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Abstract

We document that, within-region, lower-income zip codes have more volatile returns
to housing than do higher-income zip codes, without any corresponding higher returns.
We rationalize this finding with a simple model that features a collateral constraint
on borrowing by a representative household. Shocks to the household’s income lead
to volatility in the return to housing via the collateral constraint, and this volatility is
decreasing in the average level of income, consistent with our empirical findings. We
provide further evidence for our mechanism using (1) variation in wealth induced by
lagged housing returns; (2) cross-sectional data on the housing expenditure share; and
(3) state-level non-recourse status, which instruments for the tightness of collateral
constraints. Finally, we observe that endogenous volatility in housing returns may
limit the available supply of housing, via producers’ option to delay. Consistent with
this hypothesis, the volatility of new permit issuance and the age of the housing stock
are both monotonically decreasing in local income levels.
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Introduction

Research on housing affordability generally studies either the level or the growth rate of

housing values, usually in comparison to household income. For example, indices of housing

affordability compare household income with the level of housing values, while homeown-

ership subsidies aim to increase household wealth via the growth of those values. In this

paper, we argue that the volatility of housing returns is also important to an understand-

ing of housing markets. We argue theoretically, and show empirically, that lower-income

households face higher volatility of housing returns.

We begin with a theory of housing return volatility. Our model produces volatility via a

collateral constraint on borrowing by a representative household. This household is endowed

with a risky income stream, and derives utility from durable housing and other consumption.

It is impatient relative to an exogenous borrowing rate, and thus borrows up to a limit that

we impose via a standard collateral constraint: Its state-contingent repayment promises

cannot exceed the future value of the house, scaled by a maximum LTV ratio.

The price of housing in our model depends both on the discounted future marginal

rate of substitution (MRS) between housing and other consumption, and on the future

value of the home. The collateral constraint means that the household cannot fully smooth

consumption, and thus its MRS will fluctuate over time with income shocks. This in turn

produces endogenous volatility in the price and return to housing (despite zero unconditional

expected return), as long as the supply of housing is not perfectly elastic. Moreover, this

volatility is greater for lower-income households, for whom the magnitude of income shocks

is relatively larger, yielding the stylized fact described above.

A decrease in the debt capacity of the house, via a tightening of the collateral constraint

(a lowering of the maximum LTV ratio), causes the contemporaneous MRS to become a

proportionally-larger component of the present value of the home as compared to its future

price, amplifying the endogenous volatility in housing returns. Housing return volatility

is further amplified if households have non-homothetic preferences over housing services,
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which causes the MRS to depend on their relative level. Both the LTV constraint and non-

homothetic utility have been documented and studied in prior research on housing markets;

we show that they combine to create and amplify endogenous volatility in housing returns.

Our model delivers several novel, testable predictions. Most importantly, higher average

household income leads to lower volatility of housing returns in a given market. The model

predicts this to be a smooth and robust relationship across time and space. Further, return

volatility is also higher in the presence of tighter collateral constraints. Both predictions

reflect the same mechanism: Collateral constraints prevent the market from smoothing out

home prices relative to fluctuations in the household’s MRS.

We corroborate our main prediction empirically by measuring income and home price

volatility at the zip code level. We demonstrate that low-income zip codes feature consis-

tently higher housing return volatilities, with no compensating increase in the level of their

return. This novel finding holds across two data sources (CoreLogic and Zillow), and within

each of the largest metropolitan statistical areas (MSAs) in the United States. In our main

result, a doubling of annual income is associated with 1.3% less annual volatility in housing

returns when that volatility is measured with CoreLogic data, or 2.7% less annual volatility

when measured with Zillow data. Importantly, the level of housing returns is not any higher

in the low-income, high-volatility zip codes.

We strengthen this conclusion by exploiting time-series variation within zip code: In-

creases in home values, which represent increases in household wealth, lead to lower housing

return volatility. This relationship holds whether we look within state, MSA, or zip code.

We also use the time-series dimension of the data to show that the correlation is consistently

negative throughout the sample period, although it also becomes stronger in the post-crisis

period, which arguably reflects a period of tighter credit constraints. Furthermore, we show

that the results are not driven by correlation between income and liquidity in zip codes, as

turnover rates are roughly the same across bins of income throughout the sample period.

We also corroborate the second prediction of our model, that tighter collateral constraints
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lead to greater housing return volatility. To proxy for the tightness of collateral constraints,

we measure the state-level degree of lender recourse, following the coding of Ghent and

Kudlyak (2011). Controlling for the direct effect of wealth, we find that states allowing

a lesser degree of recourse also have greater volatility, and that this finding is robust to

including various demographic characteristics. The prior research on lender non-recourse

laws emphasizes that they constrain access to credit, but it is difficult to imagine why they

should increase the volatility of home price returns, outside the argument described by our

model, an interaction between wealth effects and collateral constraints.

Aside from its direct effect on the household’s portfolio problem, housing return volatility

may also matter for the supply of housing. Real-option models of housing construction

conclude that production of new homes is less frequent when housing demand is more volatile

(e.g. Guthrie (2010), Oh and Yoon (2016)). Our model induces demand volatility via

financial constraints that matter more for low-income households, suggesting that housing

supply may be less responsive to demand and price movements in lower-income areas.

To corroborate this prediction, we analyze new permit issuance and age of the local

housing stock using Census data. We show that both the level and growth rate of permit

issuance are much more volatile in lower-income areas, while the housing stock is on average

older in these areas. These both reflect less-frequent adjustments to the housing stock, which

again is a natural implication of the endogenous volatility in demand induced by our model.

Our findings provide a novel channel – financial constraints – by which housing supply may

be particularly suboptimal in low-income areas, contrasting geographic constraints as studied

by Saiz (2010) or inefficient regulation as discussed in Gyourko and Molloy (2014).

Our model of the housing market builds on the literature that emphasizes the importance

of collateral constraints for asset markets. Kiyotaki and Moore (1997) show how the presence

of collateral-constrained agents can amplify fundamental shocks in asset markets. Many

studies have demonstrated the importance of this effect in real estate markets. For example

Lamont and Stein (1999) and Almeida, Campello, and Liu (2006) demonstrate that house
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prices are more sensitive to shocks to economic fundamentals in locations in which households

are more highly levered.

More recently Justiniano, Primiceri, and Tambalotti (2015) study a model similar to

Kiyotaki and Moore (1997) to show that collateral constraints can quantitatively explain

many features of the housing boom and bust of the 2000’s. Our model is similar in spirit to

Justiniano et al. (2015), but bears closer resemblance to that of Rampini and Viswanathan

(2010) and Rampini and Viswanathan (2013).

To our knowledge, ours is the first model to integrate non-homethetic prefences into a

dynamic model of house prices with collateral constraints. However, such preferences have

been emphasized as an important driver of real estate markets. Notably, Albouy, Ehrlich,

and Liu (2016) show that non-hometheticity can help explain the secular trend in housing

expenditure shares.

Another body of evidence shows that credit markets can have an important impact on

house prices. Ben-David (2011) shows that financially constrained borrowers inflated house

prices in order to draw larger mortgages. Ortalo-Magne and Rady (2006) highlight how young

households’ leverage in their first home can have an important effect on the volatility of house

prices. Landvoigt, Piazzesi, and Schneider (2015) show that a key driver of variation of house

prices within the San Diego metropolitan area was cheaper credit for poor households.

Housing as a source of collateral has also been shown to have important implications for

the broader economy. Lustig and Van Nieuwerburgh (2005) show that the use of housing

as collateral affects the market price of risk and that the ratio of housing wealth to human

wealth can explain the cross section of stock returns. Mian and Sufi (2011) provide evidence

that increased home equity during the early 2000’s allowed for an increase in borrowing

and the subsequent default crisis of the late 2000’s. Our results on housing return volatil-

ity are complementary to the those of Eisfeldt and Demers (2015), who present the first

comprehensive look at the cross-section of rental housing returns.
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1 Model

In this section, we present a model in which volatility in returns to housing arises due

to a representative household who is constrained, and therefore cannot perfectly smooth

consumption, coupled with imperfectly elastic housing supply. We further show that this

effect is amplified by non-homotheticity of utility over housing and non-housing consumption.

The first purpose of the model is to demonstrate that a negative income-volatility correlation

is expected as a robust equilibrium outcome, without appealing to government policies,

microstructure issues, or historical anomalies as explanations. The second purpose is to

show that salient features of housing markets amplify this relationship.

A representative household values consumption and housing according to the utility func-

tion u(ct, ht), and discounts future consumption at rate β. The household is endowed with

a risky income stream, which is the only fundamental source of uncertainty in the model,

and we index its realizations by st. After realizing income yt, the household repays state-

contingent promises b̄(st) made last period; borrows a new amount bt via new repayment

promises b̄(st+1) for tomorrow; and purchases housing for next period ht+1 at its current

price pt. Consumption is the residual between wealth, housing, and bond positions, and the

price of the consumption good is normalized to 1.

Our model of collateralized lending is similar to that in Rampini and Viswanathan (2010),

Justiniano et al. (2015), and Kiyotaki and Moore (1997): The lender discounts the house-

hold’s promised repayments by a rate R. We shut down the equilibrium determination of

this rate, treating it as exogenously determined by deep-pocketed agents who are outside of

the model. We create demand for borrowing by assuming that the household is sufficiently

impatient relative to that rate that he borrows as much as possible (a necessary condition is

R < 1/β). However, a collateral constraint limits this borrowing. The household can only

promise to pay up to fraction θ of the value of the house in any given state. This constraint

can be motivated by assuming that loans are subject to limited enforcement.
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The household’s problem can be summarized as

max
ct,ht,bt

E

[∑
t

βtu(ct, ht)

]
(1)

s.t. ct + ptht ≤ Wt + bt (2)

Wt+1(st+1) ≡ yt+1(st+1)− b̄t(st+1) + htpt+1(st+1), (3)

b̄t(st+1) ≤ θhtpt+1(st+1), (4)

bt =
E[b̄t(st+1)]

R
. (5)

Equations (2)-(3) jointly characterize the budget constraint, and equation (4) is the collateral

constraint. Equation (5) is a lender optimality condition: The upfront loan proceeds b are

equal to the discounted value of those state-contingent promises.

We next impose our assumption that the household is impatient and will always borrow

the maximum possible, so that the collateral constraint (4) always binds. This assumption is

made for tractability, allowing us to study the real effects of the constraint without modeling

the sources of interest rate fluctuations. It simplifies the problem in two steps: First, we

set (4) to equality and substitute it into the definition of Wt+1 and into the final condition

defining bt. Second, we substitute that final condition into the RHS of the budget constraint.

With these simplifications, we can now formulate the household’s problem recursively as

V (Ht) ≡ max
Ht+1

u(ct, Ht) + βE[V (Ht+1)] (6)

where ct ≡ yt + θ
1

R
Ht+1E[pt+1]− θHtpt − pt(Ht+1 −Ht) (7)

In the budget constraint, the first term is income; the second term is the amount of borrowing

that can be done today against the future value of the home; the third term is repayment

of borrowing that was made yesterday; and the last term is the cost of adjusting to the new

level of housing.
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This leads to an Euler equation for housing,

pt = E[Mt+1MRSt+1] + θ × 1

R
E [pt+1] + (1− θ)× E [Mt+1pt+1]

where

Mt+1 ≡ β
u1(ct+1, Ht+1)

u1(ct, Ht)

and

MRSt+1 ≡
u2(ct+1, Ht+1)

u1(ct+1, Ht+1)

The value of the home comes from two sources: First, tomorrow’s utility over the flow of

housing services (discounted by a standard pricing kernel); and second, the financial value of

the home. This latter part is a weighted average of two sources. For the fraction θ against

which the house borrows, the financial value of the house is its current debt capacity, given by

the middle bracketed term. For the fraction 1− θ against which the house does not borrow,

the financial value is the future value of the home in the household’s wealth portfolio. This

is positive but, by assumption, strictly less than the value of being able to borrow against

the home, so that the household always borrows the maximal fraction θ.

We now introduce several more simplifications that allow us to analyze equilibrium in

this model and illustrate the intuition of our argument:

First, we employ a particularly tractable specification of non-homothetic utility: addi-

tively separable, isoelastic utility over consumption and housing,

u(c,H) =
c1−α

1− α
+
H1−γ

1− γ

The relative magnitudes of α and γ govern the wealth effects: In particular, if γ > α,

as we will assume, then the consumption/housing ratio is decreasing in wealth. Also for

tractability, we will consider the limiting case α → 1 in the household’s utility function, so

the non-housing component of this function is log utility. This maintains the wealth effect of
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housing consumption while greatly simplifying the solution by yielding tractable first-order

conditions. We thus have Mt+1 = β
(
ct+1

ct

)−1

and MRSt+1 = ct+1H
−γ
t+1.

Second, we constrain the household to consume a fixed aggregate supply of housing H̄,

which abstracts away from the quantity decision in housing to focus on price and return

dynamics, which are our main interest. This has several implications: Since we also set up

the problem such that the bond position is always the maximal possible value, the budget

constraint pins down the level of consumption every period at

ct ≡ yt + θH̄

(
1

R
E[pt+1]− pt

)

Conditional on a realization of y, this leaves only the prices p as unknown equilibrium

quantities, and implies that there are only as many states as realizations of y. It also means

that the term Mt+1MRSt+1 becomes deterministic (as of time t) and equal to βctH̄
−γ.

Third, we assume that income y follows a two-state Markov process, with probability π

of staying in a given state. Then we can replace t in the Euler equation with s ∈ {H,L} and

decompose the expectation as

ps = βcsH̄
−γ + θ × 1

R
× (πps + (1− π)p−s) + (1− θ)×

(
πps + (1− π)

cs
c−s

p−s

)
(8)

Given the unconditional probability 1/2 of being in either state, we can then compute

the unconditional volatility of log returns:

V ar

(
ln
pt+1

pt

)
= (1− π)(ln pH/pL)2

Volatility in this model depends on the price ratio between high and low states, and those

are pinned down by the equilibrium conditions from before.

Although closed-form model solutions are not possible, we observe that equilibrium re-

quires volatility in consumption, cH > cL. Intuitively, this happens because the only way
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the household can smooth consumption is if home prices fluctuate, as this shifts the always-

binding constraint on the amount borrowed. If she could smooth consumption perfectly, all

fluctuations in asset prices would disappear as c and H would both be constant.

To go further, we can numerically compute model solutions and comparative statics. Most

importantly, Figure 1 summarizes comparative statics on yL, holding fixed the difference yH−

yL as well as all other parameters in the model. This illustrates the key wealth effect of our

model: As we double the low-state income, the unconditional volatility of the housing falls

roughly in half, from 2.6% to 1.6%. This corresponds with the correlations we will examine

in the empirical section, and while the model is not designed for quantitative analysis, this

effect is roughly the same order of magnitude as the results we will demonstrate.

Finally, Figures 2 and 3 demonstrate that tightening the curvature of utility over housing

(by increasing γ), and tightening the collateral constraint (by decreasing θ), both significantly

amplify the relationship in Figure 1. Intuitively, the first induces greater volatility in the

MRS between housing and other goods, while the second causes that volatility to be a larger

component of housing prices, by decreasing the value of future debt-capacity in the Euler

equation. We view both of these as salient features of housing markets.

1.2 1.4 1.6 1.8 2.0
yL

0.016

0.018

0.020

0.022

0.024

0.026

σ log
pt+1
pt

Figure 1: Comparative statics of return volatility with respect to yL, holding fixed yH−yL =
0.2. Other parameter values are: θ = 0.8; H̄ = 2; γ = 12; π = 0.52; R = 1.02; β = 0.9. The
model is solved numerically at each set of values.
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yL
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Figure 2: Comparative statics of return volatility with respect to yL, holding fixed yH−yL =
0.2, for various values of θ. Other parameter values are: H̄ = 2; γ = 12; π = 0.52; R = 1.02;
β = 0.9. The model is solved numerically at each set of values.
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Figure 3: Comparative statics of return volatility with respect to yL, holding fixed yH−yL =
0.2, for various values of γ. Other parameter values are: θ = 0.8; H̄ = 2; π = 0.52; R = 1.02;
β = 0.9. The model is solved numerically at each set of values.
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2 Data and measurement

We begin this section by demonstrating the key comparative static from the model: the

volatility of housing returns is higher for lower-income households. We measure income

and housing returns within Metropolitan Statistical Areas (MSAs), using finer geographic

variation by zip code.1

To measure housing returns, and the volatility of those returns, we obtain home price data

from two alternative sources. The first is the CoreLogic Single Family Combined Home Price

Index (HPI), which is the standard in much real estate research. The second is the Zillow

Home Value Index (ZHVI), a newer and less-used dataset. Our results are qualitatively

similar with either index, but are more stark using the Zillow than the CoreLogic data. The

primary difference between the two, which likely explains this discrepancy, is that CoreLogic

is based on a repeat-sales methodology, capturing innovations to a home’s value only when

that home is actually sold. In contrast, Zillow’s ZHVI uses hedonic regressions to update

the value of all homes in a region in response to each transaction price.

For either the HPI or ZHVI, we use the time series for each zip code to construct two

cross-sectional variables: the average 12-month return in home prices, and the standard

deviation of that return. Specifically, for region z, we calculate

rannz,t = 12× ln

(
pz,t+1

pz,t

)
,

r̄annz =
1

T

T∑
t=0

rannz,t ,

σ̄annz =

√√√√ 1

T − 1

T∑
t=0

(
rannz,t − r̄annz

)2
.

where t indexes months from January 1998 (t = 0) to October 2015 (t = T ), and p is the

zip-code-month level of the specific index employed.

1Strictly speaking, zip codes are not geographic concepts. Our references to zip codes are actually to Zip
Code Tabulation Areas (ZCTAs), which are constructed by the US Census as geographic partitions of the
United States that roughly correspond to actual zip codes.
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Finally, to measure household income, we obtain from the IRS zip-code-level statistics

on Adjusted Gross Income (AGI) as reported in tax returns. These statistics are available at

irregular frequencies beginning in 1998. For each zip code, the IRS reports both the number

of tax returns, and the total AGI reported summing across all returns, so we divide the two

to obtain a mean AGI per household for each zip code. We use the 1998 cross-section of

AGI, the earliest available observations, as the measure of household income throughout our

analysis.

Our analysis is performed on the cross-section of 5,438 zip codes that have non-missing

CoreLogic and Zillow indices for every month from January 1998 to October 2015. Figure

4 shows the distribution of average returns and return volatilies across these zip codes,

comparing the numbers from the CoreLogic and the Zillow data. Figure 5 shows scatter

plots of the CoreLogic and Zillow values against each other for a given zip code. While

the average housing return within a zip code calculated using either index appears roughly

the same, the volatility of that return can be dramatically different between the two, with

the Zillow volatilities typically lower and seeming to follow a skewed distribution, where the

CoreLogic volatilities are higher on average and symmetrically distributed. The discrepancy

in the estimated volatilities is intriguing, especially given that the estimated returns are so

similar, but for now we simply use this as motivation to examine qualitative results based

on both data sources.

3 Volatility and income

We first observe that the volatility of housing returns has a very different cross-sectional

distribution than the mean return. In particular, volatility is higher in lower-income areas.

Figure 6 separates zip codes into six bins by AGI, and plots volatilities (in Panel (a)) and

returns (in Panel (b)). Volatility in Panel (a) is noticeably higher for lower-income areas.

The spread in annual volatility between the lowest- and highest-AGI bins is roughly 2% in
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the CoreLogic data and over 3.5% in the Zillow data. On the other hand, Panel (b) shows

that this higher volatility is not compensated in the data by higher returns. If anything,

returns seem to be slightly increasing in AGI, but there is no quantitatively meaningful

relationship.

Figure 7 looks for the same pattern using only within-MSA variation. Returns and

volatilities calculated with either index are adjusted by the MSA-level mean, and the six

bins are recalculated separately for each MSA, so that they capture relative income position

within-MSA instead of nationwide. Despite these adjustments, we see that the disparities in

volatility across bins remains sizeable. Using the CoreLogic data, the highest AGI bin has

1.3% lower annual return volatility than the lowest-AGI bin, with no meaningful difference

in annual return level. In the Zillow data, the disparity is larger, as before, at 2.88%. In

both cases we see a steady decline in return volatility across the bins from low to high AGI.

Tables 1 and 2 display regressions confirming that these findings are statistically signifi-

cant and robust, using respectively the CoreLogic and the Zillow data. Instead of bins of AGI,

the logarithm of zip-code mean AGI is used as the independent variable in the regressions,

and all regressions include MSA fixed effects to preserve the within-MSA interpretation of

Figure 7. Standard errors are clustered by state to allow for possible geographical clustering

in the residuals.

Column (1) of each table performs this regression in the full sample of zip codes. The

estimated coefficients suggest that, within-MSA, a doubling of income is associated with

1.2% lower annual housing return volatility as measured through CoreLogic data, or with

2.7% less annual volatility as measured through Zillow. Column (2) of each table shows that

this result is not driven by relatively sparsely-populated MSAs; if anything, the estimated

effects strengthen slightly when the analysis is restricted to MSAs with at least a million

1998 tax returns. This reduces, by more than half, the number of zip codes in the regression,

but the coefficients remain statistically significant. Meanwhile, Columns (3) and (4) of the

table reiterate that the higher volatility of housing returns in low-income zip codes is not
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associated with higher average returns; if anything, the relationship is slightly in the opposite

direction.

Figure 8 demonstrates these findings visually with zip-code maps of the largest three

MSAs in the sample, Los Angeles (Panel (a)), New York City (Panel (b)), and Chicago

(Panel (c)). These figures measure housing returns with the Zillow index, which yields the

most stark results. For all three panels, the left figure shades zip codes according to eight bins

of the volatility of the Zillow HVI return from 1998-2015, with darker shading corresponding

to more volatility. In Los Angeles, for example, the returns to housing have been most

volatile in poorer areas to the south and in the San Fernando valley. The right figure in each

panel shades zip codes according to eight bins of 1998 mean AGI, but with darker shading

corresponding to lower income. The resemblance to the left figures in each panel is striking.

Put simply, high-volatility zip codes are also low-income zip codes.

Similar figures to Figure 8 can be constructed for every major MSA in the country

(available on request). To summarize the figures, Tables 3 and 4 perform the prior within-

MSA regression of return volatility on log AGI, explicitly breaking out each of the 16 largest

MSAs in the sample, and using (respectively) the CoreLogic index and the Zillow index to

measure housing returns. In all 32 specifications, the point-estimate of the coefficient on log

AGI is negative. It is economically large in most, and statistically significant in all but two.

3.1 Time-series stability

We next investigate the time-series stability of the negative within-MSA income-volatility

correlation. Of particular interest is the evolution of this correlation around the years of

the financial crisis, which occurs roughly midway through our sample. We repeat our main

specification, a cross-sectional regression at the zip-code level with MSA fixed effects, using

rolling five-year windows instead of the whole time series, and clustering all standard errors

by MSA. Figure 9 plots the time series of resulting regression coefficients and their standard

errors against the first year in the rolling window.
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Figure 9(a) shows that the negative cross-sectional relationship between income and

return volatility is present, highly stable, and statistically different from zero, in both the

Zillow and CoreLogic data, for the entire time series from 1996-2015. As with the main

findings above, the magnitude of the income-volatility relationship is uniformly stronger for

the Zillow data throughout the time series: In the early years of the time series, a log-

point income increase is associated with about 35bp lower log return volatility in CoreLogic,

compared to about 120bp in Zillow.

Interestingly, both correlations become significantly stronger towards the end of the sam-

ple, with the above magnitudes increasing to about 140bp in CoreLogic and to about 300bp

in Zillow in regressions including years 2007 or later. This may demonstrate that the mech-

anisms for the negative correlation in our model have gotten stronger in the years since the

crisis. However, this effect is not driven by just the crisis years themselves: It is present and

stable in both the earliest and latest regression windows, which exclude those years.

Most importantly, the correlation is always negative, always statistically significant, and

highly stable in magnitude from one window to the next. Contrasting all of these findings,

Panel (b) shows that the relationship between income and return has been much less stable,

changing signs multiple times in the sample, and often indistinguishable from zero.

3.2 Liquidity and income

We next address one potential explanation for the income-volatility correlation: cross-

sectional variation in liquidity of housing markets. One might hypothesize that low-income

housing markets feature lower liquidity as well, and therefore that the less-frequent updating

of home price indices in these areas leads to the appearance of higher volatility in realized

prices, even though the potential selling price of a house is not more volatile. Figure 10

addresses this hypothesis by examining zip-code level turnover rates (available from Zillow)

across five bins of 1998 income and over the time series.

While the figure reveals substantial time-series variation in turnover, rising to over 8%
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in 2005 and then falling back to 5%, there is far less cross-sectional variation: The largest

difference between the highest and lowest income bins is roughly a percentage point, and this

occurs in the early part of the sample. During the peak turnover years, there is hardly any

difference across income bins, and in 2009-2010, when the income-volatility correlation was at

its strongest (see Figure 9), a small disparity briefly appears in the opposite direction of what

we should expect: The lowest-income bin exhibits the highest turnover and thus liquidity. We

conclude that a liquidity-income relationship cannot account for our documented volatility-

income relationship.

3.3 Panel evidence

In this section, we exploit the panel dimension of the zip-code-month panel to further

investigate our mechanism. Our goal is to show that volatility responds to changes in

wealth in the direction one would expect based on our model. This exercise helps isolate our

proposed mechanism from several alternative interpretations, most importantly any omitted

variables that are fixed in the cross-section or that do not fluctuate with wealth.

Our instrument for household wealth is the lagged return of either of the two home value

indices. Intuitively, an individual observation of this high-frequency (monthly) return has

a persistent effect on the wealth of homeowners, and our model predicts that this wealth

effect should then alter the volatility of future housing returns. On the other hand, outside

of our proposed mechanism, there is no obvious reason for individual monthly returns to

have persistent effects on volatility. Thus, if high (low) individual monthly housing returns

predict low (high) future volatilities of monthly returns within the same zip code, we will

regard this as evidence of our proposed mechanism at work.

To implement this logic, we calculate rolling volatility measures at the zip code level for

each of our two indices based on the prior 12 months of returns, starting in 1990. Using this

rolling volatility as our outcome variable, we regress on lags of the monthly return series.

To avoid using observations based on overlapping windows, we retain only January of every
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year in these regressions, so the regression is performed on a zip-code-year panel, and we lag

the returns on the right-hand side by a year or more. Our results are presented in Tables 5

and 6.

Table 5 shows that housing returns negatively predict future volatility within a zip code.

Panel (a) uses the CoreLogic HPI series to measure housing returns and volatilities, and

Panel (b) uses the Zillow ZHVI series. In both cases, the coefficient on distributed lags of

the monthly housing return is significant and negative. The interpretation is that a positive

(negative) wealth shock, via a positive (negative) individual monthly housing return, predicts

a lower (higher) future degree of volatility in housing returns.

The magnitudes are sizeable: In the first column of Panel (a), a one-standard-deviation

increase in the HPI return a year ago predicts a 0.10 standard deviation decrease in current

volatility of the HPI return, based on sample standard deviations of 0.0156 and 0.0045

respectively. Moreover, the dynamics of the effects decay as longer lags are used, which is

intuitive. Columns 2 through 4 show that the magnitudes of the coefficients are virtually

unchanged when including state, MSA, and finally zip-code fixed effects. In Panel (b), the

Zillow series exhibits the same qualitative effects, although the magnitudes are about half as

large: A one-standard-deviation increase in ZHVI return a year ago predicts a 0.04 standard

deviation decrease in current volatility, based on sample standard deviations of 0.0097 and

0.0038 respectively.

We can pin down our interpretation even further by exploiting cross-sectional variation

in household income, as in the previous section. A change in housing value should have a

proportionally bigger effect among households that are poorer to begin with, and therefore

should lead to a larger subsequent effect on volatility. Thus, we expect that the magnitude

of the coefficients from Table 5 should be relatively higher in low-income zip codes, and

relatively lower among high-income zip codes. Indeed, Table 6 documents exactly this re-

lationship. This table repeats the analysis of Table 5, interacting all explanatory variables

with 1998 log AGI (the same measure of income employed in the previous section), after de-
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meaning that variable across the full sample. (For compactness, only three lags are employed

instead of four).

For a household of average income, Table 6 continues to document the negative relation-

ship between housing return and future volatility that was reported in Table 5. However, a

significant and positive coefficient on the interaction with income indicates that the relation-

ship is stronger (weaker) for lower (higher) income households. With the CoreLogic data,

this interaction is rarely significant beyond a one-year lag, but with the Zillow data it shows

up two and even three years later. Again, our interpretation is that the wealth effect of a

monthly housing return is proportionally larger in areas with lower income (which proxies

for lower wealth). Our model then predicts that the relationship between housing return

and future volatility is stronger in lower-income areas, a prediction that is confirmed in the

data.

4 Housing expenditure share and non-recourse status

Income has the advantage of being available at a finely-disaggregated geographic level, but

it does not directly measure the fundamental forces in the model. In this section we employ

cross-sectional predictors that are more coarsely aggregated, but may come theoretically

closer to capturing the core ingredients of our model. We return to the cross-section of zip

codes that was used in most of the prior results.

First, we seek a proxy for wealth effects in utility. When households have non-homothetic

preferences over housing, income effects cause the housing expenditure share to fall as wealth

increases (see Albouy et al. (2016)). To capture this empirically, we obtain data on the

housing expenditure share. Our data source is the Metropolitan Statistical Area Tables

from the Consumer Expenditure Survey conducted by the Bureau of Labor Statistics, which

provides characteristic spending patterns of households in many of the largest MSAs across

the country.
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Through the 2003-2004 vintage, the survey covered 28 different MSAs, but thereafter it

was decreased to 18. We use the 2003-2004 vintage to have the largest and most recent data

possible. The dataset reports the MSA-level average expenditure share on a variety of goods,

including housing. Our key variable of interest is total expenditures on housing, divided by

the household’s total annual expenditures. This variable falls within a tight range, between

0.3 and 0.4 for all 28 MSAs in the sample.

We next seek out variation in θ. A commonly-explored source of such variation is the

degree of lender recourse in the case of default, which varies substantially around the country

due to state laws adopted in past decades, mostly in response to idiosyncratic circumstances

(see Ghent (2014)). In some states, such as Florida, lenders can pursue a deficiency judgment

granting it a claim on the borrower’s other assets; while in others, such as California, the

lender must be satisfied with foreclosure and sale of the house itself. Ex ante, this should limit

the amount the household can borrow as a fraction of its home value, leading in our model

to a lower θ, a tighter collateral constraint, and greater volatility in home price appreciation.

To classify states in terms of non-recourse status, we employ the coding of Ghent and

Kudlyak (2011), who conduct a detailed reading of state-level policies banning or hindering

deficiency judgments against residential properties. Under their coding, California, Wash-

ington, North Carolina, Arizona, Minnesota, Wisconsin, Oregon, and Iowa are coded as

non-recourse states.2

We find that a higher MSA-level housing expenditure share, and the state-level indicator

for non-recourse status, are both associated with much higher housing return volatility. The

results are presented in Table 7. Column 1 regresses return volatility on both of these new

predictors: The coefficient on housing expenditure share is 0.718, indicating that a household

that spends ten more percentage points of its total expenditures on housing experiences 7

percentage points higher housing return volatility on average. Meanwhile, a household in a

2In 2009, in the middle of our sample period, Nevada also passed an anti-deficiency law. See Li and
Oswald (2014) and Ghent (2014). We code Nevada as a recourse state, as in Ghent and Kudlyak (2011),
but our results are not meaningfully affected if we instead drop Nevada.
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non-recourse state experiences 3.2 percentage point higher housing return volatility. Both of

these are compared to a cross-sectional standard deviation of 4.4 percentage points.

Since we cannot employ the tight fixed effects of our earlier specifications, we control

for unobserved heterogeneity as much as possible by conditioning on other characteristics.

Column 2 adds our other wealth proxy, the zip-code median AGI. Column 3 adds the zip-

code number of tax returns filed with the IRS, and the fraction of residents who are black as

recorded by the Census. Finally, Column 4 excludes California, which is the largest of the

non-recourse states, and shows that the estimated coefficients barely change, although their

standard errors increase substantially.

To explore the effect of non-recourse status further, we observe that its effect in our model

should come through a reduction in realized credit, for which loan-to-value (LTV) is a good

proxy. We obtain from CoreLogic the zip-code level median LTV ratio, average this value

for each zip code throughout the sample period 1998-2014, and employ this average as an

outcome variable in Column 5. Non-recourse states have LTVs that are about 2 percentage

points lower on average, which is about one-third of the cross-sectional standard deviation.

This finding does not appear to be present in the literature, and substantiates the idea that

recourse status is important for credit availability, which in turn affects return volatility in

our model.

Having shown that non-recourse status affects credit, which in turn affects volatility, a

natural step is to combine these effects in an instrumental-variables (IV) regression, translat-

ing their magnitudes into a marginal effect of an increased LTV on return volatility. Column

6 reports this IV regression. If one accepts the exclusion restriction that a state’s non-

recourse status only affects housing return volatility through limits on credit availability, the

estimated coefficient on LTV (equal to the ratio of the coefficients in Columns 1 and 5) has

a direct interpretation in terms of our model: A percentage point increase in θ would lower

return volatility by 1.8 percentage points.
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5 Income and housing supply

Endogenous volatility in demand for and returns to housing is clearly important for the

household’s savings and consumption decisions, but it can have other real effects too. Most

importantly, in a standard real-option model of home construction, volatility in home values

increases the value of the option to delay. For example, Guthrie (2010) investigates such

a model, and shows that an increase in demand volatility leads to less-frequent but more-

intense development of new homes (see his page 66). Oh and Yoon (2016) also examine

quantitative implications of a real-options model of housing production.

Our model produces endogenous volatility in housing demand through a combination of

financial constraints and non-homothetic utility. This potentially provides a novel expla-

nation for why housing supply may exhibit less-frequent adjustments in low-income areas.

Media reports and anecdotal evidence suggest that this pattern is real and leads to afford-

ability problems. In this section, we provide novel evidence of this pattern using county-year

Census data on the issuance of building permits.

Table 8 runs regressions of various moments of the county-level time series on county-

level mean AGI. Columns 1 and 2 show that high-income areas see more permits issued per

year on average, but there is no significant relationship between income and the growth rate

of permit issuance during our sample period. However, Columns 3 and 4 show that the

volatility of permit issuance, in level and growth rate respectively, is strongly decreasing in

income. Column 4 corresponds with the relationship depicted in Figure 11. All standard

errors are clustered by state. Panel (b) of the table repeats all regressions with state fixed

effects (the MSA fixed effects of the earlier analysis are not possible, since the permits data

are only available at the county level).

Figure 11 summarizes the last of these regressions visually. The horizontal axis plots 1998

county-level mean AGI. The vertical axis plots the volatility of the log growth rate of permits

issued for single-unit buildings from 1998-2014. We observe a strongly and monotonically

negative relationship between the two variables. Our interpretation of these results is that
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volatility in the growth rate of permits reflects less-frequent but more-intense responses of

supply to demand shocks.

As another way of thinking about this mechanism, Table 9 analyzes the local age of

the housing stock, also reported by the Census (in the housing characteristics component

of the most recent Public Use Microdata Samples from the American Community Survey).

The dependent variable is either the age of the property as of 2015, or an indicator for the

property being built in 2005 or later.3 The geographic unit here is the Public Use Microdata

Area (PUMA), the smallest geographic unit available in the ACS, as of 2000.

The results in the table show a clear negative relationship between household income

and the age of the housing stock. In columns 1 and 2, doubling a household’s income is

associated with a 2-3 year decrease in the age of the property, or a 2% greater probability

that the house was built after 2005, in a regression with state fixed effects. Columns 3 and

4 report similar results using tighter fixed effects for the PUMA. Finally, Columns 5 and

6 take a nonparametric approach by constructing five bins of income within-state, showing

that the relationship between income and age of the housing stock is monotonic.

Our interpretation of these findings is that construction activity is less frequent in low-

income areas, consistent with the implications of higher housing return volatility in a real-

options model of home construction. Existing explanations for low housing supply or sluggish

adjustment focus on supply constraints arising from geography (Saiz (2010)) or regulation

(Gyourko and Molloy (2014)). In contrast, our mechanism operates through financial con-

straints on the demand side, providing a potentially more-fundamental explanation for a

lack of affordable housing supply.

3Before 2004, the age of the property is only reported within a range: 2000-2004; or the decade in which
the property was built if before 2000. We use the midpoint of the age range in each case. Also, properties
built before 1940 are bottom-coded into one category; we drop these from the sample.
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6 Conclusion

In this paper, we demonstrate empirically and theoretically that two widely-studied features

of housing – its collateral value for constrained households, and the non-homotheticity of

preferences over it – lead in equilibrium to greater volatility of home price appreciation for

low-income households, without any compensating increase expected return. Our theoretical

analysis assumes no frictions in mortgage markets beyond the limited borrowing capacity

of the impatient household. In fact, the model could likely be applied to a wide range

of durable goods, although housing is its natural setting. Likewise, our empirical analysis

did not focus on any particular time period (such as the housing boom or bust) nor on

any particular region. Our results thus capture a fundamental connection between financial

constraints and the return patterns of assets with collateral value in the presence of non-

homothetic preferences. Because housing is such a large fraction of expenditures for the

typical household, this is a quantitatively important pattern to understand for policy analysis

of the housing affordability problem.
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(a) Distribution of zip-code level averages of annualized log monthly returns, 1998-2015. The solid
blue bars are calculated using the CoreLogic Home Price Index, Single Family Combined series.
The black outlined bars are calculated using the Zillow Home Value Index.
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(b) Distribution of zip-code level volatilities of annualized log monthly returns, 1998-2015. The
solid blue bars are calculated using the CoreLogic Home Price Index, Single Family Combined
series. The black outlined bars are calculated using the Zillow Home Value Index.

Figure 4: Comparison of return and volatility distributions from CoreLogic and Zillow data.
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(a) Scatter plot of zip-code level average returns calculated using Zillow data against those calcu-
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(b) Scatter plot of zip-code level return volatilities calculated using Zillow data against those cal-
culated using CoreLogic data.

Figure 5: Comparison of return and volatility distributions from CoreLogic and Zillow data.
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(AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.
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(b) Zip-code level average housing return, 1998-2015, by bins of 1998 zip code-level mean adjusted
gross income (AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.

Figure 6: Housing returns and volatilities across zip codes.
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(b) Zip-code level average housing return, 1998-2015, by bins of 1998 zip code-level mean adjusted
gross income (AGI). Blue bars are calculated using CoreLogic data, and red bars using Zillow data.
Returns are demeaned within-MSA, and the bins are also constructed within-MSA.

Figure 7: Housing returns and volatilities across zip codes, within-MSA.
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(1) (2) (3) (4)
HPI return vol HPI return vol HPI return HPI return

Ln(Mean AGI) -0.0127∗∗∗ -0.0124∗∗∗ 0.000125 -0.00122
(0.00140) (0.00154) (0.000904) (0.00131)

Fixed effect MSA MSA MSA MSA
Sample All MSA pop 1M+ All MSA pop 1M+
Obs. 5191 2207 5191 2207
R2 0.0953 0.108 0.00199 0.00320

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: In the first two columns, the dependent variable is σ̄annz , the volatility of the zip-
code-level annualized monthly log housing return. In the last two columns, the dependent
variable is r̄annz , the average of that return. Returns are measured using the CoreLogic Home
Price Index (Single Family Combined) for a cross-section of 5,573 zip codes from 1998-2014.
The explanatory variable is the natural logarithm of the zip code’s mean adjusted gross
income (AGI) from 1998, as reported by the IRS. Both variables are demeaned within-MSA,
and MSA fixed effects are also included. Standard errors are clustered by state. Columns
(2) and (4) restrict to MSAs in which one million or more tax returns were filed with the
IRS in 1998.

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return ZHVI return

Ln(Mean AGI) -0.0270∗∗∗ -0.0312∗∗∗ 0.00655∗∗∗ 0.00576∗∗∗

(0.00303) (0.00329) (0.00140) (0.00196)
Fixed effect MSA MSA MSA MSA
Sample All MSA pop 1M+ All MSA pop 1M+
Obs. 5191 2207 5191 2207
R2 0.279 0.344 0.0905 0.0626

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: In the first two columns, the dependent variable is σ̄annz , the volatility of the zip-
code-level annualized monthly log housing return. In the last two columns, the dependent
variable is r̄annz , the average of that return. Returns are measured using the Zillow Home
Value Index for a cross-section of 5,573 zip codes from 1998-2014 (that is, restricting to zip
codes that also have non-missing information in the CoreLogic HPI series). The explanatory
variable is the natural logarithm of the zip code’s mean adjusted gross income (AGI) from
1998, as reported by the IRS. Both variables are demeaned within-MSA, and MSA fixed
effects are also included. Standard errors are clustered by state. Columns (2) and (4)
restrict to MSAs in which one million or more tax returns were filed with the IRS in 1998.
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(a) Los Angeles.

(b) New York.

(c) Chicago.

Figure 8: Income and housing return volatility for the largest three MSAs. The three panels
on the left show the annualized zip-code level volatility of home price returns from 1998-2014,
based on Zillow data. Darker shading corresponds to higher volatility, using eight bins. The
three panels on the right show zip-code level 1998 adjusted gross income, again using eight
bins, but here darker shading corresponds to lower AGI.
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(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.00874∗∗∗ -0.00972∗∗∗ -0.00842∗∗∗ -0.0138∗∗∗

(0.00267) (0.00174) (0.00237) (0.00262)
Metro New York Los Angeles Chicago Philadelphia
Obs. 268 220 213 178
R2 0.0386 0.125 0.0565 0.135

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.00672∗∗∗ -0.0263∗∗∗ -0.0149∗∗∗ -0.0127∗∗∗

(0.00194) (0.00458) (0.00287) (0.00310)
Metro Miami Fort Lauderdale Atlanta Boston San Francisco
Obs. 155 141 147 104
R2 0.0730 0.192 0.157 0.142

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.0171∗∗∗ -0.00400 -0.0147∗∗∗ -0.0178∗∗∗

(0.00396) (0.00249) (0.00331) (0.00342)
Metro Detroit Seattle Riverside Phoenix
Obs. 132 112 95 89
R2 0.125 0.0230 0.176 0.237

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
HPI return vol HPI return vol HPI return vol HPI return vol

Ln(Mean AGI) -0.0128∗∗∗ -0.00653 -0.0474∗∗∗ -0.0152∗∗∗

(0.00350) (0.00448) (0.00633) (0.00460)
Metro Minneapolis St Paul Tampa Baltimore Denver
Obs. 104 100 71 81
R2 0.116 0.0212 0.449 0.121

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Regressions of return volatility, based on CoreLogic data from 1998-2014, on 1998
mean household AGI, within each of the 16 largest MSAs in the sample.
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(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0215∗∗∗ -0.0389∗∗∗ -0.0192∗∗∗ -0.0196∗∗∗

(0.00221) (0.00287) (0.00274) (0.00222)
Metro New York Los Angeles Chicago Philadelphia
Obs. 268 220 213 178
R2 0.262 0.458 0.190 0.306

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0321∗∗∗ -0.0537∗∗∗ -0.0242∗∗∗ -0.0410∗∗∗

(0.00284) (0.00539) (0.00228) (0.00513)
Metro Miami Fort Lauderdale Atlanta Boston San Francisco
Obs. 155 141 147 104
R2 0.455 0.417 0.437 0.385

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0366∗∗∗ -0.00778∗∗∗ -0.0380∗∗∗ -0.0375∗∗∗

(0.00441) (0.00210) (0.00526) (0.00435)
Metro Detroit Seattle Riverside Phoenix
Obs. 132 112 95 89
R2 0.346 0.111 0.359 0.462

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) (2) (3) (4)
ZHVI return vol ZHVI return vol ZHVI return vol ZHVI return vol

Ln(Mean AGI) -0.0313∗∗∗ -0.0257∗∗∗ -0.0279∗∗∗ -0.0250∗∗∗

(0.00497) (0.00409) (0.00412) (0.00352)
Metro Minneapolis St Paul Tampa Baltimore Denver
Obs. 104 100 71 81
R2 0.280 0.288 0.399 0.390

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Regressions of return volatility, based on Zillow data from 1998-2014, on 1998 mean
household AGI, within each of the 16 largest MSAs in the sample.
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(a) Outcome variable is return volatility.
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(b) Outcome variable is average return.

Figure 9: Coefficients from zip-code level regressions of return volatility and level on 1998
AGI, using rolling five-year windows starting at the year indicated, and including MSA fixed
effects and clustering standard errors by state.
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Figure 10: Fraction of properties turning over in a given zip code and month, by five bins of
income. Source: Zillow and IRS.
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(1) (2) (3) (4)
HPI vol HPI vol HPI vol HPI vol

∆ ln(HPI) t− 12 -0.0394∗∗∗ -0.0365∗∗∗ -0.0368∗∗∗ -0.0373∗∗∗

(0.00662) (0.00602) (0.00620) (0.00640)
∆ ln(HPI) t− 24 -0.0225∗∗∗ -0.0216∗∗∗ -0.0221∗∗∗ -0.0225∗∗∗

(0.00569) (0.00526) (0.00525) (0.00545)
∆ ln(HPI) t− 36 -0.0110∗ -0.00996∗ -0.0102∗ -0.0105∗

(0.00553) (0.00521) (0.00516) (0.00545)
∆ ln(HPI) t− 48 -0.0100 -0.00838 -0.00940 -0.0110

(0.00818) (0.00802) (0.00814) (0.00858)
Fixed effect None State MSA Zip Code
Obs. 70239 70239 69888 70239
R2 0.0636 0.0892 0.132 0.0632

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Using CoreLogic HPI

(1) (2) (3) (4)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol

∆ ln(ZHV I) t− 12 -0.0172∗ -0.0210∗∗ -0.0209∗∗ -0.0203∗

(0.00924) (0.0103) (0.0101) (0.0101)
∆ ln(ZHV I) t− 24 -0.0168∗∗∗ -0.0166∗∗∗ -0.0169∗∗∗ -0.0165∗∗∗

(0.00361) (0.00369) (0.00348) (0.00346)
∆ ln(ZHV I) t− 36 -0.0112∗∗ -0.00956∗∗ -0.00951∗∗ -0.00907∗∗

(0.00429) (0.00372) (0.00384) (0.00368)
∆ ln(ZHV I) t− 48 0.0141 0.0108 0.0114 0.0109

(0.0105) (0.00890) (0.00899) (0.00915)
Fixed effect None State MSA Zip Code
Obs. 70239 70239 69888 70239
R2 0.0135 0.150 0.221 0.0220

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Using Zillow ZHVI

Table 5: Zip-code level panel regressions of housing return volatility (calculated on a rolling
basis with 12 months of data) on lags of monthly housing returns.
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(1) (2) (3) (4)
HPI vol HPI vol HPI vol HPI vol

∆ ln(HPI) t− 12 -0.0367∗∗∗ -0.0344∗∗∗ -0.0351∗∗∗ -0.0360∗∗∗

(0.00716) (0.00671) (0.00670) (0.00681)
∆ ln(HPI) t− 24 -0.0250∗∗∗ -0.0237∗∗∗ -0.0244∗∗∗ -0.0254∗∗∗

(0.00675) (0.00627) (0.00623) (0.00650)
∆ ln(HPI) t− 36 -0.0160∗∗ -0.0145∗ -0.0155∗∗ -0.0169∗∗

(0.00778) (0.00748) (0.00745) (0.00776)
ln(AGI) 1998 -0.000525∗∗∗ -0.000539∗∗∗ -0.000402∗∗∗

(0.000191) (0.000184) (0.0000989)
ln(AGI) 1998×∆ ln(HPI) t− 12 0.0149∗∗ 0.0155∗∗ 0.0144∗∗∗ 0.0121∗∗

(0.00601) (0.00600) (0.00504) (0.00451)
ln(AGI) 1998×∆ ln(HPI) t− 24 0.00181 0.00224 0.00174 0.000403

(0.00369) (0.00351) (0.00378) (0.00381)
ln(AGI) 1998×∆ ln(HPI) t− 36 -0.00766 -0.00713 -0.00806 -0.00940

(0.00484) (0.00463) (0.00500) (0.00560)
Fixed effect None State Metro Zip Code
Obs. 73038 73038 72674 73038
R2 0.0652 0.0891 0.132 0.0655

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Using CoreLogic HPI

(1) (2) (3) (4)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol

∆ ln(ZHV I) t− 12 -0.0111 -0.0161∗ -0.0163∗∗ -0.0170∗∗

(0.00719) (0.00807) (0.00795) (0.00788)
∆ ln(ZHV I) t− 24 -0.0146∗∗∗ -0.0139∗∗∗ -0.0147∗∗∗ -0.0149∗∗∗

(0.00344) (0.00340) (0.00335) (0.00335)
∆ ln(ZHV I) t− 36 -0.00271 -0.00407 -0.00371 -0.00471

(0.00812) (0.00646) (0.00658) (0.00668)
ln(AGI) 1998 -0.000983∗∗∗ -0.000910∗∗∗ -0.000920∗∗∗

(0.000116) (0.000123) (0.000113)
ln(AGI) 1998×∆ ln(ZHV I) t− 12 0.0599∗∗∗ 0.0582∗∗∗ 0.0570∗∗∗ 0.0533∗∗∗

(0.00763) (0.00697) (0.00707) (0.00731)
ln(AGI) 1998×∆ ln(ZHV I) t− 24 0.0158∗∗ 0.0152∗∗ 0.0151∗∗ 0.0134∗∗

(0.00583) (0.00581) (0.00580) (0.00536)
ln(AGI) 1998×∆ ln(ZHV I) t− 36 0.0129 0.0116 0.00986 0.00714

(0.00868) (0.00926) (0.00864) (0.00845)
Fixed effect None State Metro Zip Code
Obs. 73038 73038 72674 73038
R2 0.0364 0.159 0.231 0.0357

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) Using Zillow ZHVI

Table 6: Repeats Table 5, interacting explanatory variables with 1998 log AGI.
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(1) (2) (3) (4) (5) (6)
ZHVI vol ZHVI vol ZHVI vol ZHVI vol LTV ZHVI vol

Non-recourse 0.0336∗∗∗ 0.0314∗∗∗ 0.0336∗∗∗ 0.0325∗ -0.0191∗

(0.00973) (0.00925) (0.00922) (0.0182) (0.0109)
LTV -1.755∗

(1.063)
Housing expenditure share 0.718∗∗ 0.753∗∗ 0.723∗ 0.732 -0.648∗∗∗ -0.419

(0.310) (0.290) (0.398) (0.477) (0.207) (0.923)
Ln(AGI) -0.0305∗∗∗ -0.0252∗∗∗ -0.0222∗∗∗

(0.00385) (0.00418) (0.00443)
Ln(Population) 0.000465 -0.000858

(0.0104) (0.0123)
Fraction black residents 0.0300∗∗∗ 0.0304∗∗∗

(0.00790) (0.00906)
Constant -0.153 -0.0474 -0.0684 -0.0639 1.125∗∗∗ 1.821

(0.107) (0.0963) (0.0861) (0.0856) (0.0703) (1.222)
Sample All All All Excl. CA All All
Obs. 2780 2696 2695 2301 2780 2780
R2 0.269 0.401 0.420 0.333 0.0610 .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: This table reports zip-code-level regressions of return volatility on MSA-level av-
erage housing expenditure share and the state-level non-recourse indicator from Ghent and
Kudlyak (2011). Standard errors clustered by state.

38



(1) (2) (3) (4)
Mean(Permits) Mean(∆ log permits) σ(log permits) σ(∆ log permits)

Ln(Mean AGI) 1478.6∗∗∗ -0.0171 -0.0804∗∗ -0.503∗∗∗

(164.3) (0.0140) (0.0341) (0.0438)
Constant -4917.6∗∗∗ 0.0154 0.928∗∗∗ 2.277∗∗∗

(544.8) (0.0520) (0.115) (0.164)
Obs. 2987 2924 2941 2902
R2 0.123 0.00130 0.00542 0.162

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a)

(1) (2) (3) (4)
Mean(Permits) Mean(∆ log permits) σ(log permits) σ(∆ log permits)

Ln(Mean AGI) 1646.8∗∗∗ 0.00911 -0.102∗∗ -0.406∗∗∗

(211.9) (0.0114) (0.0431) (0.0470)
Fixed effect State State State State
Obs. 2987 2924 2941 2902
R2 0.128 0.000297 0.00750 0.0967

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b)

Table 8: Relationship between county-level income and permit issuance. In each regression
the explanatory variable is the log of the county-level mean household AGI as reported
in the IRS Statistics of Income for 1998. The outcome variables are county-level moments
calculated from the county-level annual time series of permits issued for single-unit dwellings
from 1998-2014: Average number of permits in column 1; average growth rate of log permits
in column 1; volatility of log permits in column 3; volatility of the growth rate of log permits
in column 4. All standard errors are clustered by state. Panel (b) includes state fixed effects
in all four regressions.
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Figure 11: County-level data: Volatility of the annual log growth in permits issued for
single-unit buildings, 1998-2014, versus log of 1998 mean AGI per return.
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(1) (2) (3) (4) (5) (6)
Age Post-2005 Age Post-2005 Age Post-2005

Ln(HH Income) -2.786∗∗∗ 0.0223∗∗∗ -2.330∗∗∗ 0.0200∗∗∗

(0.233) (0.00265) (0.0257) (0.000675)
Income bin 2 -1.013∗∗∗ 0.00708∗∗∗

(0.139) (0.00168)
Income bin 3 -2.598∗∗∗ 0.0206∗∗∗

(0.247) (0.00303)
Income bin 4 -4.846∗∗∗ 0.0389∗∗∗

(0.410) (0.00500)
Income bin 5 -7.871∗∗∗ 0.0618∗∗∗

(0.588) (0.00697)
Constant 65.95∗∗∗ -0.156∗∗∗ 60.94∗∗∗ -0.131∗∗∗ 38.69∗∗∗ 0.0628∗∗∗

(2.565) (0.0291) (0.282) (0.00742) (0.701) (0.00338)
Fixed effect State State 2000 PUMA 2000 PUMA
Sample 3525048 3525048 3525048 3525048 3525048 3525048
Obs. 0.0203 0.00522 0.0142 0.00426 0.0236 0.00619

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: This table reports property-level regressions of age (columns 1, 3, 5), and an
indicator for being built after 2005 (columns 2, 4, 6) on measures of household income. Data
are from the housing characteristics component of the American Community Survey (ACS)
conducted by the US Census Bureau. In Columns 3 and 4, the fixed effect is at the level of
Public Use Microdata Area as defined in the ACS. In Columns 5 and 6, bins of household
income are constructed within-state. The consistent finding is that areas with higher income
have newer housing stock.
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