: 23

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 18 2 4 3 21 16 0
Frac. of Asy. p < 0.05 0.78 0.09 0.17 0.13 0.91 0.70 0.00
No. of Boot. p < 0.05 11 3 4 1 10 11 4
Frac. of Boot. p < 0.05 0.48 0.13 0.17 0.04 0.43 0.48 0.17

No. of Assets: 23
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Table IA.9: Testing UIP, Correcting Biases in Panel Estimates of VAR
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the restricted VAR is from a panel regression with bias correction; see Section IA.5. The
four instruments considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate
differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 7 1 11 0
Frac. of Boot. p < 0.05 0.18 0.03 0.28 0.00

No. of Assets: 39

Avg. Adj-R2: 0.08

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 34 32 18
Frac. of Boot. p < 0.05 0.95 0.87 0.82 0.46

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 11 39 38 36 34 33 16
Frac. of Boot. p < 0.05 0.28 1.00 0.97 0.92 0.87 0.85 0.41

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 1 10 3 13 10 7
Frac. of Boot. p < 0.05 0.38 0.03 0.29 0.09 0.38 0.29 0.21

No. of Assets: 34
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Table IA.10: Testing UIP, Correcting Biases in Currency-specific VAR
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the restricted VAR is currency-specific and bias-corrected; see Section IA.5. The four
instruments considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate
differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 6 0 3 0
Frac. of Asy. p < 0.05 0.60 0.00 0.30 0.00
No. of Boot. p < 0.05 3 0 2 0
Frac. of Boot. p < 0.05 0.30 0.00 0.20 0.00

No. of Assets: 10

Avg. Adj-R2: 0.08

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 7 7 9 8
Frac. of Asy. p < 0.05 0.70 0.70 0.90 0.80
No. of Boot. p < 0.05 7 7 9 7
Frac. of Boot. p < 0.05 0.70 0.70 0.90 0.70

No. of Assets: 10

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 6 10 10 7 7 9 7
Frac. of Asy. p < 0.05 0.60 1.00 1.00 0.70 0.70 0.90 0.70
No. of Boot. p < 0.05 4 10 10 7 7 9 6
Frac. of Boot. p < 0.05 0.40 1.00 1.00 0.70 0.70 0.90 0.60

No. of Assets: 10

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 9 2 3 1 9 8 0
Frac. of Asy. p < 0.05 0.90 0.20 0.30 0.10 0.90 0.80 0.00
No. of Boot. p < 0.05 6 2 2 0 5 4 2
Frac. of Boot. p < 0.05 0.60 0.20 0.20 0.00 0.50 0.40 0.20

No. of Assets: 10
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Table IA.11: Testing UIP with Average Forward Discount
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the average forward discount (x); see
Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 22 2 13 0 5
Frac. of Asy. p < 0.05 0.58 0.05 0.34 0.00 0.13
No. of Boot. p < 0.05 6 1 10 0 2
Frac. of Boot. p < 0.05 0.16 0.03 0.26 0.00 0.05

No. of Assets: 38

Avg. Adj-R2: 0.06

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 37 35 30 20 19
Frac. of Asy. p < 0.05 0.97 0.92 0.79 0.53 0.50
No. of Boot. p < 0.05 36 34 30 18 16
Frac. of Boot. p < 0.05 0.95 0.89 0.79 0.47 0.42

No. of Assets: 38

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 24 38 38 38 34 32 18 24
Frac. of Asy. p < 0.05 0.63 1.00 1.00 1.00 0.89 0.84 0.47 0.63
No. of Boot. p < 0.05 11 38 37 34 33 31 16 12
Frac. of Boot. p < 0.05 0.29 1.00 0.97 0.89 0.87 0.82 0.42 0.32

No. of Assets: 38

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 22 4 5 2 0 28 20 0
Frac. of Asy. p < 0.05 0.67 0.12 0.15 0.06 0.00 0.85 0.61 0.00
No. of Boot. p < 0.05 13 0 8 0 1 14 10 8
Frac. of Boot. p < 0.05 0.39 0.00 0.24 0.00 0.03 0.42 0.30 0.24

No. of Assets: 33
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Table IA.12: Testing UIP with Industrial Production Growth
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and US industrial production growth (x);
see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 20 2 16 0 3
Frac. of Asy. p < 0.05 0.51 0.05 0.41 0.00 0.08
No. of Boot. p < 0.05 5 1 10 0 0
Frac. of Boot. p < 0.05 0.13 0.03 0.26 0.00 0.00

No. of Assets: 39

Avg. Adj-R2: 0.04

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 38 35 34 20 28
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51 0.72
No. of Boot. p < 0.05 37 35 32 18 22
Frac. of Boot. p < 0.05 0.95 0.90 0.82 0.46 0.56

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 25 39 39 39 34 37 19 28
Frac. of Asy. p < 0.05 0.64 1.00 1.00 1.00 0.87 0.95 0.49 0.72
No. of Boot. p < 0.05 7 38 38 36 33 33 16 15
Frac. of Boot. p < 0.05 0.18 0.97 0.97 0.92 0.85 0.85 0.41 0.38

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 25 4 7 4 0 30 24 0
Frac. of Asy. p < 0.05 0.71 0.11 0.20 0.11 0.00 0.86 0.69 0.00
No. of Boot. p < 0.05 14 1 11 5 0 16 14 9
Frac. of Boot. p < 0.05 0.40 0.03 0.31 0.14 0.00 0.46 0.40 0.26

No. of Assets: 35
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Table IA.13: Testing UIP with Real Exchange Rate Appreciation
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and real exchange rate appreciation (x);
see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 23 6 11 2 3
Frac. of Asy. p < 0.05 0.59 0.15 0.28 0.05 0.08
No. of Boot. p < 0.05 8 3 9 2 3
Frac. of Boot. p < 0.05 0.21 0.08 0.23 0.05 0.08

No. of Assets: 39

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 39 20 28 16 17
Frac. of Asy. p < 0.05 1.00 0.51 0.72 0.41 0.44
No. of Boot. p < 0.05 36 17 25 13 14
Frac. of Boot. p < 0.05 0.92 0.44 0.64 0.33 0.36

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 24 39 39 39 18 27 14 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.46 0.69 0.36 0.46
No. of Boot. p < 0.05 10 38 37 36 15 25 13 13
Frac. of Boot. p < 0.05 0.26 0.97 0.95 0.92 0.38 0.64 0.33 0.33

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 7 2 7 1 2 30 8 2
Frac. of Asy. p < 0.05 0.20 0.06 0.20 0.03 0.06 0.86 0.23 0.06
No. of Boot. p < 0.05 7 3 8 1 3 13 8 4
Frac. of Boot. p < 0.05 0.20 0.09 0.23 0.03 0.09 0.37 0.23 0.11

No. of Assets: 35
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Table IA.14: Testing UIP with Yield Curve Level Differential
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the yield curve level differential (x);
see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 16 2 8 0 10
Frac. of Asy. p < 0.05 0.44 0.06 0.22 0.00 0.28
No. of Boot. p < 0.05 6 0 4 0 5
Frac. of Boot. p < 0.05 0.17 0.00 0.11 0.00 0.14

No. of Assets: 36

Avg. Adj-R2: 0.06

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 35 33 18 14 28
Frac. of Asy. p < 0.05 0.97 0.92 0.50 0.39 0.78
No. of Boot. p < 0.05 35 33 15 12 24
Frac. of Boot. p < 0.05 0.97 0.92 0.42 0.33 0.67

No. of Assets: 36

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 25 36 36 36 33 20 12 30
Frac. of Asy. p < 0.05 0.69 1.00 1.00 1.00 0.92 0.56 0.33 0.83
No. of Boot. p < 0.05 10 36 36 33 31 14 11 25
Frac. of Boot. p < 0.05 0.28 1.00 1.00 0.92 0.86 0.39 0.31 0.69

No. of Assets: 36

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 24 1 1 3 0 28 20 2
Frac. of Asy. p < 0.05 0.75 0.03 0.03 0.09 0.00 0.88 0.63 0.06
No. of Boot. p < 0.05 15 1 4 4 2 13 11 8
Frac. of Boot. p < 0.05 0.47 0.03 0.13 0.13 0.06 0.41 0.34 0.25

No. of Assets: 32
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Table IA.15: Testing UIP with Yield Curve Slope Differential
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the yield curve slope differential (x);
see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 16 2 13 0 10
Frac. of Asy. p < 0.05 0.44 0.06 0.36 0.00 0.28
No. of Boot. p < 0.05 6 0 7 0 5
Frac. of Boot. p < 0.05 0.17 0.00 0.19 0.00 0.14

No. of Assets: 36

Avg. Adj-R2: 0.06

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 35 33 33 14 28
Frac. of Asy. p < 0.05 0.97 0.92 0.92 0.39 0.78
No. of Boot. p < 0.05 35 33 27 12 24
Frac. of Boot. p < 0.05 0.97 0.92 0.75 0.33 0.67

No. of Assets: 36

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 25 36 36 36 33 35 12 30
Frac. of Asy. p < 0.05 0.69 1.00 1.00 1.00 0.92 0.97 0.33 0.83
No. of Boot. p < 0.05 10 36 36 33 31 29 11 25
Frac. of Boot. p < 0.05 0.28 1.00 1.00 0.92 0.86 0.81 0.31 0.69

No. of Assets: 36

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 24 1 2 3 0 28 20 2
Frac. of Asy. p < 0.05 0.75 0.03 0.06 0.09 0.00 0.88 0.63 0.06
No. of Boot. p < 0.05 15 1 3 4 2 13 11 8
Frac. of Boot. p < 0.05 0.47 0.03 0.09 0.13 0.06 0.41 0.34 0.25

No. of Assets: 32
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Table IA.16: Testing UIP with Change of Yield Curve Level Differential
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the change in the yield curve level
differential (x); see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 16 3 12 0 2
Frac. of Asy. p < 0.05 0.44 0.08 0.33 0.00 0.06
No. of Boot. p < 0.05 8 0 7 0 1
Frac. of Boot. p < 0.05 0.22 0.00 0.19 0.00 0.03

No. of Assets: 36

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 35 33 36 12 12
Frac. of Asy. p < 0.05 0.97 0.92 1.00 0.33 0.33
No. of Boot. p < 0.05 34 33 33 11 11
Frac. of Boot. p < 0.05 0.94 0.92 0.92 0.31 0.31

No. of Assets: 36

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 24 36 36 36 32 36 12 12
Frac. of Asy. p < 0.05 0.67 1.00 1.00 1.00 0.89 1.00 0.33 0.33
No. of Boot. p < 0.05 9 36 36 33 31 33 12 9
Frac. of Boot. p < 0.05 0.25 1.00 1.00 0.92 0.86 0.92 0.33 0.25

No. of Assets: 36

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 22 4 8 2 2 29 22 1
Frac. of Asy. p < 0.05 0.71 0.13 0.26 0.06 0.06 0.94 0.71 0.03
No. of Boot. p < 0.05 12 2 9 2 2 12 10 8
Frac. of Boot. p < 0.05 0.39 0.06 0.29 0.06 0.06 0.39 0.32 0.26

No. of Assets: 31
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Table IA.17: Testing UIP with Momentum Factor
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the momentum factor (x); see Section
IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 22 0 14 0 0
Frac. of Asy. p < 0.05 0.56 0.00 0.36 0.00 0.00
No. of Boot. p < 0.05 9 0 10 0 0
Frac. of Boot. p < 0.05 0.23 0.00 0.26 0.00 0.00

No. of Assets: 39

Avg. Adj-R2: 0.04

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 39 32 34 23 30
Frac. of Asy. p < 0.05 1.00 0.82 0.87 0.59 0.77
No. of Boot. p < 0.05 37 29 33 21 20
Frac. of Boot. p < 0.05 0.95 0.74 0.85 0.54 0.51

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 23 39 39 39 32 37 22 28
Frac. of Asy. p < 0.05 0.59 1.00 1.00 1.00 0.82 0.95 0.56 0.72
No. of Boot. p < 0.05 9 39 38 37 29 33 20 18
Frac. of Boot. p < 0.05 0.23 1.00 0.97 0.95 0.74 0.85 0.51 0.46

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 24 0 8 4 2 30 23 0
Frac. of Asy. p < 0.05 0.67 0.00 0.22 0.11 0.06 0.83 0.64 0.00
No. of Boot. p < 0.05 16 0 11 3 2 14 14 13
Frac. of Boot. p < 0.05 0.44 0.00 0.31 0.08 0.06 0.39 0.39 0.36

No. of Assets: 36
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Table IA.18: Testing UIP with Value Factor
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D). The five instruments considered are the real exchange rate (s̃), the one-month excess return
(ξ), the nominal interest rate differential (dr), the inflation differential (dπ), and the value factor (x); see Section IA.5.

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ x

No. of Asy. p < 0.05 28 2 13 0 14
Frac. of Asy. p < 0.05 0.74 0.05 0.34 0.00 0.37
No. of Boot. p < 0.05 16 2 11 0 5
Frac. of Boot. p < 0.05 0.42 0.05 0.29 0.00 0.13

No. of Assets: 38

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ x

No. of Asy. p < 0.05 38 35 34 22 22
Frac. of Asy. p < 0.05 1.00 0.92 0.89 0.58 0.58
No. of Boot. p < 0.05 38 34 33 21 4
Frac. of Boot. p < 0.05 1.00 0.89 0.87 0.55 0.11

No. of Assets: 38

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ x

No. of Asy. p < 0.05 29 38 38 38 34 36 23 28
Frac. of Asy. p < 0.05 0.76 1.00 1.00 1.00 0.89 0.95 0.61 0.74
No. of Boot. p < 0.05 12 37 37 37 34 33 20 5
Frac. of Boot. p < 0.05 0.32 0.97 0.97 0.97 0.89 0.87 0.53 0.13

No. of Assets: 38

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ x Wald Share Share

No. of Asy. p < 0.05 21 2 8 1 7 29 21 2
Frac. of Asy. p < 0.05 0.68 0.06 0.26 0.03 0.23 0.94 0.68 0.06
No. of Boot. p < 0.05 3 5 4 2 0 5 3 11
Frac. of Boot. p < 0.05 0.10 0.16 0.13 0.06 0.00 0.16 0.10 0.35

No. of Assets: 31
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Table IA.19: Testing UIP, Block Bootstrap (1)
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the VAR residuals are resampled using block bootstrap with block length determined by
autocorrelation in the VAR residuals; see Section IA.5. The four instruments considered are the real exchange rate (s̃),
the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 3 0 3 0
Frac. of Boot. p < 0.05 0.08 0.00 0.08 0.00

No. of Assets: 39

Avg. Adj-R2: 0.02

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 38 29 25 11
Frac. of Boot. p < 0.05 0.97 0.74 0.64 0.28

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 2 38 36 36 26 24 10
Frac. of Boot. p < 0.05 0.05 0.97 0.92 0.92 0.67 0.62 0.26

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 14 2 7 1 11 11 4
Frac. of Boot. p < 0.05 0.41 0.06 0.21 0.03 0.32 0.32 0.12

No. of Assets: 34

47



Table IA.20: Testing UIP, Block Bootstrap (2)
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the VAR residuals are resampled using block bootstrap with block length determined by
autocorrelation in squared VAR residuals; see Section IA.5. The four instruments considered are the real exchange rate
(s̃), the one-month excess return (ξ), the nominal interest rate differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 5 0 4 0
Frac. of Boot. p < 0.05 0.13 0.00 0.10 0.00

No. of Assets: 39

Avg. Adj-R2: 0.03

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 29 26 12
Frac. of Boot. p < 0.05 0.95 0.74 0.67 0.31

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 3 38 37 36 27 24 11
Frac. of Boot. p < 0.05 0.08 0.97 0.95 0.92 0.69 0.62 0.28

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 4 9 1 12 10 4
Frac. of Boot. p < 0.05 0.38 0.12 0.26 0.03 0.35 0.29 0.12

No. of Assets: 34
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Table IA.21: Testing UIP, Monte Carlo Simulation under Joint Normality
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the VAR residuals are simulated using a joint normal distribution; see Section IA.5. The
four instruments considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate
differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 7 1 11 0
Frac. of Boot. p < 0.05 0.18 0.03 0.28 0.00

No. of Assets: 39

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 34 32 18
Frac. of Boot. p < 0.05 0.95 0.87 0.82 0.46

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 11 39 38 36 34 33 16
Frac. of Boot. p < 0.05 0.28 1.00 0.97 0.92 0.87 0.85 0.41

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 0 11 4 13 9 7
Frac. of Boot. p < 0.05 0.38 0.00 0.32 0.12 0.38 0.26 0.21

No. of Assets: 34
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Table IA.22: Testing UIP, 600 Months of Warm-up Period
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the warm-up period for simulating instruments is 600 months; see Section IA.5. The
four instruments considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate
differential (dr), and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 7 1 11 0
Frac. of Boot. p < 0.05 0.18 0.03 0.28 0.00

No. of Assets: 39

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 34 32 18
Frac. of Boot. p < 0.05 0.95 0.87 0.82 0.46

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 11 39 38 36 34 33 16
Frac. of Boot. p < 0.05 0.28 1.00 0.97 0.92 0.87 0.85 0.41

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 0 10 4 13 9 7
Frac. of Boot. p < 0.05 0.38 0.00 0.29 0.12 0.38 0.26 0.21

No. of Assets: 34
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Table IA.23: Testing UIP, 50,000 Bootstrap Repetitions
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the number of bootstrap repetitions is 50,000; see Section IA.5. The four instruments
considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr),
and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 22 3 15 0
Frac. of Asy. p < 0.05 0.56 0.08 0.38 0.00
No. of Boot. p < 0.05 7 0 11 0
Frac. of Boot. p < 0.05 0.18 0.00 0.28 0.00

No. of Assets: 39

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 35 34 20
Frac. of Asy. p < 0.05 0.97 0.90 0.87 0.51
No. of Boot. p < 0.05 37 34 32 17
Frac. of Boot. p < 0.05 0.95 0.87 0.82 0.44

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 24 39 39 39 34 37 18
Frac. of Asy. p < 0.05 0.62 1.00 1.00 1.00 0.87 0.95 0.46
No. of Boot. p < 0.05 11 39 38 36 34 33 16
Frac. of Boot. p < 0.05 0.28 1.00 0.97 0.92 0.87 0.85 0.41

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 25 2 7 4 30 22 0
Frac. of Asy. p < 0.05 0.74 0.06 0.21 0.12 0.88 0.65 0.00
No. of Boot. p < 0.05 13 1 10 3 13 10 7
Frac. of Boot. p < 0.05 0.38 0.03 0.29 0.09 0.38 0.29 0.21

No. of Assets: 34
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Table IA.24: Testing UIP, Deutsche Mark as Reference Currency
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the reference currency is the Deutsche Mark; see Section IA.5. The four instruments
considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr),
and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 16 0 5 1
Frac. of Asy. p < 0.05 0.59 0.00 0.19 0.04
No. of Boot. p < 0.05 6 0 3 1
Frac. of Boot. p < 0.05 0.22 0.00 0.11 0.04

No. of Assets: 27

Avg. Adj-R2: 0.04

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 26 25 25 8
Frac. of Asy. p < 0.05 0.96 0.93 0.93 0.30
No. of Boot. p < 0.05 25 24 24 8
Frac. of Boot. p < 0.05 0.93 0.89 0.89 0.30

No. of Assets: 27

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 13 27 27 26 22 25 9
Frac. of Asy. p < 0.05 0.48 1.00 1.00 0.96 0.81 0.93 0.33
No. of Boot. p < 0.05 5 26 26 25 22 22 8
Frac. of Boot. p < 0.05 0.19 0.96 0.96 0.93 0.81 0.81 0.30

No. of Assets: 27

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 23 1 7 1 25 22 1
Frac. of Asy. p < 0.05 0.85 0.04 0.26 0.04 0.93 0.81 0.04
No. of Boot. p < 0.05 11 1 9 2 14 13 8
Frac. of Boot. p < 0.05 0.41 0.04 0.33 0.07 0.52 0.48 0.30

No. of Assets: 27
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Table IA.25: Testing UIP, Japanese Yen as Reference Currency
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the reference currency is the Japanese Yen; see Section IA.5. The four instruments
considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr),
and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 26 0 7 4
Frac. of Asy. p < 0.05 0.67 0.00 0.18 0.10
No. of Boot. p < 0.05 6 0 4 3
Frac. of Boot. p < 0.05 0.15 0.00 0.10 0.08

No. of Assets: 39

Avg. Adj-R2: 0.05

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 39 31 26 35
Frac. of Asy. p < 0.05 1.00 0.79 0.67 0.90
No. of Boot. p < 0.05 38 31 22 34
Frac. of Boot. p < 0.05 0.97 0.79 0.56 0.87

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 20 39 39 39 31 26 36
Frac. of Asy. p < 0.05 0.51 1.00 1.00 1.00 0.79 0.67 0.92
No. of Boot. p < 0.05 6 39 38 38 28 22 34
Frac. of Boot. p < 0.05 0.15 1.00 0.97 0.97 0.72 0.56 0.87

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 36 1 14 1 37 35 1
Frac. of Asy. p < 0.05 0.95 0.03 0.37 0.03 0.97 0.92 0.03
No. of Boot. p < 0.05 25 1 14 1 24 25 8
Frac. of Boot. p < 0.05 0.66 0.03 0.37 0.03 0.63 0.66 0.21

No. of Assets: 38
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Table IA.26: Testing UIP, British Pound as Reference Currency
This table summarizes the results of direct tests (Panel A), indirect tests (Panel B), joint tests (Panel C), and infinite-
horizon tests (Panel D), where the reference currency is the British Pound; see Section IA.5. The four instruments
considered are the real exchange rate (s̃), the one-month excess return (ξ), the nominal interest rate differential (dr),
and the inflation differential (dπ).

Panel A: Three-month Horizon, Direct Tests

Explanatory Variables
s̃ ξ dr dπ

No. of Asy. p < 0.05 9 3 14 3
Frac. of Asy. p < 0.05 0.23 0.08 0.36 0.08
No. of Boot. p < 0.05 2 2 7 1
Frac. of Boot. p < 0.05 0.05 0.05 0.18 0.03

No. of Assets: 39

Avg. Adj-R2: 0.01

Panel B: Three-month Horizon, Indirect Tests

β̂dr̃,H,k = −β∆s̃,H,k

s̃ ξ dr dπ

No. of Asy. p < 0.05 38 15 35 35
Frac. of Asy. p < 0.05 0.97 0.38 0.90 0.90
No. of Boot. p < 0.05 36 11 33 33
Frac. of Boot. p < 0.05 0.92 0.28 0.85 0.85

No. of Assets: 39

Panel C: Three-month Horizon, Joint Tests

β̂ξ,H = 0 β̂dr̃,H = −β∆s̃,H β̂ξ,H = 0 and β̂ξ,H,k = 0 and β̂dr̃,H,k = −β∆s̃,H,k

β̂dr̃,H = −β∆s̃,H s̃ ξ dr dπ

No. of Asy. p < 0.05 14 39 39 39 12 37 35
Frac. of Asy. p < 0.05 0.36 1.00 1.00 1.00 0.31 0.95 0.90
No. of Boot. p < 0.05 7 38 37 32 8 30 35
Frac. of Boot. p < 0.05 0.18 0.97 0.95 0.82 0.21 0.77 0.90

No. of Assets: 39

Panel D: Infinite-horizon Regression Statistics

Explanatory Variables β̂ξ,∞ = 0 Variance ∆ Variance
s̃ ξ dr dπ Wald Share Share

No. of Asy. p < 0.05 21 1 6 2 27 17 0
Frac. of Asy. p < 0.05 0.60 0.03 0.17 0.06 0.77 0.49 0.00
No. of Boot. p < 0.05 3 3 8 3 4 2 4
Frac. of Boot. p < 0.05 0.09 0.09 0.23 0.09 0.11 0.06 0.11

No. of Assets: 35
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