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1 Introduction

It is well recognized by financial market participants and academic research that a large part of

trading in financial markets is driven by price-contingent strategies, i.e., strategies that are based

on past asset price movements rather than fundamental analysis. Importantly, among the major

players in implementing price-contingent strategies are the funds specialized in quantitative

trading. Price-contingent trading can be trend-following (e.g., buying after prices have gone

up), contrarian (e.g., buying after prices have gone down), or can take more complex forms where

the direction of price-contingent trading varies across time horizons, magnitudes of past price

changes, instruments and trade structures (see Section 3 in Narang (2013) for a characterization

of data driven quantitative strategies).

The empirical evidence on the performance of price-contingent trading documents a strik-

ing difference between retail investors and large quantitative funds. In fact, the evidence shows

that individual and retail investors lose from pursuing trend-following or contrarian strategies.1

These findings have motivated a large literature to argue that trend-following or contrarian

trading must stem from behavioral biases, imperfect or bounded rationality, non-standard pref-

erences, or institutional frictions (e.g., Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer,

and Subrahmanyam (1998), Hong and Stein (1999); see Shleifer (2000) and Barberis and Thaler

(2003) for surveys).

By contrast, large institutions appear to systematically profit by price-contingent trading.2

As a result, the unprecedented growth of quantitative trading by sophisticated large financial

institutions (see e.g., Osler (2003) and Hendershott, Jones, and Menkveld (2011)) poses a

challenge to a purely behavioral view of price-contingent trading. The reason is that– unlike

retail investors– these large institutions appear to systematically profit by price-contingent

trading, while in the behavioral models reviewed above price-contingent traders incur systematic
financial losses.

Our objective in this paper is to develop a micro-founded model of trading by rational

uninformed agents and to use this model to understand the mechanics and the profitabil-

ity of quantitative price-contingent trading by large financial institutions. While maintaining

standard assumptions of (semi-strong) market effi ciency and preferences, we demonstrate that

price-contingent trading is the equilibrium strategy for large rational traders, who systemat-

1Contrarian trading leads to portfolio losses, as shown for individuals in Odean (1998) and Barber and Odean
(2000). Trend-following trading leads to portfolio losses, as shown for mutual funds in Grinblatt, Titman, and
Wermers (1995), Carhart (1997), and Coval and Stafford (2007) and for pension funds in Lakonishok, Shleifer,
and Vishny (1992). See also Nofsinger and Sias (1999) and Griffi n, Harris, and Topaloglu (2003).

2For example, Commodity Trading Advisors (CTAs) profit from trend-following strategies in futures markets
(e.g., see Clenow (2013), and Baltas and Kosowski (2014)); and various institutions profit from contrarian
strategies in equities (e.g., see Lehmann (1990), and Jegadeesh (1990)).
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ically profit from trading in response to past price changes. Furthermore, we show that in

general the direction of optimal price-contingent trading depends on the magnitude of past

order flows (or equivalently, the magnitude of past price changes) in a non-monotonic manner,

i.e., it tends to be trend-following small order flows and contrarian following large order flows.

To the best of our knowledge, such non-monotonicity is a novel result and represents our main

contribution. We discuss the related literature in Section 2 and the empirical implications that

are unique to our model in Section 5.

Before addressing the drivers of trend-following and contrarian trading strategies, we should

highlight two key assumptions that are important for explaining why quantitative trading is a

rational equilibrium strategy in our setting. First, we assume that a quantitative trader has

market impact, i.e., his trades move prices. Second, there is a positive probability that the

quantitative trader may have fundamental information, while it is not known with certainty by

the rest of the market whether or not the trader has such information. The first assumption

must hold by definition when the traders are “large”. The second assumption is realistic

because quantitative trading nearly always involves discretion and human supervision, which

implies that a quantitative trader can and will override the trading algorithm should he become

aware of some fundamental information. In fact, practitioners’accounts of quantitative trading

(e.g., Narang (2013)) describe specific examples of quants overriding their trading algorithms

upon learning fundamental information, and in general repeatedly highlight such discretion to

be crucial to understand quantitative trading by professional investors.

We present a stylized setting with one risky asset and two trading dates, and we model

quantitative trading by assuming that there is a large risk-neutral trader, called P, who may

be directly informed about the fundamental value (type I) or not informed (type U) with some

probability. Trader P knows his own type and takes into account the market impact of his

order on the expected market price. As standard in this literature, we impose that prices are

set such that the market is semi-strong effi cient by introducing another risk-neutral agent, the

Market (often called the “market maker”in the rational expectations literature)3 who observes

the aggregate order flow and sets prices such that he breaks even in expectation. Crucially, the

Market does not observe P’s type. Instead, he knows the prior probability of P being type I or

U, and updates his beliefs about the asset value and P’s type based on the order flows.

As a simple example, consider the case when P is the only strategic large trader in the

market, and the rest of the aggregate order flow comes from noise traders whose trading volume

is independent from other random variables, serially uncorrelated and drawn from the normal

distribution.4 It is intuitive in this setting that the equilibrium price is an increasing function

3We call this agent “the Market”, as the same outcome would be obtained if prices are set in a competitive
market populated by a large number of small uniformed traders.

4We introduce noise traders as a standard assumption to guarantee that order flows are not fully revealing.
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of date 1 order flow, simply because if P is informed (type I), P’s orders are driven by his

fundamental information. Crucially, even if not informed (type U), P still knows his own type

and therefore infers that any deviation of prices from the prior mean must be driven entirely

by noise trading, implying that he can and does benefit from pursuing a contrarian strategy

(at date 2) in a rational expectations equilibrium.

This simple example gives an intuition why P’s market impact and uncertainty about P’s

type are both needed for quantitative trading to be an equilibrium strategy. If P’s past trades

did not have market impact, knowledge of his own past trades would not suffi ce to generate

superior information. This explains why it is relatively more diffi cult for retail investors to

benefit from quantitative trading compared to larger institutions. Also, if P’s type was public

information, it would also be impossible for P to earn abnormal returns, because the Market

and P would have exactly the same information (see Easley and O’Hara 1991 for a similar

argument for the case where P’s type is known).

In our baseline model, we consider a richer setting where there are other informed traders

in the market. To account for this possibility, we introduce another large trader, called K, who

is also large and risk-neutral, but unlike P, is always informed about the fundamental value.

Distribution of the fundamental value of the asset is also important because it determines

what informed traders can do in equilibrium. To obtain all our effects about the direction

of P’s trading, there must be, at a minimum, three possibilities — fundamental information

reflecting positive or negative news, as well as confirming that the fundamental is (close to) the

prior mean (i.e., news confirming the "base-case scenario"). Our baseline model therefore uses

a symmetric three-point distribution that covers distributions of very different shapes (from

U-shaped to hump-shaped).5

We show that at large past order flows the optimal price-contingent strategy is contrarian.

The reason is similar to that in the simple example above. It always holds that two large

informed traders will jointly trade more than one. Hence, in the state in which P is uninformed,

the Market, upon observing a large positive aggregate order flow, tends to optimally set prices

too high compared to uninformed P’s best guess. Consequently, by knowing his own type

(U), and observing a large past order flow, P knows better than the Market that the past

price changes observed at date 1 most likely reflect noise trading rather than fundamental

Furthermore, predictability of noise trading (e.g., through serial correlation) would immediately create a reason
for any rational agent to profit by trading against the noise traders’demand. We abstract from such consid-
erations, and consider noise traders as a large number of retail investors each trading for idiosyncratic reasons
outside the model. As a result, the normal distribution of noise trades follows from the central limit theorem.
In Section 4.3 we discuss the robustness of our findings to relaxing the assumption of normal noise trading and
consider the wide class of log-concave distributions.

5As we allow for any probability for the middle outcome, our setting also covers the special case of a Bernoulli
prior, which is less realistic for most assets as it eliminates the possibility that private information confirms the
"base case scenario".
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information.

The intuition for trend-following trading at small order flows is just the reverse. When

observing a small aggregate order flow, the Market rationally believes that the order flow is

most likely generated by noise trading rather than informed trading. As a result, rational

equilibrium prices are too insensitive to order flow compared to uninformed P’s best estimate,

and the optimal quantitative trading strategy is trend-following. It is important to highlight

that such trend following incentive would be absent if we eliminated the possibility that informed

traders may have chosen not to trade (or to trade little), because they have learned that the

fundamental value is close to the prior.6

We study the robustness of our results to a variety of extensions, including studying the

robustness of our results to other distributions of the fundamental, and we show that the

main drivers or contrarian and trend-following incentives apply for a wide set of other prior

distributions, including continuous ones.

For clarity of exposition, our baseline setting also assumes that informed traders only trade

at date 1 - after all, quantitative strategies are likely to react faster to public signals than

purely fundamental-based strategies. Nevertheless, we show that our results are robust to

allowing all rational (and forward-looking) traders to trade in all periods - we obtain exactly

the same qualitative predictions. It is also straightforward to extend our results to allow for

more informed traders and/or more trading rounds.

At the most basic level, our theory rationalizes why quantitative trading is profitable on

average, over and above standard remunerations for risk, as it is better able to chase information

than the rest of the market. It also delivers an additional theoretical result that the order

flow is predictable from past information even if returns are not. Order flow predictability

is consistent with the evidence of Biais, Hillion, and Spatt (1995), Ellul, Holden, Jain, and

Jennings (2007), and Lillo and Farmer (2004). Furthermore, as our main novel prediction is

about the non-monotonic equilibrium trading strategies, our model also suggests that this non-

monotonicity carries over to the direction of order flow predictability, which provides further

testable implications (see Section 5).

Our theory also highlights the importance of equilibrium forces that typical practitioners’

accounts (such as Narang (2013)) do not consider. While practitioners emphasize the realistic

contemporaneous costs of market impact7, which we incorporate, a perhaps less intuitive finding

of our model is that the same costly market impact is also a source of subsequent superior private

information.
6For this exact reason, we show that a Bernoulli prior implies that only the contrarian trading incentives

described above survive in the equilibrium.
7E.g., see Kissell (2014). Anecdotal evidence even suggests that hedge funds may decline opportunities to

raise funds under management because a larger trading volume would imply too much market impact.

5



It should also be emphasized that out model is most insightful for quantitative trading

strategies at intermediate, relatively short time horizons, i.e., daily, weekly, and/or monthly

frequencies. While the forces we highlight may be present also at high frequency level, we

recognize that at very high frequencies a potentially larger part of quantitative trading takes

the form of market making. By contrast, at very long horizons the Market would eventually

learn P’s type and asset prices would converge to reflect only fundamental information.

The paper proceeds as follows. Section 2 discusses some of the related literature. Section

3 outlines the baseline model and presents the main results. Section 4 considers extensions.

Section 5 discusses the empirical implications, and Section 6 concludes.

2 Literature

The broad literature on asset pricing and learning in micro-founded financial markets is surveyed

in Brunnermeier (2001) and Vives (2008), among others. Our work relates to the part of the

literature that studies trading in markets with asymmetric information. Our results on the

profitability of rational price-contingent trading require that informed traders be large, i.e.,

that their trades have market impact. We develop our model in a setting that generalizes

the Kyle (1985) framework.8 Our model shows that rational traders with market impact and

superior information about their own type can learn from prices better than average market

participants or market makers. Another related strand of the literature studies whether past

prices contain useful information for a rational trader (e.g., Grossman and Stiglitz (1980),

Brown and Jennings (1989)). However, in these papers there are no profits from uninformed

trading in excess of the risk premium. It is worth noting that this is because in these models

uninformed traders do not have market impact and the number/share of such traders is known

to all market participants.

Our paper also relates to the literature on stock price manipulation, that is, the idea that

rational traders may have an incentive to trade against their private information. Provided ma-

nipulation is followed by some (exogenously assumed) price-contingent trading, short run losses

can be more than offset by long term gains (see Kyle and Viswanathan (2008) for a review).

Somewhat closer to our work, Chakraborty and Yilmaz (2004a, 2004b) study the incentives

of an informed trader when there is uncertainty about whether such trader is informed, or is

a noise trader instead. If this trader turns out to be informed, he may choose to disregard

his information and trade randomly, in order to build a reputation as a noise trader. In their

model, uninformed traders are assumed to always act as noise traders and are never strategic

8Similar implications could be obtained in a Glosten and Milgrom (1985) framework in which trades arrive
probabilistically and market makers observe individual trades. See also Back and Baruch (2004).
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and rational. Therefore, Chakraborty and Yilmaz do not analyze the trading incentives of

rational agents when they are uninformed, which is our main focus.

Goldstein and Guembel (2008) show that if stock prices affect real activity then a form

of trade-based manipulation such as short-sales by uninformed speculators can be profitable

insofar as it causes firms to cancel positive NPV projects, and justifies ex post the "gamble"

for a lower firm value. In their setting, both uninformed trading and successful stock price

manipulation stem from the feedback effect between stock prices and real activity. By contrast,

in our paper there is price-contingent trading but no manipulation. Therefore, our results

demonstrate that price-contingent trading does not make uninformed investors the inevitable

prey of (potentially informed) speculators.9

Our paper is also related to the literature that studies the consequences of introducing

uncertainty about the types of traders in models with asymmetric or dispersed information.10

One notable strand of this literature focuses on rational herding (see Avery and Zemski (1998),

Park and Sabourian (2011), and Chamley (2004) for a review). Unlike our setting in which

traders never disregard their private information, these models characterize conditions under

which, when information precision is uncertain, rational traders ignore their noisy private signal

and follow the actions of other traders instead.11

A more recent strand of this literature studies static and dynamic competitive rational ex-

pectations models with uncertainty about traders’types (Gao, Song, andWang (2013), Banerjee

and Green (2014)), or a Kyle (1985) model with one strategic agent and uncertainty about her

information (Odders-White and Ready (2008), Li (2013) and Back, Crotty and Li (2016). In

particular, Odders-White and Ready (2008) consider a single-period Kyle model in which a

trader may or may not be informed; and Li (2013) studies a continuous time model in which

a trader may or may not be informed. These papers consider uncertainty about the existence

of "informational events", but does not consider the consequences of the distribution of "infor-

mational events" when they exist. The latter is needed to derive our main non-monotonicity

results.12 Back, Crotty and Li (2015) adopts a setting similar to Li (2013) and is mostly con-

9Allen and Gale (1992) also study a setting with manipulation but without price-contingent trading.
10Uncertainty about the number of informed traders also shows up in static noisy REE models where agents

face short-sale or borrowing constraints, and uninformed traders are uncertain whether the constraint is binding
or not (e.g., Yuan (2005)).
11One strand of this herding literature has focused on understanding the stock market crash of October 1987

(Grossman (1988), Gennotte and Leland (1990), Jacklin, Kleidon, and Pflederer (1992) and Romer (1993)). A
common theme of these papers is that market participants are assumed to have strongly underestimated the
extent of portfolio insurance– i.e., trend-following trading– which in turn is assumed to be exogenous. Our
focus instead is on deriving endogenously price-contingent trading, and characterize conditions under which it
is trend-following as opposed to contrarian.
12In particular, these papers consider a setting that is similar to our special case in the Supplementary

Appendix in which there is one strategic trader P who may be informed or not. Uncertainty about the presence
of informed traders can give rise to contrarian strategies, but not to the full spectrum of rational quantitative
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cerned with the question of whether the (adverse selection) risk of informed trading (labeled

PIN) can explain the spread between actively traded and inactively traded securities, following

Easley, Kiefer, O’Hara, and Paperman (1996). Unlike us, these papers are concerned with ex-

plaining the price impact of trades, measured as the market maker’s price sensitivity to order

imbalance, with empirical proxies for the probability of informed trading.

Finally, we should note that our model is most appropriate to understand quantitative

strategies that trade daily or weekly, so that there is both some probability that trading reflects

information, and some benefit from a relatively fast execution in response to changes in market

prices. It is less appropriate for the millisecond environment in which high frequency traders

may benefit from momentary imbalances between supply and demand. With this in mind, our

paper is also related to a few recent papers that focus on the speed advantage of quantitative

traders. Clark-Joseph (2013) studies a partial equilibrium model in which prices are exogenous,

and finds empirical support for the idea that high-frequency traders learn from their own trades

better than the rest of the market, very closely related to the ideas developed in our model.

Biais, Foucault, and Moinas (2013) consider the decision of a financial institution to invest in a

high-speed trading technology and derive conditions under which such investment is excessive

from a social welfare standpoint; and Pagnotta and Philippon (2012) consider trading exchanges

competing on speed to attract future trading activity. Unlike us, these papers do not focus on

price-contingent trading.

3 The Model

We consider a stylized setting with one risky asset that is traded at dates 1 and 2. The

fundamental value, θ, is realized at date 3, and can take the following three values:

θ =


−θ̄ wpr. 1−γ

2

0 wpr. γ

θ̄ wpr. 1−γ
2

, (1)

where 0 ≤ γ < 1 and θ̄ > 0. Such three-point prior provides a simple representation of distri-

butions of many different shapes (i.e., U-shaped, hump-shaped, uniform), while the parameter

strategies that include trend-following strategies and non-monotonic strategies. In contrast, our main setting
highlights that in order to understand the drivers of all these strategies, one needs to consider not only whether
there is an “informational event”(whether there are any informed traders), but also “the distribution of these
informational events” (how likely are informed traders to learn information that is close to the prior mean as
opposed to indicating a substantial change in fundamentals). In contrast to this literature, we emphasise the
difference between “no news”because no-one is informed and “no-news”because informed investors learn that
there has not been any substantial change in fundamentals relative to the prior.
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γ is a measure of how much mass is in the centre of the distribution compared to the tails.

Furthermore, a three state environment reflects the common approach adopted by fundamental

analysts, who typically identify the "base", "best" and "worst" case scenario and provide an

assessment of the likelihood of these cases, captured by parameter γ. In addition, considering

three-states has the convenient feature of presenting (informed) strategic traders with a suffi -

ciently rich set of actions to choose from - not just to buy or sell, but also not to trade or to

trade little.13 In Section 4.2 we extend our analysis to consider other priors.

As our goal is to understand the incentives of large traders who know that their trades have

a market impact, we adopt a setting in the spirit of Kyle (1985). We maintain the assumption

that large strategic risk-neutral traders and non-strategic noise traders submit market orders

before knowing the execution price, and that the equilibrium prices are set by a hypothetical

agent, the Market, who observes the total order flow and implements the market effi ciency

condition. Namely, he sets period t price,

pt = E
[
θ|ΩM

t

]
, (2)

where ΩM
t is the information set available to the Market in t ∈ {1, 2}, which includes all publicly

available information such as the current and past order flows. Denoting the date t total order

flow with yt, it holds that ΩM
1 = {y1} and ΩM

2 = {y1, y2}.
To analyze quantitative trading by a large strategic investors, we introduce a risk-neutral

trader, P . This trader sets up his quantitative trading strategy before date 1 without knowing

the fundamental value θ. Such trading strategy can only depend on publicly observed variables,

i.e., prices and order flow, and on the parameters of the distributions. However, as we have

emphasized, quantitative trading involves the possibility of human discretion - P can alter his

strategy should he learn direct fundamental information. This implies that P may either trade

based of his knowledge of the fundamental or based on his original strategy. To formalize this

idea, we assume that P knows his own type

R =

{
I if P is "informed" (i.e., knows θ)

U if P is "uninformed" (i.e., does not know θ)
,

where that probability that P is informed is Pr (I) = η, where 0 < η < 1.14. This is crucial as P

13Naturally, the special case with γ = 0 corresponds to a Bernoulli prior, which is of potential independent
interest as settings with two possible outcomes are rather common in the literature. In general, however, by
eliminating the "base" case from the set of possible outcomes, a Bernoulli prior does not capture many realistic
environments, including the possibility that privately informed traders choose not to trade.
14We also assume that η is not arbitrarily close to one. This realistically avoids a situation in which P is

uniformed, but the Market is convinced that he is informed and is very reluctant to update his beliefs about
P’s type.
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knowing his own type is, de facto, a source of private information should he remain uninformed

about θ.15 In fact, while the Market knows η, it does not know its realization, that is, it does

not know P ′s type (R).We further assume that R is independent of the fundamental and noise

trading.

While we give an illustrative example where P is the only trader able to learn the funda-

mental value (see Supplementary Appendix), our baseline setting aims to capture quantitative

trading in an environment in which P’s potential fundamental information is not the only source

of fundamental information relevant to the market. In fact, in reality there are typically also

other sophisticated traders, who have comparative advantage on fundamentals-based strategies.

To capture this idea, we assume that in addition to P , there is a large risk-neutral trader, K,

who is rational, strategic, and always informed about the fundamental. Trader K is therefore

equivalent to the insider in Kyle (1985).

To stack the cards against P , we assume that K knows P’s type.16 This assumption

highlights that what is crucial for our argument is that the Market does not know P’s type,

irrespective of other sophisticated traders knowing it or not. In our main setting we also

assume that fundamentals-based traders are "slower" than quantitative traders whose trades

simply react to changes in observable variables. Formally, we assume that K and informed P

can only trade at date 1, while uninformed P can trade any time. While both realistic and

convenient to illustrate our results in a clean manner, this "speed" assumption turns out to be

unimportant for our qualitative findings, as we find in Section 4.1 where we study the case in

which informed K and P can trade at date 1 and 2.

We denote the market order by trader J ∈ {K,P} in state R ∈ {I, U} at date t ∈ {1, 2} as
hRJt . If both traders are informed, R = I, then trader J solves

max
hIJ1

πIJ1 = E
[
hIJ1 (θ − p1) |θ, I

]
, (3)

where J ∈ {K,P}. If only K is informed about the fundamental, R = U , then K solves

max
hUK1

πUK1 = E
[
hUK1 (θ − p1) |θ, U

]
, (4)

15An alternative interpretation of this specification is that investors (i.e, the Market) do not know for sure
whether a large fund is pursuing a price-contingent or a fundamental-based strategy regarding a particular asset
at a given point in time. Strategies pursued by sophisticated Hedge Funds are rarely concentrated to only one
approach and these institutions are known to be highly secretive about their portfolio.
16This assumption makes it ex ante harder for P to develop an information advantage as P never has more

information than K.

10



and P solves17

max
hUP1

πUP1 = E
[
hUP1 (θ − p1) + hUP2 (θ − p2) |U

]
(5)

max
hUP2

πUP2 = E
[
hUP2 (θ − p2) |y1, U

]
.

The total order flow is

y1 = hRK1 + hRP1 + s1 for R = {I, U} (6)

y2 =

{
s2 if R = I

hUP2 + s2 if R = U,

where st is date t ∈ {1, 2} demand by noise traders.18 We assume that noise traders demand
is drawn from a normal distribution with mean zero and variance σ2

s , serially uncorrelated and

independent of fundamental and state. We denote the probability density function with ϕs (st)

for t ∈ {1, 2}. While being a standard assumption in this literature, there is also a natural
economic argument for this choice of distribution. As we interpret noise trading as the total

demand by a large number of small traders who trade for idiosyncratic reasons unrelated to the

fundamental (such as liquidity shocks, private values, etc.), the normality of the distribution of

noise trading follows directly from the central limit theorem.

Technically, a useful property of the normal distribution is that it is strictly log-concave,

allowing us to use some general properties of log-concave functions.19 Log-concavity of noise

trading also guarantees some desirable properties of the model, and we discuss generality further

in Section 4.3.20

Further, while in settings with known types the total order flow provides noisy information

about the fundamental, θ, it also reveals noisy information about P’s type. By the law of total

17We condition P’s expectation on the order flow (instead of the price or both), because date 1 order flow is
always at least as informative as date 1 price. Provided that price is monotonic in the order flow, the two have
the same information content.
18As usual, the presence of noise traders is needed to avoid the Grossman and Stiglitz’s (1980) paradox about

the impossibility of a fully revealing price in equilibrium.
19A function f (x) (where x is a n-component vector) is log-concave if ln (f (x)) is concave. In the univariate

and differentiable case, the following are equivalent: 1) ∂2 ln (f (x)) /∂x∂x < 0, 2) f ′ (x) /f (x) is decreasing in
x, 3) f ′′ (x) f (x)− (f ′ (x))

2
< 0. It is easy to verify that the normal distribution, ϕs (.) , is logconcave.

20Many other well known distributions are log-concave and symmetric. Notable examples include the beta
(with parameters α = β > 1) and the truncated normal. See Bagnoli and Bergstrom (2005) for an overview and
further examples of log-concave densities.
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expectations, the Market effi ciency condition (2) can be expanded as

p1 = E [θ|y1] = Q1E [θ|y1, I] + (1−Q1)E [θ|y1, U ] (7)

p2 = E [θ|y1, y2] = Q2E [θ|y1, y2, I] + (1−Q2)E [θ|y1, y2, U ] ,

where Q1 ≡ Pr (I|y1) and Q2 ≡ Pr (I|y1, y2) are the probabilities of P being informed con-

ditional on the observed total order flows. We also use notation p1 (y1), p2 (y2), Q1 (y1) and

Q2 (y2) to express these prices and probabilities as functions of contemporaneous order flows.

To summarize the setup, the timing of events is as follows:

• date 0 - Nature draws R ∈ {I, U} and θ. K and P learn R. If R = I, then both K and

P learn θ. If R = U , only K learns θ.

• date 1 - K, P , and noise traders submit market orders before knowing the price. The
Market observes total order flow and sets the price p1 based on the market effi ciency

condition (2).

• date 2 - Noise traders submit market orders. If R = U , then P also submits a market

order before knowing the price. The Market observes total order flow and sets the price

p2 based on the market effi ciency condition (2).

• date 3 - uncertainty resolves and P and K consume profits given the realization of θ.

As standard in the literature we focus on equilibria in pure strategies by K and P , and we

proceed by backward induction.

3.1 Date 2 problem

Assume η > 0 and notice that all date 1 quantities, E [θ|y1, R] , p1 and Q1 = Pr (I|y1) can only

depend on y1 and are therefore known to P and the Market before date 2. Date 2 problem

is only interesting if there is a difference between P’s and the Markets expectations about the

fundamental (E [θ|y1, U ] 6= p1 or equivalently E [θ|y1, U ] 6= E [θ|y1, I]) and the Market has not

fully learned P’s type (Q1 > 0). For now, we conjecture that this is the case. We verify it later

when analyzing the date 1 problem.

As there is no informed trading at date 2, it holds that conditional on a given state R ∈
{I, U} and y1, the date 2 order flow only depends on θ through y1, which is already incorporated

in prices and expectations and therefore E [θ|y1, y2, R] = E [θ|y1, R]. Using (7) we obtain

p2 = p1 +
(Q1 −Q2)

Q1

(E [θ|y1, U ]− p1) . (8)
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Clearly prices change between date 1 and 2 only if Q2 6= Q1, which implies that they only change

if the Market updates its beliefs about P’s type after observing date 2 order flow. Provided

that the true state is R = U , the Market updates in the "correct" direction if Q2 < Q1. In such

case prices increase (decrease) if E [θ|y1, U ] > (<) p1. Using (8), we can restate P’s problem (5)

as

max
hUP2

πUP2 = hUP2 E [Q2|y1, U ]
(E [θ|y1, U ]− p1)

Q1

= (9)

= hUP2

(∫ ∞
−∞

Q2

(
hUP2 + s2

)
ϕs (s2) ds2

)
(E [θ|y1, U ]− p1)

Q1

.

We can make some immediate observations. Suppose that E [θ|y1, U ] > p1, i.e., uninformed P

expects the fundamental to be higher than date 1 price. On the one hand, P can profit from

trading any positive quantity. Ignoring the effect of his trade on Q2 (.) would make him to

want to buy an infinitely large quantity of the asset at date 2. On the other hand, the term

E [Q2|y1, U ] captures the expected updating of P’s type by the Market. Because Q2 depends on

date 2 order flow, P knows that his trade will affect the Markets’beliefs about his type. Since

these beliefs directly affect p2, one would expect the traditional trade-off between transaction

size and information disclosure to be present, namely, that increasing order size increases the

extent of potential profits for the informed trader but also reveals to the Market the trader’s

private information, which implies that prices will move in the opposite direction and limit the

informed trader’s profits. To establish this formally we need to investigate further the properties

of Q2.

As we focus on pure strategies and uninformed P’s trading strategy, we can see that the

beliefs of the Market are characterized by the quantity it expects P to trade. Thus, consider

that the market expects P to trade some quantity h̄2, whereby h̄2 can take any value in R.21

Then, from (6) y2 = h̄2 + s2 if R = U and y2 = s2 if R = I, we can derive Q2 by using Bayes’

rule, as

Q2 =
Q1f (y2|y1, I)

Q1f (y2|y1, I) + (1−Q1) f (y2|y1, U)
=

Q1

Q1 + (1−Q1) r (y2)
, (10)

where

r (y2) ≡
ϕs
(
y2 − h̄2

)
ϕs (y2)

(11)

is the likelihood ratio and we used the fact that conditional on the state R the date 2 order

flow is normally distributed with density ϕs (.).

Lemma 1.1 The following properties hold for Q2 = Pr (I|y1, y2)

21Naturally, in equilibrium it must hold that the Market’s expectations and P’s optimal trade are internally
consistent, i.e., hUP2 = h̄2.
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1. Q2 is decreasing (increasing) in y2 for any h̄2 > (<) 0.

2. If h̄2 > 0 then Q2 > (<)Q1 for any y2 < (>) h̄2
2
. If h̄2 < 0 then Q2 > (<)Q1 for any

y2 > (<) h̄2
2
.

3. Q2 (0) = Q1 ·
(
Q1 + (1−Q1)

ϕs(h̄2)
ϕs(0)

)−1

= Q1 ·
(
Q1 + (1−Q1) exp

(
−(h̄2)

2

2σ2s

))−1

,

4. If h̄2 > (<) 0 then lim
y2→∞

Q2 (y2) = 0 (= 1) and lim
y2→−∞

Q2 (y2) = 1 (= 0).

5. Q2 (y2) is a log-concave function.

Proof. Part 1: Differentiating and simplifying we obtain ∂Q2/∂y2 = −Q2
2 (1/Q1 − 1) r′ (y2).

Lemma A.1 in Appendix A shows that log-concavity of ϕs implies the monotone likelihood ratio

property (MLRP), i.e., r′ (y2) > (<) 0 for any h̄2 > (<) 0. This is because ϕs
(
ỹ2 − h̄2

)
/ϕs (ỹ2) >

(<)ϕs
(
y2 − h̄2

)
/ϕs (y2) for any ỹ2 > 0 and h̄2 > (<) 0. Parts 2-4 are straightforward from (10),

(11) and the expression for the normal density. Part 5: Taking logs and differentiating, we ob-

tain that ∂2 ln(Q2)
∂y2∂y2

= − (1−Q1)2[(1/Q1−1)r′′(y2)+r′′(y2)r(y2)−(r′(y2))2]
(Q1+(1−Q1)r(y2))2

. It is suffi cient to show that the

likelihood ratio (11) is (at least weakly) log-convex.22 Indeed from using the normal density in

(11) we find that ln (r (y2)) is linear in y2 and therefore weakly convex.

Part 1 of Lemma 1.1 implies that the Market updates its beliefs about P’s type (the state

R) in a "sensible" manner. For example, if the Market believes that trader P in state R = U

trades a finite and positive quantity, then observing a higher order flow always leads the Market

to assign a lower probability on P being informed. This also confirms that P indeed faces a

meaningful trade-off - the presence of a profit opportunity gives P incentives to trade, but

trading too aggressively will reduce P’s expected profit as he expects the Market to assign a

higher probability on him being uninformed and to adjust the price accordingly. It is worth

emphasizing that such realistic trade-off is always guaranteed because the likelihood ratio (11)

is monotone (for a similar argument, see also Milgrom (1981)).23

While Bayesian updating itself guarantees that the Market updates its beliefs in the correct

direction on average, we can see from part 2 of Lemma 1.1 that depending on the realized date

2 order flow, the Market can update the probability that P is informed, Q2, in the "correct"

or "incorrect" direction. This is because the total order flow includes a random noise trading

component. Namely, if the realized order flow is relatively small (i.e., less than half of the volume

22r (y2) is log-convex if ln (r (y2)) is convex. Equivalently, it must hold that r′′ (y2) r (y2) − (r′ (y2))
2 ≥ 0.

This, together with r (y2) > 0 also implies that r′′ (y2) > 0.
23The monotone likelihood ratio property holds for the whole family of log-concave distributions, to which

the normal belongs (see Lemma A.1 in Appendix A).
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that the Market expects uninformed P to trade) or has an opposite sign to P’s expected trade,

then the Market updates in the "correct" direction if the state is R = I and in the "incorrect"

direction if the state is R = U . It is also immediate from parts 2-4 of Lemma 1.1 that the

Market never learns P’s type perfectly for finite order flows. Therefore, despite some learning

about P’s type, it is clear from (9) that P would always earn positive profits from trading any

finite quantity that has the same sign as the difference E [θ|y1, U ]− p1.

Part 4 of Lemma 1.1 confirms that the Market’s learning about P’s type is unbounded.

This is necessary to guarantee that P has an incentive to trade a finite amount.24

While the previous analysis gives some confidence that it may be optimal for uninformed P

to trade a finite quantity in equilibrium, it is not yet clear whether P’s problem has a unique

(interior) solution. Namely, from (9) P’s expected profit involves an integral over a non-trivial

function Q2 (.) that depends on uninformed P’s demand and is always positive for hUP2 > (<) 0

provided that (E [θ|y1, U ]− p1) > (<) 0.

Lemma 1.2 If (E [θ|y1, U ]− p1) > (<) 0 then uninformed P’s expected profit (9) is strictly

log-concave in hUP2 > (<) 0.

Proof. Assume without loss of generality that (E [θ|y1, U ]− p1) > 0 and hUP2 > 0. Taking

logs of (9), we obtain ln
(
πUP2

)
= ln

(
hUP2

)
+ ln (E [Q2|y1, U ]) + ln (E [θ|y1, U ]− p1) − ln (Q1)

and ∂2 ln
(
πUP2

)
/∂hUP2 ∂hUP2 = −

(
hUP2

)−2
+∂2 ln (E [Q2|y1, U ]) /∂hUP2 ∂hUP2 , which is negative if

E [Q2|y1, U ] is log-concave. By change of variables y2 = hUP2 + s2, we can express

E [Q2|y1, U ] =

∫ ∞
−∞

Q2 (y2)ϕs
(
y2 − hUP2

)
dy2. (12)

Using Theorem 6 of Prékopa (1973), restated as Theorem A.2 in Appendix A, a suffi cient con-

dition for (12) to be log-concave is that the function Q2 (y2)ϕs
(
y2 − hUP2

)
is log-concave in hUP2

and y2. We can then derive ∂2 lnϕs
(
y2 − hUP2

)
/∂hUP2 ∂hUP2 = −σ−2

s and ∂2 lnϕs
(
y2 − hUP2

)
/∂hUP2 ∂y2 =

∂2 lnϕs
(
y2 − hUP2

)
/∂y2∂h

UP
2 = σ−2

s . As by part 5 of Lemma 1.1 ∂
2 ln (Q2 (y2)) /∂y2∂y2 < 0,

it is immediate that the Hessian25 is negative definite, and therefore E [Q2|y1, U ] and πUP2 are

log-concave. The proof for the case (E [θ|y1, U ]− p1) < 0 and hUP2 < 0 is similar.

Since any univariate log-concave function is also quasi-concave with a unique maximum, we

can now state our main result26:
24Suppose instead that learning was bounded (i.e., Q2 was such that 0 < |Q2| < 1 even at the limit when

y1 → ±∞) and consider a candidate equilibrium where P trades a finite amount. It is easy to see that this
cannot be an equilibrium as P would benefit from deviating to trade an infinite quantity. See also Section 5.

25The Hessian is

∣∣∣∣−σ−2s σ−2s
σ−2s ∂2 ln (Q2 (y2)) /∂y2∂y2 − σ−2s

∣∣∣∣ .
26An alternative proof of quasi-concavity is to require that the negative of the first derivative of the objective
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Figure 1: Uninformed P’s trading volume at date 2.

Theorem 1 Uninformed P’s unique equilibrium strategy is to demand a finite amount

hUP2 = h̄2 =

{
σsκ if E [θ|y1, U ]− p1 > 0

−σsκ if E [θ|y1, U ]− p1 < 0
, (13)

where κ > 1 for any Q1 ∈ (0, 1) and κ depends on Q1 only.

Proof. It is immediate from (9) that hUP2 < (>) 0 when E [θ|y1, U ] − p1 > (<) 0 cannot be

optimal as it leads to strictly negative profits. By Lemma 1.2, the uninformed P’s problem

then has a unique maximum at a non-negative hUP2 . Therefore it is suffi cient to look at the

first order condition only and then impose that in equilibrium beliefs must be consistent with

the optimal strategy hUP2 = h̄2. The first order condition, the expression for κ and the proofs

of the statements that κ > 0 and only depends on Q1 are in Appendix B.

Because κ only depends on Q1, it is most illustrative to present the solution27 on a graph

(see Figure 1). We find that whenever E [θ|y1, U ] 6= p1 = E [θ|y1], it is generally optimal for

uninformed P to trade at date 2. The volume traded by P is proportional to the standard

deviation of noise trading and is increasing in Q1. Both effects are intuitive. When the order

flow is more noisy (high σs), it is harder for the Market to update its beliefs about the state and

it is less costly for uninformed P to trade more aggressively. Because the Market’s posterior

function is single crossing in hUP2 . The suffi cient conditions for single crossing under uncertainty have also been
explored by Athey (2002) and Quah and Strulovici (2012). In both cases we can derive that log-concavity of
Q2 (.) and ϕs (.) are suffi cient for strict single crossing.
27It is relatively easy to show that if Q1 = 0.5, then κ =

√
2, and if Q1 → 0, then κ = 1. The other values on

Figure 1 are derived using numerical integration.
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belief that the state is R = I, Q2 = Pr (I|y1, y2), is increasing in Q1 (its belief about P’s type

before date 2 trading), it is clear that a higherQ1 also makes it less costly for an uninformed P to

trade more aggressively as the Market is learning about his type more slowly. Overall P trades

a finite quantity as he faces a trade-off between profiting from his superior information and

revealing his type too much. This trade-off is fundamentally similar to the one in Kyle (1985),

however differently from that setting P’s private information is not about the fundamental

directly, but about his impact or lack of impact on date 1 price.

It is worth noticing that at the limit, where Q1 → 0, the quantity traded by P at date 2

converges to exactly one standard deviation, while P’s expected date 2 profit converges to zero.

If P was known to be uninformed with probability one, i.e., η = 0, it would imply that Q1 = 0,

with probability one. The limit case and the certainty case are not the same. If P’s type is

known, it is easy to see that any known quantity traded by P (including zero trade, and one

standard deviation trade) is an equilibrium, as P would always earn zero profit at any such

equilibrium.28 On the one hand this observation is consistent with Easley and O’Hara’s (1991)

argument that uninformed traders cannot benefit from trading against risk-neutral agents (the

Market) who have at least as much information as they do. On the other hand, it highlights

that even a very small probability of P being informed is suffi cient for quantitative trading to

exist in equilibrium, the traded quantity to be unique, and to generate strictly positive profits.

3.2 Date 1 problem

We define price-contingent strategies as follows:

Definition P’s date 2 strategy is called29

- trend-following (momentum) for some y1 if y1 > 0 and hUP2 > 0, or y1 < 0 and hUP2 < 0

- contrarian for some y1 if y1 > 0 and hUP2 < 0, or y1 < 0 and hUP2 > 0.

Note that this definition allows equilibrium strategies to be non-monotonic in the order flow,

as it is defined for each realization of y1. Provided the price is monotonic in the order flow (as

it will be in equilibrium), it would be equivalent to define P’s strategy through date 1 returns.

28When Pr (I) = η = 0, then Q1 = Pr (I|y1) = ηf(y1|I)
f(y1)

= 0. From (9) and (10), it then follows that P’s date
2 profit is zero regardless of the quantity it trades. As the Market’s on-path beliefs about P’s trade need to
be consistent with P’s strategy, we can construct equilibria with any known quantity traded by P . In all these
equilibria, p2 = E [θ|y1, y2] = E [θ|y1] = p1, as the Market cannot learn new information from y2. Our earlier
draft contained a formal proof (allowing for any prior, and assuming log-concave noise trading) that with η = 0,
P cannot earn positive profits at either date. We have omitted this proof to save space.
29The words "momentum" and "contrarian" only refer to P’s strategy. They should not be confused with

positive and negative autocorrelation in returns. By the assumption of effi cient markets (2), there is zero
autocorrelation by construction. See also Section 3.4.
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So far, we have shown that whenever the date 1 price differs from uninformed P’s expec-

tations of the fundamental P’s optimal trading strategy is price-contingent. In this section we

verify this conjecture and study the direction of P’s trading. Given the symmetry of the dis-

tribution, it is natural to expect that in state R = U , the informed trader K’s optimal demand

is some real number ḡU > 0 if θ = θ̄, zero if θ = 0 and −ḡU if θ = −θ̄; and uninformed trader
P does not trade. In state R = I, the total demand by informed traders K and P is a real

number ḡI > 0 if θ = θ̄, zero if θ = 0 and −ḡI if θ = −θ̄. Given these beliefs, we can derive the
expressions and main properties of E [θ|y1, R], the price, and Q1 as described by the following

lemma.

Lemma 2.1 For the equilibrium price and conditional expectations of the fundamental, it holds
that

1. The price is given by

p1 (y1) = θ̄
Mn (y1)−Mp (y1)

Mn (y1) +Mp (y1)
(14)

where Mn (y1) ≡ 1−γ
2

(
ηϕs (y1 − ḡI) + (1− η)ϕs (y1 − ḡU) + γ

1−γϕs (y1)
)

and Mp (y1) ≡ 1−γ
2

(
ηϕs (y1 + ḡI) + (1− η)ϕs (y1 + ḡU) + γ

1−γϕs (y1)
)

;

2. The conditional expectation of the fundamental is

E [θ|y1, R] = θ̄
ϕs (y1 − ḡR)− ϕs (y1 + ḡR)

ϕs (y1 − ḡR) + ϕs (y1 + ḡR) + 2γ
1−γϕs (y1)

; (15)

3. The updated probability of state R = I is

Q1 (y1) = Pr (I|y1) =
η
(
ϕs (y1 − ḡI) 1−γ

2
+ ϕs (y1) γ + ϕs (y1 + ḡI)

1−γ
2

)
Mn (y1) +Mp (y1)

; (16)

4. The price is increasing in the order flow, i.e., p′1 (y1) > 0;

5. The price is symmetric around zero, i.e., p1 (y1) = −p1 (−y1) ;

6. It holds that lim
y1→∞

p1 (y1) = θ̄ and lim
y1→−∞

p1 (y1) = −θ̄;

7. θ̄ − p1 (y1) > 0 for all (finite) y1;

Proof. See Appendix B.
Lemma 2.1 confirms some reasonable and desirable properties of date 1 price, e.g., the price

is increasing in the order flow, symmetric around zero and always between −θ̄ and θ̄. If the
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state is R = U, then the expected profit (4) of K can be written as

πUK1 = hUK1

∫ ∞
−∞

(
θ − p

(
hUK1 + s1

))
ϕs (s1) ds1. (17)

If the state is R = I then the expected profit (3) of trader J ∈ {K,P} can be written as

πIJ1 = hIJ1

∫ ∞
−∞

(
θ − p

(
hIK1 + hIP1 + s1

))
ϕs (s1) ds1. (18)

We also need to explore whether the traders’objective function has a unique maximum.

One suffi cient condition for this would be that θ− p (y1) is log-concave, but this only holds for

some parameters. However log-concavity is only a suffi cient, but not a necessary condition for

a unique maximum. What we need is that the trader’s profit is quasi-concave in own demand,

i.e., that −∂πRJ1
∂hRJ1

is a single crossing function of hRJ1 . In Appendix B we prove that this is always

the case for θ = 0 and we identify some conditions where this is also the case for θ =
{
−θ̄, θ̄

}
.

An intuitive suffi cient condition is that the slope of the price does not decrease too rapidly,

which is the case in the examples considered. Provided that the informed trader’s problem has

a unique maximum in own demand, we can state:

Proposition 2 There is a pure strategy equilibrium at date 1, where the following holds:

1. Informed traders’demand is given by

hUK1 =


ḡU = σsµU if θ = θ̄

0 if θ = 0

−ḡU = −σsµU if θ = −θ̄
and hIK1 = hIP1 =


ḡI
2

= σs
µI
2
if θ = θ̄

0 if θ = 0

− ḡI
2

= −σs µI2 if θ = −θ̄
,

where µU and µI only depend on η and γ.

2. Total demand by informed traders in the event of news ( θ = θ̄ or θ = −θ̄) is always higher
in absolute value in state R = I compared to state R = U , i.e., gI > gU (equivalently

µI > µU).

3. In state R = U , the uninformed trader P does not trade at date 1, i.e., hUP1 = 0.

Proof. See Appendix B.

Proposition 2 states some intuitive properties of date 1 equilibrium. First, informed traders

face the standard trade-offas in Kyle (1985) and Holden and Subrahmanyam (1992). On the one

hand, whenever they have private information that indicates θ 6= 0 they earn positive expected
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Figure 2: Informed trading volume for different values of η and γ.

profits from trading, so they have an incentive to trade a high volume. On the other hand,

they know that due to market impact, trading a high volume reveals information about the

fundamental (and also– less importantly for these traders– about the state R) to the Market.

Therefore, they trade a finite amount and the price will not adjust immediately to equal the

fundamental value.

The trading volume is always proportional to the standard deviation of noise trading. This is

because informed traders benefit on average at the expense of noise traders and more noise allows

them to hide private information more easily. Because the equilibrium price is proportional to

the fundamental (see (14)), the magnitude of the fundamental value does not affect the informed

trader’s optimal strategy, but clearly profits are higher if θ̄ is higher. By Proposition 2 we know

that the optimal strategy only depends on two parameters that are between 0 and 1. Figure

2 illustrates these dependences by plotting on the vertical axis µU and µI against η (on the

left panel, assuming γ = 0) and against γ (on the right panel, assuming η = 0.5). These plots

are qualitatively similar for different values of η and γ. First, if the prior probability of the

state with two informed traders R = I (i.e., Pr (I) = η) is higher, then the informed traders

are trading less aggressively. This is because ḡI > ḡU and the Market expects more informed

trading and is updating its beliefs faster. This in turn increases the informed traders’market

impact and reduces their willingness to trade aggressively. Second, if the prior probability of

"no news" (γ) is higher, the informed traders trade more aggressively whenever they observe

θ 6= 0. This is because by Bayes’rule the Market is relatively reluctant to update its beliefs

toward the more extreme realizations of the fundamental. This reluctance reduces the market

impact of the informed traders and gives them incentives to trade more.

The most important part of Proposition 2 is part 3 which states that the total order flow by

informed traders is different in the two states, as we can see when comparing the expressions for
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p1, E [θ|y1, I] and E [θ|y1, U ]. If the state is R = U , then P again obtains superior information

exactly because he knows that he did not trade and we can explore the direction of his trade

at date 2.

3.3 Direction of price contingent trading

This section identifies the main non-monotonicity results. To build intuition, we start by

examining the special case of the two-point prior, i.e., for now we take γ = 0.

Proposition 3 When the prior distribution of the fundamental is a symmetric two-point dis-
tribution, it holds that

E [θ|y1, U ] < (>)E [θ|y1, I] , for any y1 > (<) 0.

Whenever 0 < η < 1, the optimal strategy of P in state R = U at date 2 is contrarian.

Proof. See Appendix B.

With a discrete two-point distribution we find that if the true state is R = U , i.e., P is

uninformed, then P’s optimal strategy at date 2 is always contrarian. Note that when assuming

a two-point prior we are focusing on an environment where any "news" about the fundamental is

either "good" or "bad" and the Market always expects informed traders to trade. Any positive

order flow is more likely to be associated with θ = θ̄ compared to θ = −θ̄. Furthermore, by part
2 of Proposition 2, we know that two informed traders would always trade a larger quantity

in absolute value than one informed trader and therefore whenever the order flow is positive it

holds that Pr
(
θ̄|y1, I

)
> Pr

(
θ̄|y1, U

)
and Pr

(
−θ̄|y1, I

)
< Pr

(
−θ̄|y1, U

)
.30 As the Market prices

the asset considering that both states are possible, it tends to overprice the asset whenever the

order flow is positive and the true state is R = U . Effectively in such state the Market tends to

underestimate the probability that it was a positive noise trading shock rather than the demand

of the informed traders to have generated a positive total order flow.

The above conclusion is specific to a two-point distribution with no mass in the center.

With a three-point prior, we can establish some more general properties about the direction of

price-contingent trading.

Proposition 4 When the prior distribution of the fundamental is a symmetric three-point
distribution and R = U , then for any 0 < η < 1 the following conditions hold for different

order flows

30This is straightforward to verify using part 3 of lemma 3 and the properties of log-concave functions in
Appendix A.
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1. For order flows |y1| ≥
∣∣ ḡI+ḡU

2

∣∣, P always pursues a contrarian strategy at date 2.

2. For order flows y1 in the neighborhood of zero (i.e., for y1 → 0), P pursues a trend-

following strategy at date 2 iff the following condition holds.

1 + exp
(
µ2I
2

)
γ

1−γ

1 + exp
(
µ2U
2

)
γ

1−γ

>
µI
µU

(19)

3. Provided that (19) holds, there exists a threshold order flow in the interval of
(
0, ḡI+ḡU

2

)
below which P’s optimal strategy is trend-following and above which it is contrarian.

Proof. See Appendix B.

Proposition 4 shows that with a three-point prior both trend-following and contrarian strate-

gies are possible at date 2. We also gain further insights on how the characteristics of the prior

distribution drive the direction of price-contingent trading.

Part 1 of Proposition 4 shows that, when the date 1 order flow is large in absolute value,

then at date 2 uninformed P always pursues a contrarian strategy. The reason for this is similar

to our argument about the two-point prior. Intuitively, high order flows in state R = U are

relatively more likely to be driven by high noise trading shocks compared to what the Market

expects. For example, if the true state is R = U , then any order flow that exceeds ḡU must

mean that there was a positive noise trading shock, while the Market will still consider order

flows between ḡU and ḡI to be potentially reflecting small or even negative noise trading shocks.

And this generates incentives for P to pursue a contrarian strategy.

Part 2 of Proposition 4 shows that if the probability of baseline news is large enough, then

at least for small order flows uninformed P’s optimal strategy at date 2 is trend-following.

Namely, there is a threshold level for γ, above which this inequality (19) holds31 and back-of-

the-envelope calculations indicate that this threshold is quite low.32 This observation highlights

the fact that for trend-following trading there should be at least some mass in the center of

the distribution. The intuition for why at small order flows it is optimal for P to pursue a

trend-following strategy again relates to part 2 of Proposition 2. Consider for example a small

positive order flow. If the true state is R = U , then the Market is now reluctant to believe that

it is driven by informed traders who observed θ̄ (as it considers the possibility that two informed

31Note that the right hand side of (19) is always bigger than 1 as µI > µU by point 2 in Proposition 3. The
right hand side is 1 if γ = 0, strictly increasing in γ and converges to exp

(
µ2I
)
/ exp

(
µ2U
)
when γ → 1. We can

also verify that exp
(
µ2I
)
/ exp

(
µ2U
)
> µI/µU at the limit. This is because exp

(
µ2R
)
/µR is strictly increasing in

µR for any µR > 0.5. Hence (19) will hold at γ → 1 if µI > µU > 0.5. It can also be shown that µU is at its
lowest when η = 1 and γ = 0, and from Figure (2) that in such case µU is noticeably higher than 0.5.
32For example, if η = 0.5 then the threshold is around γ ≈ 0.21.
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Figure 3: The difference E [θ|y1, U ]− p1 for different values of γ.

traders who would trade a much larger quantity, ḡI in total, while the actual informed trading

could have been at most ḡU) and sets the price relatively close to zero. Because uninformed

P knows at date 2 that his trading did not contribute to date 1 order flow, he benefits from

trend-following trading on average. What is crucially different in the situation where not

just extreme events, but also moderate events regarding the fundamental are possible is that

the Market tends to underestimate the probability that there were very good (or bad) news

regarding the fundamental when it observes a small order flow, as it would expect two informed

traders to always trade much more aggressively than one. This tendency to underestimate the

possibility of big fundamental news is what gives incentives for P to pursue a trend-following

strategy.

Figure (3) illustrates the equilibrium difference, E [θ|y1, U ]− p1, (vertical axis) for different

values of γ, assuming that η = 0.5. On the horizontal axis, there is always the date 1 order flow,

y1 and the shaded area point out the values of y1 where P’s optimal strategy is trend-following.

We can see that when γ is high enough, then there is a set of order flows around zero where

|E [θ|y1, U ]| > |p1| and uninformed P’s optimal strategy at date 2 is trend-following. As the
informed trading volume is proportional to the standard deviation of noise trading, the values

along the horizontal axis reflect the order flows normalized by the standard deviation of noise

trading. We can see that already at γ = 0.25 order flows up to the magnitude of one standard

deviation of noise trading will lead to trend-following trading. The magnitude of such order

flows doubles if γ = 0.75. At very high order flows in absolute value, it always holds that

|E [θ|y1, U ]| < |p1| and uninformed P’s optimal strategy at date 2 is contrarian.
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The three-point distribution also allows to derive richer empirical implications. We find

that price-contingent traders are likely to react differently when they observe order flows of

different magnitude. It is plausible to expect that quantitative traders who typically trade in

the direction of past price changes will adjust their behavior and become contrarian at extreme

order flows that are most likely driven by noise trading shocks.

3.4 Predictability of order flow and the effect of price-contingent

trading on market effi ciency.

Here we point out some natural consequences of equilibrium price-contingent trading under

either the semi-strong or weak form of market effi ciency.

Proposition 5 While there is no predictability in returns, the order flow is predictable.
Proof. The lack of predictability in returns is immediate and is due to imposing the effi cient
market condition (2). By construction p2 = E [θ|y1, y2] and p1 = E [θ|y1], and by application of

the law of iterated expectations, it is clear that E [p2 − p1|y1] = E [E [θ|y1, y2] |y1]−p1 = E [θ|y1]−
p1 = 0. At the same time by Theorem 1 we know that if the state is R = U then P trades at

date 2 a known amount h̄2. Therefore, E [y2|y1] = Pr (I|y1)E [y2|y1, I] + Pr (U |y1)E [y2|y1, U ] =

Q1E [s2|y1, I] + (1−Q1)E
[
h̄2 + s2|y1, U

]
= (1−Q1)E

[
h̄2|y1, U

]
6= 0.

In Kyle (1985) and Holden and Subrahmanyam (1992) and subsequent models that build on

their framework, imposing the market effi ciency condition implies both the lack of predictability

of returns and the lack of predictability of the order flow. This is because traders’types are

known in these models. Matters differ considerably in our more general setting, because the

Market cannot be perfectly sure of whether there is a price-contingent trader P or not, but

the Market still knows that if there is one, he will trade in a predictable direction, described

in Propositions 3 and 4. For example, if the optimal strategy is trend-following, the Market

expects a positive order flow with some probability; if the actual order flow is instead zero, the

price will fall as a result.

It should also be noted that the type of price-contingent trading we analyze as emerging in

a fully rational setting without other frictions on average facilitates price discovery by moving

prices closer to the fundamental. In state R = U , the best estimate of the fundamental

conditional on all the information apart from the fundamental itself is E [θ|y1, U ], and not

E [θ|y1], so that uninformed P’s price-contingent trading on average pushes date 2 price p2

closer to E [θ|y1, U ].

Importantly, in our model there is also no sense in which contrarian trading is more sta-

bilizing than momentum trading. For example, it is true that in our setting a rare situation
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can arise whereby prices change purely because of a noise trading shock and P’s optimal trend-

following strategy moves prices further away from the fundamental, but similarly there can be

a rare situation whereby following some draws of noise trading P’s optimal contrarian trading

delays information about the fundamental from being reflected into prices. As a result, while

both contrarian and momentum trading are on average stabilizing, both can end up pushing

prices away from fundamentals.

4 Discussion of Special Cases and Extensions

In this Section we discuss some special cases and alternative assumptions and extensions. In

Section 4.1 we allow both traders P and K to trade at date 2, too; in Section 4.2 we examine

alternative distributions of the fundamental; and in Section 4.3 we discuss other assumptions

such as number of traders, trading periods and distribution of noise trading.

4.1 Allowing both traders K and P to trade at date 2 when they

are informed

We have derived our main results in Sections 3 and 4 under the assumption that K and P

cannot trade at date 2 if they are informed. This way, we have derived our results in the clearest

manner, abstracting from the well-studied incentives of strategic informed traders to split their

orders. On the one hand, the assumption that informed traders can trade less frequently could

be justified by arguing that simple price-contingent trades are easy to program in a quantitative

and systematic manner and can therefore be implemented much faster than any fundamental

information-based trades. On the other hand, it can also be argued that informed traders

benefit from algorithms as well, as an appropriate algorithm is capable of quickly breaking up

a large informed order into several smaller orders. Whichever view is more realistic, we show

in this Section that allowing all traders to trade at both dates does not qualitatively alter our

main findings.

Namely, we alter the assumptions (3) and (4), and assume instead that if R = I, then trader

J = {K,P} is forward-looking and solves

max
hIJ2

πIJ2 = E
[
hIJ2 (θ − p2) |y1, θ, I

]
at date 2, (20)

max
hIJ1

πIJ1 = E
[
hIJ1 (θ − p1) + hIJ2 (θ − p2) |θ, I

]
at date 1.
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If R = U , then informed trader K is also forward-looking and solves

max
hUK2

πUK2 = E
[
hUK2 (θ − p2) |y1, θ, U

]
at date 2, (21)

max
hIJ1

πUK1 = E
[
hUK1 (θ − p1) + hUK2 (θ − p2) |θ, U

]
at date 1.

All other assumptions remain unchanged. First, we prove the following result.

Lemma 5 Provided that η > 0, uninformed P trading zero at date 2 can not be an equilibrium

strategy.

Proof. See Appendix B.

This result is in the spirit of Theorem 1 - uninformed P has incentives to trade at date 2,

as he has superior information compared to the Market. This result does not hinge on any

particular distribution of the prior.

Next, we examine the direction of trading, and assume a three-point prior, (1). This problem

is noticeably more complex than in the basic setting, and does not have a straightforward

analytical solution - one complication being that all agents’ trades at date 2 are non-trivial

functions of date 1 order flow. We can nevertheless show that the demand of each trader must

be proportional to the standard deviation of noise trading, as in the basic setting.

We then derive the expressions that characterize the equilibrium, and focus on the numerical

results.33 Similarly to the basic setting, uninformed P cannot gain from trading at date 1. At

date 2, it is immediate from (5) that the trader P gains from buying (selling) the asset, i.e.,

hUP2 > (<) 0, if and only if E [θ|y1, U ]−E [p2|y1, U ] > (<) 0 in equilibrium. Figure 4 plots these

differences for different values of γ (the order flow is normalized by dividing it by σs, θ̄ = 1 and

η = 0.5) . Comparing Figure (3) and Figure (4), we can see that the results are remarkably

similar. It remains true that P benefits from contrarian trading at high values of the order flow

as well as in the case in which there is no mass in the centre of the prior distribution of the

fundamental (low γ). If there is enough mass in the centre of distribution, then P benefits from

trend-following trading at low absolute values of order flow. What changes is the magnitude - we

can see that the difference between P’s expectations of the fundamental and P’s expectations

of the price is smaller than in the basic setting.

In Appendix C we also report the equilibrium demand of traders at date 2 for different

realizations of date 1 order flow and γ. The results are intuitive: 1) informed trading volume

is decreasing in date 1 order flow (either because θ = θ̄ and there is an increasingly lower

possibility to buy the asset at a favorable price, or θ =
{
−θ̄, 0

}
and there are increasingly

33Technical notes with expressions that characterize the equilibrium and the MATLAB code that solves the
problem are available as a technical supplement.
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Figure 4: The difference E [θ|y1, U ]− E [p2|y1, U ] for different values of γ

more possibilities to benefit by taking a position against date 1 noise trading shock); 2) as in

the basic setting two informed traders demand a higher total quantity than one; 3) trading

volume at θ =
{
−θ̄, θ̄

}
is higher in absolute value if γ is higher. There is also a Kyle effect -

informed traders strategically trade less in absolute value at date 1 than in the basic setting

where splitting the orders is assumed away. Table 1 illustrates this by comparing informed

trader’s date 1 total demand in the basic setting of Section 3 and 4 with the setting in this

Section.

Table 1: Total demand by informed traders at date 134

Basic setting Forward looking

state R=U R=I R=U R=I

γ = 0 0.9496 1.5195 0.8698 1.4413

γ = 0.25 1.1808 1.8931 0.9979 1.7199

γ = 0.5 1.4683 2.1758 1.1566 1.9614

γ = 0.75 1.7647 2.427 1.3658 2.2093

Due to the presence of informed traders, the volume traded by P at date 2 is smaller than

in the basic setting. Nevertheless, allowing for the possibility of informed trading does not

eliminate the possibility of profitable price-contingent trading.

When does K lose due to the presence of uninformed P? While the volume traded by

uninformed P is small compared to the volume traded by informed K, it is intuitive that K’s
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returns on information must be lower whenever P and K trade in the same direction, i.e.,

provided that date 1 order flow is positive, this holds for θ = θ̄ whenever P’s optimal strategy

is trend-following and for θ =
{
−θ̄, 0

}
whenever P’s optimal strategy is contrarian. In the case

of other outcomes, K benefits not just from trading against noise traders, but also from taking

an opposite position to uninformed P . If the state is R = U , then on average uninformed P

gains from price-contingent trading, and thereforeK typically earns lower profits than he would

if he were the only strategic trader active at date 2. Nevertheless, competing with P reduces

K’s profits even more in the state R = I, where P is informed.

4.2 Alternative assumptions about the prior distribution of the fun-

damental

One may also wonder whether the main conclusions of our baseline setting are robust to con-

sidering other prior distributions. Let us consider any symmetric and continuous prior with

density fθ (θ) and support [−θ̄, θ̄], where θ̄ > 0 is finite, and fθ (θ) > 0 for any
(
−θ̄, θ̄

)
. As

symmetry implies that fθ (θ) = fθ (−θ), it follows that the prior mean E [θ] = 0, provided that it

exists. We assume it to be the case and maintain all the other assumption of Section 3, such as

θ being independent of st and R, and informed traders only trade at date 1. From the latter, it

is clear that the date 2 problem remains unchanged, and as long as E [θ|y1, U ] 6= p1 6= E [θ|y1, I]

and Q1 6= 0, P’s date 2 trading strategy, if uninformed, is given by Theorem 1.

We proceed in two steps. First, by using insights from monotone comparative statics liter-

ature (see Milgrom and Shannon, 1994, and Edlin and Shannon, 1998), we can show that the

Market’s and P ′s expectations will be generally different, which then implies that P benefits

from quantitative trading at date 2. Second, by exploiting the properties of the likelihood ratio

L (θ) ≡ f (θ|y1, I)

f (θ|y1, U)
=
f (y1|U)

f (y1|I)

ϕs (y1 − gI (θ))

ϕs (y1 − gU (θ))
, (22)

and highlighting some additional, but intuitive conditions, we can show that also our non-

monotonicity results hold more generally.

In line with the standard approach in comparative statics, suppose that the informed trader’s

objective function is strictly quasi-concave and continuously differentiable. Let us further as-

sume that p′1 (y1) > 0.35 We can then establish:

35Price being monotonically increasing in order flow is both intuitive and desirable in the context of trading
in financial markets. Furthermore, this conjecture is consistent with Proposition 7. Namely, the claim that
g′R(θ) > 0, follows only from supermodularity of trader’s objective function. This in turn implies that E [θ|y1, R]

is increasing in y1, because the likelihood ratio
f(ỹ1|θ,I)
f(y1|θ,I) = ϕs(ỹ1−gR(θ))

ϕs(y1−gR(θ)) is increasing in θ for any ỹ1 > y1, and
R. While p1 (y1) also depends on Q1 (y1), any effect trough this term is typically small.
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Proposition 7 If date 1 price is increasing in the order flow and the informed traders’problem
is quasi-concave (with interior maximum), then:

1. The total demand of informed traders, gR (θ) in state R ∈ {I, U} is strictly increasing in
θ.

2. It holds that gI (θ) > (<) gU (θ) for any θ > (<) 0, and gI (0) = gU (0) = 0.

Proof. See Appendix B.

The most important implication of Proposition 7 is that, holding fixed any realization of the

fundamental, two informed traders trade a higher quantity in equilibrium than one informed

trader. This implies that conditional on date 1 order flow y1, the state R and the fundamental

θ are not independent. In particular, Pr (U |θ, y1) is generally a function of θ.36 This allows to

conclude that in general there will be a difference between uninformed P’s and the Market’s

expectations. Namely, it holds that

E [θ|y1, U ]− p1 =
E [θ · Pr (U |θ, y1) |y1]

Pr (U |y1)
− E [θ|y1] =

Cov (θ,Pr (U |θ, y1))

Pr (U |y1)
,

where we used the market effi ciency condition (2) and Bayes’rule f (θ|y1, U) = f(θ|y1) Pr(U |θ,y1)
Pr(U |y1)

.

As θ and Pr (U |θ, y1) are not independent, it implies that their covariance will generally not

be zero. Furthermore, η > 0, and the ratio f(y1|U)
f(y1|I) being finite for finite y1, further implies

Q1 > 0.37 Therefore, our main result that price-contingent trading is profitable in a setting

where there is uncertainty about traders’types extends well beyond the baseline setting.

For further concreteness and inferences about the direction of P’s trade, let us make the

following conjectures about equilibrium strategies:

• Conjecture 1. g′I (θ) > g′U (θ);

• Conjecture 2. D (θ) ≡ gI (θ) + g′U (θ) gI(θ)−gU (θ)
g′I(θ)−g′U (θ)

is monotonically increasing in θ.

Conjecture 1 states that at any given value of θ, two informed traders’joint demand is more

sensitive to θ, than one informed traders’demand. Or in other words, competing informed

traders trade more aggressively jointly, which is intuitive considering the Cournot-like compe-

tition between these traders in our setting. For conjecture 2, notice that the slope of D (θ) is

36Using Bayes’rule and independence of θ and R, we find that Pr (U |θ, y1) = fs(y1−gU (θ))(1−η)
fs(y1−gU (θ))(1−η)+fs(y1−gI(θ))η

37Namely, from Bayes’rule and independence of θ and R, it follows that Q1 = Pr (I|θ, y1) = η

η+(1−η) f(y1|U)

f(y1|I)
,

where f(y1|U)
f(y1|I) =

∫ θ̄
−θ̄ f(θ)ϕs(y1−gU (θ))sθ∫ θ̄
−θ̄ f(θ)ϕs(y1−gU (θ))sθ

, which is clearly finite for finite y1.
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primarily driven by g′I (θ) > 0 and g′U (θ) > 0 (see Part 1 in Proposition 7). It further rules out

major differences in second derivatives of informed traders’strategies, by imposing that g′′I (θ)

cannot be too high compared to g′′U (θ).

For illustration, it is worth noticing that if informed trader’s equilibrium strategies are

reasonably well approximated by first (or second) order Taylor approximation around zero,

these conjectures indeed hold. Namely, the first order Taylor approximation around zero gives

gU (θ) ≈ θ
2λ̃
and gI (θ) ≈ 2θ

3λ̃
, where λ̃ =

∫∞
−∞ p

′
1 (s1) fs (s1) ds1 is the expected price impact

around θ = 0, and similar to "Kyle lambda". Because a symmetric fundamental implies

symmetric strategies and equilibrium price, the second order Taylor approximation gives the

same result. In such a case g′I (θ) = 2
3λ̃
> 1

2λ̃
= g′U (θ), and D (θ) = 7θ

6λ
is indeed increasing in θ.

While it is unclear whether these conjectures hold with any fθ (θ), their validity can always be

easily confirmed after numerically solving the problem.

This conjectures are suffi cient for deriving clear predictions about the likelihood ratio L (θ),

(see (22)). Namely, the log-likelihood is

ln (L (θ)) = ln

(
f (θ|y1, I)

f (θ|y1, U)

)
= ln

(
f (y1|U)

f (y1|I)

)
+ ln (ϕs (y1 − gI (θ)))− ln (ϕs (y1 − gU (θ))) .

Using the expression for the normal density, we obtain that

∂ ln (L (θ))

∂θ
=

(g′I (θ)− g′U (θ))

σ2
s

(y1 −D (θ)) .

For clarity, let us focus on the case with y1 > 0.38 Under the conjectures above, it follows that

if y1 ≥ D
(
θ̄
)
, the likelihood ratio L (θ) is monotonically increasing. And if 0 < y1 < D

(
θ̄
)
, the

likelihood ratio L (θ) is unimodal with maximum at θ∗ = D
(
y−1

1

)
. As sgn (E [θ|y1, U ]− p1) =

−sgn (E [θ|y1, I]− E [θ|y1, U ]), we focus on the latter difference. Integration by parts gives

E [θ|y1, I]− E [θ|y1, U ] =

∫ θ̄

−θ̄
(F (θ|y1, U)− F (θ|y1, I)) dθ, (23)

which highlights that the difference in expectations is driven by properties of cumulative dis-

tribution functions.

The implications of a monotone likelihood ratio are well known from Milgrom (1981). This

allows us to already conclude that if the prior distribution is bounded, then at least at high real-

izations of y1, satisfying y1 ≥ D
(
θ̄
)
, F (θ|y1, I) first order stochastically dominates F [θ|y1, U ].

It then follows that E [θ|y1, I] > E [θ|y1, U ] and at high enough order flows, uninformed P’s

optimal date 2 strategy is contrarian, because at high enough order flows L (θ) is monotonically

38Due to the symmetry of the problem, the case with y1 < 0 is a mirror image of this case.
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increasing in θ.39

The implications of a unimodal likelihood ratio are less commonly explored40, but is highly

relevant in cases where, as in our setting, we need to compare distributions with different

dispersions. We derive the following general result:

Proposition 8 If Condition 1 and 2 hold, and 0 < y1 < D
(
θ̄
)
, i.e., when L (θ) is unimodal,

we obtain the following:

1. There exist order flows satisfying ȳco ≤ y1 < D
(
θ̄
)
, where F (θ|y1, I) < F (θ|y1, U) for

any θ ∈ (−θ̄, θ̄), i.e., F (θ|y1, I) first order stochastically dominates F (θ|y1, I). The

threshold ȳco is a solution of L
(
θ̄
)

= 1.

2. There exist order flows satisfying 0 < y1 ≤ ȳmo, where F (θ|y1, I) > F (θ|y1, U) for any

θ ∈ (−θ̄, θ̄), i.e., F (θ|y1, U) first order stochastically dominates F (θ|y1, I). The threshold

ȳco is a solution of L
(
−θ̄
)

= 1.

3. If ȳmo < y1 < ȳco, then F (θ|y1, U) − F (θ|y1, I) is a single crossing function for any

θ ∈ (−θ̄, θ̄).

Proof. See Appendix B.

Proposition 8 enables to further assess the sign of (23) as properties of cumulative distribu-

tion functions have straightforward implications on the difference in expected values in state I

and U . In general, neither distribution first order stochastically dominates the other one over

all possible realizations of the order flow. This is exactly what drives the non-monotonicity

results that our model predicts.

Consistently with our baseline setting, Proposition 8 highlights that there are values of

y1 at which trend-following strategies are optimal, and these values are concentrated around

zero. Namely, Part 2 of the proposition highlights that close to y1 = 0, the distribution

F (θ|y1, U) first order stochastically dominates F (θ|y1, I), which by (23) further implies that

E [θ|y1, I] < E [θ|y1, U ]. With a continuous prior and fθ (θ) > 0 for
(
−θ̄, θ̄

)
, it is always possible

that informed traders observe a realization of θ close to the prior mean E [θ] = 0 and choose to

trade a small amount, as in our baseline setting.

Part 1 and our overall analysis of the likelihood ratio properties further highlights that as

long as the prior distribution is bounded, there exists a large enough date 1 order flow at which
39A similar result holds also when the distribution of noise trading is bounded but has suffi ciently wider

support compared to support of θ.
40Hopkins and Kornienko (2007) and Ramos, Ollero, and Sordo (2000) emphasize the importance of unimodal

likelihood ratio, and derive related results. However, as these papers are mainly interested in second order
stochastic dominance, their results are derived under the assumption that the sign of differences in expected
values does not change. Instead, our problem requires assessing the sign of these differences.
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P’s optimal date 2 strategy must be contrarian, because the distribution F (θ|y1, I) first order

stochastically dominates F (θ|y1, U). We would argue that assuming bounded support is more

realistic, after all it is somewhat diffi cult to imagine an underlying asset with unbounded sup-

port. In any event, a similar appoach can also be applied to priors with unbounded support.41

Part 3 of Proposition 8 shows that there is more generally also an area where F (θ|y1, U)−
F (θ|y1, I) is single crossing in θ, which by (23) implies that the difference in expected values is

a sum of a negative and a positive term, which can go either way. This implies that the order

flows at which trend-following and contrarian strategies prevail are wider than those implied

by part 1 and 2. How wide the areas where different strategies prevail are depends on the prior

distribution fθ (θ). Given the intuition developed in Section 3, we would expect "hump-shaped"

distributions to generate more trend-following strategies than "U-shaped" ones.

More technically, Parts 1 and 3 give examples of first order stochastic dominance that do not

rely on the monotone likelihood ratio property. Indeed, the monotone likelihood ratio property

is suffi cient, but not necessary condition for first order stochastic dominance.

4.3 Number of traders, normal noise trading and other assumptions

We have assumed that in any state there is always an informed trader K. The reason was to

guarantee that asset prices always reflect fundamental information at least from K, which P

may learn from prices. The presence of trader K allows for a rich set of effects and generates

a rationale for trend-following trading under some conditions. However, as we discussed in the

introduction, uncertainty about P’s type alone is suffi cient for rational price-contingent trading

to emerge and P’s optimal strategy is always contrarian (see Supplementary Appendix).

It would be trivial to add more typeK and type P traders. All the effects would be the same

as long as the number of sophisticated traders of type K and P is finite. The reason why K

and P trade finite amounts and earn returns on their information is because they have market

impact and they are aware of it. If the number of type P traders were infinite, then they would

be indistinguishable from the Market; if the number of type K traders were infinite, then in the

limit prices would tend towards strong-form market effi ciency, but also towards an information

acquisition paradox in the spirit of Grossman and Stiglitz (1980). Second, it would also be

possible to add more trading rounds in which uninformed P can trade. This would complicate

41In our earlier draft we derived an example with a Normal prior. While normality is a very common
assumption in the literature (e.g., Kyle 1985, and Holden and Subrahmanyam 1992), this assumption is not
innocuous in our setting. Not only does the Normal distribution have unbounded support, it also has thin
tails. As a result, it can be shown that a normal prior implies that P’s date 2 optimal strategiy is always
trend-following. (These results are avalable upon request). We would further expect that even if the prior is
unbounded, but has "fat tails", it is plausible that P’s optimal strategy is non-monotonic for similar underlying
mechanisms.
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the model as P would likely have a Kyle’s (1985) type of incentive to split his orders and reveal

information more slowly. However, it is intuitive that the Market will then still be imperfectly

and slowly learning about the true state until the price eventually converges to E [θ|y1, R].

As discussed in Section 3, we view the noise traders in our model as capturing a large

number of traders who trade for idiosyncratic reasons outside the main focus of our model.

Therefore, the main argument for assuming normally distributed noise trading stems from the

central limit theorem. However, technically, many realistic properties of our model rely on

the less restrictive assumption of log-concave noise trading. Indeed, a log-concave distribution

guarantees that the Market updates at date 2 in the "correct direction" - that is, in state R = U ,

if trader P submits a positive quantity in equilibrium, then higher order flows at date 2 always

signal a higher posterior probability that the state is indeed R = U . It also guarantees that the

expected value E [θ|y1, R] is increasing in date 1 order flow, which in turn often implies that

also the price is increasing in order flow. Both of these properties hold because log-concavity

implies the monotone likelihood ratio property (MLRP). These properties are realistic in the

context of financial markets and guarantee that sophisticated large traders in our model face a

meaningful trade-off in the spirit of Kyle (1985). Namely, an informed trader (either directly

due to superior information about the fundamental or indirectly due to superior knowledge of

his own past actions) benefits from trading a higher volume due to positive expected returns,

but trading a higher volume is costly due to market impact as it reveals more about his private

information– whether about the fundamental or about his own type. In our proofs we frequently

relied only on log-concavity rather than on the explicit form of the normal density.

5 Empirical Implications

5.1 Understanding Quantitative Trading

Our theory explains why quantitative trading is more profitable for large financial institutions

than for to retail investors. While hedge funds and quantitative traders are shrouded in se-

crecy and systematic data is thus hard to come by, it is becoming increasingly evident that

quantitative trading with algorithms generates large profits on a regular basis.42 These regular

profits are hard to reconcile with a view of quantitative trading as mere implementation of

standard portfolio selection models, and do suggest the need to examine the micro-foundation

of quantitative trading strategies.

Our paper does offer one such micro-foundation. In our equilibrium, when trader P ends

42Quantitative hedge funds such as Citadel, CQS, Renaissance Technologies, and others, which implement
multiple trading strategies with a strong emphasis on directional trading, feature regularly among the top
performing hedge funds, e.g., see http://media.bloomberg.com/bb/avfile/rMz9ZuocMhKo.
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up uninformed about the fundamental, he trades a systematic non-zero quantity based on

past prices, whose direction—trend-following or contrarian—depends on the magnitude of the

order flow. Because this trade depends only on observable price movements and on P being

uninformed, it can be implemented by an automated algorithm. By contrast, when P ends up

informed (e.g., he becomes aware of rumors of a takeover bid), he trades on that information,

thereby disregarding or overriding the algorithm (e.g., see the illustration based on rumors

about the Merrill Lynch and Bank of America merger in Narang (2013, p.15-16)). Thus, in

our equilibrium quantitative trading needs human supervision: it is the very possibility of

submitting an informed order at some point that makes quantitative trading systematically

profitable.

As a result, our model rationalizes price-contingent strategies by Commodity Trading Advi-

sors (CTAs) in futures markets and by hedge funds such as AQR and others in equity markets.

CTAs are popular recent investment vehicles that execute profitable trend-following strategies

in futures markets at daily, weekly, and monthly frequencies (e.g., see Clenow (2013), and

Baltas and Kosowski (2014)). It has also been observed that various hedge funds execute prof-

itable contrarian strategies in equities at weekly (Lehmann (1990)) and monthly (Jegadeesh

(1990)) frequency. Our model can account for both types of strategies, because the direction of

quantitative trading is determined by two probabilities that can be assessed in the context of a

given asset. The first one is the probability that there are privately informed traders. At high

frequencies, where "news events" are very unlikely, the Market may be unsure whether there

are any informed traders. In such case, we would expect contrarian quantitative trading as in

the example in our Supplementary Appendix. The second one, provided that informed traders

are present, is the probability at which private information is expected to confirm that the

fundamental is close to its prior mean (i.e., how much mass is in the center of the distribution

of the prior). If private information is likely to confirm the prior, we would expect to observe

trend-following strategies, which can explain why CTAs profit from such strategies. If private

information is more likely to indicate either "good" or "bad" news (e.g., a firm succeeding or

failing in its’profitable takeover bid), then we would expect contrarian trading, which could

explain some profitable strategies in equity markets. Our setting can further explain the prof-

itability of more complex strategies that are non-linear and non-monotonic in past order flow

or returns.43

More broadly, we can think of two ways to take our model to the data, depending on the type

43It seems that, at least anecdotally, some hedge funds do trade systematically in a price-contingent manner
according to the predictions of our model. In an unsolicited personal communication, the Founder and Chief
Investment Offi cer of a London-based quantitative fund wrote to us: “My own trading models explicitly use
the same nonlinear trading functions that you show in the paper, i.e., sometimes trend following, other times
contrarian.”See also Martin and Bana (2012) and Martin and Zou (2012).
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of data that is available to the econometrician, whether publicly available data or proprietary

trading data.

Post-mortem testing. In this case, the econometrician observes ex post proprietary data

about algorithms and actual trades that were implemented in the past, which were unavailable

to the market maker and the other traders at the time of the trades. In this case the econo-

metrician could, based on the algorithm and the actual trades, back out if the trades followed

the algorithm or not (in which case they were likely informed ones); and if the trades followed

the algorithm, whether their size and direction accord with the model’s predictions. Because

this data would refer to past trades and was unavailable to the market-maker at the time of

the trades (hence, it is a ‘post-mortem’test), there would be no issue that the market maker

could trade against the quantitative trader and undo its profits.

Real-time testing. If the econometrician and the market maker observe the same data,

perhaps in real time, then the only way to test the model is to look at average observable quan-

tities. In this sense, our main prediction is that trading volume should be serially correlated,

and that the direction of the serial correlation should depend in a non-monotonic manner on

the same forces that determine whether algorithmic trading is trend-following or contrarian. In

fact, while in this case neither the econometrician nor the market maker observe which trader

is informed and which is not, they both know that, if there is a prevalence of trend-following

trading then trading volume will be positively auto-correlated, and if there is a prevalence of

contrarian trading then trading volume will be negatively auto-correlated.

In the latter case of real-time testing, there are two main alternative hypotheses about

the drivers of order flow predictability. The first alternative hypothesis is the behavioral view

that order flow predictability should be driven by return predictability. Return predictability

is ruled out in our model, but drives order flow predictability in the models of Barberis et

al. (1998), Daniel et al. (1998), and Hong and Stein (1999). Therefore, observing order flow

predictability without return predictability would be evidence consistent with our model and

against the behavioral view.

Even observing order flow predictability without return predictability would not be uniquely

consistent with our model. In fact, the other alternative hypothesis is that order flow pre-

dictability comes from serially correlated noise trading, as in, e.g., Cespa and Vives (2015).

To dig deeper and try to distinguish whether the source of order-flow predictability is rational

quantitative trading as in our model, or serially correlated noise trading, one can then look

at whether order flow predictability comes with a prevalence of large trades that have market

impact, as in our model, or with a prevalence of small orders with no market impact, as in

Cespa and Vives (2015) and other models with serially correlated noise trading.
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5.2 Market Quality and Crashes

In terms of the impact of the introduction of quantitative trading on various aspects of market

quality such as volatility and liquidity, we find that quantitative trading is on average stabilizing,

in the sense that price contingent trading typically moves prices closer to the fundamental,

consistent with the empirical evidence of Hendershott et al. (2011) and the practitioners’

accounts in Kissell (2014), Durenard (2013), and Narang (2013). However, there is a concern

that in particular circumstances quantitative trading can propagate adverse negative shocks

and generate instability, as in the Quant Meltdown of August 2007, and the Flash Crash of

May 6, 2010. For example, the report on the "events of May 6," (CFTC and SEC (2010)) stated

that a large ‘mistaken’sell order triggered algorithms to start selling; soon after the volume

of sell orders increased, and algorithms started to buy. Eventually, many algorithms incurred

large losses and just stopped trading, so that the mismatch of supply and demand became so

large that the entire system went to a halt for a few minutes.

Remarkably, while not specifically designed to describe these events, our model does capture

some of their key features. First, quants did not trigger either episode– the trigger was a noise

trading shock such as the ‘mistake’by a large investor in 2010; and a series of large trades

on the news of problems with subprime mortgages in 2007. Second, and consistent with our

model, the initial response of quants in both cases was trend-following trading, as long as total

order flow was ‘small enough’. Third, and again consistent with our model, when total order

flow became larger, quants started pursuing contrarian strategies. On the other hand, by its

very design our model does not capture the failures of market effi ciency that occurred when

many quantitative strategies just stopped trading and prices could no longer equate supply and

demand. Most important, though, the events of August 2007 and May 2010 underscore a key

feature of our model: quantitative trading through algorithms is profitable on average, as it is

better able to chase information than the rest of the market, but it can occasionally end up

chasing noise trading shocks, thereby incurring losses.44

6 Concluding Remarks

We have presented a theory of quantitative trading as an automated price-contingent strategy

under human supervision. We establish that price-contingent trading is the optimal strategy of

large rational agents in a setting in which there is uncertainty about whether large traders are

informed about the fundamental. We provide conditions under which price-contingent trading

is trend-following (momentum) or contrarian in equilibrium. A robust implication of our results

44See Mendel and Shleifer (2012) for a related account of the Quant Meltdown of 2007.
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is that the order flow is predictable from current prices even if the market is semi-strong effi cient

and future returns are thus unpredictable.

Our model explains why hedge funds and other large financial institutions who engage in

quantitative trading strategies are systematically profitable; and it explains why the secrecy of

their strategies, trading portfolios, and exposures is key to their success. By having market

impact and by being relatively less known than other agents, hedge funds can learn any infor-

mation that is reflected into prices better than any other investor who does not perfectly know

their trading strategies and portfolios. As a result, hedge funds can successfully implement a

broader range of strategies, such as trend-following and contrarian trading, than individual and

retail investors without market impact that would lose money from those same strategies.

Our model suggests that quantitative trading does not need to reflect market ineffi ciency or

manipulation. In fact, despite the assumption of strong-form market effi ciency, the contrarian,

momentum and non-monotonic trading strategies that we derive bear striking similarity to

many data driven strategies used by quantitative funds.

Of course, in the real world quantitative strategies can be a lot more sophisticated than

our equilibrium strategies, and can use as input an array of quantifiable public information

in addition to prices and order flows. One robust insight of our model is that quantifiable

information can arise from superior knowledge of market participants’ trading styles rather

than economic fundamentals as traditionally thought. Extending our model to capture the

additional nuances of real-world quantitative strategies would seem to be an interesting area

for future research.
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A Background theorems and lemmas

Lemma A.1 If fs (.) is strictly log-concave, then it holds that

fs (x2 − c2)

fs (x2 − c1)
>
fs (x1 − c2)

fs (x1 − c1)
for any x2 > x1 and c2 > c1. (24)

Proof. By definition of log-concavity it must hold that
α ln (fs (x1 − c2)) + (1− α) ln (fs (x2 − c1)) < ln (fs (α (x1 − c2) + (1− α) (x2 − c1))) and

(1− α) ln (fs (x1 − c2)) + α ln (fs (x2 − c1)) < ln (fs ((1− α) (x1 − c2) + α (x2 − c1))) for any

0 < α < 1. Let α = x2−x1
x2−x1+c2−c1 . Then ln (fs (α (x1 − c2) + (1− α) (x2 − c1))) = ln (fs (x1 − c1))

and

ln (fs ((1− α) (x1 − c2) + α (x2 − c1))) = ln (fs (x2 − c2)). Adding up the inequalities, we ob-

tain that ln (fs (x1 − c2))+ln (fs (x2 − c1)) < ln (fs (x1 − c1))+ln (fs (x2 − c2)). Exponentiating

both sides and rearranging, we obtain (24).

Note that, in probability theory, this implies that if we interpret c as a signal about some

random variable such that x = c + s, where the density fs (s) is strictly log-concave, then

the conditional distribution of f (x|c) = fs (x− c) satisfies the strict monotone likelihood ratio
property (MLRP).

Corollary A.1.1 If fs (.) is strictly log-concave and symmetric (fs (s) = fs (−s)), then for any
x > 0, it holds that

fs (x− c) > (<) fs (x+ c) for any c > (<) 0

Proof. For the case c > 0, let x2 = x, x1 = −x and c = c2 > c1 = 0. By (24) fs(x−c)
fs(x)

>
fs(−x−c)
fs(−x)

= fs(x+c)
fs(x)

=⇒ fs (x− c) > fs (x+ c). For the case c < 0, let x2 = x, x1 = −x and
c = c1 < c2 = 0 to obtain that fs(x)

fs(x−c) >
fs(−x)
fs(−x−c) = fs(x)

fs(x+c)
=⇒ fs (x+ c) > fs (x− c).

Theorem A.2 (Prékopa (1973) Theorem 6) Let f(x,y) be a function of n+m variables where

x is an n-component and y is an m-component vector. Suppose that f is logarithmic concave

in Rn+m and let A be a convex subset of Rm. Then the function of the variable x:∫
A

f(x,y)dy

is logarithmic concave in the entire space Rn.

B Proofs

Proof of the remaining parts of Theorem 1
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Assume that E [θ|y1, U ]− p1 > 0. It is clear from (9) that the optimal demand hUP2 cannot

be negative. Because by Lemma 1.2 P’s problem at date 2 is log-concave, it is suffi cient to

explore the first order condition. Using (9), (10), (11), (12) and noticing that
∂ϕs(y2−hUP2 )

∂hUP2
=

y2−hUP2
σ2s

ϕs
(
y2 − hUP2

)
, we obtain that

∂πUP2

∂hUP2

=

∫ ∞
−∞

Q1ϕs (y2)

Q1ϕs (y2) + (1−Q1)ϕs
(
y2 − h̄2

) (1− (hUP2 )
2

σ2s
+

hUP2 y2
σ2s

)
ϕs
(
y2 − hUP2

)
dy2 (25)

Define κ ≡ h̄2
σs
and z ≡ y2

σs
, where dy2 = σsdz , which implies that ϕs

(
y2 − h̄2

)
= 1

σs
φ (z − κ)

and ϕs (y2) = 1
σs
φ (z), where φ (.) is the p.d.f. of a standard normal. The optimal demand

must solve ∂πUP2
∂hUP2

= 0 and it must hold in equilibrium that optimal demand
(
hUP2

)∗
= h̄2 = κσs.

Using all this, in (25), we obtain that κ is the positive solution of∫ ∞
−∞

Q1φ (z)

Q1φ (z) + (1−Q1)φ (z − κ)

(
1− κ2 + κz

)
φ (z − κ) dz = 0, (26)

which we know to be unique by Lemma 1.2. Because σs does not enter in (26), it also proves that

P’s demand is proportional to σs and only depends on Q1. The proof for the case E [θ|y1, U ]−
p1 < 0 is similar and in such a case we need the unique negative solution of (26). It is easy to

verify that if κ > 0 solves (26), then also −κ > 0 solves (26).

Next let us prove that κ > 1 by contradiction. Suppose instead that 0 < κ < 1 solves (26).

From (26), it must then be the case that κ
∫∞
−∞ z

Q1φ(z)
Q1φ(z)+(1−Q1)φ(z−κ)

φ (z − κ) dz < 0. Using that

φ (.) is an even function, we can rewrite this as

κ

∫ ∞
0

zQ1φ (z)

(
1

Q1
φ(z)

φ(z−κ)
+ (1−Q1)

− 1

Q1
φ(z)

φ(z+κ)
+ (1−Q1)

)
dz < 0

Because φ (.) is log-concave, it holds that φ (z − κ) > φ (z + κ) for all z, κ > 0 by Corollary

A.1.1 from Appendix A. This implies that 1

Q1
φ(z)

φ(z−κ)+(1−Q1)
> 1

Q1
φ(z)

φ(z+κ)
+(1−Q1)

. So all terms inside

the integral are non-negative for all z ≥ 0 (with strict inequality for z > 0), which leads to a

contradiction and therefore 0 < κ < 1 does not hold.

Proof of Lemma 2.1
For parts 1-3 note that (7) implies that, p1 (y1) = Q1E [θ|y1, I]+(1−Q1)E [θ|y1, U ]. By the

law of total expectations E [θ|y1, R] = θ̄Pr
(
θ = θ̄|y1, R

)
−θ̄Pr

(
θ = −θ̄|y1, R

)
and by Bayes’rule

Pr (θ|y1, R) = 1−γ
2
f (y1|θ, R) /f (y1|R), where f

(
y1|θ = θ̄, R

)
= ϕs (y1 − ḡR); f (y1|θ = 0, R) =

ϕs (y1); f
(
y1|θ = −θ̄, R

)
= ϕs (y1 + ḡR) and f (y1|R) = f

(
y1|θ = θ̄, R

)
1−γ

2
+f
(
y1|θ = −θ̄, R

)
1−γ

2
+

γf (y1|θ = 0, R). By Bayes’ rule Q1 (y1) = ηf(y1|I)
ηf(y1|I)+(1−η)f(y1|U)

. Combining all this proves
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parts 1-3. For part 4, note that ∂ϕs (y1 − c) /∂y1 = −y1−c
σ2s
ϕs (y1 − c) for any constant c,

and therefore M ′
n (y1) = − y1

σ2s
Mn (y1) + Mng (y1) and M ′

p (y1) = − y1
σ2s
Mp (y1) −Mpg (y1), where

Mng (y1) ≡ 1−γ
2

(
η ḡI
σ2s
ϕs (y1 − ḡI) + (1− η) ḡU

σ2s
ϕs (y1 − ḡU)

)
> 0 and Mpg (y1) ≡

1−γ
2

(
η ḡI
σ2s
ϕs (y1 + ḡI) + (1− η) ḡU

σ2s
ϕs (y1 + ḡU)

)
> 0. Using the above and differentiating, p′1 (y1) =

2θ̄Mng(y1)Mp(y1)+Mpg(y1)Mn(y1)

(Mn(y1)+Mp(y1))2
> 0. Parts 5-7 are straightforward when using (14), the expression

of the normal density, and the fact that ϕs (.) is an even function that is always non-negative

and positive at finite values.

Quasiconcavity of informed traders’date 1 problem.
Let us focus on the state R = U . If θ = 0 then from (17), we obtain the first order condition

−∂πUK1
∂hUK1

=
∫∞
−∞
(
p
(
hUK1 + s1

)
+ hUK1 p′

(
hUK1 + s1

))
ϕs (s1) ds1 =

=
∫∞
−∞
(
p (y1) + hUK1 p′ (y1)

)
ϕs
(
y1 − hUK1

)
dy1 = 0. It is clear that hUK1 = 0 satisfies the first

order condition as p (y1)ϕs (y1) is an odd function of y1 and therefore −∂πUK1
∂hUK1
|hUK1 =0 = 0. Fur-

thermore, the negative of the first derivative can be expressed as

−∂πUK1
∂hUK1

=
∫∞

0
p (y1)

(
ϕs
(
y1 − hUK1

)
− ϕs

(
y1 + hUK1

))
dy1 + hUK1

∫∞
−∞ p

′ (y1)ϕs
(
y1 − hUK1

)
dy1.

Note that ϕs (.) ≥ (>) 0, for all (some) y1 and hUK1 , p (y1) ≥ (>) 0 for all (some) y1 ≥ 0

and p′ (y1) ≥ 0 for all (some) y1. Furthermore, from Corollary A.1.1 in Appendix A, we know

that ϕs
(
y1 − hUK1

)
> ϕs

(
y1 + hUK1

)
if and only if hUK1 > 0 and y1 > 0. Therefore, −∂πUK1

∂hUK1

is strictly single-crossing, which proves that the objective function (17) is quasiconcave and

achieves the maximum at hUK1 = 0.

If θ = θ̄, then it is clear from (17) that hUK1 < 0 cannot be the best response as it leads to neg-

ative expected profits, and there would be a profitable deviation to hUK1 = 0. The negative of the

first derivative is now−π′
(
hUK1

)
= −∂πUK1

∂hUK1
=
∫∞
−∞
(
p
(
hUK1 + s1

)
+ hUK1 p′

(
hUK1 + s1

)
− θ̄
)
ϕs (s1) ds1

=
∫∞
−∞
(
p (y1) + hUK1 p′ (y1)− θ̄

)
ϕs
(
y1 − hUK1

)
dy1. The solution on −π′

(
hUK1

)
= 0 is a unique

maximum if −π′
(
hUK1

)
is a strictly single crossing function– that is −π′ (h) ≥ 0 implies that

−π′
(
h̃
)
> 0 for any 0 < h < h̃. Using the expression for −π′

(
hUK1

)
we require that(

h̃− h
) ∫∞
−∞ p

′ (y1)ϕs

(
y1 − h̃

)
ds1 +

∫∞
−∞ (hp′ (y1) + p (y1)− θ)ϕs

(
y1 − h̃

)
dy1 > 0. The first

term is clearly positive. The second term can be written as∫∞
−∞ (hp′ (y1) + p (y1)− θ) ϕs(y1−h̃)

ϕs(y1−h)
ϕs (y1 − h) dy1, where

ϕs(y1−h̃)
ϕs(y1−h)

is increasing in y1 due to log-

concavity (see Lemma A.1).

Notice that if hp′ (y1) + p (y1) − θ is single crossing in y1, we can prove that this integral

is non-negative similarly to Lemma 5 and Extension to Lemma 5 in Athey (2002). Namely,

suppose that hp′ (y1) + p (y1) − θ is single crossing in y1 then there exists y1 = ȳ such that

hp′ (y1) + p (y1) − θ < (>) 0 for any y1 < (>) ȳ. Furthermore, it is clear that
ϕs(y1−h̃)
ϕs(y1−h)

<

40



(>)
ϕs(ȳ−h̃)
ϕs(ȳ−h)

for any y1 < (>) ȳ. Then we obtain that

∫ ∞
−∞

(hp′ (y1) + p (y1)− θ)
ϕs

(
y1 − h̃

)
ϕs (y1 − h)

ϕs (y1 − h) dy1 =

∫ ȳ

−∞
(hp′ (y1) + p (y1)− θ)

ϕs

(
y1 − h̃

)
ϕs (y1 − h)

ϕs (y1 − h) dy1+

∫ ∞
ȳ

(hp′ (y1) + p (y1)− θ)
ϕs

(
y1 − h̃

)
ϕs (y1 − h)

ϕs (y1 − h) dy1 >

ϕs

(
ȳ − h̃

)
ϕs (ȳ − h)

∫ ∞
−∞

(hp′ (y1) + p (y1)− θ)ϕs (y1 − h) dy1 =
ϕs

(
ȳ − h̃

)
ϕs (ȳ − h)

· (−π′ (h)) ≥ 0,

where the first inequality follows from the monotonicity of
ϕs(y1−h̃)
ϕs(y1−h)

. Overall in such case

−π′ (h) ≥ 0 indeed implies that −π′
(
h̃
)
≥ 0. Note that a suffi cient (but not necessary)

condition for hp′ (y1) + p (y1) − θ to be single crossing in y1 is that
θ−p(y1)
p′(y1)

is decreasing in y1,

i.e., θ − p (y1) is log-concave.45

We can also identify a somewhat more general suffi cient condition for the term∫∞
−∞ (hp′ (y1) + p (y1)− θ) ϕs(y1−h̃)

ϕs(y1−h)
ϕs (y1 − h) dy1 to be non-negative using Chebyshev’s integral

inequality. Namely, using Theorem A.5 from Appendix A, it holds that the suffi cient condition

for
∫∞
−∞ (hp′ (y1) + p (y1)− θ) ϕs(y1−h̃)

ϕs(y1−h)
ϕs (y1 − h) dy1 ≥

∫∞
−∞ (hp′ (y1) + p (y1)− θ)ϕs (y1 − h) dy1 =

−π′ (h) is that for every t∫ t
−∞ (hp′ (y1) + p (y1)− θ)ϕs (y1 − h) dy1∫ t

−∞ ϕs (y1 − h) dy1

≥
∫ ∞
−∞

(hp′ (y1) + p (y1)− θ)ϕs (y1 − h) dy1.

This condition can also be written as

E [hp′ (h+ s1) + p (h+ s1) |s1 ≤ t− h] ≥ E [hp′ (h+ s1) + p (h+ s1) |s1 > t− h] .

As E [p (h+ s1) |s1 ≤ t− h] ≥ E [p (h+ s1) |s1 > t− h] due to the fact that the price is increas-

ing in the order flow, this condition essentially requires that the slope of p (y1) at high order

flows is not too small compared to the slope at small order flows and is less restrictive than

requiring hp′ (y1) + p (y1)− θ to be single crossing.
While numerically both suffi cient conditions clearly hold for a wide set of parameters, to the

best of our knowledge there are no more mathematical results that we can apply to our setting

45Using the results from Lemma 2.1, we can prove that this is indeed the case for η close to 0 or 1 and γ = 0.
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to derive further analytical results. Overall, the necessary (and the least restrictive) condition

for quasiconcavity is that if −π′ (h) > 0 then(
h̃− h

) ∫∞
−∞ p

′ (y1)ϕs

(
y1 − h̃

)
ds1 +

∫∞
−∞ (hp′ (y1) + p (y1))

(
ϕs(y1−h̃)
ϕs(y1−h)

− 1

)
ϕs (y1 − h) dy1 > 0,

which appears to always hold, at least numerically.

As the problem is symmetric, similar arguments apply for θ = −θ̄ as well as for the quasi-
concavity in own demand in the state R = I.

Proof of Proposition 2
We already know from the previous part that when θ = 0, the unique solution is hUK1 =

hIK1 = hIP1 = 0. So let us focus on the case θ = θ̄. Provided that the trader’s problem has a

unique maximum in own demand, we focus on the first order conditions.

− ∂πUK1

∂hUK1

=

∫ ∞
−∞

(
p (y1) + hUK1 p′ (y1)− θ̄

)
ϕs
(
y1 − hUK1

)
dy1 = 0

− ∂πIJ1

∂hIJ1
=

∫ ∞
−∞

(
p (y1) + hIJ1 p′ (y1)− θ̄

)
ϕs
(
y1 − hIK1 − hIP1

)
dy1 = 0

which by integration by parts can be also expressed as

− ∂πUK1

∂hUK1

=

∫ ∞
−∞

(
θ̄ − p (y1)

)(hUK1

(
hUK1 − y1

)
σ2

− 1

)
ϕs
(
y1 − hUK1

)
dy1 = 0 (27)

− ∂πIJ1

∂hIJ1
=

∫ ∞
−∞

(
θ̄ − p (y1)

)(hIJ1 (hUK1 + hIK1 − y1

)
σ2

− 1

)
ϕs
(
y1 − hIK1 − hIP1

)
dy1 = 0

It is straightforward to prove thatK and P and must trade the same quantity in equilibrium

in state R = I and that the solution is symmetric for θ = θ̄ and θ = −θ̄. In equilibrium the

Market’s beliefs must be consistent with optimal strategies, i.e., it must hold that hIK1 =

hIP1 = ḡI
2
and hUK1 = ḡU . Define µR ≡ ḡR

σs
for R ∈ {I, U} and z ≡ y2

σs
. Using the expression for

normal density we can express ϕs (y2 − ḡR) = 1
σs
φ (z − µR), ϕs (y2) = 1

σs
φ (z) and ϕs (y2 + ḡR) =

1
σs
φ (z + µR), where φ is the p.d.f. of a standard normal. Using (14), we then find that

p̆ (z) ≡ p1 (zσs) = θ̄
ηφ (z − µI) + (1− η)φ (z − µU)− ηφ (z + µI)− (1− η)φ (z + µU)

ηφ (z − µI) + (1− η)φ (z − µU) + ηφ (z + µI) + (1− η)φ (z + µU) + 2γ
1−γφ (z)

that clearly does not depend on σs and it holds that p1 (zσs) = −p1 (−zσs). Using these in
(27) and equating ∂πIJ1

∂hIJ1
= 0 for J ∈ {K,P}; ∂π

UK
1

∂hUK1
= 0, we find that µI and µU are the positive
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solutions of

∂πIJ1
∂hIJ1
|hIJ1 =ḡI

= −
(

1− µ2I
2

)∫ ∞
−∞

(
θ̄ − p̆ (z)

)
φ (z − µI) dz+µI

2

∫ ∞
−∞

(
θ̄ − p̆ (z)

)
zφ (z − µI) dz = 0

(28)

∂πUK1
∂hUK1
|hUK1 =ḡU

= −
(
1− µ2

U

) ∫ ∞
−∞

(
θ̄ − p̆ (z)

)
φ (z − µU) dz + µU

∫ ∞
−∞

(
θ̄ − p̆ (z)

)
zφ (z − µU) dz = 0

For part 2 notice that from (28), we can express the first order condition of trader J ∈ {K,P}
in state R = I as

∂πIJ1
∂hIJ1
|hIJ1 =ḡI

= −1
2

∫ ∞
−∞

(
θ̄ − p̆ (z)

)
φ (z − µI) dz − 1

2

∂πUK1
∂hUK1
|hUK1 =ḡI

= 0

By part 6 of Lemma 2.1
(
θ̄ − p1 (y1)

)
> 0 for all finite y1. Therefore, also

(
θ̄ − p̆ (z)

)
> 0 for

all finite z and
(
θ̄ − p̆ (z)

)
φ (z − µI) ≥ 0 with strict inequality for some z. This implies that it

must hold that

−∂π
UK
1

∂hUK1

|hUK1 =ḡI
> 0.

Because −∂πUK1
∂hUK1

is a single-crossing function and ∂πUK1
∂hUK1
|hUK1 =ḡU

= 0, it then follows that ḡI > ḡU .

For the uninformed trader’s strategy, we need to verify that it is optimal for him to trade

zero. We now verify that the first order condition of his problem indeed holds at zero. Define

∆ (y1) ≡ E [θ|y1, U ] − E [θ|y1, I] and Q1U (y1) ≡ E [Q2|y1, U ]. By (15) in Lemma 2.1 (and

also by Lemma A.1 in Appendix A), it holds that ∆ (y1) = −∆ (−y1). Also, it is clear from

(16) that it holds that Q1 (y1) = Q1 (−y1). Using this in (10) and (12) we confirm that (12)

Q1U (y1) = Q1U (−y1).

Recalling uninformed P’s optimal trading strategy at date 2 from (13) in Theorem 1 and

using (7) and (9), we can then find P’s expected profit at date 2 conditional on y1 as

πUP2 =

{
σsκQ1U (y1) ∆ (y1) if ∆ (y1) > 0

−σsκQ1U (y1) ∆ (y1) if ∆ (y1) < 0

Suppose that at date 1, uninformed P trades hUP1 , then he also knows that the distribution of

the total order flow is fs
(
y1 − hUP1 − ḡU

)
if θ = θ̄; fs

(
y1 − hUP1

)
if θ = 0 and fs

(
y1 − hUP1 + ḡU

)
if θ = −θ̄. Using all this, E [θ|U ] = 0, and we can use the law of iterated expectations to express
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the expected profit of uninformed P before date 1 trading as

πUP1 = −hUP1

∞∫
−∞

p1 (y1)
(
m
(
y1 − hUP1

)
−m

(
y1 + hUP1

))
dy1+∫

∆(y1)>0

σsκQ1U (y1) ∆ (y1)
(
m
(
y1 − hUP1

)
+m

(
y1 + hUP1

))
dy1,

where m (x) ≡ 1−γ
2
ϕs (x− ḡU) +γϕs (x) + 1−γ

2
ϕs (x+ ḡU). Because of symmetry ϕs (., ) it holds

that m (x) = m (−x) and m′ (x) = −m′ (−x).

The first derivative of the profit is

∂πUP1

∂hUP1

= −
∞∫
0

p1 (y1)
(
m
(
y1 − hUP1

)
−m

(
y1 + hUP1

))
dy1

+ hUP1

∞∫
0

p1 (y1)
(
m′
(
y1 − hUP1

)
+m′

(
y1 + hUP1

))
dy1

−
∫

∆(y1)<0

σsκQ1U (y1) ∆ (y1)
(
m′
(
y1 − hUP1

)
−m′

(
y1 + hUP1

))
dy1

Replacing in hUP1 = 0, we can now verify that ∂πUP1
∂hUP1
|hUP1 =0 = 0. For the intuition that

hUP1 = 0 is also a global maximum, notice that −
∞∫
0

p1 (y1)
(
m
(
y1 − hUP1

)
−m

(
y1 + hUP1

))
dy1 =

−
∫∞
−∞
(
p1

(
s1 + hUP1

)
− p1

(
s1 − hUP1

))
m (s1) ds1. Due to increasing prices, the first term is

negative iff hUP1 > 0. Also, using integration by parts, the second term is

hUP1

∞∫
0

p1 (y1)
(
m′
(
y1 − hUP1

)
+m′

(
y1 + hUP1

))
dy1 = −hUP1

∞∫
0

p′1 (y1)
(
m
(
y1 − hUP1

)
+m

(
y1 + hUP1

))
dy1

and negative iff hUP1 > 0. Both of these effects alone would guarantee that −∂πUP1
∂hUP1

is strictly

single crossing at 0 as any trading by P at date 1 would lead to short term losses in expec-

tations. The sign of the last term is ambiguous and reflects the fact that by deviating to a

non-zero demand at date 1, P could affect the probability he expects the market to assign on

him being informed at date 2 and the area where P would pursue different price-contingent

strategies. However, it can be verified that this term is relatively small compared to the first

two terms and −∂πUP1
∂hUP1

remains single crossing at 0. This is true at least as long as η is not too

close to one.

Proof of Proposition 3
Assuming γ = 0, we obtain from (15) that sgn (E [θ|y1, U ]− E [θ|y1, I]) =

sgn
(
ϕs(y1−gU )
ϕs(y1+gU )

− ϕs(y1−ḡI)
ϕs(y1+ḡI)

)
= sgn

(
ϕs(y1−ḡU )
ϕs(−y1−ḡU )

− ϕs(y1−ḡI)
ϕs(−y1−ḡI)

)
. Because ϕs (.) is log-concave and

ḡI > ḡU by part 2 in Proposition 2, it holds by the property of log-concave distributions in

Lemma A.1 in Appendix A that sgn
(

ϕs(y1−ḡU )
ϕs(−y1−ḡU )

− ϕs(y1−ḡI)
ϕs(−y1−ḡI)

)
= −1 if y1 > −y1 ⇔ y1 > 0 and
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sgn
(

ϕs(y1−ḡU )
ϕs(−y1−ḡU )

− ϕs(y1−ḡI)
ϕs(−y1−ḡI)

)
= 1 if y1 < −y1 ⇔ y1 < 0. By (7) sgn (E [θ|y1, U ]− E [θ|y1, I]) =

sgn (E [θ|y1, U ]− p1) for any 0 < Q1 < 1, which is true for any 0 < η < 1. Uninformed P’s

optimal strategy at date 2, equation (13) in Theorem 1, and the definition of contrarian strategy

in Section 4.2 complete the proof.

Proof of Proposition 4
To prove part 1 we use (15) to find that sgn (E [θ|y1, U ]− E [θ|y1, I]) =

sgn
(
ϕs(y1−ḡU )
ϕs(y1+ḡU )

− ϕs(y1−ḡI)
ϕs(y1+ḡI)

+ γf(y1)
(1−γ)ϕs(y1+ḡU )ϕs(y1+ḡI)

B (y1)
)
, where

B (y1) ≡ ϕs (y1 − ḡU) − ϕs (y1 + ḡU) − ϕs (y1 − ḡI) + ϕs (y1 + ḡI). Consider y1 > 0 and let us

focus on the sign of B (y1). Because ϕs (.) has a maximum at zero and is decreasing for any

positive values, it also holds for any y1 > 0 and ḡI > ḡU that −ϕs (y1 + ḡU) + ϕs (y1 + ḡI) < 0.

We can then prove that the necessary and suffi cient condition for ϕs (y1 − ḡU)−ϕs (y1 − ḡI) ≤ 0

is that y1 ≥ ḡI+ḡU
2
. Namely, defining b ≡ y1 − ḡI+ḡU

2
, it holds that ϕs (y1 − ḡU) − ϕs (y1 − ḡI)

= ϕs
(
b+ ḡI−ḡU

2

)
−ϕs

(
b− ḡI−ḡU

2

)
, which is indeed non-positive if and only if b ≥ 0 (see Corollary

A.1.1 in Appendix A and recall that ḡI > ḡU). Therefore, for any y1 ≥ ḡI+ḡU
2

it holds that

B (y1) < 0. From the proof of Proposition 3 (and Lemma A.1 in Appendix A), we already

know that ϕs(y1−ḡU )
ϕs(y1+ḡU )

< ϕs(y1−ḡI)
ϕs(y1+ḡI)

for any y1 > 0. Therefore, sgn (E [θ|y1, U ]− E [θ|y1, I]) =

sgn (E [θ|y1, U ]− p1) = −1 for any y1 ≥ ḡI+ḡU
2

and 0 < η < 1. The definition of contrarian

strategy in Section 4.2 completes this part of the proof. The proof for y1 ≤ − ḡI+ḡU
2

is similar

due to symmetry.

To prove part 2, notice that the function determining the sign of E [θ|y1, U ]−E [θ|y1, I] can be

expressed as

S (y1) ≡
(
ϕs(y1−ḡU )
ϕs(y1+ḡU )

− 1
)(

1 + γf(y1)
(1−γ)ϕs(y1+ḡI)

)
−
(
ϕs(y1−ḡI)
ϕs(y1+ḡI)

− 1
)(

1 + γf(y1)
(1−γ)ϕs(y1+ḡU )

)
,

which using the expression for the normal density becomes

S (y1) =
(

exp
(

2ḡUy1
σ2s

)
− 1
)(

1 + γ
1−γ exp

(
2ḡIy1+ḡ2I

2σ2s

))
−
(

exp
(

2ḡIy1
σ2s

)
− 1
)(

1 + γ
1−γ exp

(
2ḡUy1+ḡ2U

2σ2s

))
It is clear that S (0) = 0. Let us consider ε arbitrarily close to zero. By Taylor approximation,

we find that S (ε) = S ′ (0) ε, where S ′ (0) = 2ḡU
σ2s

(
1 + γ

1−γ exp
(
ḡ2I

2σ2s

))
− 2ḡI

σ2s

(
1 + γ

1−γ exp
(
ḡ2U
2σ2s

))
.

Using then ḡR = µRσs, it is clear that S ′ (0) > 0 iff(19) holds, which by sgn (E [θ|ε, U ]− E [θ|ε, I]) =

sgn (S (ε)) = 1 (−1) if ε > (<) 0 and definition from Section 4.2 implies a trend-following strat-

egy.

If the condition (19) hold, then S (ε) > 0 for some small ε > 0, while S
(
ḡI+ḡU

2

)
< 0. As

S (y1) is a continuous function of the order flow y1, there must exist an order flow in the interval

of (ε, ḡI+ḡU
2
), where S (y1) changes its sign.
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Proof of Proposition 6
Assume that the prior distribution of the fundamental is fθ (θ), with support

[
−θ̄, θ̄

]
.46 We

prove the lemma by contradiction. Suppose that P does not trade at date 2 in state R = U . It

is first useful to prove the following Claim

Claim 1 The total volume traded by informed traders at date 2 differs across states.

Proof. Let us differentiate (20) and (21) with respect to, hUK2 , hIK2 and hIP2 . We can then

define the total informed order flow at date 2, in state R = U as g2U (θ, y1) = c and in state

R = U as g2I (θ, y1) = hIK2 + hIP2 , we obtain that the following first order conditions must hold

in equilibrium∫ ∞
−∞

(θ − p2 (y2))ϕs (y2 − g2I (θ, y1))

(
2 +

g2I (θ, y1) (y2 − g2I (θ, y1))

σ2
s

)
dy2 = 0∫ ∞

−∞
(θ − p2 (y2))ϕs (y2 − g2U (θ, y1))

(
1 +

g2U (θ, y1) (y2 − g2U (θ, y1))

σ2
s

)
dy2 = 0

and g2I (θ, y1), and g2U (θ, y1) are generally non-zero. Suppose that informed trading volume

is the same across states: g2I (θ, y1) = g2U (θ, y1) = g2 (θ, y1). From above we obtain then

that it must hold that
∫∞
−∞ (θ − p2 (y2))ϕs (y1 − g (θ, y1)) dy2 = 0 for all θ. But this leads to a

contradiction, as it would imply that informed traders obtain zero profits when trading optimal

quantity. Hence, it must be the case that g2I (θ, y1) 6= g2U (θ, y1)

Let us then consider uninformed P’s date 1 problem. For uninformed P not to have incen-

tives to deviate from hUP2 = 0, it must hold that the first derivative of his date 2 problem (5)
∂πUP2
∂hUP2
|hUP2 =0 = E [(θ − p2) |y1, U ] + ∂E[(θ−p2)|y1,U ]

∂hUP2
|hUP2 =0 = 0. This implies that

E [(θ − p2) |y1, U ] = E [E [(θ − p2) |θ, y1, U ] |y1, U ] =

=
1− η

1−Q1

∫ θ̄

−θ̄

∫ ∞
−∞

(θ − p2)ϕs (y1 − g2U (θ, y1))ϕs (y1 − g1U (θ)) fθ (θ) dy2dθ = 0,

where g1U (θ) is date 1 total order flow by informed trader K. Denoting the date 1 order flow

by informed traders in state R = I, with g1I (θ),

E [(θ − p2) |y1, I] = E [E [(θ − p2) |θ, y1, I] |y1, I] =

=
η

Q1

∫ θ̄

−θ̄

∫ ∞
−∞

(θ − p2)ϕs (y1 − g2I (θ, y1))ϕs (y1 − g1I (θ)) fθ (θ) dy2dθ 6= 0,

46We consider continuous distribution, but it is straightforward to extend the proof also to discrete distribu-
tions.
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as it is suffi cient that η > 0 and g2I (θ, y1) 6= g2U (θ, y1). It must therefore also hold that

E [(θ − p2) |y1] = Q1E [(θ − p2) |y1, I] + (1−Q1)E [(θ − p2) |y1, I] =

= Q1E [(θ − p2) |y1, I] 6= 0

However, this leads to a contradiction because it violates the market effi ciency condition that

must hold in any equilibrium, i.e., by market effi ciency conditions and law of iterated expec-

tations, E [p2|y1] = E [E [θ|y1, y2] |y1] = E [θ|y1] ⇐⇒ E [(θ − p2) |y1] = 0. Therefore hUP2 = 0

cannot be an equilibrium strategy (for all realizations of y1).

Proof of Proposition 7
Part 1 follows from results are derived using insights from the monotone comparative

statics literature. Consider state R = U and denote trader K’s expected price when de-

manding hUK1 as pE
(
hUK1

)
≡
∫∞
−∞ p1

(
hUK1 + s1

)
fs (s1) ds1. We can express (4) as gU (θ) =

arg maxhUK1 hUK1

(
θ − pE

(
hUK1

))
. From Milgrom and Shannon (1994) it is known that gU (θ)

is weakly increasing in θ if the trader’s problem has increasing differences (which also implies

the payoff is supermodular) in hUK1 and θ. This is indeed the case, because for any θ̃ > θ and

h̃UK1 > hUK1 , it holds that h̃UK1

(
θ̃ − pE(hUK1 )

)
− h̃UK1

(
θ − pE(h̃UK1 )

)
> hUK1

(
θ̃ − pE(hUK1 )

)
−

hUK1

(
θ − pE(hUK1 )

)
⇐⇒ (h̃UK1 − hUK1 )(θ̃ − θ) > 0. From Edlin and Shannon (1998), it is

also known that gU (θ) is strictly increasing if the first derivative of the payoff (profit) is

strictly increasing in θ, which is also true in our model, as ∂hUK1

(
θ − pE

(
hUK1

))
/∂hUK1 =

θ−pE
(
hUK1

)
−hUK1 p′E

(
hUK1

)
is clearly increasing in θ. The proof is similar for the state R = I,

where the same monotone comparative statics establish that K’s and P’s individual demand is

increasing in θ, and so is the sum of their demands.

For part 2, notice that given the above assumptions, it is enough to only look at the first order

conditions to find the unique equilibrium demands by all informed traders. Also, it is easy to

verify that given θ, both K and P demand the same quantity in state R = I. We find that the

equilibrium total informed demand gR (θ) in state R solves

θ =

∫ ∞
−∞

(p1 (s1 + gU (θ)) + gU (θ) p′1 (s1 + gU (θ))) fs (s1) ds1

θ =

∫ ∞
−∞

(
p1 (s1 + gI (θ)) +

gI (θ)

2
p′1 (s1 + gI (θ))

)
fs (s1) ds1

It is straightforward to verify that gR (θ) = −gR (−θ). As by part 1 gR (θ) is invertible, it must
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also hold that

g−1
U (yθ) =

∫ ∞
−∞

(p1 (s1 + yθ) + yθp
′
1 (s1 + yθ)) fs (s1) ds1, for yθ ∈

[
−gU

(
θ̄
)
, gU

(
θ̄
)]

(29)

g−1
I (yθ) =

∫ ∞
−∞

(
p1 (s1 + yθ) +

yθ
2
p′1 (s1 + yθ)

)
fs (s1) ds1, for yθ ∈

[
−gI

(
θ̄
)
, gI
(
θ̄
)]

For yθ satisfying−min
[
gU
(
θ̄
)
, gI
(
θ̄
)]
≤ yθ ≤ min

[
gU
(
θ̄
)
, gI
(
θ̄
)]
, it then follows that g−1

U (yθ)−
g−1
I (yθ) = yθ

2

∫ s̄
−s̄ p

′
1 (s1 + yθ) fs (s1) ds1 > (<) 0 for any yθ > (<) 0. Taking yθ = gU (θ) > 0, we

find that g−1
U (yθ) > g−1

I (yθ) ⇐⇒ θ > g−1
I (gU (θ)) ⇐⇒ gI (θ) > gU (θ) for any θ > 0. The case

yθ < 0 is immediate by symmetry. From this, it also follows that min
[
gU
(
θ̄
)
, gI
(
θ̄
)]

= gU
(
θ̄
)
,

and we have proved part 2 for any −g−1
I

(
gU
(
θ̄
))
≤ θ ≤ g−1

I

(
gU
(
θ̄
))
. Because gI (θ) is increas-

ing in θ, and yθ outside this area cannot be generated in state R = U , the statement in Part 2

holds for any realization of θ.

Proof of Proposition 8
As in the main text, we focus on the case where y1 > 0. Let us define the probability ratio

as

PF (θ) ≡ F [θ|I, y1]

F [θ|U, y1]
, (30)

where F [θ|R, y1] is c.d.f of θ conditional in R and y1. Because θ|I, y1 and θ|U, y1 have the same

support, it holds that F
[
θ̄|R, y1

]
= 1, for R = {I, U}. This implies that PF

(
θ̄
)

= 1, and that

∫ θ̄

−θ̄
(f (θ|I, y1)− f (θ|U, y1)) dθ = 0⇐⇒

∫ θ̄

−θ̄
(L (θ)− 1) f (θ|U, y1) dθ = 0.

For the latter to hold, it must be the case that the sign of L (θ) − 1 is not the same over the

full support of θ. This and unimodality of L (θ), further implies that L (θ∗) > 1. By definition

of c.d.f., it holds that PF
(
−θ̄
)

= L
(
−θ̄
)
.

It is also useful to differentiate (30) to obtain

P ′F (θ) =
f [θ|U, y1]

F [θ|U, y1]
(L (θ)− PF (θ)) . (31)

Let us first consider the set of lower realization of the fundamental, i.e., we consider any θ ∈
(−θ̄, θ∗], where θ∗ = D

(
y−1

1

)
> 0 is the point where L (θ) achieves its maximum value. Denote

a particular realization of θ that belong to this set with θ̃L. We can express F
(
θ̃L|y1, I

)
=∫ θ̃L

−θ̄ f (θ|I, y1) dθ =
∫ θ̃L
−θ̄ L (θ) f (θ|U, y1) dθ. As L (.) is continuous, and f (θ|U, y1) is integrable,

the first mean value theorem for definite integrals implies that there exists cθ in (−θ̄, θ̃L) such
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that

F
(
θ̃L|y1, I

)
= L (cθ)

∫ θ̃L

−θ̄
f (θ|U, y1) dθ = L (cθ)F

(
θ̃L|y1, I

)
From here, PF

(
θ̃L

)
= L (cθ) < L

(
θ̃L

)
, because L (.) is increasing the the area we consider.

By (31), we then find that P ′F (θ) > 0 for any θ ∈
(
−θ̄, θ∗

]
.

Let us then consider the set of higher realization of the fundamental, i.e., θ ∈
(
θ∗, θ̄

]
, and

denote a particular realization of θ that belongs to this set with θ̃H . We need to analyze the

case L
(
θ̄
)
− 1 ≥ 0 and L

(
θ̄
)
− 1 < 0, separately.

Case 1: Suppose that L
(
θ̄
)
− 1 ≥ 0. Then unimodality of L (.) implies that L (θ) − 1 is

single crossing in interval (−θ̄,θ̄] and that the crossing point must be at the left of θ∗. It then
follows that L (θ)− 1 > 0 for any θ∗ < θ̃H ≤ θ̄ and we obtain that

F
[
θ̃H |I, y1

]
− F

[
θ̃H |U, y1

]
=

∫ θ̃H

−θ̄
(f (θ|I, y1)− f (θ|U, y1)) dθ

= −
∫ θ̄

θ̃H

(f (θ|I, y1)− f (θ|U, y1)) dθ = −
∫ θ̄

θ̃H

(L (θ)− 1) f (θ|U, y1) dθ < 0,

which implies that PF (θ̃H) < 1. By L
(
θ̃H

)
< 1 and (31) it further implies that P ′F

(
θ̃H

)
> 0.

Combining this with the earlier result that P ′F
(
θ̃L

)
> 0, we can conclude that P ′F (θ) > 0 for

any θ. As PF
(
θ̄
)

= 1, it implies that F [θ|I, y1] < F [θ|U, y1] for any −θ̄ < θ < θ̄, and we

can conclude that F [θ|I, y1] first order stochastically dominates F [θ|U, y1]. Using (22) and the

functional expression of ϕs (.) we further find that L
(
θ̄
)
−1 ≥ 0 holds whenever y1 ≥ ȳco, where

ȳco solves L
(
θ̄
)
− 1 = 0, i.e., it solves

ȳco =
gU
(
θ̄
)

+ gI
(
θ̄
)

2
+

1

2
ln

(
f (ȳco|I)

f (ȳco|U)

)
1

gI
(
θ̄
)
− gU

(
θ̄
) .

Notice that 0 < ȳco < D
(
θ̄
)
.

Case 2: Suppose that L(θ̄)− 1 < 0. As P ′F (θ̃L) > 0 still holds, equation (31) implies that

L(θ̃L)−PF (θ̃L) > 0, for any θ̃L = θ ∈ (−θ̄, θ∗]. This implies that there exists θ, arbitrarily close
to −θ̄, such that L(θ) > PF (θ). Combining this with the fact that L

(
θ̄
)
< 1 = L

(
θ̄
)
, we can

conclude that L (θ) and PF (θ) must cross at least once in (−θ̄, θ̄). This further implies that
PF (θ) can no longer be monotonically increasing when L(θ̄) − 1 < 0. We can further prove

that L (θ) and PF (θ) cross exactly once in (−θ̄, θ̄). Note that P ′F (θ̃L) > 0 and L(θ̃L) > PF (θ̃L)

imply that the function PF (θ) must be strictly below L(θ), for any (−θ̄, θ∗]. Because L(θ̃H)

is monotonically decreasing, L(θ∗) > PF (θ∗), and L(θ̄) < 1 = PF (θ̄), it can only be the case

that when θ̃H increases then the sign function sgn
(
L
(
θ̃H

)
− PF

(
θ̃H

))
follows a sequences
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such as 1) +1,−1; 2) +1,−1,+1,−1; 3) +1,−1,+1,−1,+1,−1 etc. We can exclude all such

sequences apart from 1) by contradiction. Suppose that there exists a subset θ̃′H ∈
{
θ̃H

}
, where

sgn(L(θ̃′H)−PF (θ̃′H)) = +1, while there also exist realizations θ̃′′H < θ̃′H , where θ̃
′′
H ∈

{
θ̃H

}
and

sgn(L(θ̃′′H)− PF (θ̃′′H)) = −1. For such such realization of θ̃′H to exist, it must be the case that

P ′F (θ̃′H) < 0. However, this leads to a contradiction given (31).

From here we can conclude that the probability ratio, PF (θ), is unimodal. As PF (θ) is

unimodal, and P
(
θ̄
)

= 1, there can only be two possibilities: either be the case that P (θ) > 1

holds for all θ ∈ (−θ̄, θ̄), in which case F [θ|U, y1] < F [θ|I, y1] or P (θ)−1 is single crossing and

therefore also F [θ|U, y1]− F [θ|I, y1] is single crossing in θ.

For P (θ) > 1 to hold for all θ ∈ (−θ̄, θ̄), it must hold that P
(
−θ̄
)

= L
(
−θ̄
)
≥ 1. From

(22), we find that

L
(
−θ̄
)

=
f (y1|U)

f (y1|I)

ϕs
(
y1 + gI

(
θ̄
))

ϕs
(
y1 + gU

(
θ̄
)) =

∫ θ̄
−θ̄ fθ (θ) ϕs(y1−gU (θ))

ϕs(y1+gU(θ̄))
dθ∫ θ̄

−θ̄ fθ (θ) ϕs(y1−gU (θ))

ϕs(y1+gU(θ̄))
dθ
. (32)

Notice that
ϕs(y1+gI(θ̄))
ϕs(y1+gU(θ̄))

< 1 for any y1 > 0, while f(y1|U)
f(y1|I) > 1 when y1 is low in absolute value.

For the latter, notice that f(y1|U)
f(y1|I) = η(1−Q1(y1))

Q1(y1)(1−η)
and f(y1|U)

f(y1|I) > 1 ⇐⇒ Q1 (y1) < η. Because two

informed traders jointly trade less than one, the Market must update its’beliefs such that it

expects P to be less likely informed when it observes a low order flow. In particular, using the

expressions for ϕs, we find that

lim
y1→0

L
(
−θ̄
)

=

∫ θ̄
−θ̄ fθ (θ) exp

(
g2U(θ̄)−g2U (θ)

2σ2s

)
dθ

∫ θ̄
−θ̄ fθ (θ) exp

(
g2I(θ̄)−g2I (θ)

2σ2s

)
dθ

=

2
∫ θ̄

0
fθ (θ) exp

(
g2U(θ̄)−g2U (θ)

2σ2s

)
dθ

2
∫ θ̄

0
fθ (θ) exp

(
g2I(θ̄)−g2I (θ)

2σ2s

)
dθ

> 1,

because
∂(g2I (θ)−g2I (θ))

∂θ
= g′I (θ) gI (θ) − g′U (θ) gU (θ) > 0 for any θ ≥ 0 by Proposition 7 and

Conjecture 1 in Section 4.2, which in term implies that exp

(
g2U(θ̄)−g2U (θ)

2σ2s

)
−exp

(
g2I(θ̄)−g2I (θ)

2σ2s

)
>

0 ⇔ exp

(
g2U(θ̄)−g2U (θ)−g2I(θ̄)+g2I (θ)

2σ2s

)
> 1 for any 0 ≤ θ ≤ θ̄. This means that at least very close

to zero, it holds that P (θ) > 1. Furthermore, this remains to be true for 0 < y1 < yco1 , where

yco1 is the solution of L
(
−θ̄
)

= 1, where L
(
−θ̄
)
is given by (32).
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C Date 2 demand by strategic traders in the model with

forward looking informed traders

Date 2 demand as a function of date 1 order flow. The order flow is normalized by dividing it

with the standard deviation of noise trading. We assume θ̄ = 1 and η = 0.5.
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D Supplementary Appendix

D.1 Trader P as the only trader who can be informed

Assume there is no K, the rest of the model is the same as in Section 3 Date 2 problem has

the same solution as the basic model in Section 2. Theorem 1 (see (13)) then implies that

P will optimally pursue and profit from contrarian strategy if E [θ|y1, U ] − p1 has an opposite

sign compared to y1. It is clear that without the presence of any informed traders at date

1, no fundamental information can be contained in date 1 order flow in state R = U , i.e.,

with any symmetric prior E [θ|y1, U ] = E [θ] = 0. It then follows that sgn (E [θ|y1, U ]− p1) =

−sgn (p1). As long as sgn (p1) = sgn (y1) always holds, P ′s optimal date 2 strategy is contrarian.

Furthermore, from (7), we also obtain that in this case p1 = Q1E [θ|y1, I] and therfore sgn (p1) =

sgn (E [θ|y1, I]). As long as higher order flow is more likely to reflect high θ, i.e., if for any

ỹ1 > y1 the cumulative distribution F [θ|ỹ1, R] first order stochastically dominates F [θ|y1, R] ,

then E [θ|y1, I] is increasing in y1. With any symmetric prior, this guarantees that sgn (p1) =

sgn (y1). It is further well known from Milgrom (1981) that first order stochastic dominance

is implied by monotone likelihood ratio property (MLRP) for any prior, that is f(ỹ1|θ,I)
f(y1|θ,I) is

increasing in θ. Because the order flow itself is given by y1 = gI (θ) + s1 where gI (θ) is a trade

by P when informed, it holds that f(ỹ1|θ,I)
f(y1|θ,I) = ϕs(ỹ1−gI(θ))

ϕs(y1−gI(θ))
, which is indeed increasing in θ as long

as P’s optimal strategy when informed, gI(θ), is increasing in θ, because ϕs (.) is logconcave

(see (24) in Appendix A). Strategies being increasing in θ holds for other priors, see Section

4.2. And it also holds with the the baseline setting with three-point distribution.

In our baseline case, we can conjecture that P trades gI(θ̄) = ḡI , gI(−θ̄) = −ḡI and ḡI(0) = 0

if R = 0, and trades zero if R = U . Under this conjecture, we find using Bayes’rule that

E [θ|y1, I] = θ̄Pr
(
θ = θ̄|y1, I

)
− θ̄Pr

(
θ = −θ̄|y1, I

)
= θ̄

(
f
(
y1|θ = θ̄, I

)
Pr
(
θ = θ̄|I

)
f (y1|I)

−
f
(
y1|θ = −θ̄, I

)
Pr
(
θ = −θ̄|I

)
f (y1|I)

)

= θ̄
ϕs (y1 − ḡI)− ϕs (y1 + ḡI)

f (y1|I)

1− γ
2

and

Q1 = Pr (I|y1) =
f (y1|I) Pr (I)

f (y1)
=

f (y1|I) η

f (y1|I) η + f (y1|U) (1− η)
.

Using that f (y1|I) = 1−γ
2
ϕs (y1 − ḡI) + γϕs (y1) + 1−γ

2
ϕs (y1 − ḡI), and f (y1|U) = ϕs (y1), we
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obtain that

p1 (y1) = ηθ̄
ϕs (y1 − gU)− ϕs (y1 + gU)

η 1−γ
2
ϕs (y1 − gU) + η 1−γ

2
ϕs (y1 + gU) + (ηγ + (1− η))ϕs (y1)

1− γ
2
. (33)

We can verify that p′1 (y1) > 0 , p1 (y1) = −p1 (−y1), p′1 (y1) = p′1 (−y1). Furthermore, −θ̄ <
p1 (y1) < θ̄ for any finite order flow.

Suppose that R = I. From (3), and from y1 = hIJ1 + s1 , we then obtain the first order

condition

θ − E
[
p1

(
hIP1 + s1

)
|θ, I

]
− hIP1 E

[
p′1
(
hIP1 + s1

)
|θ, I

]
= 0.

We can verify the conjectures. Namely, when θ = θ̄, then P ′s optimal demand is hIP1 = ḡI ,

where ḡI solves

θ̄ −
∫ ∞
−∞

p1 (ḡI + s1)ϕs (s1) ds1 = ḡI

∫ ∞
−∞

p′1 (ḡI + s1)ϕs (s1) ds1

Because θ̄ > p1 (ḡI + s1) for an finite values of s1, and p′1 (ḡI + s1) > 0, it follows that ḡI > 0.

Because p1 (.) is symmetric, it also follows that when θ = θ̄, then P ′s optimal demand is

hIP1 = −ḡI , and that hIP1 = 0 when θ = 0.

The proof that P would indeed choose to trade zero if R = U , is similar to the one in the

main model (see Proof of Proposition 2 in Appendix A).

We can also see from (33) that if η = 0, then p1 (y1) = 0 for any order flows, and P cannot

profit from superior information at date 2.
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