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Abstract

We develop a model of firm dynamics with random search in the labor market where hiring
tirms exert recruiting effort by spending resources to fill vacancies faster. Consistent with mi-
cro evidence, in the model fast-growing firms invest more in recruiting activities and achieve
higher job-filling rates. In equilibrium, individual decisions of hiring firms aggregate into an
index of economy-wide recruiting intensity. We use the model to study how aggregate shocks
transmit to recruiting intensity, and whether this channel can account for the dynamics of aggre-
gate matching efficiency around the Great Recession. Productivity and financial shocks lead to
sizable pro-cyclical fluctuations in matching efficiency through recruiting effort. Quantitatively,
the main mechanism is that firms attain their employment targets by adjusting their recruiting
effort as labor market tightness varies. Shifts in sectoral composition can have a sizable impact
on aggregate recruiting intensity. Fluctuations in new-firm entry, instead, have a negligible

effect despite their contribution to aggregate job and vacancy creations.
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1 Introduction

A large literature documents cyclical changes in the rate at which the US macroeconomy
matches job seekers and employers with vacant positions. Aggregate matching efficiency, mea-
sured as the residual of an aggregate matching function that generates hires from inputs of job
seekers and vacancies, epitomizes this crucial role of the labor market.

The Great Recession represents a particularly stark episode of deterioration in aggregate
matching efficiency. Our reading of the data, displayed in Figure 1, is that this decline con-
tributed to a depressed vacancy yield, to a collapse in the job finding rate and to persistently
higher unemployment following the crisis. Identifying the deep determinants of aggregate
matching efficiency is therefore necessary for a full understanding of the labor market dynam-
ics during that period.

A number of explanations have been offered for the decline in aggregate matching efficiency
around the recession, virtually all of which have emphasized the worker side.! A shift in the
composition of the pool of job seekers towards the long-term unemployed, by itself, goes a long
way towards explaining the drop (Hall and Schulhofer-Wohl, 2013); however as documented
by Mukoyama, Patterson, and Sahin (2013), workers’ job search effort is counter-cyclical and
tends to compensate compositional changes. Hornstein and Kudlyak (2015) include both mar-
gins in their rich measurement exercise and conclude that they offset each other almost per-
fectly, leaving the entire drop in match efficiency from unadjusted data to be explained. A rise
in occupational mismatch shows more promise, but it can account for at most one third of the
drop and for very little of its persistence (Sahin, Song, Topa, and Violante, 2014).

The alternative view we set forth in this paper is that fluctuations in the effort with which
tirms try to fill their open positions affect aggregate matching efficiency. When aggregated
over firms, we call this factor aggregate recruiting intensity. Our goal is to investigate whether
this is an important source of the dynamics of aggregate matching efficiency, and to study the
economic forces that shape how it responds to macroeconomic shocks.

Our main motivation is the empirical analysis of recruiting intensity at the firm level in

Davis, Faberman, and Haltiwanger (2013) (henceforth DFH)—the first paper to rigorously use

1A notable exception is the model in Sedlagek (2014) that generates endogenous fluctuations in match efficiency
through time-varying firms” hiring standards.



Figure 1: Labor market dynamics around the Great Recession (2008:01 - 2014:01)
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Notes (i) Vacancies V;, and hires H; (used to compute vacancy-yield H;/V;) taken from monthly JOLTS data. Hires exclude recalls. (ii)
Unemployment U; is from the BLS and exclude workers on temporary layoffs. (iii) The job finding rate is H;/U;. (iv) Aggregate matching

efficiency is equal to H;/ (Vt“ U}“") with @ = 0.5. (v) These first five series are measured from January 2001 to January 2014, expressed in

logs and then HP-filtered. We plot level differences of these series from January 2008. (vi) (Firm) entry is taken from Census Business Dynamics
Statistics and computed annually as the number of firms aged less than or equal to one year old at the time of survey and is available from 1977
to 2007. To this we fit and remove a linear trend. We plot log differences of this series from 2007.

JOLTS micro-data to examine what factors are correlated with vacancy-yields at the firm-level.
The robust finding of DFH is that firms that grow faster fill their vacancies at a faster rate.”
The corollary of this fact is that if an aggregate negative shock depresses firm growth rates,
aggregate recruiting intensity—and, thus, aggregate match efficiency—declines because hiring
firms use lower recruiting effort to fill their posted vacancies. We call this transmission chan-
nel, whereby the macro shock affects the growth rate distribution of hiring firms, the composition
effect. Macro shocks also induce movements in equilibrium labor market tightness. When a neg-
ative shock hits the economy, job seekers become more abundant relative to vacancies, so firms
meet workers more easily and can therefore exert less recruiting effort to reach a given hiring
target. We call this second transmission channel the slackness effect, in reference to aggregate

labor market conditions.

2The numerous exercises in DFH show that this finding is not in any way spurious. For example, by definition,
a firm that luckily fills a large amount of its vacancies will have both a higher vacancy yield and a higher growth
rate. The authors show that luck does not drive their main result.



Both mechanisms seem potentially relevant in the context of the Great Recession. As ev-
ident from Figure 1, the data display a collapse in market tightness indicating the potential
for a strong slackness effect. The figure also shows that the rate at which firms entered the
economy fell dramatically in the aftermath of the recession. The dominant narrative is that
the crisis was associated with a sharp reduction in borrowing capacity, and start-up creation as
well as young firm growth are particularly sensitive to financial shocks (Chodorow-Reich, 2014;
Davis and Haltiwanger, 2015; Mehrotra and Sergeyev, 2015; Siemer, 2013). Combining this ob-
servation with the fact that much of job creation (and thus hires) are generated by young firms
(Haltiwanger, Jarmin, and Miranda, 2010) paves the way for a sizable composition effect.

Our approach is to develop a model of firm dynamics in frictional labor markets that can
guide us to inspect the transmission mechanism of two common macroeconomic impulses—
productivity and financial shocks—on aggregate recruiting intensity. The model is consistent
with the stylized facts that are salient to an investigation of the interaction between macro
shocks and recruiting activities: (i) it matches the DFH finding that increases in firm hiring
rates are realized chiefly through increases in vacancy yields rather than increases in vacancy
rates; (ii) it allows for credit constraints that hinder the birth of start-ups and slow the expansion
of young firms; and (iii) it is set in general equilibrium, since the recruiting behavior of hiring
tirms depends on labor market tightness which fluctuates strongly in the data (Shimer, 2005).

Our model is a version of the canonical Diamond-Mortensen-Pissarides random match-
ing framework with decreasing returns in production and non-convex hiring costs
(Cooper, Haltiwanger, and Willis, 2007; Elsby and Michaels, 2013; Acemoglu and Hawkins,
2014). The model simultaneously features a realistic firm life-cycle, consistent with its clas-
sic competitive setting counterparts (Jovanovic, 1982; Hopenhayn, 1992), and a frictional labor
market with slack on both demand and supply sides. We augment this environment in three
dimensions.

First, we allow for endogenous entry and exit of firms. This is a key element for under-
standing the effects of macroeconomic shocks on the growth rates of hiring firms, since it is
well documented that young firms account for a disproportionately large fraction of job cre-
ation, grow faster than old firms, and are more sensitive to financial conditions.

Second, we introduce a recruiting intensity decision at the firm level: besides the number of

open positions that they are willing to fill in each period, hiring firms choose the amount of re-
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Figure 2: Breakdown of spending on recruiting activities. Source: Bersin & Associates (2011)
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sources that they devote to recruitment activities. This endogenous recruiting intensity margin
generates heterogeneous job filling rates across firms. In turn, the sum of all individual firms’
recruitment efforts, weighted by their vacancy share, aggregates to the economy’s measured
matching efficiency.

Third, we introduce financial frictions: incumbent firms cannot issue equity, and a
constraint on borrowing restricts leverage to a multiple of collateralizable assets, as in
Evans and Jovanovic (1989).3

We parameterize our model to match a rich set of aggregate labor market statistics and firm-
level cross-sectional moments. In choosing the recruiting cost function, we ‘reverse-engineer’
a specification that allows the model to replicate DFH’s empirical relation between the job-
filling rate and the growth rate at the establishment level from the Job Openings and Labor
Turnover Survey (JOLTS) micro data. Our parameterization of this cost function is based on
a novel source of data, a survey of recruitment cost and practices based on over 400 firms
representative of the US economy. Figure 2 gives a breakdown of spending on all recruitment
activities in which firms engage in order to attract workers and quickly fill their open positions,

as reported by the survey. Our hiring cost function is meant to summarize all such components.

30ther papers that consider various forms of financial constraints in frictional labor market models in-
clude Wasmer and Weil (2004), Petrosky-Nadeau and Wasmer (2013), Eckstein, Setty, and Weiss (2014), and
Buera, Jaef, and Shin (2015). Though none of these models displays endogenous fluctuations in match efficiency.
An exception is Mehrotra and Sergeyev (2013) where a financial shock has a differential impact across industries
and induces sectoral mismatch between job-seekers and vacancies.
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We find that both productivity and financial shocks—modelled as shifts in the collat-
eral parameter—generate substantial pro-cyclical fluctuations in aggregate recruiting intensity.
However, the financial shock generates movements in firms entry, labor productivity and bor-
rowing consistent with those observed during the 2008 recession, whereas the productivity
shock does not. The credit tightening accounts for approximately half of the drop in aggregate
matching efficiency observed in the Great Recession through a decline in aggregate recruit-
ing intensity. Notably, our model is consistent with a key cross-sectional fact documented by
Moscarini and Postel-Vinay (2016): the vacancy yield of small establishments spiked up as the
economy entered the downturn, whereas that of large establishments was much flatter. The
reason is that the financial shock impedes the growth of a segment of very productive, already
large, but relatively young, firms with much of their growth potential still unrealized. These
tirms drastically cut their hiring effort.

Our examination of the transmission mechanism indicates that the slackness effect is the
dominant force: aggregate recruiting intensity falls mainly because the number of available
job seekers per vacancy increases, allowing firms to attain their recruitment targets even by
spending less on hiring costs. Surprisingly, the impact of the shock through the the shift in the
distribution of firm growth rates (and, in particular, the decline in firm entry and young firm
expansion) on aggregate recruiting intensity is quantitatively small. Two counteracting forces
weaken this composition effect: (i) hiring firms are selected, thus relatively more productive
than in steady-state; and (ii) the rise in the abundance of job seekers, relative to open positions,
allows productive units —especially those financially unconstrained— to grow faster.

In an extension of the model, we augment the composition effect with a sectoral compo-
nent by allowing permanent heterogeneity in recruiting technologies across industries. As
Davis, Faberman, and Haltiwanger (2013) document, Construction and a few other sectors
stand out in terms of their frictional characteristics by systematically displaying higher than
average vacancy filling rates. In addition, these are the industries that were hit hardest by
the crisis. In agreement with Davis, Faberman, and Haltiwanger (2012b), our measurement ex-
ercise concludes that, in the context of the Great Recession, the shift in composition of labor
demand away from these high-yield sectors played a nontrivial role in the decline of aggregate
recruiting intensity.

We conclude the paper by making use of our theory to propose a rule-of-thumb index of
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aggregate recruiting intensity that is easy to compute from available labor market aggregates
and can be updated in real time, as new JOLTS and BLS data gets released. We compare our
index to that put forward by DFH, which is based on a distinct derivation entirely rooted in their
‘generalized matching function’. We find that the two measures track each other quite closely
in the downturn, however our indicator displays a faster recovery. This result tentatively leads
us to conclude that the protracted atrophy of US aggregate match efficiency is caused by factors
other than a persistent cutback in the recruiting effort of employers.

To the best of our knowledge, only two other papers have developed models of recruiting
intensity. Leduc and Liu (2016) extend a standard Diamond-Mortensen-Pissarides model to one
in which a representative firm chooses search intensity per vacancy. Without firm heterogene-
ity, they are unable to speak to the cross-sectional empirical evidence that recruiting intensity is
tightly linked to firm growth rates, a key observation that we use to discipline our framework
and assess the magnitude of the composition effect. Kaas and Kircher (2015) is the only other
paper that focuses on heterogeneous job filling rates across firms. In their directed search envi-
ronment, different firms post distinct wages that attract jobseekers at differential rates, whereas
we study how firms’ costly recruiting activities determine differential job filling rates. One
would expect both factors to be important determinants of the ability of firms to grow rapidly.
For example, from Austrian data, Kettemann, Mueller, and Zweimuller (2016) document that
job filling rates are higher at high-paying firms but. However, after controlling for the firm
component of wages, they remain increasing in firms’ growth rates implying that wages are
not the whole story: employers use other instruments besides the compensation package to
hire quickly.

Moreover, while they (and Leduc and Liu, 2016) study aggregate productivity shocks—as
we do, as well—we further analyse financial shocks, showing that the dynamics of macroeco-
nomic variables during the Great Recessions are consistent with financial, rather than produc-
tivity, shocks. Finally, while in both our and their model aggregate recruiting intensity drops
after a negative aggregate shock, the reasons fundamentally differ. Kaas and Kircher (2015)
argue that the drop depends on recruiting intensity being a concave function of firms’ hiring
policies, whose dispersion across firms increases after a negative shock. Our decomposition of
the transmission mechanism linking macroeconomic shocks and aggregate recruiting intensity

allows us to infer that the main source of the drop is the increase in the number of available job
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seekers per vacancy, which allows firms to scale back their recruiting effort.

The rest of the paper is organized as follows. Section 2 formalizes the nexus between firm-
level recruiting intensity and aggregate match efficiency. Section 3 outlines the model economy
and the stationary equilibrium. Section 4 describes the parameterization of the model, and high-
lights some cross-sectional features of the economy. Section 5 describes the dynamic response
of the economy to macroeconomic shocks, explains the transmission mechanism, and outlines
the main results of the paper. Section 6 discusses two extensions of the model (i) sectoral hetero-
geneity in vacancy filling rates and (ii) on-the-job search. Section 7 proposes a novel empirical
measure of aggregate recruiting intensity based on our model, and illustrates its behavior over

time. Section 8 concludes.

2 Recruiting Intensity and Aggregate Matching Efficiency

We briefly describe how we can aggregate hiring decisions at the firm level into an economy-
wide matching function with an efficiency factor that has the interpretation of average recruit-
ing intensity. This derivation follows DFH.

At date t, any given hiring firm i chooses v;;, the number of open positions, ready to be
staffed, and costly to create, as well as ¢;;, an indicator of recruiting intensity. Let v}, = e;;v;; be

the number of effective vacancies in firm i. Integrating over all firms we obtain:

Vi = / evidi, (1)

the aggregate number of effective vacancies. Under our maintained assumption of a constant
returns to scale Cobb-Douglas matching function, aggregate hires equal:
V* n V: n
Hi= (V) Ul = vl it = (1) = | e (32) ai] )
t
which corresponds to DFH’s generalized matching function. Therefore, measured aggregate

matching efficiency ®; is an average of firm-level recruiting intensity weighted by individual

vacancy shares, raised to the power of a, the economy-wide elasticity of hires to vacancies.



Finally, consistency requires that each firm i faces hiring frictions, implying that

hiy =g (9?) €it0it, 3)

where 07 = V;/U, is effective market tightness.* Thus, q (67) = H;/V;} = (0;)* ! is the

aggregate job filling rate per effective vacancy, constant across all firms at date .

3 Model

Our point of departure is an equilibrium random-matching model of the labor market in which
firms are heterogeneous in productivity and size, and the hiring process occurs through an
aggregate matching function. As discussed in the Introduction, we augment this model in three
dimensions—all of which are essential to develop a framework that can address our question.
First, our framework features endogenous firm entry and exit. Second, beyond the number
of positions to open (vacancies), hiring firms optimally choose their recruiting intensity: by
spending more on recruitment resources, they can increase the rate at which they meet job
seekers. Third, once in existence, firms face financial constraints.

In what follows, we present the economic environment in detail, outline the model tim-
ing, then describe the firm, bank, and household problems. Finally, we define a stationary
equilibrium for the aggregate economy. Since our experiments will consist of perfect foresight
transition dynamics, we do not make reference to aggregate state variables in agents’ problems.

We use a recursive formulation throughout.

3.1 Environment

Time is discrete and the horizon is infinite. Three types of agents populate the economy: firms,

banks, and households.

Firms. There is an exogenous measure A of potential entrants each period, and an endogenous

measure A of incumbent firms. Firms are heterogeneous in their productivity z € Z, stochastic

4Throughout we are faithful to the notation in this literature and denote measured labor market tightness V; / Uy
as 0.



and i.i.d. across all firms, and operate a decreasing-returns-to-scale (DRS) production technol-
ogy y(z,n’, k) that uses inputs of labor n’ € N and capital k € K. The output of production is a
homogeneous final good, whose competitive price is the numeraire of the economy.

All potential entrants receive an initial equity injection ag from households. Next, they draw
a value of z from the initial distribution Iy (z) and, conditional on this draw, decide whether to
enter and become an incumbent by paying the set-up cost xp. Those that do not enter return
the initial equity to the households.” This is the only time when firms can obtain funds directly
from households—throughout the rest of their lifecycle they must rely on debt issuance.

Incumbents can exit exogenously or endogenously. With probability ¢, a destruction shock
hits an incumbent firm, forcing it to exit. Surviving firms observe their new value of z, drawn
from the conditional distribution I (dz, z), and choose whether to exit or continue production.
Under either exogenous or endogenous exit, the firm pays out its positive net-worth a to house-
holds. Those incumbents that decide to stay in the industry pay a per-period operating cost x
and then choose labor and capital inputs.

The labor decision involves either firing some existing employees or hiring new workers.
Firing is frictionless, but hiring is not: a hiring firm chooses both vacancies v and recruitment
effort e with associated hiring cost C(e, v, n), which also depends on initial employment. Given
(e,v), the individual hiring function (3) determines current period employment n’ used in pro-
duction. To simplify wage setting, we assume firms” owners make take-it-or-leave it offers to
workers, so the wage rate equals w, the individual flow value from non-employment.

The capital decision involves borrowing capital from financial intermediaries (banks) in in-
traperiod loans. Due to imperfect contractual enforcement frictions, firms can appropriate a
fraction 1/¢ of the capital received by banks, with ¢ > 1. To pre-empt this behavior, a firm
renting k units of capital is required to deposit k/ ¢ units of their net worth with the bank. This
guarantees that, ex-post, the firm does not have an incentive to abscond with the capital. Thus,
a firm with current net worth a faces a collateral constraint k < ¢a. This model of financial

frictions is based on Evans and Jovanovic (1989).

Banks. The banking sector is perfectly competitive. Banks receive household deposits, freely

transform them into capital, and rent it to firms. The one-period contract with households pays

SWithout loss of generality, we could have assumed that a fraction of the initial equity is sunk to develop the
blueprint, i.e., attain the draw of z, and in case of no entry only the remaining fraction is returned to the financier.
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Firm Agg.

state state Exit Exit Entry Capital Labor Produce Payments Dividends
Draw z Exog. Endog. Emp:ng k< ¢@a Fire: n’ y(z,n', k) {(r+ )k, wn’ a' >0
(n,a,z) (A, U) by Assets: ag — xo Hire: (n',e,0) C(e,v,n), X} d>0
V* = [evdA D,C,T',M
0*=Vv*/U

Figure 3: Timeline of the model

a risk-free interest rate of r. Capital depreciates at rate 6 in production, and so the price of

capital charged by banks to firms is (7 + ).

Households. We envision a representative household with L family members, U of which are
unemployed. The household is risk-neutral with discount factor f € (0,1). It trades shares M
of a mutual fund comprised of all firms in the economy and makes bank deposits T. It earns
interest r on deposits, the total wage payments that firms make to employed family members,
and D dividends per share held in the mutual fund. Moreover, unemployed workers produce

w units of the final good at home. Household consumption is denoted by C.

Before describing the firm’s problem in detail, we outline the precise timing of the model,
summarized in Figure 3. Within a period, the events unfold as follows: (i) realization of the
productivity shocks for incumbent firms; (ii) endogenous and exogenous exit of incumbents;
(iii) realization of initial productivity and entry decision of potential entrants; (iv) borrowing
decisions by incumbents; (v) hiring/firing decisions and labor market matching; (vi) produc-
tion and revenues from sales; (vii) payment of wage bill, costs of capital, hiring and operation
expenses; firm dividend payment/saving decisions, and household consumption/saving deci-
sions.

To be consistent with our transition dynamics experiments in Section 5, it is useful to note
that we record aggregate state variables—the measures of incumbent firms A and unemploy-
ment U—at the beginning of the period, between stages (i) and (ii). Moreover, even though the
labor market opens after firms exit or fire, workers who separate in the current period can only

start searching in the next one.
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3.2 Firm Problem

We first consider the entry and exit decisions, then analyze the problem of incumbent firms.

Entry. A potential entrant who has drawn z from Iy (z) solves the following problem

max { ao, Vi (no, a0 — xo,2) } , 4)

where V' is the value of an incumbent firm, a function of (n,a,z). The firm enters if the value
to the risk-neutral shareholder of becoming an incumbent with one employee (19 = 1), initial
net worth equal to the household equity injection 2y minus the entry cost xp, and productivity
z exceeds the value of returning 4y to the household. Let i(z) € {0,1} denote the entry decision
rule, which depends only on the initial productivity draw, since all potential entrants share the
same entry cost, initial employment and ex-ante equity injection. As V' is increasing in z, there
is an endogenous productivity cut-off z* such that for all z > z* the firm chooses to enter. The

measure of entrants is therefore

)te = )to /Z Z(Z)dro = )LO [1 — ro(Z*)] . (5)

Exit. Firms exit exogenously with probability {. Conditional on survival the firm then chooses
to continue or exit. An exiting firm pays out its net worth a to shareholders. The firm’s expected

value V before the destruction shock equals
V(n,a,z)=Ca+ (1-7) max{\/i(n,a,z), a}. (6)

We denote by x (n,4,z) € {0,1} the exit decision.

Hire or Fire. An incumbent firm i with employment, assets, and productivity equal to the

triplet (1, a,z) chooses whether to hire or fire workers to solve
Wi(n, 4,z) = max {Wh(n, a,z),Wf(n, a,z)} ) (7)

The two value functions V/ and V" associated with firing (f) and hiring (k) are described

below.
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The Firing Firm. A firm that has chosen to fire some of its workers (or not to adjust its work

force) solves

V/i(n,a,z) = max d+ﬁ/z\/(n’,a’,z’)r(dz’,z) (8)
s.t.
n < n,
d+ad = yn' kz)+(Q+rja—wn' —(r+6k—y,
k < ¢a,
d > 0.

Firms maximize shareholder value and, because of risk-neutrality, use j as their discount factor.
The change in net-worth 4’ — a is given by revenues from production and interest on savings
net of the wage bill, rental and operating costs, and dividend payouts d. The last two equations
in (8) reiterate that firms face a collateral constraint on the maximum amount of capital they
can rent and a non-negativity constraint on dividends.

To help understand the budget constraint and preface how we take the model to the data,
define firm debt by the identity b = k — a, with the understanding that b < 0 denotes savings.
Making this substitution reveals an alternative formulation of the model in which the firm owns
its capital and faces a constraint on leverage. With state vector (n,k,b,z), the firm faces the

following budget and collateral constraints

d+ [k —(1-0)k] = [y, kz)—wn' —x—rb]+ [V —b] ,
~~ ~ ~ — ——
Investment Operating Profit A Borrowing

b/k < (9—1)/9.

This makes clear that the firm can fund equity payouts and investment in capital through either

operating profits or expanding borrowing/reducing saving.

The Hiring Firm. The hiring firm additionally chooses the number of vacancies to post v € R,
and recruitment effort e € R, understanding that, by a law of large numbers, its new hires

n' —n equal the firm’s job-filling rate ge of each of its vacancies times the number of vacancies
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v created: n’ — n = q(6*)ev.® Note that the individual job-filling rate depends on the aggregate
meeting rate g, which is determined in equilibrium and the firm takes as given, as well as its
recruiting effort e. The firm faces a variable cost function C(e, v, n), increasing and convex in e
and v.

A firm’s continuation value depends on #’, not on the mix of recruiting intensity e and
vacant positions v that generates it. As a result, one can split the problem of the hiring firm
in two stages. First, the choice of n/, k and d. Second, given n’, the choice of the optimal
combination of inputs (e, v). The latter reduces to a static cost-minimization problem:

C* (n,n") = min C(e,v,n) 9)

e,u

st. e>0, v>0, n—n=q(0)ev.

yielding the lowest cost combination e (1, 1) and v (n, 1) that delivers h = n’ — n hires to a
firm of size n, and implied cost function C* (n, n’).

The remaining choices of n’, k and d require solving the dynamic problem

V'(n,a,z) = max d+,B/ZW(n’,a’,z’)I"(dz’,z) (10)
s.t.
n > n,
d+d = yn' kz)+A+ra—wn' —(r+6k—x—C"(nn'),
k < ¢a,
d > 0.

The solution of this problem includes the decision rule n’ (1,4,z). Using this function in the
solution of (9), we obtain decision rules e (n,4,z) and v (n,a,z) for recruitment effort and va-
cancies in terms of firm state variables.

Given the centrality of the hiring cost function C (e, v, 1) to our analysis, we now discuss its

®The linearity of the individual hiring function in vacancies is one of the key empirical findings of DFH.
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specification. In what follows, we choose the functional form

K1 Ko 0\ 72
C(e,v,n)=|—e"+ — v, 11
(e,v,n) {’Yl P— <n> ] (11)

with 1 > 1 and 7, > 0 being necessary conditions for convexity of the maximization problem
(9). This cost function implies that the average cost of a vacancy, C/v, has two separate com-
ponents. The first is increasing and convex in recruiting intensity per vacancy e. The idea is
that, for any given open position, the firm can choose to spend resources on recruitment activi-
ties (recall Figure 2) to make the position more visible or the firm more attractive as a potential
employer, or to assess more candidates per unit of time, but all such activities are increasingly
costly on a per-vacancy basis. The second component is increasing and convex in the vacancy
rate, and captures the fact that expanding productive capacity is costly in relative terms: for
example, creating 10 new positions involves a more expensive reorganization of production in
a firm with 10 employees than in a firm with 1000 employees.

In Appendix A we derive several results for the static hiring problem of the firm (9) under
this cost function and derive the exact expression for C* (n,n") used in the dynamic problem

(10). We show that, by combining first-order conditions, we obtain the optimal choice of e

_1 _T2

K1 \7r1—1 n

and, hence, the firm-level job filling rate f (n,n') = q(6*)e(n,n’), as well as the optimal

vacancy-rate:

r
Equation (12) demonstrates that the model implies a log-linear relation between the job filling
rate and employment growth at the firm level, with elasticity 2/(y1 + 72). This is the key
empirical finding of DFH, who estimate this elasticity to be 0.82. In fact, one could interpret our
functional choice for C in equation (11) as a ‘reverse-engineering’ strategy in order to obtain,
from first principles, the empirical cross-sectional relation between firm-level job-filling rate

and firm-level hiring rate uncovered by DFH. Put differently, micro data sharply discipline the
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Figure 4: Cross-sectional relationships between monthly employment growth (n’ — n)/n and
the vacancy rate v/n and the job filling rate eq. Data from DFH online supplemental materials.
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recruiting cost function of the model.”

Why does firm optimality imply that the job filling rate increases with the growth rate with
elasticity 2/ (y1 + 72)? Recruiting intensity e and the vacancy rate (v/n) are substitutes in the
production of a target employment growth rate (n’ — n) /n—see the last equation in (9). Thus,
a firm that wants to grow faster than another will optimally create more positions and, at the
same time, spend more in recruiting effort. However, the stronger the convexity of C in the
vacancy rate (), relative to its degree of convexity in effort (<), the more an expanding firm
finds it optimal to substitute away from vacancies into recruiting intensity to realize its target
growth rate. In the special case when 7y, = 0, all the adjustment occurs through vacancies and
recruiting effort is irresponsive to the growth rate and to macroeconomic conditions, as in the
canonical model of Pissarides (2000).

Figure 4 plots the cross-sectional relationship between the vacancy rate and employment
growth (panel A) and the job filling rate and employment growth (panel B) in the model and
in the DFH data, with the elasticity of the job filling rate to firm’s growth 2/ (71 + 72) = 0.82.8
Since the individual hiring function is linear in vacancies, the elasticity of the vacancy rate to

firm’s growth equals y1 /(1 + 72) = 0.18.

7 Appendix A also shows that, once the optimal choice of e is substituted into (11), C can be stated solely in
terms of the vacancy rate and becomes equivalent to one of the hiring cost functions that Kaas and Kircher (2015)
use in their empirical analysis.

8In Figure 4, the model implies zero hires for firms with negative growth rates, whereas in the data time aggre-
gation and replacement hires leads to positive vacancy rates and vacancy yields also for shrinking firms.
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3.3 Household Problem

The representative household solves

W(T,M) = C+BW(T', M’ 14
(T, M) ppax C+p ( ) (14)
S.t.
C+QT'+PM = wL+(D+PM+T,

where C denotes household consumption; T are bank deposits; M are shares of the mutual fund
composed of all firms in the economy, with the aggregate number of shares normalized to one;
L denotes the number of household members. The share price is P and owning shares entitles
the household to dividends D, the sum of all firm dividends.’ Since the return from working
in the market and working at home are the same, total income is simply wL (which is also the
reason why unemployment U is not a state variable in the household’s problem).

The total wage bill is the integral over all wage payments from firms, while workers that are
idle this period and begin next period as unemployed job seekers produce w units of the final
good via home production.

From the first-order conditions for deposits and share holdings, we obtain Q = fand P =
B (P + D) which imply a constant return of r = B~! — 1 on both deposits and shares and,
thus, the household is indifferent over portfolios. Since the household is risk neutral, it is also

indifferent over the timing of consumption.

3.4 Stationary Equilibrium and Aggregation

Let Xy, 24, and Xz be the Borel sigma algebras over N and A, and Z. The state space for
an incumbent firm is S = N x A x Z, and we denote with s one of its points (n,4,z). Let
Y5 be the sigma algebra on the state space, with typical set S = N x A x Z, and (S,%s) be
the corresponding measurable space. Denote with A : £ — [0, ) the stationary measure of
incumbent firms at the beginning of the period, following the draw of firm level productivity,

before the exogenous exit shock.

9The initial equity injections into successful start-ups are treated as negative dividends.
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To simplify the exposition of the equilibrium, it is convenient to use s = (1,4,z) and 59 =
(no, a9 — Xo,z) as the argument for incumbents’ and entrants” decision rules.

A stationary recursive competitive equilibrium is a collection of firms’ decision rules
{i(z),x(s),n' (s),e(s),v(s),a (s),d(s),k(s)}, value functions {V, V!, V/, V"}, a measure of
entrants A,, share price P and aggregate dividends D, wage w, a distribution of firms A, and
a value for effective labor-market tightness 6* such that: (i) the decision rules solve the firms
problems (4)-(10), {V, V!, V/, V"] are the associated value functions, and A, is the mass of

entrants implied by (5); (ii) the market for shares clears at M = 1 with share price

P:/SV(s)d/\—f—Ao/Zi(z)Vi(so)dFo

and aggregate dividends

D =§/ad/\+ (1—C)/{[l—x(s)]d(s)-i—x(s)a}d/\—)\o/ i () agdT;
S S z
(iii) the stationary distribution A is the fixed point of the recursion:
A(N x A x Z) = (1 — g) /5 [1 — X(S)] 1{n’(s)€N}1{a’(s)€A}r(Zl Z)Cl)t (15)
+Ao/zi(2) L (so)eny Lo (s) ey T (2, 2)dTo,

where the first term refers to existing incumbents and the second to new entrants; (iv) effective

market tightness 6* is determined by the balanced flow condition

- F(0%) — Ae (6%) ng

L—N(6") = ‘ , (16)
T
where p (0%) is the aggregate job finding rate, N(6*) is aggregate employment
N(67) = (1-0) /[1 — x(s)]n' (s)dA + Ao/ i(z)n’(s0)dTo, (17)
S V4

and F(6*) are aggregate separations

F (6%) :@/Snd/\—I—(1—@)/x(s)nd/\+(1—§)/[1—x(s)] (n—n'(s))"dA, (18)

S S

17



which include all employment losses from firms exiting exogenously and endogenously, plus
all the workers fired by shrinking firms, which we have denoted by (n —n’ (s)) .!° In equa-
tions (16)-(18), the dependence of A,, N and F on 6* comes through the decision rules and the
stationary distribution, even though, for notational ease, we have omitted 6* as their explicit
argument.

The left-hand side of (16) is the definition of unemployment—labor force minus
employment—whereas the right-hand side is the steady-state Beveridge curve, i.e., the law

of motion for unemployment
U'=U—p(@*)U—f—F(G*)—/\e(B*)no (19)

evaluated in steady state. As in Elsby and Michaels (2013), the two sides of (16) are indepen-
dent equations determining the same variable—unemployment—and, combined, they yield
equilibrium market tightness 6*.' Note that equations (16) and (19) account for the fact that
every new firm enters with ny workers hired ‘outside’ the frictional labor market (e.g., the firm
founders).

Clearly, once 0* and A are determined, so is U from either side of (16) and, therefore, V*.
Finally, we note that measured aggregate matching efficiency, in equilibrium, is ® = (V*/V)",

where measured and effective vacancies are respectively
v o= (1—5)/5[1—x(s)]v(s)m +A0/Zi(z)v(so)dro,
vro— (1—5)/S[1—x(s)]e(s)v(s)dA+A0/Zi(z)e(so)v(so)dro.

Appendix C provides details on the computation of the decision rules and the stationary equi-

librium.

19Entrant firms never fire, as they enter with the lowest value on the support for N, 1y normalized to 1.

1Our computation showed that, typically, N (§*) is decreasing in its argument and the right-hand side of (16)
is always positive and decreasing. Thus, the crossing point of left- and right-hand side is unique, when it exists.
However, an equilibrium may not exist. For example, for very low hiring costs, N(6*) may be greater than L.
Conversely, for large enough operating or hiring costs, no firms will enter the economy. In this case, there is no
equilibrium with market production (albeit there is always some home-production in the economy).
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Table 1: Externally set parameter values

Parameter Value | Target
Discount factor (monthly) B 0.9967 | Annual risk-free rate = 4%
Mass of potential entrants Ao 0.02 | Measure of incumbents = 1
Size of labor force L 246 | Average firm size =23

Elasticity of matching function wrt V; « 0.5 | JOLTS

4 Parameterization

4.1 Externally Calibrated

We begin from the subset of parameters that are calibrated externally. The model period is one
month. We set B to replicate an annualized risk-free rate of 4 percent. Since the measure of
potential entrants Ag scales A—see equation (15)—we choose Ag to normalize the total measure
of incumbent firms to one. We normalize the size of the labor force L so that, given a measure
one of firms, under our target unemployment rate of 7 percent, the average firm size will be
23 consistent with Business Dynamics Statistics (BDS) data over the period 2001-2007.'? In line
with empirical studies, we set a, the elasticity of aggregate hires to aggregate vacancies in the

matching function, to 0.5. Table 1 summarizes these parameter values.

4.2 Internally Calibrated

Table 2 lists the remaining 19 parameters of the model that are set by minimizing the dis-
tance between an equal number of empirical moments and their equilibrium counterparts in

the model.!3

Table 2 lists the targeted moments, their empirical values, and their simulated
values from the model. Even though every targeted moment is determined simultaneously by

all parameters, in what follows we discuss each of them in relation to the parameter for which,

12The unemployment rate is u = L/N(6*) — 1, and with a unit mass of firms the average firm size is simply
N(6*). Hence given u = 0.07, L determines average firm size.
13Specifically, the vector of parameters ¥ is chosen to minimize the minimum-distance-estimator criterion func-
tion
f(‘Y) = (mdata — Mypodel (‘Y))/ w (mdata — Mypodel (‘Y))

where m,;; and m,;;,4,;(¥) are the vectors of moments in the data and model, and W = diag (1 / mfl ot a) is a
diagonal weighting matrix.
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Table 2: Parameter values estimated internally

Parameter Value | Target Model Data
Flow of home production =~ w  1.000 | Monthly separ. rate 0.033  0.030
Scaling of match. funct. ® 0.208 | Monthly job finding rate 0.411  0.400
Prod. weight on labor v 0.804 | Labor share 0.627  0.640
Midpoint DRS in prod. oy 0.800 | Employment share n: 0-49 0.294  0.306
High-Low spread in DRS Ao 0.094 | Employment share n: 500+ 0.430 0.470
Mass - Low DRS ur  0.826 | Firm share n: 0-49 0.955  0.956
Mass - High DRS pg 0.032 | Firm share n: 500+ 0.004  0.004
Std. dev of z shocks ¢, 0.052 | Std. dev ann emp growth 0.440 0.420
Persistence of z shocks pz 0992 | Mean Q4 emp / Mean Ql emp 75.161 76.000
Mean zp ~ Exp(z; ) Zp  0.390 | Alogz: Young vs. Mature -0.246  -0.353
Cost elasticity wrt e 71 1.114 | Elasticity of vac yield wrt g 0.814  0.820
Cost elasticity wrt v Y2 4.599 | Ratio vac yield: <50/>50 1.136  1.440
Cost shifter wrt e k1 0.101 | Hiring cost (100+) / wage 0935 0.927
Cost shifter wrt v xp  5.000 | Vacancy share n < 50 0.350  0.370
Exogenous exit probability ¢  0.006 | Survive > 5 years 0.497  0.500
Entry cost Xo 9.354 | Annual entry rate 0.099 0.110
Operating cost X  0.035 | Fraction of JD by exit 0.210  0.340
Initial wealth ap  10.000 | Start-up Debt to Output 1.361  1.280
Collateral constraint ¢ 10.210 | Aggregate debt-to-Net worth 0.280  0.350

intuitively, that moment yields the most identification power.

We set the flow of home production of the unemployed w to replicate a monthly separation
rate of 0.03. We choose the shift parameter of the matching function (a normalization of the
value of @ in steady state) in order to pin down a monthly job finding rate of 0.40. Together,
these two moments yield a steady-state unemployment rate of 0.07.

We assume the revenue function y (z,n',k) = z [(n')"k'7*]” and introduce a small degree of
permanent heterogeneity in the scale parameter ¢.'* Specifically we consider a three-point dis-

tribution with support {07, oar, 0 }—symmetric about o)—Ileaving four parameters to choose:

14Since we specify the revenue function, we do not take a stand on whether z represents demand or productivity
shocks, or whether ¢ represents DRS in production or the interaction of a production function with a downward
sloping demand curve. Given this understanding we discuss the revenue function as if it were a production
function: ¢ represents span of control and z is total factor productivity. Sedlacek and Sterk (2014) solve a firm
dynamics model where scale heterogeneity arises because different producers face demand curves with different
elasticities.
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(i) the value of oyy; (ii) the spread Ac = (o — 01); and (iii)-(iv) the fractions of low and high
DRS firms yy, pg. In the same spirit as the use of permanent heterogeneity in productivity in
the quantitative applications of Elsby and Michaels (2013) and Kaas and Kircher (2015), hetero-
geneity in the scale of production allows us to match the firm size distribution and to generate,
within the model, small old firms alongside young large firms, thus decoupling age and size
which tend to be too strongly correlated in standard firm dynamics models with mean reverting
stochastic productivity. In addition, the assumption of heterogeneity in ¢ captures the appeal-
ing idea that there exist some very productive, but small, businesses simply because the optimal
scale of production for many goods or services is small. The values of these four parameters
allow the model to match the BDS statistics on employment and establishment shares of firms
of size 0-49 and 500+."

Firm productivity z follows an AR(1) process in logs: logz’ = logZ + p;logz + ¢, with
g ~ N(=192/2,9,). We calibrate p, and ¢, to match two measures of employment dispersion,
one in growth and one in levels: the standard deviation of annual employment growth for
continuing establishments in the Longitudinal Business Database (Elsby and Michaels, 2013),
and the ratio of the mean size of fourth to first quartile of the firm distribution (Haltiwanger,
2011a).°

The initial productivity distribution for entrants I'y is Exponential, with mean Z; cho-
sen to match the productivity gap between entrants and incumbents, specifically the dif-
ferential in revenue productivity between firms older than 10 and younger than 1 year old
(Foster, Haltiwanger, and Syverson, 2016).

We now turn to hiring costs. The cost function (11) has four parameters: the two elasticities
(71,72) and the two cost shifters (x1,x2). Recall, from the discussion surrounding equations
(11) and (12), that the cross-sectional elasticity of job filling rates to employment growth rates,
estimated to be 0.82 by DFH, is a function of the ratio of these two elasticities.!” The second
moment used to separately identify the two elasticities is the ratio of vacancy yields of small

(< 50 employees) to large (> 50 employees) firms from JOLTS data on hires and vacancies by

15Tn terms of the description of the model and stationary equilibrium, one should add ¢ to the firm’s state vector
s, but nothing substantial in the firm problem and the definition of equilibrium would change.

161 the numerical solution and simulation of the model, z remains a continuous state variable.

17We cannot map 72/ (71 + 72) directly into this value since in DFH, and in the model’s simulations for consis-
tency, the growth rate is the Davis-Haltiwanger growth rate normalized in [—2,2]. In practice, as seen in Table 2,
the discrepancy between structural and estimated parameter is very small.
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tirm size. Intuitively, when 2 = 0, recruiting effort is constant across firms and this ratio is
one.

We use two targets to pin down the cost shift parameters. The first is the total hiring cost as
a fraction of monthly wage per hire, a standard target for the single vacancy cost parameter that
usually appears in vacancy posting models. We have a new source for this statistic. The con-
sulting company Bersin and Associates runs a periodic survey of recruitment cost and practices
based on over 400 firms—all with more than 100 employees. Once the firms are re-weighted by
industry and size, the sample is representative of this size segment of the US economy. They
compute that, on average, annual spending on all recruiting activities (including internal staff
compensation, university recruiting, agencies/third-party recruiters, professional networking
sites, job boards, social media, contractors, employment branding services, employee refer-
ral bonuses, pay-per-click media, travel to interview candidates, applicant tracking systems,
print/media/billboards, other tools/technologies) divided by the number of hires in 2011 was
$3,479 (see Table 3 in O’Leonard 2011). Given average annual earnings of roughly $45,000 in
2011, in the model we target a ratio of average recruiting cost to average monthly wage (in
firms with more than 100 employees) of 0.928. The second target is the vacancy share of small
(n < 50) firms from JOLTS: x; determines the size of hiring costs for small (low n) firms and,
thus, the amount of vacancies they create.

The parameters x and { have large effects on firm exit. The operation cost x mostly impacts
exit rates of young firms; therefore, we target the five-year survival rate found in BDS data,
which is approximately 50 percent. The parameter { contributes to the exit of large and old
firms; hence we target the fraction of total job destruction due to exit. To pin down the set-up
cost xo, we target the annual entry-rate of 11 percent from the BDS.'®

The remaining two parameters are the size of the initial equity injection 4y and the collateral
parameter ¢. To inform their calibration, we target the debt-output ratio of start-up firms com-
puted from the Kauffman Survey (Robb and Robinson, 2014), and the aggregate debt to total

assets ratio from the Flow of Funds.!®

8When computing moments designed to be comparable to their counterparts in the BDS, we carefully time-
aggregate the model to an annual frequency. For example, the entry-rate in the BDS is measured as the number of
age zero firms in a given year divided by the total number of firms. Computing this statistic in the model requires
aggregating monthly entry and exit over 12 months. See Appendix C for details.

19Robb and Robinson (2014) report $68,000 of average debt (credit cards, personal and business bank loans, and
creditlines) and $53,000 of average revenue for the 2004 cohort of start-ups in their first year, see their Table 5. From
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Table 3: Non-targeted moments

Moment Model Data Source
Aggregate dividend / profits 0.411 0.400 NIPA
'Employment share: growth € [—2.00, —0.20) 0.070 0.076 Davis et al. (2010)
Employment share: growth € (—0.20, —0.20] 0.828 0.848 Davis et al. (2010)
Employment share: growth € (0.20,2.00] 0.102 0.076 Davis et al. (2010)
Employment share: Age <1 0.013 0.020 BDS
Employment share: Age € (1,10) 0.309 0.230 BDS
Employment share: Age > 10 0.678 0.750 BDS

(1.) Firm growth rates are annual and are interior to [—2, 2] so do not include entering and exiting firms

4.3 Cross-Sectional Implications

We now explore the main cross-sectional implications of the calibrated model, at its steady-state
equilibrium.

Table 3 reports some empirical moments that we did not target in the calibration and their
model-generated counterparts. The fact that the ratio of dividend payments to profits in the
model is close to its empirical value reinforces the view that our collateral constraint is neither
too tight nor too loose. The model can also replicate well the distribution of employment by
growth rate and by firm age, neither of which was explicitly targeted.

Figure 5 shows that the model is also able to replicate satisfactorily the observed distribution
of hires and vacancies by size class from the JOLTS data.

In Figure 6 we plot the average firm size, job creation and destruction rates, fraction of
constrained firms and leverage (debt/saving over net worth, b/a) for firms from birth through
to maturity. Panel A shows that oy-firms, those with closer to constant returns in production,
account for the upper tail in the size and growth-rate distributions. On average, though, firm
size grows by much less over the life cycle, since these ‘gazelles’—as they are often referred to
in the literature—are only a small fraction of the total. On average, the model and the data line

up well: average size grows by a factor of 3 between ages 1-5 and 20-25 in the model and 3.4 in

the Flow of Funds 2005, we computed total debt as the sum of securities and loans and total assets as the sum of
all nonfinancial assets plus financial assets net of trade receivables, FDIs and miscellaneous liabilities (Tables L.103
and L.104, Liabilities of Nonfinancial Corporate and Noncorporate Business), and divided by the sum of corporate
and noncorporate net worth (Tables B.103 and B.104, Balance Sheet of Nonfinancial Corporate and Noncorporate
Business).
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Figure 5: Hire and vacancy shares by size class. Model in blue, JOLTS data 2002-2007 in red.
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the BDS data. Convex recruiting costs and collateral constraints slow down growth: most firms
reach their optimal size around age 10, and oy-firms keep growing for much longer.

Panel B plots job creation and destruction rates by age. It is a stark representation of the
‘“up-or-out” dynamics of young firms documented in the literature (Haltiwanger, 2011b). Panel
C depicts the fraction of constrained firms (defined as those with k = ¢@a and d = 0) over
the life cycle. In the model, financial constraints bind only for the first few years of a firm’s
life, when net worth is insufficient to fund the optimal level of capital. Panel D illustrates that
leverage declines with age and after age 10 the median firm is saving (i.e., b < 0). Much like in
the classical household “income fluctuation problem,” in our model firms have a precautionary
saving motive due to the simultaneous presence of three elements: (i) a concave payoff function
because of DRS; (ii) stochastic productivity; and (iii) the collateral constraint.

Panel A of Figure 7 shows that recruiting intensity and the vacancy rate are sharply decreas-
ing with age. These features arise because our cost function implies that both optimal hiring
effort and optimal vacancy rates are increasing in the growth rate, and young firms are those
with the highest desired growth rates. Moreover, the stronger convexity of C in the vacancy
rate (2), relative to its degree of convexity in effort () implies that a rapidly expanding firm
prefers to substitute away from vacancies into recruiting intensity to realize its target growth
rate. Thus, young firms find it optimal to limit the number of new positions, but recruit very

aggressively for the ones that they open. As firms age, growth rates fall and this force weakens.
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Figure 6: Average life cycle of firms in the model
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Panel B plots the fraction of total recruiting effort, vacancies and hiring firms by age. It
shows that, relative to the steady-state age distribution of hiring firms, the effort distribution is
skewed towards young firms, whereas the vacancy distribution is skewed towards older firms.
In the model the age-distribution of vacancies is almost uniform: young firms grow faster than
old ones and, thus, post more vacancies per worker; however, they are smaller and, thus, they
post fewer vacancies for a given growth rate. These two forces counteract each other and the
ensuing vacancy distribution over ages is nearly flat. Figure 7 highlights that the JOLTS notion
of vacancy as ‘open position ready to be filled” is a good metric of hiring effort for old firms,
for whom recruiting intensity is nearly constant, whereas it is quite imperfect for young firms
aged 0-5, whose average recruiting intensity, as well as its variance, are much higher than those

of mature firms.2°

20Unfortunately, the JOLTS does not report the age of the firm, so there are no U.S. data on vacancies and
recruiting intensity by firm age we can directly compare to our model. Kettemann, Mueller, and Zweimuller (2016)
find that, in Austrian data, after controlling for firm fixed effects job filling rates are decreasing with firm age.
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Figure 7: Vacancy and Effort Distributions by Age
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5 Aggregate Recruiting Intensity and Macroeconomic Shocks

Our main experiments examine the equilibrium of the economy along perfect foresight paths
for shocks to aggregate productivity Z and to the financial constraint parameter ¢. Appendix
C provides details on the solution of the model along these transitional dynamics away from,
and back to, the steady state.

We frame these experiments in the context of the Great Recession. Specifically, we consider
mean-reverting AR(1) shocks, choosing their size so that the model matches the maximum devi-
ation of detrended output over 2008-2012 from its value in 2007, a value of -10 percent (Fernald,
2015). Their persistence is set so that the half-life of output dynamics is three years under both
shocks. This strategy results in a 4-percent shock to Z, and a 75-percent shock to ¢.%!

Figure 8 plots the dynamics of some key aggregate variables. The financial shock displays
three features that are absent from the macroeconomic transition under the productivity shock,
but present in the data. First, a sizable drop in the debt-output ratio of magnitude and persis-
tence comparable to the data.?” Second, an endogenous rise in aggregate labor productivity of
1.5 percent, close to the 2 percent rise over 2008-10 measured by McGrattan and Prescott (2012).

Labor productivity rises because more severe financial frictions prevent the expansion of firms,

2I'The implied (monthly) persistence parameters are 0.990 for Z and 0.976 for ¢. Figure B1 in Appendix B dis-
plays the —almost identical by construction— paths for output in the two experiments.

22In the US since 2008, the debt-output ratio drops by nearly 10 percent points and five years later is still 4
percent below its pre-recession level.
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Figure 8: Dynamics of some macroeconomic variables
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especially the high-c ones with large scale of production, as we will show more in detail below.
As firm size falls, because of DRS, average labor productivity increases. Third, a 24 percent de-
cline in entry which, again, matches well its empirical counterpart of 22 percent.”> Specifically,
young-firm values decline sharply, since a large fraction of them are constrained (recall Figure
6), leading to a decline in start-ups. Overall, we conclude that the differential responses of these
three variables clearly identify a financial shock in the 2008 recession.

Figure 9 displays the dynamics of the key labor market variables under the two shocks.
Overall, in both experiments the labor-market response to the shock is close to its empirical

counterpart of Figure 1.2

The financial shock induces bigger and more persistent movements in
vacancies, unemployment, and the job finding rate. Under both scenarios, the drop in aggregate
recruiting intensity is sizable, but its magnitude and persistence are, again, larger under the
financial shock: ®; falls by 25 percent at impact (20 percent under the productivity shock) and
tive years later it is still 10 percent below its initial value (5 percent under the productivity

shock).25 We conclude that, in the model, the financial shock—the more promising candidate

Z3Entry in the data is measured as the number of firms reporting an age of zero divided by the total number of
firms in the LBD. The survey is in March and so this measure excludes firms which enter and exit between surveys.

24In the data, labor market variables move more slowly, but recall that the shocks we fed are AR(1) designed to
match the peak-trough drop in output but not its slow recovery.

25We note that the persistence of ®; is higher under the financial tightening in spite of the fact that the financial
shock itself is less persistent than the productivity shock.
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Figure 9: Dynamics of labor market variables
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to rationalize the Great Recession based on our discussion of Figure 8—can explain around half
of the observed decline in aggregate match efficiency (recall the empirical path in Figure 1).

At first sight, it may be surprising that the response of aggregate recruiting intensity is not
too dissimilar across the two macro shocks although the entry rate of new firms—which ac-
counts for a disproportionate share of job creation—remarkably differs under the two experi-

ments. In what follows, we explain this apparent puzzle.

5.1 The Transmission Mechanism

To understand how macro shocks transmit to aggregate recruiting intensity, we return to our

expression for ®;, using A" to denote the distribution of hiring firms:

V* 14 ; o
D = (72) - U ey (07:) dA’;] : (20)
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Substituting the policy function for recruitment effort (12) into the above equation and taking

log differences, we obtain:

T2 Tz [ Vit h
Alog ®; = —a——=—Alogg(6;) + aAlo 2 (—) d)t]. 21
gD ¥7+72 gq(t) g{g v) M| (21)
Slackness effect Composmon effect

We call the two elements of this equation the slackness and composition effect, respectively.

The Slackness Effect. The slackness effect is the change in aggregate recruiting intensity ®;
due to firms changing effort in response to movements in labor market slackness g(6; ), holding
constant growth rates g;;, vacancies v;; and the distribution of hiring firms Ai’.

In a recession, labor market slackness increases, as the reduction in expected profitability
reduces firms’ vacancy creation and a spike in job separations increases the pool of unemployed
workers. This surge in slackness raises the probability (6} ) that any vacancy matches with a
job seeker. Therefore, given the hiring technology gi; = q(6; )ei;vit/njs, a growing firm with
a target growth rate g;; now reoptimizes its combination of recruiting inputs e;; and v;; and
decreases both: a slack labor market makes it easier for employers to hire, so employers spend
less to attract workers. Since recruiting effort is more sensitive than vacancies to q(6; )—recall
the decision rules (12) and (13)—the slackness effect is always stronger for the first margin and,

in the aggregate, V;* declines more than V; or, equivalently, ®; falls in recessions.

The Composition Effect. We define the composition effect residually, thereby including the
impact on aggregate recruiting intensity of changes in the distribution of growth rates g;; and
vacancy policies v;; among all hiring firms.

Figure 10 shows how these two components of aggregate recruiting intensity respond to the
shocks. These figures reveal that the slackness effect (dashed line) is quantitatively the largest
one, accounting for almost all the decline in aggregate recruiting intensity (solid line).

The large magnitude of the slackness effect was, perhaps, expected. Market tightness
plunges and the elasticity of firm-level recruiting intensity with respect to g is high, nearly

one.?® What is more surprising is that the composition effect is so small and, in particular, after

26We chose to express the slackness effect as a function of 6} because this is a sufficient statistic for aggre-
gate labor market conditions in the firm’s hiring problem. One can also obtain an expression for the slackness
effect that is a function of the more common measure of tightness 6. Substituting the relationship g(6;) =
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Figure 10: Decomposition of Aggregate Recruiting Intensity
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a drop at impact it becomes positive, i.e., it induces a small countercyclical movement in ®;.

5.1.1 Inspecting the Composition Effect

It is useful to split the composition effect into its two main elements, which we plot in Figure
1177 The first is a direct composition effect: the response to the shock in a partial-equilibrium
economy, keeping 6; at its steady state level, denoted 6*. The second is the indirect composition
effect: the response in an economy under the equilibrium path for 6; induced by the shock,
while keeping ¢ at its steady-state value ¢.

The direct effect reduces aggregate recruiting intensity on impact, since the drop in the
collateral parameter lowers firm growth rates and reallocates hiring away from young, fast-
growing firms that account for the bulk of recruiting intensity in the economy. Note that the
direct component reverts rapidly towards zero. The reason is that the decline in ¢; induces

positive selection among the hiring firms. The fraction of firms hiring drops from 55 percent in

_la
q(6:)®, * in (21) and collecting the terms in ®; yields the alternative representation of the slackness effect

—a[y2/(11+72)]
1—(1=a)[12/ (11+72)] . ) k . )
the aggregate, firms exert less effort e. This alternative decomposition gives very similar results: if anything, the

slackness effect is somewhat stronger.
2’We illustrate this decomposition only for the tightening of the collateral constraint. Results for the productivity
shock are almost identical.

Alogg(6:). The denominator is less than one and captures a ‘multiplier: when & is low in
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Figure 11: Unpacking the composition effect
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steady state to 22 percent following the shock, so these firms are, on average, better and thus
grow slightly more—a force that pushes aggregate recruiting intensity back up.

The indirect effect increases aggregate recruiting intensity on impact, since firms grow faster
when ¢(6;) rises, as they meet job seekers more easily. Selection of hiring firms on productivity
tempers this effect as well: the increase in q(0* ) reduces the average productivity of hiring firms,
since some firms that did not hire in steady-state do hire after the shock, thereby generating a
force towards lower aggregate recruiting intensity.

Overall, the direct and indirect components show large movements, but these movements
offset each other and the composition effect remains small throughout the transition.

Another way to appreciate why the slackness effect is bound to dominate the composition
effect is through Figure 12. The left-panel shows the (unweighted) distribution of growth rates
in steady-state (+ = 0) and right after the shock hits (t = 2). The distribution shows that firing
firms contract faster and that hiring firms expand slightly faster in t = 2 relative to t = 0 (thus,
the dispersion of growth rate increases, as we discuss in some detail below).?® The right-panel
shows how the slackness effect contributes to lower recruiting intensity at any given hiring rate

(recall eq. 12). It is apparent from these two panels, that compositional changes in the pool of

ZBFigure B2 plots the employment-weighted kernel density function of the distribution of firm-level growth rates
in the model. This distribution reproduces well its data counterpart, Figure 5 in Davis, Faberman, and Haltiwanger
(2012a).
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Figure 12: Growth rate distribution and recruitment policies before and after the shock
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Note (i) Period 0 the economy is in steady-state, in period 1 the path for the shock is realized, period 2 then follows. We choose period 2 rather
than period 1 since due to the timing of the model workers that are fired in period 1 do not enter the labor market as unemployed workers
until period 2. (ii) The growth rate distribution is computed over bins of width 0.02.

hiring firms will always be dominated by the choice of hiring firms to exert less (more) effort in
recruiting when market tightness is lower (higher).

The analysis in this section highlights the role of general equilibrium feedbacks in the dy-
namics of aggregate recruiting effort of firms. A casual look at the microeconomic relation
between the job filling rate and the hiring rate may induce one to conclude that economywide
recruiting intensity declines after a negative macro shock because the shock curtails the speed
at which hiring firms expand. While such force is present, this logic ignores that the adjustment
of equilibrium market tightness following a macro shock sets in motion the slackness effect and
the indirect composition effect, two essential—and quantitatively large—pieces of the transmis-

sion mechanism.

5.1.2 When Can the Composition Effect Be Large?

The magnitude of the composition effect is sensitive to the value of «, the elasticity of hires
with respect to vacancies. Figure 13 plots the response of aggregate recruiting intensity (panel
A) and the composition effect (panel B) for three values of « in the neighborhood of existing

estimates. In the range below 0.5, our baseline value, the total composition effect is small at
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Figure 13: Size of the composition effect under different values of «
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impact and turns positive quickly, as its indirect component takes over. However, for « = 0.7,
the composition effect becomes sizable at impact and remains negative for almost a year after
the shock.

To understand this result, note that the strength of the indirect component of the compo-
sition effect (which facilitates firm’s growth in a recession as labor market tightness falls) is
determined by how much log(gq;) = —(1 — «)log6; rises in a downturn. Clearly, the closer
is « to 1, the smaller this effect. Hence, a large value of « mutes the indirect component and
induces bigger pro-cyclical movements in the composition effect. A stronger composition effect
also explains the deeper drop in ®;, as shown in panel A.%

We conclude by noting that our theory of recruiting intensity has implications for the estima-
tion of the elasticity parameters in the aggregate matching function. When the equation taken
to the data is log (H¢/U;) = Bo + B1log 0 + €;, our model implies that the error term—which
contains ®;—is positively correlated with the regressor, inducing an upward bias in the OLS
estimate of a.>’ Appendix D develops this point in detail and argues that our choice of a« = 0.5

for the baseline model is indeed conservative with respect to the model’s ability to account for

2Note that the slackness effect is not too sensitive to a because, as seen in equation (21), log g, which contains
the term 1 — & is also multiplied by «.

30The endogeneity problem in matching function estimation is well understood, see e.g.
Borowczyk-Martins, Jolivet, and Postel-Vinay (2013). Our contribution here is to offer a microfoundation
for one potential source of endogeneity.
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fluctuations in aggregate matching efficiency.

5.1.3 Relationship with Kaas and Kircher (2015)

In Kaas and Kircher’s model of competitive search, aggregate recruiting intensity can be ex-
pressed as an average of meeting rates in each market, where each meeting rate is a concave
function of market tightness. In terms of our notation, ®XK = [ g(8,,¢) (vs/V)dm, where m in-
dexes markets. The authors find that, during productivity-driven recessions, the dispersion of
tightness across markets increases, leading to a decline in ®XX. They ascribe the procyclicality
of aggregate recruiting intensity chiefly to this mechanism.?!

A version of this mechanism is present in our model, as well. This source of fluctuations
in ®; enters into the composition effect because the second term in (21) is concave in gj, since
2/ (71 + 72) < 1. A rise in the dispersion of growth rates therefore has a negative effect on ®;.

How quantitatively important is this mechanism in our model? To begin with, we
note that our steady-state calibration matches the empirical standard deviation of growth
rates. Moreover, the financial shock generates a 45 percent increase in the standard de-
viation of growth rates, which compares well to the 39 percent increase reported by
Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) over the same period.32 To gauge

the importance of this mechanism, we assess the strength of Jensen’s inequality by measuring

the gap:

n o . T
aAlog {/ g (%) d)ti’} — aAlog [/ it (%) d)ti’} e

The first term is the composition effect and the second is its Jensen’s counterpart where we
raise the entire integral (not the integrand) to the exponent. We find that, between t = 0 and
t = 2, this gap equals —4 percent: this is the magnitude of the fall in aggregate recruiting
intensity that can be ascribed to this mechanism. Its contribution is limited by the fact that

because 2/ (1 + 72) is close to 1 empirically, and thus the degree of concavity of the integrand

31This mechanism is explained on pages 3053-3054 of their article.

32This is a notable feature of our model in response to a financial shock. Even without a shock to the dispersion
of firm level productivity growth we attain a significant increase in the dispersion of employment growth: as
explained above, the shock adversely affects some firms reducing growth rates, while some other firms respond to
the surge in labor market slackness by growing faster.
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Figure 14: Vacancy Yield by Size in the Model and the Data
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function in the composition effect is small. We conclude that the key transmission mechanism

of our model, the slackness effect, is different from that emphasized by Kaas and Kircher (2015).

5.2 Dynamics of Vacancy Yields by Size: the Role of Financial Constraints

We use our decomposition of aggregate recruiting intensity to understand the cross-sectional
dynamics of vacancy yields following a macroeconomic shock that Moscarini and Postel-Vinay
(2016) document in the context of the Great Recession. We begin by splitting firms into those
tinancially constrained (for whom both the collateral and dividend constraints bind) and those
unconstrained. Panel A of Figure 14 shows that recruiting intensity dynamics differ markedly
between the two types of firms.

The financial shock causes a sharp drop in the growth rate (and recruiting effort) of the con-
strained firms, whereas many of the unconstrained ones increase their hiring in response to the
surge in labor market slackness. The constrained firms are, thus, driving the direct component
of the composition effect, whereas unconstrained firms are driving the indirect component.

Panel B shows that, in the aftermath of the shock, the fraction of constrained firms rises
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significantly across all sizes, but it does so in particular among some of the large firms, the
young fast-growing firms with high span of control parameter (o).

Panel D illustrates that the vacancy yield of large firms is flat, as they reduce recruitment
effort to offset the higher aggregate filling rate; meanwhile, the vacancy yield of small firms
increases, as they receive the full effect of higher g (/) to grow. Panel C shows that the narrative

implied by our model is borne out in the data.

6 Extensions

In this section, we outline two extensions of the baseline model. First, we analyze how per-
manent heterogeneity in vacancy filling rate across industries, due for example to different
recruiting methods, affects the size of the composition effect. Second, we reflect on how the

inclusion of on the job search could affect our main results.

6.1 Sectoral Heterogeneity in Recruiting Technology

Ours is a one-sector model of the aggregate economy in which all firms face the same recruiting
technology. DFH document that different sectors of the economy display consistently different
vacancy yields. To the extent that such discrepancies in vacancy yields stem from systematic
differentials in growth rates across sectors, then our model will capture these.?® If, however,
they are due to permanent characteristics of the recruiting technology across sectors, then a
macro shock that changes the sectoral composition of hiring firms will affect aggregate match
efficiency.>

In the context of the Great Recession, this point is especially relevant because the Construc-
tion sector is an outlier in terms of its frictional characteristics (its vacancy yield is about 2.5
times as large as in the economy as a whole), and it was hit particularly hard in the recession.
One would therefore expect Construction to play a significant role in the national movement
of aggregate recruiting intensity, in spite of its small size relative to the aggregate economy

(Davis, Faberman, and Haltiwanger, 2012b).

3Indeed DFH Fig 5B shows that the cross-sector variation in average growth rates is strongly correlated with
the cross-sector variation in vacancy-yields.
34We thank Steve Davis for suggestions which lead to the inclusion of this section.
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A fully specified multi-sector model is beyond the scope of this paper, but we can never-
theless estimate the size of this sectoral composition effect using the structure of our model and
industry-level data on vacancy-yields and vacancy shares from JOLTS.* Suppose that the firm-
level hiring technology in each sector s = 1,...,S is subject to a sector-specific recruitment

efficiency shifter ¢, i.e.

hist - (Psq (9?) €istUist,

leading to a modified expression for aggregate recruiting intensity:

v; &
Py = [/(Pseist%tdl} , (22)
i f

and the optimal choice of firm-level recruiting intensity:

i) i)

- .
et = Constant x g """2q (67) 72 gy, (23)

Firm-level recruiting intensity depends negatively on sector-specific efficiency since firms be-
longing to sectors with a high recruiting efficiency can use less effort to realize any desired
growth rate.

To decompose aggregate recruiting intensity, we can again substitute the optimal policy (23)

into (22) to arrive at:

s=1 st

~1te S, it ((Ust 3 Vist ’
& = Constant g 0) 7 x| Lol = () [ [ Rela
t {ies}

The essence of the effect that we are trying to determine comes from the interaction of perma-
nent differences in match efficiencies across sectors ¢s and the sectoral composition of hiring
tirms given by the vacancy share vy /V;. Therefore, we assume that the distribution of growth
rates and vacancies is identical within each sector and, thus, the integral term is constant across
sectors. Under this assumption, we obtain a counterpart to our previous decomposition of

aggregate recruiting intensity, with an additional term characterizing the sectoral composition

%In what follows, we maintain the assumption that all firms hire in the same labor market. Accordingly, one
could read our exercise as the counterpart to one conducted on the worker side, in which different groups of job-

seekers enter the same labor market, but are weighted by some fixed level of search efficiency. For example, see
Hall and Schulhofer-Wohl (2013), and Hornstein and Kudlyak (2015).
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Figure 15: Sectoral composition effect
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Note that ¢ enters with exponent 711172, which is less than one. A sector with a higher ¢, will

be more productive in creating matches, increasing the measure of recruiting intensity with an

elasticity of one with respect to its vacancy share; however, the firms in that sector will also

. o . ’)/2 . . . ’)/1
decrease effort with an elasticity of -—=—, leaving the net elasticity of ———.

Computing the last term in (24) requires data on vacancy shares by sector, readily available

from JOLTS and data on sectoral match efficiency. Under our assumptions, it is easy to see that:

’Yl’:}’yz — HSt / ‘/St
’ Hy/Vig'

where we can normalize match efficiency of the baseline sector k to one without loss of gener-
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ali’cy.36

Using data on all eleven 2-digit industries from JOLTS, we plot the sectoral component
M

12 2’75: for the largest seven sectors in Panel A of Figure 15, and the total sectoral compo-

sition effect in Panel B. We find that this component accounts for an additional 4 percent drop
in aggregate recruiting intensity around the Great Recession— a fall mostly due to the decline in
the vacancy shares of Construction, Manufacturing, and Hospitality and Leisure. Even though
adding this mechanism shifts the decomposition slightly more towards the composition effect,

it does not modify our conclusion that the slackness channel dominates it.

6.2 Robustness to the Inclusion of On-the-Job Search

In an economy where firms make take-it-or-leave-it offers to risk-neutral workers, modelling
search on the job is relatively simple once it is assumed that, when an employed worker receives
an outside offer, the firm does not respond to the poaching competitor, and the worker—who
is indifferent between staying and going—quits.

Search on the job can be relevant in understanding the dynamics of aggregate recruiting in-
tensity for two reasons. First, it induces separations of workers from the firm that will have to
be replaced if the firm is not going to shrink. Such ‘replacement hires’ are associated with firms
that have smaller growth rates, on average, compared to the expanding units. Since recruiting
intensity is linked to growth rates, fluctuations in replacement hires could impact the composi-
tion effect. Second, when a portion of job-seekers is employed, the response of market tightness
to spikes in layoffs—like those following financial and productivity shocks—would be smaller.
This mechanism has the potential to weaken the slackness effect.

Adding on-the-job search requires making the following minimal amendments to the model:
(i) all employed workers search with a relative search intensity of s determining the effective
units of search of an employed worker relative to an unemployed worker (whose intensity is
normalized to 1); (ii) the matching function is modified to take the total measure of effective
search units Sy = U; 4 sN; as an input, where N; = L — U, is the measure of employed workers.

The firm-level hiring technology remains h;; = g:e;;v;;, but the law of motion for firm employ-

3To estimate of ¢s, we use ratios of average sectoral vacancy yields from 2005 to 2006. We take Professional
Business Services as the normalizing sector, since its average vacancy-yield of 1.30 is the sectoral median. We use
data for all 9 sectors available in JOLTS.

39



ment is now

Nipp1 = Nip + hig — fir —sp (0 ) nig,

where p (6)) is the job finding rate of the unemployed. By constant returns to scale in the
matching functions, sp (6;) is the job finding rate of employed workers. As a result, the law of

motion for unemployment becomes:

U;

U1 =U+F— | ———
t+1 t + Ft |:ut+SNt

Ju
where U;/ (Ut + sN;) is the fraction of total hires that come from unemployment.

In choosing a value for on the job search intensity, note that s is equal to the ratio of
employment-employment (EE) to unemployment-employment (UE) transition rates. Follow-
ing Fujita and Moscarini (2013) and, thus, excluding recalls and workers on temporary layoffs
from UE, we obtain s = 0.09 for the pre-recession period. We now discuss the effect of this
extension on the model.

We begin with the role of replacement hires. In the presence of on the job search, firms lose
employees to other poaching firms, and must make some replacement hires. For example, a
large firm with 1,000 employees that has 2 percent of the workforce quit every period must
make 20 new hires to maintain its size, i.e. the same number of hires of a firm of 20 employees
that doubles its size. Therefore, relative to the baseline model, this force shifts the distribution
of hires towards older, larger firms with close to zero net growth rates. We have solved the
model under various rates of exogenous quits, between one and three percent per month, and
found our results to be quantitatively very robust. The reason is that, as in the data, the bulk of
hires are still made by expanding firms whose decisions are well described by our model.

We now turn to the effect of on the job search on the dynamics of labor market slackness.
Consider an increase in the firing rate due to a negative macro shock. In the baseline model,
the monthly firing rate is F;/N; = 0.03. Suppose that this ratio were to spike in a recession,
doubling. In the baseline model without on-the-job search, the mass of effective search units
increases nearly one for one, by 0.03. In the model with on the job search, S; = (1 —s)U; +
sL, so although the number of unemployed workers rises by 0.03, the measure of total job

seekers increases by (1 —s) x 0.03 = 0.027. Therefore, labor market tightness falls by less and
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the slackness effect is somewhat weakened, as expected, but this correction is quantitatively
small. The reason is that, although the stock of employed workers is large, their average search
intensity is low relative to that of the unemployed. Moreover, if one were also to allow s to
vary over the cycle, and match the data, then the relative intensity of the employed would be
countercyclical.’” This force would partially counteract the initial correction, thus making the
total effect of on-the-job search on the dynamics of market tightness even smaller.

Frictional models of the labor market with both a realistic firm size distribution induced
by DRS in production, and a rich job ladder whereby high-productivity high-wage firms can
poach workers more easily from other firms —and thus the vacancy filling rate is increasing
in the firm type because it is further up the ladder— have not yet been developed.’® Whether
such class of models has novel forces at work relative to those emphasized here remains to be

established.

7 A New Aggregate Recruiting Intensity Index

We conclude the paper by proposing how to construct a model-based rule-of-thumb index of
aggregate recruiting intensity which is easy to compute from observable labor market aggre-
gates and can be updated in real time, as new data on unemployment, vacancies, and hires are
released.

The transition dynamics of our model indicate that the slackness effect accounts for most
movements in aggregate recruiting intensity. Thus, we propose a back-of-the-envelope measure

of aggregate recruiting intensity that focuses on this component. Specifically, as per equation

1 —(1—w)
(21), we set dlog ®; = —u vlﬂf%d log q(6f). Using the relationship q(6;) = <q)t“ Ot) into

this equation, we arrive at our empirical index of changes in aggregate recruiting intensity:

dl q)GMV — 0((1 — ‘X) [72/(71 + ryz)] dlog 6;. 25
R e e Y R R R )
~0.35

37Figure B3 in the Appendix documents the cyclicality of relative search intensity of the employed.

38 A notable exception is Lentz and Mortensen (2008). Even though they do not analyze the determinants of
and the transmission of shocks to aggregate recruiting intensity, like we do, their framework lends naturally to
addressing such questions as well.
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Figure 16: Index of implied aggregate recruiting intensity (Jan 2007 = 0)
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The derivation of our empirical index is grounded in our theory, and thus differs from the
one that DFH set forth, which is based on their ‘generalized matching function.” We reproduce
here their derivation to emphasize the distinctions between the two indicators. Rearranging the
aggregate matching function, one obtains log(H;/V;) = log ®; + logg;, a relationship which
links the aggregate vacancy-yield, recruiting intensity, and matching rate. Totally differentiat-
ing this expression with respect to (i) the aggregate hiring rate H;/N;, and (ii) the matching rate

qt, we obtain:

dlog H;/V; 11— dlog ®; dlog ®; dlog q:

dlogHi/Ve | _ 1. 26
dlog Hi/N; dlog(H:/Ny) | dloggq: | dlog(Hi/Ny) T (26)

The working hypothesis of DFH is that (i) the second and third terms on the right-hand side
are zero; and (ii) the term on the left-hand side—the macro-elasticity of the vacancy-yield to the
hiring-rate—is the same as the estimated micro-elasticity. These assumptions deliver the DFH

measure of aggregate recruiting intensity:

dlog ®PFH = —12_glog(H,/N;). 27

og i 1+ 72 g(H:i/Nt) (27)

Figure 16 replicates Figure X of DFH, adding our index ®°MV, as well as aggregate matching
efficiency estimated from the data (the unfiltered version of the series in Figure 1). The figure
also plots an augmented version of our index based on the industry-level analysis of Section 6.1

where we have added the sectoral composition effect to the right-hand side of equation (25).
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We should point out that the causal interpretations of the two indices differ. Our index

DEMV relies on the role of market-tightness, as our general-equilibrium model highlights that

this is the primary driver of aggregate recruiting intensity. The DFH index ®PFH instead relies
on the aggregate hiring rate. The two indices comove closely due to the strong correlation
between market tightness and hiring rates in the time-series. However, our index displays
larger fluctuations and tracks well the drop in aggregate match efficiency in the recession.®
At the same time, it shows a faster recovery in the post-recession years compared to the DFH
measure, indicating that the protracted deterioration of US aggregate match efficiency is likely
to be caused by factors other than the diminished recruiting effort of employers.

We end this section with two observations. First, an even more refined version of this index
could be constructed by obtaining access to the JOLTS microdata. These data would allow
one to compute the within-sector composition effect that we have set to zero in light of the
predictions of our model. Second, while this empirical index is useful to gauge the degree of
recruiting effort exerted by US firms at fairly high frequency, it cannot, alone, answer questions
of more immediate interest to macroeconomists such as the propagation of macro shocks or the

effect of policies on matching efficiency.

8 Conclusions

The existing literature on the cyclical fluctuations of aggregate match efficiency has focused
almost exclusively on explanations involving the worker side of the labor market, such as oc-
cupational mismatch, shifts in job-search intensity of the unemployed over the cycle, and com-
positional changes among the pool of job seekers. In this paper we have shifted the focus to the
tirm side and, building on the microeconomic evidence in Davis, Faberman, and Haltiwanger
(2013), developed a macroeconomic model of aggregate recruiting intensity.

The model, parameterized to replicate a range of cross-sectional facts about firm dynamics
and hiring behavior, indicates that a financial shock of plausible magnitude is consistent with

several features of the US macroeconomy around the Great Recession and is able to explain

3We note that the calculations in this section imply that the reason why our model of Section 5 accounts only
partially for the observed drop in match efficiency is that it only generates half of the observed fall in market
tightness.
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about half of the collapse in aggregate match efficiency over the same period through a sharp
decline in firms’ recruiting intensity. Our analysis of the transmission mechanism of the shock
points towards the importance of general equilibrium forces: aggregate recruiting intensity de-
clined mainly because the number of available job seekers per vacancy increased (i.e., labor
market tightness declined) making it easier for firms to achieve their recruitment targets with-
out having to spend as much on recruitment costs. Changes in within-sector composition of
the pool of hiring firms, due for example to the fall in new firm entry that is well matched by
the model, did not play a large role. The shift in sectoral composition—in particular the bust in
Construction and other sectors with structurally high job-filling rates, did instead contribute to
the measured deterioration in aggregate recruiting effort.

Besides its contribution to understanding the determinants of movements in match effi-
ciency, and thus the job finding rate—a key object for labor market analysis—our theory has
broader implications for macroeconomics. First, as for example Faberman (2016) discusses,
making progress in understanding how firms” hiring decisions respond to macroeconomic con-
ditions is important since job creation policies that fail to recognize the determinants of em-
ployer’s recruitment effort may fall short in achieving their goal. Our model predicts that sub-
sidizing firm hiring (abstracting from offsetting effects from higher tax rates) will increase the
average firm growth rate and induce a rise in recruiting intensity, whereas a subsidy to workers’
job search that decreases market tightness will induce a decline in recruiting intensity, through
the slackness effect discussed in the paper. Second, a richer model of employer recruiting be-
havior can lead to better estimates of the true marginal cost of labor and, therefore, result in
improved measures of the labor wedge and of the relative importance of labor and product
market wedges (Bils, Klenow, and Malin, 2014). In this respect, our model suggests that the
price of labor faced by firms may be more procyclical than what would appear from naively

using wages as a proxy.
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APPENDIX FOR ONLINE PUBLICATION

This Appendix is organized as follows. Section A contains the derivations of the hiring cost
function that we introduced in Section 4. Section B provides additional figures referenced in
the main text. Section C details the algorithms for the computation of the stationary equilib-
rium, transitional dynamics, and estimation of model’s parameters. Section D argues that our
theory of recruiting intensity implies that the common OLS estimates of the elasticity of hires

to vacancies in the aggregate matching function are biased.

A The hiring cost function

In this section we show that, once we postulate the hiring cost function

K1 Ky [U\T2
C(n,e,0) = | Lem 2" o, Al
(n,e,0) {’ne +’yz+1 <n> ]v (A1)

then, through firm’s optimization, we obtain a log-linear cross-sectional relationship between
the job-filling rate and the employment growth rate that is consistent with the empirical find-
ings in DFH. Next, by substituting the firm FOCs into (A1), we derive a formulation of the cost
only in terms of (1, n’) that we use in the intertemporal problem (10) in the main text.

As we explained in Section (3.1), the firm solves a static cost minimization problem: given
a choice of n’, it determines the lowest cost combination of (e, v) that can deliver n’. The hiring

tirm’s cost minimization problem is

" — mi K1 om K2 (U\T A2
Cln, 1) oo l’yle +’yz+1<n) ¢ (A2)
st. + n'—=n<qg(0)ev
v>0

Convexity of the cost function (A1) in (e, v) requires y; > 1 and 7y, > 0. After setting up the
Lagrangian, one can easily derive the two FOCs with respect to e and v that, combined together,

yield a relationship between the optimal choice of e and the optimal choice of the vacancy rate

HHESINGR
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Note that, if 9o = 0, as in Pissarides (2000), recruiting intensity is equal to a constant for all
tirms and it is independent of aggregate labor market conditions —both counterfactual impli-
cations. The following changes in parameters (ceteris paribus) result in a substitution away
from vacancies and towards effort: 1 x5, x1,T 72, and | 1. The effect of the cost shifter is
obvious. A higher curvature on the vacancy rate in the cost function (1 77) makes the marginal
cost of creating vacancies rising faster than the marginal cost of recruiting effort; since the gain
in terms of additional hires from a marginal unit of effort or vacancies is unaffected by 7, it is
optimal for the firm to use relatively more effort.

Now, substituting the law of motion for employment at the firm level into (A3), we obtain
the optimal recruitment effort choice, expressed only as a function of the firm-level variables

(n,n'):

K1 \ 71— 1 n

which, in turn implies, for the job filling rate,

f(n,n’) _ q(@*)e(n,n’) _ [Kz ( 71 )]Wq(g*)'rlﬁn (Tl/—n)m. (A5)

K1\ — 1 n

_1 _72

This equation demonstrates that the model implies a log-linear relation between the job filling
rate and employment growth at the firm level, with elasticity 72/ (71 + 72) < 1 as in the data.

Finally, substituting (A5) into the firm-level law of motion for employment yields an ex-
pression for the vacancy rate

1 _m
" [Q ( e N TN (n/_n)vm' (A6)

n k1 \71—1 n

Now, note that, by substituting the optimal choice for recruitment effort (A3) into (A1), we

obtain the following formulation for the cost function

e o2 (']

which is one of the specifications invoked by Kaas and Kircher (2015).

Finally, if we use (A6) in (A7), we obtain a version of the cost function only as a function of
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(n,n’) that we can use directly in the dynamic problem (10):

Y1+ K Y T o (n—n T G
C* (nn') = 1 ) K2 1 1172 o~ — 1172 .
(Tl Tl) K2 (71_1)(r)/2+1):| {|:K1 71_1 q(g) 1772 " n
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B Additional figures

Figure B1: Dynamics of output under the two shocks
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Figure B2: Employment-weighted growth rate distribution in the model
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Figure B3: Relative search intensity of employed workers
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C Computational details

C.1 Value and policy functions

We use collocation methods to solve the firm’s value function problem (4)-(7). Lets = (n,4a,z)
be the firm’s idiosyncratic state, abstracting from heterogeneity in ¢ since this is fixed. We solve
for an approximant of the expected value function V¢(n’, a’,z) which gives the firm’s expected

value conditional on current decisions for net-worth and employment
Vé(n',d,z) = / V(n',d,z)dl(z,7),
z

where the integrand is the value given in (6).

We set up a grid of collocation nodes S = N x A x Z where N = {ny,...,ny, }, with N, =
N; = N, = 10. We construct Z by first creating equi-spaced nodes from 0.001 to 0.999, which
we then invert through the cdf of the stationary distribution implied by the AR(1) process for
z to obtain Z. This ensures better coverage in the higher probability regions for z. We choose
A and N to have a higher density at lower values. The upper bound for employment, 7, is
chosen so that the optimal size of the highest productivity firm n*(2) is less than 7. We choose
the upper bound for assets, @, so that the maximum optimal capital k*(Z) can be financed, that
is k*(z) < ¢a. Note that N, A, and Z are parameter dependent, therefore recomputed for each
new vector of parameters considered in estimation.

We approximate V°(s) on S using a linear spline with Ny = N, x N; x N, coefficients.
Given a guess for the spline’s coefficients we iterate towards a vector of coefficients that solve
the system of Ns Bellman equations, which are linear in the N; unknown coefficients. Each
iteration proceeds as follows. Given the spline coefficients we use golden search to compute
the optimal policies for all states s € S, and the value function V(s). We then fit another spline
to V(s) which facilitates integration of productivity shocks ¢ ~ N (0, 9,). To compute V¢(s) on

S we approximate the integral by

Ne
Vé(n,a,z) =) wV(n,a,exp(p;log(z) +¢)).
i—1

Here N; = 80 and the values of ¢; are constructed by creating a grid of equi-spaced nodes

between 0.001 to 0.999, then using the inverse cdf of the shocks (normal) to create a grid in e.
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The weights w; are given by the probability mass of the normal distribution centered around
each ¢;. Note that this differs from quadrature schemes in which one is trying to minimize the
number of evaluations of the integrand, usually with N, around four. Since V(s) is already
given by an approximant at this step, and the integral is only computed once each iteration,
this is not a concern and we compute the integral very precisely. We then fit an updated vector

of coefficients to V¢(s) and continue.*’

C.2 Stationary distribution

To construct the stationary distribution we use the method of non-stochastic simulation from
Young (2010), modified to accommodate a continuously distributed stochastic state. We create
a new, fine grid of points S/ on which we approximate the stationary distribution using a his-
togram, setting N,{ = NT{ = N; = 100. Given our approximation of the expected continuation
value we solve for the policy functions n’ (s/) and @’ (s/) on the new grid and use these to cre-
ate two transition matrices Q, and Q, which determine how mass shifts from points sf € Sfto
points in N/ and A/, respectively. We construct Q, as follows for x € {a,n}
1 f f
Qulif) = 1y )l o ¥ (o) - %] 1 Xj1 —¥(s)

e A (A

fori =1,..., st andj =1,..., N,J: M This approach ensures that aggregates computed from
the stationary distribution will be unbiased. For example if x(s) € (Xj, Xj+ 1), then masses
w;j and w;q are allocated to X; and X, such that w;X; + w;1X;1q1 = x'(s). The transition
matrix for the process for z is computed by Q, = ZlNzgl w;Q’, where Q! is computed as above
under z/(s) = exp(p. log z + ¢;). Finally the overall incumbent transition matrix Q is the tensor
product Q = Q, ® Q; ® Q.

To compute the stationary distribution we still need the distribution of entrants. To allow
for entry cut-offs to move smoothly we compute entrant policies on a dense grid of N? = 500

productivities. This is clearly important for us since it ensures that entry does not jump in the

“0In practice, instead of this simple iterative approach to solve for the coefficients, we follow a Newton algo-
rithm as in Miranda and Fackler (2002), which is two orders of magnitude faster. The Newton algorithm requires
computing the Jacobian of the system of Bellman equations with respect to the coefficient vector. The insight of
Miranda and Fackler (2002) is that this is simple to compute given the linearity of the system in the coefficients.

411f exit is optimal on grid point s.f then we set row i of Q, to zero.
P gria p i
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transition dynamics or across parameters in calibration. The grid Z° is constructed by taking
an equally spaced grid in cumulative probabilities and inverting it through the cdf of potential
entrant productivities (exponential). Let the corresponding vector of weights be given by Py.
Given the approximation of the continuation value V¢ we can solve the potential entrant’s
policies n{(sg) and aj(sp), conditional on entry. We can then solve the firm’s discrete entry
decision. Finally we compute an equivalent transition matrix Qg using these policies, where
non-entry results in a row of zeros in Q.

The discretized stationary distribution L on S/ is then found by the following approximation
to the law of motion (15)

L = (1-¢)Q'L + AQyPy,

which is a contraction on L, solved by iterating on a guess for L. The final stationary distribution

f
is found by choosing Ay such that Zlstl Li=1

C.3 Computation of moments

We compute an aggregate moment X by integrating A over firm policies x(s). Using the above
approximation this is simply X = L’x(s).

For age based statistics, our moments in the data refer to firm ages in years. We therefore
generate an ‘age zero’ measure of firms by allowing for 12 months of entry. We then iterate this
distribution forward to compute age statistics such as average debt to output for age 1 firms, or
the distribution of vacancies by age.

For statistics such as the average annual growth rate conditional on survival we need to
simulate the model. In this case we draw 100,000 firms on S/ in proportion to L and simulate
these forwards solving (rather than interpolating) firm policies each period and evolving pro-
ductivity with draws from the continuous distribution of innovations ¢. To remove the effect of
the starting grid, we simulate for 36 months and compute our statistics comparing firms across

months 24 and 36.

C.4 Estimation

The model has a large number of unknown parameters and a criterion function that is poten-

tially non-smooth. Furthermore the model does not have an equilibrium for large regions of the
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parameter space.”> For these reasons, using a sequential optimizer that takes the information
from successive draws from the parameter space and updates its guess is prohibitive. For ex-
ample, a Nelder-Mead optimizer both needs to be returned values for the objective function at
each evaluation and needs to make many evaluations of the function when taking each “step’.

Our solution is to use an algorithm that we can very easily parallelize, that efficiently ex-
plores the parameter space, and for which we can ignore cases with no equilibrium. We set
up a hyper-cube in the parameter space and then initialize a Sobol sequence to explore it. A
Sobol sequence is a quasi-random low-discrepancy sequence that maintains a maximum dis-
persion in each dimension and far out-performs standard random number generators. We then
partition the sequence and submit each partition to a separate CPU on a High Performance
Computer (HPC). From each evaluation of the parameter hyper-cube we save the vector of
model moments, and regularly splice these together, choosing one that minimizes the criterion
function. Starting with wide bounds on the parameters we run this procedure a number of
times, shrinking the hypercube each time.

This procedure has a number of benefits. First, we trade in the optimization steps associated
with a traditional solver for scale. Instead of using a 10 CPU machine to run a Nelder-Mead
algorithm, we can simultaneously solve the model on 300+ CPUs. Second, the output of the
exercise gives a strong intuition for the identification of the model. From an optimizer one
may retrieve the moments of the model along the path of the parameter vector chosen by the
algorithm. In our case, we retrieve thousands of evaluation knowing that the low-discrepancy
property of the Sobol sequence implies that for an interval of any one parameter, the remaining
parameters are drawn uniformly. Plotting moments against parameters therefore shows the
effect of a parameter on a certain moment, conditional on local draws of all other parameters.
Plotting a histogram of the moments returned, as in Figure C1, gives a strong indication as to

which moments may be difficult to match for the current bounds of the parameter space.

C.5 Transition dynamics

We solve for transition dynamics as follows. Consider the case of a shock to aggregate pro-

ductivity Z. We specify a path for {Zt}fT:o with Zg = Z7 = Z. Given a conjectured path for

“2For example, if the value of home production is very low then unemployment derived from the labor demand
condition may be negative. Wages are so low that labor demand eclipses the fixed supply L.
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Figure C1: Histograms of selected moments from final calibration exercise
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equilibrium market-tightness {6; }tT:() and the assumption that the date T continuation values
of the firm are the same as in steady state, one can solve backwards for expected value functions
V¢atalldates T —1,T —2,...,1. Setting the aggregate states Uy = U and Ay = A, and using the
conjectured path 6;, the shocks and continuation values one can then solve forwards for a new
market-clearing 0/’ that equates unemployment from labor demand U#¢"#"@ and worker flows

Uf lows in every period using the labor demand and evolution of unemployment equations
t Yp g ploy q

Z ES *
Ul = Uy — H(0F) + F(6]) — Aesno

ufirimnd _ E_/n’(s,Qf,At,Vf)dAt

Once we reach t = T we set §; = 0} and iterate until the proposed and equilibrium paths for

market tightness converge.
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D Estimation of matching function elasticity

As mentioned in Section 5.1.2, our main finding that recruiting intensity strongly co-moves with
market tightness has implications for the estimation of the elasticity of the aggregate matching
function.

Consider the true matching function
H = &vrul—~.

To estimate the elasticity parameter a, a common strategy in the literature is to divide by un-

employment, take logs and estimate the following equation by OLS
log JER; = Bo + B1log6: + €y, (D1)

where JFR; is the job finding rate. Our theory implies that a component of the error term ¢; is
positively correlated with 6;: in recessions markets are slack (lower 6;) and recruiting intensity
is low (lower ¢;). This will result in an upward bias in the estimate of A1 > a.

We can get a sense of the magnitude of this bias using our approximate measure of recruiting
intensity that abstracts from the composition effect (small in the model’s simulations) and takes
a first-order approximation of the function g(6*):

2
Y1+ 72

log ®; ~ Constant + a(1 — a)eg- g log Oy

where &g+ g is the equilibrium elasticity of 6* to 6.
Substituting this formula into an empirical equation for the matching function where 7;
contains other components orthogonal to labor market tightness, we obtain:

T2
Y1+ 72

log JFRy = Constant + « {1 + (1-— 0()89*19:| log 0; + log 17; .

For a given value of 1 obtained from estimating D1, & which is the unbiased estimator of  is

the solution to the quadratic equation

Br=1 {1 +—2 (- &)89*4 :
Figure D1 plots these solutions for different values of ;.
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Figure D1: Relationship between biased and unbiased estimates of the matching function elas-
ticity of hires with respect to vacancies («)
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We note that Borowczyk-Martins, Jolivet, and Postel-Vinay (2013) compare OLS estimates
of « and GMM estimates corrected for endogeneity and do indeed find evidence of an upward
bias. Their OLS estimate of 0.84 (their Table 1) would correspond to a true value, under our
model, of « = 0.55. As a baseline, we chose the slightly lower value of 0.5 to be conservative on

the fraction of the decline in aggregate matching efficiency that can be explained by the model.

59



	Introduction
	Recruiting Intensity and Aggregate Matching Efficiency
	Model
	Environment
	Firm Problem
	Household Problem
	Stationary Equilibrium and Aggregation

	Parameterization
	Externally Calibrated
	Internally Calibrated
	Cross-Sectional Implications

	Aggregate Recruiting Intensity and Macroeconomic Shocks 
	The Transmission Mechanism
	Inspecting the Composition Effect
	When Can the Composition Effect Be Large?
	Relationship with KassKircher

	Dynamics of Vacancy Yields by Size: the Role of Financial Constraints

	Extensions
	Sectoral Heterogeneity in Recruiting Technology
	Robustness to the Inclusion of On-the-Job Search

	A New Aggregate Recruiting Intensity Index
	Conclusions 
	The hiring cost function
	Additional figures
	Computational details
	Value and policy functions
	Stationary distribution
	Computation of moments
	Estimation
	

	Estimation of matching function elasticity



