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Abstract

Projecting economic growth, population and climate over the 21st cen-
tury is challenging. One approach to this problem has been the develop-
ment of �Shared Socio-economic Pathways� (SSPs) designed to provide
a consistent characterization of alternative evolutions of population, per
capita income and climate. However, recent analysis has shown that the
true extent of future growth uncertainty is likely far greater than that
embodied in the SSPs. We build on the innovative work of Christensen
et al., in order to construct 13 independent probability distributions of
economic growth in the 21st century. For each of these distributions, we
use a stochastic dynamic partial equilibrium model of global land use to
compute the optimal rate of R&D investment as well as the ensuing path
of Total Factor Productivity (TFP) growth to 2100. When there is a
signi�cant probability of non-positive growth, the optimal response is to
invest a lot in R&D today, and maintain a fairly �at trajectory over the
entire century. This is in sharp contrast to the optimal path when growth
rates are strictly positive. In this case, R&D spending starts out slow,
and accelerates over time. Since we do not know which expert, if any,
is correct, we propose a novel approach to dealing with this ambiguity
by minimizing the maximum regret across all 13 optimal growth paths.
This results in 40% higher R&D spending early in the century than that
dictated by a mean growth rate deterministic model. However, by mid-
century, optimal R&D spending levels o�, and the resulting TFP plateaus
by the end of the century at a level which is about twice as high as at the
start.
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1 Introduction

Over the past 50 years, most of the increase in demand for agricultural prod-
ucts was met through improvements in agricultural productivity, arising from
innovations and changes in technology (Evenson, 2001). Public and private in-
vestments into agricultural research and development (R&D) have been playing
an important role in this achievement. High rates of return on these investments
(Fuglie and Heisey, 2007; Alston et al., 2000; Evenson, 2001) are generally taken
as evidence of underinvestment in agricultural R&D and suggest that increasing
investment will further increase agricultural output (Beintema and Elliot, 2009).
More aggressive R&D spending is often considered as a vehicle to end hunger and
poverty, and meet expected increase in demand for agricultural products in the
21st century. However, the rate of growth in global public agricultural R&D
spending declined during 1981-2000 and became negative in developed coun-
tries over the 1991-2000 decade (Pardey et al., 2006), raising concerns about
the world's future ability to feed a growing population (Alston et al., 2009).
This, in turn, spurred literature on how much investment in agricultural R&D
is required and how this should be targeted.

Piesse and Thirtle (2010) review the literature that discusses additional in-
vestment in agricultural R&D needed to meet current and future demands for
food (Bientema and Elliot 2009, Von Braun et al. 2008, Rosegrant et al. 2008).
Estimates of the additional agricultural R&D needed to meet poverty or hunger
reduction targets often involve assumptions about elasticity of agricultural out-
put with respect to R&D stock and stylized representation of R&D stock dynam-
ics. Piesse and Thirtle (2010) assume a relatively low elasticity of agricultural
output with respect to R&D expenditure (0.05), and estimate that to increase
annual growth in output from current 1% to the 1.34%, potentially needed to
meet increase in global demand by 2050, current global annual spending on
agricultural R&D of US$36 billion should increase by 6.8%, or US$2.5 billion
per annum. Von Braun et al. (2008) simulate the impact of doubling R&D
funding in developing countries, from about US$4.6 billion to US$9.3 billion per
annum over 2008-2013 period, and then keeping R&D expenditure at the new
higher level. They assume that inputs are �xed at the base year of analysis,
and agricultural output depends only on R&D stock. Under some reasonable
assumptions on R&D elasticities, they �nd that targeting new resources toward
maximizing total agricultural output results in increase in output growth from
0.5% in 2008 to 1.5% in 2020. This analysis was further re�ned in Pratt and
Fan (2010) who consider sensitivity of the results with respect to assumption
on elasticity of output with respect to stock of R&D.

On a global scale, the answer to the question how much investment shall
be put into agricultural R&D, depends on the demand for food in the future.
The most important determinants of this demand are the size of global popula-
tion and per capita income growth (Hertel et al., 2016). Developments of these
variables in the 21st century are highly uncertain. According to the Shared
Socioeconomic Pathways (SSPs) (IIASA, 2015), the spread between low and
high global population levels in 2100 is about 5.8 billion people, and average
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global per capita income ranges between 22 and 138 thousand 2005US$, while
results of the Yale Long-Run Growth Survey indicate much wider range of pos-
sible global per capita income outcomes in the end of this century (Christensen
et al., 2016). On the supply side, there are many uncertainties as well, including
the e�ectiveness with which R&D spending translates into increased agricultural
productivity growth, which, in turn, depends on uncertain impacts of climate
change.

Studies that quantify changes in agricultural productivity over time consider
di�erent measures of productivity, including physical crop yield, land and labor
productivity, as well as total factor productivity (TFP). TFP accounts for input
substitution. Piesse and Thirtle (2010) point out that although yield growth has
slowed in aggregate and labor productivity growth varies by region, TFP has
improved in most regions. Studies of the contributions of agricultural research
and extension to productivity growth often use TFP as a measure of agricultural
productivity. These studies highlight that technological innovation � from new
technologies to commercial development and transmission to farmers � takes
time, and represent TFP as a function of a weighted sum of R&D expenditures
over some number of past years (Alston et al., 2010).

The goal of the present study is to analyze optimal path of global agricul-
tural R&D spending in the 21st century and understand impacts of uncertainty
in future growth of per capita income on decisions to invest in agricultural R&D,
while factoring in the long time lag in response of agricultural productivity to
R&D expenditures. Quanti�cation of uncertainty in future economic growth
rates, however, is a very di�cult task. Such an exercise involves assumptions
about new technologies, future educational attainment, institutional reforms
and political stability (Gillingham et al., 2015). In the absence of this informa-
tion, researchers rely on scenario-based forecast or experts opinions regarding
possible growth rates in the 21st century and their probability distributions.
Christensen et al. (2016) document, however, that uncertainty in global growth
rates quanti�ed with experts' forecast is substantially higher than what is im-
plied by scenario-based estimates currently used in policy research. Following
this new �nding, this study quanti�es uncertainty using economic experts' opin-
ions regarding probability distribution of the long-run economic growth using
the survey results reported in Christensen et al. (2016).

The paper is organized as follows. Section 2 is devoted to mathematical for-
mulation of the problem and presents a dynamic forward looking model of land
use with endogenous investments into agricultural R&D to improve agricultural
productivity, and uncertain economic growth. In the model, the social planner
chooses a path of R&D spending and resource allocation from now to 2100 to
maximize expected global welfare. The planner takes into account increasing
global population and realizes that it will take several decades before invest-
ments in R&D spent today translate into increases in agricultural productivity.
Resources available each period to the social planner depend on future economic
growth rates, but the growth rates are not known with certainty. Therefore, the
social planner employs experts forecast regarding the economic growth rates.
However, di�erent experts have di�erent opinions regarding the probability dis-
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tribution of productivity growth in this century. In an e�ort to come up with
the best plan, the social planner takes into account the opinions of all the ex-
perts and chooses the path of R&D spending that minimizes maximum regret
(MMR) associated with not choosing one speci�c distribution from the provided
ones by the experts. Section 3 is devoted to the results and presents optimal
R&D spending when opinion of each expert is separately taken into account
and then, the MMR R&D spending path. The MMR R&D spending path is
then compared with a path obtained from maximizing expected global welfare
when probability distribution of growth rates is constructed by averaging across
experts' forecasts. Section 4 discusses the �ndings and concludes.

2 Modeling Framework

2.1 Dynamic model of land use with endogenous agricul-

tural R&D and uncertain economic growth

To understand how uncertainty in future economic growth a�ects the optimal
level of global investments in agricultural R&D, we develop a dynamic forward
looking partial equilibrium (PE) model of global land use with endogenous R&D
spending that determines agricultural TFP. Economic growth in the 21st cen-
tury is described by annual growth rate in per capita income g. Let us assume
that cumulative distribution function of growth rate g is known, and is dis-
cretized into n possible values {gk : 1 ≤ k ≤ n} with respective probabilities
{pk : 1 ≤ k ≤ n}. The social planner's expected welfare maximization problem
becomes:

max
I,X1,...,Xn

n∑
k=1

pk

∞∑
t=0

δhtU(ykt )Πt (1)

subject to endowment availability, production functions, market clearing and
transition law constraints. In equation (1), I = {It : t ≥ 0} is the agricultural
R&D spending path, Xk is the vector path of resource allocation variables under
scenario k with annual growth rate gk, h is number of years within one period
in the model, δ is the annual utility discount factor, U is per capita utility, ykt
is the vector of per-capita consumption of goods produced in period t under
the decision (I,Xk), and Πt is global population at time t. Per capita utility is
given by:

U(ykt ) =

(
C(ykt )

)1−γ
1− γ

(2)

where γ > 0 represents degree of relative risk aversion, and C(ykt ) is the per-
capita consumption aggregator of the multiple �nal consumption goods and
services ykt . Consumer preferences are represented with An Implicit, Directly
Additive Demand System (AIDADS) (Rimmer and Powell, 1996) which has been
estimated on international cross-section data (Reimer and Hertel, 2004). This
demand system is very �exible in its description of the evolution of consumer
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demands as per capita income rises (Cran�eld et al., 2002). The consumption
aggregator C(yt) is computed implicitly using the following AIDADS prefer-
ences (scenario index k is omitted):

ln(C(yt)) =

[∑
q

(
αq + βqC(yt)

1 + C(yt)

)
ln
(
yqt − yq

)]
− 1− ln(Υ) (3)

where α, β, and Υ are parameters, and yq is subsistence level for �nal consump-
tion good q, and yt = {yqt }. When γ = 1, the utility is U(yt) = ln(C(yt)),
equivalent to the AIDADS utility speci�ed in Rimmer and Powell (1996).

A representative consumer derives utility from land-based, and other, goods
and services. The land-based �nal consumption goods include food, wood prod-
ucts, energy (including bioenergy), and ecosystem services. Production of these
�nal consumption goods, as well as intermediate inputs, is explicitly modeled
within the PE framework. A schematic diagram of this stylized economy with
focus on land-based goods and services is presented in Table S1 in Appendix.
For example, the agrochemical sector converts fossil fuels into nitrogen fertilizer
that is used in production of crops used for food and biofuels. The energy sector
combines petroleum and biofuels to produce energy services. The forestry sector
produces timber, which is further processed into wood products. A composite
of all other goods and services is used to represent competing �nal consumption
and as intermediate inputs in the land-based production sectors modeled in this
PE framework. For example, production of crops requires not only land and
fertilizer, but also other goods and services, such as labor and capital. The pro-
duction of the other goods and services is not captured within the PE model,
but rather is given exogenously and depends on future uncertain productivity
growth rate g. For each scenario k, its corresponding exogenous path of other
goods and services available in the economy is given by:

Ekt = E0(1 + gk)htΠt/Π0 (4)

where Π0 and E0 are base year global population and endowment of other goods
and services, respectively.

In the dynamic model of land use, both TFP and R&D are endogenous
variables, and TFP is a function of past R&D. The di�usion of innovations
in agriculture takes many years, so there is a lag between the R&D expendi-
tures and the productivity gains at the farm level that can extend over several
decades (Piesse and Thirtle, 2010). For example, Alston et al. (2010) �nd that
resources invested in agricultural R&D today will have their maximum impact
25 years from now, with R&D impacts persisting nearly half a century after the
initial expenditure. This �nding is con�rmed by Baldos et al. (2015) who em-
ploy Bayesian analysis to relate R&D spending to knowledge capital stocks and
�nally to agricultural productivity growth. The long lag structure documented
in econometric studies leads to the following speci�cation of the relationship
between TFP and past R&D. In the model with decadal time steps, next period
agricultural TFP (At+1) is a concave function of historical annual average over
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decade investments in R&D (It−i) i decades ago, as well as linear function of
historical productivity levels (At−3):

At+1 =

3∑
i=0

ci
√
It−i + φAt−3 (5)

where ci and φ are calibrated parameters (Cai et al., 2016). Lagged TFP is in-
cluded to prevent current TFP and agricultural production from falling to zero
in a situation of zero lagged R&D spending. In fact, a signi�cant share of the
R&D expenditures goes to support research aimed at preventing agricultural
productivity from declining in the face of co-evolving pests and diseases (Alston
et al., 2009). To parameterize this relationship, we use U.S. annual time series
data on agricultural TFP and R&D expenditures. We employ United States
Department of Agriculture, Economic Research Service data on U.S. agricul-
tural TFP growth over 1948-2007 (USDA-ERS, 2015). Information on R&D
expenditures for this time period is constructed using data available in USDA-
ERS (2012) and Hu�man and Evenson (2008). When estimating equation (5),
regression coe�cients on lagged R&D expenditure are restricted according to
the Bayesian lag weights estimated in Baldos et al. (2015). In light of the pro-
ductivity spillover e�ects from developed to developing countries, on one hand,
and rapid improvements in the quality of agricultural R&D activities world-
wide on the other, we use the relationship estimated on U.S. data to inform
the relationship between agricultural R&D and productivity at the global scale
over the coming century. Speci�cally, we assume that, in the 21st century, U.S.
investments, when scaled up to the global level, are capable of bringing a level
of global TFP comparable to that in the U.S.

Agricultural output depends on inputs used and the overall level of technol-
ogy, represented by TFP, as well as the changing climate. Meta-analysis of crop
impacts of climate change (Challinor et al., 2014) shows that global yields will
be damaged by global warming with yields dropping on average 4.9% per ºC
increase in temperature. To re�ect the impact of climate change on crop output
in the model, we pre-multiply TFP by (1 − ηTt) with η =0.049, where Tt is
change in global surface temperature relative to beginning of the 21st century.
This results in an outcome whereby past R&D spendings become less e�cient
in delivering agricultural output under a warmer climate.

To summarize, the vector of per-capita consumption of �nal goods ykt in
period t produced under the decision (I,Xk) and the k-th growth scenario can
be represented with the following production function vector:

ykt = F(At,X
k
t ;Ekt ) (6)

where Ekt is the k-th income path, At is level of technology in agriculture resulted
from R&D spending path I = {It : t ≥ 0},Xk

t is the vector of resource allocation
variables. The production functions (6) stand for the set of equations (S1)-
(S14) representing sectoral production functions, market clearing and resource
availability constraints given in the Appendix. Thus, the social planner solves
the expected welfare maximization problem subject to the constraints (2)-(6).
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2.2 Robust decision making in the face of ambiguity over

probability distributions

The social planner is provided with probability distributions of per capita in-
come growth in the 21st century by several economic experts. For each distri-
bution, the expected welfare maximization method (1) can be applied to �nd
the optimal path of R&D spending. However, no weights are provided for each
distribution. Thus, the social planner is faced with ambiguity over probability
distributions (Lange and Treich, 2008). To �nd optimal R&D spending, the
social planner takes into account the opinions of all the experts and chooses
the path of R&D spending that minimizes maximum regret associated with not
choosing one speci�c distribution from those provided by the experts. Let us
assume that there are m experts providing di�erent probability distributions of
per capita income annual growth rate g. Each distribution have the same set
of possible values of g, {gk : 1 ≤ k ≤ n}, but their respective probabilities are
dependent on the corresponding distribution, denoted {pj,k : 1 ≤ k ≤ n} for
the j-th distribution.1

Thus, the possible future annual income scenarios are the same as (4), while
their corresponding probabilities may di�er across experts. Let

W(I,X1, ...,Xn; j) ,
n∑
k=1

pj,k

∞∑
t=0

δhtU(ykt )Πt

denote the total expected welfare with given policy paths (I,X1, ...,Xn), and
the j-th distribution (j-th expert). We �rst solve

G(j) , max
I,X1,...,Xn

W(I,X1, ...,Xn; j) (7)

subject to the constraints (2)-(6) corresponding to the j-th distribution. That is,
for each distribution we �nd its corresponding optimal solution of agricultural
R&D spending I and resource allocations X1, ...,Xn. The regret function is
de�ned as

R(I,X1, ...,Xn; j) , G(j)−W(I,X1, ...,Xn; j) (8)

for a given distribution j. We then solve the MMR model

min
I,X1,...,Xn

max
j

R(I,X1, ...,Xn; j) (9)

using the computational method in Cai and Sanstad (2016). Note, the resulted
vector of optimal per capita consumption y∗t,k is now given by:

yk∗t = F(A∗t ,X
k∗
t ;Ekt ) (10)

where A∗t is the robust optimal TFP resulted from the robust optimal R&D
spending I∗, and Xk∗

t is the corresponding robust optimal solution for the given

1If some gk is not a possible value of g for distribution j, then its corresponding probability

is pj,k = 0.
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k-th income scenario in the MMR model (9). This formulation of the MMR
method assumes that the R&D spending path I is the robust decision that is
independent of both distribution and income scenarios (and I determines opti-
mal At), while the optimal decision variables X are assumed to be independent
of distributions but dependent on income scenarios, because these resource al-
locations X can be optimally adjusted as the true scenario unfolds.

2.3 Expert forecasts

Gillingham et al. (2015) study the uncertainty of major outcomes of climate
change using multiple integrated assessment models. One of the uncertain fac-
tors they attempt to quantify is growth in per capita output, or productivity. To
develop estimates of the associated uncertainty, they employ results of a survey
of economic experts on economic growth to determine both the central tendency
and the uncertainty about long-run growth trends. The survey procedure and
its results are documented in Christensen et al. (2016). In the survey, a panel
of experts is asked to characterize uncertainty in estimates of economic growth,
where the growth is de�ned as the average over 2010-2100 period annual rate
of growth of real per capita GDP. Christensen et al. (2016) collect 13 experts'
opinions about the 10%, 25%, 50%, 75% and 90% quantiles of the uncertain
annual growth rate, and then use their sample means to provide the corre-
sponding summary quantiles. In the present study, we apply piecewise linear
interpolation and extrapolation to the data reported in Figure 9 in Christensen
et al. (2016), excluding negative growth rates since they result in violations of
the AIDADS subsistence, to construct expert-speci�c cumulative distribution
functions for average annual growth rate in the 21st century. Then, each cumu-
lative distribution function is discretized over n = 21 possible values of growth
rates, {gk : 1 ≤ k ≤ n}, and their respective probabilities {pk : 1 ≤ k ≤ n}
are computed, where pk is the di�erence between the cumulative probability at
(gk−1 + gk)/2 and the cumulative probability at (gk + gk+1)/2, where g0 = −∞
and gn+1 = ∞. The resulting cumulative distribution functions (CDFs) are
presented in Figure S1 in the Appendix.

3 Results

In order to illustrate the basic economic mechanisms in this model, we present
three illustrative simulations in Figure 1. These are all deterministic simula-
tions, such that there is no uncertainty about the underlying rate of per capita
income growth. The assumed growth rates are 1%, 2% and 3%/year over the
entire 21st century. Economic growth produces two competing forces in the
model. First, higher per capita income growth means that food demand will
grow faster and, ceteris paribus, it is desirable to produce more food. How-
ever, this food can be produced in two di�erent ways. With current technology
(�xed TFP), food production can be increased by using more of non-land inputs
per unit of land. Alternatively, we can invest in improved technology, thereby
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boosting TFP over time, and eventually conserving both land and non-land
inputs. Since the question of investment is problem of intertemporal alloca-
tion over time, it will depend on the consumption discount rate, de�ned as
u′(C(yt))/(u

′(C(yt+1))δh)− 1.
The �rst panel in Figure 1 reports paths of the consumption discount rate

for three deterministic growth scenarios, each one with a successively higher rate
of economic growth: 1%, 2% and 3%/year, over the course of the 21st century.
Note that, with the high rate of growth (3%/year), the initial consumption
discount rate is nearly twice as high as that under the low growth scenario. This
translates into a relatively lower rate of investment in R&D in the initial period
(see the second panel in Figure 1). As we forward in time, this consumption
discount rate changes relatively little for the low growth scenario � hence the
�at optimal path of investment. However, the consumption discount rate for
the high growth scenario falls dramatically with time, thereby explaining the
rapid acceleration in R&D spending. That is, the opportunity cost of deferring
consumption falls, thereby encouraging relatively more investment. In the long
run, with high growth, food demand is much higher and the level of TFP is also
much higher than under the low growth scenario (see the third panel in Figure
1).

Figure 1: Consumption discount rate, optimal R&D spending and TFP with
deterministic economic growth

The �rst column of Figure 2 presents the results from three di�erent expert
CDFs built up from the data points reported in Figure 9 of Christensen et al
(2016). We call these three experts, respectively, the bear, the turtle and the
bull. As can be seen from the CDFs, the di�erences across expert opinions can
be dramatic! In the opinion of the bear, there is a 40% probability that average
growth over the coming century will be zero or negative. (We truncate these
CDFs at zero, as negative entries create infeasibilities owing to the subsistence
parameters in the AIDADS utility function.) The bull, on the other hand, rules
out zero growth rates, beginning the CDF just about where the bear leaves o�
(about 2.5%), and reaching as high as 6%/year at the high end of the probability
distribution. In between, we have the turtle, who believes in a slow and steady
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growth rate of about 2%/year over the century, with a high degree of con�dence.
The fourth row in the �rst column of this �gure represents the summary CDF
created by averaging the individual CDFs from all 13 experts in the growth
survey (see S1).

Figure 2: CDFs of three experts and summary CDF, and optimal R&D spending and
agricultural productivity resulted from solving expected welfare maximization
problem for each CDF

The second and third columns in Figure 2 draw out the implications of these
di�erent views of the future. As can be seen, the optimal R&D paths (column
two) di�er dramatically. In the case where there is signi�cant probability of zero
growth in the future, R&D spending starts out high � about $90 billion/year,
or more than twice current levels, globally (recall the �atter path associated
with the low growth rate in Figure 1), and it remains roughly constant through
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the entire century. This `bear scenario' re�ects the signi�cant probability that
growth will come to a halt, thereby raising the opportunity cost of future R&D.
This stands in stark contrast to the bullish case, wherein the expert is con�dent
of future growth, with the only question being how high this will be. So it
makes sense to postpone investments until the consumption discount rate falls.
However, with strong growth in per capita income and demand, the R&D tra-
jectory is steep, reaching a level double that associated with the bear expert,
by mid-century. Turtle's optimal spending trajectory falls in between the bear
and the bull, starting out higher than the bull, but growing more slowly.

Finally, we have the implications of the summary CDF which was created
by averaging the CDFs of the 13 original experts. This spending path is quite
di�erent from the turtle, even though their mean growth rates are quite similar.
This di�erence stems from the non-zero probability of a zero rate of economic
growth over the 21st century. For this reason, initial spending based on the
summary CDF starts out at $50 billion, rising thereafter to $100 billion at
2040, and remaining at that level going forward.

The �nal column in Figure 2 shows the consequences of these spending paths
for TFP in agriculture. In the case of the bear scenario, TFP rises rapidly for
the �rst forty years, and then �attens out. In contrast, the bull expert CDF
results in TFP staying �at until 2030, then rising linearly at a rapid rate going
forward. The turtle follows a similar path to the bull case, but growth starts
sooner and the ensuing slope is lower. Finally, the summary CDF results in
steady growth in TFP to mid-century, followed by a leveling o�. Productivity
in 2100 is about double current levels under the summary CDF.

Based on the diverse growth expectations of the 13 experts in the Christensen
et al. survey, there is massive uncertainty regarding future economic growth.
And this is not only uncertainty about the expected long run rate of economic
growth, but also about the probability distribution of these growth rates. This
puts decision makers in a world of ambiguity (Lange and Treich, 2008): we have
13 di�erent probability distributions instead of just one, and we have no idea
which one is more likely to be correct.

Christensen et al. (2016) recommend creating an aggregate (across experts)
forecast distribution which can be used in subsequent uncertainty analysis. This
is similar in spirit to our summary CDF which results in the optimal paths
for R&D spending and TFP reported in the �nal row of Figure 2. However,
given the dramatic di�erence between optimal paths which include, and exclude,
the probability of zero economic growth, it is not clear that simply averaging
the quantile probabilities is the most sensible approach to this ambiguity. An
alternative approach is to apply the MMR method (9) to get the robust optimal
solutions of R&D spending and TFP.
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Figure 3: Optimal R&D spending and TFP with MMR for ambiguity over
probability distributions

To understand the implications of these di�erent approaches to ambiguity,
Figure 3 presents three di�erent optimal paths for R&D and TFP. In the �rst
case, we simply adopt a 2.2%/year growth rate, which is the expected growth
rate under the summary CDF, and solve this as a deterministic problem. This
results in a steadily rising rate of R&D investment and TFP (with global R&D
spending starting at level close to $36 billion observed in the beginning of this
century). The second optimal path in the face of ambiguity is based on the
summary CDF. In this case, there is a non-negligible probability of zero growth
over the course of the century, and so the decision maker builds up the R&D
stock more quickly, before letting it level o� at mid-century. The �nal approach
to ambiguity uses the MMR solution which, rather than averaging the 13 dif-
ferent CDFs, actually factors in the optimal path under each and every one of
those cases. The choice of optimal R&D path under this approach is made in
order to minimize the maximum regret associated with not choosing one speci�c
distribution from those provided by the experts. This approach further accen-
tuates the response to potential zero growth rates, as it includes the probability
distribution belonging to the `bear' forecaster, who foresees a 40% probability
of non-positive growth over the 21st century. In 2020, the MMR path dictates
about 15% more spending on R&D, relative to the summary CDF approach,
and about 40% more R&D spending than in the deterministic case. The extra
R&D spending in the early periods in the MMR case leads to higher TFP before
2060. By the end of this century, MMR TFP stays �at at a level about 92%
higher than at the start.
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4 Summary and Conclusions

When viewed from a global economic perspective, the world is a very uncertain
place at the moment. Projecting economic growth, population and climate (as
well as its impacts) over the 21st century is a daunting task. One approach to
this problem has been the development of SSPs (O'Neill et al., 2014) designed
to capture a variety of di�erent story-lines around political and economic con-
ditions over the coming century. This approach is currently in widespread use
by integrated assessment modelers. Its great advantage is that it provides a
consistent characterization of these alternative futures, such that the evolution
of population is consistent with the evolution of per capita income, and both of
those are consistent with the emissions of greenhouse gases and climate change.
In related work Cai et al. (2016) have explored the implications of these multiple
sources of uncertainty over the 21st century for optimal agricultural R&D.

The path-breaking work of Gillingham et al. (2015) analyzes long run un-
certainties in integrated assessment modeling and concludes that the most im-
portant source of uncertainty over the coming century is the rate of economic
growth � which in turn is tied to the underlying rate of economy-wide produc-
tivity growth. When they take a deeper look into the uncertainty associated
with long run growth, they �nd that the IAM community has vastly understated
the extent of such uncertainty. This is perhaps not surprising, given that the
SSPs and associated IAM projections are the result of lengthy consultations and
discussions � leading inevitably to a gravitation to the mean. By picking a set
of independent researchers, giving them the same information, and asking for
purely independent forecast distributions, Christensen et al. (2016) have shown
that the true extent of future growth uncertainty is likely far greater than that
embodied in the SSPs.

We build on the innovative research of Christensen et al. (2016), who report
quantiles for economic growth rates over the course of the 21st century from 13
independent experts. From these data points, we build 13 CDFs, as well as a
summary CDF. The latter is built from averages of the individual probabilities
across all 13 experts. For each of these 21st century per capita income growth
CDFs, we compute the optimal rate of R&D investment as well as the ensuing
path of TFP to 2100. The individual paths vary greatly across the experts. We
highlight three particular forecast distributions of interest: the `bull', the `bear'
and the `turtle'. As their names suggest, they embody very di�erent views of
the future. The bear foresees a high probability of non-positive growth in the
coming century. The bull's CDF starts where the bear's leaves o� � about 2.5%
growth per year, with potential growth rates as high as 6% per year! The turtle
believes in slow and steady growth of around 2.2% per year over the course of
this century. Using these independent probability distributions, we compute 13
di�erent optimal R&D investment and TFP trajectories. These vary greatly,
both in level and in shape. When there is a signi�cant probability of non-
positive growth over the next century, the optimal response is to invest a lot in
R&D today, and maintain a fairly �at trajectory over the entire century. This
is in sharp contrast to the optimal path when growth rates are strictly positive.
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In this case, R&D spending starts out slow, and accelerates over time. The
summary CDF results in a level of R&D which is about one third higher than
that observed today, and then rises fairly sharply till 2040, before leveling o�.

In this paper, we propose a novel approach to dealing with the ambiguity
posed by having 13 independent growth forecasts. The summary CDF implicitly
gives each forecaster equal weight. However, in light of the risk aversion asso-
ciated with economic stagnation, it would appear desirable to take a di�erent
approach. Here, we seek to minimize the maximum regret across all 13 optimal
growth paths. This results in higher R&D spending early in the century � in
2020 roughly 15% higher than that suggested by the summary CDF, and nearly
40% higher than that dictated by a deterministic model using 2.2% growth rate.
However, by mid-century, R&D spending levels o�, and TFP plateaus by the
end of the century at a level which is about twice as high as at the start.
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Supporting Information

The social planner's optimization problem is subject to endowment availabil-
ity, production function, market clearing and transition law constraints de�ned
below. The objective function of the maximization problem (1) has in�nite hori-
zon and cannot be computed exactly. In our computational examples, we use
the summation of discounted utility over 400 years as its approximation, and
focus on �rst 100 years of simulation in the analysis. The model is solved with
decadal time step.

A schematic diagram of the stylized partial equilibrium economy with focus
on land-based goods and services is presented in Table S1:

Table S1: Partial equilibrium model of land use

Production activities in the partial equilibrium model of land use are indexed
with superscript j. Let Xi,j

t denote quantity of intermediate input i used in pro-
duction sector j.Market clearing for each produced good i is Qit =

∑
j X

i,j
t . Xo,j

t

denotes quantity of other g&s used in production sector j. Production output
i that is used as an intermediate input and not as a �nal consumption good is
denoted by Qit. If output i is used as an intermediate input in activity j only,
then market clearing condition is Qit = Xi,j

t . To eliminate this �dummy� con-
straint, Qit is used to denote both output i and input i used in production sector
j. For example, the land-fertilizer composite is used in crop production only. So,
Qlft denotes both land-fertilizer composite output and land-fertilizer composite
input in crop production. Subscript �0� refer to observation at the point of nor-
malization (i.e., year 2004). LCt , L

F
t and L

N
t denote cropland, commercial forest

and natural areas. θit represent exogenous technological improvement, and At
represents endogenous level of technology in agriculture (TFP). Y jt denotes total
consumption of �nal good j and output of respective sector, so the per-capita
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consumption is

yt = (yfoodt , yet , y
w
t , y

r
t , y

o
t ) = (Y foodt , Y et , Y

w
t , Y

r
t , Y

o
t )/Πt (S1)

where yfoodt , yet , y
w
t , y

r
t and yot denote per capita consumption of food, energy

services, wood products, eco-system and recreation services, and other g&s,
respectively. Each production activity is represented with a constant elasticity
of substitution (CES) production function, where αj represents cost share of
speci�c input used in production of j (e.g. crop input used in food production),

(1 − αj) represents cost share of other g&s input, and ρj = (σj−1)
σj where σj is

the elasticity of substitution. These production functions are as follows:

� Petroleum production function:

Qpt = Qp0

(
αp
(
Xex,p
t

Xex,p
0

)ρp
+ (1− αp0)

(
Xo,p
t

Xo,p
0

)ρp)1/ρp

(S2)

where Xex,p
t denotes fossil fuels used in petroleum production.

� Fertilizer production function:

Qfertt = Qfert0

αfert(Xex,fert
t

Xex,fert
0

)ρfert

+ (1− αfert0 )

(
Xo,fert
t

Xo,fert
0

)ρfert1/ρfert

(S3)
where Xt

ex,fert denotes fossil fuels used in fertilizer production.

� Cropland and fertilizer composite production function:

Qlft = Qlf0

αlf (LCt
LC0

)ρlf
+ (1− αlf0 )

(
Qfertt

Qfert0

)ρlf1/ρlf

(S4)

� Crop production function:

Qct = (1− ηTt)AtQc0

αc(Qlf,ct

X lf,c
0

)ρc
+ (1− αc0)

(
Xo,c
t

Xo,c
0

)ρc1/ρc

(S5)

where Tt is the temperature increase, and At is a function of past R&D spending
and historical productivity level:

At+1 =

3∑
i=0

ci
√
It−i + φAt−3

� Crop-based food production function:
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Y foodt = θfoodt Y food0

αfood(Xc,food
t

Xc,food
0

)ρfood

+ (1− αfood0 )

(
Xo,food
t

Xo,food
0

)ρfood1/ρfood

(S6)

where Xc,food
t denotes crops used in food production.

� Biofuel production function:

Qbt = Qb0

αb(Xc,b
t

Xc,b
0

)ρb
+ (1− αb0)

(
Xo,b
t

Xo,b
0

)ρb1/ρb

(S7)

where Xc,b
t denotes crops used in biofuel production.

� Energy production function:

Y et = θetY
e
0

(
αe0

(
Qbt
Qb0

)ρe
+ (1− αe0)

(
Qpt
Qp0

)ρe)1/ρe

(S8)

� Timber production function:

Qtim = Qtim0

αtim(LF
LF0

)ρtim
+ (1− αtim0 )

(
Xo,tim

Xo,tim
0

)ρtim1/ρtim

(S9)

� Wood production function:

Y wt = θwt Y
w
0

(
αw0

(
Qtimt
Qtim0

)ρw
+ (1− αw0 )

(
Xo,w
t

Xo,w
0

)ρw)1/ρw

(S10)

� Ecosystem and recreation services:

Y rt = Y r0

(
αr0

(
LN

LN0

)ρr
+ (1− αr0)

(
Xo,r

Xo,r
0

)ρr)1/ρr

(S11)

� The other g&s consumption:

Y ot = Et −
∑

i∈{fert,c,b,food,p,tim,w,r}

Xo,i
t − It (S12)

where Et is total annual other g&s, given exogenously, Y ot is other g&s con-
sumed, and It is the annual global R&D spending.

� Market clearing condition for extracted fossil fuel:

Xex,p
t +Xex,fert

t −Qext = 0 (S13)
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� Market clearing condition for crops:

Xc,b
t +Xc,food

t −Qct = 0 (S14)

For simplicity, in this paper we assume that cropland LCt , natural land LNt ,
and commercial forest land LFt have �xed areas over the analyzed time horizon,
and the path of extracted fossil fuels Qext , used for liquid fuels and production
of fertilizer in the model, is given exogenously and driven by growth in global
population and technological improvements in production of energy services θet .

The model is benchmarked to the year 2004 using FAOSTAT (FAOSTAT,
2015) and GTAP v.7 data bases (Narayanan and Walmsley, 2008). In addition
to the AIDADS parameters, which have been estimated for this study using the
GTAP data base, the elasticity of substitution between land and fertilizer in
crop production is calibrated using econometric analysis in Hertel et al. (1996).
The elasticity of substitution between biofuel and petroleum is calibrated using
econometric analysis from Anderson (2012). Other input-output relationships
are assumed to occur in (nearly) �xed proportions.

Figure S1 shows 13 probability distribution functions of per capita income
growth constructed with opinions of 13 experts. The CDFs are constructed
using experts quantiles information presented in Figure 9 in Christensen et al.
(2016), with negative growth rates excluded. Figure S1 also shows the summary
CDF which is the average of these 13 CDFs.
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Figure S1: Cumulative distribution functions of 13 experts, constructed with
survey data reported in Christensen et al. (2016), and the summary distribution

Figures S2 and S3 show optimal solutions of R&D spending and TFP for
each probability distribution using the expected welfare maximization method.
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Figure S2: Optimal R&D spending using the expected welfare maximization
method

23



Figure S3: Optimal TFP using the expected welfare maximization method
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