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1 Introduction

The relationship between education and innovation has been the subject of intense scrutiny,

due to its implication for economic growth and productivity (Ja↵e, 1989; Aghion et al.,

2009; Cantoni and Yuchtman, 2014; Andrews, 2016). Only recently, however, the growing

availability of granular administrative data allowed researchers to describe on a large scale

the individual drivers of innovation. Recent studies, for example, documented how inventors

in several developed countries are more likely than average to have completed a university

STEM (science, technology, engineering, and math) degree (Jung and Ejermo, 2014; Aghion

et al., 2016). The next step in this line of research requires to identify the causal mecha-

nisms through which scientific higher education a↵ects the production of innovation. One

important issue is to establish whether university STEM education has a direct e↵ect of the

propensity to innovate, beyond the fact that individuals who are inherently more inventive

might choose to enroll in STEM majors. In addition, it would be critical to document how

completing a university STEM degree changes occupational choices. If non-STEM industries

value the skills acquired through a scientific education, many STEM graduates might end

up in highly-paying jobs that do not focus on the production of innovation. In this case,

the relationship between scientific education and innovation would depend critically on the

characteristics of the local labor markets.

This paper uses a sharp change in the enrollment requirements for STEM majors in

Italian universities to study how university STEM education a↵ects innovation. Until 1960,

only the students who graduated from university-prep high schools (hereafter, academic

students) could enroll in university STEM majors. Students in technical high schools

for industry-sector professionals (industrial students) received a practical training in many

STEM disciplines, but could not further their education at the university level. In 1961,

industrial students were allowed to enroll in university STEM majors for the first time:

between 1961 and 1964, universities could set enrollment quotas to control their entry; after

1965, any remaining restriction was lifted. Among the industrial students who completed

high school after 1961, the probability of receiving a university STEM degree increased by

more than 15 percentage points.

To determine how the innovation propensity of industrial students changed, we leverage

three types of administrative data on the population of 46,473 students who completed high

school in Milan between 1958 and 1973. We use historical education data, which Bianchi

(2016) collected directly from the archives of high schools and universities, to observe the pre-

collegiate achievement and university career of these students. We also use a panel dataset

provided by the Social Security Institute, which contains information on the employment
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histories of these individuals, to capture occupational choices. To measure the likelihood of

producing innovation, we draw on information from all patents issued by the Italian Patent

O�ce (IPO) between 1968 and 2010, as well as from all international patents included in

the European Patent O�ce’s PATSTAT database. We then match the inventors listed in

the patent data to school and employment records, using an individual fiscal code and the

name of the employer. This process allows us to identify 869 individuals who patented at

least once.

Our identification strategy exploits the fact that the change in enrollment requirements

increased the probability of receiving a university STEM degree only among the industrial

students who completed high school after 1961, but not among students from di↵erent high

schools. Therefore, we can compare cross-cohort variations in innovation propensity between

industrial and academic students, who could freely enroll in STEM majors before 1961, or

between industrial students and graduates of other technical schools, who could not enroll

in STEM majors even after 1961.1 Because graduation rates in STEM majors increased

more among industrial students with higher high school grades, we also estimate triple-

di↵erence regressions by comparing cross-cohort variations in innovation propensity between

industrial and other students, and between levels of pre-collegiate achievement. In addition

to this intent–to–treat analysis, we isolate the e↵ect of the reform on the industrial students

who actually received a STEM degree after 1961. To create a balanced sample, we use a

nearest–neighbor algorithm to pair pre-reform industrial students to post-reform industrial

students with a STEM degree on the basis of their pre-collegiate characteristics. We then

compare these matched industrial students to academic students with a STEM degree.

We first analyze how acquiring a university STEM degree changed the probability of

becoming an inventor. Among industrial students who scored in the top quartile of the

high school exit exam and received a STEM degree, the propensity to innovate decreased

between 43 and 58 percent. Industrial students with lower pre-collegiate achievement and

a STEM degree, instead, became more likely to produce patents. To control for the quality

of innovation, we repeat the analysis classifying as inventors only the 301 individuals who

patented at least once in the US (35 percent of all inventors).2 Data on US patents indicates

that the probability to produce high-quality innovation did not decrease significantly among

higher-achieving industrial students with a STEM degree. This finding suggests that the

1 The education policy might have induced some students, who would have otherwise chosen another school,
to enroll in an industrial high school. In section 5.4, we perform several tests to address this concern. For
example, we limit the analysis to early cohorts, who chose a high school before 1961. The available evidence
suggests that a change in how students sorted into di↵erent high schools does not drive our findings.

2 We treat the decision to patent in the US as a signal for inventions of above-average value, because Italian
inventors have to incur significant additional expenses to file an application in the US.
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decrease observed using Italian and European patents might stems from individuals who

would have not patented high-quality inventions in the US.

To explain the existence of heterogeneous e↵ects on the propensity to innovate, we relate

the previous results to changes in how industrial students with a STEM degree sorted into

di↵erent occupations. The pre-reform cohorts of industrial students were mainly employed

in manufacturing firms as high-skilled technicians, an occupation with a high probability

of producing patents. After the reform, many higher-achieving industrial students with

a STEM degree moved towards occupations with relatively low propensity to innovation,

such as self–employed professionals and public servants. The occupation with the largest

entry of higher-achieving industrial students, self-employed engineers, is characterized by

both significant barriers to entry (a mandatory national exam) and high levels of income

inequality, which might have deterred students with lower ability from entering. Lower-

achieving industrial students with a STEM degree, instead, became employees in the private

sector, either staying in manufacturing or moving to other innovative industries. They also

became more likely to hold managerial roles, which are associated with a high propensity to

innovate.

In addition to documenting how acquiring a STEM degree a↵ected the selection into

more or less innovative jobs, we study whether a scientific higher education had a direct

impact on the type of innovation produced. Compared with industrial students, pre-reform

academic students with a STEM degree were more likely to patent in important technological

areas, such as medicine, chemistry, and IT. We label these areas as STEM–oriented fields of

invention. We then show that post-reform industrial students with a STEM degree became

more likely to patent in these STEM–oriented fields, suggesting that a university STEM

degree made the innovation outcome of industrial and academic students more homogenous.

This shift towards STEM–oriented fields does not seem to reflect any secular trend: post-

reform industrial students who did not receive a STEM degree, for example, did not become

more likely to patent in these areas.

This paper contributes to the vast literature on the returns to education. Previous

research has highlighted how education leads to higher wages (Card, 1999, 2001; Meghir

and Rivkin, 2011 for a review of this rich line of research), better health (Lleras-Muney,

2005; Silles, 2009; Cutler and Lleras-Muney, 2010; de Walque, 2010; Webbink, Martin and

Visscher, 2010; Eide and Showalter, 2011), lower probability of incarceration and arrest

(Lochner, 2004; Lochner and Moretti, 2004; Buonanno and Leonida, 2009; Cook and Kang,

2016), higher social capital (Dee, 2004; Milligan, Moretti and Oreopoulos, 2004; Wantchekon,

Klasnja and Novta, 2015), and other non-monetary benefits (Grossman, 2006). This paper

is one of the first to document how completing a university STEM degree, instead of a
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technical high school diploma, a↵ects the propensity to innovate and the type of innovation.

The results suggest that higher education has a more nuanced e↵ect on innovation than on

other outcomes. If innovation is tied to specific occupations and non-STEM sectors value

scientific skills, an increase in scientific education does not necessarily increase the propensity

to innovate of marginal students.

To the best of our knowledge, there is only another paper that uses individual-level

data to provide causal estimates on the relationship between education and innovation.

Toivanen and Väänänen (2015) use the establishment of new technical colleges in Finland to

instrument for the probability of getting a university engineering degree. Their IV estimates

indicate a positive relationship between completed technical education and the propensity

to patent in the US. This paper complements their analysis by showing the existence of

heterogeneous e↵ects between levels of pre-collegiate achievement, by relating changes in

innovation propensity to sorting into di↵erent occupations, and by documenting e↵ects on

the fields of invention.

This paper also complements the recent, but growing literature that describes the observ-

able characteristics of individual inventors. Jung and Ejermo (2014) draw on information on

Swedish data to determine the existence of a significant gender gap. Depalo and Di Addario

(2014) use data on Italian inventors to analyze how earnings change before and after the

filing of a patent application. Aghion et al. (2016) analyze a dataset of Finnish inventors

and find a positive correlation between parents’ income and the probability of becoming

an inventor. Using data on US inventors, Bell et al. (2016) emphasize how exposure to

innovation during childhood is positively correlated with the propensity to innovate later

in life. In this paper, we contribute to these findings by providing causal evidence on how

education and occupations contribute to the likelihood of becoming an inventor.

The rest of the paper is organized as follow. Section 2 describes the change in the

enrollment requirements in Italian STEM majors. Section 3 describes the data. Section 4

outlines the identification strategy. Section 5 shows the e↵ects on the likelihood of becoming

an inventor. Section 6 investigates changes in occupation. Section 7 documents the e↵ects

on the fields of invention. Section 8 concludes.

2 The Reform of the Admissions into University STEM Majors

In Italy, there are three main types of high schools: academic, technical, and professional

schools. Academic schools provide a theoretical education in the humanities and the sciences.

Technical schools combine theoretical and applied disciplines related to one field of study.

These schools are categorized into di↵erent tracks, such as industry, commerce, and educa-
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tion. Technical students in the industrial-track, for example, study applied STEM disciplines,

while students in the commercial-track study accounting and languages. Professional schools

focus on short-term practical training for one specific occupation.

Until 1960, this three-tier high school system influenced admissions into Italian universi-

ties. At the top, the graduates of academic schools could choose any university major. In the

middle, the graduates of technical schools could enroll only in business economics, statistics,

and few other minor programs. Within this group, the students in the industrial-track were

prevented from continuing their STEM studies at the postsecondary level and usually chose

not to enroll in the university. At the bottom, the graduates of professional schools could

not enroll in any university major.

As the Italian industrial sector expanded in the post-WWII period, the demand for

highly skilled STEM workers increased significantly (figure A1). The growth in univer-

sity STEM degrees, however, was constrained by the fact that only students of academic

schools—amounting to 30.9 percent of all high school graduates in 1960—could enroll in

university STEM majors. The first panel of figure A2 shows the number of students enrolled

in the freshmen year of STEM majors in all Italian universities, computed as the share of all

high school graduates. Between 1958 and 1960, the enrollment share in STEM majors was

constant at 11 percent.

To increase the amount of STEM skills in the economy, a 1961 reform known as “legge

685/61” allowed industrial students to enroll in university STEM majors for the first time.

The a↵ected majors were engineering, mathematics, physics, natural sciences, biology, geol-

ogy, and chemistry. Between 1961 and 1964, industrial students competed for a restricted

number of available slots and were selected with an exam. Starting in 1965, industrial

students were fully equated to academic students and stopped facing an enrollment cap. In

1969, a reform known as “legge Codignola” allowed all students to modify the previously

rigid university curricula by choosing a higher number of elective courses.3

The 1961 reform was associated with a substantial enrollment increase in STEM majors.

Between 1961 and 1964, the enrollment share in university STEM majors increased from

11.1 percent in 1960 to 12.9 percent in 1964 (panel A, figure A2; ISTAT data). When

the remaining restrictions for industrial students were lifted in 1965, the enrollment share in

university STEM majors increased to 18.6 percent. This large increase persisted at least until

1973. The second panel of figure A2 shows the number of industrial students enrolled in the

freshman year of STEM majors, again computed as the share of all high school graduates.

3 The same “legge Codignola” granted all high school graduates access to any university major, regardless
of the type of high school diploma. This part of the reform did not have any significant e↵ect on the
education choices of industrial students, as many of them kept enrolling in STEM programs.
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The enrollment share in STEM majors of industrial students was equal to 1.7 percent in

1963 and to 2 percent in 1964. In 1965, it increased dramatically to 6.8 percent and did not

decrease throughout the period under consideration.

3 Data

To analyze the e↵ects of university STEM education on innovation, we combined di↵erent

types of administrative data on the students who completed high school in Milan between

1958 and 1973. Milan is an interesting setting for a study on innovative activities, due to

its high propensity to innovation. According to the universe of patents issued by the Italian

Patent O�ce between 1968 and 2010, 12.7 percent of the patents were granted to an assignee

located in Milan, despite the fact that Milan hosts only 2.1 percent of the Italian population

(2011 Census).

3.1 Education Data

Bianchi (2016) collected and digitized the high school registers of 46,473 students who

received an academic or technical diploma in Milan between 1958 and 1973. In addition to

key identifying variables such as full name, birthdate, and birthplace, the registers contain

information about the student’s performance in the high school exit exam (maturità). We

standardize the high-school grades by school and cohort and use them as a measure of

pre-collegiate achievement. Moreover, we can compute the average grade of each student’s

closest peers, because each cohort was divided in small classes of 20–30 students attending

lectures together. We use the classmates’ average score as a measure of pre-collegiate peer

e↵ects. From the registers, we also identify “home-schooled” students who graduated from

the school without attending the regular school year. These students were either educated

at home or enrolled in private schools not allowed to administer the final exam.

Bianchi (2016) also collected and digitized the student records kept by three universities

in Milan: the Polytechnic University of Milan, the University of Milan, and the private

Catholic University of the Sacred Hearth.4 Collecting data exclusively from the universities

in Milan does not lead to a biased sample, because almost all students from Milan chose

a local university: 94.1 percent in 1956 and 93.5 percent in 1967, according to the Italian

Bureau of Statistics (ISTAT). For each student, we know the major chosen, the year of

4 Our sample does not include data from the private Bocconi University. Bocconi University is not relevant
for the analysis, because it o↵ered only a business economics major—accessible to technical students before
1961—, charged high tuition fees, and admitted only a limited number of students each year.
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enrollment, the grade received in each university course, and the final outcome (graduation,

transfer, or dropout).

3.2 Occupation Data

Out of 46,473 students, 41,840 (90 percent) had a record in the database of the Italian

Social Security Institute (INPS). INPS is a government agency that administers pensions and

other forms of benefit mainly to employees in the private sector. The institute maintains an

employer-employee panel database on all Italian workers, including self-employed and public

employees. The information available for workers other than private employees, however, is

limited to the pension fund to which they were contributing in a given year. Because the

pension funds are tied to di↵erent jobs, we can categorize all workers in the sample into 40

occupations (table A1).

Most workers are employees in the private sector (64.4 percent), while public employees

are 5.9 percent. The rest of the sample is represented by self-employed professionals,

entrepreneurs, and other employees of private or public companies with special pension

benefits (for example, the employees of the postal service).

For employees in the private sector, we have additional information on the industry, the

position within the firm (apprentice, low/high blue collar, low/high white collar, or manager),

and in some cases the compensation.

3.3 Patent Data

To analyze the innovative activity of the individuals in the sample, we use information from

all the patents issued by the Italian Patent O�ce (IPO) between 1968 and 2010, and from

all international patents included in the European Patent O�ce’s PATSTAT database. The

data distinguish between the assignees of a patent—the firms or individuals owning the

intellectual property rights over the patented invention—and the inventors—the individuals

who contributed to its development. This feature allows us to capture innovative activity,

even when the individual develops a patent as an employee or consultant without retaining

any property right.

We matched the list of high-school graduates to the list of inventors in di↵erent stages.

Initially, we used the full name of the individuals to find 43,246 possible patent-individual

matches. This first step ruled out the vast majority of irrelevant patents, but led to a large

number of false positives. To improve the matching process, we employed three subsequent

refinements. First, we exploited the fact that 7,796 matched patent-individual combinations

issued after 1989 contained the fiscal code, which is a unique individual identifier for tax
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purposes. For these observations, we used the fiscal code of the students to find 496 correct

and 7,300 incorrect matches. Second, we used the social security data to verify whether

the employer of the alleged inventor matched the patent assignee in the year of the patent

application. Thanks to the work histories provided by the social security institute, we were

able to verify 2,662 matches as correct and 27,642 as incorrect. Third, we hired several

contractors to search additional information on the matched inventors, such as birthdate,

birthplace, and education, on LinkedIn or company websites. To improve precision, we

sent each entry (a patent-inventor combination) to multiple contractors and we personally

checked all the data found online. Out of 880 patent-individual combinations for which we

were able to find additional information, we were able to verify 663 of them as correct and

217 as incorrect. Out of the initial 43,246 matched patent-inventor combinations, we verified

35,159 entries and found 3,821 correct matches. In the main analysis, we dropped the 4,266

unverified patents from the sample, although the main results are robust to their inclusion

(section 5.5).

3.4 Characteristics of Inventors

Table 1 describes how inventors di↵er from the average individual in the sample. Out of

46,473 students, 869 inventors (1.9 percent of the sample) developed a total of 3,821 patents.

On average, one inventor is linked to 4 patents, but the distribution is heavily skewed to the

right (median 2; 99th percentile 31). Relative to the rest of the sample, inventors are 22.9

percentage points more likely to be male and 0.7 years older. In addition, 64.1 percent of

inventors received an industrial diploma, compared with 35.1 percent of non-inventors. As

expected, inventors are positively selected in terms of academic abilities: they received a

high school grade 0.26 standard deviations higher than the mean. Compared with the rest

of the sample, inventors were more likely to attend university studies, especially in a STEM

program, and were more likely to graduate. The retention rate in STEM majors is equal to

80 percent for inventors and 65.1 percent for the rest of the sample. In the labor market,

93.6 percent of inventors were employees in the private sector, compared with only 88.5

percent among non-inventors. Outside of the private sector, inventors were more prominent

in research-oriented jobs, such as university professors and academic researchers (2.4 percent

against 1.2 percent among non-inventors). Within the private sector, inventors were more

likely to work in manufacturing (83.8 percent vs 52.1 percent) and in R&D (2.3 percent vs

0.9 percent). In addition, inventors were more likely to reach the top in the organizational

structure of firms in the private sector. The share of managers is equal to 55.6 percent among

inventors, but only 29.2 percent among non-inventors.
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4 Identification

4.1 Industrial and Academic Students

In this specification, we draw a comparison between the innovative outcomes of industrial

and academic students. Students with an academic diploma were not directly a↵ected by

the change in university access, since they could freely enroll in university STEM majors

before and after 1961.5 As a result, the policy significantly increased university STEM

education only among the industrial students who completed high school after 1961. Relative

to academic students, the graduation rate of industrial students in STEM majors increased

by 4.0 percentage points between 1961 and 1964, by 17.2 percentage points between 1965

and 1968, and by 16.7 percentage points between 1969 and 1973 (table A2, panel A, column

1).6 All increases are statistically and economically significant.

The di↵erential increase in university STEM education occurred only among cohorts who

finished high school after 1961, even though the reform granted every cohort of industrial

students access to STEM degrees. The coe�cients of the interaction between pre-reform

cohort fixed e↵ects, 1959 and 1960, and Industrial, a dummy variable equal to one for

industrial students, are not statistically significant (table A2, panel A, column 2). Similarly,

the coe�cient of the interaction between a pre-reform linear trend and the variable Industrial

is close to zero and not statistically significant (table A2, panel A, column 3). Figure 1

(panel A) shows that the di↵erential change in university STEM education is the result of

two separate e↵ects: a large cross-cohort increase among industrial students, as well as a

decrease among academic students. This decreasing pattern suggests that some academic

students might have decided to avoid STEM majors after 1961, in favor of other programs

still not accessible to industrial students (Bianchi, 2016). In section 4.5, we propose an

alternative specification that takes this concern into account.

In the empirical analysis, we estimate the regression:

Inventionit = ↵ + �Industriali + �t +
X

t

�t[Industriali ⇥ Postt] + ⇣Xit + uit (1)

on a sample that comprises industrial and academic students. The unit of observation

5 By granting access to university STEM majors, the 1961 reform significantly increased the option value
associated with an industrial diploma. As a result, the selection of students into di↵erent types of high
schools might have changed. In section 5.4, we perform several robustness checks to address this concern.

6 Here and in the rest of the paper, the phrase “between 1961 and 1964” refers to the cohorts who completed
high school between 1961 and 1964, “between 1965 and 1968” to the cohorts who completed high school
between 1965 and 1968, and “between 1969 and 1973” to the cohorts who completed high school between
1969 and 1973.
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is a student i, who completed high school in year t. The dependent variable Inventionit is

a measure of innovative activity, such as a dummy variable equal to one for the individuals

who developed at least one patent between 1968 and 2010, the number of developed patents,

or the number of technological fields in which an individual invented. Postt is a series of

dummy variables that identify the cohorts who completed high school after the first policy

implementation: Post 1961 is 1 for the students who completed high school between 1961

and 1964, Post 1965 is 1 for the students who completed high school between 1965 and 1968,

and Post 1969 is 1 for the students who completed high school between 1969 and 1973.

Industriali is a dummy that identifies industrial students. �t are cohort fixed e↵ects, while

Xit are student characteristics, such as gender, province of birth fixed e↵ects, high school

fixed e↵ects, the average standardized score of the closest peers in high school, a dummy for

home-schooled students, and a dummy for students who graduated high school on time at

19. Standard errors are clustered at the high school and cohort level.

To explore the existence of a common pre-trend in innovative activity between industrial

and academic students, we create a new dataset in which each observation represents a

di↵erent combination of year of high school graduation, high school class—defined as a

small groups of 20–30 students attending lectures together—, and quartile of pre-collegiate

achievement. We then test whether the number of inventors in industrial and academic

classes followed a di↵erent trend before 1961. Panel A of table 2 shows that the coe�cient

of the interaction between a pre-reform trend and the dummy variable Industrial is not

statistically di↵erent from zero (column 1). This finding does not change, if the linear trend

is replaced by cohort fixed e↵ects: the coe�cients of Industrial x 1959 and Industrial x 1960

are small and not statistically significant (table 2, panel A, column 2). Similarly, there is no

evidence of di↵erential pre-reform trends, if we replace the inventor count with the number

of patents developed by each observational unit (table 2, panel A, columns 3 and 4).

4.2 Industrial and Commercial Students

In this specification, we compare industrial students to graduates of commercial-track tech-

nical schools. Before 1961, commercial students could enroll in the same set of university

majors that were available to industrial students. In 1961, however, they did not become

eligible for STEM programs.7 Relative to commercial students, the STEM graduation rate

of industrial students increased by 3.7 percentage points between 1961 and 1964, by 13.1

percentage points between 1965 and 1968, and by 8.1 percentage points between 1969 and

7 Commercial students could enroll in STEM majors only from 1969, when university admissions stopped
depending on the type of high school diploma. Even after 1969, however, very few commercial students
chose a STEM major.
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1973 (table A2, panel B, column 1). In the empirical analysis, we then re-estimate regression

(1) on a sample that includes solely industrial and commercial students. Panel B of table 2

indicates that the innovative activities of these two groups of students followed a common

trend before the reform.

4.3 Higher– and Lower–Achieving Industrial Students

We then explore how university STEM education changed the innovative outcomes of in-

dustrial students with di↵erent pre-collegiate skills. Within each post-reform cohort, in fact,

STEM graduation rates increased more among industrial students with higher pre-collegiate

achievement (figure 1, panel C). Relative to industrial students with lower pre-collegiate

achievement, the STEM graduation rates of industrial students who scored in the top quartile

of the high school exit exam increased by 8.2 percentage points between 1961 and 1964, by

11.9 percentage points between 1965 and 1968, and by 9.6 percentage points between 1969

and 1973 (table A2, panel C, column 1). The inclusion of controls for pre-reform trends

indicate that these increases do not precede the implementation of the first reform (table

A2, panel C, columns 2 and 3).

To perform this analysis, we estimate the regression:

Inventionit = ↵ + �Topi + �t +
X

t

�t[Topi ⇥ Postt] + ⇣Xit + uit, (2)

where Topi is a dummy variable equal to 1 for industrial students in the top quartile of

their high school grade distribution. This sample includes only students with an industrial

diploma.

In panel C of table2, we investigate the existence of di↵erent pre-reform trends in

the innovative outcomes of industrial students with varying pre-collegiate skills. The ev-

idence suggests that the number of inventors among top and other industrial students were

on the same path before 1961: the coe�cient of the interaction between the variables

Pre-reform trend and Top is close to zero and not statistically significant (table 2, panel

C, column 1). These findings are robust to alternative specifications of both the pre-reform

trend and the measure of innovative activity (table 2, panel C, columns 2 to 4).

4.4 Triple Di↵erences

Equation 1 attributes any post-reform change in innovative activity among industrial stu-

dents to the increase in STEM education. Omitted factors, however, might have di↵erentially

a↵ected the propensity to innovate of industrial students who completed high school after
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1961. Technological change, for example, might have di↵erentially a↵ected the propensity

to innovate of younger industrial and academic students. We therefore compare the cross-

cohort di↵erential change in innovative activity of top and other industrial students to the

di↵erential change of top and other students with other high school diplomas. We estimate

the regression:

Inventionit = ↵ + �Topi + �t +
X

t

�t[Topi ⇥ Postt] (3)

+
X

t

⌘t[Industriali ⇥ Postt] + ✓[Industriali ⇥ Topi]

+
X

t

�t[Industriali ⇥ Topi ⇥ Postt] + ⇣Xit + uit,

on two di↵erent samples, one with academic students as control and the other with commer-

cial students. This di↵erence-in-di↵erence-in-di↵erences specification allows us to control for

time-varying omitted factors that di↵erentially a↵ected students with di↵erent diplomas, as

well as students with varying pre-collegiate ability.

4.5 Matched Industrial and Academic Students

In addition to the previous intent-to-treat estimates, we intend to isolate the e↵ect of

university STEM education on the industrial students who actually received a STEM degree

after 1961. The challenge in performing this analysis is that we do not directly observe the

industrial students in the pre-reform cohorts who would have completed a STEM degree, had

they graduated high school after 1961. To create a balanced pre-reform sample, we match

post-reform industrial students with a STEM degree to pre-reform industrial students, using

nearest–neighbor propensity score matching. We first limit the sample to male students,

because female participation into high school increased over time. We then compute the

propensity scores using the available pre-collegiate characteristics, such as high school fixed

e↵ects, the score in the exit exam, the average score of the high school’s peers, a dummy for

home–schooled students. We repeat this process for each quartile of pre-collegiate ability,

choosing the calipers to match the observed STEM graduation rate after 1961.

The resulting sample of 1,719 industrial students has balanced characteristics before

and after 1961 (table A3, panel A). All the observable characteristics used in the matching

process are not statistically di↵erent between post-reform students with a STEM degree and

matched pre-reform industrial students. Among higher-achieving students, for example, the

average high school score is equal to 1.68 standard deviations among pre-reform matched

students and to 1.75 standard deviations among post-reform students with a STEM degree.
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The di↵erence is small and not statistically significant. Moreover, also a variable not used

to compute the propensity scores—a dummy that identifies students completing high school

at the standard age of 19—is balanced between the two groups.

As a control group, we use academic students with a STEM degree. As a direct response

to the entry of industrial students in STEM majors, however, some academic students might

have turned to di↵erent university programs after 1961, changing the average characteristics

of STEM students with an academic diploma. To address this concern, we select only

the pre-reform academic students who were more likely to receive a STEM degree, had

they completed high school after 1961. Using the same nearest–neighbor propensity score

algorithm, we match post-reform academic students with a STEM degree to pre-reform

academic students with a STEM degree. The result is a sample of 3,001 academic students

with a STEM degree, whose characteristics are balanced across cohorts (table A3, panel B).

In the empirical analysis, we then re-estimate regression (1) on a sample that includes

only matched industrial and academic students. Also for this specification, the data indicates

that the innovative activity of these two groups of students followed a similar pre-reform path

(table 2, panel D).

5 E↵ects on Innovation Propensity

This section describes the e↵ects of increased university STEM education on innovation.

Double– and triple–di↵erence regressions reveal the existence of di↵erent e↵ects between

levels of pre-collegiate achievement.

5.1 Probability of Becoming an Inventor

5.1.1 Intent-to-Treat Analysis

We first estimate equation 1 using as the dependent variable an indicator for students that

patented at least once between 1968 and 2010. There is no evidence of a di↵erential change

in the propensity to innovate between industrial and academic students who completed high

school between 1961 and 1968 (Table 3, panel A, column 1). Among the cohorts who

completed high school between 1969 and 1973, the propensity to innovate of industrial

students decreased by 1.1 percentage points. The e↵ect of increased STEM education,

however, varied extensively across students with di↵erent pre-collegiate achievement.

The likelihood of becoming an inventor decreased for industrial students who scored in

the top quartile of the high-school exit exam. Compared with top academic students, the

propensity to innovate of top industrial students decreased by 0.02 percentage points between
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1961 and 1964, by 3.2 percentage points between 1965 and 1968, and by 4.0 percentage points

between 1969 and 1973. The last two coe�cients are statistically significant at the 5 and 1

percent level, respectively. Considering that 7.4 percent of top industrial students became

inventors before 1961, these e↵ects imply that the propensity to innovate of top industrial

students decreased by 43 to 54 percent. These results are robust to the inclusion of controls

for pre-reform trends in the inventiveness of top industrial students (table 3, panel A, column

4). Panel A of figure 2 shows separately the cross-cohort change in the innovation propensity

of top industrial and academic students. While the propensity to innovate of top academic

students stayed fixed, the probability of becoming an inventor of top industrial students

decreased significantly after 1965.8

Among lower-achieving industrial students, the propensity to innovate increased after

the reform. Their probability of becoming an inventor increased by 1.2 percentage points

between 1965 and 1968, and did not change significantly among other post-reform cohorts

(table 3, panel A, columns 5 and 6).

The results are robust if we compare industrial and commercial students. Among students

scoring in the top quartile of the grade distribution, the probability of becoming an inventor

decreased by 4.2 percentage points between 1965 and 1968, and by 5.6 percentage points

between 1969 and 1973 (table 3, panel B, column 3). Among lower-achieving students, the

coe�cients are close to zero, indicating small changes in innovation propensity (table 3, panel

B, column 5).

We then estimate equation 2 by comparing industrial students in the top quartile of

the grade distribution to industrial students with lower pre-collegiate achievement. The

propensity to innovate of top industrial students decreased by 3.5 percentage points between

1965 and 1968, and by 3.6 percentage points between 1969 and 1973 (table A4, panel A,

column 1). The estimates are robust to the inclusion of a linear pre-reform trend for top

students, one for each ability quartile, one for each high school, and one for each combination

of high school and ability quartile (table A4, panel A, columns 2-5).

We finally compare changes in innovative output between industrial and academic stu-

dents, between levels of pre-collegiate achievement, and across cohorts of high school grad-

uation. The likelihood of becoming an inventor among top industrial students decreased by

3.9 percentage points between 1965 and 1968, and by 3.3 percentage points between 1969

and 1973 (table A4, panel B, column 1). The findings of these triple di↵erences are robust

8 The lack of a significant decline between 1961 and 1964 could be due to the fact that these cohorts were still
facing enrollment caps into STEM majors. In section B of the appendix, we explore a di↵erent hypothesis.
Data from university transcripts show that students selected di↵erent electives exams after 1965. Di↵erent
exam choices might have a↵ected human capital accumulation and, in turn, innovation outcomes.
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to the inclusion of di↵erent pre-reform trends (table A4, panel B, columns 2-5), as well as

the use of commercial students as a control group (table A4, panel C).

5.1.2 E↵ect on the Industrial Students with a University STEM Degree

To isolate the e↵ect of increased access into STEM majors on the industrial students who

pursued a STEM degree after 1961, we matched pre-reform industrial students to post-

reform industrial students with a STEM degree. In order to have a balanced control group,

we also matched pre-reform academic students with a STEM degree to post-reform academic

students with a STEM degree.

This analysis confirms that the e↵ects of scientific education on innovation are hetero-

geneous across levels of pre-collegiate achievement. Among industrial students scoring in

the top quartile of the high school exit exam and receiving a STEM degree, the probability

of becoming an inventor decreased by 0.4 percentage points between 1961 and 1964, by 6.8

percentage points between 1965 and 1968, and by 6.3 percentage points between 1969 and

1973 (table 3, panel C, column 3). These findings suggest that the innovation propensity

decreased by 53 to 58 percent after 1965, relative to the pre-reform baseline.

Among industrial students scoring in the bottom three quartiles of the high school exit

exam and receiving a STEM degree, the probability of becoming an inventor increased by

6.6 percentage points between 1961 and 1964, by 7.9 percentage points between 1965 and

1968, and by 5.3 percentage points between 1969 and 1973 (table 3, panel C, column 5). All

three coe�cients are statistically di↵erent from zero and robust to the inclusion of a linear

pre-reform trend (table 3, panel C, column 6).9

5.2 Number of Patents and Technological Fields

We estimate equations 1 with two alternative measures of innovative output: the number of

developed patents, and the number of di↵erent fields of invention.

Industrial students who received a STEM degree after 1961 and scored in the top quartile

of pre-collegiate achievement did not develop fewer patents after 1961 (the coe�cients are

negative after 1965, but not statistically significant), but were active inventors in fewer

technological areas (table A5, panel C).10 Top industrial students produced patents in 0.16

9 This increase in the incidence of inventors did not show as clearly in the previous intent-to-treat analysis,
because the number of STEM graduates is relatively low in the bottom three quartiles of pre-collegiate
achievement. Moreover, this finding does not originate from the fact that the matching process selected
fewer inventors among the pre-reform cohorts. The share of inventors before 1961, in fact, is equal to 5.6
percent in the matched sample and only to 3.5 percent in the full sample.

10The results of the intent-to-treat analysis are in panel A (vs. academic students) and B (vs. commercial
students) of table A5. The triple–di↵erence specifications are in the appendix table A6.
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fewer fields between 1965 and 1968, and in 0.15 fewer fields between 1969 and 1973 (table

A5, panel C, column 2). The magnitude of these coe�cients indicate a 60 to 64 percent

decrease in the number of active research fields.11

Industrial students scoring in the bottom three quartiles of pre-collegiate achievement

developed more patents after 1961 and became active inventors in more technological areas.

Lower-achieving industrial students with a STEM degree produced 1.3 more patents between

1961 and 1964, 0.6 more patents between 1965 and 1968, and 0.4 more patents between 1969

and 1973 (table A5, panel C, column 5). Similarly, they became active inventors in 0.19

more fields between 1961 and 1964, in 0.20 more fields between 1965 and 1968, and in 0.15

more fields between 1969 and 1973 (table A5, panel C, column 6). These findings are robust

to the estimation of negative binomial regressions (table A5, panel C, columns 7 and 8).

To isolate variations in the productivity of inventors, we re-estimate the same regressions

on the smaller sample of students who developed at least one patent (table A7). Although

most estimates are not precise, the number of active research fields increased significantly

after 1961 among lower-achieving industrial inventors with a STEM degree (table A7, panel

C, columns 6 and 8).

5.3 Controlling for Patent Quality

The patent count is an imperfect measure of innovation because patents can vary in their

innovative content (Griliches, 1990). To control for patent quality, Trajtenberg (1990)

suggests using the number of forward citations, because a common requirement in patent

applications is to include references to previous related inventions. Citations, however, are

not available in the Italian patent data. To address this issue, we matched the 46,473

individuals in our sample with inventors in the NBER US Patent Citation Data File (Hall,

Ja↵e and Trajtenberg, 2001), following the same procedure described in section 3.3. Out

of 869 total inventors in our sample, 301 individuals patented at least once in the United

States. We consider these 301 individuals as inventors of higher-quality (or higher-valuation)

patents, because for an Italian inventor patenting is more expensive in the US than in Italy.12

We then repeat our analysis on the probability of developing at least one patent issued

by the US Patent O�ce (table A12). The intent-to-treat analysis (panels A and B) is

consistent with the main findings in table 3: the decrease in innovation propensity is larger

11Negative binomial estimates suggest that top industrial students produced patents in 0.11 fewer fields
between 1965 and 1968, and in 0.12 fewer fields between 1969 and 1973, although the coe�cients are not
statistically di↵erent from zero (table A5, panel C, column 4).

12Although the direct fees charged by the two patent o�ces are comparable (a minimum of $70 in the US
and e50 in Italy), an Italian inventor who aspires to patent in the the US will need a professional English
translation of the patent documents and most likely the help of a local patent attorney.
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among higher-achieving industrial students. If we focus on the individuals who received

a STEM degree after 1961 (panel C), the data reveal di↵erent e↵ects for higher– and

lower–achieving students. Among industrial students scoring in the top quartile of the pre-

collegiate distribution and receiving a STEM degree after 1961, there is not a significant

change in innovation propensity. This finding is robust to two di↵erent dependent variables:

a dummy for inventors of US patents (table A12, panel C, column 3), and the citation-

weighted number of developed US patents (table A12, panel C, column 4). The fact that

the decrease in innovation that we observe in the Italian patent data is not present in the

US patent data suggests that this decrease is driven by individuals who would have ended

up producing lower-valuation inventions not covered by US patents.

Among lower-achieving industrial students with a STEM degree, instead, there is a

significant increase in innovation propensity. The probability of developing at least one

US patent increased by 4.8 percentage points between 1961 and 1964, by 5.3 percentage

points between 1965 and 1968, and by 3.7 percentage points between 1969 and 1973 (table

A12, panel C, column 5). The coe�cients are statistically significant at the 10, 5, and 10

percent level, respectively.

5.4 Controlling for Entry into Industrial High Schools

The reform might have changed selection into di↵erent high schools, drawing into industrial

schools students who were interested in pursuing a university STEM degree. Here, we present

several tests that address this concern.

We first estimate equation 2 using only data from either academic students (A9, panel

A) or commercial students (A9, panel B). In both cases, the analysis indicates that the prob-

ability of becoming an inventor did not change after 1961 between academic or commercial

students with higher and lower pre-collegiate achievement. The coe�cients of the interaction

between post-reform cohort dummies and Topi are all close to zero and not statistically

significant.13 These findings rule out the hypothesis that the most or least inventive students

switched to industrial schools after the reforms, because the average probability of becoming

an inventor did not change among students attending other high schools.

Second, we estimate equation 1 on a smaller sample of students who completed high school

before 1966. These cohorts, in fact, enrolled in high school before the implementation of the

first policy (1961) and could not easily transfer to other types of schools after 1961.14 Among

13The findings are robust to the choice of di↵erent dependent variables, such as the number of developed
patents or the number of di↵erent areas of innovation (table A9, columns 3 to 6).

14Strong anticipation e↵ects were not likely, because the reform was swiftly implemented by a short-lived
government. During this time period, the instability of coalition governments created uncertainty on the
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high-achieving industrial students, the intent-to-treat analysis confirms that the decrease

in innovation started before 1966. Compared with academic students, the probability of

becoming an inventor of top industrial students decreased by 0.9 percentage points between

1961 and 1964, and by 4.8 percentage points in 1965 (table A10, panel A, column 2). If we

focus on the top industrial students who received a STEM degree, the data indicates that the

probability of becoming an inventor decreased by 4.52 percentage points between 1961 and

1964, and by 4.7 percentage points in 1965 (table A10, panel C, column 2). These coe�cients,

however, are not precisely estimated. Among industrial students who scored in the bottom

three quartiles of pre-collegiate achievement, the increase in the innovation propensity is

statistically significant before 1966. In panel C, for example, the data indicates that lower-

achieving industrial students with a STEM degree became more likely to innovate by 8.1

percentage points between 1961 and 1964, and by 14.7 percentage points in 1965, relative to

pre-reform cohorts and academic students with a STEM degree (table A10, panel C, column

6). The results are robust to the use of commercial students as a control group (table A10,

panel B, column 2).

We also estimate equation 1 using weights that keep the average observable charac-

teristics of the sample constant across pre- and post-reform cohorts (DiNardo, Fortin and

Lemieux, 1996). These weighted OLS estimators confirm the existence of a decrease in

innovation propensity among top industrial students. Compared with academic students,

the probability of becoming an inventor of top industrial students decreased by 0.6 percentage

points between 1961 and 1964, by 3.9 percentage points between 1965 and 1968, and by 4.3

percentage points between 1969 and 1973 (table A10, panel A, column 3). Among industrial

students scoring in the bottom three quartiles of the pre-collegiate achievement, instead, the

share of inventors increased by 1.3 percentage points between 1965 and 1968. The coe�cients

are close to the baseline OLS estimates in table 3.15

5.5 Controlling for Unverified Student–Inventor Matches

In the previous analysis, we dropped all the student-inventor matches that we could not

verify through the fiscal code, the social security data, or online searches (4,266 unverified

patents, 9.9 percent of all matches). In this section, we explore whether the main findings

change, when the unverified inventors are included in the sample. We first exploit the verified

introduction of new policies. Between 1958 and 1970, 13 di↵erent governments lasted on average only 9.5
months in power.

15In tables A10 and A11, we include two additional tests. First, we estimate a probit regression, instead of a
linear probability model. Second, we identify as inventors only the individuals who developed at least one
patent between 29 and 56 years old, the age range that we observe for all cohorts in the sample. These
robustness checks confirm the main findings.
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student-inventor matches to assess how the observable characteristics of patents and inventors

correlate to the probability of a correct match. We then use these estimates to predict

the probability of being a correct match for the unverified student-inventor combinations.

In table A13, we show that the baseline findings are robust to the inclusion of unverified

inventors.

In the first column of panel A, we present the result found in table 3, panel A, column

3. This specification compares changes in the probability of becoming an inventor between

high-achieving industrial and academic students, before and after the policy implementation.

In the columns from 2 to 8, we show how the estimates change, when an increasing amount of

unverified inventors is considered. When we include unverified inventors with a probability

of being a correct match above 50 percent, for example, the total number of inventors

increases to 901 individuals. The estimates still indicate that the inventor share of top

industrial students decreased by 2.7 percentage points between 1965 and 1968, and by 3.9

percentage points between 1969 and 1973 (table A13, panel A, column 5). These coe�cients

are significant at 10 and 1 percent level, respectively. Even when we include all unverified

inventors (2,399 total inventors) in the sample, the intent-to-treat estimates indicate a

significant decrease in the innovation propensity of top industrial students who completed

high school after 1969 (table A13, panel A, column 8). These findings are robust across all

specifications (table A13, panels B to E).

6 Selection into Occupations

Why did the propensity to innovate decrease only among higher-achieving students after

1961? To provide an explanation, this section explores how industrial students sorted into

di↵erent occupations after 1961. After 1961, higher-achieving industrial students with a

STEM degree moved to occupations with relatively low levels of innovation, such as self-

employed engineers. Most lower-achieving industrial students with STEM degrees, instead,

remained employees in the private sector - similar to what industrial students in the pre-

reform cohorts did - but they became more likely to work in industries that produce more

patents. They also became more likely to be employed as managers, who are more often

listed as inventors in patent applications.

6.1 Changes Across Occupations

Panel A of figure 3 shows how sorting into occupations changed after 1961 among industrial

students with a STEM degree. The blue bars represent the di↵erence between the share of

post-reform industrial students with a STEM degree and the share of pre-reform industrial
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students in each occupation. At the top of the graph, there are the occupations that

experienced the largest entry of industrial students with a STEM degree. Relative to the

pre-reform cohorts, industrial students with a STEM degree became more likely to work

as self-employed engineers (+4.3 percentage points), other self-employed professionals (+3

percentage points), public employees for the central government (+2.6 percentage points)

or local governments (+1.9 percentage points). At the bottom of the graph, there are the

occupations that experienced the largest exit of industrial students with a STEM degree.

The industrial students who received a STEM degree after 1961 became less likely to be

employed in the private sector (-5.3 percentage points), or to work as artisans (-4.8 percentage

points), entrepreneurs (-3.1 percentage points), and self-employed surveyors (-1.2 percentage

points). The red bars denote the innovation propensity of di↵erent jobs, measured as the

share of inventors out of the total number of workers employed in each occupation. The

graph reveals that the industrial students with a STEM degree abandoned occupations

with a relatively high propensity to produce patents: for example, 1.6 percent of private

employees developed at least one patent during their career, 1.2 percent of artisans, 0.7

percent of entrepreneurs, and 1.9 percent of industrial technicians. The inflow of industrial

students with STEM degree, however, was mostly concentrated among occupations with

lower propensity to innovate: only 0.6 percent of self-employed engineers produced patents,

0.6 percent of other self-employed professionals, 0 percent of public employees in the central

government, and 0.1 percent of local public employees. Although a university STEM degree

granted them access to highly innovative jobs, entry into these occupations was limited.

For example, the share of industrial students employed as certified biologists, an innovative

occupation that requires a STEM degree, increased by only 0.3 percentage points.

Panel B of figure 3 shows how sorting into occupations by industrial students without

a STEM degree changed after 1961. This graph presents two main features. First, the

magnitude of the occupational changes is much smaller, compared with the figure in panel

A. The decrease in the share of private employees after 1961, for example, is equal to

only 3.4 percentage points, instead of 5.3 percentage points. Second, industrial students

without a STEM degree moved to di↵erent occupations after 1961, compared with students

with a STEM degree. Among the occupations that experienced the largest entry, there

are entrepreneurs, local public employees, workers in the entertainment sector, and health

workers. These stark di↵erences between panel A and B of figure 3 confirm that the

occupational sorting of industrial students with STEM degrees is not the result of secular

changes in the Italian economy, but is likely a direct consequence of the expanded access

into STEM majors.

In the rest of this section, we test the previous findings in a regression format. We also
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explore the existence of heterogeneous e↵ects across levels of pre-collegiate achievement. We

estimate:

Occupationity = ↵ + �Industriali + �t +
X

t

�t[Industriali ⇥ Postt] + ⇣Xit + �y + uity (4)

The unit of observation is a student i, who completed high school in year t, in the

calendar year y. The dependent variable Occupationity denote one of three di↵erent vari-

ables: Engineersity is one for self-employed engineers; S-e prof.ity is one for self-employed

professionals, including engineers; Top occ.ity is equal to one for the four occupations (top

decile) with the highest share of inventors: chemists, biologists, pharmacists, and academics;

and Researchersity is one for researchers at institutions of higher education. �y are calendar

year fixed e↵ects. The rest of the variables have already been introduced in the previous

analysis. To streamline the discussion, for the remainder of the paper we will focus on two

di↵erent specifications: first, an intent-to-treat analysis, in which we compare all industrial

and academic students; second, an analysis focused on students with a STEM degree, using

the matching process described in section 4.5.

Industrial students in the top quartile of pre-collegiate achievement became more likely

to become self-employed engineers after 1961, a profession with a relatively low level of

innovation propensity. More specifically, the probability of working as a self-employed

engineer increased by 1.2 percentage points between 1961 and 1968, and by 1.3 percentage

points between 1969 and 1973. (table 4, panel A, column 1).16 The e↵ects are larger, if

we consider other forms of self-employed professionals (table 4, panel A, column 2). There

is no evidence, however, that higher-achieving industrial students disproportionally entered

into highly-innovative occupations, in spite of an increase in the number of STEM degrees

after 1961. The probability of working in a highly-innovative occupation decreased by 3.1

percentage points between 1961 and 1964, by 5.95 percentage points between 1965 and

1968, and by 2.6 percentage points between 1969 and 1973 (table 4, panel A, column

3). Similarly, the probability of working in a research-based occupation decreased by 3.1

percentage points between 1961 and 1964, by 5.4 percentage points between 1965 and 1968,

and by 2.5 percentage points between 1969 and 1973 (table 4, panel A, column 4).17

For industrial students who scored in the bottom three quartiles of pre-collegiate achieve-

ment, the data does not indicate any significant increase in the probability of working as a

16As in the previous analysis, the treatment e↵ects refer to cohorts of high school graduation, not to calendar
years. The phrase “between 1969 and 1973”, for example, identifies the average occupational change for the
cohorts who completed high school between 1969 and 1973, considering all calendar years in the dataset.

17In these occupations, the estimated decrease in employment share is the result of a slight increase among
industrial students that is outpaced by a larger rise among academic students.
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self-employed engineer. Especially after 1965, the estimated e↵ects are a precisely estimated

zero (table 4, panel A, column 5). There is also additional evidence that the lower-achieving

students did not move towards highly innovative occupations. The probability of working in

the most innovative jobs, for example, decreased by 0.6 percentage points between 1961 and

1964, by 1.6 percentage points between 1965 and 1968, and by 1.1 percentage points between

1969 and 1973 (table 4, panel A, column 7). Compared with the coe�cients estimated for

higher-achieving students, these last estimates have a much smaller magnitude, suggesting

that movements across occupations after 1961 were less common among students with lower

pre-collegiate achievement.

The results are robust, if we re-estimate equation (4) on the smaller sample of students

with a STEM degree (table 4, panel B). Higher-achieving industrial students who received

a STEM degree after 1961 became self-employed engineers or other professionals, occupa-

tions with low levels of innovation propensity. The employment share in these occupations

increased by 6.4 percentage points between 1961 and 1964, by 3.5 percentage points between

1965 and 1968, and by 2.4 percentage points between 1969 and 1973 (table 4, panel B,

column 2). The first two coe�cients are statistically significant at the 1 and 5 percent level,

respectively. Higher-achieving industrial students, however, did not disproportionately enter

into highly-innovative occupations, compared with higher-achieving academic students (table

4, panel B, columns 3 and 4). Lower-achieving students with a STEM degree, instead, were

less likely to move across occupations. Their likelihood to work as self-employed engineers

did not change significantly between 1961 and 1968, and decreased by 2.2 percentage points

between 1969 and 1973 (table 4, panel B, column 5). Their employment share in innovative

occupations increased between 1961 and 1964, but did not change significantly between 1965

and 1973 (table 4, panel B, columns 7 and 8).

These findings are in line with the observed changes in innovation propensity. Higher-

achieving students moved to jobs with high barriers to entry, mainly self-employed engineers,

that did not produce many patents. Lower-achieving students, instead, were less likely to

move towards occupations with higher barriers to entry than the private sector, because of

their lower human capital or the worse signal provided by their grades. In the next section,

we will explore potential mechanisms through which their propensity to innovate might have

increased within the private sector.

6.2 Changes Within the Private Sector

By leveraging additional information that is available only for employees in the private

sector, we analyze how industrial students with STEM degrees sorted into di↵erent industries
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(Italian ATECO 91 categorization). In panel A of figure A4, the blue bars measure the

change in employment share within each industry between post-reform industrial students

with STEM degrees and pre-reform industrial students. The red bars, instead, measure

the share of inventors in each industry. After 1961, many industrial students with STEM

degrees left manufacturing (-9.9 percentage points), the third industry by share of inventors.

The employment share increased in industries with low levels of innovation, such as software

distribution (+4.3 percentage points) and education (+3.7 percentage points), as well as in

more innovative sectors, such as the extractive industry (+1.4 percentage points) and R&D

(+0.9 percentage points). Panel B of figure A4 shows how industrial students without a

STEM degree sorted into di↵erent industries after 1961. In this case, there is no entry in

the highly-innovative industries. The employment share in R&D, for example, increased by

only 0.2 percentage points.

In table A14, we show estimates of equation 4, using five di↵erent dependent variables:

Manufacturingity is a dummy that identifies manufacturing industries; R&Dity is equal to

one for research–intensive industries; two variables identify public services (Educationity and

Other publicity); Top pay is a dummy for the five industries with the highest average salaries

for workers with STEM degrees (Energy, Food/Hospitality, Transportation/Communications,

Finance/Banking, and International organizations). The intent-to-treat estimates in panel A

indicate that lower-achieving industrial students became more likely to work in R&D, one of

the most innovative industries, after 1965. Panel B of table A14 describes industry changes

for the industrial students with a STEM degree. The higher-achieving industrial students

left manufacturing (table A14, panel B, column 2), but did not move into R&D (table A14,

panel B, column 1). Their employment share, instead, increased in industries producing

public services, such as education (table A14, panel B, columns 3 and 4).18 In addition,

their likelihood of being employed in a high-paying industry increased by 8.3 percentage

points between 1965 and 1968, and by 8.6 percentage points between 1969 and 1973 (table

A14, panel B, column 5).

Lower-achieving industrial students, instead, either stayed in manufacturing or moved to

other innovative sectors. Their probability of working in R&D increased by 7.7 percentage

points between 1961 and 1964, by 5.3 percentage points between 1965 and 1968, and by 3.8

percentage points between 1969 and 1973 (table A14, panel B, column 5).

In addition to analyzing changes across industries, we can study how the roles held by

industrial students changed after 1961. In the Italian labor system, there are seven formal

positions within firms in the private sector that carry increasing responsibilities: apprentices,

blue–collar, high–skilled blue–collar (“intermedi”), white–collar, high–skilled white collar

18Their employment share increased also in industries producing private services, such as banking.
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(“quadri”), and managers. Higher–ranked positions also have a higher propensity to inno-

vate. Managers, for example, have an inventor share equal to 2.1 percent, compared with only

0.1 percent among blue–collar workers. Panel A of figure A5 shows how industrial students

with a STEM degree sorted into di↵erent positions. The share working in blue–collar jobs

decreased by 15.2 percentage points, while the share working in higher–ranked positions

increased: 8.5 percentage points for high–skilled white collar, 3.5 percentage points for

managers, and 3.3 percentage points for white–collar. Panel B of figure A5 shows how

industrial students without a STEM degree moved across di↵erent positions. In this case,

the shifts are smaller in magnitude and are not directed towards higher–ranked positions.

In table A15, we show estimates of equation 4, using two alternative dependent variables:

Top pos.ity is equal to one for high–skilled white–collar and managers; and Managers.ity is

equal to one for managers only. Panel A shows intent-to-treat estimates, computed by

comparing all industrial and academic students across subsequent cohorts. Overall, both

higher- and lower-achieving industrial students became more likely to work as managers after

1961, but the e↵ect is larger and more robust among lower-achieving students. The likelihood

of higher-achieving students to hold a top position increased by 5.9 percentage points between

1965 and 1968, and by 5.4 percentage points between 1969 and 1973 (table A15, panel

A, column 1). If we include industry fixed e↵ects, the coe�cients become smaller and

insignificant, suggesting that the previous increase was realized mainly through movements

across industries (table A15, panel A, column 3). Among lower–achieving students, instead,

the probability of holding a top position increased by 6.50 percentage points between 1965

and 1968 without the inclusion of industry fixed e↵ects (table A15, panel A, column 5), and

by 6.6 percentage points with the inclusion of industry fixed e↵ects (table A15, panel A,

column 7). In panel B, we show that the general findings are robust, if we estimate equation

4 on the smaller sample of students who received a STEM degree after 1961. The increase

in the rate of employment in the highest–ranked positions is larger among lower–achieving

industrial students. The inclusion of industry fixed e↵ects reduces the estimates, although

in this specification the coe�cients remain statistically significant for both levels of pre-

collegiate achievement.

7 E↵ects on the type of innovation

In the previous analysis, we showed how pursuing a university STEM degree was associated

with opposite e↵ects on the propensity to innovate of students with di↵erent levels of pre-

collegiate achievement. We then related changes in the probability of developing patents to

occupational sorting. In this section, we study whether a university STEM education had
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a direct impact on the innovative activities of industrial students by leveraging information

on the field of invention from patent applications. Each granted patent, in fact, is assigned

to a class that identifies the technological area to which the invention belongs. Following

the International Patent Classification (IPC), we divide the matched patents into 10 major

fields: human necessities, medicine (class A61), industrial operations, chemistry, textiles,

constructions, mechanical engineering, physics, electricity, and IT (classes H03, H04, G06,

and G11).

Industrial and academic students patented in di↵erent technological areas before 1961. In

the first panel of figure 4, we plot the distribution of inventors in pre-reform cohorts across

di↵erent technological areas, separately for industrial students (blue bars) and academic

students with a STEM degree (orange bars): 24.7 percent of inventors with an academic

diploma patented in the field of chemistry, compared with only 13.1 percent of inventors

with an industrial diploma. Similarly, academic students with STEM degrees were more

likely to patent in medicine (9.3 percent vs 7.1 percent), textiles (3.1 percent vs 1.2 percent),

constructions (6.2 percent vs 2.4 percent), and IT (4.1 percent vs 3.6 percent).

The industrial students who pursued a STEM degree after 1961 began patenting more

in the same fields in which academic students with a STEM degree were more common

before 1961 (figure 4, panel B). The share of inventors with an industrial diploma and a

STEM degree increased by 7.1 percentage points in chemistry, and by 8.2 percentage points

in medicine. In industrial operations, in which industrial students were more likely to patent

before the reform, the share of industrial inventors with a STEM degree decreased by 5.1

percentage points.

The industrial students who did not receive a STEM degree after 1961 exhibit a di↵erent

pattern (figure 4, panel C). Their likelihood to patent did not increase in chemistry and

medicine, but increased by 1.1 percentage points in industrial operations. This last graph

suggests that more patenting in fields like chemistry and medicine by industrial students

who pursued a STEM degree after 1961 does not reflect secular changes in technology, but

is likely driven by access to university STEM education.

To further analyze changes in the type of innovation, we re-estimate equation 1 on the

sample of individuals who patented at least once. In these regressions, the dependent variable

STEM fieldit is equal to one, if an inventor patented at least once in a STEM–oriented

technological areas. We define STEM–oriented fields as the areas in which academic students

with STEM degree were more likely to patent before 1961. T

he likelihood of industrial students to patent in medicine, chemistry, or IT increased by

26.4 percentage points between 1965 and 1968, and by 21.5 percentage points between 1969

and 1973 (table 5, panel A, column 1). The coe�cients imply a 58 to 72 percent increase,
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relative to the baseline. The results are robust to the use of a less restrictive definition of

STEM–oriented fields, which includes all five areas with a higher share of academic inventors

before 1961 (medicine, chemistry, IT, constructions, textiles). In this case, the probability of

industrial students to patent in STEM fields increased by 26.09 percentage points between

1965 and 1968, and by 28.10 percentage points between 1969 and 1973 (table 5, panel A,

column 1). If we repeat the analysis separately on higher- (columns 3 and 4) and lower-

achieving students (columns 5 and 6), the coe�cients remain positive, but are less precisely

estimated.19

If we focus on the smaller sample of students who attained a STEM degree, the estimates

indicate a large increase in the probability of innovating in STEM–oriented fields after 1961.

The probability of patenting in a STEM–oriented field increase by 69.9 percentage points

between 1965 and 1968, and by 46.7 percentage points between 1969 and 1973 (table 5, panel

B, column 1).

8 Discussion and conclusions

In this paper, we study how graduating in a STEM major a↵ects the probability of becoming

an inventor. We find heterogeneous e↵ects between levels of pre-collegiate achievement.

Students who scored in the top quartile of their high school class became less likely to

produce patents, once they gained access to STEM majors. Lower-achieving students,

instead, experienced an increase in their likelihood of becoming inventors. We then relate

these findings to information on work histories, which were provided by the Italian Social

Security Institute INPS. To the best of our knowledge, this paper is the first to document how

investments in human capital a↵ect innovation propensity through changes in occupational

sorting. Higher–achieving students moved to desirable jobs with low levels of innovation,

such as self–employed engineers. Most lower-achieving students, instead, did not choose

self-employment or the public sector. As employees in the private sector, however, they

moved to more innovative industries. Moreover, they became more likely to hold managerial

roles, which are more commonly associated with the production of patents. A STEM degree

allowed these students, who would have attained only a high school diploma in the absence

of the policy, to break the ceiling that previously blocked their career progression within

firms in the private sector. In addition to a↵ecting how students sorted into occupations,

graduating in a STEM major had an e↵ect on the type of innovation produced. Conditional

19This increase in the standard errors is likely due to the small size of the two samples: only 241 higher-
achieving and 577 lower-achieving inventors.
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on becoming inventors, the students who received a STEM degree became more likely to

patent in STEM–oriented fields, such as medicine and chemistry.

These findings depict a complex relationship between education and innovation, which

is shaped by the characteristics of the local labor market. Higher–achieving students moved

towards self-employment and the public sector, usually choosing occupations with significant

barriers to entry. To work as a self-employed engineer, for example, candidates must possess

a STEM degree and pass an additional national exam. Similarly, public servants are chosen

through lengthy examinations, in which academic achievements are usually part of the

selection criteria. These requirements can keep lower-achieving candidates out, making

these professions more attractive to individuals with higher ability. Moreover, the high

variance of returns in self–employment might deter lower-achieving students, who might

find advantageous that firms in the private sector cannot adjust wages below thresholds

agreed with the unions. Unfortunately, we don’t observe the labor incomes of self-employed

engineers and, therefore, we cannot test whether the pre-collegiate income gap varies sig-

nificantly across di↵erent occupations. In addition to the previous hypotheses, the salience

of the final high school (“voto di maturità”) and university (“voto di laurea”) scores in the

Italian labor market might also explain why many lower-achieving students did not become

freelance engineers. Self–employment, in fact, might force a worker to repeatedly establish

new business relationships, making it harder to overcome the weak signal provided by poor

academic achievements.

While the results are consistent with the characteristics of the local labor market, we

believe that the mechanisms discussed in this paper apply beyond the Italian setting. In

many developed countries, STEM skills are now sought after by industries that do not focus

on the production of patents, like finance. According to the US Census Bureau, for example,

74 percent of STEM graduates are not employed in a STEM occupation (Census Bureau,

2014). In this context, any e↵ort to encourage innovation by increasing the number of

STEM graduates would need to take into account how these students sort into non-STEM

jobs. Our findings, which suggest that the relationship between education and innovation

depends crucially on the characteristics of the labor market, are consistent with this scenario,

even though Italy in the 1960s and 1970s was di↵erent from any modern Western country.

Moreover, the Italian reform might be more directly informative about any large–scale plan

to increase scientific skills in the developing world (for example, the Science Education

Programme by UNESCO). The Italian government, in fact, intended to increase the number

of university-educated workers to sustain industrial growth, a problem currently faced by

many developing countries. The Italian experience suggests that, even in a less developed

economy, the features of the local labor market might influence the relationship between
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scientific education and innovation.
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Figures and Tables

Figure 1: Di↵erential Increase in Graduation Rates from University STEM Majors

A. Industrial vs Academic Students B. Industrial vs Commercial Students

C. Top vs Other Industrial Students D. Matched Industrial vs Academic Students

Notes: This graph shows the change (and 95 percent CIs) in the graduation rate from university STEM
majors for di↵erent groups of students. Industrial students could enroll in STEM majors for the first time
in 1961. In the yellow-shaded area, industrial students faced enrollment caps in STEM majors. In the blue-
shaded area, industrial students could freely enroll in STEM majors. In the orange-shaded area, students
had more freedom in the choice of the university curriculum. Academic students (panel A) had access to
STEM majors throughout the time period under analysis. Commercial students (panel B) could not enroll in
university STEM majors until 1969, when any high school diploma started granting access to all majors. Top
industrial students (panel C) received a final high school grade in the top quartile of their school distribution.
Panel D uses propensity score matching to identify a subgroup of academic and industrial students in the
pre-period with the same observable characteristics of students in the post-period with a STEM degree.
The regressions control for gender, province of birth fixed e↵ects, high school fixed e↵ects, the high school
standardized score, the average standardized score of the closest peers in high school, a dummy for home-
schooled students, and a dummy for students who graduated high school at 19 (and likely never repeated a
grade). Standard errors clustered by school and cohort.
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Figure 2: Cross-Cohort Change in Inventor Share

A. Top Industrial vs Top Academic Students B. Top Industrial vs Top Commercial Students

C. Top vs Other Industrial Students D. Top Matched Industrial vs Academic Students

Notes: This graph shows the change (and 95 percent CIs) in the inventor share across subsequent cohorts
for di↵erent groups of students. Industrial students could enroll in STEM majors for the first time in 1961.
In the yellow-shaded area, industrial students faced enrollment caps in STEM majors. In the blue-shaded
area, industrial students could freely enroll in STEM majors. In the orange-shaded area, students had more
freedom in the choice of the university curriculum. Academic students (panel A) had access to STEM majors
throughout the time period under analysis. Commercial students (panel B) could not enroll in university
STEM majors until 1969, when any high school diploma started granting access to all majors. Top industrial
students (panel C) received a final high school grade in the top quartile of their school distribution. Panel
D uses propensity score matching to identify a subgroup of top academic and industrial students in the
pre-period with the same observable characteristics of top students in the post-period with a STEM degree.
The regressions control for gender, province of birth fixed e↵ects, high school fixed e↵ects, the high school
standardized score, the average standardized score of the closest peers in high school, a dummy for home-
schooled students, and a dummy for students who graduated high school at 19 (and likely never repeated a
grade). Standard errors clustered by school and cohort.
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Figure 3: Distribution of Inventors across Occupations

A. Change for Industrial Students with a STEM Degree

B. Change for Industrial Students without a STEM Degree

Notes: These graphs show how the distribution of industrial students across di↵erent occupations changed
among the cohorts who completed high school after 1961. Panel A shows how the distribution of industrial
students who received a STEM degree after 1961 changed, relative to the pre-reform distribution. Panel B
shows how the distribution of industrial students who did not receive a STEM degree after 1961 changed,
relative to the pre-reform distribution. Share of inventors measures the percentage of inventors in each
occupation, pooling all available years of patent data (1968-2010).
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Figure 4: Distribution of inventors across technological fields

A. Academic students with STEM degree vs Industrial students before 1961 B. After–reform change for industrial students with STEM degree

C. After–reform change for industrial students without STEM degree

Notes: These graphs show the distribution of inventors across di↵erent technological fields. Panel A shows the
pre-reform distribution of academic students with a STEM degree and industrial students across technological
fields. Panel B shows the post-reform change for industrial students who received a STEM degree after 1961.
Panel C shows the post-reform change for industrial students who did not receive a STEM degree after 1961.
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Table 1: Summary Statistics

Inventors Non-inventors Di↵erence

(1) (2) (3)

Observations 869 45,604

Male 0.962 0.721 0.229***

Birth year 1945.44 1946.29 0.771**

Patent data

Number of patents 4.010 - -

Number of technological fields 1.478 - -

Education data

Academic diploma 0.320 0.409 -0.044

Industrial diploma 0.641 0.351 0.233***

HS exit score 0.256 -0.005 0.246***

Score of HS peers 0.009 0.000 0.020

Home schooled 0.043 0.102 -0.046***

Non-repeater 0.959 0.930 0.019*

Enrolled 0.653 0.568 0.133***

Enrolled in a STEM major 0.490 0.192 0.304***

University degree 0.479 0.343 0.162***

University STEM degree 0.392 0.125 0.265***

Labor market outcomes

Private employees 0.936 0.885 0.051***

Researchers 0.026 0.015 0.011**

Manufacturing* 0.838 0.521 0.317***

R&D* 0.023 0.009 0.014**

Managers* 0.556 0.292 0.264***

Highly skilled white collar* 0.209 0.154 0.055***

Notes: The sample is composed of 46,473 individuals who completed high school in Milan between 1958 and
1973. The high school score is the grade received in the high school final exam. It is standardized by cohort
and high school. The HS peers are groups of 20-30 students within a cohort attending all lectures together.
Home-schooled students took only the final exam in the school, even though they did not attend there the
regular school year. They could be enrolled in private schools that could not administer the final exam or
they could be home–educated. Non-repeater were 19 years old at the time of the final exam (the standard age
of high school graduation). STEM majors are engineering, physics, mathematics, biology, geology, natural
science, and chemistry. Researchers are employees of institutions of higher education. (*) These variables
are available only for employees in the private sector and only starting in 1983.
Sources: High school archives; university transcripts; patents issued by the Italian patent o�ce between 1968
and 2010; international patents collected by the European Patent O�ce in the PATSTAT database; social
security data.
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Table 2: Pre-Reform Trends in Innovative Activity

Inventor count Inventor count Patent num. Patent num.

(1) (2) (3) (4)

Panel A: Industrial vs academic students

Industrial x Pre-reform trend -0.0109 -0.0589

(0.0455) (0.0913)

Industrial x 1959 -0.0007 -0.0587

(0.0768) (0.2005)

Industrial x 1960 -0.0222 -0.1178

(0.0911) (0.1829)

Panel B: Industrial vs commercial students

Industrial x Pre-reform trend 0.0018 -0.0371

(0.0420) (0.0874)

Industrial x 1959 -0.0041 -0.0425

(0.0704) (0.1898)

Industrial x 1960 0.0050 -0.0752

(0.0843) (0.1751)

Panel C: Top vs other industrial students

Top x Pre-reform trend 0.0357 0.0715

(0.1043) (0.1754)

Top x 1959 0.0048 0.1195

(0.1849) (0.3924)

Top x 1960 0.0715 0.1429

(0.2092) (0.3521)

Panel D: Matched, Industrial vs academic students

Industrial x Pre-reform trend -0.0001 -0.2119

(0.0800) (0.1784)

Industrial x 1959 0.1135 -0.0508

(0.1763) (0.5284)

Industrial x 1960 -0.0169 -0.4704

(0.1607) (0.3488)

Notes: The dependent variables are the average number of inventors (columns 1 and 2) and the average
number of patents by unit of observation. (columns 3 and 4). Industrial is a dummy that equals 1 for
students who attended an industrial high school. Top is a dummy that equals 1 for the students who ranked
in the top quartile of their school’s grade distribution. For the double di↵erences, the single interactions of
the variables are not reported. For the triple di↵erences, the single and double interactions of the variables
are not reported. The unit of observation is a pre-reform cohort of high school graduation (between 1958 and
1960)–high school class (small groups of 20-30 students)–quartile of pre-collegiate achievement combination.
The number of observations is equal to 756 in panel A, 582 in panel B, and 275 in panel C, and 316 in
panel D. Standard errors clustered by high school class and quartile of ability in parentheses, *** p<0.01,
** p<0.05, * p<0.1.
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Table 3: Probability of Becoming an Inventor, Industrial vs Other Students

Inventor Inventor Inventor Inventor Inventor Inventor

(1) (2) (3) (4) (5) (6)

Panel A: Industrial vs academic students

Industrial x Post 1961 -0.0004 -0.0033 -0.0002 -0.0066 -0.0011 -0.0041

(0.0066) (0.0091) (0.0172) (0.0213) (0.0059) (0.0110)

Industrial x Post 1965 0.0035 0.0005 -0.0317** -0.0381* 0.0122** 0.0093

(0.0059) (0.0088) (0.0144) (0.0193) (0.0061) (0.0111)

Industrial x Post 1969 -0.0109** -0.0138* -0.0403*** -0.0467*** -0.0028 -0.0058

(0.0052) (0.0083) (0.0120) (0.0177) (0.0053) (0.0108)

Industrial x Pre-reform trend -0.0029 -0.0060 -0.0029

(0.0060) (0.0128) (0.0069)

Panel B: Industrial vs commercial students

Industrial x Post 1961 -0.0044 -0.0058 -0.0039 -0.0057 -0.0060 -0.0082

(0.0057) (0.0073) (0.0147) (0.0188) (0.0047) (0.0083)

Industrial x Post 1965 -0.0081 -0.0095 -0.0420*** -0.0438** -0.0007 -0.0030

(0.0050) (0.0067) (0.0127) (0.0176) (0.0050) (0.0085)

Industrial x Post 1969 -0.0217*** -0.0231*** -0.0559*** -0.0577*** -0.0133*** -0.0155*

(0.0042) (0.0061) (0.0097) (0.0158) (0.0040) (0.0079)

Industrial x Pre-reform trend -0.0013 -0.0017 -0.0020

(0.0047) (0.0105) (0.0052)

Panel C: Matched, Industrial vs academic students

Industrial x Post 1961 0.0412 0.0440 -0.0044 -0.0219 0.0664* 0.1120**

(0.0377) (0.0449) (0.0501) (0.0554) (0.0387) (0.0512)

Industrial x Post 1965 0.0225 0.0253 -0.0679** -0.0854** 0.0795*** 0.1252***

(0.0248) (0.0341) (0.0334) (0.0410) (0.0292) (0.0448)

Industrial x Post 1969 -0.0001 0.0027 -0.0629** -0.0806** 0.0532* 0.0991**

(0.0215) (0.0319) (0.0296) (0.0378) (0.0272) (0.0435)

Industrial x Pre-reform trend 0.0030 -0.0209 0.0408

(0.0262) (0.0339) (0.0283)

Sample All All Top Top Other Other

Pre-reform inventor share (panel A-B) 0.0427 0.0427 0.0740 0.0740 0.0346 0.0346

Pre-reform inventor share (panel C) 0.0897 0.0897 0.1176 0.1176 0.0563 0.0563

Observations (panel A) 35,479 35,479 7,662 7,662 27,817 27,817

Observations (panel B) 27,497 27,497 5,865 5,865 21,632 21,632

Observations (panel C) 4,718 4,718 1,807 1,807 2,911 2,911

Notes. This table shows the e↵ect of the promotion of STEM education on the probability of becoming an
inventor by comparing industrial to academic students (panel A), industrial to commercial students (panel
B), and matched industrial to academic students (panel C). The matching selects students in the pre-period,
who share the same observable characteristics of the individuals with a STEM degree in the post-period. The
dependent variable, Inventor, is a dummy that equals one for students who patented at least once from 1968
to 2010. Post 1961 is 1 for the cohorts who graduated between 1961 and 1964, Post 1965 is 1 for the cohorts
who graduated between 1965 and 1968, and Post 1969 is 1 for the cohorts who graduated between 1969
and 1973. Pre-reform trend is a linear trend for pre-reform cohorts. Columns 3 and 4 restrict the sample
to students who ranked in the top quartile of their school’s grade distribution. Columns 5 and 6 restrict
the sample to students who are not in the top ability quartile. The regressions also include cohort fixed
e↵ects, gender, province of birth fixed e↵ects, high school fixed e↵ects, the high school standardized score,
the average standardized score of the closest peers in high school, a dummy for home-schooled students, and
a dummy for students who graduated high school at 19 (and likely never repeated a grade). Standard errors
clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Changes in Occupation

Engineers S-e prof. Top occ. Researchers Engineers S-e prof. Top occ. Researchers

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industrial vs academic students

Industrial x Post 1961 0.0120** 0.0150* -0.0308*** -0.0314*** -0.0050** -0.0079** -0.0057** -0.0062**

(0.0058) (0.0080) (0.0092) (0.0093) (0.0023) (0.0034) (0.0029) (0.0024)

Industrial x Post 1965 0.0120** 0.0200** -0.0595*** -0.0539*** -0.0007 -0.0028 -0.0155*** -0.0170***

(0.0061) (0.0082) (0.0110) (0.0109) (0.0023) (0.0033) (0.0036) (0.0032)

Industrial x Post 1969 0.0128** 0.0212*** -0.0259*** -0.0248*** -0.0006 0.0002 -0.0113*** -0.0076***

(0.0061) (0.0079) (0.0072) (0.0070) (0.0024) (0.0033) (0.0030) (0.0021)

Panel B: Matched, Industrial vs academic students

Industrial x Post 1961 0.0442*** 0.0638*** 0.0056 -0.0119 0.0019 -0.0020 0.0528* 0.0497

(0.0160) (0.0196) (0.0258) (0.0256) (0.0109) (0.0167) (0.0317) (0.0314)

Industrial x Post 1965 0.0222* 0.0352** -0.0052 0.0003 -0.0054 -0.0093 -0.0021 -0.0023

(0.0120) (0.0153) (0.0228) (0.0232) (0.0081) (0.0121) (0.0120) (0.0120)

Industrial x Post 1969 0.0052 0.0240 -0.0453*** -0.0410** -0.0221** -0.0226* 0.0055 0.0033

(0.0132) (0.0150) (0.0149) (0.0160) (0.0099) (0.0129) (0.0085) (0.0077)

Sample Top Top Top Top Other Other Other Other

Pre-reform dep. var. (panel A) 0.000 0.009 0.000 0.000 0.002 0.008 0.000 0.000

Pre-reform dep. var. (panel B) 0.000 0.004 0.000 0.000 0.000 0.007 0.000 0.000

Observations (Panel A) 234,961 234,961 234,961 234,961 802,657 802,657 802,657 802,657

Observations (Panel B) 59,122 59,122 59,122 59,122 93,272 93,272 93,272 93,272

Notes. This table shows the e↵ect of the promotion of STEM education on the occupation choice. Dependent
variables: Engineers is 1 for freelance professional engineers, S-E Prof. is 1 for self-employed professionals
(including freelance engineers), Top Occ. is a dummy for the top 10 percent occupations in terms of share of
inventors (self-employed biologists, self-employed chemists, pharmacists, and public employees of institutions
of higher education), Researchers is 1 for research-intensive occupations in institutions of higher education.
Post 1961 is 1 for the cohorts who graduated between 1961 and 1964, Post 1965 is 1 for the cohorts who
graduated between 1965 and 1968, and Post 1969 is 1 for the cohorts who graduated between 1969 and
1973. Columns 1 to 4 restrict the sample to students who ranked in the top quartile of their school’s grade
distribution. Columns 5 to 8 restrict the sample to students who ranked in the bottom three quartiles of their
school’s grade distribution. The regressions include cohort and calendar year fixed e↵ects, gender, province
of birth fixed e↵ects, high school fixed e↵ects, the HS score, the average standardized score of the closest
peers in high school, a dummy for home-schooled students, and a dummy for students who graduated high
school at 19. Standard errors clustered by student in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Type of Innovation

STEM field STEM field STEM field STEM field STEM field STEM field

(1) (2) (3) (4) (5) (6)

Panel A: Industrial vs academic students

Industrial x Post 1961 0.1485 0.1406 0.2948 0.2230 0.0145 0.0199

(0.0930) (0.0925) (0.1994) (0.2361) (0.1376) (0.1285)

Industrial x Post 1965 0.2637*** 0.2609*** 0.2874 0.1870 0.2369* 0.2871**

(0.0864) (0.0869) (0.2192) (0.2451) (0.1229) (0.1243)

Industrial x Post 1969 0.2145** 0.2810*** 0.3979* 0.3228 0.0989 0.1926*

(0.0988) (0.0926) (0.2366) (0.2405) (0.1196) (0.1137)

Panel B: Matched, Industrial vs academic students

Industrial x Post 1961 0.1557 0.0890 0.3657 0.1666 -0.0423 0.0582

(0.1571) (0.1482) (0.3738) (0.4129) (0.2963) (0.2863)

Industrial x Post 1965 0.6997*** 0.6773*** 0.5784 0.3130 0.7473*** 0.7417***

(0.1627) (0.1563) (0.3855) (0.3810) (0.2208) (0.2019)

Industrial x Post 1969 0.4672*** 0.5070*** 0.7695** 0.6805* 0.4265* 0.4613**

(0.1728) (0.1665) (0.3584) (0.3660) (0.2179) (0.2021)

Sample All All Top Top Other Other

STEM fields Three Five Three Five Three Five

Pre-reform dep. var. (panel A) 0.3676 0.3971 0.2800 0.3200 0.4186 0.4419

Pre-reform dep. var. (panel B) 0.2857 0.2857 0.3000 0.3000 0.2500 0.2500

Observations (panel A) 818 818 241 241 577 577

Observations (panel B) 310 310 118 118 192 192

Notes. This table shows changes in the type of innovation. Columns 1 to 3 show estimates using the whole
sample, columns 4 to 6 use only students in the top quartile of the ability distribution, and columns 7 to
9 use only the students in the bottom three quartiles of the ability distribution. The dependent variable
is a dummy that equals one if the individual patented at least once in a STEM field. In Columns 1, 3,
and 5, the STEM fields are medicine, chemistry, and IT. In Columns 2, 4, and 6, the STEM fields are
medicine, chemistry, textiles, constructions, and IT. Standard errors clustered by high school and cohort in
parentheses, *** p<0.01, ** p<0.05, * p<0.1.

38



Online Appendix - Not For Publication

A Additional Figures and Tables

Figure A1: Selected Headlines about Lack of STEM Skills

Notes: Headlines of the national newspaper La Stampa on the lack of STEM skills in the Italian
economy, http://www.lastampa.it/archivio-storico/. 10/04/1956: “Too many lawyers and not
enough engineers in the era of the machine.” 01/13/1957: “Italy lacks technicians for the new
industrial era.” 11/07/1963: “The big problem of the insu�cient engineers for the modern
necessities.” 08/19/1967: “The Italian industry needs high-skilled workers more than blue-collar
workers.”
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Figure A2: Total Enrollment in the Freshman Year of University STEM Majors in
Italy

A. All Students

B. Industrial Students

Notes: These graphs show the enrollment change in university STEM majors. In the first panel, the total
number of students enrolled in the freshman year of university STEM majors is divided by the total number
of high school graduates in the corresponding year. The 1962 observation is missing. In the second panel,
the total number of industrial students enrolled in the freshman year of university STEM majors is divided
by the total number of high school graduates. The 1961 and 1962 observations are missing. Data coverage:
all Italian universities. Source: Annals of Education Statistics, ISTAT.
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Figure A3: Cohort-Specific Variation in the Probability of Being a Patent Owner

A. Top Industrial vs Top Academic Students B. Top Industrial vs Top Commercial Students

C. Top vs Other Industrial Students D. Top vs Other, Industrial vs Academic Students

E. Matched, Top Industrial vs Top Academic Students

Notes: Panel A compares industrial and academic students, using only students in the top quartile of their
HS class. Panel A compares top industrial and commercial students. Panel C compares top and other
industrial students. Panel D compares industrial and academic students with di↵erent HS achievement.
Panel E compares top industrial and academic students, using only the pre-period students matched to the
post-period students with a STEM degree.
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Figure A4: Distribution of Inventors across Industries in the Private Sector

A. Change for Industrial Students with a STEM Degree

B. Change for Industrial Students without a STEM Degree

Notes: These graphs show how the distribution of industrial students across di↵erent industries in the private
sector changed among the cohorts who completed high school after 1961. Panel A shows how the distribution
of industrial students who received a STEM degree after 1961 changed, relative to the pre-reform distribution.
Panel B shows how the distribution of industrial students who did not receive a STEM degree after 1961
changed, relative to the pre-reform distribution. Share of inventors measures the percentage of inventors in
each industry, pooling all available years of patent data (1968-2010).
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Figure A5: Distribution of Inventors across Positions within the Private Sector

A. Change for Industrial Students with a STEM Degree

B. Change for Industrial Students without a STEM Degree

Notes: These graphs show how the distribution of industrial students across di↵erent positions within the
private sector changed among the cohorts who completed high school after 1961. Panel A shows how the
distribution of industrial students who received a STEM degree after 1961 changed, relative to the pre-reform
distribution. Panel B shows how the distribution of industrial students who did not receive a STEM degree
after 1961 changed, relative to the pre-reform distribution. Share of inventors measures the percentage of
inventors in each qualification, pooling all available years of patent data (1968-2010).
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Table A1: Types of Occupation

Occupation Description Pension fund Share of workers

Other private Employees in the private sector (not included in any other category) INPS 64.44

Entrepreneurs Entrepreneurs (imprenditori commerciali) INPS 5.88

Artisans Artisans (imprenditori artigiani) INPS 2.26

Fixed-term contractors External contractors with fixed-term contracts INPS 6.51

Farmers Farmers INPS 0.43

Other professionals Other self-employed professionals not included in other categories INPS 1.69

PA: Local gov. Public employees of local governments INPDAP 0.91

PA: Central gov. Public employees of central government INPDAP 1.94

PA: Higher ed. Employees of universities INPDAP 1.17

PA: Lower ed. Employees of primary and secondary schools INPDAP 0.09

PA: Health Employees of hospitals (not doctors) INPDAP 1.62

PA: Defense Employees in the military or police forces INPDAP 0.02

PA: Research Employees of CNR (National Research Council) INPDAP 0.06

PA: Other public Public employees not included in other categories INPDAP 0.09

Doctors Medical doctors and dentists ENPAM 6.44

Pharmacists Pharmacists ENPAF 0.47

Entertainment Workers in the entertainment industry ENPALS 0.67

TLC Employees of TLC companies Fondo telefonici 0.58

Railway Ind. Employees of railway companies Fondo ferrovieri 0.12

Journalists Journalists INPGI 0.14

Postal service Employees of the national postal service Fondo postali 0.10

Transport Ind. Employees of local transportation companies Fondo autoferrotramvieri 0.25

Psychologists Psychologists ENPAP 0.20

Veterinarians Veterinarians ENPAV 0.22

Chem., agron., geol. Chemists, agronomists, and geologists EPAP 0.04

Lawyers Lawyers Cassa forense 0.40

Accountants Self-employed accountants with a commercial diploma Cassa ragionieri 0.16

Tax collectors Tax collectors Fondo esattoriali 0.01

Priests Priests Fondo clero 0.10

Engineers and architects Self-employed engineers and architects INARCASSA 0.60

Oil/Gas Gas fitters Fondo gasisti 0.02

Notaries Notaries Cassa del notariato 0.07

Nurses Nurses (not employed in the public sector) ENPAPI 0.01

Biologists Biologists ENPAB 0.03

Lab. consultants Labor consultants ENPACL 0.17

Chart. account. Chartered accountants with a university degree in business economics CNPADC 0.13

Airline Ind. Employees of airline companies Fondo volo 0.07

Ind. Technicians High-skilled industrial technicians with an industrial diploma EPPI 0.18

Surveyors Surveyors Cassa geometri 0.26

Energy Employees of energy/electrical companies Fondo elettrici 0.64

Notes: List of occupations with a description of the included workers, the type of pension fund, and the
share of employed workers.
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Table A2: University STEM Graduation Rates of Industrial Students

STEM STEM STEM

(1) (2) (3)

Panel A: Industrial vs academic students

Industrial x Post 1961 0.0404** 0.0467** 0.0503**

(0.0175) (0.0220) (0.0210)

Industrial x Post 1965 0.1720*** 0.1783*** 0.1819***

(0.0188) (0.0231) (0.0221)

Industrial x Post 1969 0.1665*** 0.1728*** 0.1764***

(0.0147) (0.0198) (0.0186)

Industrial x 1959 -0.0006

(0.0268)

Industrial x 1960 0.0193

(0.0281)

Industrial x Pre-reform trend 0.0097

(0.0140)

Panel B: Industrial vs commercial students

Industrial x Post 1961 0.0368*** 0.0433*** 0.0445***

(0.0104) (0.0138) (0.0133)

Industrial x Post 1965 0.1314*** 0.1379*** 0.1391***

(0.0139) (0.0165) (0.0162)

Industrial x Post 1969 0.0811*** 0.0875*** 0.0888***

(0.0102) (0.0137) (0.0132)

Industrial x 1959 0.0039

(0.0181)

Industrial x 1960 0.0139

(0.0162)

Industrial x Pre-reform trend 0.0071

(0.0081)

Table continues on the next page.
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STEM STEM STEM

(1) (2) (3)

Panel C: Top vs other industrial students

Top x Post 1961 0.0815*** 0.0997*** 0.0917***

(0.0255) (0.0229) (0.0246)

Top x Post 1965 0.1185*** 0.1367*** 0.1287***

(0.0217) (0.0191) (0.0207)

Top x Post 1969 0.0959*** 0.1141*** 0.1061***

(0.0181) (0.0146) (0.0165)

Top x 1959 0.0307

(0.0199)

Top x 1960 0.0206

(0.0353)

Top x Pre-reform trend 0.0098

(0.0175)

Panel D: Matched industrial vs academic students

Industrial x Post 1961 0.9680*** 0.9815*** 0.9620***

(0.0150) (0.0129) (0.0189)

Industrial x Post 1965 0.9674*** 0.9809*** 0.9614***

(0.0148) (0.0131) (0.0187)

Industrial x Post 1969 0.9682*** 0.9815*** 0.9622***

(0.0144) (0.0446) (0.0185)

Industrial x 1959 0.0502

(0.0320)

Industrial x 1960 -0.0156

(0.0130)

Industrial x Pre-reform trend -0.0063

(0.0110)

University STEM graduation, 1958-1960 0.0189 0.0189 0.0189

Observations (panel A) 35,479 35,479 35,479

Observations (panel B) 27,497 27,497 27,497

Observations (panel C) 16,550 16,550 16,550

Observations (panel D) 4,718 4,718 4,718

Notes: The dependent variable is equal to 1 for the students who received a university STEM degree. Top
is 1 for the students who ranked in the top quartile of their school’s grade distribution. Post 1961 is 1 for
the cohorts who graduated between 1961 and 1964, Post 1965 is 1 for the cohorts who graduated between
1965 and 1968, and Post 1969 is 1 for the cohorts who graduated between 1969 and 1973. The regressions
include cohort fixed e↵ects, gender, province of birth fixed e↵ects, high school fixed e↵ects, the high school
standardized score, the average standardized score of the closest peers in high school, a dummy for home-
schooled students, and a dummy for students who graduated high school at 19. Standard errors clustered
by school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: Characteristics of Matched Students

Top students Other students

1958-1960 1961-1973 Di↵. 1958-1960 1961-1973 Di↵.

(1) (2) (3) (4) (5) (6)

Panel A: Industrial students

HS score 1.6829 1.7466 -0.0637 -0.1704 -0.2234 0.0530

(0.0933) (0.0894)

HS peers’ mean score 0.1858 0.1340 0.0518 -0.0389 0.0139 -0.0528

(0.0447) (0.0371)

Home–schooled 0.0000 0.0034 -0.0034 0.0704 0.0279 0.0425

(0.0024) (0.0727)

HS grad at 19 0.9882 0.9949 -0.0067 0.9718 0.9834 -0.0116

(0.0121) (0.0118)

Panel B: Academic students

HS score 1.6643 1.6469 0.0174 -0.3063 -0.2948 -0.0115

(0.0504) (0.0282)

HS peers’ mean score 0.0561 0.0676 -0.0115 0.0093 -0.0111 0.0204

(0.0282) (0.0198)

Home–schooled 0.0182 0.0166 0.0016 0.0228 0.0191 0.0037

(0.0123) (0.0090)

HS grad at 19 0.9909 0.9923 -0.0014 0.9577 0.9631 -0.0054

(0.0071) (0.0180)

Notes: This table shows the outcome of the process that matched post-reform students with a STEM degree
to pre-reform students. For industrial students, we use the matching process to predict who in the pre-reform
period would have received a STEM degree in the absence of any restriction to university enrollment. We
match post-reform students with a STEM degree to pre-reform students, separately for each quartile of pre-
collegiate ability and by pre-reform cohort. The matching is based on a 1-to-1 nearest neighbor algorithm, in
which the calipers for each ability quartile are selected to equate the average STEM graduation rate observed
in the post-period. The propensity score matching are computed using the observable characteristics listed
in the table: gender, high school score, the average score of high school peers, and a dummy for students
who completed high school at 19 (the standard age of graduation). For academic students, there is a concern
that some students might have decided to enroll in other fields to avoid crowding into STEM majors after
the reform, as documented by Bianchi (2016). Starting from the sample of academic students with a STEM
degree, we then use a similar matching process to select the academic students with a STEM degree in the
pre-period who would have received a STEM degree also in the post-period. Standard errors clustered by
high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A4: Probability of Becoming an Inventor, Triple Di↵erences

Inventor Inventor Inventor Inventor Inventor

(1) (2) (3) (4) (5)

Panel A: Top vs other industrial students

Top x Post 1961 0.0067 0.0032 0.0031 0.0065 0.0025

(0.0158) (0.0227) (0.0226) (0.0159) (0.0220)

Top x Post 1965 -0.0346** -0.0382* -0.0382* -0.0348** -0.0388*

(0.0137) (0.0214) (0.0214) (0.0137) (0.0207)

Top x Post 1969 -0.0359*** -0.0394** -0.0394** -0.0361*** -0.0400**

(0.0109) (0.0198) (0.0197) (0.0110) (0.0189)

Top x Pre-reform trend -0.0034

(0.0130)

Panel B: Top vs other, industrial vs academic students

Top x Industrial x Post 1961 0.0057 0.0057 0.0056 0.0051 0.0032

(0.0186) (0.0186) (0.0186) (0.0187) (0.0269)

Top x Industrial x Post 1965 -0.0389** -0.0389** -0.0390** -0.0396** -0.0415

(0.0164) (0.0164) (0.0164) (0.0164) (0.0255)

Top x Industrial x Post 1969 -0.0332** -0.0332** -0.0333** -0.0339** -0.0358

(0.0140) (0.0140) (0.0140) (0.0141) (0.0240)

Top x Industrial x Pre-reform trend -0.0032

(0.0061)

Panel C: Top vs other, industrial vs commercial students

Top x Industrial x Post 1961 0.0085 0.0085 0.0085 0.0083 0.0111

(0.0157) (0.0157) (0.0157) (0.0158) (0.0227)

Top x Industrial x Post 1965 -0.0349** -0.0349** -0.0350** -0.0352** -0.0324

(0.0145) (0.0145) (0.0145) (0.0146) (0.0219)

Top x Industrial x Post 1969 -0.0373*** -0.0373*** -0.0374*** -0.0376*** -0.0348*

(0.0109) (0.0109) (0.0109) (0.0109) (0.0197)

Top x Industrial x Pre-reform trend -0.0014

(0.0048)

Inventor share, top students, 1958-1960 0.0740 0.0740 0.0740 0.0740 0.0740

Pre-trend by quartile of ability No No Yes No No

Pre-trend by high school No No No Yes No

Pre-trend by school and ability quartile No No No No Yes

Notes. This table shows the e↵ect of the promotion of STEM education on the probability of becoming an
inventor of industrial students. Panel A shows di↵erence-in-di↵erences estimates that compare top and other
industrial students (16,550 observations). Panel B shows di↵erence-in-di↵erence-in-di↵erences estimates
comparing industrial and academic students with di↵erent high school grades (35,479 observations). Panel
C shows di↵erence-in-di↵erence-in-di↵erences estimates comparing industrial and commercial students with
di↵erent high school grades (27,497 observations). The dependent variable, Inventor, is a dummy that equals
one for students who patented at least once from 1968 to 2010. Top is 1 for the students who ranked in
the top quartile of their school’s grade distribution. Post 1961 is 1 for the cohorts who graduated between
1961 and 1964, Post 1965 is 1 for the cohorts who graduated between 1965 and 1968, and Post 1969 is 1
for the cohorts who graduated between 1969 and 1973. Pre-reform trend is a linear trend for pre-reform
cohorts. The regressions also include cohort fixed e↵ects, gender, province of birth fixed e↵ects, high school
fixed e↵ects, the high school standardized score, the average standardized score of the closest peers in high
school, a dummy for home-schooled students, and a dummy for students who graduated high school at 19
(and likely never repeated a grade). Standard errors clustered by high school and cohort in parentheses, ***
p<0.01, ** p<0.05, * p<0.1.
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Table A5: Patent Count and Number of Technological Fields

OLS Negative binomial OLS Negative binomial

Patent count Number fields Patent count Number fields Patent count Number fields Patent count Number fields

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industrial vs academic students

Industrial x Post 1961 -0.1316 -0.0186 -0.0045 0.0102 0.0292 0.0042 0.0441 0.0063

(0.1681) (0.0325) (0.1021) (0.0299) (0.0619) (0.0132) (0.0525) (0.0130)

Industrial x Post 1965 -0.2665 -0.0752** -0.1158 -0.0307 0.0342 0.0196 0.0511 0.0168

(0.1657) (0.0310) (0.0872) (0.0265) (0.0559) (0.0125) (0.0437) (0.0115)

Industrial x Post 1969 -0.2636* -0.0876*** -0.0846 -0.0354 -0.0363 -0.0040 0.0237 0.0067

(0.1530) (0.0275) (0.0821) (0.0256) (0.0560) (0.0115) (0.0449) (0.0112)

Panel B: Industrial vs commercial students

Industrial x Post 1961 -0.1389 -0.0305 0.0039 0.0017 -0.0120 -0.0070 -0.0015 -0.0038

(0.1632) (0.0294) (0.0327) (0.0128) (0.0537) (0.0109) (0.0577) (0.0129)

Industrial x Post 1965 -0.3957** -0.1011*** -0.0956 -0.0291* -0.0501 -0.0048 -0.0376 -0.0023

(0.1967) (0.0319) (0.0619) (0.0152) (0.0467) (0.0104) (0.0507) (0.0117)

Industrial x Post 1969 -0.3328** -0.1112*** -0.0423 -0.0259** -0.0906** -0.0248*** -0.0459 -0.0111

(0.1552) (0.0253) (0.0266) (0.0111) (0.0452) (0.0094) (0.0516) (0.0114)

Panel C: Matched, Industrial vs academic students

Industrial x Post 1961 0.1205 -0.0020 0.3877 0.0745 1.2811** 0.1924*** 1.0234** 0.1655**

(0.3920) (0.0959) (0.5039) (0.1238) (0.5040) (0.0690) (0.4985) (0.0751)

Industrial x Post 1965 -0.2929 -0.1568** -0.3251 -0.1132 0.5466** 0.2020*** 0.4941 0.1922***

(0.3570) (0.0747) (0.3367) (0.0821) (0.2650) (0.0560) (0.3081) (0.0507)

Industrial x Post 1969 -0.3265 -0.1535** -0.2739 -0.1178 0.3790 0.1473*** 0.4032 0.1202**

(0.2414) (0.0656) (0.2787) (0.0782) (0.3007) (0.0524) (0.3280) (0.0512)

Sample Top Top Top Top Other Other Other Other

Pre-reform mean dep. var. (panel A-B) 0.2116 0.0695 0.2116 0.0695 0.1736 0.0537 0.1736 0.0537

Pre-reform mean dep. var. (panel C) 0.5647 0.2471 0.5647 0.2471 0.3944 0.0704 0.3944 0.0704

Observations (panel A) 7,662 7,662 7,662 7,662 27,817 27,817 27,817 27,817

Observations (panel B) 5,865 5,865 5,865 5,865 21,632 21,632 21,632 21,632

Observations (panel C) 1,807 1,807 1,807 1,807 2,911 2,911 2,911 2,911

Notes. This table shows di↵erence-in-di↵erences and di↵erence-in-di↵erence-in-di↵erences estimates of the
e↵ect of the promotion of STEM education on the number of patents and the number of technological fields.
Standard errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

A11



Table A6: Patent Count and Technological Fields, Alternative Specifications

OLS Negative binomial

Patent count Number fields Patent count Number fields

(1) (2) (3) (4)

Panel A: Top vs other industrial students (N = 16,550)

Top x Post 1961 -0.0778 -0.0106 0.0135 0.0011

(0.1626) (0.0291) (0.0377) (0.0105)

Top x Post 1965 -0.2059 -0.0710** 0.0099 -0.0298***

(0.1592) (0.0279) (0.0659) (0.0114)

Top x Post 1969 -0.2029 -0.0731*** -0.0213 -0.0243**

(0.1542) (0.0252) (0.0350) (0.0113)

Panel B: Top vs other, industrial vs academic students (N = 35,479)

Top x Industrial x Post 1961 -0.1320 -0.0094 -0.0421 0.0011

(0.1679) (0.0324) (0.0565) (0.0138)

Top x Industrial x Post 1965 -0.2895* -0.0800** -0.1026* -0.0364***

(0.1655) (0.0311) (0.0531) (0.0134)

Top x Industrial x Post 1969 -0.2093 -0.0716** -0.0542 -0.0258**

(0.1576) (0.0281) (0.0524) (0.0121)

Panel C: Top vs other, industrial vs commercial students (N = 27,497)

Top x Industrial x Post 1961 -0.1035 -0.0108 0.0075 0.0078

(0.1647) (0.0292) (0.0629) (0.0127)

Top x Industrial x Post 1965 -0.3198 -0.0822** -0.1469 -0.0393*

(0.1961) (0.0323) (0.1459) (0.0207)

Top x Industrial x Post 1969 -0.2324 -0.0769*** -0.0308 -0.0223*

(0.1583) (0.0258) (0.0618) (0.0122)

Mean dep. var., 1958-1960 0.2116 0.0695 0.2116 0.0695

Notes. This table shows di↵erence-in-di↵erences and di↵erence-in-di↵erence-in-di↵erences estimates of the
e↵ect of the promotion of STEM education on the number of patents and the number of technological fields.
Standard errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A7: Patent Count and Fields, Only Inventors

OLS Negative binomial OLS Negative binomial

Patent count Number fields Patent count Number fields Patent count Number fields Patent count Number fields

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industrial vs academic students

Industrial x Post 1961 -3.0275 -0.0340 -1.5848 0.0400 2.0156 0.2848 1.9397 0.2034

(2.6644) (0.3904) (1.8703) (0.3214) (1.8993) (0.2437) (1.6102) (0.2383)

Industrial x Post 1965 -3.7182 0.0151 -3.6770 -0.4252 0.6981 0.0956 1.2816 0.0968

(3.7175) (0.5308) (2.3891) (0.3970) (1.6560) (0.2321) (1.3545) (0.2249)

Industrial x Post 1969 -2.2442 -0.3469 -1.2659 -0.4446 -1.4271 0.0663 -0.5597 0.0287

(2.7902) (0.4248) (1.7991) (0.3834) (2.3235) (0.2122) (1.8591) (0.1984)

Panel B: Industrial vs commercial students

Industrial x Post 1961 -0.4808 -0.3036 -3.5624** -0.2218 0.3138 -0.2004 2.9514 0.0332

(1.7391) (0.3655) (1.6077) (0.1958) (1.7841) (0.3152) (2.7724) (0.3584)

Industrial x Post 1965 -21.0997* -3.5426** -29.9035*** -3.1978*** 0.9432 -0.1352 -1.2455 -0.4262

(10.9561) (1.3583) (6.1958) (0.4970) (2.9279) (0.4842) (2.9503) (0.3814)

Industrial x Post 1969 -2.5871 -0.4864 -1.3250 0.1175 1.4479 -0.0239 1.2334 -0.0826

(1.8948) (0.3456) (1.5431) (0.4153) (1.8612) (0.2657) (2.7957) (0.3600)

Panel C: Matched, Industrial vs academic students

Industrial x Post 1961 1.4758 0.3502 0.5402 0.0858 4.8394 1.2168** 8.8683* 0.9999***

(4.7831) (1.0429) (2.6179) (0.4839) (4.9055) (0.4841) (4.5164) (0.3624)

Industrial x Post 1965 -0.6212 0.1187 -2.2927 -0.4378 3.6124 1.3691** 2.0021 0.9463***

(7.4695) (1.2667) (3.6286) (0.6404) (4.5608) (0.5682) (3.5201) (0.3062)

Industrial x Post 1969 2.5628 0.4109 -0.6669 -0.3546 1.7421 1.3546** 1.1664 0.8530***

(3.8929) (0.9643) (2.3763) (0.5857) (5.2830) (0.5363) (3.9970) (0.3168)

Sample Top Top Top Top Other Other Other Other

Pre-reform mean dep. var. (panel A-B) 4.84 1.76 4.84 1.76 5.02 1.56 5.02 1.56

Pre-reform mean dep. var. (panel C) 4.8 2.1 4.8 2.1 7 1.25 7 1.25

Observations (panel A) 247 247 247 247 587 587 587 587

Observations (panel B) 169 169 169 169 422 422 422 422

Observations (panel C) 121 121 121 121 194 194 194 194

Notes. This table shows di↵erence-in-di↵erences and di↵erence-in-di↵erence-in-di↵erences estimates of the
e↵ect of the promotion of STEM education on the number of patents and the number of technological fields.
Standard errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A8: Patent Count and Fields, Alternative Specifications, Only Inventors

OLS Negative binomial

Patent count Number fields Patent count Number fields

(1) (2) (3) (4)

Panel A: Top vs other industrial students (N = 557)

Top x Post 1961 -1.3590 -0.1655 -0.5581 -0.2406

(2.6264) (0.2486) (1.4015) (0.2043)

Top x Post 1965 -0.5698 -0.0606 0.5513 -0.1246

(2.8921) (0.2973) (1.4372) (0.2407)

Top x Post 1969 -1.5401 -0.2394 0.0589 -0.1889

(2.8637) (0.2438) (1.4329) (0.1970)

Panel B: Top vs other, industrial vs academic students (N = 834)

Top x Industrial x Post 1961 -3.3545 -0.0700 -3.3149 -0.1522

(2.8509) (0.3996) (2.1289) (0.3501)

Top x Industrial x Post 1965 -3.4335 -0.1238 -3.9375* -0.4321

(3.6413) (0.5094) (2.3632) (0.4301)

Top x Industrial x Post 1969 -1.9403 -0.4962 -0.2696 -0.4008

(3.2091) (0.4307) (2.4381) (0.4034)

Panel C: Top vs other, industrial vs commercial students (N = 591)

Top x Industrial x Post 1961 -0.9332 -0.1956 -5.2817* -0.1814

(6.2144) (0.9415) (3.1709) (0.3919)

Top x Industrial x Post 1965 -22.2802*** -2.3927** -16.6044* -1.9620*

(8.4198) (0.9540) (9.5941) (1.0936)

Top x Industrial x Post 1969 -3.2359 -0.2502 -2.4220 0.2259

(2.0181) (0.6292) (3.3014) (0.5226)

Mean dep. var., 1958-1960 4.84 1.76 4.84 1.76

Notes. This table shows di↵erence-in-di↵erences and di↵erence-in-di↵erence-in-di↵erences estimates of the
e↵ect of the promotion of STEM education on the number of patents and the number of technological fields.
Standard errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A9: Probability of Becoming an Inventor of Non-Industrial Students

Inventor Inventor Patent

count

Patent

count

Number

fields

Number

fields

(1) (2) (3) (4) (5) (6)

Panel A: Academic students

Top x Post 1961 0.0014 0.0019 0.0583 0.0306 -0.0015 -0.0117

(0.0100) (0.0145) (0.0515) (0.0514) (0.0155) (0.0209)

Top x Post 1965 0.0043 0.0049 0.0874* 0.0598 0.0101 -0.0001

(0.0089) (0.0137) (0.0508) (0.0496) (0.0139) (0.0197)

Top x Post 1969 -0.0023 -0.0017 -0.0017 -0.0293 -0.0020 -0.0122

(0.0088) (0.0138) (0.0367) (0.0348) (0.0128) (0.0190)

Top x Pre-reform trend 0.0006 -0.0268 -0.0099

(0.0090) (0.0472) (0.0142)

Panel B: Commercial students

Top x Post 1961 -0.0025 -0.0077 0.0134 0.0011 -0.0019 -0.0077

(0.0040) (0.0068) (0.0121) (0.0133) (0.0046) (0.0070)

Top x Post 1965 0.0019 -0.0033 0.1272 0.1149 0.0149 0.0091

(0.0053) (0.0075) (0.1211) (0.1181) (0.0167) (0.0171)

Top x Post 1969 0.0008 -0.0044 0.0155 0.0032 0.0013 -0.0045

(0.0039) (0.0067) (0.0123) (0.0137) (0.0043) (0.0069)

Top x Pre-reform trend -0.0047 -0.0111 -0.0052

(0.0037) (0.0068) (0.0037)

Notes: Panel A uses data of academic students (18,929 observations), while panel B uses data of commercial
students (10,497 observations). The dependent variable Inventor is 1 if the student developed at least
1 patent,Patent count is the number of patents developed, and Number fields is the number of di↵erent
technological fields (classes of invention) per inventor. Top is 1 for the students who ranked in the top
quartile of their school’s grade distribution. . Post 1961 is 1 for the cohorts who graduated between 1961
and 1964, Post 1965 is 1 for the cohorts who graduated between 1965 and 1968, and Post 1969 is 1 for
the cohorts who graduated between 1969 and 1973. Pre-reform trend is a linear pre-reform trend. The
regressions also include cohort fixed e↵ects, gender, province of birth fixed e↵ects, high school fixed e↵ects,
the high school standardized score, the average standardized score of the closest peers in high school, a
dummy for home-schooled students, and a dummy for students who graduated high school at 19 (and likely
never repeated a grade). Standard errors clustered by high school and cohort in parentheses, *** p<0.01,
** p<0.05, * p<0.1.
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Table A10: E↵ects on Innovation, Robustness Checks

Inventor Inventor Inventor Inventor Inventor Inventor Inventor Inventor

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industrial vs academic students

Industrial x Post 1961 0.0171 -0.0085 -0.0058 -0.0215* 0.0049 -0.0036 -0.0019 -0.0001

(0.0321) (0.0152) (0.0180) (0.0115) (0.0161) (0.0048) (0.0056) (0.0047)

Industrial x Post 1965 -0.0254 -0.0476* -0.0385*** -0.0342*** 0.0281* 0.0132** 0.0127** 0.0138***

(0.0269) (0.0248) (0.0142) (0.0103) (0.0149) (0.0066) (0.0063) (0.0049)

Industrial x Post 1969 -0.0301 -0.0432*** -0.0428*** 0.0110 -0.0010 -0.0005

(0.0256) (0.0113) (0.0088) (0.0142) (0.0051) (0.0041)

Panel B: Industrial vs commercial students

Industrial x Post 1961 0.0172 -0.0136 0.0002 -0.0143 -0.0063 -0.0073* -0.0038 -0.0038

(0.0287) (0.0136) (0.0150) (0.0106) (0.0149) (0.0038) (0.0043) (0.0035)

Industrial x Post 1965 -0.0501* -0.0594** -0.0428*** -0.0357*** 0.0033 0.0019 -0.0020 0.0048

(0.0268) (0.0242) (0.0123) (0.0099) (0.0139) (0.0061) (0.0050) (0.0041)

Industrial x Post 1969 -0.0578*** -0.0586*** -0.0465*** -0.0097 -0.0134*** -0.0066**

(0.0223) (0.0090) (0.0084) (0.0131) (0.0039) (0.0031)

Panel C: Matched, Industrial vs academic students

Industrial x Post 1961 0.0469 -0.0452 -0.0438 0.0966* 0.0814* 0.0354

(0.0674) (0.0492) (0.0406) (0.0577) (0.0430) (0.0316)

Industrial x Post 1965 -0.0513 -0.0471 -0.0776*** 0.1263*** 0.1471*** 0.0597**

(0.0441) (0.0748) (0.0262) (0.0412) (0.0465) (0.0272)

Industrial x Post 1969 -0.0515 -0.0777*** 0.0731* 0.0125

(0.0449) (0.0241) (0.0438) (0.0250)

Specification Probit Pre-1966 Weights 29-56 Probit Pre-1966 Weights 29-56

Sample Top Top Top Top Other Other Other Other

Notes. This table shows additional evidence on the e↵ect of the promotion of STEM education on the
probability of becoming an inventor. Columns 1 and 5 show marginal e↵ects from a probit regression.
Columns 2 and 6 restrict the sample to cohorts who completed high school before 1966. Columns 3 and 7
use sampling weights to keep the average student characteristics constant at the pre-reform levels. Columns 4
and 8 consider only the inventors who developed at least one patent between the age of 29 and 56. Standard
errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A11: E↵ects on Innovation, Robustness Checks for Alternative Specifications

Inventor Inventor Inventor Inventor

(1) (2) (3) (4)

Panel A: Top vs other industrial students

Top x Post 1961 0.0073 0.0031 0.0086 -0.0093

(0.0151) (0.0157) (0.0171) (0.0112)

Top x Post 1965 -0.0465*** -0.0449** -0.0360** -0.0359***

(0.0153) (0.0194) (0.0149) (0.0101)

Top x Post 1969 -0.0391*** -0.0354*** -0.0355***

(0.0117) (0.0117) (0.0085)

Panel B: Top vs other, industrial vs academic students

Top x Industrial x Post 1961 0.0081 0.0017 0.0035 -0.0171

(0.0217) (0.0187) (0.0197) (0.0132)

Top x Industrial x Post 1965 -0.0524*** -0.0526** -0.0423** -0.0448***

(0.0197) (0.0224) (0.0176) (0.0119)

Top x Industrial x Post 1969 -0.0364*** -0.0348** -0.0394***

(0.0173) (0.0149) (0.0102)

Panel C: Top vs other, industrial vs commercial students

Top x Industrial x Post 1961 0.0202 0.0055 0.0108 -0.0059

(0.0194) (0.0156) (0.0163) (0.0115)

Top x Industrial x Post 1965 -0.0418** -0.0471** -0.0324** -0.0370***

(0.0198) (0.0206) (0.0153) (0.0117)

Top x Industrial x Post 1969 -0.0347** -0.0375*** -0.0372***

(0.0147) (0.0116) (0.0093)

Specification Probit Pre-1966 Weights 29-56

Notes. This table shows additional evidence on the e↵ect of the promotion of STEM education on the
probability of becoming an inventor. Column 1 shows marginal e↵ects from a probit regression. Column
2 restricts the sample to cohorts who completed high school before 1966. Column 3 uses sampling weights
to keep the average student characteristics constant at the pre-reform levels. Column 4 considers only the
inventors who developed at least one patent between the age of 29 and 56. Standard errors clustered by high
school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A12: Probability of Becoming an Inventor, US Patents

Inventor C–W patents Inventor C–W patents Inventor C–W patents

(1) (2) (3) (4) (5) (6)

Panel A: Industrial vs academic students

Industrial x Post 1961 -0.0026 0.0077 -0.0076 -0.1030 -0.0017 0.0270

(0.0046) (0.1282) (0.0117) (0.3021) (0.0040) (0.1426)

Industrial x Post 1965 -0.0014 -0.1087 -0.0039 -0.1367 -0.0014 -0.1138

(0.0037) (0.1010) (0.0091) (0.2828) (0.0038) (0.1233)

Industrial x Post 1969 -0.0074** -0.1562 -0.0137* -0.1914 -0.0056 -0.1435

(0.0034) (0.1001) (0.0075) (0.2754) (0.0036) (0.1254)

Panel B: Industrial vs commercial students

Industrial x Post 1961 -0.0034 -0.0169 -0.0050 -0.0959 -0.0038 -0.0107

(0.0043) (0.1154) (0.0099) (0.2668) (0.0035) (0.1236)

Industrial x Post 1965 -0.0085** -0.2221*** -0.0148 -0.3068 -0.0075** -0.2093**

(0.0035) (0.0844) (0.0089) (0.2675) (0.0033) (0.1002)

Industrial x Post 1969 -0.0124*** -0.2457*** -0.0197*** -0.3689 -0.0108*** -0.2199**

(0.0032) (0.0827) (0.0067) (0.2501) (0.0031) (0.1020)

Panel C: Matched, Industrial vs academic students

Industrial x Post 1961 0.0605** 2.1984*** 0.0620 1.9570** 0.0477* 2.4805**

(0.0289) (0.6720) (0.0426) (0.8613) (0.0280) (1.2032)

Industrial x Post 1965 0.0354** 0.7425** 0.0026 0.6777 0.0528** 0.8385

(0.0177) (0.3519) (0.0299) (0.5321) (0.0212) (0.5349)

Industrial x Post 1969 0.0138 0.5277 -0.0168 0.3220 0.0368* 0.7505

(0.0147) (0.3584) (0.0249) (0.4300) (0.0197) (0.5880)

Sample All All Top Top Other Other

Pre-reform dep. var. (panels A-B) 0.0183 0.3409 0.0237 0.4379 0.0169 0.3157

Pre-reform dep. var. (panel C) 0.0321 0.3333 0.0353 0.2823 0.0282 0.3944

Observations (panel A) 35,479 35,479 7,662 7,662 27,817 27,817

Observations (panel B) 27,497 27,497 5,865 5,865 21,632 21,632

Observations (panel C) 4,718 4,718 1,807 1,807 2,911 2,911

Notes. This table shows the e↵ect of the promotion of STEM education on the probability of developing
at least one patent issued by the US Patent O�ce. The source of US patent data is the NBER US Patent
Citation Data File (Hall, Ja↵e and Trajtenberg, 2001). Columns 3 and 4 restrict the sample to students
who ranked in the top quartile of their school’s grade distribution. Columns 5 and 6 restrict the sample to
students who are not in the top ability quartile. The regressions also include cohort fixed e↵ects, gender,
province of birth fixed e↵ects, high school fixed e↵ects, the high school standardized score, the average
standardized score of the closest peers in high school, a dummy for home-schooled students, and a dummy
for students who graduated high school at 19 (and likely never repeated a grade). Standard errors clustered
by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

A18



Table A13: Unverified Inventors

Inventor Inventor Inventor Inventor Inventor Inventor Inventor Inventor

Verified Pr > 90% Pr> 75% Pr >60% Pr> 50% Pr >40% Pr >25% All

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Top industrial vs top academic students

Industrial x Post 1961 -0.0002 -0.0002 -0.0002 -0.0002 -0.0008 -0.0007 0.0011 0.0344

(0.0172) (0.0172) (0.0172) (0.0171) (0.0171) (0.0173) (0.0174) (0.0221)

Industrial x Post 1965 -0.0317** -0.0317** -0.0317** -0.0307** -0.0268* -0.0272* -0.0175 -0.0124

(0.0144) (0.0144) (0.0144) (0.0142) (0.0145) (0.0147) (0.0150) (0.0222)

Industrial x Post 1969 -0.0403*** -0.0403*** -0.0403*** -0.0398*** -0.0394*** -0.0374*** -0.0342*** -0.0534***

(0.0120) (0.0120) (0.0120) (0.0119) (0.0120) (0.0122) (0.0127) (0.0194)

Panel B: Top industrial vs top commercial students

Industrial x Post 1961 -0.0039 -0.0039 -0.0039 -0.0038 -0.0031 -0.0030 -0.0015 0.0269

(0.0147) (0.0147) (0.0147) (0.0146) (0.0147) (0.0148) (0.0152) (0.0224)

Industrial x Post 1965 -0.0420*** -0.0420*** -0.0420*** -0.0407*** -0.0357*** -0.0330** -0.0242* -0.0300

(0.0127) (0.0127) (0.0127) (0.0124) (0.0128) (0.0129) (0.0133) (0.0214)

Industrial x Post 1969 -0.0559*** -0.0559*** -0.0559*** -0.0563*** -0.0551*** -0.0523*** -0.0496*** -0.0758***

(0.0097) (0.0097) (0.0097) (0.0096) (0.0098) (0.0102) (0.0108) (0.0199)

Panel C: Top vs other industrial students

Top x Post 1961 0.0067 0.0066 0.0066 0.0061 0.0056 0.0053 0.0064 0.0271

(0.0158) (0.0159) (0.0159) (0.0159) (0.0159) (0.0158) (0.0156) (0.0216)

Top x Post 1965 -0.0346** -0.0347** -0.0347** -0.0336** -0.0300** -0.0284** -0.0268** -0.0393*

(0.0137) (0.0137) (0.0137) (0.0135) (0.0138) (0.0139) (0.0134) (0.0202)

Top x Post 1969 -0.0359*** -0.0361*** -0.0363*** -0.0359*** -0.0359*** -0.0351*** -0.0350*** -0.0451**

(0.0109) (0.0109) (0.0109) (0.0110) (0.0110) (0.0110) (0.0106) (0.0185)

Panel D: Top vs other, industrial vs academic students

Top x Industrial x Post 1961 0.0057 0.0056 0.0056 0.0051 0.0037 0.0028 0.0066 0.0349

(0.0186) (0.0186) (0.0186) (0.0187) (0.0187) (0.0187) (0.0185) (0.0248)

Top x Industrial x Post 1965 -0.0389** -0.0390** -0.0390** -0.0376** -0.0348** -0.0361** -0.0291* -0.0320

(0.0164) (0.0164) (0.0164) (0.0162) (0.0164) (0.0167) (0.0160) (0.0233)

Top x Industrial x Post 1969 -0.0332** -0.0335** -0.0331** -0.0328** -0.0329** -0.0334** -0.0323** -0.0352

(0.0140) (0.0140) (0.0140) (0.0140) (0.0140) (0.0141) (0.0137) (0.0217)

Panel E: Matched, Top industrial vs top academic students

Industrial x Post 1961 -0.0044 -0.0044 -0.0044 -0.0044 -0.0032 -0.0036 0.0019 0.0882

(0.0501) (0.0501) (0.0501) (0.0501) (0.0501) (0.0501) (0.0511) (0.0627)

Industrial x Post 1965 -0.0679** -0.0679** -0.0679** -0.0679** -0.0513 -0.0555 -0.0377 0.0254

(0.0334) (0.0334) (0.0334) (0.0334) (0.0353) (0.0356) (0.0385) (0.0426)

Industrial x Post 1969 -0.0629** -0.0629** -0.0629** -0.0629** -0.0614** -0.0620** -0.0687** -0.0516

(0.0296) (0.0296) (0.0296) (0.0296) (0.0295) (0.0295) (0.0329) (0.0401)

Number of Inventors 869 870 874 880 901 934 1,067 2,399

Notes: Di↵erent columns include a di↵erent amount of unverified inventors (inventors whose patents could not be verified

though the fiscal code or an internet search) in the sample. Column 1 includes only the verified inventors, column 2 all the

inventors with an estimated probability above 90 percent, column 3 above 75 percent, column 4 above 60 percent, column 5

above 50 percent, column 6 above 40 percent, and column 7 above 25 percent. Column 8 includes all unverified inventors.

Standard errors clustered by high school and cohort in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table A14: Industries Within the Private Sector

R&D Manufacturing Education Other public Top pay R&D Manufacturing Education Other public Top pay

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Industrial vs academic students

Industrial x Post 1961 -0.0067 -0.1396** 0.0161 0.0413*** 0.0367 0.0116 -0.0174 -0.0104 -0.0056 0.0248

(0.0100) (0.0555) (0.0142) (0.0148) (0.0381) (0.0073) (0.0306) (0.0074) (0.0087) (0.0233)

Industrial x Post 1965 0.0014 0.0048 -0.0091 0.0201 0.0121 0.0181** 0.0241 -0.0061 -0.0110 -0.0100

(0.0057) (0.0534) (0.0139) (0.0153) (0.0372) (0.0077) (0.0290) (0.0072) (0.0082) (0.0223)

Industrial x Post 1969 0.0037 -0.0184 -0.0018 0.0139 0.0170 0.0167** 0.0497* -0.0134** -0.0115 -0.0028

(0.0048) (0.0498) (0.0130) (0.0137) (0.0351) (0.0068) (0.0272) (0.0067) (0.0077) (0.0215)

Panel B: Matched, Industrial vs academic students

Industrial x Post 1961 -0.0010 -0.3373*** 0.0380** 0.0616** 0.0617 0.0769* -0.0391 0.0129 0.0429 0.0229

(0.0193) (0.0943) (0.0190) (0.0257) (0.0555) (0.0421) (0.1028) (0.0206) (0.0373) (0.0560)

Industrial x Post 1965 0.0126 -0.1433* 0.0095 0.0337 0.0828* 0.0527** 0.0010 0.0070 0.0142 0.0276

(0.0164) (0.0770) (0.0131) (0.0231) (0.0487) (0.0205) (0.0745) (0.0103) (0.0088) (0.0405)

Industrial x Post 1969 0.0070 -0.1563** 0.0226** 0.0354* 0.0859* 0.0384** 0.0295 0.0143 -0.0003 0.0214

(0.0115) (0.0695) (0.0106) (0.0215) (0.0442) (0.0176) (0.0718) (0.0107) (0.0056) (0.0404)

Sample Top Top Top Top Top Other Other Other Other Other

Pre-reform dep. var. (panel A) 0.0000 0.6224 0.0053 0.0012 0.1198 0.0025 0.6286 0.0025 0.0129 0.1195

Pre-reform dep. var. (panel B) 0.0000 0.7622 0.0000 0.0000 0.0458 0.0000 0.7551 0.0041 0.0000 0.0307

Observations (panel A) 76,315 76,315 76,315 76,315 76,315 261,189 261,189 261,189 261,189 261,189

Observations (panel B) 25,528 25,528 25,528 25,528 25,528 42,274 42,274 42,274 42,274 42,274

Notes. This table shows the e↵ect of the promotion of STEM education on the industry choice.
Dependent variables: R&D is a dummy for research–intensive industries, Manufacturing is a dummy for
all manufacturing industries, Education and Other public are dummies for industries that provide public
services (the sample, however, includes only individuals who are employed by companies not directly part of
the public administration), Top pay is a dummy for the five industries with the highest average salaries for
workers with STEM degrees (Energy, Food/Hospitality, Transportation/Communications, Finance/Banking,
and International organizations). Post 1961 is 1 for the cohorts who graduated between 1961 and 1964,
Post 1965 is 1 for the cohorts who graduated between 1965 and 1968, and Post 1969 is 1 for the cohorts who
graduated between 1969 and 1973. Columns 6 to 10 restrict the sample to students who ranked in the top
quartile of their school’s grade distribution. The regressions include cohort and calendar year fixed e↵ects,
gender, province of birth fixed e↵ects, high school fixed e↵ects, the HS score, the average standardized score
of the closest peers in high school, a dummy for home-schooled students, and a dummy for students who
graduated high school at 19. Standard errors clustered by student in parentheses, *** p<0.01, ** p<0.05, *
p<0.1.
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Table A15: Positions Within the Private Sector

Top pos. Manager Top pos. Manager Top pos. Manager Top pos. Manager

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industrial vs academic students

Industrial x Post 1961 -0.0409 -0.0530 -0.0435 -0.0681 0.0140 0.0080 0.0062 0.0104

(0.0316) (0.0330) (0.0480) (0.0509) (0.0144) (0.0149) (0.0245) (0.0262)

Industrial x Post 1965 0.0588* 0.0548* 0.0156 0.0223 0.0650*** 0.0466*** 0.0665*** 0.0466*

(0.0307) (0.0320) (0.0461) (0.0492) (0.0138) (0.0142) (0.0231) (0.0247)

Industrial x Post 1969 0.0539* 0.0325 0.0075 -0.0174 0.0385*** 0.0286** 0.0175 0.0170

(0.0287) (0.0295) (0.0427) (0.0449) (0.0129) (0.0131) (0.0216) (0.0229)

Panel B: Matched, Industrial vs academic students

Industrial x Post 1961 0.0702 0.0354 0.0995 0.0519 0.2661*** 0.2808*** 0.3063*** 0.3718***

(0.0642) (0.0698) (0.0934) (0.1091) (0.0548) (0.0602) (0.0819) (0.0982)

Industrial x Post 1965 0.1742*** 0.1640*** 0.1593** 0.1669* 0.3183*** 0.2842*** 0.3012*** 0.2766***

(0.0552) (0.0591) (0.0796) (0.0906) (0.0406) (0.0435) (0.0684) (0.0788)

Industrial x Post 1969 0.1866*** 0.1257** 0.1481* 0.0960 0.2732*** 0.2496*** 0.2524*** 0.2557***

(0.0524) (0.0560) (0.0769) (0.0865) (0.0389) (0.0415) (0.0656) (0.0752)

Sample Top Top Top Top Other Other Other Other

Industry f.e. No No Yes Yes No No Yes Yes

Pre- reform dep. var. (panel A) 0.2321 0.2182 0.2321 0.2182 0.1486 0.1375 0.1486 0.1375

Pre- reform dep. var. (panel B) 0.2271 0.2075 0.2271 0.2075 0.1462 0.1295 0.1462 0.1295

Observations (Panel A) 161,759 161,759 75,901 75,901 616,783 616,783 259,411 259,411

Observations (Panel B) 45,258 45,258 25,433 25,433 75,347 75,347 42,054 42,054

Notes. This table shows the e↵ect of the promotion of STEM education on the position held within a firm.
Dependent variables: Top pos. is a dummy for the two highest positions of manager and higher-level white
collar (quadro in Italian), and Manager is a dummy for workers in a managerial position. Columns 3, 4, 7,
and 8 control for industry fixed e↵ects to capture position changes within the same industries in the private
sector. Post 1961 is 1 for the cohorts who graduated between 1961 and 1964, Post 1965 is 1 for the cohorts
who graduated between 1965 and 1968, and Post 1969 is 1 for the cohorts who graduated between 1969 and
1973. Columns 5 to 8 restrict the sample to students who ranked in the top quartile of their school’s grade
distribution. The regressions include cohort and calendar year fixed e↵ects, gender, province of birth fixed
e↵ects, high school fixed e↵ects, the HS score, the average standardized score of the closest peers in high
school, a dummy for home-schooled students, and a dummy for students who graduated high school at 19.
Standard errors clustered by student in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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B Curriculum change in STEM majors

Pursuing a university STEM education a↵ected how students sorted into di↵erent occupa-

tions. In addition, the human capital acquired in STEM majors changed the technological

areas in which the industrial students patented. All these e↵ects are large and significant

only among the cohorts who completed high school after 1965, although university STEM

graduation rates increased from 1961. In this subsection, we explore a potential explanation

for a delay in the e↵ect of STEM education.

Industrial high schools heavily focused on applied STEM disciplines at the expenses of

theoretical STEM education. As a result, industrial students enrolled in STEM majors with

good practical skills, but lacked a solid theoretical foundation in most STEM areas. To

analyze the performance of industrial students during their university studies, we divided all

courses in university STEM majors in two categories: industrial courses, which were directly

related to the disciplines taught by industrial high schools, and academic courses, which

required more theoretical or advanced skills.20 We then estimated the following specification:

gicp = ↵ + �c + �p + � (Industrial studenti ⇥ Industrial coursec) + ⌘Xip + uicp, (5)

where gicp is the standardized grade of student i in the STEM course c in academic year p.

Industrial studenti is equal to one if student i received an industrial high school diploma.

Industrial coursec is equal to one if the course is related to a discipline taught in industrial

high schools. Xip denotes student characteristics, such as year of high school graduation

fixed e↵ects, gender, and pre-collegiate achievement. �c are course fixed e↵ects and �p are

academic year fixed e↵ects. The sample includes academic and industrial students who

completed high school between 1958 and 1973 and were enrolled in a STEM major between

20Based on the disciplines taught in industrial high schools, we used the following keywords to identify
industrial courses: aerodinamica, aeromobili, aeronautica, aerotecnica, antenne, architettura, caldaie, cantieri, centrali,

chimica, chimiche, comunicazione, controlli automatici, controlli dei processi, costruttivi, costruzione, costruzioni, disegno,

elettriche, elettro, elettronica, elettronici, elettronico, elettrotecnica, elicotteri, estimo, fondazioni, forni, idraulica, idrologia,

impianti, infrastrutture, macchinari, macchine, materiali, meccanica, meccaniche, metalli, metallo, motori, plastiche, progetti,

progetto, programmazione, propulsione, propulsori, radiochimica, radiotecnica, reattori, regolazione, rilevatori, siderurgia,

sintesi, speciali, sismica, sistemi operativi, statica, struttura, strutture, strutturistica, tecnologia, tecnologie, tensioni,

topografia. In the engineering major, for example, technical drawing is an industrial course and introductory
math is an academic course.
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1961 and 1977.

The estimated coe�cient of Industrial studenti⇥ Industrial coursec indicates that indus-

trial students scored 0.12 standard deviations above academic students in industrial courses,

after controlling for other course and student characteristics (table B1, panel A, column 1).

This result is due to the fact that industrial students scored 0.11 standard deviations above

the mean in industrial courses (table B1, panel A, column 3), while academic students scored

only 0.04 standard deviations below the mean (table B1, panel A, column 4). This finding

suggests that industrial students might have experienced a lower accumulation of human

capital in STEM majors, because they lacked the required preparation to thrive in academic

courses.21

From 1969, students could choose courses more freely, instead of complying with the

curriculum imposed by the university administration. This reform represented an opportu-

nity for industrial students to select courses that were more in line with their pre-collegiate

skills. To test the e↵ect of the 1969 reform on the course choice, we estimated the following

specification:

Share industrial coursesip = ↵ + �p +
X

p

�p (Industrial studenti ⇥ �p) + ⌘Xip + uip, (6)

where Share industrial coursesip is the share of industrial courses attended by student i in

the academic year p, �p are academic year fixed e↵ects, and Xip are student characteristics.

The di↵erence-in-di↵erences coe�cients of Industrial studenti⇥�p indicate that the share

of industrial courses in the curriculum of industrial students increased by 7.53 percentage

points between 1969 and 1977 (table B1, panel B, column 1). This e↵ect is the result of two

diverging trends. After 1969, in fact, industrial students increased the share of industrial

courses by 8.05 percentage points (table B1, panel B, column 3), while academic students

reduced it by 1.07 percentage points (table B1, panel B, column 4). Although this finding

indicates that both academic and industrial students switched to more favorable courses

after 1969, the change was much larger among industrial students, whose human capital

accumulation was plausibly more penalized by the rigid curricula.

21The share of academic courses was equal to 55 percent in an average academic year.
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A greater flexibility in the choice of the courses benefited the students who entered into

STEM majors after 1969, as well as the students who were enrolled at the time of the

implementation. To prove this point, we estimate equation 6 including only the students

who completed high school before 1969. In this case, the industrial students increased the

share of industrial courses in their curricula by 3.53 percentage points between 1969 and

1977 (table B1, panel B, column 2).

This course–level analysis suggested that the industrial students might have accumulated

more human capital after 1969, when they could select a higher number of industrial courses.

The same post-1965 cohorts who benefited from a flexible curriculum experienced a change

in their innovative output and in their occupational sorting.
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Table B1: Industrial Courses and Curriculum Change

Industrial vs

academic

Pre-1969

cohorts

Industrial

students

Academic

students

Top vs other

industrial

Top vs other

academic

(1) (2) (3) (4) (5) (6)

Panel A: Grades in di↵erent STEM courses

Industrial student x Industrial course 0.1216*** 0.1616***

(0.0144) (0.0194)

Industrial course 0.1136*** -0.0409***

(0.0108) (0.0072)

Top x Industrial course -0.0407 0.0550*

(0.0430) (0.0305)

Panel B: Share of industrial courses in the curriculum

Industrial student x 1965–1968 0.0245 0.0145

(0.0163) (0.0163)

Industrial student x 1969-1977 0.0753*** 0.0353**

(0.0154) (0.0161)

1965–1968 0.0231 -0.0067

(0.0157) (0.0050)

1969-1977 0.0805*** -0.0107**

(0.0152) (0.0043)

Top x 1965–1968 -0.0040 0.0029

(0.0536) (0.0177)

Top x 1969-1977 -0.0035 0.0161

(0.0524) (0.0144)

Observations (panel A) 136,275 93,363 38,297 97,978 38,297 97,978

Observations (panel B) 27,786 18,970 8,294 19,492 8,294 19,492

Notes: Panel A shows how industrial students performed in the industrial courses (close to the curriculum of industrial high schools) of STEM majors. The unit of analysis is

a students i in the STEM course c and the academic year p (academic years from 1961 to 1977). Panel B shows how the share of industrial courses increased after 1969 among

industrial students. The unit of analysis is a student i in the academic year a (1960–1977). The dependent variable is the standardized course grade in panel A and the share

of industrial courses in each academic year in panel B. Standard errors clustered by student in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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