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Abstract

In many cases, buyers are not fully informed about their valuations and rely on the

advice of biased experts. For example, the board of the bidder relies on the advice

of managers when bidding for a target in a takeover contest. We study the design

of sale mechanisms to such “advised buyers”. In static mechanisms, such as first-

and second-price auctions, advisors communicate a coarsening of information, and the

revenue equivalence theorem holds. In contrast, in dynamic mechanisms, advisors

can communicate information gradually as the auction proceeds, which leads to more

efficient allocations. Whether this leads to higher revenues depends on the bias. If

advisors are biased for overbidding, an ascending-price auction dominates static formats

in both efficiency and expected revenues. If advisors are biased for underbidding, a

descending-price auction dominates static mechanisms in efficiency but often results in

lower revenues.
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1 Introduction

In many applications, agents that make purchase decisions have limited information about

their valuations of the asset for sale. As a consequence, they rely on the advice of informed

experts, who however often have misaligned preferences. Consider the following examples:

1. A firm competing for a target in a takeover contest. While the board of directors often

has authority over submitting bids, the firm’s managers are more informed about the

valuation of the target. They, however, could be prone to overbidding because of career

concerns and empire building preferences. A similar conflict of interest occurs if the

expert is an investment banker.

2. Bidding in spectrum auctions. Telecommunication companies bidding in spectrum

auctions have research teams preparing for the auction and advising the management

and board on bidding. They can have misaligned incentives as winning the auction

could give a positive signal of the team’s competence.

3. Suppliers competing in procurement. When a construction company competes for a

project in a procurement auction, managers that will work on it are privately informed

about the cost, while the top management has authority over bidding. The informed

managers can have a bias for overstating the cost.

4. Realtors in real estate transactions. A buyer of a house gets advice from a realtor

about what offer to make. The realtor has private information about the value of the

house but can be biased for overpaying.

We call such players “advised buyers” and study whether the presence of such advising

relationships affects how the seller should design the sale process. We analyze this question

both from the position of maximizing expected revenues, which is likely the goal if the

designer is the seller, and from the position of allocative efficiency, which could be a relevant

goal if the designer is the government.

We study a canonical setting in which the seller has an asset to auction among a number

of potential buyers with independent private values. We depart from it in one aspect: Each

potential buyer is a pair of a bidder (female) and her advisor (male), where the bidder controls

bidding decisions (e.g., the firm’s board) but has no information about her valuation, while

the advisor (e.g., the firm’s manager) knows the valuation but has a conflict of interest. Our

initial focus is on the case in which advisors’ bias is for overbidding, that is, given value v to
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the bidder, the advisor’s maximum willingness to pay is v + b with b > 0. We next consider

the case of the bias for underbidding.

Prior to the bidder submitting an offer, the advisor communicates with the bidder via a

game of cheap talk. If the sale process consists of a single round of bidding, there is only

one round of communication. In contrast, if the sale process consists of multiple rounds, the

advisor communicates with the bidder in each round of the auction. In this environment,

communication and the design of the sale process interact. On one hand, communication

from advisors affects bids and therefore efficiency and revenues of each auction format. On

the other hand, the auction format affects how advisors communicate information to bidders.

We analyze equilibria of the model under the NITS (“no incentive to separate”) condition

adapted from Chen et al. (2008).1 We first study static auctions. As one could expect

from the classic game of cheap talk (Crawford and Sobel (1982)), communication takes a

partition form: All types of the advisor are partitioned into intervals and types in each

interval induce the same bid. Even though our game is not a special case of their problem,

as payoffs are endogenous, the logic of Crawford and Sobel (1982) and Chen et al. (2008)

applies. Communication strategies have a partition structure and the equilibrium with the

highest number of partitions satisfies the NITS condition. We prove a version of the revenue

equivalence theorem for static auctions. We focus on a large class of standard auctions with

continuous payments introduced in Che and Gale (2006), including first-price, second-price,

and all-pay auctions, and show that all static auctions in this class bring the same expected

revenue and feature the same communication between bidders and advisors.

This conclusion changes drastically if the asset is sold via dynamic mechanisms. Consider

the ascending-price (English) auction, in which the price continuously increases until only

one bidder remains. From the position of a bidder and her advisor, the ascending-price

auction is a stopping time problem: At what price level to drop out. At each price level,

the advisor advises his bidder about whether to quit the auction now or not. We show that

any equilibrium satisfying the dynamic counterpart of the NITS condition has the following

structure. The advisor recommends to stay in the auction until the price reaches the advisor’s

maximum willingness to pay. In turn, the bidder follows the advisor’s recommendation

until the price reaches a high enough threshold, at which she drops out irrespectively of

what the advisor says then. Thus, the advisors’ types perfectly separate at the bottom of

1The NITS condition says that the payoff to the weakest type (the lowest valuation if advisors’ bias is
for overbidding) cannot be less than what he could achieve by credibly revealing himself. Intuitively, since
message “I am the lowest type” goes extremely against the bias, it should be perceived credible by the bidder.
We impose this condition in each round of the auction.
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the distribution and pool at the top. Moreover, when the value is in the range of perfect

information transmission, the bidder overbids: She exits the auction at a higher price than

she would had she known her value at the start of the game. When the distribution satisfies

a natural restriction, the NITS equilibrium is unique.

The intuition lies in the irreversibility of the running price in the auction: While a bidder

can always bid until a price level higher than the current price, she cannot exit at a price

lower than the current price. Informally, she can improve her offer but cannot renege on past

offers. If the advisor is biased for overbidding, he recommends the bidder to continue bidding

and sends the recommendation to quit only when the price reaches the advisor’s indifference

point, i.e., when the price exceeds the buyer’s value by the amount of the bias. When the

bidder gets such a recommendation, she infers that her valuation is below the running price

and, hence, quits the auction immediately. When the bidder gets the recommendation to

continue bidding, she trades off the value of the advisor’s residual private information against

the cost of possibly overpaying. The solution is to act on the advisor’s recommendation

unless the running price reaches a high enough threshold. Interestingly, this threshold can

be infinite (i.e., there is full separation) if the distribution of values is unbounded and has

fat tails.

We show that the ascending-price auction outperforms static auctions in both efficiency

and expected revenues. The first result shows under rather general conditions the NITS

equilibrium of the ascending-price auction is more efficient than any equilibrium of static

auctions. While in static auctions communication has a partition structure, in the ascending-

price auction advisors fully transmit their information up to a cut-off. This cut-off is higher

than the cut-off in the highest partition in static auctions. Intuitively, in static auctions, the

cut-off type is indifferent between pooling with higher types (and facing the risk of the bidder

paying above the advisor’s maximum willingness to pay) and with types in the second-highest

partition (and facing the risk of losing to a rival also in the second-highest partition). This

indifference implies that the bidder’s best guess of its valuation when she learns that it is in

the highest partition is strictly higher than the maximum willingness to pay of the cut-off

type of the advisor. As a consequence, the advisor with type just above this cut-off could

induce the bidder to wait until his most preferred price level in the ascending-price auction,

implying that the cut-off there is higher.

The second result shows that if, in addition, the distribution is such that the virtual

valuation is increasing, the expected revenues in the ascending-price auction are higher than

in any NITS equilibrium of the second-price auction. This result may seem surprising,
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because the equilibrium exit price in the ascending-price auction can be higher for some or

lower for other types than the equilibrium bid in the second-price auction. To understand

it, think about the seller’s auction design problem as selling to advisors directly, where

communication between advisors and bidders puts restrictions on what the selling mechanism

can be. According to Myerson (1981), the expected revenues equal the expected virtual

valuation of the winning advisor less the expected payoff of the advisors with the lowest

value. Since the ascending-price auction is more efficient, its expected virtual valuation of

the winning advisor is higher. In addition, in the ascending-price auction, the lowest type of

the advisor never wins, so his payoff is zero. At the same time, the NITS condition implies

that his payoff in the second-price auction cannot be negative. Thus, the ascending-price

auction generates higher revenues both because it is more efficient and because it leaves less

rents to the lowest type.

Next, we consider the case in which advisors have a bias for underbidding, that is, given

value v to the bidder, the advisor’s maximum willingness to pay is v + b with b < 0. In this

case, the ascending-price auction loses its advantage over static formats. If the advisor follows

the same strategy of recommending to quit when the running price reaches his maximum

willingness to pay, the bidder has no incentive to follow this recommendation. Staying in

the auction further is always an option, so the bidder would wait until the price reaches v.

One may conjecture that the decreasing-price (Dutch) auction, in which the running

price continuously decreases until one bidder accepts it, dominates static auctions in this

case. We show that the answer is “yes” for efficiency, but “no” for expected revenues. In

this case, the descending-price auction has an equilibrium, which is conceptually similar

to the equilibrium in the ascending-price auction with the overbidding bias: The advisor

recommends to wait past the current price until it reaches his optimal bid in the auction,

while the bidder follows his recommendation up to a certain price cut-off. Thus, there is full

separation of high types and pooling of low types - the mirror image of what happens in

the ascending-price auction with an overbidding bias. For the same reason, the descending-

price auction is more efficient than static formats. However, it often results in lower expected

revenues. The reason is that the separation of advisor’s types in the descending-price auction

comes at the cost of it occurring at lower prices, since advisors reveal their valuations with

delay. Thus, the descending-bid auction often yields lower expected revenues, in contrast to

the ascending-price auction always yielding higher expected revenues when the bias is for

overbidding.

Our paper is related to two strands of the literature: auction design and communication
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of non-verifiable information (cheap talk). Our contribution to the auction theory litera-

ture is to study the design of auctions when bidders are advised by informed experts. A

fundamental result in auction theory is the celebrated revenue equivalence theorem (My-

erson (1981); Riley and Samuelson (1981)), generalized to arbitrary type distributions by

Che and Gale (2006). In our setting, it holds for static mechanisms, but breaks down for

dynamic mechanisms.2 Our paper is related to studies of information acquisition by bidders

and information design by the seller. In particular, Compte and Jehiel (2007) show that

multiple-round auctions bring higher expected revenues than static counterparts because of

more flexible information acquisition.3 While this result is similar to ours when the bias is

for overbidding, it follows from a very different argument, which relies on the asymmetry of

bidders in information endowments and their knowledge of the number of remaining bidders

in the auction. McAdams (2015) shows that multiple-round version of the second-price auc-

tion dominates the sealed-bid format when entry is costly. A unique normative implication of

our model is that the choice between dynamic and static formats is quite different depending

on the direction of the conflict of interest of advisors. Bergemann and Pesendorfer (2007),

Eso and Szentes (2007), Chakraborty and Harbaugh (2010), and Bergemann and Wambach

(2015) study design of information by the auctioneer. Our difference from this literature is

in how bidders get information: from biased experts as opposed to the seller. Burkett (2015)

studies a principal-agent relationship in auctions where the principal optimally constrains

an agent with a budget and shows revenues equivalence of first- and second-price auctions.

Second, our paper is related to the literature on cheap talk, pioneered by Crawford and

Sobel (1982). Because our results rely on the NITS condition, our paper is very related to

Chen et al. (2008), who introduce it.4 Cheap talk models usually have exogenous payoffs and

timing of the game (typically, one round of communication). In contrast, the payoffs and the

game itself are endogenous in our paper. In particular, by converting the mechanism from a

single-round game to a stopping time game for bidders, the seller can make communication

between bidders and advisors more efficient, which sometimes (but not always) leads to higher

expected revenues. Thus, our paper builds on Grenadier et al. (2016) who study a cheap talk

game in the context of an option exercise problem and show that, when the sender is biased

2Existing reasons for the failure of revenue equivalence include affiliation of values (Milgrom and Weber
(1982)), bidder asymmetries (Maskin and Riley (2000)), and budget constraints (Che and Gale (1998, 2006);
Pai and Vohra (2014)), among others.

3Other papers on information acquisition by bidders in auctions include Persico (2000), Bergemann and
Välimäki (2002), Bergemann et al. (2009), Crémer et al. (2009), and Shi (2012).

4It is also related to Kartik (2009) and Chen (2011) who study perturbed versions of the classic cheap
talk game with lying costs and behavioral players, respectively, since both variations can be used to motivate
the NITS condition.
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for delaying exercise, it leads to different equilibria than the static counterpart: separation

up to a cut-off. Our contribution is to endogenize the design of the cheap talk game itself

by having the seller designing the auction to maximize revenues.5 A number of papers study

cheap talk models with less related dynamic aspects of communication.6

Finally, several papers study other effects of cheap talk in auctions. Matthews and Postle-

waite (1989) study pre-play communication in a two-person double auction. Ye (2007) and

Quint and Hendricks (2016) study two-stage auctions, where the actual bidding is preceded

by the indicative stage, which is a form of cheap talk between bidders and the seller. Kim and

Kircher (2015) study how auctioneers with private reservation values compete for potential

bidders by announcing cheap-talk messages. Several papers also study the role of cheap talk

in non-auction trading environments.7

The structure of the paper is as follows. Section 2 introduces the model. Section 3

illustrates our main results in a simple two-bidder uniform example. Section 4 examines

static auctions. Section 5 studies the ascending-bid auction when advisors have a bias for

overbidding. Section 6 analyzes the case of advisors’ bias for underbidding. Section 7

discusses possible extensions and gives a quantitative example. Section 8 concludes and

Appendix gives proofs omitted in the text. Online Appendix contains proofs of the lemma

and results of Section 7.

2 Model

Consider the standard setting with independent private values. There is a single indivisible

asset for sale. Its value to the seller is normalized to zero. There are N potential buyers

(bidders). The valuation of bidder i, vi, is an i.i.d. draw from distribution with c.d.f. F and

p.d.f. f . The distribution F has full support on [v, v] with 0 ≤ v < v ≤ ∞ and satisfies∫ v
v
vdF (v) < ∞. In the analysis, we will frequently refer to the distribution of valuation of

the strongest opponent of a bidder. We denote by v̂ the maximum of N − 1 i.i.d. random

variables distributed according to F and its c.d.f. by G: G(v̂) = F (v̂)N−1. We also use

F (a, b) = F (b)− F (a) to denote that a random variable distributed according to F falls in

the interval [a, b]. Similarly, G (a, b) = G (b)−G (a).

The novelty of our setup is that each bidder i does not know her valuation vi, but consults

5Other differences include the ability to get more efficient communication for any sign of the bias by
designing the game appropriately and the use of a weaker equilibrium selection criterion.

6See Sobel (1985); Morris (2001); Golosov et al. (2014); Ottaviani and Sørensen (2006a,b); Krishna and
Morgan (2004); Aumann and Hart (2003).

7E.g., Levit (2014); Koessler and Skreta (2016); Inderst and Ottaviani (2013).
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advisor i who does. Advisor i knows vi, but has no information about vj, j 6= i except for

their distribution F . While advisor i knows vi, he is biased. Specifically, the payoffs from

the auction are:

Bidder i : Iivi − p, (1)

Advisor i : Ii (vi + b)− p, (2)

where Ii is the indicator variable that bidder i obtains the asset, p is the payment of bidder

i to the seller, and b is the advisor’s bias. Bias b is commonly known.8 Our initial focus is

on the bias of advisors for overbidding, b > 0, as it seems more relevant in applications. In

Section 6, we also consider the case of b < 0, which shares several similarities with the case

of b > 0, but also differs from it in a number of important aspects.

Formulation (1) − (2) captures conflicts of interest described in the introduction. For

example, consider a publicly traded firm bidding for a target. The board of the firm has

formal authority over the bidding process, maximizes firm value, but does not know valuation

vi. Suppose that the CEO of the firm knows vi, but is biased. Specifically, if the CEO owns

fraction α of the stock of the company and gets a private benefit of B from acquiring the

target and managing a larger company, his payoff is α(vi − p) + B. Normalizing this payoff

by α and denoting b = B
α

, we obtain (1)− (2).

In this paper, we compare how different selling mechanisms affect expected revenues and

efficiency. We use the following definitions of standard auction formats:

1. Second-price auction. Bidders simultaneously submit sealed bids, and the bidder

with the highest bid wins the auction and pays the second-highest bid.

2. First-price auction. Bidders simultaneously submit sealed bids, and the bidder with

the highest bid wins the auction and pays her bid.

3. Ascending-price (English) auction. The seller continuously increases price p,

which we refer to as the running price, starting from zero. Each bidder only ob-

serves the running price and the fact that the auction has not ended yet, and decides

whether to continue participating or to quit the auction. Once a bidder quits, she

cannot re-enter the auction. Once only one bidder remains, she wins and pays the

running price.

8For many of our results it is sufficient to assume that b is commonly known by bidders and advisors,
while the seller knows only the sign of the bias.
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4. Descending-price (Dutch) auction. The seller continuously decreases price p,

which we refer to as the running price, starting from a high enough level. Each bidder

only observes the running price and the fact that the auction has not ended yet, and

decides whether to stop the auction. The first bidder who stops the auction wins and

pays the price at which she stopped the auction.

In all of these auction formats, if a tie occurs, the winner is drawn randomly from the set

of tied bidders. We study a rich class of static auctions described in Section 4, but restrict

attention to the ascending-price and descending-price auctions among dynamic mechanisms.

Communication between bidders and their advisors is modeled as a game of cheap talk.

If the auction format is static (i.e., it consists of a single round of bidding), the timing of

the game is as follows:

1. Advisor i sends a private message m̃i ∈M to bidder i where M is some infinite set of

messages.

2. Having observed message m̃i, bidder i chooses what bid βi ∈ R+ to submit.

3. Given all submitted bids β1, ..., βN , the asset is allocated and payments are made

according to the rule of the auction.

We consider Perfect Bayesian Equilibria (PBE) of static auctions. Since all bidders are

symmetric, we focus on symmetric PBEs in which all advisors play the same communication

strategy m : [v, v]→M and all bidders play the same bidding strategy, which maps messages

in M to distribution over bids.9

There is a multiplicity of equilibria in cheap talk games. To select among them, we impose

the “no incentive to separate” (NITS) condition, adapted from Chen et al. (2008). When

b > 0, call type vw ≡ v the weakest type of advisor.10 According to the NITS condition, the

equilibrium payoff to the weakest type of the advisor cannot be below his payoff if he credibly

revealed himself (and had the bidder best-respond to that information). Intuitively, when

an advisor is biased for overbidding, every type of the advisor wants to convince the bidder

to bid more than the bidder would bid if she knew her value. Thus, it is natural to assume

that the recommendation to bid the lowest possible amount would be perceived as credible

by the bidder. Chen et al. (2008) show that NITS can be justified by perturbations of the

9We use m to denote communication strategies and m̃ for messages in M .
10Similarly, when b < 0, vw ≡ v is the weakest type of advisor.
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cheap-talk game with non-strategic players or costs of lying.11 We refer to an equilibrium as

babbling if regardless of the message received, each bidder plays the same strategy.

If the auction format is dynamic (i.e., it consists of multiple rounds of bidding), the

advisor sends a message to the bidder before each round of bidding. In ascending-price and

descending-price auctions, we index rounds by corresponding running prices p. We assume

that bidders and advisors only observe the running price p, but not the actions of other

bidders. In the ascending-price or descending price auctions the history of the bidder i

includes the current running price p and messages sent by advisor i up to round p.

A strategy of advisor i is a measurable mapping from the advisor’s private information

about the valuation v and a history into a message sent to bidder i after that history. A

strategy of bidder i is a measurable mapping from a history and a current message into the

action chosen by the bidder. A bidder’s posterior belief process is a measurable mapping

from a history into the distribution over [v, v].

We will restrict attention to symmetric Perfect Bayesian equilibria in pure Markov strate-

gies (PBEM) where the state consists of the auction round p and a bidder’s posterior belief

about her valuation v. Communication strategy m(v, p, µ) gives the message sent in round

p when bidder’s posterior is µ and the advisor’s type is v. Bidding strategy a(p, µ̃) gives the

bidder’s decision in round p to quit/stop the auction (aM = 1) or continue (aM = 0), when

her beliefs are µ̃ (µ̃ is an updated version of µ after observing the advisor’s last message).

From now on, we refer to the equilibria we restrict attention to as simply equilibria.

For dynamic auctions, we require that the NITS condition holds in every round of the

game. Specifically, let12

vw(h) = inf{v|v ∈ supp(µ(h))}. (3)

be the weakest remaining (according to the bidder’s beliefs) type of the advisor after history

h. Similarly to Chen et al. (2008), an equilibrium violates the dynamic version of NITS

condition if after some history h, the advisor of type vw(h) is better off claiming that he is

the weakest remaining type than playing his equilibrium strategy. To capture this condition,

we require that any unexpected message is interpreted as a signal of the weakest type (then

the advisor’s sequential rationality implies that after any history, the equilibrium strategy is

11Notice that one way of imposing the NITS condition is to specify that there exists an off-equilibrium-
path message, such that the bidder believes that it comes from the weakest type of advisor vw. Since the
preferences of players satisfy the single crossing condition, it is not restrictive that not only the weakest but
any type of the advisor has the option to signal that the value is vw.

12For b < 0, vw(h) = sup{v|v ∈ supp(µ(h))}.
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weakly preferred to signaling that you are the weakest type). Formally, the dynamic version

of NITS that we impose is stated as follows:

Definition 1. An equilibrium (m, a, µ) satisfies the NITS condition if the following holds.

Consider any p-round history h in which the advisor deviates in round p′ for the first time

and sends m̃ /∈
⋃

v∈supp(µ(h′))

m(v, p′, µ(h′)) where h′ is a truncation at round p′ of history h.

Then µ(h) assigns probability one to vw(h′).13

Several observations are in order. First, Definition 1 states that after the first unexpected

message, the bidder assigns probability one to the weakest type in the round when the

deviation happened and never updates her belief after that. Second, in dynamic auctions

the weakest type can (and will) change as the auction progresses. Third, the condition in

Definition 1 requires that any unsent message is perceived as a signal of the weakest type

which is slightly stronger than assuming that the lowest type of advisor does not want to

reveal itself in equilibrium.14

3 An Example: Uniform Distribution

We start the analysis by working out a simple example that illustrates the results of the paper:

How dynamic auctions differ from static auctions and why the direction of the conflict of

interest between bidders and advisors is important for the design of the sale process. In this

example, there are two bidders (N = 2), each valuation is an i.i.d. draw from the uniform

distribution over [0, 10], and the advisors’ bias is b = 1 (when the bias is for overbidding) or

b = −1 (when the bias is for underbidding).

Overbidding bias (b = 1). First, consider the second-price auction. Because of the bias,

the advisor cannot credibly communicate the valuation to the bidder, and the equilibrium

must have a partition structure. Consider the conditions that characterize an equilibrium

with K partitions, [ω0, ω1], ..., [ωK−1, ωK ], with ω0 = 0 and ωK = 10. Given the advisor’s

13We implicitly assume that the set of messages is rich enough so that there is always an “unused” message
in any equilibrium.

14There are known technical difficulties in defining games in continuous time (see Simon and Stinchcombe
(1989)). However, this problem of the outcome indeterminancy in continuous time does not arise in ascending-
and descending-bid auctions in our model, because only the advisor can affect the evolution of posterior beliefs
on which both sides condition their strategies. If the advisor deviates to an off-equilibrium message, the
bidder assigns probability one to the weakest type in the round of the deviation, so future messages of the
advisor become irrelevant. If the advisor deviates to a message sent by a different type, then such a deviation
is not detected.
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ωk−1 ωkmk mk+1 ωk+1

Bid mk Win Tie Lose

Bid mk+1 Win Win Tie

Lose

Lose

Figure 1: Thresholds in the partition equilibrium of the second-price auctions.

message that conveys that the valuation is in the kth partition, the best response of the bidder

is to bid the updated expected valuation, mk = (ωk−1 + ωk) /2. This bid is the winning bid

with probability one, if the valuation of the rival bidder is below ωk−1, with probability 50%,

if it is between ωk−1 and ωk, and with probability zero, if it is above ωk (see Figure 1). By

inducing the bidder to bid (ωk + ωk+1) /2 instead of (ωk−1 + ωk) /2, the advisor increases the

probability of winning against types [ωk−1, ωk] from 50% to one and against types [ωk, ωk+1]

from zero to 50%. Hence, for the cut-off type of the advisor ωk, the additional payoff from a

higher probability of winning against types [ωk−1, ωk] must equal the cost from overpaying

when the bidder wins against types [ωk, ωk+1] :

ωk − ωk−1

10

(
ωk + b− ωk−1 + ωk

2

)
=
ωk+1 − ωk

10

(
ωk + ωk+1

2
− ωk − b

)
, k = 1, ..., N − 1.

This indifference condition simplifies to

ωk+1 = 2ωk − ωk−1 + 2b, k = 1, ..., N − 1.

When b = 1, the most informative equilibrium has three partitions,
[
0, 11

3

]
,
[
11

3
, 42

3

]
, and[

42
3
, 10
]
. The corresponding bids are 2

3
, 3, and 71

3
(see Figure 2a). Since the lowest bid is

below b = 1, this equilibrium satisfies the NITS condition: The weakest type of the advisor

(v = 0) is better off inducing bid 2
3

than communicating that v = 0. There exist two other

equilibria: one with two partitions ([0, 4] and [4, 10]) and the babbling equilibrium. Since the

lowest bid (2 in the former case; 5 in the latter) exceeds b = 1, these equilibria violate the

NITS condition. Indeed, the weakest type of the advisor (v = 0) is better off communicating

that v = 0 and ensuring the payoff of zero.

Next, consider the ascending-price auction. Now a bidder faces a stopping time problem:

At each price p, she decides whether to quit the auction or stay for a little longer. When

b = 1, there exists the following equilibrium. Suppose that an advisor with type v plays the
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Figure 2: Equilibrium bids in static and dynamic auctions. Horizontal axis depicts valuation v. The
red region in panel (b) depicts the support of the bidder’s mixed bidding strategy in the first-price
auction.

threshold strategy of recommending to stay in the auction, if p < v + 1, and to quit once

p hits v + 1 (see Figure 2a). Given this, what is the optimal strategy of the bidder? If she

gets the recommendation to quit when the running price is p ∈ [1, 11], she infers that her

valuation is v = p− 1. Since p exceeds this valuation, the bidder finds it optimal to quit the

auction immediately. If she has received recommendations to continue bidding, she trades

off the value of waiting for more information against the possibility of overpaying for the

asset. As the running price p increases, the support of bidder’s beliefs, [p − 1, 10], shrinks.

Therefore, the best response of the bidder is to stay in the auction, as long as p ≤ p̂, given

by

0 = E [v|v ≥ p̂− 1]− p̂,

which implies p̂ = 9. Intuitively, p̂ = 9 is exactly the price at which the bidder is indifferent

between winning the auction and getting the valuation of 9 on average (when the auction

reaches this price, the bidder’s posterior is that v ∈ [8, 10]) and quitting it.

This is the only equilibrium satisfying the NITS condition. To see this, consider why the

equilibrium analogous to the equilibrium with three partitions in the second-price auction

violates the NITS condition in the ascending-price auction. In this equilibrium, after the

price passes p = 2
3
, the lowest remaining type is v = 11

3
. In this equilibrium, no bidder

drops out after p = 2
3

until p reaches 3. This implies that the advisor with type v = 11
3

gets a negative expected payoff, since he wins with probability 50% at price p = 3, if the
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rival bidder’s type is in
[
11

3
, 42

3

]
. Therefore, the lowest type of the advisor v = 11

3
is better

off communicating that he is the lowest type at p < 3, since it would lead to the bidder

quitting immediately. Hence, the equilibrium with three partitions does not satisfy the

NITS condition. By the same logic, any equilibrium that satisfies the NITS condition has

the property of separation up to a cut-off. The equilibrium with cut-off p̂ = 9 is the unique

such equilibrium in this example.

As this argument shows and Figure 2a illustrates, the ascending-price and second-price

auctions result in very different equilibrium outcomes. What does this imply for the com-

parison of revenues and efficiency? Clearly, the ascending-price auction is more efficient:

Not only there is a separation of types up to v = 8, but the pooling interval [8, 10] is

contained in the pooling interval in the top partition in the second-price auction
[
42

3
, 10
]
.

Indeed, the expected valuation of the winning bidder is 649
75

in the ascending-price auction

and 6 47
135

in the second-price auction. Not only the ascending-price auction is more efficient,

but it also generates higher expected revenues than the second-price auction: 423
75

versus

3 88
135

. The comparison of revenues is not obvious at first glance, since one distribution of bids

does not dominate the other (see Figure 2a). Nevertheless, higher expected revenues in the

ascending-price auction is a general result.

Underbidding bias (b = −1). In this case, the most informative equilibrium in the

second-price auction has partitions
[
0, 51

3

]
,
[
51

3
, 82

3

]
, and

[
82

3
, 10
]
. This is the unique equi-

librium satisfying the NITS condition.15

Unlike with b = 1, the ascending-price auction does not have the equilibrium in which

advisors separate themselves up to a cut-of. To see this, suppose that an advisor with type

v plays the threshold strategy of recommending to stay in the auction, if p < v − 1, and to

quit, otherwise. If the bidder gets the recommendation to quit at price p̃ ∈ (0, 9], she infers

that her valuation is p̃ + 1. Her best response is thus to stay in the auction until the price

hits p̃ + 1. Expecting that the bidder will not follow his advice, the advisor is better off

deviating from his strategy. The asymmetry between cases b = 1 and b = −1 arises because

the running price moves only in one direction.

However, the descending-price (Dutch) auction with b = −1 has similarities to the

ascending-price auction with b = 1. In the descending-price auction, at each price p, the

15The equilibrium with two partitions ([0, 6] and [6, 10]) violates the NITS condition, because the weakest
type (now type v = 10) is better off credibly revealing himself. This is because the advisor with type v = 10
prefers to win when she faces a rival that bids 8. For the same reason, the babbling equilibrium violates
NITS.
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bidder chooses whether to accept it and buy the asset or to wait until a marginally lower

price and risk losing the auction. Let us construct an equilibrium, which is similar to the

equilibrium in the ascending-price auction for the case of b = 1. Suppose that the bidder

does not stop the auction, unless the advisor recommends to do it or unless the price de-

creases to threshold p. Given this, the optimal price at which the advisor with type v sends

a recommendation to stop, σ(v), satisfies:

σ(v) = arg max
p≥p

(v − 1− p)σ−1 (p) , (4)

which represents the familiar trade-off between a lower payment and a lower probability of

winning. Let v∗ denote the lowest type that recommends to stop the auction before p. Pick

v∗ and p so that the bidder is indifferent between winning and losing when the price hits p,

given her belief at that point:

E [v|v ≤ v∗] = p = v∗ − 1. (5)

Combining with (4), we obtain v∗ = 2, p = 1, and σ (v) = v2−2v+4
2v

(see Figure 2b). If a

bidder receives a recommendation to stop the auction at price p̃ ∈ (1, 4.2), she infers that

the valuation is σ−1 (p̃). Since p̃ is already below the bidder’s optimal stopping point, she

finds it optimal to stop the auction immediately.16 If a bidder has received recommendations

to continue staying in the auction, she trades off the value of waiting for more information

against the possibility of losing the auction. As the running price p goes down, the bidder’s

posterior belief about the valuation, [0, σ−1 (p)] shrinks, and her best response is to wait for

the recommendation of the advisor until p gets too low, which happens to be p = 1 in this

example.

As in the bias for overbidding, the dynamic aspect of communication is crucial for the

better information transmission. In particular, we show that the first-price auction, which

without the conflict of interest is strategically equivalent to the Dutch auction, is equivalent

in terms of information transmission and revenue to the second-price auction. More precisely,

in the first price auction the advisor communicates the partition
[
0, 51

3

]
,
[
51

3
, 82

3

]
,
[
82

3
, 10
]
,

and the bidder plays a mixed bidding strategy (see Figure 2b).

Can we conclude that the descending-price auction is more efficient and generates higher

revenues than static auctions when b = −1, like we did with the ascending-price auction

16The fact that the advisor’s optimal stopping price is below the bidder’s optimal price follows from the
single-crossing property of payoff function (4).
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when b = 1? The answer to the first question is a “yes”, but to the second one is a “no.”

The descending-bid auction is indeed more efficient than static auctions: Not only there is

a separation of types in [2, 10], but the pooling interval [0, 2] is smaller than the pooling

interval in the bottom partition in the first-price auction,
[
0, 51

3

]
. Indeed, the expected

valuation of the winning bidder is 7 2
25

in the descending-price auction and 6 47
135

in the first-

and second-price auctions. However, the descending-price auction generates lower revenues

than the first-price auction: approximately 2.7 versus 3 88
135

. Thus, the first-price auction

dominates if the goal of the designer is expected revenues, but the descending-price auction

dominates if the goal is efficiency.

The opposite implications for expected revenues occur for the following reason. If advisors

are biased for overbidding, the seller’s goal of higher revenues is aligned with the bias of

advisors. In contrast, if advisors are biased for underbidding, the bias goes in the opposite

direction from the seller’s goal of higher revenues.

4 Static Auctions

This section shows that the revenue equivalence theorem extends to the setting when the

interests of bidders and advisors are not aligned (b 6= 0), if the auction is static. For a rich

class of static auctions, we characterize equilibrium communication and show that there is

necessarily an efficiency loss due to imperfect communication.

4.1 Revenue Equivalence

After a bidder gets message m̃ from her advisor, she updates her belief about her value and

decides on the bid. By risk-neutrality, the bidder cares only about her posterior expected

value, which we refer to as her type θ ≡ E[v|m̃] ∈ [v, v]. Let Fθ denote the distribution of a

bidder’s types, induced by equilibrium at the communication stage (by symmetry, Fθ is the

same for all bidders).

We start by defining a class of standard auctions for which the revenue equivalence

theorem holds for arbitrary distributions of values (Che and Gale (2006)):

Definition 2. [Che and Gale, 2006] Call a static auction a standard auction with continuous

payments if it satisfies the following conditions:

1. the highest bid wins and ties are broken randomly;
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2. payment depends only on the bidder’s own and the highest competing bids, i.e., bidder

i pays τw(βi, βm(i)), if she wins, and τl(βi, βm(i)), if she loses, where βm(i) = maxj 6=i βj;

3. τw(0, 0) = τl(0, ·) = 0 and τk(·, βm(i)) is continuous for k = w, l, in the relevant domain.

This is a large class of auctions that includes many well-known formats, such as first-

price, second-price, and all-pay auctions. The next theorem establishes revenue equivalence

for auctions in this class in our model.

Theorem 1. Suppose that b 6= 0 and there is a single round of communication. For any

equilibrium in a standard auction with continuous payments there exists an equilibrium of the

second-price auction that generates the same allocation, expected revenues, and distribution

of bidders’ expected values, Fθ, after the communication stage.

Our main question is whether the choice of the auction format affects information trans-

mission and through it expected revenues and efficiency. Theorem 1 tells us that it does not if

one restricts attention to static auctions. For example, one does not get a better information

transmission or higher revenues by switching between first- and second-price auctions.

The proof of Theorem 1 is based on two observations. First, Che and Gale (2006) establish

a payoff equivalence for arbitrary distributions of bidders’ values: for a fixed distribution of

values Fθ, for any bidder’s type θ, the expected probability of winning and expected payments

are the same across standard auctions with continuous payments. Second, the advisor’s

decision what message to send depends only on how information conveyed through messages

affects the probability of winning and expected payment. Since they are the same, the

advisor’s problem of choosing what message to send is also the same. Thus, if communication

strategy m is an equilibrium in some standard auction with continuous payments, it is also

an equilibrium in the second-price auction.

4.2 Characterization

Because of payoff equivalence established in Theorem 1, it is sufficient to study the second-

price auction, which has a simple bidding equilibrium: each bidder bids her updated expected

valuation of the asset. Given this, it is convenient to refer to messages as bid recommen-

dations and denote equilibrium messages by conditional expected values E [v|m̃]. The next

theorem characterizes the set of symmetric equilibria of the communication game:

Theorem 2. Suppose that v < ∞ and b 6= 0. In any equilibrium, communication takes a

partition form, in which types v ∈ [ωk−1, ωk) send the same message and induce the same
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bid mk = E[v|v ∈ [ωk−1, ωk)]. In an equilibrium with K partitions, thresholds (ωk)
K
k=0 satisfy

ω0 = v, ωK = v, and

G(ωk−1, ωk)(1− Λk)(ωk + b−mk) = −G(ωk, ωk+1)Λk+1(ωk + b−mk+1). (6)

where

Λk =
1

G(ωk−1, ωk)

(
N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)N−1−n

n+ 1

)
(7)

is the probability of winning conditional on a tie at bid mk.

Theorem 2 implies that in static auctions the conflict of interest results in coarse informa-

tion transmission from the advisor to his bidder. Hence, ties arise with positive probability,

and the asset is sometimes allocated inefficiently. Theorem 2 is a counter-part of Theorem

1 in Crawford and Sobel (1982) and relies on the same argument, but does not follow from

it directly. The difference is that the payoffs in the communication game are endogenous:

the action of a receiver is a bid, and its attractiveness depends on information transmission

in other sender-receiver pairs. Eq. (6) is the condition that advisor with valuation ωk is

indifferent between sending messages that induce bids mk and mk+1. The left-hand side of

(6) is the advisor’s benefit from having the bidder bid mk+1 instead of mk: it increases the

probability of winning a tie from Λk to 1. The right-hand side of (6) is the cost of a higher

bid: the bidder pays above the advisor’s maximum willingness to pay, if the strongest rival

also bids mk+1.

Chen et al. (2008) show that in the standard cheap talk game, there always exist equilibria

satisfying the NITS condition, and it selects equilibria that are sufficiently informative. This

result also holds in our model:

Proposition 1. Suppose b 6= 0. The equilibrium with the highest number of partitions

satisfies the NITS condition.

5 Ascending-Price Auction

This section solves for equilibria of the ascending-price auction when the bias is for overbid-

ding (b > 0) and shows that it dominates static auctions from Section 4 in efficiency and

expected revenues.
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It turns out that it is sufficient to look for equilibria in which the advisor gives a real-time

recommendation of the action (“quit” or “stay”) to the bidder, both advisors’ and bidders’

strategies are of the threshold form, and bidders follow the recommendations of their advisors

on equilibrium path. We refer to these equilibria as equilibria in online threshold strategies.

Definition 3. An equilibrium in an ascending-price auction is in online threshold strategies

if the strategies of each advisor and bidder satisfy:

m (v, p, µ) =

1, if p ≥ p̂ (v, µ) ,

0, if p < p̂ (v, µ) ,
(8)

a (p, µ̃) =

1, if p ≥ p̄ (µ̃) ,

0, if p < p̄ (µ̃) ,
(9)

for some p̂ (·) and p̄ (·), where µ̃ denotes the posterior belief of the bidder at price p, having

observed her advisor’s message in this round. Functions p̂ (·) and p̄ (·) are such that on

equilibrium path the bidder exits the auction the first time her advisor sends message m̃ = 1.

Intuitively, at any price p, the advisor sends a binary message to his bidder recommending

to quit the auction immediately or stay in it, and on equilibrium path, the bidder follows

the advisor’s recommendation. The next lemma shows that the restriction to equilibria in

online threshold strategies is without loss of generality:

Lemma 1. For any equilibrium there is also an equilibrium in online threshold strategies that

results in the same bidding behavior on equilibrium path. For any equilibrium that satisfies

NITS there is an equilibrium in online threshold strategies that satisfies NITS and results in

the same bidding behavior on equilibrium path.

The first statement is that any equilibrium with a general communication strategy has

an equivalent in online threshold strategies. The proof is the manifestation of the sure-

thing principle (Savage (1972)), stating that if an action is optimal for a decision-maker in

every state, then it must be optimal if she does not know the state. Intuitively, since the

advisor’s information is only relevant for determining the price level at which the bidder

quits the auction, any equilibrium quitting strategy can be achieved by the advisor delaying

communication as much as possible, which occurs when she sends a recommendation to quit

immediately when the price hits the level at which the bidder is supposed to quit. The second

statement implies that the NITS condition is not stronger for equilibria in online threshold
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strategies than in general: If an equilibrium with a general communication strategy satisfies

NITS, then an equivalent in online threshold strategies also satisfies NITS.

5.1 Characterization

This subsection shows that when the bias is for overbidding (b > 0), all equilibria of the

ascending-bid auction satisfying NITS are in capped delegation strategies, defined as:

Definition 4. Online threshold strategies in the ascending-bid auction are capped delegation

strategies if for some v∗:

• p̂ (v, µ) = min {v, v∗} + b, i.e., the advisor of type v ≤ v∗ starts recommending to quit

the auction when the running price reaches his most preferred exit price;

• the bidder quits the auction if either the running price increases to v∗+b or she receives

message m̃ = 1 from the advisor, whichever happens earlier.

When players follow capped delegation strategies, advisor’s types below v∗ fully separate

over the course of the auction, while types above v∗ pool, since the bidder stops following

recommendations when the running price reaches v∗ + b. If the advisor were submitting the

bids himself, he would stay until price v + b. Thus, even though the bidder makes bidding

decisions herself, she essentially delegates it to the advisor with the restriction that he cannot

stay in the auction beyond price v∗ + b (“cap”). The next theorem shows that all equilibria

in the ascending-bid auction satisfying NITS are in capped delegation strategies.

Theorem 3. Suppose that b > 0. Then, any equilibrium in the ascending-bid auction that

satisfies the NITS condition is in capped delegation strategies with cutoff v∗ satisfying:

if v∗ ∈ (v, v), then b = E[v|v ≥ v∗]− v∗;

if v∗ = v, then b ≥ E[v|v ≥ v∗]− v∗;

if v∗ = v, then v =∞ and b ≤ lim
s→∞

E[v|v ≥ s]− s.

(10)

As we see from Theorems 2 and 3, equilibria in the ascending-bid and second-price

auctions are different. The difference arises because of communication during the coarse of

the auction. When the advisor recommends the bidder to quit the auction at the current

price p, the bidder learns that her valuation is p − b < p and exits immediately. As she

gets recommendations to stay in the auction, she updates her belief that her valuation is not

too low. Her decision whether to continue bidding trades off the benefit of waiting for more
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information against the cost of possibly overpaying. When the current running price is below

v∗ + b, the former factor dominates, so the bidder follows the advisor’s recommendation to

stay in the auction. However, when the price reaches a high enough level, v∗ + b, the bidder

learns that the valuation is in a narrow enough partition [v∗, v̄], so that it becomes optimal

to quit the auction regardless of what the advisor recommends.17 These equilibria are not

possible in static auctions because of the commitment problem: The bidder would not follow

the advisor’s recommendation. The ascending-bid auction makes them possible by giving the

advisor an opportunity to delay the recommendation to quit to the point when the bidder

bids above her (unknown) valuation.

The ascending-bid auction also has equilibria that are not in capped delegation strategies.

In particular, it has equilibria that are counterparts to equilibria of the second-price auction

from Theorem 2. To construct them, we can specify that types in [ωk−1, ωk), which send

message mk in the second-price auction, recommend that the bidder stays in the English

auction until price mk and quit after that. Theorem 3 implies that the NITS condition rules

out these equilibria. Intuitively, at the start of the auction, the threshold type ωk of the

advisor is indifferent between the bidder exiting at prices mk and mk+1: mk+1 implies certain

winning against types in [ωk−1, ωk) but entails the risk of winning at a higher price mk+1

and paying above ωk + b then. However, as the running price exceeds mk, the bidder learns

that the strongest rival bidder would bid at least mk+1 > ωk + b. At this stage he is better

off inducing the bidder to quit immediately, which violates the NITS condition.

For a large class of distributions, the equilibrium satisfying the NITS condition is unique.

To see when this is the case, consider the option value to the bidder of following the advisor’s

recommendation up to price v∗ + b. Consider a bidder in round p ∈ (v + b, v∗ + b) who has

not received a recommendation to quit yet. From the fact that the auction reached this

stage, the bidder infers that her valuation is in [p− b, v̄], and that there is at least one

rival whose valuation is also in [p− b, v̄]. Denoting the bidder’s posterior probability that n

rival bidders have valuations in [p− b, v̄] by qn (p) and the c.d.f. of the maximum of n i.i.d.

random variables distributed according to F by Gn(·), the bidder’s option value of following

the advisor’s recommendation up to price v∗ + b can be written as

V (p) =

∫ v∗

p−b

1− F (s)

1− F (p− b)
(E[v|v ≥ s]− s− b)

(
N−1∑
n=1

qn (p) dGn (s|s ≥ p− b)

)
. (11)

17Clearly, the communication strategy is optimal for the advisor: It implements the advisor’s unconstrained
optimal bidding strategy of bidding up to v + b, if his type is low enough, and it is impossible to induce the
bidder into bidding above v∗ + b.
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Intuitively, if the bidder wins when the strongest rival’s valuation is s < v∗, she pays s + b

and gets, on average, E[v|v ≥ s]. The probability of this event is the probability that the

strongest rival’s valuation is s times the probability that the bidder’s valuation is above s,

corresponding to the last and the first terms, respectively.18 From (11), we can see why v∗

must satisfy E [v|v ≥ v∗] = v∗ + b when v∗ ∈ (v, v̄). If E [v|v ≥ v∗] < v∗ + b, then the bidder

would prefer to exit the auction before price v∗ + b, as the option value of waiting would

be negative at a price just below v∗ + b. Similarly, if E [v|v ≥ v∗] > v∗ + b, then the bidder

would get a positive payoff when she wins a tie at price v∗+ b. Therefore, the bidder, whose

advisor has not recommended to exit before price v∗+ b, would prefer to wait a little beyond

price v∗ + b, since this would lead to a jump in the probability of winning to one.

To characterize v∗, we introduce the mean residual lifetime function MRL(s) = E[v|v ≥
s]−s, a well-studied function in industrial engineering and economics (Bagnoli and Bergstrom

(2005)). It turns out that when either of the following conditions holds, the equilibrium is

unique:

Assumption A. MRL (s) is strictly decreasing in s.

Assumption B. MRL (s) > b for any s ∈ [v,∞).19

Decreasing MRL (s) is a natural property. In industrial engineering, where MRL (s)

captures the expected time before a machine of age s breaks down, decreasing MRL (s)

means that the machine gets less durable as it ages. In our context, it means that winning

at a higher price is worse news for the bidder than winning at a lower price. It holds for

many distributions, such as Uniform, Normal, Logistic, Extreme Value, and many others.

The next proposition shows that if the MRL is decreasing on a finite support or on an infinite

support with a low enough limit, then the equilibrium is unique, and the pooling region is

non-empty. This generalizes the example of Section 3 to a large class of distributions.

Proposition 2. Suppose that b > 0, Assumption A holds, and either v̄ <∞ or v̄ =∞ and

limv→∞MRL (v) < b. Then, the unique equilibrium cut-off v∗ satisfies v∗ < v̄. Moreover,

the equilibrium is babbling if and only if MRL (v) ≤ b.

Strict monotonicity of MRL implies that equationMRL (v∗) = b has at most one solution.

Furthermore, a strictly decreasing MRL (·) implies single-crossing: If cut-off type v∗ satisfies

MRL (v∗) = b, then the bidder’s value of the option to wait for advisor’s recommendation is

strictly positive at any price prior to reaching this cut-off (p < v∗+ b). This implies a unique

18Eq. (11) could also include the term, corresponding to the case of winning at a tie at price v∗+ b. Since
it equals zero by Theorem 3, we omit it.

19This condition can only hold if the support is infinite, v̄ =∞.
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equilibrium with non-empty separating and pooling intervals, if the bias is low. In contrast,

if the bias is high, then the bidder’s option value of waiting for the advisor’s recommendation

is never positive, so babbling occurs in this case.

The next proposition shows that if the distribution satisfies Assumption B, then the

equilibrium satisfying NITS is also unique, but it features full separation:

Proposition 3. Suppose that b > 0 and Assumption B holds. Then, the unique equilibrium

cut-off v∗ satisfies v∗ =∞. That is, the bidder always waits for the advisor’s recommendation

to quit the auction, which type v sends at price v + b.

In this case, although the bidder has authority, she effectively fully delegates bidding to

the advisor. Intuitively, Assumption B implies that no matter what the current price is, the

bidder is always optimistic in the sense of holding a posterior that her expected valuation

exceeds the current price. For example, if valuations are distributed according to Exponential

distribution with parameter λ and b < 1
λ
, the unique equilibrium satisfying NITS will feature

the bidder always following the advisor’s recommendation.20

It is worth noting that the equilibrium in the English auction can be informative (and

even stronger, fully separating) even if only babbling equilibrium exists in the second-price

auction. As an example, consider N = 2 and Pareto distribution of valuations, F (v) =

1−
(

1
v

)2
on v ∈ [1,∞). If b ∈

(
1, 4

3

)
, only the babbling equilibrium exists in the second-price

auction, but the English auction has a fully separating equilibrium. Since MRL (v) < b

for low valuations v, winning is bad news for the bidder at the beginning of the auction.

However, as the auction continues, the bidder eventually starts getting positive expected

payoff from winning. Since the latter is incorporated in the bidder’s option value of following

the advisor’s recommendation, waiting becomes optimal early in the auction too.

5.2 Auction Comparison

We next compare the ascending-bid and static formats in their efficiency and revenues. We

will say that an equilibrium in one auction format is (strictly) more efficient than an equilib-

rium in another auction if the former results in a (strictly) higher expected valuation of the

winning bidder. As the next theorem shows, the ascending-bid auction is more efficient than

the second-price auction (and by Theorem 1, any standard static auction with continuous

payments):

20Exponential distribution has a constant MRL (s) = 1
λ - the famous memoryless property.
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Theorem 4. Suppose that b > 0, and either Assumption A or B holds. Then the pooling

region (if it is not empty) in the unique equilibrium satisfying NITS in the ascending-bid

auction is contained in the top partition in any equilibrium of the second-price auction:

v∗ ≥ ωK−1, with a strict inequality if v∗ > v, i.e., if there is no babbling in the ascending-bid

auction. Therefore, the ascending-bid auction is more efficient.

The source of inefficiency in auctions is the ties. Higher efficiency of the ascending-bid

auction stems from superior information transmission. This result is clear when the equilib-

rium features full separation, since ascending-bid auction is efficient in this case. However, it

is more nuanced when the ascending-bid auction is inefficient. It can be seen from the indif-

ference condition (6) that determines partitions in the second-price auction. For advisor with

type ωK−1 to be indifferent, the highest bid must exceed the maximum willingness to pay of

the advisor with type ωK−1: E [v|v ≥ ωK−1] > ωK−1 + b, or, equivalently, MRL (ωK−1) > b.

Hence, the bidder’s option value of waiting is positive at price ωK−1 + b. Consequently,

types just above ωK−1 would recommend the bidder to stay in the ascending-bid auction

at this price, and the bidder would follow the recommendation, implying a smaller pool-

ing region and higher efficiency. An interesting feature of the ascending-bid auction is that

communication in it does not depend on how many bidders there are. This is not the case

in static auctions, since the number of bidders enters recursion (6) in a complicated way.

While partitions in static auctions are affected by N , they never become finer than in the

ascending-bid auction.

We next turn to the comparison of expected revenues. Let ϕ(v) ≡ v+b− 1−F (v)
f(v)

denote the

virtual valuation of advisor with type v. The next theorem shows that if the virtual valuation

is strictly increasing, the ascending-bid auction generates higher expected revenues than the

second-price auction:

Theorem 5. Suppose that b > 0, ϕ (·) is strictly increasing, and either Assumption A or

B holds. Then the unique equilibrium satisfying NITS in the ascending-price auction brings

higher expected revenues than any equilibrium satisfying NITS in the second-price auction. It

brings strictly higher expected revenues if v∗ > v, i.e., if there is no babbling in the ascending-

bid auction.

The result of Theorem 2 may seem surprising: It is a priori not clear if the ascending-bid

auction should bring higher expected revenue. In the example in Section 3, the bids in the

second-price and the ascending-bid auction are not clearly ordered. Moreover, Bergemann

and Pesendorfer (2007) study the seller’s problem of joint mechanism design (how to sell)
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and static information design (how much information about her valuation to disclose to the

bidder) and show that the optimal information structure is represented by partitions. One

crucial difference of our model is that a switch from the second-price auction to the ascending

auction results not only in higher efficiency but also in biased bidding: The bidder with any

valuation v < v∗ stays in the auction even after the price passes its maximum willingness to

pay v, because she does not know it yet.21

The key idea of Theorem 5 is to view the seller’s problem as the problem of selling directly

to informed advisors, where communication between advisors and bidders puts a restriction

on the set of mechanisms that can be implementable. By the envelope formula in Myerson

(1981), we can write the seller’s expected revenues as the expected virtual valuation of the

winning advisor less the payoff of the lowest type:

E

[
N∑
i=1

ϕ (vi) pi (v)

]
−NUA (v) , (12)

where pi (v) is the probability that bidder i wins the auction if the types are v = (v1, . . . , vN)

and UA(v) is the expected payoff of type v of the advisor. In (12), the auction format

determines pi (·) and UA (v). Higher efficiency of the ascending-price auction together with

increasing virtual valuation implies the first term in (12) is higher in the ascending-price

auction than in the second-price auction. The NITS condition guarantees that the expected

payoff of the lowest type is non-negative in the second-price auction, while it is zero in the

ascending-bid auction. Together, these two effects imply that the ascending-bid auction

generates higher expected revenues.

While the seller’s problem of maximizing over all possible mechanisms goes beyond the

scope of the paper, we can say that the ascending-bid auction with an appropriate reserve

price is the globally optimal mechanism when it features full separation (e.g., when Assump-

tion B holds). The argument is as follows. We know from Myerson (1981) that if the seller

were to sell directly to informed advisers, the ascending-bid auction with a reserve price

r = ϕ−1 (0) + b would achieve the highest expected revenues. Since the seller’s problem

of selling to bidders relying on the advice of informed advisors is a constrained problem of

selling to advisors directly, the optimal mechanism in the former cannot generate higher

expected revenues than the optimal mechanism in the latter. When there is full separation,

the ascending-bid auction in which the seller sells to bidders relying on advisors is identical

21Other differences are that the information structure arising in the NITS equilibria of the second-price
auction is typically suboptimal for the seller with full flexibility to design information that bidders get and
that the second-price auction could be suboptimal with discrete types (see Che and Gale (2006)).
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to selling to advisors directly, since in equilibrium bidders behave as if they fully delegate

bidding to advisors.22 We summarize this result in the following corollary:

Corollary 1. Suppose that b > 0, ϕ (v) is strictly increasing, and Assumption B holds.

Then, the ascending-price auction with a reserve price r = ϕ−1 (0) + b is optimal.

In the somewhat unnatural case when neither Assumption A nor B are satisfied, the

ascending-bid auction can have multiple equilibria satisfying NITS, which complicates the

analysis. However, for the case of two bidders, we can generalize Theorems 1 and 2 for any

equilibrium choice:

Theorem 6. Suppose that b > 0 and N = 2. Then, the pooling region (if it is not empty) in

any equilibrium satisfying NITS in the ascending-bid auction is finer than the top partition

in any equilibrium of the second-price auction: v∗ ≥ ωK−1. If, in addition, ϕ (v) is strictly

increasing, then any equilibrium satisfying NITS in the ascending-bid auction brings higher

expected revenues than any equilibrium satisfying NITS in the second-price auction. Both

comparisons are strict if v∗ > v.

5.3 Role of Magnitude of Advisors’ Bias

Giving that the ascending-bid auction is attractive from both efficiency and revenues dimen-

sions, it is interesting to explore how they depend on the magnitude of the advisors’ bias.

In particular, does the seller benefit from advisors more biased for overpaying? The next

proposition sheds some light on this question:

Proposition 4. Suppose that b > 0 and Assumption A holds. Then, in the unique equilib-

rium satisfying NITS:

1. The expected valuation of the winning bidder is decreasing in b.

2. The expected revenues are strictly increasing in b in the neighborhood of b = 0 and

strictly decreasing in b in the neighborhood of b = MRL (v).

3. For any b > 0, if v̄ < ∞, and for any b > limv→∞MRL (v), if v̄ = ∞, there exists

N(b) such that for all N > N(b), the expected revenues strictly increase with a marginal

decrease in b.

22Proposition 3 can be easily modified to allow for a reservation price by simply assuming that the seller
starts increasing price from the reservation price.
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The first result of the proposition is that efficiency of the auction decreases with the

advisors’ bias. This is because a higher bias increases the size of the pooling region.

More interestingly, as the second result of the proposition shows, the effect of a bias on

revenues is non-monotone. A higher bias has two opposite effects. On one hand, it leads to

a more aggressive bidding when the valuation is in the separating region, v < v∗ (b), since

the advisor recommends to quit the auction at a higher price. On the other hand, a higher

bias leads to a less aggressive bidding when the valuation is in the pooling region, v > v∗ (b),

since the bidder stops listening to the advisor’s recommendation earlier. The former effect

dominates when the size of the pooling region is small, which is the case when the bias is

low, while the latter effect dominates when it is high.23

Finally, the last result of Proposition 4 implies that for any bias level, expected revenues

decrease in the bias if the auction is sufficiently competitive. Intuitively, if the auction is very

competitive, the valuations of the strongest two bidders are very likely to be in the pooling

region, which implies that more aggressive bidding by high types is more important than

more aggressive bidding by low types. Therefore, a lower bias increases expected revenues

in sufficiently competitive auctions. Overall, our results suggest that the seller benefits from

a higher bias if the bias is moderate and the auction is not too competitive.

6 Bias toward Underbidding

So far our focus has been on the case in which advisors are biased for overbidding. While this

case is arguably more common in applications, there are examples of settings with biases

for underbidding, such as the procurement auction example from the introduction.24 We

consider this case in this section. We show that, as in the case of b > 0, dynamic auction

formats can attain higher efficiency than static auction by exploiting the irreversibility of

the running price. However, unlike in the case of b < 0, higher efficiency often comes at the

cost of lower revenues.

The analysis of static auctions holds regardless of the sign of b. Consider the ascending-

bid auction. Since b < 0, all else equal, the advisor is now willing to quit the auction earlier

than the bidder. Hence, equilibria in which types of the advisor are separated up to a cut-off

do not exist if b < 0. Indeed, if the advisor with type v < v∗ followed the same strategy

23For illustration, in the example of Section 3, expected revenues are inverse U-shaped in b, reaching the
maximum at b ≈ 3.54.

24This bias can also be relevant in takeover contests if the management of a potential acquirer has the
“quiet life” preference (Bertrand and Mullainathan (2003)): merging with the target requires additional
private effort from managers of the acquirer.
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of recommending that the bidder quits the auction at price v + b, the bidder would infer

valuation v from the price at which the advisor recommended to quit the auction and would

delay quitting until price v > v + b.

However, higher efficiency can be achieved by running a descending-price auction. By

restricting bidders from submitting bids above the running price it creates a commitment

device that a bidder will follow the advisor’s recommendation: Since the advisor has a lower

maximum willingness to pay by the bidder, when the advisor recommends to stop the auction

at the current running price p, the bidder infers that the price is below her optimal stopping

point, so she should definitely stop the auction now. Formally, let MAI(s) ≡ s−E[v|v ≤ s]

denote the mean-advantage-over-inferiors of a distribution. Many well-known distributions

have strictly increasing MAI.25 The next theorem constructs a semi-separating equilibrium

of a descending-bid auction, which is similar to equilibria of the ascending-bid auction in the

case of b > 0:

Theorem 7. Suppose that v̄ < ∞, b ∈ (−MAI (v̄) , 0), and MAI (·) is strictly increasing.

Let v∗ be the unique solution to

E[v|v ≤ v∗] = v∗ + b. (13)

There exists an equilibrium of the descending-price auction, characterized by {σ(·), v∗} as

follows. The advisor of type v > v∗ sends message “stay” until the running price p reaches

σ(v) ≡ b+ E[max{v̂, v∗}|v̂ ≤ v] and sends message “stop” then. The advisor of type v ≤ v∗

sends message “stay” until the running price p reaches σ (v∗) and sends message “stop” then.

The bidder stops the auction after she receives message “stop” from the bidder or when the

running price p reaches σ (v∗), whichever happens earlier.

As with the bias for overbidding and the ascending-bid auction, the communication

strategies here differ significantly from those in static auctions and involve full separation up

to a cut-off. The difference is that here high types separate, while low types pool, which is

the opposite from the equilibria in Section 5. Function σ(v) for types in the separating region

v > v∗ is the equilibrium bidding strategy in the auction if bids were submitted directly by

advisors. As in the case b > 0, different communication implies higher efficiency:

Theorem 8. Suppose that v̄ < ∞, b ∈ (−MAI (v̄) , 0), and MAI (·) is strictly increasing.

The pooling region [v, v∗] in the equilibrium of the descending-price auction from Theorem 7

25In particular, all distributions with a strictly log-concave c.d.f. have increasing MAI (s). See Bagnoli
and Bergstrom (2005) for related results.
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is contained in the bottom partition in any equilibrium of the second-price auction: v∗ < ω1.

Therefore, it is more efficient than any equilibrium of the second-price auction.

While the efficiency comparison of the descending-bid auction with static auctions when

b < 0 is similar to the comparison of the ascending-bid auction with static auctions when

b > 0, there is a major difference when it comes to the comparison of expected revenues. In-

formally, higher efficiency in the descending-bid auction occurs at the cost of bidders bidding

less aggressively, since they end up stopping the auction below the prices they would stop

it if they knew their valuations. Formally, as in (12), we can break down expected revenues

into two parts: the expected virtual valuation of the winning advisor minus the payoff of

the lowest type. Because of higher efficiency, the first part is higher in the descending-price

auction, provided that the virtual valuation is increasing. However, the payoff of the lowest

type of the advisor is higher in the descending-price auction. Indeed, since the pooling re-

gion in the descending-price auction is smaller than the bottom partition in the second-price

auction, the bidder with the lowest valuation v wins with a lower probability and pays a

lower price in the descending-price auction than in the second-price auction. Therefore, the

descending-price auction can result in lower expected revenues, which was the case in the

example in Section 3. The next proposition shows that this revenues ranking holds generally

when there are two bidders:

Proposition 5. Suppose that b ∈ (−MAI (v̄) , 0), v̄ < ∞, N = 2, and MAI (·) is strictly

increasing. Then, any equilibrium of the second-price auction satisfying NITS brings strictly

higher expected revenues than the equilibrium of the descending-price auction from Theorem

7.

7 Discussion

In this section, we offer further discussion of the results. First, we assess the quantitative

implications of our analysis, applying the model to auctions of companies. Second, we discuss

commitment and possible generalizations.

7.1 Quantitative Example: Auctions of Companies

Consider a quantitative application of the model to auctions of companies. Suppose that

each bidder i is a firm, consisting of the board and the manager. The board has control over
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bids but has no information about firm’s valuation of the target vi. The manager knows vi,

but has a bias b > 0 for overpayment.

To get a plausible value of b, we use the following argument. Empirical evidence suggests

that the compensation of top executives is increasing in the absolute size of the firm. This

dependence leads to their bias for overpaying for the target. On the other hand, overpaying

for the target results in the destruction of firm value and ultimately in a poor performance of

the acquirer’s stock price. Since the wealth of top managers is sensitive to their company’s

stock price, there is a limit to which they are willing to overpay for the target. Bias b is the

point at which the positive effect on compensation of higher firm size is exactly offset by the

negative effect on compensation due to firm value destruction. Using CEO compensation

regressions from Harford and Li (2007) and the characteristics of the typical deal from Betton

et al. (2008), we estimate the overpayment bias b to be 9.2% of the value of the target under

its current ownership.26 For example, if the value of target under current ownership is $1

billion and the value of the target to the acquirer is $1.4 billion, the maximum willingness

to pay the CEO is $1.492 billion.

For distribution of valuations, we use estimates from Gorbenko and Malenko (2014).

We normalize the value of the target under its current management to one. Using data on

bids and assuming lognormal distribution, Gorbenko and Malenko (2014) estimate that the

valuations of strategic bidders are distributed with parameters µ = 0.167 and σ = 0.258. We

use this distribution, truncated at one, for the distribution of valuations in our numerical

example. We assume that there are N = 4 bidders.

The results are presented in Table 1. In the ascending-price auction, the unique equilib-

rium satisfying NITS features full separation. This is because the lognormal distribution has

fat tails and b is low enough. In a static (for concreteness, second-price) auction, the most

informative equilibrium has three partitions, [1, 1.11], [1.11, 1.38], and [1.38,∞]. The corre-

sponding expected valuations are 1.06, 1.24, and 1.64. The comparison of expected revenues

is rather striking. The expected takeover premium is 48% in the ascending-price auction,

which is 23% higher than the expected takeover premium in the second-price auction (21%).

The comparison of efficiency is less significant: The expected valuation of the winning bidder

is 1.65 in the ascending-price auction, but 1.57 in the static auction. As the comparison of

expected bidders’ payoffs illustrates, an increase in revenues largely occurs because of the

more aggressive bidding.

26See Online Appendix for the details. Alternatively, one could infer the bias from estimates of private
benefits of control (e.g., Dyck and Zingales (2004)).
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Ascending-price Static Ratio

Exp. Revenues 1.48 1.21 1.23

Exp. Valuation of Winner 1.65 1.57 1.05

Exp. Payoff of Bidder 0.04 0.09 0.46

Table 1: Expected revenue and efficiency of ascending-price and static auctions.

7.2 Generalization

Like most of the auction theory, we have assumed that bidders are symmetric. However, the

equilibrium characterization of the ascending-bid auction can be generalized to the case in

which bidders have different distribution of valuations Fi and/or have advisors with different

biases bi ≥ 0. Indeed, since the argument of Theorem 3 does not rely on symmetry, it is also

valid if the distribution of competing bids is exogenous or if it is generated by an equilibrium

play of bidders and advisors with different biases and/or distributions of valuations. In

particular, if the mean residual lifetime function MRLi (·) of each distribution Fi is strictly

decreasing, all cut-off types v∗i , if interior, are characterized by MRLi (v
∗
i ) = bi. Similarly,

the characterization does not rely on bidders and advisors knowing the bias of advisors of

other bidders. Second, the analysis of the ascending-bid auction does not change with the

introduction of a reserve price, which effectively truncates the distribution of valuations.

Finally, since the result that the ascending-bid auction generates higher expected revenues

than static auctions holds for any b > 0, the seller does not need to know the bias exactly

to choose between these mechanisms: it is sufficient to know that it is positive.

This generality of the ascending-bid auction contrasts with equilibria in static auctions,

which will be affected in a complicated way by asymmetries among bidders, a reserve price,

or bidders having limited knowledge about advisors of competing bidders. For example, if

bidders are asymmetric, the partitions of types differ for different bidders and pinned down by

a complex system of recursive equations. The simplicity and robustness of the ascending-bid

auction is an appealing property, in contrast with complexity of static auctions.

It is worth noting that dynamic auction formats have advantages over static formats

when selling to advised buyers only when there are competing bidders. If there is only one

buyer and the virtual valuation of the advisor ϕ (·) is strictly increasing, and the bias is not

too high, b < MRL (ϕ−1 (0)), the optimal mechanism is to post a price ϕ−1 (0) + b. This is

an optimal mechanism if the seller sells directly to the advisor. When b < MRL (ϕ−1 (0)),

the buyer follows the advisor’s recommendation. Hence, it is also an optimal mechanism
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if the seller sells to an advised buyer. Intuitively, when there is only one buyer, coarse

information is sufficient to implement the optimal allocation, so there is no advantage of

using dynamic mechanisms. In contrast, when there are competing buyers, the seller benefits

from extracting finer information about their valuations.

7.3 Commitment

We have assumed that the bidder cannot commit to bidding strategies. In the ascending-bid

auction with advisors biased for overbidding, bidder behave as if they delegate bidding to

advisors with caps on bids. Interestingly, this is also what we would observe if each bidder

could commit to bidding strategies. In other words, the irreversibility of the price in the

ascending-bid auction gives commitment power to a bidder for free.

Formally, consider the following auction with contracts. At the initial date each bidder i

simultaneously commits to a contract that maps each report of the advisor of valuation wi ∈
[v, v̄] to exit price in the ascending-bid auction (or bid in the second-price auction) p̂i (wi).

Then, advisors communicate their information, and bidders bid in the auction abiding to

their contracts. The optimal contract of bidder i maximizes her expected payoff subject to

providing the advisor with incentives to report the valuation truthfully, wi = vi, taking as

given contracts of other bidders, p̂j (wj), j 6= i. A symmetric equilibrium in this game is

a contract p∗ (w) that satisfies the property that a bidder finds it optimal, given that she

expects all other bidders to offer it. The next proposition shows that the equilibrium in the

ascending-bid auction, in which bidders rely on cheap talk communication with their biased

advisors, is also an equilibrium in the auction with contracts:

Proposition 6. Suppose that b > 0, v̄ <∞, Assumption A holds, f (·) is differentiable, and

(ln f (v))′ ≥ −1
b

for all v ∈ [v, v̄]. Then, bidding strategies p∗ (w) = b + min {w, v∗}, where

v∗ is implicitly defined by MRL (v∗) = b, constitute an equilibrium of the ascending-bid or

second-price auction with contracts.

The proof follows from a general analysis of the delegation problem by Amador and

Bagwell (2013).27 Proposition 6 thus illustrates the underlying reason that leads to our

results about the ascending-bid auction: The irreversibility of the running price in it gives

commitment power to a bidder for free.

27Their analysis does not apply directly, as their concavity assumptions on payoff functions are satisfied in
our case in the range p ≥ b+ v∗. In the proof, we apply their results to a perturbed version of our problem,
which satisfies the concavity assumptions, and then show that the solutions to the original and perturbed
problems coincide.
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8 Conclusion

The goal of the paper is to understand how to sell assets when potential buyers rely on the

advice of biased experts. We show that the revenue equivalence theorem holds in a large class

of static auctions, including first-, second-price, and many other familiar formats. However,

dynamic auctions, such as ascending- and descending-bid auctions can result in very different

outcomes. Our main result is that when advisors have a bias for overbidding, the ascending-

bid auction is, quite generally, more efficient and also results in higher revenues than static

auctions. This is because by communicating his information later in the game, advisors are

able to persuade their bidders to stay in the auction for longer than they would have had

they known the same information in advance. In contrast, when advisors have a bias for

underbidding, the ascending-bid auction loses this property. In this case, the descending-bid

auction results in a higher efficiency. However, it often results in lower expected revenues

than static auction, since higher efficiency comes at a cost of less aggressive bidding.

Our analysis points to several directions for future research. First, the analysis of bidder

asymmetries, in particular in the biases of their advisors, is relevant in applications and can

be fruitful. Second, since our focus is on the comparison of static and dynamic formats,

we do not solve for the optimal mechanism, except for the special case of Assumption B.

Solving for the optimal mechanism in the general case is thus an avenue for future research.

We conjecture that the optimality of ascending-bid auction with an appropriate reserve price

generalizes beyond Assumption B.

A Appendix

A.1 Proofs for Section 4

Proof of Theorem 1. Consider a standard static auction A with continuous payments and an equi-

librium in it. Let mA : [v, v] 7→ M be the equilibrium communication strategy, Fθ,A be the

distribution of each bidder’s types generated by mA, and βA : ΘA 7→ R+ be the equilibrium bid-

ding strategy, where ΘA is the support of Fθ,A. Let x(θ) and t (θ) be type θ’s equilibrium expected

probability of winning and expected payment, resp.

We first use the results of Che and Gale (2006) to argue that if bidders’ types are drawn i.i.d.

from Fθ,A, the equilibrium βS in the second-price auction S implies the same expected probabilities

of winning and payments x (θ) and t (θ). Since this result follows directly from Che and Gale

(2006), we simply outline the argument. Lemma 2 in Che and Gale (2006) shows that a symmetric

equilibrium of a standard auction with continuous payments admits an efficient allocation, i.e., for
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any realization of bidders’ types (which in our case are drawn i.i.d. from Fθ,A), a bidder with the

highest type wins the auction. This implies that function x (θ) is the same across such auctions.

Proposition 1 in Che and Gale (2006) shows that for standard auctions with continuous payments

their conditions (A1) and (A2) hold. Condition (A1) implies that their inequality (3) holds as

equality. This in conjunction with the envelope condition for the bidder’s payoff (their eq. (4))

and condition (A2) implies that function t (θ) is the same across standard auctions with continuous

payments.

We next show that the communication strategy mA is also an equilibrium communication

strategy in the second-price auction. By contradiction, suppose that is is not. Then, there exists

value v, such that the advisor is better off sending message m′ instead of mA (v). Let θ′ denote the

type generated by message m′. Since x (θ) and t (θ) are the same in both auctions, it must be that

(v + b)x (θ′)− t (θ′) > (v + b)x (θ)− t (θ), where θ′ and θ denote the types generated by messages

m′ and mA (v), respectively. However, this implies that the advisor must also be better off sending

message m′ instead of mA (v) in auction A. Hence, mA is not an equilibrium communication

strategy in auction A, which is a contradiction. Hence, mA is also an equilibrium communication

strategy in the second-price auction.

Thus, we have constructed an equilibrium in the second-price auction with the same commu-

nication strategy mA as in A. Moreover, we have shown that given that bidders’ types are drawn

i.i.d. from Fθ,A, the two auctions exhibit payoff equivalence (functions x (θ) and t (θ) are the same)

and thus, yield the same expected revenues. Moreover, the two auctions allocate the asset to the

bidder with the highest type θ.

Derivation of Λk. Define Λk as the probability of a bidder with bid mk = E[v|v ∈ [ωk−1, ωk)]

winning a tie, conditional on the tie taking place at bid mk = E[v|v ∈ [ωk−1, ωk)]. Without loss

of generality, we refer to this bidder as bidder N and to her rivals as bidders i ∈ {1, 2, ..., N − 1}.
Since ties are broken randomly,

Λk = E
[

1

ñk + 1
|v̂ ∈ [ωk−1, ωk)

]
,

where ñk =
∑N−1

i=1 1 {vi ∈ [ωk−1, ωk)} is a random variable, denoting the number of rival bidders
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with the same bid mk. Re-writing,

Λk =

N−1∑
n=1

1

n+ 1

Pr [ñk = n, v̂ ∈ [ωk−1, ωk)]

G (ωk−1, ωk)

=
N−1∑
n=1

1

n+ 1

Pr
[
ñk = n,

∑N−1
i=1 1 {vi < ωk−1} = N − 1− n

]
G (ωk−1, ωk)

=
N−1∑
n=1

1

n+ 1

(
N−1
n

)
F (ωk−1, ωk)

n F (ωk−1)N−1−n

G (ωk−1, ωk)
,

which coincides with expression (7) in Theorem 2.

Proof of Theorem 2. Denote by q(β̃) and t(β̃) the expected probability of winning and the ex-

pected payment, respectively, for a bidder submitting bid β̃ in the second-price auction given

that other players follow equilibrium strategies m and β. Let Q = {q(β̃), β̃ ∈ R+} and t(q) =

minβ̃∈R+:q=q(β̃) t(β̃). Then the bidder and the advisor play the cheap-talk game with the bidder’s

action q ∈ Q and payoffs

Bidder : qv − t(q), (14)

Advisor : q(v + b)− t(q). (15)

We first show that the equilibrium has an interval partition form. Suppose there is Q̃ ⊆ Q

such that min Q̃ < max Q̃ and Q̃ is dense in Q = [min Q̃,max Q̃]. Then there is an interval of

advisor’s types Ṽ that fully separate and induce all q in Q̃. Let q′, q ∈ Q̃ and v′, v ∈ Ṽ be such

that in equilibrium, v chooses q, and v′ chooses q′. Then v′ ≥ t(q′)−t(q)
q′−q ≥ v when v′ > v and

v′ ≤ t(q)−t(q′)
q−q′ ≤ v when v′ < v. By letting v′ converge to v, we get that for all v ∈ Ṽ , t′(q(v)) = v

where q(v) is the equilibrium action chosen by bidder with value v. For v ∈ Ṽ , the advisor’s

marginal utility at q(v) is v + b− t′(q(v)) > 0 and so, the advisor prefers to induce a higher action

than q(v) which is a contradiction to the sequential rationality of the communication strategy.

Therefore, there is no Q̃ ⊆ Q such that min Q̃ < max Q̃ and Q̃ is dense in Q = [min Q̃,max Q̃]

and so, to characterize equilibria of the second-price auction, we need to determine incentives of

threshold types of the advisor ωk. Consider any such type ωk. In the second-price auction, a

message is simply an expected value of the bidder mk. Let m̂ be the message of the highest bidder

among N − 1 opponents of the bider. From submitting a message mk, type ωk gets utility

G(ωk−1)E[ωk + b− m̂|v̂ < ωk−1] +G(ωk−1, ωk)Λk(ωk + b−mk),

where the expected utility from bidding mk when the other bidders submit bids below mk and

when some bidders tie with the bidder is captured by the first and second terms, resp. Here, Λk
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gives the expected number of other bidders who tie on mk and its expression is provided in the

statement of the theorem. Analogously, from submitting a message mk+1, type ωk gets utility

G(ωk−1)E[ωk + b− m̂|v̂ < ωk−1] +G(ωk−1, ωk)(ωk + b−mk) +G(ωk, ωk+1)Λk+1(ωk + b−mk+1).

Type ωk should be indifferent between the two which gives the eq. (6). Thus, any PBE communi-

cation strategy can be described by a solution (ωk)
K
k=0 to recursion (6) where ω0 = v and ωK = v.

We next show that K is bounded from above by some K̄ <∞.

Claim 1. If ωk+1 = ωk, then k = 0 when b > 0 and k = K when b < 0.

Proof: Suppose by contradiction that b > 0 and ωk+1 = ωk for some 0 < k ≤ K (the argument

for b < 0 and 0 ≤ k < K is symmetric). This implies that G(ωk, ωk+1) = 0 and so, from (6),

G(ωk−1, ωk)(1− Λk−1)(ωk + b−mk) = 0 which in turn implies that ωk + b = mk or ωk−1 = ωk. If

ωk−1 < ωk, then mk < ωk < ωk + b which is a contradiction. If ωk−1 = ωk, then choose j so that

ωk−j−1 < ωk−j = · · · = ωk−1 = ωk = ωk+1 and the argument proceeds as in the case ωk−1 < ωk.

q.e.d.

Claim 2. If b > 0, then there exists ε > 0 such that for all k, either ωk+1 − ωk > ε and 0 < k ≤ K
or ωk+1 = ωk and k = 0. If b < 0, then there exists ε > 0 such that for all k, either ωk+1 − ωk > ε

and 0 ≤ k < K or ωk+1 = ωk and k = K.

Proof: Again we prove the claim for b > 0 and the similar argument applies for b < 0. Suppose

ωk+1 − ωk > 0 and so, 0 < k ≤ K by Claim 1. Since ωk + b−mk > ωk + b−mk+1, it follows from

(6) and ωk+1 − ωk > 0 that

ωk + b ≤ E[v|v ∈ [ωk, ωk+1)]. (16)

If to contradiction for any ε > 0, there were an equilibrium such that ωk+1 − ωk < ε, then for such

equilibrium E[v|v ∈ [ωk, ωk+1)] ≤ ωk + ε < ωk + b which would contradict (16) for ε < b. Thus,

there is ε > 0 such that ωk+1 − ωk > ε for 0 < k ≤ K q.e.d.

Claims 1 and 2 imply that there is an upper bound K̄ on the number of partitions in the

communication strategy.

Proof of Proposition 1. The proof is an adaptation of the proof of Proposition 1 from Chen et al.

(2008) for our problem. It is useful to introduce the following notations:

Ψ(ωk−1, ωk) = G(ωk−1, ωk)(1− Λk) =

N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)N−1−n n

n+ 1
,

Φ(ωk, ωk+1) = G(ωk, ωk+1)Λk+1 =
N−1∑
n=1

(
N − 1

n

)
F (ωk, ωk+1)nF (ωk)

N−1−n 1

n+ 1
.
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Denote m(ωk−1, ωk) = E[v|v ∈ (ωk−1, ωk)] and

H(ωk−1, ωk, ωk+1) ≡ Ψ(ωk−1, ωk)(ωk+b−m(ωk−1, ωk))+Ψ(ωk, ωk+1)(ωk+b−m(ωk, ωk+1)). (17)

Note that an equilibrium with K partitions is given by recursion H (ωk−1, ωk, ωk+1) = 0, with

ω0 = v and ωK = v. To prove the statement, we will show that if an equilibrium with K partitions,

ω = (ω0, ω1, ..., ωK), violates the NITS condition, then for all k = 1, ...,K, there exists a solution

to recursion H (ωk−1, ωk, ωk+1) = 0, with k + 1 partitions, ωk, that satisfies ωk0 = v, ωkk > ωk−1,

and ωkk+1 = ωk. After this result is established, the statement of the proposition follows from the

following argument. By contradiction, suppose that the most informative equilibrium (i.e., one with

K̄ partitions) violates the NITS condition. Applying the result above for k = K̄, there must be a

solution to H (ωk−1, ωk, ωk+1) = 0 with K̄ + 1 partitions satisfying boundary conditions ωK̄0 = v

and ωK̄
K̄+1

= ωK̄ = v̄. By Theorem 2, this is an equilibrium, which contradicts the statement that

K̄ is the highest number of equilibrium partitions.

We show the result by induction on k. For brevity, we consider only the case b > 0 here

(case b < 0 is analogous). As an induction base, consider k = 1. If the equilibrium with K

partitions ω = (ω0, ω1, ..., ωK) violates the NITS, it must be that v + b < m (v, ω1), and hence,

H (v, v, ω1) < 0. At the same time, H (v, ω1, ω1) > 0, since ω1 > m (v, ω1) and b > 0. By

continuity, there exists x ∈ (v, ω1) at which H (v, x, ω1) = 0. Hence, the claim holds for k = 1:

ω1 =
(
ω1

0, ω
1
1, ω

1
2

)
= (v, x, ω1) solves H (ωk−1, ωk, ωk+1) = 0 with ω1

0 = v, ω1
1 > ω0 = v, and

ω1
2 = ω1. Consider the difference H

(
ωkk , ωk, ωk+1

)
−H (ωk−1, ωk, ωk+1):

Ψ
(
ωkk , ωk

)(
ωk + b−m

(
ωkk , ωk

))
−Ψ (ωk−1, ωk) (ωk + b−m (ωk−1, ωk))

=F (ωk)
N−1

N−1∑
n=1

(
N − 1

n

)(
F
(
ωkk , ωk

)
F (ωk)

)n(
F
(
ωkk
)

F (ωk)

)N−1−n
n

n+ 1

(ωk + b−m
(
ωkk , ωk

))

− F (ωk)
N−1

(
N−1∑
n=1

(
N − 1

n

)(
F (ωk−1, ωk)

F (ωk)

)n(F (ωk−1)

F (ωk)

)N−1−n n

n+ 1

)
(ωk + b−m (ωk−1, ωk)) .

Since ωkk > ωk−1, we have two implications. First, m
(
ωkk , ωk

)
> m (ωk−1, ωk), implying ωk +

b − m
(
ωkk , ωk

)
< ωk + b − m (ωk−1, ωk). Second, binomial distribution with success probability

F (ωk−1,ωk)
F (ωk) dominates binomial distribution with success probability

F(ωkk ,ωk)
F (ωk) in the sense of first-

order stochastic dominance, implying Ψ
(
ωkk , ωk

)
< Ψ (ωk−1, ωk). Therefore, H

(
ωkk , ωk, ωk+1

)
−

H (ωk−1, ωk, ωk+1) < 0. Since H (ωk−1, ωk, ωk+1) = 0, we conclude that H
(
ωkk , ωk, ωk+1

)
< 0.

On the other hand, since ωk > m
(
ωkk , ωk

)
and b > 0, we have ωk + b > m

(
ωkk , ωk

)
, imply-

ing H
(
ωkk , ωk, ωk

)
> 0. This, H

(
ωkk , ωk, ωk+1

)
< 0, and continuity imply that there exists x ∈

(ωk, ωk+1) at which H
(
ωkk , ωk, x

)
= 0. Since ωkk+1 = ωk, the same x satisfies H

(
ωkk , ω

k
k+1, x

)
= 0.

That is, there exists a solution in which the (k+1)st partition ends at ωkk+1 = ωk and the (k+2)nd
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Figure 3: Illustration for the proof of Theorem 1.

partition ends at x < ωk+1. By continuity, there exists a solution to the recursion in which the

(k + 2)nd partition ends at any ω ∈
(
ωkk+1, ωk+1

)
. By continuity, for one such ω, denoted ωk+1

k+1,

the (k + 2)nd partition ends exactly at ωk+1, i.e., ωk+1
k+2 = ωk+1. Hence, there exists a solution to

recursion H (ωk−1, ωk, ωk+1) = 0, with k + 2 partitions, ωk+1, that satisfies ωk+1
0 = v, ωk+1

k+1 > ωk,

and ωk+1
k+2 = ωk+1. This completes the proof of the inductive step.

A.2 Proofs for Section 5

See Online Appendix for the proof of Lemma 1 . Here we prove all other statements.

Proof of Theorem 3. By Lemma 1 (proven in Online Appendix), it is without loss of generality

to focus on equilibria in online threshold strategies. In the proof of Lemma 1, we introduced

function τ̄(v), which denotes the equilibrium exit price of the bidder if the advisor’s type is v. In

an equilibrium in online threshold strategies, τ̄ (v) is also the first price at which the advisor with

type v sends message “quit” to the bidder.

Any equilibrium generates partition Π of [v, v] satisfying τ̄ (v) = τ̄ (v′) for any v, v′ ∈ π for any

element π ∈ Π. As shown in Lemma 1, τ̄ (v) is weakly increasing, so any π ∈ Π is an interval

(possibly consisting of one element). We say that types in π ∈ Π pool if τ̄(v) is constant on v ∈ π,

i.e., these types start sending message “quit” at the same price. We say that types in [v′, v′′]

separate, if τ̄(v) is strictly increasing on [v′, v′′], i.e., these types start sending message “quit” at

different prices. Let ΠP and ΠS ≡ [v, v]\ΠP be the sets of all types that pool with some other type

and that separate, respectively. Denote by ∂ΠP the boundary of ΠP .

Babbling (τ̄ (v) = E [v] ∀v) is an equilibrium of the English auction, and it satisfies NITS if and

only if E[v] ≤ v + b. This proves case v∗ = v of the theorem. Hence, we can consider the case in

which there is a non-trivial information transmission in equilibrium.

Claim 3. For any π, π′ ∈ ΠP , π and π′ are not adjacent.

Proof: By contradiction, suppose that there are two adjacent intervals of types, π and π′, such

that τ̄ (v) = p ∀v ∈ π and τ̄ (v) = p′ ∀v ∈ π′. Without loss of generality, p′ > p. Consider

the advisor with type ṽ on the boundary of π and π′. By continuity, the advisor with type ṽ is

indifferent between his bidder quitting the auction at prices p and p′. The benefit of the latter is

winning against types in π, while the cost is risking to win against types in π′ and paying p′. The

indifference of type ṽ implies that p′ > ṽ + b. Consider running price p′+p
2 . Type ṽ is the weakest

38



remaining type at this price. Since p′ > ṽ+ b, following his equilibrium strategy of waiting to send

recommendation m = 1 until price p′ generates negative expected payoff to the advisor at this

point. In contrast, claiming that he is the weakest remaining type at the current price of p′+p
2 will

lead to the bidder quitting immediately, yielding the payoff of zero to the advisor. This contradicts

the NITS condition. q.e.d.

We next show that whenever types within an interval separate, they start recommending to

quit the auction at their most preferred time.

Claim 4. If τ̄(v) is strictly increasing on (v′, v′′), then τ̄(v) = v + b for any v ∈ (v′, v′′).

Proof: By contradiction, suppose there is v ∈ (v′, v′′) with τ̄ (v) 6= v+b. Then, either τ̄ (v) > v+b

or τ̄ (v) < v+ b. First, consider the former case. Since v is interior, there exists a subset of (v′, v′′)

of types v + ε > v with positive measure with τ̄ (v) > v + ε + b. Since τ̄ (·) is strictly increasing,

we have τ̄ (v + ε) > τ̄ (v) > v + ε + b. Therefore, any such type v + ε is better off mimicking the

communication strategy of type v to ensure exit at price τ̄ (v) instead of τ̄ (v + ε): by doing this,

the advisor ensures that the bidder does not win when the valuation of the strongest rival is in

(v, v + ε), in which case the bidder overpays relative to the advisor’s maximum willingness to pay

of v + ε+ b. Hence, it cannot be that τ̄ (v) > v + b. Second, consider the case τ̄ (v) < v + b. Now,

there exists a subset of (v′, v′′) of types v − ε < v with positive measure with τ̄ (v) < v − ε + b.

Since τ̄ (·) is strictly increasing, we have τ̄ (v − ε) < τ̄ (v) < v − ε + b. Therefore, any such type

v − ε is better off mimicking the communication strategy of type v to ensure exit at price τ̄ (v)

instead of τ̄ (v − ε): by doing this, the advisor ensures that the bidder wins when the valuation of

the strongest rival is in (v − ε, v), in which case the advisor gets a positive payoff, since the bidder

pays below the advisor’s maximum willingness to pay. Therefore, it cannot be that τ̄ (v) < v + b.

We conclude that τ̄ (v) = v + b. q.e.d.

Claim 5. If ΠP 6= ∅ and ΠS 6= ∅, then ΠP contains a single interval πP = [v∗, v], where v∗ > v.

Proof: By contradiction, suppose that ΠP contains more than one interval or that it contains

one interval that is to the left of ΠS . In the former case, Claim 3 implies that the intervals are

not adjacent. Therefore, there is an interval π ∈ ΠP that lies to the left of an interval in ΠS . Let

v ∈ π be the highest type in this partition. Since it must be indifferent between separation and

pooling and τ̄ (v) = v + b in the separation region by Claim 2, we have v + b = τ̄ (w) for any

w ∈ π. Therefore, τ̄ (w) > w + b for any w ∈ π, w 6= v. In particular, it holds for the lowest

type in the partition, w′ = minw∈π w. However, this violates the NITS condition. Indeed, consider

running price p = τ̄(w)+w′+b
2 . Type w′ is the weakest remaining type of the advisor at this price.

Since p > w′ + b, following his equilibrium strategy of waiting until price τ̄ (w), w ∈ π to send

recommendation m = 1 generates negative expected payoff to the advisor at the current point. In

contrast, claiming that he is the weakest remaining type at the current price will lead to the bidder

quitting immediately, yielding the payoff of zero. Therefore, ΠP contains only one interval that lies
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to the right of ΠS , i.e., the interval is of the form πP = [v∗, v] for some v∗ > v. q.e.d.

Claim 6. Cut-off v∗ satisfies (10).

Proof: Case v∗ = v (the babbling equilibrium) was covered above (before Claim 3). Consider

case v∗ = v, i.e., ΠP = ∅. By Claim 4, τ̄ (v) = v + b for any v ∈ (v, v̄). If v̄ <∞, the upper bound

on the bidder’s utility in round p = v + b is v − (v + b)
v→v→ −b, which contradicts the optimality

of the bidder to follow the advisor’s recommendation. Hence, it must be that v̄ = ∞. Next, by

contradiction, suppose that b > lims→∞ E[v|v ≥ s] − s. By continuity, there is s < ∞ such that

b > E[v|v ≥ s] − s for any s > s. If the bidder wins in any round p ≥ s + b, then her expected

utility equals E[v|v ≥ s] − s − b < 0 and so, the value of following the advisor’s recommendations

is negative, which is a contradiction. Therefore, it must be that b ≤ lims→∞ E[v|v ≥ s]− s.
Finally, consider case v∗ ∈ (v, v̄). By contradiction, suppose that v∗ + b 6= E [v|v ≥ v∗]. By

indifference of type v∗, it must be that τ̄ (v) = v∗ + b for any v ∈ [v∗, v̄]. If v∗ + b < E [v|v ≥ v∗],
then τ̄ (v), v > v∗ violates the incentive compatibility condition of the bidder. To see this, consider

running price just below v∗+ b. The equilibrium behavior prescribes the bidder to exit the auction

in the next instant, which is below her maximum willingness to pay of E [v|v ≥ v∗]. By waiting a

little beyond price τ̄ (v) = v∗+ b, the bidder ensures that she wins the auction with probability one

and pays below her estimated valuation of E [v|v ≥ v∗]. Since this strategy results in a discontinuous

upward jump in the expected utility of the bidder, she is better off deviating. Hence, it cannot be

that v∗+ b < E [v|v ≥ v∗]. If v∗+ b > E [v|v ≥ v∗], then τ̄ (v) = v∗+ b, v ≥ v∗ violates the incentive

compatibility condition of the bidder, because she would prefer to exit the auction slightly earlier.

Consider the running price p = v∗+b−ε for an infinitesimal positive ε and suppose that the bidder

has got a sequence of recommendations m̃ = 0. Her posterior belief is that the valuation is in the

range (v∗ − ε, v]. Suppose that the bidder follows her equilibrium play. If v ∈ (v∗ − ε, v∗) and the

bidder wins, she pays v + b above her valuation v. If v ∈ (v∗, v̄] and the bidder wins, she pays

τ̄ (v) = v∗ + b, which is, on average, above her valuation v (E [v|v ≥ v∗]). Since the bidder wins

with positive probability, her expected payoff from following the equilibrium play is negative. In

contrast, immediate exit yields zero expected payoff. Hence, the bidder is better off deviating and

exiting the auction immediately. Therefore, v∗ + b = E [v|v ≥ v∗]. q.e.d.

The proof of Theorem 3 follows from Claims 4, 5, and 6.

Proof of Proposition 2. Since MRL (·) is strictly decreasing, equation MRL (v) = b has at most

one solution. First, consider case MRL (v) > b. If v̄ < ∞, then MRL (v̄) = 0. Since MRL (·) is

strictly decreasing (and continuous, since the distribution has full support on [v, v̄]), there exists

a unique solution v ∈ (v, v̄) to MRL (v) = b. Similarly, if v̄ = ∞, then, since MRL (·) is strictly

decreasing and limv→∞MRL (v) < b, there exists a unique solution v ∈ (v, v̄) to MRL (v) = b.

Denote it by v∗. Since MRL (·) is strictly decreasing and MRL (v∗) = b, s + b − E [v|v ≥ s] for

any s < v∗. Therefore, the bidder’s option value of waiting, V (p) in (11), is strictly positive
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for all p < v∗ + b. Hence, this cut-off indeed corresponds to an equilibrium. By Theorem 3, it

cannot be that v∗ = v, since MRL (v) > b, and v∗ = v̄, since either v̄ < ∞ or v̄ = ∞ and

b > limv→∞MRL (v). Hence, the equilibrium is unique.

Second, consider case MRL (v) ≤ b. Since MRL (·) is strictly decreasing, MRL (v) < b for any

v > v. Hence, by Theorem 3 the only candidate for equilibrium is v∗ = v, i.e., babbling. Clearly,

it is an equilibrium. To see that it satisfies the NITS condition, note that the implied expected

payoff to type v of the advisor is 1
N (b−MRL (v)) ≥ 0. Therefore, the NITS condition is satisfied.

Hence, babbling is indeed the unique equilibrium in this case.

Proof of Proposition 3. Since MRL(v) > b for all v ∈ [v,∞), by Theorem 3 the only candidate

for equilibrium is v∗ = ∞. It follows from (11) that whenever MRL(v) > b for all v ∈ [v, v],

the bidder’s option value of waiting for the advisor’s recommendation is always positive. Hence,

v∗ =∞ indeed corresponds to an equilibrium. Moreover, it satisfies the NITS condition, since any

type of the advisor gets his unconstrained optimal bidding strategy.

Proof of Theorem 4. Under Assumption A, the number of partitions K must be finite. Since ωK−1

satisfies eq. (6), ωK−1 + b − E[v|v ≥ ωK−1] < 0 or b < MRL(ωK−1). On the other hand,

b = MRL(v∗). Since MRL (·) is strictly decreasing, v∗ > ωK−1. Under Assumption B, the unique

equilibrium under NITS of the English auction is fully separating (v∗ =∞), while any equilibrium

in the second-price auction has a partition structure (by the same logic as in the proof of Theorem

2 for v <∞).

Proof of Theorem 5 and Corollary 1. See the argument after the theorem in the main text.

Proof of Theorem 6. We prove the first statement by contradiction. Suppose there exists an equi-

librium satisfying NITS in the ascending-bid auction and an equilibrium in the second-price auc-

tion satisfying v∗ < ωK−1. Then, there exists partition (ωk−1, ωk) such that ωk−1 ≤ v∗ < ωk.

Consider the indifference condition of type ωk in the second-price auction. When N = 2, ,

G (ωk, ωk+1) = F (ωk, ωk+1), and Λk = Λk+1 = 1
2 . Therefore, (6) can be simplified to

ωk + b =
F (ωk−1, ωk)

F (ωk−1, ωk+1)
mk +

F (ωk, ωk+1)

F (ωk−1, ωk+1)
mk+1 = E [v|v ∈ (ωk−1, ωk+1)] . (18)

Since ωk+1 ≤ v̄ and ωk−1 ≤ v∗, the right-hand side of (18) satisfies:

E [v|v ∈ (ωk−1, ωk+1)] ≤ E [v|v ≥ ωk−1] ≤ E [v|v ≥ v∗] .

On the other hand, since v∗ < ωk, the left-hand side of (18) satisfies ωk + b > v∗+ b. Therefore, v∗

satisfies

v∗ + b < E [v|v ≥ v∗] ,
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which contradicts Theorem 3. Therefore, v∗ ≥ ωK−1. If v∗ > v, then v∗ > ωK−1, since v∗ = ωK−1

cannot be by contradiction. Indeed, in this case, eq. (18) implies v∗ + b = E [v|v ≥ ωK−2] <

E [v|v ≥ v∗], which contradicts Theorem 3. The second statement of the theorem follows from the

same argument as Theorem 5, since it relies only on higher efficiency of an equilibrium of the

ascending-bid auction than an equilibrium of the second-price auction and on the NITS condition.

Proof of Proposition 4. The first statement follows directly from eq. (10). In the range b ≥
MRL (v), the unique equilibrium has v∗ = v, so the expected valuation of the winning bidder is E [v]

and does not depend on b. In the range b ∈ (limv→v̄MRL (v) ,MRL (v)), the unique equilibrium

has v∗ (b) = MRL−1 (b) ∈ (v, v̄). Since MRL (v) is strictly decreasing, so the expected valuation

of the winning bidder is strictly decreasing in b. Finally, in the range b ≤ limv→v̄MRL (v),28 the

unique equilibrium has v∗ = ∞, so the expected valuation of the winning bidder does not depend

on b.

Consider the second statement. Consider b > 0 in the neighborhood of b = 0. If v̄ = ∞
and limv→∞MRL (v) > 0, we have v∗ (b) = ∞, so the expected revenues are b +

∫∞
v vdH (v),

where H (·) is the c.d.f. of the second-order statistic of N i.i.d. random variables with c.d.f. F (·).
Therefore, the expected revenues are strictly increasing in b in this case. If v̄ < ∞ or v̄ = ∞ and

limv→∞MRL (v) = 0, v∗ (b) ∈ (v, v̄), so the expected revenues can be written as

b+

∫ v∗(b)

v
vdH (v) + (1−H (v∗ (b))) v∗ (b) . (19)

The derivative of (19) with respect to b equals 1 + (1−H (v∗ (b))) dv
∗

db . Applying the implicit

function theorem to MRL (v∗ (b)) = b yields

MRL′ (v∗ (b)) =
f (v∗ (b))

1− F (v∗ (b))
MRL (v∗ (b))− 1.

Therefore, dv∗

db = −
(

1− b f(v∗(b))
1−F (v∗(b))

)−1
, which is negative by Assumption A. Hence, the derivative

of (19) with respect to b is

H (v∗ (b))− b f(v∗(b))
1−F (v∗(b))

1− b f(v∗(b))
1−F (v∗(b))

. (20)

When b → 0, v∗ (b) → v̄. Hence, the derivative in the limit equals one. Therefore, the expected

revenues are strictly increasing in b in the neighborhood of b = 0. When b→MRL (v), v∗ (b)→ v̄.

Therefore, (20) converges to −MRL (v) f (v) / (1−MRL (v) f (v)), which is negative. Therefore,

(20) is negative for a sufficiently high b, implying that the expected revenues are strictly decreasing

in b in the neighborhood of b = MRL (v).

28Note that this implies v̄ =∞, since MRL (v̄) = 0 if v̄ <∞.
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Finally, consider the third statement. Notice that for any v < v̄, limN→∞H (v) = 0. Indeed,

by definition of H (·), H (v) = NF (v)N−1 − (N − 1)F (v)N . Therefore,

lim
N→∞

H (v) = lim
N→∞

(
(N − 1)F (v)N

)
×

(
lim
N→∞

NF (v)N−1

(N − 1)F (v)N
− 1

)

=
limN→∞ F (v)N

− lnF (v)
×
(

1

F (v)
− 1

)
= 0

for any v < v̄, where we used l’Hospital’s rule. Also, notice that for any b > 0, the cut-off type

v∗ (b) does not depend on N . Therefore, for any b > 0, there exists N (b) such that H (v∗ (b)) −
f(v∗(b))

1−F (v∗(b))b < 0 for all N > N (b). Therefore, for any b > 0, the derivative of expected revenues in

b, (20), is negative for any N > N (b).

A.3 Proofs for Section 6

Proof of Theorem 7. Observe that MAI (v̄) > −b, MAI (v) = 0 < −b, and MAI (v) is strictly

increasing. Therefore, eq. (13) has a unique solution v∗ ∈ (v, v̄). To prove that these strategies

form an equilibrium, we need to show that the advisor sends message “stop” at the optimal time

given the strategy of the bidder to follow the advisor’s recommendation until price σ (v∗) and that

the bidder finds it optimal to follow the advisor’s recommendation until price σ (v∗).

First, consider the advisor’s problem:

max
x

(v + b− x)G(σ−1(x)). (21)

Taking the first-order condition and substituting the equilibrium condition that the maximum is

reached at x = σ (v), we obtain differential equation

g(v)(v + b) = (G(v)σ(v))′. (22)

Solving (22) with the initial condition σ(v∗) = v∗ + b yields

σ(v) =
G (v∗)

G (v)
(v∗ + b) +

1

G (v)

∫ v

v∗
g (v̂) (v̂ + b) dv̂. (23)

It that σ (v) = b + E [max {v∗, v̂} |v̂ ≤ v]. The maximized function in (21) has the single-crossing

property in (v, σ). Hence, since type v∗ prefers to “stop” at price σ (v∗) , no type v < v∗ is better

off inducing the bidder to stop at a higher price. Thus, the strategy from the theorem is optimal

for the advisor, given that he expects the bidder to follow the strategy from the theorem.

Second, consider the bidder’s problem. Because of the single-crossing property of the maximized

function (21) in (b, σ), if the bidder knew v, then she would prefer to stop the auction before the

43



price reaches σ (v). Therefore, if at price p > σ (v∗) the bidder gets a recommendation from the

advisor to stop the auction, she finds it optimal to stop immediately. To finish the proof, we show

the bidder does not want to stop the auction earlier. Let vp ≡ σ−1(p) for all p > p∗ denote the type

of the advisor that recommends to stop the auction at price p. Let v̂ denote the highest valuation

of the N − 1 rival bidders. Recall that it is distributed according to G (·). Then, the expected

payoff of the bidder at price p from following the recommendation of the advisor until price σ (v∗),

given that the advisor has not recommended to stop the auction yet is:

E [(v − σ (v)) 1 {v > v̂} |v̂ < vp, v < vp] (24)

=E [(v − σ (v)) 1 {v > v̂} |v∗ < v < vp, v̂ < vp]
F (vp)− F (v∗)

F (vp)
.

We can re-write (23) as

σ (v) = b+ E [v̂|v̂ < v] +
G (v∗)

G (v)
(v∗ − E [v̂|v̂ < v∗])

= b+ v − 1

G (v)

(
vG (v)− v∗G (v∗)−

∫ v

v∗
v̂dG (v̂)

)
= b+ v − 1

G (v)

∫ v

v∗
G (v̂) dv̂. (25)

Plugging this expression into (24) yields∫ vp

v∗

(
−bG (v) +

∫ v

v∗
G (v̂) dv̂

)
dF (v)

G (vp)F (vp)

=− b+
1

G (vp)

∫ vp

v∗
G (v̂) dv̂ + b

G (v∗)F (v∗)

G (vp)F (vp)
+

1

G (vp)F (vp)

∫ vp

v∗
F (v) (bg (v)−G (v)) dv. (26)

On the other hand, if the bidder deviates and stops the auction at price p, her expected utility will

be

E [v|v < vp]− p = E [v|v < vp]− vp − b+
1

G (vp)

∫ vp

v∗
G (v̂) dv̂, (27)

where again we used (25) to substitute for p. We need to show that (27) is less than (26):

bG (v∗)F (v∗) +

∫ vp

v∗
F (v) (bg (v)−G (v)) dv − (E [v|v < vp]− vp)G(vp)F (vp) ≥ 0. (28)

Equivalently, using G (v) = FN−1 (v) and g (v) = (N − 1)FN−2 (v) f (v), we can rewrite the left-

hand side of (28) as

φ (vp) = bFN (v∗)+

∫ vp

v∗

(
b (N − 1)FN−1 (v) f (v)− FN (v)

)
dv−FN−1 (vp)

∫ vp

v
vdF (v)+vpF

N (vp) .
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Differentiating.
d

dvp
φ (vp) = (N − 1)FN−1 (vp) f (vp) (b+MAI (vp)) ,

which is positive for any vp > v∗, since MAI (vp) is strictly increasing with MAI (v∗) = −b. Since

φ(v∗) = 0, this implies φ (vp) > 0 for any vp > v∗. Thus, the strategy from the theorem is optimal

for the bidder, given that she expects the advisor to follow the strategy from the theorem.

Proof of Theorem 8. By contradiction, suppose that ω1 ≤ v∗. By eq. (6), MAI (ω1) > −b. Since

v∗ satisfies MAI (v∗) = −b and MAI (·) is strictly increasing, MAI (v) ≤ −b for any v ≤ v∗,

including v = ω1. This contradicts MAI (ω1) > −b. Therefore, ω1 > v∗.

Proof of Proposition 5. First, we show that any equilibrium of the second-price auction satisfying

NITS is non-babbling in this case. By contradiction, suppose that the babbling equilibrium satisfies

NITS. Then, v + b ≤ E[v] - otherwise, type v would have incentives to reveal itself to the bidder,

induce a bid just above E [v], win the auction with probability one, and get the payoff of v̄+b−E [v] >

0. Thus, MAI (v̄) ≤ −b. Since MAI (·) is strictly increasing, MAI (v∗) < −b, which contradicts

(13).

Second, we prove the revenues ranking result. Consider partition (ωk)
K
k=1 induced by an equilib-

rium of the second-price auction satisfying NITS. Expected revenues from equilibrium in Theorem

7 of the descending-bid auction equals the expected revenues from the first-price auction, in which

bidders know their valuations and they are given by κ(v) = b+ max {v∗, v}. By the standard rev-

enue equivalence theorem, the expected revenue from the first- and second-price auctions are equal,

so we can equivalently compare expected revenues from the second-price auction with cheap-talk

communication with partitions (ωk)
K
k=1 (denote it auction A) and from the second-price auction in

which bidders know their values and they are given by κ(v) (denote it auction B).

Let v(1) ≡ max {v1, v2} and v(2) ≡ min {v1, v2} denote the maximum and minimum of the two

valuations, respectively. Let k and j be integers such that v(1) ∈ [ωk−1, ωk) and v(2) ∈ [ωj−1, ωj).

By definition, j ≤ k. Hence, there can be four cases:

Case 1 < j < k. Conditional on this event, expected revenues in auctionA are E [v|v ∈ [ωj−1, ωj)].

Since v∗ < ω1 < ωj , expected revenues in auction B are E [v + b|v ∈ [ωj−1, ωj)] < E [v|v ∈ [ωj−1, ωj)].

Case 1 < j = k. Conditional on this event, expected revenues in auctionA are E [v|v ∈ [ωj−1, ωj)].

Expected revenues in auction B are E
[
v(2) + b|v(1) ∈ [ωj−1, ωj), v

(2) ∈ [ωj−1, ωj)
]
. Since the expec-

tation of a minimum of two random variables is below the mean, this is less than E [v + b|v ∈ [ωj−1, ωj)],

which in turn less than E [v|v ∈ [ωj−1, ωj)].

Case 1 = j < k. Conditional on this event, expected revenues in auction A are E [v|v ≤ ω1].
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Expected revenues in auction B equals

E [κ (v) |v ≤ ω1] = (v∗ + b)
F (v∗)

F (ω1)
+ E [v + b|v ∈ (v∗, ω1)]

(
1− F (v∗)

F (ω1)

)
< E [v|v ≤ ω1]

F (v∗)

F (ω1)
+ E [v|v ∈ (v∗, ω1)]

(
1− F (v∗)

F (ω1)

)
≤ E [v|v ≤ ω1] , (29)

where we used v∗ < ω1.

Case 1 = j = k. Conditional on this event, expected revenues in auction A are E [v|v ≤ ω1],

while expected revenues in auction B are E
[
κ
(
v(2)
)
|v(1) ≤ ω1, v

(2) ≤ ω2

]
≤ E [κ (v) |v ≤ ω1] <

E [v|v ≤ ω1], where the first inequality holds since the expectation of the minimum of two random

variables cannot exceed the expectation of a random variable and the second inequality holds by

(29).

Since auction A results in higher expected revenues than auction B in each of these four cases

and they cover all possible events, auction A also results in higher expected revenues overall.
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Online Appendix

This appendix is for online publication. It contains the proof of Lemma 1, the argument underlying

our estimate of b, and the proof of Proposition 6.

Proof of Lemma 1. The proof of the first statement follows the argument of the proof of Lemma

IA.2 in Grenadier et al. (2016). Specifically, for any pure-strategy PBEM we construct an equi-

librium in online threshold strategies that results in the same bidding behavior on equilibrium

path.

Consider any pure-strategy equilibrium E with some strategies m̄ (v, p, µ) and ā (p, µ̃). It implies

an equilibrium exit price τ̄ (v), which is the price at which the bidder exits the auction, if the

valuation is v, provided that the bidder and her advisor play the equilibrium strategies m̄ (·) and

ā (·). Note that τ̄ (v) must be weakly increasing in v. To see this, suppose by contradiction that

τ̄ (v1) > τ̄ (v2) for some v1 ∈ [v, v̄) and v2 ∈ (v1, v̄]. Since the advisor’s payoff from acquiring the

asset at any price p is higher for type v2 than for type v1 (v2 + b − p > v1 + b − p), the advisor’s
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continuation value from not exiting the auction at any price p cannot be lower for type v2 than for

type v1. The payoff from exiting the auction at any current price p does not depend on the type

and equals zero. Thus, τ̄ (v2) ≥ τ̄ (v1). Let % ≡ {p : ∃v ∈ [v, v̄] such that τ̄ (v) = p} be the set of

prices at which the bidder exits the auction for some realization of v. It will be convenient to define

vl (p) ≡ inf {v : τ̄ (v) = p} and vh (p) ≡ sup {v : τ̄ (v) = p} for any p ∈ %. We extend the definition

of vl (p) for any p /∈ % by setting vl (p) ≡ inf {v : τ (v) ≥ p}.
Consider an online threshold strategy of the advisor, m (v, p, µ), with p̂ (v, µ) = τ̄ (v) and the

following belief updating rule of the bidder. For any belief µ, price p, and message m̃ such that there

is v ∈ supp (µ (h)) with m (v, p, µ) = m̃, belief µ is updated via the Bayes rule. Any other message

m̃ (i.e., a message for which there is no v ∈ supp (µ (h)) with m (v, p, µ) = m̃) is treated as some

message m̃′ for which there is some v ∈ supp (µ (h)) with m (v, p, µ) = m̃′, and belief µ is updated

following message m̃ in the same way as following message m̃′.29 Given this, the posterior belief of

the bidder for any history h is as follows. A sequence of messages m = 0 for all prices p′ ≤ p up

to price p implies that the bidder’s posterior belief is given by the prior distribution of valuations

truncated from below at vl (p). A sequence of messages m = 0 for all prices p′ < p′′ ∈ % and message

m = 1 at price p′′ ∈ % and any history of messages after that results in the bidder’s posterior belief

given by the prior distribution of valuations truncated at vl (p
′′) from below and at vh (p′′) from

above. Any history involving off-equilibrium messages leads to the posterior belief equivalent to

one of these two posterior beliefs by construction of the updating rule. Given this, consider an

online threshold strategy of the bidder, a (p, µ̃), with p̄ (µ̃) = E [v|v ≥ vl (p)] for the posterior belief

µ̃ in the history of the first kind (i.e., when the advisor never recommended quitting at one of

prices p ∈ % in the past), and with p̄ (µ̃) = E [v|v ∈ [vl (p
′′) , vh (p′′)]] for the posterior belief µ̃ in

the history of the second type (i.e., when the advisor recommended to quit the auction at price

p′′ ∈ %). Let E′ denote a combination of these online threshold strategies of the advisor and the

bidder and the belief updating rule. Below we show that E′ is indeed an equilibrium and that it

results in the same equilibrium exit price τ̄ (v) as equilibrium E.

For the collection of strategies and beliefs E′ to be an equilibrium, we need to verify the incentive

compatibility (IC) conditions of the advisor and the bidder.

1 - IC of the advisor. First, we verify that the advisor is not better off deviating from

(8) with p̂ (v, µ) = τ̄ (v). Because of the above definition of the off-path beliefs, it is sufficient to

consider only deviations to m ∈ {0, 1} at p ∈ %. First, consider a deviation of type v to m = 1 at

p ∈ % at which p < τ̄ (v). This deviation is equivalent to mimicking the communication strategy of

type v′ : τ̄ (v′) = p. Since mimicking the communication strategy of type v′ is not profitable for

29Intuitively, according to this updating rule, the bidder effectively ignores unexpected messages. As a
consequence, it is sufficient to consider only deviations to on-path (expected) messages. Because no deviation
to an off-path message can be beneficial, we do not lose any equilibria by focusing on this belief updating
rule.
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type v in equilibrium E (otherwise, it would not be an equilibrium), it is also not profitable here.

Second, consider a deviation of type v to m = 0 at p = τ̄ (v). Depending on her communication

strategy at later prices, this deviation will result in exit at price τ̄ (v′) for some v′ ≥ vh (τ̄ (v)).

Hence, any such deviation is equivalent to mimicking the communication strategy of type v′. Since

it is not profitable for type v in equilibrium E, it is also not profitable here.

2 - IC of the bidder after observing m = 1 at p ∈ % and m = 0 before. We argue

that p̄ (µ̃) ≤ p in this case, so the bidder’s best response is to quit the auction immediately.

Given this history, the bidder’s posterior belief is that v ∈ [vl (p) , vh (p)]. Because the bidder

expects the advisor to follow (8) with p̂ (v, µ) = τ̄ (v), she expects the advisor to send m = 1 at

any later price. Since the bidder expects to not learn anything new about v, her optimal exit

strategy is given by the expected valuation, i.e., E [v|v ∈ [vl (p) , vh (p)]]. It follows that the bidder

exits immediately if p ≥ E [v|v ∈ [vl (p) , vh (p)]]. Next, we show that τ̄ (p) is equilibrium E must

satisfy this condition at any p ∈ %. Since exiting at price p is optimal for the bidder for any

realization v ∈ [vl (p) , vh (p)] of the valuation, it must be that p ≥ E
[
v|HEp

]
for any history HEp

induced by equilibrium communication of the advisor with type v ∈ [vl (p) , vh (p)]. It follows that

p ≥ maxHEp ∈HEp E
[
v|HEp

]
, where HE

p denotes the set of such histories. Using the law of iterated

expectations and fact that the maximum of a random variable cannot be below its mean,

p ≥ max
HEp ∈HEp

E
[
v|HEp

]
≥ E

[
E
[
v|HEp

]
|HEp ∈ HE

p

]
= E

[
v|HEp ∈ HE

p

]
= E [v|v ∈ [vl (p) , vh (p)]] .

Therefore, when the bidder observes message m = 1 at p ∈ % for the first time, she finds it optimal

to quit the auction immediately.

3 - IC of the bidder after observing a sequence of messages m = 0 up to price

p < τ̄ (v̄). We argue that p̄ (µ̃) > p for any such history, i.e., it is optimal for the bidder to wait.

Given this history, the bidder’s posterior is that v ∈ [vh (p′) , v̄] for highest p′ ∈ % satisfying p′ < p.

Consider equilibrium E and any history H̃Ep induced by equilibrium communication of the advisor

with type v ∈ [vh (p′) , v̄]. Denote the set of such histories by H̃E
p . Since the bidder finds it optimal

to wait, the payoff from waiting is weakly above the payoff from quitting the auction immediately

(i.e., zero) for any such history H̃Ep . In strategy profile E′ the bidder learns no less between price p

and the exit price than in strategy profile E. Hence, the fact that waiting is optimal for any history

H̃Ep ∈ H̃E
p implies that waiting is also optimal when the bidder expects the advisor to follow (8)

with p̂ (v, µ) = τ̄ (v).

Therefore, the collection of strategies and beliefs E′ is an equilibrium. Furthermore, on equilib-

rium path, the advisor with type v recommends to quit the auction when the price reaches τ̄ (v),

and the bidder exits the auction immediately. Therefore, E′ results in the same bidding behavior
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as E.

The second statement of the lemma can be proved by contradiction. Consider equilibrium E

that satisfies NITS, and suppose that an equilibrium in online threshold strategies with the same

bidding behavior violates NITS. Hence, there exists price p such that the advisor with type vl (p)

is better off credibly revealing itself at price p than getting the expected (as of information at

price p) payoff in equilibrium E′. Hence, the time-0 expected payoff of the advisor of type vl (p)

from sending message m = 0 until price p and credibly revealing itself then exceeds the time-0

expected payoff of the advisor of type vl (p) in equilibrium E′. Now, consider equilibrium E, and

the strategy of the advisor of type vl (p) to send equilibrium message m̄ (v, p′, µ) for all p′ < p and

to credibly reveal itself at price p (by definition of vl (p), type vl (p) = inf {v|v ∈ supp (µ (h))} for

any history induced by this message strategy up to price p). In equilibrium E, bidding behavior

of other bidders is the same and the bidder’s reaction to the advisor credibly revealing itself at

price p is the same as in equilibrium E′. Hence, the time-0 expected payoff of the advisor of type

vl (p) from this strategy is the same as the time-0 expected payoff of the advisor of type vl (p) from

sending message m = 0 until price p and credibly revealing itself at price p in equilibrium E′, which

is strictly higher than the time-0 equilibrium expected payoff of the advisor of type vl (p). Hence,

equilibrium E also violates the NITS condition, which is a contradiction.

Estimate of b. Since the market leverage ratio of the median target is 13.1% and the median

ratio of the deal size to the acquirer’s assets is 31%, the ratio of the deal size to the acquirer’s

equity for a typical deal is 31% × 1
0.869 = 35.67%. Since the median acquisition premium is 39%,

the ratio of the pre-deal target’s equity to the acquirer’s equity is 35.67%× 1
1.39 = 25.66%. Assume

that after the acquisition, the sales of the combined company increase by the same amount, i.e.,

by 25.66% in perpetuity. Using the estimate of Harford and Li (2007), this increase in sales leads

to an increase in the acquirer’s CEO compensation by 0.435× log (1 + 0.2566) = 4.32% every year.

In addition, acquiring the target is associated with an increase in the CEO compensation of 3.7%,

irrespectively of the increase in sales, in the year of the acquisition. Thus, the positive effect of

acquiring the target on CEO compensation for a typical deal is 8.02% in the year of the deal and

4.32% in every subsequent year. Using the expected tenure of 6 years and discounting at 10%,

the present value of the positive effect is 22.52% of the CEO’s annual compensation. On the other

hand, overbidding by b (normalizing the pre-acquisition value of the target’s equity to one), reduces

the acquirer’s equity value by b× 0.2566. Since the porftolio value of equity incentives is 9.5 times

the CEO annual pay (Table II in Harford and Li (2007)), the negative effect on the CEO wealth is

9.5 × b × 25.66% of the CEO’s annual compensation. The estimate of overpayment bias b is thus
0.2252

9.5×0.2566 = 9.2%.

Proof of Proposition 6. Suppose that all bidders choose contracts p∗ (w) = b+ min {w, v∗}. Fixing

this, consider the remaining bidder (to whom we will refer as the bidder) optimizing over contracts
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p (w). Any her contract p (w) can be equivalently written as a mapping from report w into the

probability of winning q (w) and the corresponding expected payment t (q (w)):

q (w) =


1, if p (w) > v∗ + b,

q∗, if p (w) = v∗ + b,

G (p (w)− b) if p (w) < v∗ + b,

(30)

t (q) =


E [v̂ + b|v̂ < v∗] q̄ + (v∗ + b) (1− q̄) , if q = 1,

E [v̂ + b|v̂ < v∗] q̄ + (v∗ + b) (q∗ − q̄) , if q = q∗,

E
[
v̂ + b|v̂ ≤ G−1 (q)

]
q, if q < q̄,

(31)

where v̂ denotes the highest valuation among N − 1 rival bidders, q̄ = G (v∗), and q∗ = q̄ +∑N−1
n=1

(
N−1
n

) (1−F (v∗))nF (v∗)N−1−n

n+1 . The payoffs of the bidder and the advisor are:

Bidder : q (w) v − t (q (w)) , (32)

Advisor : q (w) (v + b)− t (q (w)) . (33)

The bidder’s optimal contract q (w) maximizes her expected payoff subject to the incentive com-

patibility constraint that the advisor reports his type truthfully:

max
q(·)∈Q

∫ v̄

v
(q (v) v − t (q (v))) dF (v)

s.t. v ∈ arg max
w∈[v,v̄]

{q (w) (v + b)− t (q (w))} for all v,

(34)

where Q is the set of all measurable functions from [v, v̄] into [0, q̄)∪{q∗, 1} and q = G(v∗). We want

to show that qA (v) ≡

G (v) , if v < v∗

q∗, if v ≥ v∗
, solves (34). We will show a slightly stronger statement

that qA (·) solves (34) in which set Q is replaced by the set of all measurable functions from into

[0, q̄] ∪ {q∗, 1}, where t (q̄) = limq↑q̄ t (q). To do this, it will be helpful to show some properties of

t (·):

Claim 7. t(·) is strictly increasing, strictly convex, twice differentiable on [0, q), and

t (1)− t (q∗)

1− q∗
=
t (1)− t (q̄)

1− q̄
= v∗ + b = lim

q↑q̄
t′ (q) . (35)

Proof: In the range q < q̄, t (q) =
∫ G−1(q)
v (v̂ + b) g (v̂) dv̂. Differentiating and substituting the

derivative of the inverse function, t′ (q) = G−1 (q) + b > 0 and t′′ (q) = 1
g(G−1(q))

> 0. We next show

(35). By (10), E [v|v ≥ v∗] = v∗ + b, i.e., the bidder with expected value E[v|v ≥ v∗] is indifferent

53



between winning and losing at price v∗+ b. Therefore, (q̄, t (q̄)), (q∗, t (q∗)), and (1, t (1)) are on the

same line with slope E [v|v ≥ v∗] = v∗+ b. Finally, since t′ (q) = G−1 (q) + b, limq↑q̄ = v∗+ b. q.e.d.

Eq. (35) implies that the bidder’s expected payoffs from contracts qA (v) and qB (v) =

G(v) if v < v∗

q if v ≥ v∗

are the same. Also, by Claim 7, if q solves (34) and q(v) = q∗, q(v′) = 1 for some v and v′, then q̃ (v)

defined as q̃ (v) = q∗ for v : q (v) = 1 and q̃ (v) = q (v), otherwise, also solves (34). Therefore, it

sufficies to show that qB solves (34) in which Q is replaced by the set Q′ of all measurable functions

from [v, v̄] into either [0, q̄] ∪ {q∗} or [0, q̄] ∪ {1}. We will prove the statement for the former case.

The other case follows by the analogous argument. Define the program B as (34) with Q′ instead

of Q. It follows from Claim 7 that while t (·) is strictly convex below q, it cannot be extrapolated

to a strictly convex function to the whole interval [0, 1], as points (q̄, t (q̄)), (q∗, t (q∗)), and (1, t (1))

lie on the same line. Thus, we cannot directly apply the results of Amador and Bagwell (2013) to

program B. Instead, we perturb the program B so that we can apply their result to this perturbed

program and then relate the solution of the perturbed program to the solution of program B. We

next show that qB defined above is a solution to program B. Specifically, we perturb function t (·)
on [0, q∗] as tε (q) = t (q) + εmax

{
0, (q − q̄)3

}
. Consider the auxiliary program Bε:

max
q(·)∈Q′′

∫ v̄

v
(q (v) v − tε (q (v))) dF (v)

s.t. v ∈ arg max
w∈[v,v̄]

{q (w) (v + b)− tε (q (w))} for all v,

where Q′′ is the set of all measurable functions from [v, v̄] to [0, q∗]. Unlike t(·), function tε(·) is

strictly convex and twice differentiable on [0, q∗], so we can apply Proposition 1 in Amador and

Bagwell (2013) to get the following claim:

Claim 8. qB (v) is a solution to program Bε for any ε.

Proof: In Table 2, we verify that program Bε satisfies the conditions of Proposition 1 in Amador

and Bagwell (2013). Therefore, qBε solves it. q.e.d.

Finally, we show that qB solves program B. By contradiction, suppose that this is not the case.

Denote the solution by q̃B. First, if the range of q̃B (v) does not contain q∗, then q̃B ∈ Q′′, which is

a contradiction to Claim 8. Thus, we suppose that the range of q̃B (v) contains q∗. Let us perturb

q̃B as follows. Denote by Q̃ the range of q̃B and let q̃Bε (v) = arg maxq∈Q̃ {(v + b) q − tε (q)}. By

construction, q̃Bε satisfies the constraints of program Bε. Moreover, the measure of types for which
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Amador and Bagwell’s

notations and assumptions
Our counterparts

γ ∈ Γ =
[
γ, γ̄

]
distributed according to F v ∈ [v, v̄] distributed according to F

π ∈ Π = [0, π̄] q ∈ [0, q∗]

b(π) bq − tε(q)
Agent’s payoff: γπ + b (π) Advisor’s payoff: (v + b) q − tε (q)

Principal’s payoff: w (γ, π) Bidder’s payoff: vq − tε (q)

γL v

πf (γ) ∈ arg maxπ∈Π γπ + b (π)
qf (v) ∈ arg maxq∈[0,q∗] (v + b) q − tε (q)

which implies v + b = t′ε(qf (v))

γH solves
∫ γ
γH
wπ (γ, πf (γH)) dF (γ) = 0

v∗ solves
∫ v
v∗ (v − v∗ − b) dF (v) = 0,

or equivalently MRL (v∗) = b

κ = inf(γ,π)∈Γ×Π

{
wππ(γ,π)
b′′(π)

}
κ = inf(v,q)∈[v,v̄]×[0,q∗]

{
∂2

∂q2
(vq−tε(q))

d2

dq2
(bq−tε(q))

}
= 1

Assumption 1

w continuous in γ and π

by Claim 7w(γ, ·) concave and twice differentiable in π

b is strictly concave and twice differentiable in π

πf is twice differentiable and π′f (γ) > 0 by q′f (v) = 1
t′′ε (qf (v))

> 0 and f differentiable

wπ is continuous in γ by Claim 7

Assumptions of Proposition 1 in Amador and Bagwell (2013)

(c1) κF (γ)− wπ(γ, πf (γ))f(γ)

is nondecreasing

F (v)− (v − t′ε (qf (v))) f (v) = F (v) + bf(v)

is nondecreasing whenever (ln f(v))′ ≥ −1
b

(c2) For all γ ∈ [γH , γ̄],

(γ − γH)κ ≥
∫ γ
γ wπ (γ̃, πf (γH)) f(γ̃)

1−F (γ)

For all v′ ∈ [v∗, v̄],

v′ − v∗ ≥ E [v|v ≥ v′]− v∗ − b
by Assumption A

(c3’) ωπ
(
γ, πf

(
γ
))
≤ 0 v − t′ε (qf (v)) = −b < 0

Table 2: The left column shows assumptions and conditions of Proposition 1 in Amador and
Bagwell (2013). The right column shows the corresponding variables in our model and verifies the
conditions.
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q̃Bε (v) 6= q̃B (v) converges to zero as ε→ 0. Then, for some positive c0, c1, and c2,∫ v

v

(
q̃B (v) v − t

(
q̃B (v)

))
dF (v) >

∫ v

v

(
qB (v) v − t

(
qB (v)

))
dF (v) + c0

>

∫ v

v

(
qB (v) v − tε

(
qB (v)

))
dF (v) + c0

≥
∫ v

v

(
q̃Bε (v) v − tε

(
q̃Bε (v)

))
dF (v) + c0

≥
∫ v

v

(
q̃Bε (v) v − t

(
q̃Bε (v)

))
dF (v) + c0 − c1ε

≥
∫ v

v

(
q̃B (v) v − t

(
q̃B (v)

))
dF (v) + c0 − c1ε− c2ε,

where the first inequality follows from the fact that qB ∈ Q′ and satisfies the constraints of program

B but does not solve it; the second inequality follows from tε (q) ≥ t (q); the third inequality follows

from the fact that qB solves Bε; and the last two inequalities follow from the construction of tε (·)
and qBε , respectively. By taking ε→ 0, we get a contradiction.
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