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Abstract

A growing literature examines trade-related dynamics efpttoduct-level within firms
or plants. Product-level efficiency is a key theoretical poment, and so is the ranking
of products by "core competence." However, data limitatiorake it difficult to construct
product-level efficiency, and productivity patterns asrpsoducts within plants are largely
unexplored. We exploit a uniquely detailed Chilean dattdsstallows us to compute sev-
eral alternative efficiency measures (such as marginas castenue productivity, physical
efficiency, and marginal costs), for each product withimpda We present novel stylized
facts in three areas. First, on product-level efficiencyguas, we show that productive
plants tend to be relatively efficient across the board, unsttfor their core products. Sec-
ond, we show that the typically used sales-based produ&srearrectly reflect higher
physical efficiency (TFPQ); however — seemingly contramict- marginal costs are higher
for top-ranked sales products. We show that this discrgpemnlikely driven by product
quality and present a stylized model that underlines themapce of the ranking variable.
Finally, using the prominent metric of export skewness tas&ore products, we highlight
the importance of using the appropriate ranking variablemtesting predictions of flexi-
ble manufacturing models. Product ladders based on mamgiats or revenue productivity
do not show export skewness, while TFPQ-based rankingsedd skewness towards the
most efficient product and thus aggregate efficiency gaom frade.
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1 Introduction

A growing literature examines how production within mytieduct firms is affected by interna-
tional trade, and how the optimal response of these firmsrtgetition influences productivity.
For exampleBernard, Redding, and Sch@&011), andMayer, Melitz, and Ottavian{2014)
show that increased competition causes multi-product ftorekew their production towards
their best performing ("core") products and to drop lesdifaiole products from their portfo-
lio. Similarly, Eckel and Neary2010 study cannibalization of own products and diseconomies
of scope when firms expand their product lines, moving awagnftheir "core competence."
In the theory underlying these studies, product-specifinptence depends on the efficiency
with which each product is produced. However, data linotati make it difficult to construct
product-level efficiency.In fact, productivity patterns across products within pdaare largely
unexplored. To bypass this limitation, previous studiegeheonstructed the product ladder
within firms using total sales (or exports) of each produather than efficiency as implied by
the theory.

In this paper, we use a uniquely rich dataset to explore mtldwel efficiency and core
competence in Chilean manufacturing. The Chilean dataagontbformation on product-
specific inputs. This allows us to estimate markups at thetggeoduct level, following the
method pioneered bRe Loecker and WarzynskP012), which is flexible with respect to the
underlying price setting model and the functional form e groduction function. Our dataset
also includes physical units as well as revenues for eaait-pl@duct, allowing us to calcu-
late product prices (unit values). Dividing these by theesponding markups yields marginal
costs at the plant-product lev&¢ Loecker et a]2016. We also compute physical productivity
(TFPQ) and revenue productivity (TFPR) at the plant-protewel. We then use this rich set of
product-specific performance measures to examine prottygbatterns within multi-product
plants. In addition, we use our efficiency measures to creduct ranks within plants and
check to what extent conclusions in the previous literati@@end on using sales as the ranking
variable.

We document a series of novel stylized facts that can be hreachmarized in three groups.
First, we examine productivity patterns within plants, fimgithat efficient plants tend to be ef-
ficient across the board, not merely for their core produdtis Bupports a common feature
of flexible manufacturing models: product-level efficiensydriven by a plant-level efficiency
draw, in combination with a product-specific tefnThese specifications imply that firms with

1The exception ar®e Loecker, Goldberg, Khandelwal, and Pavc(#R16, who study pass-through at the
product level;Garcia-Marin and Voigtlandeg2013 and Lamorgese, Linarello, and Warzyngi@014), who ex-
amine export-related efficiency gains at the product lemetDhyne, Petrin, Smeets, and Warzyn&k16 who
study the effects of import competition on product-levéibégncy.

2For example, the models &ckel and Neary2010 andMayer et al.(2014), feature a firm-level draw that
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relatively high efficiency in their core product (comparedcbre products of other producers)
should also be relatively efficient in lower-ranked producThis is supported by the strong
positive correlation between the relative efficiencieshef¢ore product and lower-ranked prod-
ucts. A related finding is that efficiency trends over time@gelated across products within
plants. That is, when plants become more efficient at produacne product, the production of
other products also becomes more efficient. This common oaem of efficiency growth has
important implications for models with endogenous growtimiulti-product plants.

Our second block of results underlines the importance ov#nmble that is used to rank
products. We show that the standard procedure to createigréatiders according to sales
leads to a seemingly contradictory pattern: top-rankeedssptoducts exhibit higher physical
efficiency (TFPQ) but also higher marginal costs (MC). Wevsltlmat this difference is likely
driven by product quality: Unobserved product quality egignarginal costs via higher input
prices, but it leaves our measure of TFPQ largely unaffec@@ssequently, top-sales products
tend to be produced at relatively high efficiency (high TFR&I} at high marginal costs due to
expensive inputs. High TFPQ exerts a downward pressure oand@rices, while high quality
exerts an upward pressure. In sales-based rankings, teegagvails, so that top products are
sold at relatively high prices. Our findings thus support eisthat emphasize the importance of
the quality dimension, but they also point to the importaoicesing the appropriate efficiency
measure when examining gains from reallocation acrossuptedvithin plants.

To rationalize these empirical findings, we built a stylizaddel, combiningugler and
Verhoogers (2012 framework of heterogeneous plants and endogenous quéldice with
Eckel and Nearg (2010 model of multi-product plants. An important feature of tinedel
is that — contrary to previous contributions — quality cafpighis distributed independently of
physical efficiency at the product level. This yields thetfiea that physical efficiency is not
perfectly correlated with product revenues (which in tuepend on both efficiency and quality).
In fact, product rankings based on revenues are ‘biasedirdsvproducts with higher quality
capability draws, which can explain the observed higher MICcbre products. On the other
hand, product rankings based on physical efficiency (TFR®unaffected by quality, so that
core products have lower marginal costs.

Our final block of results examines the extent to which a @ritnding in models of flex-
ible manufacturing depends on the efficiency measure thasesl to rank products. These
models (e.g.Mayer et al, 2014 examine how competition across export destinations &ffec
the product mix within-plants. We take advantage of the flaat we observe direct measures
of efficiency for each product, and study whether the caradmwdel holds when actual effi-

serves as the marginal cost of the core product. Increag@tande from the core product then leads to successively
higher product-specific marginal cost.



ciency is used to rank products, instead of the typicallyduseking by export sales. When
using sales-based product ranks, we confirm the skewnespofte sales towards core prod-
ucts in more competitive destination markets. This is alge for TFPQ based product ranks.
Thus, exports to competitive markets are indeed skewedrttsihe most efficiently produced
product (as opposed to simply the most prominent one), affgitihat this mechanism can lead
to aggregate efficiency gains. However, rankings based oginad cost or revenue productiv-
ity (TFPR) do not imply skewness. This underlines the imgioce of correctly specifying the
productivity measure when examining gains from trade.

Our paper relates to a large literature that studies thegakhip between international trade
and productivity. Papers such Ravcnik(2002, Bernard, Eaton, Jensen, and Kort(@003,
andMelitz (2003 have examined selection across firms as a driver of prodtycincreases.
Recent contributions on multi-product firms, in turn, havetéad focused on the reallocation of
resources across products within firnBe(nard et al.2011 Mayer et al, 2014). Eckel, lacov-
one, Javorcik, and Near2015 introduce endogenous choice of product quality in Hokel
and Neary(2010 framework. In this context, firms produce more of their coognpetence
products, but these products also have higher marginsjdingvincentives to invest in their
quality. Using Mexican manufacturing dakegkel et al(2015 show that firms in differentiated-
goods sectors tend to exhibit quality competence, whikeithtrue to a lesser extent for firms
operating in homogenous-goods secfoRapers in this literature have constructed core com-
petence measures based on total sales. The excepti@hgne et al.(2016, who estimate
firm-product efficiency shocks for multi-product plants iel§um. Since the Belgian data do
not include product-level information on inpuBhyne et al (2016 extend the single-product
production function methodology to estimate multi-produoduction functions, defining pro-
duction possibilities for each firm based on aggregatedtsand outputs. A downside of this
framework is that it applies only to given production tup(esy., all four-product firms that
produce the exact same set of products). In practice, thi®$es a severe data restriction,
especially in small countries with relatively few firrs.

Relative to the existing literature, we make several cbations. First, we provide di-
rect evidence for assumptions that underly prominent nsoafelexible manufacturing such as
Bernard et al(2011) or Mayer et al.(2014). For example, our finding that productive plants
tend to be relatively efficient at all their products suppdine setup where a common efficiency
draw affects all products within a plant. To the best of ourkledge, we are the first to provide

3Quality differences are identified indirectly, throughitheffect on prices.

4To by-pass this issue, the authors aggregate all other sytpaduced by the plant in an ad-hoc fashion, using
either revenues, or physical output indexes. Our appraacbntrast, does not need to impose any functional form
for aggregating product level information, or to assumecation rules for assigning inputs to outputs, because we
infer product-specific input shares directly from the data.
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direct evidence that this assumption holds in the data. f@eawe document a number of novel
stylized facts on the relationship between products’ salek and their underlying productivity,
marginal costs, and markups. We also show how the pattetthe idata are related to product
quality. Third, our results emphasize the importance afigishe appropriate ranking variable
(i.e., efficiency measure) when testing predictions of BeExmanufacturing models.

The rest of the paper is organized as follows. Secidiscusses our empirical framework,
shedding light on different efficiency measures such as imargost, physical productivity, and
revenue productivity. We also illustrate the empiricahiewvork to estimate these measures.
Section3 describes our datasets. Sectbpresents our empirical results and novel stylized
facts. Sectiorb sketches a stylized model that can help to rationalize oypirgeal findings.
Section6 concludes.

2 Empirical Framework

In this section, we discuss our efficiency measures and iexptav we estimate them at the
plant-product level. Our first measure of efficiencyesenue-basetbtal factor productivity
(TFPR) —the standard efficiency measure in the literatuaeahalyzes productivity in the con-
text of international trade. We discuss why this measure fai&yo detect productivity differ-
entials. Our second efficiency measure is quantity prodit(iTFPQ), and the third, marginal
cost. We discuss which potential biases affect the diftemeasures, which is important since
we compare efficiency across products within plants.

2.1 Revenue vs. Physical Total Factor Productivity

Productivity is commonly measured in empirical studies eessadual term between total output
and the estimated contribution of production factors. ligetotal output should be computed
in terms of physical units of the final good. However, data bygical quantities are generally
scarce and have only recently become available for somermesinAs a result, the majority of
studies use revenue as output variable for measuring ptiedyicFrom hereafter, we denote
this productivity measure — based on revenues as outpuwthlar- by TFPR, to differentiate
from its quantity-based counterpart, which we denote byQ@FP

As shownin previous research, TFPR is a downward biasedureeatTFPQ Foster, Halti-
wanger, and Syversp8008. The intuition for this result can be illustrated using tredinition
TFPR = P -TFPQ, whereP denotes the output price. If more efficient producers charge
lower prices, then TFPR will only show a fraction (or in therexe, none) of the difference
in efficiency reflected by TFP®For instance, if preferences are CES and there are constant

5As we show below, there is an important exception where TRRR feflects differences in TFPQ across
producers: under constant returns to scale, if input paceshe same for both producers and the two producers
charge differential markups in the same proportion as tfierdnce in TFPQ.
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returns to scale, then any efficiency difference in TFPQsletas proportionately into differ-

ence in prices (since markups are constant with CES dem@oadisequently, TFPR will show

no differential in efficiency. In empirical studies, theg&ibias of TFPR is commonly tackled
by deflating revenues with industry price indexes. Howewgthin industries the bias does
not disappear, and cross-sectional differences in TFPRféeeted by the difference between
individual plants’ prices and the corresponding industigepindex.

Next, we show that differences in revenue-productivity raefually capture differences in
demand-side factors that lead to differential markups. dioplicity, assume for now a Cobb-
Douglas production function, whese= o, + a;); + o denotes the degree of returns to scale,
with the subscriptd,, M, andK denoting labor, material inputs, and capital, respectivEbtal
and marginal costs are then given by:

TC Q x oL oM 9K 1 1

= (5) [ ool ()] @
A 1

we = (5 [l el (ragpar “

wherew; denotes the price of inputand( is physical output volume. We use the standard
notation A for physical efficiency (TFPQ). Assuming that there are agjnately constant
returns to scaley(= 1), it can be shown thaK@atayama, Lu, and Tybou2009 Garcia-Marin
and Voigtlander2013:

ATFPR = Ap— A¢p(w) (3)

where we use\ to denote percentage (log-point) differences. EquaBpm{plies that differen-
tial TFPR does not reflect efficiency differences — unlesstplaith higher TFPQ charge higher
markups or face lower input prices. On the other hand, whpatiprice differences are not
meaningful, and under constant returns to scale, it can @&rsthat @) implies that efficiency
differencesA A;; are fully reflected by differential marginal costs, i.&A;; = —AMC;, (see
Garcia-Marin and VoigtlandeR013 for a detailed discussion).

The above discussion shows that ideally, we would like tosueaTFPQ directly. Marginal
cost is a good alternative measure of physical efficiencyafipction functions exhibit constant
returns to scale, and provided that input price differermresmino® However, there are prac-
tical caveats. As we explain in secti@¥, estimating TFPQ may be more demanding from
a data perspective and is more likely to be affected by measemt error than marginal cost.

8In the presence of increasing returns, marginal costs evllitto overestimate actual efficiency gains. In this
case, TFPQ is the preferable efficiency measure, sincetibsa®n allows for flexible returns to scale.
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Nevertheless, we compute both TFPQ and marginal costsaanaite efficiency measures.

2.2 Productivity Estimation

To compute productivity we specify a Cobb-Douglas productunction with labor (), capital
(k), and materialsi) as inputs. Followind>e Loecker et al(2016, we estimate a separate
production function for each 2-digit manufacturing sedt9r using the subsample of single
product plantg. The reason for using single-product plants is that one &flyidoes not observe
how inputs are allocated to individual outputs within mytdduct plants. For the set of single
product plants, no assumption on the allocation of inputsutputs is needed, and we can
estimate the following production function with standafant-level information:

it = Bl + Bk + B ymu + win + € 4)

where all lowercase variables are in logsg; are revenues of single-product planin year
t, wy is productivity, k;; denotes the capital stock;;; are material inputs, ang, represents
measurement error as well as unanticipated shocks to oufgtitnating 4) yields the sector-
specific vector of coefficient8® = {57, 53, 85, }-

When computing TFPR, consistently with the literature, vedlate all nominal variables
(revenues, materials, wages) using 4-digit industry $pedeflators provided by ENIA. In
contrast, when computing TFPQ we use quantities — as opposeenues — as output variable,
and since we do not observe physical inputs in a consisteptweimplement the correction
suggested bfpe Loecker et al(2016 to control for the plant-specific variation in input prices

We estimate4) following the methodology byAckerberg, Caves, and Fraz@015 hence-
forth ACF), who extend the framework @lley and Pake$1996 henceforth OP) anHevin-
sohn and Petrif2003 henceforth LP). This methodology controls for the sinmutigy bias that
arises because input demand and unobserved productigifyasitively correlated. The key
insight of ACF lies in their identification of the labor elesty, which they show is in most cases
unidentified by the two-step procedure of OP and'{.®/e modify the canonical ACF proce-

"The 2-digit product categories are: Food and Beveragesil@gxApparel, Wood, Paper, Chemicals, Plastic,
Non-Metallic Manufactures, Basic and Fabricated Metaisl, ldlachinery and Equipment.

8This source of bias appears to be less problematic when @aehues are used as output variable Bee
Loecker et al.2016. Under quality considerations, plants charge highergsrior their outputs and pay more
for their inputs Kugler and Verhooger2012), implying that the input price bias tends to be compenshyeithe
output price variation.

SWe follow LP in using material inputs to control for the cdaton between input levels and unobserved
productivity.

10The main technical difference is the timing of the choiceatidr. While in OP and LP, labor is fully adjustable
and chosen inm, ACF assume that labor is chosertat b (0 < b < 1), after capital is known in — 1, but before
materials are choseninIn this setup, the choice of labor is unaffected by unokegproductivity shocks between
t — b andt, but a plant’s use of materials now depends on capital, mtddty, and labor. In contrast to the OP and
LP method, this implies that the coefficients of capital, enials, and labor are all estimated in the second stage.
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dure by specifying an endogenous productivity processcrabe affected by export status and
plant investment. In addition, we include interactionsamn export status and investment in
the productivity process. Thus, the procedure allows ekppto affect current productivity
either directly, or through a complementarity with investrhin physical capital. This reflects
the corrections suggested D Loeckern(2013; if productivity gains from exporting also lead
to more investment (and thus a higher capital stock), thedst@ method would overestimate
the capital coefficient in the production function, and thaglerestimate productivity (i.e., the
residual). Finally, using the set of single-product plantsy introduce selection bias because
plant switching from single- to multi-product may be coateld with productivity. Following
De Loecker et al(2016, we correct for this source of bias by including the presfigbrobabil-

ity of remaining single-producg;;, in the productivity process as a proxy for the productivity
switching threshold! Accordingly, the law of motion for productivity is:

Wit = g(wz’t—hdft—bdft—bdﬁt—l X dft—bg’it—l) +5it (5)

whered?, is an export dummy, and}, is a dummy for periods in which a plant invests in physical
capital (followingDe Loeckey2013.

In the first stage of the ACF routine, a consistent estimatexpected outpu&t(-) is ob-
tained from the regression

it = Oe(lity kit Mur; Tit) + €t

We use inverse material demang-) to proxy for unobserved productivity, so that expected
output is structurally represented by(-) = Bl + Biki + B5mae + he(mig, Lig, ki, i) 22
The vectorz,;; contains other variables that affect material demand (tme product dum-
mies, reflecting aggregate shocks and specific demand c@nfgn Next, we use the esti-
mate of expected output together with an initial guess fer dbefficient vecto3® to com-
pute productivity: for any candidate coefficient vecir productivity is given b)LuZ-t(BS) =

br — (Bflit + Biki + B;mit>. Finally, we recover the productivity innovatiaf, for the
given candidate vectq@s: following (5), we estimate the productivity proces%(Bs) non-
parametrically as a function of its own Iag_l(Bs), prior exporting and investment status, and
the plant-specific probability of remaining single-protiticThe residual is;;.

\We estimate this probability for single-product plantshiviteach 2-digit sector using a probit model, where
the explanatory variables include product fixed effectsotacapital, material, output price, as well as importing
and exporting status.

12We approximate the functio&t(-) with a full second-degree polynomial in capital, labor, amakerials.

3Following Levinsohn and Petri(R003, we approximate the law of motion for productivity (the @ion g(-)
stated in §)) with a polynomial.



The second stage of the ACF routine uses moment conditiofg tanterate over candidate
vectorsBs. In this stage, all coefficients of the production functioe @entified through GMM
using the moment conditions

E (&(B°)Zy) =0 (6)

whereZ;; is a vector of variables that comprises lags of all the vée®gln the production
function, as well as the current capital stock. These visahre valid instruments — including
capital, which is chosen before the productivity innovati® observed. Equatio®) thus says
that for the optimal3®, the productivity innovation is uncorrelated with the nushentsz;,.

Given the estimated coefficients for each product categdtiye vector3®), TFPR can be
calculated both at the plant level and for individual pradweithin plants. For the former, we
use the plant-level aggregate laldgr capital k;;, and material inputs;;. We then compute
plant-level TFPRw;;:

Wit = Gt — (B Lie + Bk + 5;,mit) (7)

whereg;, are total plant revenues, and the term in parentheses egpsebfe estimated contri-
bution of the production factors to total output in plantNote that the estimated production
function allows for returns to scales,{ + 3; + 3, # 1), so that the residual;; is not af-
fected by increasing or decreasing returns. When compptarg-level TFPR in multi-product
plants, we use the vector of coefficients that corresponds to the product categermgf the
predominant product produced by plant

Next, we compute our main revenue-based productivity nreasproductlevel TFPR. To
perform this step for multi-product plants, the individirbuts need to be assigned to each
product;. Here, our sample provides a unique feature: ENIA repottd t@riable costs (i.e.,
for labor and materials]'V'C;;, for each producy produced by plant. We can thus derive
the following proxy for product-specific material inputssaming that total material is used
(approximately) in proportion to the variable cost shares:

TV C;;
My, = stVC . M, where sLVC = ki

ijt it = m (8)

Taking logs, we obtaim,;;. We use the same calculation to proxy fgr andk;;;. Given these
values, we can derive plant-product level TFPR, using tloéoved® that corresponds to product

j:
Wit = Qijt — (B lije + Bikije + Brymije) 9)
whereg;;, are product-specific (log) revenues.
For estimating TFPQ, we modify the first stage of the ACF pdoce (given by equation
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(6) in the paper), by including a vector of variables to proxyifgout pricest* and we modify
the second stage by adding lags of these variables as iresttarto identify the additional
parameters. Given the quantity-based estimation of theyatn function (i.e., the vector of
guantity-based elasticitig®’), we can back out physical productivity TFPQ, using the dityan
equivalent of equatior9j. On the output side, physical quantities are directly olestat the
plant-product level in the Chilean data. As for inputs, we dsflated plant-level expenditures
in the spirit of Foster et al(2008, and assign these to individual products using the regorte
expenditure shares from ENIA (as calculatedd)).(With this information, we back out TFPQ
at the plant-product-year level.

2.3 Estimating Marginal Cost

To construct a measure of marginal production cost, we iodawo-step process. First, we
derive the product-level markup for each plant. Second, mie@lplant-product output prices
(observed in the data) by the calculated markup to obtaigimalrcost.

The methodology for deriving markups follows the productapproach proposed tyall
(1989, recently revisited byDe Loecker and WarzynskR012. This approach computes
markups without relying on market-level demand informatidhe main assumptions are that
at least one input is fully flexible and that plants minimizsts for each produgt The first
order condition of a plant-product’s cost minimization Ipiem with respect to the flexible input
V can be rearranged to obtain the markup of progumbduced by plant at timet:1°

y _ Py o (aQijt(') Vz‘jt) / F)Z‘]/t - Vije (10)
ijt = = - A |
\/l](-’ Mcijt aVz‘jt Qz‘jt Pijt : Qz‘jt
M vV -
anep Output Elasticity

Expenditure Share

whereP (PV) denotes the price of outpat (input V), andM C is marginal cost. According to
equation 10), the markup can be computed by dividing the output elagtafiproduct; (with
respect to the flexible input) by the expenditure share ofléheble input (relative to the sales
of producty). Note that under perfect competition, the output elastiequals the expenditure
share, so that the markup is one (i.e., price equals margusas).

In our computation of10) we use materials\{() as the flexible input to compute the output
elasticity — based on our estimates 4 for the quantity version of the production functiéh.

YFollowing De Loecker et al(2016, we include output prices and plant-product sales redativthe overalll
sales of the same product, as well as the interaction of tregbles with capital and materials.

5Note that the derivation of equatiofd) essentially considers multi-product plants as a colbectf single-
product producers, each of whom minimizes costs. This sdep not allow for economies of scope in production.
To address this concern, we show below that all our reswdtstadld for single-product plants.

8In principle, labor could be used as an alternative. Howenehe case of Chile, labor being a flexible input
would be a strong assumption due to its regulated labor rhatkdiscussion of the evolution of job security and
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We then compute markups based on quantity estimates of aiséogties3;, (as opposed to
revenue-based estimates). Note that since we use a Coldla@quroduction function, the out-
put elasticity with respect to material inputs is given bg ttonstant terng?,. Consequently,
it is absorbed by the product fixed effects (which are implitiour standardization that con-
structs the Torngvist index, see Secti®@). Thus, potential bias due to mis-measuggd(as
described irDe Loecker et a].2016 does not affect our results.

The second component needed 19)(— the expenditure share for material inputs — is di-
rectly observed in our data in the case of single-producttpldor multi-product plants, we use
the proxy described in equatio8)to obtain the value of material inpu@jt-vijt = M,;;. Since
total product-specific revenués;; - (0;;, are reported in our data, we can then compute the plant-
product specific expenditure shares needed @.{" This procedure yields plant-product-year
specific markupg; ;.

Finally, because output prices (unit valué3), are also observed at the plant-product-year
level, we can derive marginal costs at the same det&dl;;,. To avoid that extreme values drive
our results, we only use observations within the percenfiland 98 of the markup distribution.
The remaining markup observations vary between (appraeiy)e0.4 and 5.6.

2.4 Marginal Costvs TFPQ

In the following, we briefly discuss the advantages and &tions of marginal cost as compared
to quantity productivity (TFPQ) as a measure of efficiencyhia context of our study. For
now, suppose that the corresponding quantity-based inlasti@ties3* have been estimated
correctly!® Then, in order to back out TFPQ by using),(ideally both output and inputs
need to be observed in physical quantities. Output questdre available in some datasets.
But for inputs, this information is typically unavailabl&hus, researchers have adopted the
standard practice of using industry-level price indexefetitate input expenditures@ster et al.
2008. This approximation may lead to biased TFPQ estimatesiitiprices or the user cost
of capital vary across firms within the same industry. A fartbomplication arises if one aims
to compute product-specific TFPQ for multi-product plamtkere physical inputs need to be

firing cost in Chile can be found iMontenegro and Pag€2004).

7By using each product’s reported variable cost shares teydiar product-specific material costs, we avoid
shortcomings of a prominent earlier approach: since presipecific cost shares were not available in their dataset,
Foster et al(2008 had to assume that plants allocate their inputs propateiyn to the share of each product in
total revenues This is problematic because differential changes in nyaslacross different products will affect
revenue shares even if cost shares are unchaigedoecker et al(2016 address this issue by using an elaborate
estimation technique to identify product-specific materi@sts; this is not necessary in our setting because the
uniquely detailed Chilean data allow us to directly comparteduct-specific material costs from reported data.

18To compute TFPQ, the elasticities in the production furrcf#®) must be estimated in quantities. Estimating
this vector is challenging in itself: When estimating theguiction function4), product-specific output and inputs
have to be deflated by proper price indexes. In addition pifiiquantities are not available and input expenditure
is used instead, the estimation of the production functaeffecients is biased (sd2e Loecker et a.2016.
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assigned to individual products. While our dataset has thgue advantage that plants report
the expenditureshare of each product in total variable costs (which is gefficto derive the
product-specific material expenditure share neededOnt6 compute markups), it does not
contain information on how to assign inpgiantitiesto individual products. Thus, assigning
mi, li;, andk;; to individual products is prone to error. This is especi#ilye in the case of
capital, which is typically not specific to individual outgaroducts. In light of these limitations,
most studies compute TFPQ at the plant or firm level. An agldiéti complication arises fd;

in TFPQ calculations because the capital stock is only albkalin terms of monetary values
and not in physical units.

Contrast this with the computation of markups 0), still assuming thaf3® has been
correctly estimated. The output elasticity with respeantaterial inputs is given by? , and —
for single-product plants — the expenditure share for medtarputs is readily available in the
data. For multi-product plants, we use the approximatiah weported variable cost shares in
equation 8) to back out plant-product specific input expenditure shafehus, plant-product
specific markups can be immediately calculated in our Chitéstal®

We now turn to the estimation @#*, which is challenging and may introduce further error.
When using a Cobb-Douglas production function, this issukess severe for markups than
for TFPQ in the context of our analysis. The computation ofkaps uses onlys?, from the
vector3°. Note that measurement error @f, will affect the estimatedevel of markups, but
not our analysis across producers of the same product: ecee analyzelifferencesat the
product level,s?, is the same across producers and cancels out. In other wbedsstimated
differencesn markups in 10) are only driven by the observed material expenditure shime
not by the estimated output elasticity .2° Contrast this with the computation of TFPQ, which
uses all coefficients i°, multiplying each by the corresponding physical input (eflated
input expenditures) inf). In this case, analyzing differences in TFPQ will not elatie errors
and biases in the level @i’.

3 Data

Our primary dataset is a Chilean plant panel for the perid@b612007, theEncuesta Nacional
Industrial Anual(Annual National Industrial Survey — ENIA). We combine thligtaset with
Chilean customs data over the period 2001-2005. A key adganof the Chilean data is
that multi-product plants are required to report prodysesfic total variable costs. These are

9Note that when computing product-level markups for muttiguct plants, we only need to proportionately
assign the expenditure shareméterialinputs to individual products. This procedure is not neefedabor or
capital.

2OFor the same reason, we could in principle use estimat@$ &fom therevenueproduction function, i.e., the
same coefficients used to compute TFPR.
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crucial for the calculation of plant-product level markwgred marginal costs in multi-product
plants, as described in Secti@r8.

Data for ENIA are collected annually by the Childastituto Nacional de Estadisticélla-
tional Institute of Statistics — INE). ENIA covers the unige of manufacturing plants with 10
or more workers. It contains detailed information on plamracteristics, such as sales, spend-
ing on inputs and raw materials, employment, wages, investpand export status. ENIA
contains information for approximately 5,000 manufactgmplants per year with unique iden-
tifiers. Out of these, about 20% are exporters, and roughy @Dexporters are multi-product
plants. Within the latter (i.e., conditional on at least gmreduct being exported), exported
goods account for 80% of revenues. Therefore, the majofiraduction in internationally
active multi-product plants is related to exported goodmally, approximately two third of
the plants in ENIA are small (less than 50 workers), while medsized (50-150 workers) and
large (more than 150 workers) plants represent 20 and 12perespectively.

In addition to aggregate plant data, ENIA provides rich infation for every good produced
by each plant, reporting the value of sales, its total végiabst of production, and the number
of units produced and sold. Products are defined accordiag NIA-specific classification
of products, theClasificador Unico de Producta®€UP). This product category is comparable
to the 7-digit ISIC codé! The CUP categories identify 2,242 different products inghmple.
These products — in combination with each plant producimgmth- form our main unit of
analysis.

Customs data is collected by the Chiléagrvicio Nacional de Aduandblational Customs
Service) and covers the universe of export transactionstbeeeriod 1991-2010. Each export
transaction includes an identifier for the exporting firme 8tdigit Harmonized System cate-
gory of the product, and the destination country, FOB vabhgsical volume, and units of each
shipment. For the period 2001-2005, we can match this dataBNIA at the plant-product
level. For this period, ENIA provides information for thedigit Central Product Classification
(CPC) code for each product in addition to their CUP. We fisst correspondence tables be-
tween HS and CPC product categories (provided byuthiged Nations Statistical Divisigrio
consolidate HS-level customs data to the CPC level used bp EN2001-05. Next, we merge
the resulting dataset with ENIA at the CPC level. Finally,aedapse the data from the CPC to
the CUP level, so as to obtain the same level of disaggreagatidhe remaining product-level
data in ENIA.

Note that the unit of observation in ENIA are plant-prodyetile in Customs the units are
firm-products. However, this does not represent a serioggole for matching both datasets.

2For example, the wine industry (ISIC 3132) is disaggregagedCUP into 8 different categories, such as
"Sparkling wine of fresh grapes," "Cider," "Chicha," anddto."
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First, even for multi-plant firms we can match observatiartha plant-product level provided
that the same exported product is not produced simultaheousvo different plants of the
same firm. Second, the vast majority of plants in ENIA (ove¥o9af the total) are single-plant
firms. Thus, the potential for conflict is limited. For the feases where we cannot establish
a unique match between Customs and ENIA, we drop the comegmppobservations from the
sample.

3.1 Sample Selection and Data Consistency

In order to ensure consistent plant-product categoriesiicdlIA panel, we follow three steps.
First, we exclude plant-product-year observations thaelzzro values for total employment,
demand for raw materials, sales, or product quantitiesor@Eavhenever our analysis involves
guantities of production, we have to carefully account fosgible changes in the unit of mea-
surement. For example, wine producers change in some aestdrom "bottles" to "liters."
Total revenue is generally unaffected by these changethéulerived unit values (prices) have
to be corrected. This procedure is needed for about 1% ofait{product observations; it is
explained in more detail iarcia-Marin and VoigtlandgR013. Third, a similar correction is
needed because in 2001, ENIA changed the product identidier CUP to the Central Product
Classification (CPC V.1) code. We use a correspondencedead\iy the Chilean Statistical In-
stitute to match the new product categories to the old oreex3arcia-Marin and Voigtlander
2013 for detail). After these adjustments, our sample consiktsl 8,178 plant-product-year
observations.

3.2 Torngvist Index for Cross-Sectional Comparisons

Productivity measures that are based on units of outputk-asiphysical productivity (TFPQ)
or marginal costs — cannot be immediately compared acragiupts, because the output of
different products is measured in different units. To tedklis issue, we construct unit-free
Torngvist indexes. This procedure involves two steps. tFios each variabler;;, — defined
for product; of plant: in period¢ — we define its initial normalized valu&,(,) as the log
difference of variable: with its average over all plants producing the same produeaéured
in the same unit of output) in the first period prodycis produced by plant (i.e., z;;o =
Inzijo— (1/1) >, In450).22 Note that our implicit assumption here is that physical sioit
the same product, measured in the same unit, are compa€iteurse, this ignores possible
differences in quality, as we discuss in detail below.

In the second step, once we obtain the initial value for thenadized variable, the levels

22products in ENIA are defined at the 7-digit level. For somelpuds, units of measurement vary. For example,
wine may be measured in bottles or boxes. In these cases,eng separate category for each product-unit. We
also trim the data, excluding the top- and bottom 2% withithgaroduct category before normalizing. This avoids
that the initial levelst; ;o are affected by outliers.
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for the remaining periods are computed recursively as:
Tijp = Tyjg—1 + Alnag, (11)

whereAInz;;, = Inx;; — Inz;;,_;. The advantage of this normalization is that, provided that
the product is produced by a sufficiently large number of {slaits level in any period can be
interpreted as the log-deviation from the average compaoned all plants producing the same
product.

3.3 \Validity of the Sample

Before turning to our empirical results, we check whethedata replicate some well-documented
systematic differences between single and multiple-proglants. First, Tabld reports the
prevalence of multi-product plants in our sample. Resultgsst that in our sample, multi-
product plants are a similarly represented as in the U.$.wfoch Bernard, Redding, and
Schott(2010 provide statisticg® Despite the fact that multi-product plants represent leas t
half of the plants, they account for the majority of outpu@ f&rcent). The third row in the table
reveals that the average multi-product plant produces@dygts. This is also very similar to
the number reported for the U.S. Bgrnard et al(2010.

Table 1: Prevalence of plants / firms producing multiple pigid in Chile / U.S.

1) 2)
Chile U.S.
Share of multi-product plants 48.7% 39%

Share of output by multi-product plants 60.0% 87%
Mean products per multi-product plant  3.7% 3.5%

Notes The table provides statistics for multi-product plantsnparing the US
and Chile. Products are defined at the 7-digit level. Thealttok reports the
average number of products produced by a typical multiptehpct plant. The
numbers for the U.S. (column 2) are for the Census of Manufang of 1997,
and come fromBernard et al(2010. The U.S. figures correspond to firms,
whereas those for Chile are for plants. However, 97% of atidiare single-
plantin Chile, making a comparison viable.

Next, followingBernard et al(2010, we run the regression

1n(yist) = Qg + 6 di\;[tP + Eist » (12)

23Note that the U.S. statistics froBernard et al(2010 are for firms, whereas those for Chile are for plants.
However, 97% of all firms in the Chilean data are single-platiich renders a comparison viable.
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wherey;,; denotes several characteristics of plaintsectors and period, ¢} is a dummy for
multi-product plants, and,, denotes sector-year fixed effeétsThe coefficient reports the
multi-product premium — the percentage-point differenfidbe dependent variable between sin-
gle and multi-product plants. TabBreports multi-product plant premia for the Chilean ENIA.
Within their respective sectors, multi-product plants Emger both in terms of employment
and sales, are more likely to be exporters, but are not marduptive (measured by revenue

productivity). This is in line with evidence bgernard et al(2010 for the United States.

Table 2: Multiple-Product versus Single-Product Firm Gloteristics

1) (2) 3) (4)
Dependent Variable log(workers) log(sales) Export dummg(TFPR)
Multi-product plant dummy .325%** .395%** 0411 %** .0026
(.0223) (.0561) (.0056) (.0099)
Sector-Year FE v v v v
Observations 53,536 53,536 53,536 53,536
R? 0.039 0.074 0.018 0.657

Notes The table reports the percentage-point difference of #geddent variable between
multi-product and single-product plants in a panel of agjppnately 9,600 (4,500 average per
year) Chilean plants over the period 1996-2007. All regogsscontrol for sector-year effects
at the 2-digit level. Standard errors (in parentheses)lastered at the sector-year level. Key:
*** significant at 1%; ** 5%; * 10%.

4 Empirical Results

In this section we present our empirical results. We begth vasults on productivity patterns
within multi-product plants. We then turn to product ranksdore competence and establish
novel stylized facts on how plant-product performance mesagary along the product ladder.
Next, we shed light on the role of product quality by hightigly different patterns for ho-
mogenous vs. differentiated products. Finally, we showhatextent the ranking variable that
is used to create product ladders within plants affects enprent mechanism in international
trade — efficiency gains due to the skewness of sales towardgcoducts.

4.1 Product- and Plant-Specific Efficiency

A common assumption in models of flexible manufacturing sasBernard et al(2011) and
Mayer et al.(2014) is that producers draw a firm-specific productivity compdrtbat effects
all products. On top of this, there is a product-specific igfficy component (or a demand
component, which is typically isomorphic to efficiency). Asesult of this setup, these models

24 We control for sector-year effects at the 2-digit level.
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feature selection both across firms within industries, ded across products within firms. So
far, data limitation have prevented a direct test of the &medntal assumption that the efficiency
with which individual products are produced should be pealiy related to the efficiency of the
firm overall. Instead, the literature has largely focusetkesting thepredictionsof the selection
models, such as the skewness of exports in top- vs. low&edgoroducts. We get back to these
patterns below in Sectiof5. Here, we directly examine the relationship between produd
plant-level efficiency.

Table3 presents our results, using log TFPQ of the top-ranked J@ooeluct as dependent
variable. The sample includes all plants that produce &t Iegroducts in any given sample
year?® Product ranks are computed based on product-specific TFRiIQh 8 made comparable
across products using the Torngvist index described in@e8i2 In columns 1-4, we compute
the rank in each sample period, potentially allowing pragduo switch ranks within plants
over time. Before describing our results, note that all @sgions include product-year fixed
effects. Thus, we compare the efficiency of a given planpsremked product to the efficiency
in production of thesameproduct by all other plants that also produce this produd.rgfer to
this as "relative efficiency."

Column 1 in Table3 shows that there is a strong positive correlation betweerrdhative
efficiency in producing the top product and the relative adficy of producing the second-
ranked product. The coefficients can be interpreted asi@teest, so that a doubling in the
relative efficiency of producing the second product is asg¢ed with a 67% increase in the
efficiency of the top product. In columns 2 and 3, we confirmrarsg correlation also for
the 3rd and 4th ranked products, respectively. As one shexpect, the magnitude of the
coefficient declines as we move to lower-ranked productsitlbamains both statistically and
economically highly significant. In column 4, we compute #werage relative efficiency for
all non-top products (i.e., below rank 1) produced by a pl&gain, we find a strong positive
correlation with efficiency of the top-product. Doublingethverage relative efficiency of all
other products is associated with a 56% increase in TFPQedbihtproduct.

In columns 5-8, we change the way in which we rank productsn@Vekeep the rank from
the first year of the sample constant over the entire sampiedo€él his excludes the possibility
that products change their ranks within plants. We obtagffaents that are very similar to
those in columns 1-4, suggesting that rank switches ar&alnlto affect our results. In sum,
the strong correlation of product efficiencies establishedirst stylized fact:

Stylized Factl. Plants with high relative efficiency in their core produaad to be relatively
efficient also in other products.

29f a plant produces fewer than 5 years in some years, but nathiers, it is dropped from our sample during
the years in which it produces fewer than 5 products.
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Table 3:

Co-movement of TFPQ across products (by TFPQ rank)

Dep. Var.: TFPQ of the best-performing product

1) 2 3 “4) ®) (6) ™ 8
log(TFPQ) Top 2nd B71xrx — — — | B17* — — —
(.0207) (.0352)
log(TFPQ) Top 3rd — .529%** — — — A468*** — —
(.0231) (.0342)
log(TFPQ) Top 4th — — 374 — — 379r+*
(.0223) (.0368)
Avg. Log(TFPQ) Rest — — — S59%kx — — 510+
(.0224) (.0329)
Plant FE No No No No No No No No
Product-year FE Yes Yes Yes Yes| Yes Yes Yes Yes
Reference period for rahk Current Current Current  Current First First First First
Observations 2,305 2,246 2,141 2,305 1,545 1,429 1,227 1,848
R-squared .645 495 .337 A74 395 377 .294 .310

Notes The table regresses plant-product physical product{ifisPQ) of the best performing product of the plant
on TFPQ of the second, third and fourth top products (colulBsand 5-7 respectively), and against the average
log TFPQ of all products below rank 1 produced by the planiu@ms 4 and 8). The sample includes all plants
that produce at least 5 products. Within-plant product iregd are computed in terms of normalized product
TFPQ (based on the Torgvist index described in seii@h Standard errors (clustered at the plant level) are in
parenthesis. Key: *** significant at 1%; ** 5%; * 10%.

 This describes the sample year in which we rank productsolimans 1-4, we compute the rank in each sample
period, potentially allowing products to switch ranks viitiplants over time. In columns 5-8, we keep the rank
from the first year constant over the entire sample period.

Next, in Table4, we introduce plant fixed effects. This analysis exploityamithin-
plant variation over time, thus exploring the co-movemémroduct-specific efficiency within
plants. In other words, we examine whether there is a terydiemahe top-ranked product’s
efficiency to rise when the production of other products ia $ame plant becomes more ef-
ficient (or vice-versaj® We again obtain statistically highly significant coeffidi®n As one
would expect, the magnitude of the coefficients is smallantim Table3, because plant fixed
effects absorb the plant-level efficiency component thigices all products. Nevertheless, the
coefficients are economically meaningful, suggesting ahébubling in the average efficiency
of all non-top products is associated with a 25% increaséficiency of the top product. The
strong positive coefficients in Tabfesuggest that there is a significant tendency of efficiency
co-movement between products produced by the same plaistisidur second stylized fact:

Stylized Fac®. Efficiency tends to co-move across products within plants.

26In Table4, we only present results for stable product ranks. In fao, @ason to rank products in the first
sample year and keep this ranking constant over time is thatwise — with product rank switches — it would be
impossible to examine efficiency over time of products witfiven rank.
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This stylized fact goes beyond the standard framework ofetsoaf flexible multi-product
manufacturing, where firms receive a given efficiency draat tfoes not change over time, and
where re-allocation of resources across plants and prediristes efficiency gains. Stylized
fact 2, in contrast, focuses only on efficiency trendighin plants?’ Our results thus imply
that potential extensions that introduce innovation intedels of flexible manufacturing need
to allow for co-movement of efficiency gains across produg@tsis can be achieved either by
focusing on innovation in the plant-level efficiency compoty or by introducing spillovers
from innovation in one product to other products producethieysame plant.

Table 4: Within-Plants Comovement of TFPQ across products

(1) (2) (3) (4)

log(TFPQ) Top 2nd 264%** — — —
(.0569)
log(TFPQ) Top 3rd — .266*** — —
(.0580)
log(TFPQ) Top 4th — — 327+ —
(.0601)

Avg. Log(TFPQ) Rest — — — 248***
(.0509)

Plant FE Yes Yes Yes Yes

Product-year FE Yes Yes Yes Yes

Reference period for rafk  First First First First

Observations 1,545 1,429 1,227 1,848

R-sq .929 .928 .929 .924

Notes The table regresses plant-product physical productfiyPQ) of the best performing
product of the plant on TFPQ of the second, third and founphpieducts (columns 1-3, respec-
tively), and against the average log TFPQ of all productsweekink 1 produced by the plant
(column 4). The sample includes all plants that producesst [& products. Within-plant product
rankings are computed in terms of normalized product TFPE@db on the Torqvist index de-
scribed in sectio3.2). Standard errors (clustered at the plant level) are inrihesis. Key: ***
significant at 1%; ** 5%; * 10%.

¥ In determining product ranks, we keep the product’s efficyerank from the first year constant
over the entire sample period.

4.2 Core Competence and Plant-Product Performance

In the following, we examine various product-specific parfance measures within multi-
product plants. In the first part of our analysis, we follow standard procedure of ranking
products within plants by their sales revenues. Later, vesgmt results for alternative product

2Contributions such aBustos(2011) andGarcia-Marin and Voigtland€2013 suggest that these within-plant
efficiency gains can be substantial after export entry,Aaméti and Konings(2007) andDe Loecker et al(2016
show similar within-plant efficiency gains when trade po®s access to new or cheaper imported inputs.
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ranks based on product-level efficiency (TFPQ). We regréfgsent outcome measures; for
products; produced by plantin yeart on product rank dummieB; ,, with r = {1,...,4}:

19t

4
Yijt = Z BrRijy + 0it + 5 + Eije (13)
r=1

For consistency across the different specifications, wedstalize all dependent variables us-
ing the Torngvist index, i.e., we also standardize thosalbes that can be compared in their
raw form (such as sales revenué&sDue to the standardization, all regressions implicitly ac-
count for product fixed effects. The regressions also irejldnt-year fixed effect§;, so that
we only exploit variation across products within plantsndfy, ;;; denotes the error term.
The excluded category in regressidi8 comprises all products with rank 5 or higher. Conse-
qguently, coefficientss, are to be interpreted as percentage increase in outgontesn going
from products with rank below 5 to product rank

Table5 presents our results. Column 1 merely serves illustrativpgses, showing by how
much sales increase when going to higher-ranked producis-ranked products account for
more than three times higher revenues than products rarkex Below. Columns 2 and 3 split
the difference in revenues into differences in quantities prices, respectively. Quantity sold
accounts for the largest part of the sales differences alomgroduct ladder. Sales prices also
increase with product rank, but this is less pronounced:raofed products are sold at about
21% higher prices than products ranked 5th or below (coluinTBe fact that core products
are sold at higher prices is in line with quality-based mea#lflexible manufacturing such as
Eckel et al(2015. The findings in columns 1-3 thus replicate previous findirngext, we move
towards results that are new to the literature, becauseaiptebecific efficiency measures have
not been available. Column 4 shows that there are no signifaiferences in TFPR across
products within plants. This is our third stylized fact:

Stylized Fact3. Within plants, revenue productivity (TFPR) is fairly unifo across product
ranks.

If we take simple models of misallocation suchH&eh and Klenow2009 to the product
level within plants, uniform TFPR means that managers efficiently aiéocasources to the
individual products. However, this is not astonishing.egivthat most of the frictions that are
typically discussed in the literature (such as access tadmsapply at the plant level, and thus
equally to different productwithin plants.

28\We also use the standardized sales revenues when rankihggpsavithin plants. Results are almost identical
when we rank products by their raw sales instead. Also, faraue variables that can be compared across products
in their raw form (sales revenues, TFPR, and markups) seatdt very similar when we use the non-standardized
variables instead.
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Table 5: Core Competence by Sales Rank and Plant-Produotfance

1) 2 3 4 ®) (6) ()
Dep. Var.: log(Sales) log(Volume) log(Price) log(TFPR) g(®FPQ) log(MC) log(Markup)
Top product 3.245%** 3.106*** 210%** .0124 1.945%* [ 183** .00401
(.0303) (.0408) (.0267) (.00907) (.0393) (.0268) (.00623)
Top 2nd 2.455%+* 2.424%* 139+ .0154* 1.544%*  106*** .00324
(.0259) (.0370) (.0259) (.00862) (.0363) (.0265) (.00581)
Top 3rd 1.804*** 1.788*** .0863***  .0189** 1.144**  .0504* .00887
(.0242) (.0371) (.0266) (.00807) (.0375) (.0269) (.00605)
Top 4th 1.180*** 1.188*** .0659** .0111 T12%** .0319 .00&
(.0229) (.0384) (.0269) (.00867) (.0390) (.0272) (.00632)
Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes Yes
N 14,304 14,304 14,523 14,304 14,304 14,304 14,304
R-sq .834 .726 475 .629 .603 499 771

Notes The table regresses each column variable against catafeariables for the top, second, third and fourth
best performing product of the plant. Within-plant prodiastkings are computed in terms of normalized product
TFPQ (based on the Torqvist index described in se@i@n We update the rank in each sample period, potentially
allowing products to switch ranks within plants over timeéheTsample includes all plants that produce at least 5
products. Standard errors (clustered at the plant-yeal)lave in parenthesis. Key: *** significant at 1%; ** 5%;

* 10%.

In column 5 of Tablé we compare physical efficiency (TFPQ) across product rahkere
are two important features that distinguish TFPQ from TFB&e (Sectior2). First, TFPQ is
computed based on physical quantities and thus not affédstetifferences in output prices.
Second, TFPQ is estimated using physical input quantibesgd on detailed plant-specific
input price indexes). Thus, TFPQ is not affected by diffesmnin input costs (e.g., due to
different quality of inputs). Given that output prices argher for top products (column 3), we
would expect a tendency for TFPR to be higher. On the othedt,hBtop products are produced
at higher quality, then TFPR would tend to be lower than TRR®find a strong trend of TFPQ
to increasein product rank. This is our fourth stylized fact:

Stylized Factd. Within plants, physical efficiency (TFPQ) is significantdrder for core prod-
ucts.

The fact that TFPQ differences (column 5) are substantiatfyer than those in TFPR (col-
umn 4) suggests that top products are produced at highetréopts. Consequently, core prod-
ucts are likely produced at higher quality. Marginal co84C{ offer a way to check whether
this interpretation is true. The main difference betweenginal costs and TFPQ is that the for-
mer are affected by input prices, while the latter is #ffothus, if input prices are significantly
higher for core products, then two counter-acting forcesatrplay: on the one hand, higher

29An additional difference is that marginal costs are afféttgincreasing (or decreasing) returns to scale, while
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efficiency (TFPQ) for core products would imply lower MC. Qretother hand, more expen-
sive inputs would raise MC. Thus, a quality driven increas@put prices would imply that
marginal costs fall less strongly for core products, as amexgbto the corresponding increase in
TFPQ of top products. In fact, if the quality-driven increas input prices is strong, marginal
costs may eveimcreasefor core products, turning the the TFPQ pattern around. iBhisdeed
the case in our data. Column 6 in TaBlshows that marginal costs are significantly higher for
top-ranked products. This is our fifth stylized fact:

Stylized Facbk. In a sales-based product ranking, marginal costs are higheore products
within plants.

In the context of this stylized fact, the sales-based prodanking plays an important role,
as we discuss in detail below. Stylized fadtsnd5 constitute an important — previously undoc-
umented — pattern: While core products (in terms of saldsipésignificantly higher physical
efficiency in production, they are producedhégher marginal costs. This apparent contradic-
tion can be reconciled by quality: as has been previouslyeatdyEckel et al.(2015 and
Antoniadeg2019, product quality is a potentially powerful dimension tiah help to explain
empirical patterns in multi-product firms. If the higher utrost due to product quality raises
marginal cost, then this explains the reversed pattern$8fJvs. MC. However, it is crucial
that product quality affects marginal costs, i.e., thatgbality-related cost is not fixed. Since
previous models of product quality in flexible manufactgrirave typically featured a fixed in-
vestment in product quality, they cannot explain the patiteiour data. We discuss this in more
detail in Sectiord.3

Finally, we turn to the behavior of markups along the prodadtier. Column 7 in Table
5 shows that there is no significant difference in markupssscproducts. This is our sixth
stylized fact:

Stylized Fac®. In a sales-based product ranking, markups do not vary spsiteatly across
product ranks within plants.

The absence of markup differences along the product laddebe rationalized in the con-
text of the above discussion. Core products (when rankedleg)stend to have higher marginal
costs. Higher MC are associated with lower markups in demnsgatems that allow for flexible
markups, such aslelitz and Ottaviand2008. On the other hand, quality upgrading is partic-
ularly pronounced for products with more scope for produffeentiation, i.e., in industries
with long quality laddersKhandelwa) 2010. Since we find evidence that core products are
produced at relatively high quality, this should lead ton@gmarkups. In sum, the non-results

TFPQ is not. However, we show Barcia-Marin and Voigtlandg2013 that this is unlikely to affect TFPQ vs
MC in the Chilean data, because returns to scale are closesto o
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for markups may emerge because of the tendencies towards hoarkups (due to higher MC)
and higher markups (due to higher quality) of core produatsel each other.

Note that in this context, the product ranking by sales isartgmt. Typically, models of
flexible manufacturing feature (unobserved) product-gigeefficiency, which the theory uses
to rank products. In the data, however, products are rankesdles revenues. This is valid as
long as product efficiency ranks map one-to-one into prodales ranks. Our results suggest
that this is not necessarily the case. Below, in Secighwe rank products by TFPQ and
discuss the arising differences in results.

4.3 Product Differentiation and the Role of Quality in Production

Models that introduce quality in flexible manufacturingidertheir basic insight from a mech-
anism whereby producers have higher incentives to invequality of more efficient (core)
products. There is an original draw of plant-level margicasts. Then, for the core prod-
uct, marginal cost corresponds to the plant-level MC drawd, iincreases successively with
products’ distance from the core. In other words, prodpetegfic MC is lowest for the core
product. Thus, the core product offers higher profit margivisich in turn makes it easier to
recover fixed costs that are incurred when raising produalityu The incentives to invest in
product quality are particularly strong when there is a légbpe for product differentiation
(Eckel et al, 2015. We explore this dimension in the following, after disdngsan important
discrepancy between existing theories and our findings.

The investment in product quality is typically modeled asxadicost. This implies that
on top of the original product-specific marginal cost, thieranaveragecost of investment in
quality, which declines with volume produced. Togetheg,tiio cost component yield the "full
marginal cost" Eckel et al, 2015. This raises the question which exact cost components are
captured by our different efficiency measures. First, téaah our discussion above that TFPQ
is not affected by higher input prices due to higher produetlity. Thus, TFPQ is close to the
"original marginal cost" of products, before quality adjuents®® Second, note that marginal
costs, by construction, do not reflect fixed cost of improyngduct quality. Thus, if the stan-
dard setup with fixed cost of quality was correct, we shouldbfigerve an increase in marginal
costs as product quality grows. However, the fact that weedossgnificantly higher MC for
core products (while TFPQ is also higher) suggests thainigbhality drives upmarginalcosts
—and not only average total costs, as assumed by existingéle Consequently, to match the
patterns in the data, future models of flexible manufactuviith a quality dimension should
feature increasing marginal costs as quality rises.

30This holds as long as higher product quality does not slowrditve production process. For example, in the
case of high-quality rug production, more time is dedicétedo each rugAtkin, Khandelwal, and Osmag014).
In this context, TFPQ would be lower for high-quality protiidf, in turn, higher quality is mostly associated with
more expensive inputs that are otherwise processed diynil&PQ will be unaffected by quality.
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We have argued that the different patterns of core producth® performance measures
TFPQ vs. MC reflect higher product quality of core products.the following, we explore
this point further, using the insight that investment inlgyas particularly profitable in more
differentiated industries. In Tabkwe repeat the regressions from Tab)dut now estimating
separate coefficients fgt. in (13) for plants operating in industries with homogenous prasiuc
(Panel A) vs. differentiated products (PanelPBJor sales revenues and volume, the results in
Table 6 are very similar for homogenous and differentiated prosluth contrast, the pattern
for prices differs substantially: in the homogenous catggbere is only a small difference in
output prices for the top product as compared to lower ramkeducts. In the differentiated
category, on the other hand, prices are significantly hiégrezore products. This is in line with
guality playing a more important role in differentiated guats, confirming the results Eckel
et al.(2015.

Next, we turn to our productivity measures. TFPR shows esdlgmno differences across
product ranks in either of the two subsets (column 4). Theepafor TFPQ is very similar in
both subsets: there is a strong increase in TFPQ as we mowe ypdduct ranks towards core
products. Since TFPQ is unlikely to be confounded by quadlifferences, finding very similar
patterns for homogenous vs. differentiated products msdeese. In contrast, results differ sub-
stantially for MC in the two subsets: for homogenous proslutttere is no apparent difference
by product rank, while for differentiated products, MC iease strongly for core products. This
resultis in line with rising MC reflecting increasing prodgeiality. The following stylized fact
summarizes the results for product differentiation:

Stylized FactZ. The pattern of systematically higher TFPQ for core prod(@tglized fact4)
holds equally for homogenous and differentiated produntsontrast, the pattern of increasing
MC for core products (Stylized fa&) holds only in the subset of differentiated products.

This stylized fact underlines the important differencegfiiciency measures. It also sup-
ports our interpretation that TFPQ is unlikely to be affeldbg quality differences, while rising
MC — with simultaneously increasing TFPQ — reflect the coktsgher product quality.

3lwe define the degree of differentiation at the plant levebldasn the liberal classification iRauch(1999.
For this, we use concordances between SITC (used by RaudHp#D codes of the main product (used by the
Chilean ENIA). This yields a plant-level classificationarttomogenous and differentiated. "Homogeneous" is for
product categories that accordingRauch(1999 are "traded on organized exchanges" or are "referenceeldiri
"differentiated" is based on Rauch’s "differentiated ecairy.
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Table 6: Core Competence by Sales Rank: Sample Splits byi&r&ufferentiation

1) ) 3) 4) ®) (6) (")
Dep. Var.: log(sales) log(volume) log(Price) log(TFPR) g(®6FPQ) log(MC) log(Markup)
Panel A: Homogeneous Products
Top product ~ 3.396***  3.166*** .0904* .00927 1.993** 0648 -.0010
(.0443) (.0653) (.0523) (.0138) (.0701) (.0503) (.0104)
Top 2nd 2.549%x* D A7 1*** .0628 .00569 1.647%* 0224 -.087
(.0365) (.0595) (.0502) (.0135) (.0657) (.0493) (.0100)
Top 3rd 1.826***  1.753*** .00278 .00303 1.252**  -.0342 031
(.0348) (.0607) (.0517) (.0119) (.0671) (.0501)  (.0097)
Top 4th 1.154%*  1.075*** .0292 .0100 7347 -.0208 .0116
(.0330) (.0663) (.0527) (.0124) (.0716) (.0507)  (.0108)
Panel B: Differentiated Products
Top product ~ 3.121**  3.052*** 307*** .0140 1.912%*  275*%  (Q152**
(.0409) (.0511) (.0253) (.0120) (.0429) (.0264) (.0076)
Top 2nd 2.382%** D 383*** 187 .0225** 1.466** . 167**  .0115*
(.0359) (.0467) (.0275) (.0111) (.0393) (.0273)  (.0068)
Top 3rd 1.792*%*  1.815*** .146%** .0313**  1.062**  112***  QLl79**
(.0329) (.0457) (.0271) (.0109) (.0414) (.0276)  (.0077)
Top 4th 1.207%*  1.279*** .0863*** 0113 .702%** .0661** .0447
(.0313) (.0443) (.0282) (.0119) (.0420) (.0284)  (.0075)
Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Product FE Yes Yes Yes Yes Yes Yes Yes
Observations 14,304 14,304 14,304 14,304 14,304 14,304 3044,
R-squared .835 726 AT72 .629 .603 .501 771

Notes The table regresses each column variable against catageariables for the top, second, third and fourth
best performing product of the plant, interacted with a dynfion homogenous products. Within-plant product
rankings are computed in terms of normalized product shkesed on the Torqgvist index described in sec8d).

We update the rank in each sample period, potentially afigyiroducts to switch ranks within plants over time.
The sample includes all plants that produce at least 5 ptedWe define degree of differentiation at the plant
level based on the liberal classificationRauch(1999. For this, we use concordances between SITC (used by
Rauch) and ISIC codes of the main product (used by the ChiEdi). This yields a plant-level classification
into homogenous and differentiated. "Homogeneous" is fodpct categories that accordingRauch(1999 are
"traded on organized exchanges" or are "referenced pritdiferentiated" is based on Rauch’s "differentiated"
category. Standard errors (clustered at the plant-yeal)lave in parenthesis. Key: *** significant at 1%; ** 5%;
*10%.
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4.4 TFPQ-Based Product Ranking

Most models of flexible manufacturing rank products in teahghysical efficiency. However,
in empirical tests of these models’ prediction, products tgpically ranked based on sales.
Given our product-specific efficiency measures, we can medgr@ss on this front. First, we
need to pick the ‘right’ efficiency measure for our rankingurQ@esults above suggest that
TFPQ is the most appropriate variable to capture physiiaieicy. In the following, we thus
use TFPQ to rank products and examine whether this affeete#ults that we obtained above
for the commonly used sales-based rankings.

Table7 replicates the results from TalBeestimating regressiod ) for TFPQ-based prod-
uct ranks. Already the first column suggests that salesebem®ks do not map one-to-one
into TFPQ-based ranks. While sales revenues increasdisagly with higher product rank,
the top product is now only sold 217% more than products rafikén or lower. In contrast,
this number was 324% for the sales-based ranking in TabM/hile the pattern of physical
units sold (column 2) is similar to our results above, praquees (column 3) show a strik-
ing difference: In our sales-based ranking, prices werhdridpr top-ranked products. For the
TFPQ-based ranking, the opposite is true — priced@ser for top-ranked products. TFPR
again shows no significant differences across product rgaksmn 4), while TFPQ is increas-
ing by construction (column 5). Next, column 6 shows thatgatern for marginal costs is also
reversed, as compared to the sales-based ranking: topgtsaahe produced at lower marginal
costs. Finally, markups are slightly higher for top-rankedducts, but the magnitude of the
coefficient is small. Our next stylized fact summarizes theststriking difference between
sales- and TFPQ-based product rankings.

Stylized FacB. When products are ranked by their physical efficiency, theepafor prices and
marginal costs (Stylized fa&) is reversed: Prices and marginal costs are lower for ptsduc
with higher TFPQ.

This finding implies that prominent results in the liter&taiepend crucially on the variable
that is used to rank products. For examiidekel et al.(2015 find that core products (ranked
by sales) are sold at higher prices, and they interpret thevaence for higher product quality.
The model ofEckel et al. (2015 actually classifies core products based on their physftal e
ciency (marginal costs, not accounting for quality). TRisnost closely reflected by TFPQ. We
replicate the finding b¥ckel et al. (2015 in the sales based ranking. But when we use TFPQ
as a ranking variable (i.e., the ranking that is more cloesflgcting their model), we obtain the
opposite results.

We can rationalize the striking difference in results in to@text of our discussion of the
alternative efficiency measures. Recall that TFPQ is lgrgebkffected by product quality, so
that the corresponding ranking reflects largely physicatiehcy (and thus lower marginal
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Table 7: Plant-product outcomes by TFPQ-based product rank

) ) ®3) (4) (5) (6) ()
Dep. Var.: log(Sales) log(VMolume) log(Price) log(TFPR) g(®FPQ) log(MC) log(Markup)
Top product 2.172%* 3.172%* - 479%** -.00753 3.142%*  498**  (0183***
(.0417) (.0434) (.0293) (.00859) (.0332) (.0288) (.00631)
Top 2nd 1.664*** 2427 -.334%%* -.00695 24147 - 341** .0129**
(.0381) (.0397) (.0278) (.00873) (.0296) (.0270) (.00580)
Top 3rd 1.177%* 1.798*** -.211%** -.00173 1.793%*  -214** .00827
(.0387) (.0385) (.0262) (.00806) (.0271) (.0256) (.00590)
Top 4th .689*** 1.067*** -.118*** .000486 1.129** - 127** .00872
(.0397) (.0383) (.0262) (.00822) (.0260) (.0258) (.00619)
Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes Yes
N 14,304 14,304 14,304 14,304 14,304 14,304 14,304
R-sq .629 .720 489 .628 .802 .519 JT71

Notes The table regresses each column variable against catageariables for the top, second, third and fourth
best performing product of the plant. Within-plant prodrartking are computed in terms of normalized product
TFPQ (see sectioB.2 for details). We compute the rank in each sample period npiaiey allowing products to
switch ranks within plants over time. The sample includéplaints that produce at least 5 products. Standard
errors (clustered at the plant-year level) are in pareigh&gy: *** significant at 1%; ** 5%; * 10%.

costs, which translate into lower prices). In contrastltstles are also (positively) affected
by product quality. Thus, ranking products based on sdisshigh-quality products to the top
ranks, implying higher marginal costs and higher pricesngeguently, empirical studies have
to carefully choose the ranking variable, according to tleemanism that they are seeking to
examine.

4.5 Exporting and Skewness of Sales

One of the main implications of models with flexible manutaitig and variable markups (e.g.,
Mayer et al, 2014 relates to the impact of competition across export detsting.on the within-
plant product mix. In these models, in response to a more etitiyve market, plants lower their
markups in all products and concentrate their sales in besit products. In practical terms, the
literature tests this prediction by analyzing whether topdpicts account for a larger share of
exports in more competitive (tougher) markets — approxathély market size in terms of gross
domestic product?

In this section, we take advantage of the fact that we obs#ireet measures of efficiency
for each product, and study whether the canonical modekholigbn actual efficiency is used to
rank products, instead of ranking products by export séteiowing Mayer et al.(2014), we

32In the model, the parameter that measures competition isuheer of firms/varieties in each destination
market. Tougher markets are characterized by a larger nuofilvarieties; in them each firm has a lower residual
demand, and thus reduces its price-cost markups.
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estimate the relationship between export sales skewnessdthe top and the second-ranked
product for each export market. Skewness is defined.as- In (y/5'/y7?), wherey! 7! and

yr=2 are export sales of the top and second-ranked product,atdsgg, of planti exporting

to destination country in yeart. Note that thus, the top and second-ranked export product
are determined for each destination country separdtele check whether the variable that is

used to rank productsaffects our results. We run the following regression:
Sict = 5 In GDPct + ’VXC + 6it + Cict (14)

We use a set of controls for geographical distance (disthatveeen Santiago — the capital city
of Chile — and the capital city from the destination countiggation (whether the importing
country shares a border with Chile), and similarity to Clfidhether the importing country
shares the same official language as Chile, and whether & ®panish colony). All regressions
include plant-year fixed effects;.

Table8 presents our results. First, in column 1 we use export dataéauniverse of Chilean
exporters between 2001 and 2005. Here, we intend to verithgn the Chilean export data
displays the same behavior as the sample usddayer et al (2014 for the case of France. The
positive and significant coefficient on log GDP suggestsithegsponse to increased competi-
tion, Chilean exporters also tend to concentrate theissaltheir most important product(s). In
column 2 we repeat the analysis, but this time restrictiegsdimple to the set of plant-products
in the Chilean ENIA that we can confidently match to custonta.dRespite the considerably
smaller sample size, we find the same pattern for this réstrigample. Thus implies that the
Mayer et al.(2014 mechanism also holds in our matched sample. We also cortiermain
pattern in column 3, where we use total sales (both in the domand export markets, as
reported in ENIA) to rank products.

Next, we focus on our main efficiency measures. We find noioglddetween export sales
skewness and the degree of competition in the export marketn using TFPR or marginal
cost (columns 4 and 6, respectively). In contrast, whengu$iPQ to define the ranking of
best performing products (column 5), we find a positive agdificant coefficient on log GDP.

33In principle, it would be possible to use an alternative gloéxport sales ranking to construct a different
skewness measure, e.g., define the main products in terneiofsales tcall countries. However, aslayer
et al. (2014 show with customs level French data for 2003, the cor@tatietween local and global rankings is
relatively high — above 60 percent — and very stable acroaples. In addition, when we use the global ranking,
our sample shrinks considerably. Most exported produetsald to only a few export destinations, which makes
it impossible to apply the ranking of the top two products @nycountries, simply because the top two products
are not sold to all countries.

34Note that in this case, the top product for a given destinatiarket is defined as the one with highest domestic
sales that is exported to this destination. The same applieslumns 4-6, but with the ranking based on TFPR,
TFPQ, and MC, respectively.
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Table 8: Export sales skewness across destinations

Dep.Var.: Skewness of destination-specific export salegdsn top- and second-ranked product

Products ranked Export sales Sales TFPR TFPQ MC
according to: Q) (2) 3) (4) 5) (6)
log(RGDP) 0391***  111*%*  128** .0275 174 .0845
(.0082) (.0407)  (.0557) (.0703)  (.0827) (.0790)
log(Distance) .0008 -.202 -.286 - 444% - TTER* -.327
(.0212) (.131) (.203) (.218) (.270) (.284)
Colony -.0565 .189 519 .525 -.518 .550
(.0634) (.358) (.448) (.552) (.540) (.608)
Border with Chile  -.128*** -.176 -.217 -.0538 -.230 275
(.0325) (.172) (.288) (.338) (.356) (.347)
Common Official -.0507 -.0581 -.162 -431 =277 322
Language (.0348) (.181) (.251) (.291) (.350) (.268)
Sample: Customs Customs Customs Customs Customs Customs
Only & ENIA & ENIA &ENIA &ENIA & ENIA
Plant-year FE Yes Yes Yes Yes Yes Yes
N 45,107 1,952 1,816 1,509 1,075 1,256
R-sq 545 470 480 .557 577 .538

Notes The table reports the relation between export sales skeaued market size — measured in terms of log
real GDP — across destinations, by different ranking véembThe dependent variable in all regressions is the
logarithmic difference between export sales of the top dmedsecond-ranked product for each destination. In
columns 1, the export sales rank is computed in each dastinatarket with information from customs data.
Columns 2 repeats the exercise, but only for plants thategrerted by both customs and ENIA. Columns 3-6 rank
the top two products in terms of total sales, TFPR, TFPQ andjima cost, respectively. In all columns, the top
product in each destination is defined conditionally on trepct being exported to that destination (i.e., the top
product in the destination may not coincide with the top picigjlobally). The same is true for the second-ranked
product. All regressions control for plant-year fixed effecStandard errors (in parentheses) are clustered at the
plant-year level. Key: *** significant at 1%; ** 5%; * 10%.
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These results lead to our final stylized fact:

Stylized Fac®. The finding that skewness (higher sales of core products)ire mompetitive
markets depends crucially on which variable is used to raollycts. TFPR or MC as ranking
variables do not imply skewness. The standard result of s&esiis only obtained when ranking
products by sales (as is common) or in terms of physical gidty (TFPQ).

Why do product rankings based on TFPR or marginal cost fashtaw a higher skewness
of exports in more competitive markets? As we discussedréefoarginal cost reflects not
only efficiency, but also differences in product quality.uSha higher ranked product in terms
of marginal cost (lower value), may be related to either argbroduction efficiency, or lower
product quality. Does, marginal costs reflect two opposargds, so that the resulting ranking
is not meaningful for efficiency-based mechanisms. SityilafFPR does not fully reflect
efficiency differences when plants pass part of their efficyeadvantage on to customers in
the form of lower prices. Thus, TFPR and marginal cost-baaallings are likely to be less
informative than the TFPQ-based counterpart for definirghilst performing products of the
plant.

Stylized fac9 is important because it confirms the underlying mechanidmmidehe within-
plant productivity enhancing effect of competition asBarnard et al(2011) or Mayer et al.
(2014: in response to increased competition, plants skew thsgowards their more efficient
performing products. As a consequence, plant-level prodtycincreases. So far, only indirect
evidence has been provided for this mechanism, since prewmpirical studies have relied
on sales-based rankings (which may be affected by many &dbtars that are unrelated to
production efficiency) or on structural simulation. We pdmvdirect evidence, by showing
that firms skew their exports more towards products with @ighhysical efficiency in more
competitive countries.

5 A Stylized Multi-Product Plant Model with Quality Choice

In this section we present a stylized model that can recetivd empirical patterns documented
above. In particular, the model can help to explain why tisalts for prices depend crucially on
whether we rank products by sales revenues or by physicduptivity. The model combines
Kugler and Verhooges (2012 framework of heterogeneous plants and endogenous quality
choice withEckel and Nearg (2010 model of multi-product plants. Since our main goal is
to understand factors behind price dispersion within glamé given year, we solve the model

in partial equilibrium. We focus on a single monopolistigalompetitive industry producing a
differentiated final good. A caveat of this model is that dtieres constant markups. However,
this is not a major constraint because the data show only mmrakup differences across
products within plant-years (Stylized fe@)t
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5.1 Preferences

The representative consumer derives utility from the comngion of a continuum of differenti-
ated varieties, each of which may have different degreesaofyzt quality:

_o
o—1

v = | ) (15)

wherew is an index for varieties from the product spdegeo is the elasticity of substitution
between varieties;(w) is the quantity of each variety consumed; ang(w) is product quality,
interpreted here in broad terms as product appeal.

Cost minimization leads to the usual CES demand equatigmented by product quality:

o) = Xl (B2) (16)

wherep(w) is the price of varietw, P is the aggregate (quality-adjusted) price index, &ni
aggregate (quality-adjusted) consumption.

5.2 Production

Our model features a continuum of plamteach of them producing several products that we
index byij, i.e., productj produced by plant. We assume that each plant produces unique
varieties from the product spa€e Consequently, demand for a given variety) given by
(16) has its equivalent;; on the production side. As idelitz (2003, multi-product plants are
heterogenous in their overall (plant-level) efficiencyeyi by \;. We assume that is drawn
from a fixed distributiorG () with support\, oo], and that this capability draw is known to the
plant only after it enters the marké&t.

In addition, plants vary in the efficiency of the individuadneties they produce. This
product-specific efficiency term requires a more elaborgpéa@ation. Production of each va-
riety 77 is carried out using an intermediate input, supplied by &gty competitive market.
Plants can purchase inputs of different quality. Perfentetition in the input producing sector
allows us to assume that one unit of input with quadiig sold at cost. Following Eckel and
Neary (2010 andMayer et al.(2014), we assume that plants can produce any number of vari-
eties, but each additional variety entails a higher matgiost. There is a fixed production cost
f that the plant has to incur for each product that is produBednard et al.2010. Each plant
has a "core competence," corresponding to the product #me ptoduces most efficiently. To
rank products within plants, we adopt the notatin)) € N, representing increasing distance

35To get a productivity draw, plants have to pay a fixed cost adetitz (2003. Since our model is in partial
equilibrium, we take the existence of plants as given and #stract from explicitly modeling entry decisions at
the plant level. Nevertheless, we do model the decision @nrhany products each plant produces.
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from the core competence. For the core produgf,= 0, and for periphery products;;; > 1.
This establishes a product ladder, where produgtsare produced with marginal cost

G = (17)

MClmij, 2 = GMii \ Xij

with ¢ € (0,1), and wherey; is the quality (and cost) of the intermediate input used talpce
varietyij. Note that product-specific efficien&yj = ¢™u )\; IS increasing in\; and decreasing
in product rankm;;. In words, more productive plants (highy) tend to be more efficient
at any given ladder step;;. However, within plants, products further from the coreg(tar
m;;) are produced at higher marginal cost (for any given inpafiguc;;). Next, we derive the
optimal choice of input and output quality, andg;;.

In modeling the relationship between efficiency and produetity, we adapt the first vari-
ant of the firm-level model described Kugler and Verhooge(012 to the context of multi-
product plants. This involves two assumptions. First, igpiapgrading involves no fixed-cost.
Second, in the production of product quality, product-i;‘imefficiencyxij and input quality
c;; are complements according to the following CES function:

1

gij(mi;) = B (X?j)" n % (C?j>9:| d (18)

wheref < 0 measures the degree of complementarity between inputyaall plant-product
capabilityXij in the production of product quality, arhds a parameter that reflects each plant’s
ability for translating higher plant-product capabilitit® higher product quality. Consequently,
higherb increases a plant’s incentives to improve product qualityge assume thdt is plant-
product specific, i.eh = b;;, and it is randomly drawn — before plants decide their produc
range — from a fixed distributiof'(b) with support[b, co]. Importantly, we assume thay; is
independently drawn for each produgtso that it is independent of the product rank. Thus,
our setup allows for different plants that produce similesducts to have different product-
specific quality capability. For example, among two furretplants, one may have an advantage
at producing high-quality chairs, and the other, at prodgdigh-quality beds. In addition,
sinceb = b;; is drawn at random, production may be particularly quasipsitive for lower-
ranked products (highenr;;). Nevertheless, the complementarity &8) introduces @endency
for products closer to the core to be produced at higher tyu@ince these have high&gj).
This will be crucial for our results.
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5.3 Profit maximization

Plants maximize each product’s profits over their choicesutput pricep;; and input quality
cij, taking as given each product’s demafd:

~ Cii
7T<pij7 Cijs >\ij) = (pzj - ~—j> Tij — f (19)
wherez;; is given by product demand as given ). Optimization yields the optimal levels:
~ bz‘j/2
C;‘kj()\iamijabij) = ()\ij) (20)
* N bij
Qij()\i7mij7bij) = (Aij> (21)
b
v by — (NG (e NGy
pij<)\l7m2]7blj) - (O' - 1) X” - (O' - 1) ()\Z]) (22)
) (o =1\ r (e
Tij()\i,mij,bij) = X . P ( o ) <)\U> ( ’ > (23)

wherec;; represents optimal input quality chosen by plafor its productj, ¢;; is optimal
output qualityp;; is the optimal output price, ang; is (maximized) revenue.

5.4 Decision to Produce Products

Plants receive their efficiency drawtogether with quality capability dravs; for a sufficiently
large number of (potentially produced) produ¢tswhich are ranked byn;; = {0,1,2,...}.
Plants decide to produce a produgtf its variable profits exceed the (annualized) fixed cost
f. Note that with CES demand (and thus constant maeki{p — 1)) and marginal costs being
constant in quantity;;, variable profits for a product are given @y’,-j. Thus, total profits
associated with producj follow directly from 23): 7;; = %rij — f, which depends on plant-
level efficiency);, product rankn,;, and quality capability,;. Thus, the zero-profit condition
associated with producj is:

Q=

Tij (Aismig, byg) = — 1" (Niymyg, b)) — f = 0 (24)
where); andm;; can be combined to the product-specific efficiency té[’ﬂE @™ \;, which
is reflected in 23). Thus, the model features two sources of heterogen&}wﬁdbij). How-
ever, for the purpose of the simulation exercise we presaloih we only need to know if the

36\We assume as iMayer et al.(2014 that there is no within- or across-plant-product canriitagion (i.e.,
product demand is not directly affected by individual prodyproduced by the same plant, or by products produced
by other plants.
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~ (o= (Zi4) :
combined capability componeff; = <)\ij> ( ) is above or below a threshold at which

product-specific profits are zero. This threshold compof@laws from (23) and @4), and it
is defined by the following expression:
f

Vi = p (25)

wherex; = (0 — 1)°"1¢77X P°, which is constant across plants. Plants decide to produce
products for whichy;; = (¢™ /\i)(”_l)@l“) > 7,.. Note that the steps on the product ladder
that are observed in the data do note necessarily reflechéoedtically possible ladder steps
m;; =40, 1,2,...} for a given plant. For example, if the product withv;; = 1 has a very low
drawb;;, it may not be produced, while (some) subsequent produgts- 1 may be produced.
While the remaining (i.e., produced) products are stiladie ranked by their efficiencﬁ,-j,

the differences ir?)(ij across produced products may vary substantially, depgradira plant’s
draws ofb;;.

5.5 Model Predictions

The stylized model delivers several insights. We discussdlfiollowing the order of the stylized
facts documented abové.Both stylized factsl and 2 follow directly from the model setup.
Product-specific efficiency is given bX/U = ¢™ii \;. For the core product, this equals.
Consequently, for plants with high core efficienty other productsn,;; > 1 also tend to be
produced more efficiently (stylized fad), and efficiency tends to co-move across products
provided that innovation (or shocks) affect the plant-levestylized fact2).

Revenue-based product ranking

We now turn to stylized fact4-7, all of which are derived from ranking products based onssale

bij
revenues? Following (23), product-specific revenues are proportionaligtfi)_l)<T+ ) where
product-specific eﬁicienc§ij reflects TFPQ (since it is independent of product qualityjug,
products with higheh,; or higherb;; will be ranked closer to the core. Note tigtaffects the
product rank — a crucial difference to the purely TFPQ-based#ings that we discuss below.
At the same time, sinck; > 0 is distributed independently of the product rank;, products
with high revenues will also — at least on average — tend te ha'ghxij. In words, for revenue
based rankings, TFPQ will tend to be larger for core prod{stydized facd). Qualitatively, this
pattern holds irrespective of the average capability faligy differentiation, i.e., irrespective
of the mean ob;; (first part of stylized fac¥). In particular, it holds even in the extreme case

370ur model yields also a prediction for product variety: Bamith higher core efficiency; tend to produce a
larger product portfolio. Since this prediction followsalfrom previous models, we discuss it in the appendix.
38We discuss stylized fa@&below.
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when there is no potential for quality differentiatidn, (= 0).

Next, marginal costs are given byq), so that 20) impliesM C;; = X;%_l. Since products
with higher);; or higherb;; are closer to the core, these products’ marginal costs isdl @nd
to be higher (stylized fad). Note that for relatively small;; (low degree of quality differenti-
ation), the revenue-based ranking is mostly driven by iffees in physical eﬁicienc&j. At
the same time, for products with law, the exponent id/C;; is close to zero or even becomes
negative. Thus, the relationship betwe®fC;; and (revenue-based) product rank is ambigu-
ous for (relatively) undifferentiated products. In facby fcompletely homogenous products
(b;; = 0), the relationship is negative, and for somewhat diffeegatl products with,; ~ 2,
the relationship is flat (second part of stylized f&xt Nevertheless, since the revenue-based
ranking is ‘biased’ towards high;; products, core products are more likely to have particylarl
highb,; draws and thus also highf C;;. Consequently, core products can exhibit systematically
higher marginal costs in revenue-based rankings evenig relatively small on average. We
show this in the simulation below. Finally, stylized f&cbn relatively constant markups along
the product ladder follows by construction in our model, tu€ES demand.

Efficiency-based product ranking
We now turn to the predicted patterns when products are daokéheir physical efﬁmencyxm

within plants (stylized fac8). Recall from our discussion above th&tC;; = )\ 2~ This
reflects the two-sided effect that higher product-specificiency )\U has on marglnal costs:
on the one hand, according tbh7) a more efficient product is produced with lower marginal
cost; but on the other hand, plants choose a higher qualitynte efficient products, which
raises input cost as given bgd). As long asb;; < 2 (i.e., for plant-products with relatively
low quality capability), the latter effect dominates sotthmarginal costs (and thus prices, given
the constant markup) atewer for more efficient products. Consequently, if the paramgter
is relatively small on average, then our model predicts thatginal costs and prices are on
average lower for core products, in line with stylized f8ctA low averageb can have two
reasons: our sample may be dominated by relatively undifteated products, dr may be
low even for differentiated products. To shed more lightlois aingle, we replicate the results
from Table7 for the subsamples of homogenous vs. differentiated ptsdticTableA.1 in
the appendix shows that marginal costs and prices are sigmily smaller for core products
in the subsample of ‘homogenous’ products (Panel A). Howeles pattern prevails (albeit,
as expected, somewhat weaker) in the subsample with diffated products (Panel B). This
suggests that the paramebes relatively small on average even for differentiated picid. We

3%\We define the degree of product differentiation at the plew¢llbased on the liberal classificationRauch
(1999. "Homogeneous" is for product categories that are "tramledrganized exchanges" or are "referenced
priced"; "differentiated" is based on Rauch’s "differa¢id" category.
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use this below in the calibration to choose a conservativapeatrization such thathas a mean
of 2.

Finally, we turn to stylized fac3 on TFPR, which is given by the product gf and TFPQ.
Note that this stylized fact holds for both revenue- and iefficy-based rankings in TablBsnd

7. Here, we discuss it in the context of the latter. UsiBg)(we obtainl' F'PR;; = p;;\ij =

bys

XUTJ Consequently, TFPR should be increasing in physical effey, unles$,; is very small

on average. In revenue based rankings, wheralso affects the ranking, core products should
show an even clearer pattern of higher TFPR. A possible agfilzn why we do not find this
in the data is that we follow the most commonly used methagipto compute TFPR, using
sector-level deflators for input prices (as opposed to giardl deflators, as we do for TFPQ).
If core products are of higher quality, they will also tendhi@ve higher input costs — which
TFPQ empirically takes into account, but not TFPR. Consetiyethe common strategy for
estimating TFPR may fail to correctly identify the (reverheesed) productivity advantage of
core products.

5.6 Main Predications and Simulation

In the theoretical description above we argued that ouizetyimodel can replicate the stylized
facts found in the data if i) quality capability is drawn im@mdently of the product-specific
efficiency rankmn,;, and ii) if quality capabilityb is relatively small on average. In the following,
we calibrate and simulate the model to further support tlgaraent.

We present a simulation of the model based on equati®dds-@3) and show how our
simple framework can account for the divergent resultsweabbtain for prices when we rank
products within plants by sales revenues versus physicalustivity*® Following the recent
trade literature, we specify a Pareto distribution for aeffeciency \. For the particular values
of the shape parametérof the core efficiency distribution, and for the size of thepsof the
efficiency ladder), we follow the values presentedifayer et al(2014). In particular, we set
k = 3.25,andw = 0.96. The former parameter is in the middle of the range of shapsnpeters
considered byMayer et al(2014). Regardingu, we set its value to be consistent with= 3.25
according to the strategy describedMiayer et al(2014.4* We set the elasticity of substitution
o = 5, which implies an average markupbf5. As in the case of core efficiencies, we specify

40Before proceeding, a word of caution is due. The simulatierase provides evidence that the model can
potentially fit the puzzling patterns documented in the dadavever, it is not calibrated fiit the data. That is, we
do not estimate or calibrate the model to particular momieritee data. Instead, we guide the choice of parameters
based on estimates available in the related literature eegrpossible, and choose values that generate product
distributions close to the empirical distribution in Tallfor the remaining parameters that are not readily available
from previous contributions.

“IMayer et al.(2014 show that when core efficiencies are distributed Pareteretlis a linear relationship
between log-revenues of each variety and its associateeéiatepn, with the sloped = kInw. We take their
estimates of) = —0.13 from French export data arid= 3.2 as given, to recovev.
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a Pareto distribution fob over [1, +o0), with shape parameter equal td?2and impose zero
correlation between andb. Finally, we choose the combined capability threshgldm,;)

so that 48.7% of all simulated plants produce multiple potslu This matches the share of
multi-product plants in ENIA reported in Table

The simulation algorithm involves the following steps: @ilaw N plant-specific core effi-
ciency components (whereN is the number of plants drawn); (ii) DraV x M plant-product
specifich;; (with M the maximum number of products that we allow each plant t@}ydii)
Given (A, b;;), check for each product whethey;(m;;) is greater thany;;(m;;); if not, drop
the product form the sample, and (iv) Compute variablestef@st, such as plant-product price
and revenues. For the particular exercise we present irségigson, we sefv = 10,000 and
M = 30.

Figure 1l shows the simulation results. The left panel ranks prodwitsn plants by rev-
enues as given byg), while the right panel ranks products by plant-producesic efficiency,
as given byS\(m) = w™\.®® The figure shows the same pattern as found in the Chilean manu-
facturing data: prices are higher for core products whekediy revenues, but they are lower
for core products when ranked by physical productivity. Shene reversal holds for marginal
costs, which we do not separately show since MC are propattto prices, given the constant
markup. The intuition for the reversal is as discussed irthkeretical section above: revenue-
based product ranks are ‘biased’ towards products with hdyaws, which are also associated
with higher MC and prices. Thus, the simulation also undedithe importance of the ranking
variable: product ladders based on efficiency vs. revenigtg sadically different results for
prices and marginal costs.

6 Conclusion

Product-level efficiency is a key theoretical component gr@awing literature that examines
trade-related dynamics within firms or plants. So far, dewgtdtions have made it difficult to
construct product-level efficiency, and productivity patis across products within plants were
largely unexplored. We exploited a uniquely detailed Ginlelataset to compute several alter-
native efficiency measures at the product level within @awe have established numerous
novel stylized facts in three areas. First, on productilefficiency patterns, we showed that
productive plants tend to be relatively efficient acrosstibard, not just for their core prod-
ucts. This provides direct evidence for a central assumpliat underlies prominent models of
flexible manufacturing such @&ernard et al(2011) or Mayer et al.(2014. There, a common
efficiency draw affects all products within a plant. Our fimglithat productive plants tend to

42The main results presented below are unchanged in a redsaradhborhood for this value.
43To be consistent with results in TablBsind7, we control in both panels of Figutefor plant fixed effects.
Thus, the figure displays variation across produgtkin plants.
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Figure 1: Simulated Revenue and Price Across Productsmitlaints

Notes The figure shows the simulated average revenue and priossaproducts within plants, resulting from
simulating the model in sectioh Productn = 0 corresponds to the core product defined according to pHysica
productivity (left) and product revenue (right). We onlynsider plants producing 5 or more products. The
parameters underlying the simulation are listed in Seddi@n Both panels controls for plant fixed effects and
simulate the model for a single year.

be relatively efficient at all their products supports thetup. Second, we have shown that the
typically used sales-based product ranks correctly refiggier physical efficiency (TFPQ);
however — seemingly contradictory — marginal costs aredrifbr top-ranked sales products.
We showed that this discrepancy is likely driven by produldqy. Our results thus emphasize
the importance of using the appropriate ranking variablemtesting predictions of flexible
manufacturing models. The same is true for results thatwevihe prominent metric of export
skewness towards core products. Product ladders basedrgmalaosts or revenue produc-
tivity do not show export skewness, while TFPQ-based ragdo yield skewness towards the
most efficient product and thus aggregate efficiency gaor frade.
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APPENDIX

Model Prediction on Product Variety

Our model yields a prediction for product variety producgdtants: Plants with higher core
efficiency \; tend to produce a larger product portfolio. This predictismot novel. It also
follows from the models b¥eckel and Neary2010, Bernard et al(2010, Bernard et al(2011),
andMayer et al.(2014). In the context of our model, the prediction is obtainedaeivs. For
given); andm,;, the zero-profit condition24) implicitly defines a threshold,; (\;, m;;) such
that for quality capability draws;; > b;;, the plant chooses to produce the product. Note that
(24) implies that a plant-product with lower efficienayj (either due to low\; or due to high
m;;) requires a highel;; to be produced profitablyThus, varieties closer to the core (lowy;)
are produced even if; is relatively low. In contrast, periphery varieties reguincreasingly
higherd;; to be produced profitably. Sindg; is distributed independently of,;;, the model
predicts that — on average — plants with relatively high edfieiency\; tend to produce a wider
range of varieties than plants with relatively low core édincy. Note that this proposition holds
on average. However, the model allows for heterogeneigntplwith low); may still produce
a rich set of products if they have particularly high dray<or many products;.

Additional Empirical Results

1This can be shown by solvin@4) for b;; as a function oﬁij =M\

B () = 2 | — log(f) —log((c = )" lo™?XP7))]
o) =2\ T log0v)
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Table A.1: Core Competence by TFPQ Rank: Sample Splits bguetdifferentiation

1) ) 3) 4) ©) (6) (7)
Dep. Var.: log(sales) log(volume) log(Price) log(TFPR) g(®FPQ) log(MC) log(Markup)
Panel A: Homogeneous Products
Top product 1.962***  3.384*** -.666***  -.0260** 3.735%*  _727** 0116
(.0677) (.0728) (.0535) (.0129) (.0524) (.0543) (.0101)
Top 2nd 1.480***  2.565*** -.460***  -.0300** 2.878** - 503** 00384
(.0619) (.0668) (.0490) (.0118) (.0478) (.0507) (.00950)
Top 3rd .930%**  1.866*** -.296***  -.0162 2.128** - 337*** 00408
(.0652) (.0648) (.0479) (.0119) (.0447) (.0487) (.00959)
Top 4th B27 - 1.057** -.119** -.0105 1.341%*  -138*** 00119
(.0658) (.0634) (.0482) (.0132) (.0432) (.0479) (.00984)
Panel B: Differentiated Products
Top product ~ 2.323***  3.008*** -.302** 00579 2.695%** . @2¥k*  (229%**
(.0520) (.0522) (.0267) (.0115) (.0374) (.0281) (.00801)
Top 2nd 1.793**  2.324*** -.222** 0103 2.076%* - 221%*  (0198***
(.0472) (.0480) (.0280) (.0125) (.0334) (.0271) (.00720)
Top 3rd 1.358***  1.754%** -.131** .00822 1.563**  -128** 0109
(.0461) (.0465) (.0248) (.0109) (.0305) (.0253) (.00741)
Top 4th .800***  1.087*** -.122*%* 00761 1.000*** - 132** (0142*
(.0486) (.0471) (.0262) (.0103) (.0292) (.0271) (.00790)
Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Product FE Yes Yes Yes Yes Yes Yes Yes
Observations 14,304 14,304 14,304 14,304 14,304 14,304 3044,
R-squared .630 721 496 .629 .811 524 Ja71

Notes The table regresses each column variable against catageariables for the top, second, third and fourth
best performing product of the plant, interacted with a dynfion homogenous products. Within-plant product
rankings are computed in terms of normalized product salesed on the Torgvist index described in sec8d).

We update the rank in each sample period, potentially afigyiroducts to switch ranks within plants over time.
The sample includes all plants that produce at least 5 ptedWe define degree of differentiation at the plant
level based on the liberal classificationRauch(1999. For this, we use concordances between SITC (used by
Rauch) and ISIC codes of the main product (used by the ChiEdi). This yields a plant-level classification
into homogenous and differentiated. "Homogeneous" is fodpct categories that accordingRauch(1999 are
"traded on organized exchanges" or are "referenced pritdiferentiated" is based on Rauch’s "differentiated"
category. Standard errors (clustered at the plant-yeal)lave in parenthesis. Key: *** significant at 1%; ** 5%;
* 10%.
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