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1 Introduction

Negotiations are typically much more complex than bargaining: in addition to a price paid

upon an agreement, the content of the agreement must also be determined. Moreover,

the content being negotiated generally involves many aspects and substantial asymmetric

information regarding agents’ valuations for each dimension. Under such circumstances

should we expect agents to reach efficient agreements, or even any agreement?

The mechanism design literature has shown that, in a nontrivial and important set of

such multi-dimensional circumstances, (nearly) efficient agreements are possible. However,

those optimistic results are derived assuming that the ‘mechanism’ through which agents

communicate can be carefully tailored to the setting: often involving extremely specific

restrictions on how agents can communicate. The mechanisms are carefully designed to

balance incentives and rely on exact knowledge of the utility functions of the agents and

the uncertainty that they face. Of course, in most settings an omniscient “planner” or

“mechanism designer with such knowledge does not exist. Indeed, most negotiations are

fairly free form, bearing almost no resemblance to the mechanisms used to prove results

in the literature. Typically, one side offers a contract from a very general set of potential

contracts (essentially, subject only to what is considered legal in the society), and then the

other side either accepts or has a chance to amend the contract, and so forth. Under such

a universal form of negotiation should we still expect agents to be able to reach efficient

agreements?

As an example, there may be substantial uncertainty regarding how much value “Labor”

attaches to one health package versus another, versus time off for child care, pension pro-

visions, sick days, flexible schedule, safety rules, disability insurance, grievance provisions,

wages, and so forth; and similarly how “Management” views the relative costs of each of

these items. If each item was bargained over in isolation, following Myerson and Satterth-

waite (1983) there would be substantial losses in efficiency, regardless of the way in which

negotiation is conducted.1 However, in aggregate, both Labor and Management may have

a better idea of the possible gains from trade and take this into account when making their

surplus demands and revealing their preferences. For instance, if there are many dimensions

and enough independence in the valuations across dimensions then the agents may have a

very good idea of the overall surplus from trade, even though they may have little idea of

exactly how to realize that surplus. In such settings, if one can carefully design the mecha-

nism through which agents communicate, then as shown by Jackson and Sonnenschein (2007)

there exists a “linking mechanism” that results in (near) efficiency. That mechanism requires

that each agent announce valuations across the various dimensions that match the expected

1This presumes that valuations can overlap, and that agents are not forced to participate in an agreement.
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frequency distribution. This gives one hope that efficiency may be reached, but we may not

be convinced since this resolution assumes that agents are forced to only communicate via a

“mechanism” that is somehow imposed by an unmodeled designer who knows the frequency

distribution. What happens in a similar circumstance if the agents simply negotiate in a

free-form alternating offer style that more closely matches real-world negotiations? As we

prove, it efficient outcomes still ensue (in all equilibria). We also show that this depends on

the ‘free-form’ negotiations being sufficiently free-form: agents must be able to make certain

kinds of offers in order to reach efficiency. If they are limited in what offers they can make,

then they will fail to reach efficiency.2

This may help provide insight into an empirical puzzle pointed out by Kennan (2005).

It is not curious that strikes exist, but it is curious that they are so rare. According to

Kennan (2005), in the United States between 1948 and 2005, “idleness due to strikes never

exceeded one half of one percent of total working days in any year.”3 In fact, since 1990

average lost time has been about 20 minutes per year per worker in the U.S.; and, even in

a more strike-prone country like Spain, the number is less than 1/3 of a day per worker per

year (again, according to Kennan (2005)).

Although the alternating-offer negotiation games that we consider can be viewed as

“mechanisms”,4 the negotiation games introduced above do not use the distributional in-

formation about agents’ types. Thus, our work can be thought of in the broader spirit of

Wilson’s (1987) criticisms of mechanisms that depend on agents’ (higher-order) beliefs. Sat-

terthwaite, Williams, and Zachariadis (2014) also view such mechanisms as “impractical” as

“[the agents’] beliefs are not a datum that is practically available for defining economic insti-

tutions” (p.249). In contrast, “robust” and “detail-free” have mainly been used in literature

to refer to resolving the more explicit aspect of the Wilson’s critique, namely the assumption

of common knowledge among agents: e.g., see Bergemann and Morris (2005) and Roughgar-

den and Talgam-Cohen (2013). The exception is Matsushima (2008) who used “detail-free”

with a meaning more similar to ours in an auction environment. To avoid confusions in

terminologies we use “universality” to capture the feature that a protocol/mechanism is not

defined based on any the knowledge of the prior distribution or utility functions of the agents.

2This is in line with practical advice given to practical negotiators. For example, Fisher and Ury 2001

emphasize putting multiple goods on the table and offering the other party many options.
3Kennan notes similar numbers for Canada, where he mentions that lost work time was about a third

of a day per year per worker. Kennan also states that “Although the data are not readily available for

a broad sample of developed countries, the pattern described above seems quite general: days lost due to

strikes amount to only a fraction of a day per worker per annum, on average, exceeding one day only in a

few exceptional years.”
4There is an extensive mechanism design literature characterizing the feasibility of efficient allocations.

See, e.g., Jackson (2001,2003), Segal and Whinston (2012), and the references therein for the static case;

and Skrzypacz and Toikka (2014) for the dynamic case.
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As a preview, we proceed as follows. We start with several illustrating examples (Sec-

tion 2). Next, (in Section 3) we present our formal model of multi-item negotiations and

introduce several ‘universal’ negotiation mechanisms. After having introduced the universal

mechanisms, (in Section 3) we focus on the case of known surplus. This is a case in which

agents know the value of the total utility maximizing agreement, even though they do not

know which agreement it is. Here, we show that if the negotiation mechanism is rich enough

then all equilibria result in fully efficient outcomes, despite the universality of the mechanism

and the fact that the agents only know the total available surplus and not how to realize it.

We show that this results hinges on the universal negotiating mechanism being rich enough.

Agents must be able to propose overall agreements and demand shares of the overall sur-

plus. The intuition behind this result is roughly as follows. Knowing the total surplus allows

agents to negotiate over the total, and any misrepresentation of their private information

can only lead to a reduction in that total surplus. This method of negotiation thus aligns

incentives, helping the agents find the right agreement quickly and efficiently. After that, (in

Section 5) we extend the discussions to the case in which the surplus is only approximately

known. This introduces some substantial technical hurdles as the set of sequential equilibria

(and the set perfect Bayesian equilibria) are not upper-hemicontinuous. Slight amounts of

uncertainty lead to many equilibria that rely on extreme updating of beliefs (that survive

the usual refinements). We show that introducing slight trembles eliminates those problems

and restores continuity at the limit.5 We conclude with some examples that address the case

in which there is substantial uncertainty about the total available gains from trade.

2 Examples

We begin with an example of negotiations over multiple dimensions. In this example, if only

one dimension is considered at a time, then inefficiency necessarily results in any mechanism

that is (interim) incentive compatible, individually rational, and budget balanced. However,

if negotiations are over all dimensions together then efficiency ensues.

2.1 An exchange of private goods

Alice has n rugs and she can sell some (or all) of them to Bob. θik is i ∈ {a, b}’s value for

the k-th rug. Suppose θak ∈ {0, 8} and θbk ∈ {2, 10}, both equally likely; i.i.d. across rugs

and agents.

A decision is a list of which rugs trade at which prices at which times: {(Nt, pt)}t indicates

5This is different from trembling hand perfection as we hold trembles constant and let the uncertainty

vanish, rather than the alternative.
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that the rugs with indices in the set Nt trade at a total price pt ∈ IR (the amount transferred

from Bob to Alice).

Agents’ (time-0) utilities from such a decision are

ua ({(Nt, pt)}t) =
∑
t

δta

(
pt −

∑
k∈Nt

θak

)

and

ub ({(Nt, pt)}t) =
∑
t

δtb

(∑
k∈Nt

θbk − pt

)
,

where δa, δb ∈ [0, 1) are the factors at which agents discount the future.

Beyond exchanging rugs, other applications may be two firms negotiating on a contract

which includes specifications of a service to be provided, or a good to be produced, and this

could include many aspects which need to be specified, such as the time to production, specs

of the item (e.g., its weight, performance, durability), the quality of the object, penalties

for failure to deliver, and so forth. Or for example it could be a contract between a faculty

member and a university, specifying a teaching load, a sabbatical policy, research funding,

summer support, a salary, and so forth.

The efficient (‘first-best’) outcome is to have a rug traded if and only if Bob’s value

exceeds Alice’s; i.e., (θa, θb) ∈ {(0, 2), (0, 10), (8, 10)}; and all such rugs are traded at t = 0.

The ‘surplus’ is defined as the gain from trade under the efficient outcome, with a per-item

expectation of 0.25× ((10− 0) + (10− 8) + (2− 0)) = 3.5.

With a single item: efficiency is not achievable. When there is only one rug (n = 1),

efficiency cannot be achieved under the requirements of (interim) incentive compatibility

and individual rationality (the price lies between the two valuations), (noting that budget

balance is satisfied by construction) - which is a variation on the results of Myerson and

Satterthwaite (1983).

Indeed, one can verify that the following mechanism maximizes the joint (second-best)

surplus subject to incentive compatibility and individual rationality. In the table, q is the

probability of trade and p is the price.

θb = 10 θb = 2

θa = 0 q = 1, p = 5 q = 5
6
, p = 2

θa = 8 q = 5
6
, p = 8 q = 0, no trade

Note that this is a direct mechanism: agents communicate their valuations and then the

outcome is enforced by the mechanism. The mechanism is designed based on the agents’
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utility functions and the probabilities of the various valuations. If those valuations or prob-

abilities differ slightly from what is anticipated by the mechanism designer, the mechanism

might lead to very different outcomes.

Negotiations with Four Items Now, let us consider ‘universal’ mechanisms that are not

restricted based on the setting. Agents may negotiate in various manners. Let us compare

two benchmark ways in which agents may carry out their negotiation.

Item-by-Item Negotiations The agents negotiate over the n items, but the negotiation

is independent across items - so each item is negotiated upon via its own sequence of offers

and counter-offers (the naming of any price for an item). It is possible that agents may tie

the negotiation together across items, but only via their equilibrium actions, as it is simply

n separate bargaining processes that are conducted in parallel.

Combinatorial Negotiations Here we move to the opposite extreme: instead of nego-

tiating item-by-item, agents discuss and “price” all possible subsets of items. An offer is a

list of prices - one for each possible subset. If the responder accepts the offer, s/he picks

the subset of items he/she desires to trade at the price offered in the list. If the responder

rejects an offer, s/he makes a counter-offer by naming a list of prices for each subset of items

(after one period of discounting).

These two different forms of negotiations result in very different levels of efficiency, as

illustrated in the following example.

Example 1 Consider a case with n = 4 rugs, and to keep the setting simple, suppose that

each of the four possible matchups (0, 2), (0, 10), (8, 2), (8, 10) appears exactly once - and the

24 different possible orderings of these four matchups are all equally likely. Thus, agents

know the total gains from trade, but they do not know which items to trade. The seller has

value 8 for two of the items, but does not know which one will trade, and similarly, the buyer

has value 2 for two of the items and does not know which one will trade.

1. there exists a direct mechanism under which truth is an equilibrium (in fact weakly

dominant).

2. under an item-by-item negotiation, none of the (weak) perfect Bayesian equilibria is

efficient.

3. under a combinatorial negotiation, all (weak) perfect Bayesian equilibria are efficient.
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Point 1 is seen as follows.6 Here, have trade occur at a fixed price of 15, and have agents

simultaneously announce their valuation vectors and execute the efficient trades. The key is

that agents are restricted to announce exactly two 0’s and two 8’s for Alice, and two 2’s and

two 10’s for Bob. The only choice is which items on which to list which valuations. This is

incentive compatible.

Point 2 can be seen roughly as follows. Let’s consider Alice and the two items that of

value 0. In order to trade efficiently, both prices she quotes in the first period would have

to be no more than 2, as otherwise Bob will certainly reject one of them. Instead, she has

an incentive to charge higher prices to get Bob to trade the higher value item first, and then

to later trade the other item. The proof that this is true of all equilibria can be seen in the

appendix (see the proof of Example 2)

Point 3 follows from our results below. The intuition is as follows. By being able to

negotiate over combinations of goods, the problem of trying to screen items is circumvented.

Alice can quote an overall price for various groups of three items (the two she values at 0

plus either of the ones she values at 8) - knowing that the total cost of the goods that should

efficiently trade is 8 and the total value to Bob is 22. The equal split price would be 15, but

under alternating offer bargaining she will ask for a higher price depending on the discount

factor. Effectively she avoids having to detect which of the goods Bob has the 2 on and the

10 on, since she can quote a price for the overall group. Showing that all equilibria satisfy

this involves an argument that any alternative must have some inefficiency that could be

improved by a mutually beneficial deviation.

The above example shows the sharp contrast between the performances of the two bench-

mark forms of universal negotiations. Under an item-by-item negotiation, the result is very

similar to the case with one single item, and Myerson-Satterthwaite result of inefficiency

applies. In contrast, the combinatorial negotiation provides agents the chance to negotiate

on “overall” terms. This comparison is formalized in Section 3, and a general condition is

provided to characterize efficient negotiations.

This result is reminiscent of the bundling literature, where the ability to sell packages of

goods can be welfare improving under some circumstances. Here we show that full efficiency

holds in a negotiating setting with certain knowledge surplus, in all equilibria, and we identify

which sorts of negotiations admit such full efficiency.

The above example is extreme in that the surplus is exactly known. Such an example

can be viewed as a limit case of having many independent items, where by Law of large

numbers each of the four possible matchups appears on roughly a quarter of the items. For

our formal analysis, we first focus on the case where surplus is known (Section 4), and then

6See also the discussion of a similar example in the working paper version of Jackson and Sonneschein

(2007).
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extend the discussions to the case where surplus is approximately known (Section 5).

2.2 Other applications

Our framework of negotiations covers applications other than the exchange of private goods.

2.2.1 Public Good Provision / Household Investments

Alice and Bob decide whether to invest in n different projects that yield benefits to both

agents and which cost c = 6 in total per project. Agent i ∈ {a, b}’s benefit from project k is

θik ∈ {0, 8}, which is random and equally likely; we also assume independence across agents’

types. Agent i’s values are privately known to agent i at the time of collective decision

making.

Possible choices for each item has xk ∈ X = {1, 0} and with xk = 0 representing not

investing in the k-th project and xk = 1 representing investing. Each agent pays a cost of 3

if they decide to invest in the project.

Agents’ preferences are quasi-linear in money, and additively separable across items. So

their net utilities (as functions of a joint decision x and a transfer p from Bob to Alice) is

ua(θa, x, p) =
∑

k xk(θak − 3) + p and ub(θak, x, p) =
∑

k xk(θbk − 3)− p. Agents discount the

future with factors δa, δb < 1.

2.2.2 Task Assignment / Household Chores

Two workers, Alice (a) and Bob (b) have n tasks or chores to complete.

Agents each get a benefit of 6 from a completed task. An agent is of one of two types for

each task, θik ∈ {0, 1}, where 1 represents that the agent is competent to work on the task,

and 0 representing incompetence. If both agents are competent then they can both work on

the task.

Possible choices for each task has xk ∈ X = {a, b, ab, 0} and with xk = a representing

that a works on it alone, xk = b representing that b works on it alone, xk = ab representing

that they work on it together, and xk = 0 representing not completing the task.

A task costs 10 if completed by one competent agent, and costs a total of 2 (1 for each) if

completed jointly by two competent agents, and the task is not completed if an incompetent

agent works on it.

Agents’ preferences are quasi-linear in money, and additively separable across items; and

agents discount the future with factors δa, δb < 1.
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2.2.3 Three Examples in One

Although the three applications introduced in this section seem quite different, they share a

similar mathematical structure. In particular, each example has two agents, each of whom

has two types. The two types can be relabelled as h and l, where h representing the type

that generates more surplus (under the optimal decision).7

The surplus S is generally defined as the sum of the agents’ net utilities under the optimal

decision (depending on agents’ types). The three examples then have the same surplus as a

function of the relabelled types:

Sk θ̂b = h θ̂b = l

θ̂a = h 10 2

θ̂a = l 2 0

If both agents have type l, then efficiency requires the null choice to be taken (no trade,

no investment, no task).

Due to the above similarity, the results discussed in the context of the exchange applica-

tion (Section 2.1) also hold for the other two applications. In particular, the efficiency is not

achievable when there is a single item (with equally likely independent types). In contrast,

with multiple items, as in Example 1, there exist efficient mechanisms. Whether efficiency

can be achieved in free-form negotiation depends crucially on how agents negotiate - it fails

if agents negotiate one decision at a time, but holds in all equilibria if they can negotiate

agreements over all dimensions with one overall transfer payment.

2.3 Features in Multi-Item Negotiations

In negotiations with multiple items, with sufficient independence as the number of items

becomes large, uncertainty about the total surplus may vanish. However, there are still two

forces that push in different directions regarding whether we get efficiency as we have many

items for negotiation:

• There is less uncertainty about overall surplus.

• There remains substantial uncertainty about which decision to make on each dimension.

Thus, it is still unclear whether the results from the above examples will generalize. Should

we expect some universal negotiation protocols to lead to nearly efficient outcomes in a

7In particular, for the application 2.1 let θ̂ik = h if θik = 8, i.e. the type with the larger benefit; for the

example 2.2.2 let θ̂ik = h if θik = 1, i.e. the competent type; whereas for the example 2.1 θ̂ak = h if θak = 0,

and θ̂bk = h if θbk = 10, i.e. the lower-cost type for the seller and the higher-value type for the buyer. Let

θ̂ik = l represent the remaining type in each example.
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general set of such settings - and if so what features does the negotiation protocol have to

have?

We introduce the general model before answering these questions.

3 Multi-Item/Aspect Negotiations: The Model

3.1 Multiple Aspects and Decisions

A multi-aspect negotiation problem consists of:

• two agents, Alice a and Bob b,

• a joint decision to be made that concerns a finite number, n, of items (or decisions,

objects, aspects, tasks, etc.),

• X a choice space for each item, and Xn the space of joint choices, with representative

element x = (x1, . . . , xk, . . . , xn), and

• monetary transfers may be made from Bob to Alice and a transfer in period t is denoted

pt ∈ R.

Our framework also covers settings where transfers are precluded. Below we show that

approximate efficiency can be obtained even in such no-transfer environments, provided that

there are enough items to be considered. The case with transfers allows for a less cluttered

analysis, and so we presume that transfers are allowed, unless otherwise noted, returning to

the case without transfers at the end.

3.2 Timing, Uncertainty, and Preferences

Time advances in discrete periods t = 0, 1, 2, . . ..

Uncertainty and information about preferences are captured via:

• finite valuation or type spaces Θi ⊂ IR, i ∈ {a, b}, for each individual item,

• a joint type space Θ ⊂ (Θa)
n × (Θb)

n,

• a probability distribution f over types Θ, with fi denoting the marginal of f on Θn
i ,

and

• discount factors δi ∈ (0, 1), i ∈ {s, b} that are known to both agents.

In the beginning of period 0, the types are drawn according to f and agent i observes

θi = (θi1, . . . , θik, . . . θin), with θik being agent i’s type for aspect/item k.
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The generality of f allows for correlated values and also allows for different distributions

over various classes of items (say some big, some small). Our main results include conditions

on f under which efficient negotiation holds.

For now, we assume that the agents’ payoffs across items are additively separable, but

this is not essential to the analysis (see Section 4.4).

We allow decisions over different items to be made at different times. For instance, a

seller may first sell some rugs to a buyer, then sell some of the rest in a later period. In this

case, let Nt ⊂ {1, . . . , n} be the subset of problems whose decisions are made at period t s.t.

Nt ∩Ns = ∅, ∀s 6= t, and recall that pt is the transfer made (from Bob to Alice) at t. Then

the agents’ time-0 utilities are

• for Alice: Ua =
∑

t δ
t
a

(∑
k∈Nt ua(xk, θak) + pt

)
;

• for Bob: Ub =
∑

t δ
t
b

(∑
k∈Nt ub(xk, θbk)− pt

)
.

Discounting can be interpreted in at least two (standard) ways. 1) Utilities from decisions

made in period t are realized in period t. This interpretation applies to the example of strikes

between a firm and a union, where the costs and benefits are held until the employment

relationship is restored (i.e., the agreement is reached, at t), to the task-assignment example

where the task is done (and completed immediately) at t, and/or to an exchange setting

where the seller produces the goods and the buyer consumes them at t. 2) Particular to an

exchange setting: the seller holds the items each of which generates a flow payoff in every

period up to period t, when she forgoes the future flow payoffs for those traded items, i.e.

θsk is the time-t value of flow payoffs the seller could get from item k.

The welfare from a decision xk for an item k is ua(xk, θak)+ub(xk, θbk). The social surplus

from an efficient decision is

S(θak, θbk) ≡ max
xk

ua(xk, θak) + ub(xk, θbk).

With an abuse of notation, the surplus from an efficient joint decision over all items is

S(θa, θb) ≡ max
x∈Xn

∑
k

[ua(xk, θak) + ub(xk, θbk)] .

We assume throughout that for any (θak, θbk) ∈ Θs × Θb, S(θak, θbk) ≥ 0, so that for

each possible combination of types (for each item) there is some decision that is not painful

to the agents (which could include, not trading, or not doing any tasks, etc., depending on

the circumstances), and that S(θak, θbk) > 0 for some (θak, θbk) ∈ Θs × Θb, so there is, at

least potentially, non-trivial welfare gain. With a finite set of types, this is essentially just a

normalization.

To achieve efficiency, the optimal choices (those maximizing the joint surplus) should be

made for all items, and at t = 0.
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3.3 Benchmark Negotiation Protocols

This section presents several examples of ways in which agents may negotiate.

These bargaining protocols are all ‘universal’ in the sense that the game forms are inde-

pendent of agent’s utlity functions

3.3.1 Item-by-Item Negotiations

This is a formal description of the item-by-item negotiations introduced in Subsection 2.1,

where each item is independently negotiated via Rubinstein-Stahl alternating offer bargain-

ing. In particular:

• One of the agents, say Alice, announces a string of decisions (x1, p1;x2, p2; , . . . ;xn, pn),

with pk being the transfer associated with item k.

• The other agent, say Bob, can accept any subset of the decisions, which are then

implemented with the agreed transfers.

• If for any items a decision has not been made, we start again with the roles of the

agents reversed (and one period of discounting ensues). Bob then announces a decision

(xk, pk) for each item that still remains undetermined.

• Alice can accept any subset of those remaining items, which are then dealt at Bob

suggested decisions.

• If any items are undecided, we start again with the roles reversed. We continue in this

manner indefinitely or until all goods are traded.8

As examples, a consumer thinking about buying several rugs, might bargain with a seller

on a item-by-item basis as in this protocol, or for a set of carpets as in the previous proto-

col. The current protocol also applies when a wife and a husband are discussing household

consumption, where different goods can be invested in and consumed at different times.

In contrast, we note that in some cases, with negotiating over a contract with many

aspects, this sort of negotiation may raise issues of feasibility and interpretation if agents

cannot consume any until all of the aspects are agreed upon. For instance, an employment

contract would have to specify wages, pension plan, hours, holidays, etc., and employment

might not be feasible until all of the aspects were agreed upon. In such cases, if it is impossible

to implement different decisions at different times, then item-by-item negotiations are not

possible, and only combinatorial and other holistic negotiations are possible, as described

below.

8Items that remain untraded indefinitely simply result in 0 gains from a decision.
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3.3.2 Combinatorial Negotiations

At the other extreme in terms of universal negotiations, instead of negotiating item-by-item,

people can negotiate in ways that allow them to “price” all possible combinations of decisions.

• One of the agents, say Alice, names a transfer for each possible (joint) choice x ∈ Xn.

Formally, an offer is a mapping p : Xn → R.

• The other agent, say Bob, accepts or rejects.

• If accepted, Bob selects a choice x, and transfers the amount p(x) to Alice.

• If rejected we start again with the roles of the agents reversed (and one period of

discounting ensues).

This protocol provides an important theoretical benchmark: in terms of choices, this

protocol allows for the richest offer space.

The richness in message space of the combinatorial protocol can be a disadvantage in

practice: the size of an offer is |X|n, exploding at exponential rate as n grows. For instance,

in an exchange example with n = 20 rugs, each offer needs to specify 220 ≈ 1048k prices,

which is not very realistic in practice. Instead, agents tend to use “reduced forms” like the

ones introduced in 3.3.3 and 3.3.4 where a much smaller message spaces suffices to convey

the essential information.

3.3.3 “Overall negotiation”: Rubinstein-Stahl negotiation with many items

We now present an intermediate universal form of negotiation, in which agents negotiate in

terms of demanding a net payoff. This reduces the amount of information that needs to be

communicated. For instance, in the case of trading rugs, this reduces the dimension of the

offer space from 2n + 1 to n+ 1 - agents announce how much they value each rug and then

a net gain in utility from the transfer price that is needed. They then allow the other agent

to choose the trades.

• One of the agents, say Alice, announces (not necessarily truthfully) her types θ̂a =

(θ̂a1, . . . , θ̂an) and demands a payoff of va ∈ V , from some compact set V of possible

total values.

• The other agent, say Bob, accepts or rejects.

• If accepted, Bob picks a joint decision, x = (x1, ..., xn) ∈ Xn, and delivers a net payoff

equal to va based on Alice’s announced values: so, the total transfer given to Alice by

Bob is equal to p = va −
∑

k ua(xk, θ̂ak). The game ends.

(In the case where Bob announced θ̂b = (θ̂b1, . . . , θ̂bn) and demanded a payoff vb ∈ V ,

Alice picks x and the transfer made by Bob is p =
∑

k ub(xk, θ̂bk)− vb.)
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• If rejected we start again with the roles of the agents reversed (and one period of

discounting ensues).

The above procedure has clear correspondences in practice. For instance, in the exchange

of private goods example, a seller (Alice) claims her costs for the goods and demands a

additional gain in payoff; and a buyer (Bob) if accepting an offer chooses which goods to buy

at a price that exceeds the sum of the seller’s reservation values (for those selected goods) by

the demanded margin. In a task assignment problem, an agent (say Alice) claims her costs

for the tasks and targets a total cost she wants to deliver, and the other agent can decide

who should work on which task but must subsidize Alice if the sum of costs for the tasks

assigned to her exceeds Alice’s target.

3.3.4 Negotiation over frequencies

As another example of reduced-form negotiations, agents may negotiate over frequencies

that are then used in a second stage (voluntary) game. This also fits with many settings

in which people bargain over “basic terms”, and then after they have reached a tentative

agreement then they fill in details. In particular, a “negotiation over frequencies” consists

of two phases:

Phase 1 (alternating offers of games characterized by frequencies):

• The offerer, i ∈ {a, b}, quotes a frequency distribution φ̂ni ∈ Φn
i ,9 and a target payoff

vi ∈ V .

• The recipient accepts or rejects.

• If accepted we move to Phase 2.

• If rejected we begin Phase 1 again with the roles of the agents reversed (and one period

of discounting ensues).

Phase 2 (the game is played):

• The offerer i announces θ̂ni ∈ Θn
i that has a frequency distribution φ̂ni .

• Either the recipient picks a decision x ∈ Xn, and makes a payment of at least vi −∑
k ui(x, θ̂

n
ik) to the offerer or says “No” and no decision is made.

• The game ends.

For instance, in a task-assignment example, to quote a frequency is to specify the number

of tasks an agent is competent on; and in an exchange example a buyer can quote for how

many of the rugs she has high values.

9Φni is the set of possible frequencies (with n items). For instance, one frequency could be “ 1
3 0’s and 2

3

8’s”. Note that the quoted frequency φ̂ni may differ from i’s true frequency.
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The message space in negotiations over frequencies is the smallest among all the four ways

of negotiations introduced so far: the space of frequencies has a size of less than n|Θi|−1, which

can be much smaller than the space of types, let alone the space of all possible choices.

3.4 A General Definition of Alternating-Offer Negotiations

With these various examples of alternating-offer negotiation protocols in hand, we provide

a definition of what we mean in general by an alternating-offer negotiation, Γ, with n items.

• One of the agents, i (the offerer), announces from a finite set of possible announcements

(‘offers’) A0
i , with a generic offer denoted a0

i .

• The other agent, j (the recipient), responds from a set A0
j(a

0
i ), with a generic response

denoted by a0
j .

• As a function of a0
i , a

0
j , agents agree on some items N0(a0

i , a
0
j) ⊂ {1, . . . , n} (possibly

the empty set), on which choices xN0(a
0
i , a

0
j) ∈ X |N0| are made, and some transfer

p0(a0
i , a

0
j) is made from Bob to Alice.

• One period of discounting ensues.

...

• Inductively, in period t, agent i(t) makes offers from a finite set Ai(t)(h
t−1) which

could depend on ht−1 ≡ (a0
i(0), a

0
j(0), . . . , a

t−1
i(t−1), a

t−1
j(t−1)), the full history of negotiations

through the last period.10

• The other agent j(t) reacts from a set Aj(t)(h
t−1, ati(t)).

• As a function of ht = (ht−1, ati(t), a
t
j(t)), agents agree on some of the items that remain,

Nt ⊂ N \ (
⋃
s<tNs), choices xNt over those are made, and a transfer pt is made from

Bob to Alice.

• This continues as long as there are goods remaining to be traded.

The negotiations introduced in 3.3.1 - 3.3.3 are all examples of the above general defini-

tion. In addition, negotiations over frequencies (3.3.4) can be viewed as a special case of a

slightly generalized version of the above definition, where the decisions (Nt(·), xNt(·), pt(·))
are determined via a second phase of announcements after the acceptance.

We focus on the “alternating-offer” protocols, in which the seller offers at t = 0, 2, 4, . . .

and the buyer offers at t = 1, 3, 5, . . .. The results below extend directly, except with changes

to the expressions for the split of the surplus, for other alternation patterns.11

10For instance, only some items might still need to be negotiated, and a protocol might condition upon

that set. This specification also allows for various rules for choosing the proposer - an easy extension is to

allow for random recognition of i(t).
11For instance, if the seller makes all of the offers then the seller will get all of the surplus. The pattern
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3.5 Universality

The protocols introduced in Sections 3.3.1 - 3.3.4 are “universal”, in the sense that the

same game forms will result in efficient equilibria across many environments (specifications

of preferences and distributions over types), and are not tailored to the particular setting.

In contrast, the “linking mechanisms” in Jackson and Sonnenschein (2007), for instance,

restrict the announcements of types and must be changed with the setting in order to reach

efficient outcomes.

In most, if not all, applications there may be nobody who would actually know all the

relevant statistical details of the setting and also be able to impose a mechanism knowledge

before the agents play. Here we find that even when agents negotiate in much more general

ways, they can still reach efficiency, something that has not been investigated previously in

the broad mechanism design literature.

3.6 Equilibrium

We work with the following variant of (weak) perfect Bayesian equilibrium adapted directly

to our setting (as here, beliefs can be defined over types which is equivalent to nodes in

information sets).

At the beginning any period t agents share a common history of observed actions ht−1 ≡
(a1
i(1), a

1
j(1), . . . , a

t−1
i(t−1), a

t−1
j(t−1)) (and additionally each privately know their types), and after

the offerer moves the common history becomes (ht−1, ati(t)). We denote the set of all possible

histories by H, including h0 ≡ ∅ which is the initial node.

A belief system for agent i is a function f̃i : H×Θi → ∆(Θ−i) that maps each history and

own type to a distribution over the other agent’s type space. In particular, f̃i(E−i | h, θi)
denotes i’s belief over an event (i.e., a collections of the opponent’s types) E−i, conditional

on a history h and the agent’s own type θi. To capture the idea that these beliefs apply to

nodes in the game, we require that a belief system only place positive probability on θ−i for

which f(θi, θ−i) > 0.

Let Hi ⊂ H be the set of histories at which agent i chooses an action.

Agent i’s strategy, σi, specifies a distribution over the current action space, σi(h, θi) ∈
∆(Ai(h)), at each node (h, θi) ∈ Hi ×Θn

i .

Beliefs are consistent if for each i and θi they correspond to a conditional distribution

(relative to the common prior f) at almost every h in the support of σ−i, σi(θi).
12

of alternation must be either known in advance or random, but not depend on the history of the game.
12The usual definitions of consistency apply to finite action spaces, whereas we allow for games with

continuum of actions and thus conditional probability measures may need to be defined via Radon-Nikodym

derivatives and so are only tied down up to sets of measure 0.
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Let Ui(σ, f̃i, h, θi) denote i’s expected utility under the strategies σ, conditional on being

of type θi and history h given the belief system f̃i.

A strategy profile σ satisfied sequential rationality (relative to a belief system f̃) if σi

maximizes Ui(σi, σ−i, f̃i, h, θi) for each i, θi in the support of f , and every h ∈ H at which i

chooses an action.

A weak perfect Bayesian equilibrium is a profile (σa, σb, f̃a, f̃b) of a strategy profile and a

consistent belief system for which the strategy satisfies sequential rationality.

Given that sequential equilibria are difficult to define for games with continua of actions,

and that we are proving results that hold for all equilibria (and so a weaker concept leads to

stronger results), working with the concept of weak perfect Bayesian equilibria - adapted to

continuum games - makes sense here.

4 Multi-Aspect Negotiations with Commonly Known

Surplus

We first focus on a case in which the surplus is commonly known. We discuss cases with

unknown surplus in later sections.

4.1 Known Surplus

A negotiation problem (n, u,X,Θ, f) (as defined above) has a known total surplus S̄ > 0 if

there exists S̄ > 0 such that

S(θa, θb) ≡ max
x∈Xn

∑
k

[ua(xk, θak) + ub(xk, θbk)] = S̄

for every (θa, θb) ∈ Θ.

The limiting case in which the overall surplus is commonly known serves as a proxy.

There are many justifications for this case, but let us mention two of them.

One is that there are enough items so that the law of large numbers applies. Working

at the limit where the average surplus is known rather than along the limit provides a clear

intuition, while in the face of uncertainty the growing strategy spaces as the number of items

gets large make the arguments more complex - an issue which we handle separately below.

Second, the known surplus case captures the idea that the two agents negotiating know

enough about the essentials to negotiate well. For example, consider a partnership with ten

tasks to do. The agents might not know the full surplus exactly, but do know a couple of

critical things: (a) it is either necessary, or at least ‘fair’, to have each partner do half of

the tasks (e.g., due to time and labor constraints). (b) they each know that they will have
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some preference for one task over another, or some ranking over tasks. They might not

know the exact monetary equivalents of intensities, but do expect that they can each rank

the tasks from 1 to 10. A negotiation would be that Alice states her ranking over tasks,

and then allows Bob to choose who does which ones, but subject to giving Alice an average

ranking of 4. So, if Bob wants to do Alice’s favorite task, then he has to compensate her by

giving her those ranked 2, 3, 4, 5, 6 in her ranking order to average to 4. But if Bob picks

Alice her 1, 2, 4, 6, 7, and so forth. With ten tasks, they can assign tasks pretty well. If

they just randomly assigned tasks the average ranking would be 5.5. If they happened to

have completely disjoint five favorites, they would each average a 3 ranking (we each get our

1,2,3,4,5). Asking to average a 4 means that they have to do better than random, but not

expecting to match up perfectly - a quite reasonable and high probability possibility with ten

tasks. Here, we stylize this by assuming that they know that their types will matchup so that

they can each get an average ranking of 4. Thus, although known total surplus is a limiting

case, it still captures the important idea that agents have a belief that the probability that

they should be able to reach the expected surplus is better than just on one draw.

4.2 An Efficiency Result

Our first result show that under any negotiation game introduced in (3.3.2) or (3.3.3) ,

despite the substantial uncertainty about the value and efficient choice for any given item,

all weak perfect Bayesian equilibria lead to to immediate and efficient decisions and a unique

division of the total surplus.

Theorem 1 If a negotiation problem (n, u,X,Θ, f) has a known surplus S̄ > 0, then in all

weak perfect Bayesian equilibria of the negotiation protocols introduced in Sections 3.3.2 or

3.3.3:

• the agreement is reached immediately,

• the full surplus is realized, and

• agents’ expected net payoffs are uniquely determined. In particular, they are the Ru-

binstein shares; i.e., (1−δb)S̄
1−δbδa

for Alice, and δb(1−δs)S̄
1−δbδa

for Bob.

This follows from Theorem 2 below, and all proofs appear in the appendix.

We again emphasize that both of these negotiation games are ‘universal’ in that the

above result above holds for exactly the same protocol for any u,Θ, f with known surplus.

This distinguishes the result from a mechanism-design approach in which the mechanism is

tailored to the f and the mechanism would have to change with u,Θ, f . Thus, this is not only

distinguished because we are taking a positive perspective (examining a mechanism which
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seems ‘natural’ in terms of how people actually negotiate) as opposed to a normative one

(using direct mechanisms to prove that efficiency is possible if the ‘designer’ has sufficient

knowledge), but also because the negotiation games are simple and directly adapt with the

environment.

The intuition behind Theorem 1 is as follows. If there were any inefficiency on the

anticipated equilibrium path, then since the agents know the potential surplus and can

make demands for shares of that total surplus, there is an offer that they each know makes

them strictly better off if it is immediately accepted. The existence of such an offer rules

out inefficient equilibria. The argument for the precise Rubinstein shares is based on an

extension of that by Shaked and Sutton (1984).

4.3 The Structure of the Negotiation Game Matters

One may conjecture that with known overall surplus, the above result about efficient decisions

would extend to any negotiation game. This is not the case. Example 1 (Section 2.1) already

serves as a counter-example: When agents follow the item-by-item negotiation, none of the

equilibria are efficient even when the surplus is exactly known.

Below we provide another example. This example is such that it should be easiest to

reach efficiency since it is commonly known that all items should trade and there is only one-

sided uncertainty about whether trade should occur.13 Nevertheless, even in such a simple

environment, none of the sequential equilibria are efficient with item-by-item negotiation.

Example 2 Consider an exchange example (following Subsection 2.1) in which agents nego-

tiate over n = 2 items under the item-by-item protocol. Alice, the seller, has type (θa1, θa2) =

(0, 0), and there are two equally likely type profiles for Bob, the buyer: (θb1, θb2) = (2, 10) or

(10, 2). In all equilibria at most one of the two items is traded in the initial period.

The uncertainty about specific matchups distorts the agents’ incentives in the item-by-

item negotiation game: the inefficiency in Example 2 derives from each agent’s incentives to

screen the the other’s type to try to obtain a better price on any given item. Such incentives

are mitigated when agents can negotiate on items “overall”, as agents have better knowledge

about the overall surplus. Instead, in protocols that entail separate negotiation, even though

agents can coordinate their actions across items they cannot take advantage of the greater

knowledge that they have about the overall value of agreement as they cannot make offers

that are contingent on combinations of items and so the ensuing selection problems cannot

be overcome.

13For reviews of (single-item) bargaining with one-sided uncertainty, see, e.g. Fudenberg, Levine and

Tirole (1985) and Ausubel, Cramton, and Deneckere (2002).
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The above insights, although presented with the private-good exchange example, clearly

apply generally to the applications of our framework.

4.4 A General Feature of a Negotiation Game that Ensures Effi-

ciency

The negotiation protocol 3.3 allows the agents to negotiate in an integrated manner that

takes advantage of their knowledge of the overall surplus, while item-by-item negotiation

does not. There is a general sense in which any protocol that admits such integration leads

to full efficiency, in all equilibria, as we now formalize.

Again, consider a negotiation problem (n, u,X,Θ, f) with known surplus S̄.

Definition 1 (Share-demanding offers and protocols) An alternating offer nego-

tiation Γ includes a share-v demanding offer in some period t, for some i(t), θi(t) ∈ Θn
i ,

v ∈ [0, S̄], and history ht−1, if there exists ai ∈ Ai(t)(ht−1) such that14

• for every aj ∈ Aj(t)(ht−1, ati(t)) either there is no agreement on any items, or the realized

payoff for i(t) in the current period is at least v, and

• for any θj(t) for which f(θi(t), θj(t)) > 0: there exists aj ∈ Aj(t)(ht−1, ati(t)) for which the

realized payoff in the current period for i(t) is v and the realized payoff in the current

period is S̄ − v for θj(t) for j(t) with a type θj(t).

An alternating offer negotiation includes share-demanding offers for some set V ⊂ [0, S̄],

if at any point of the protocol through which no agreement has yet occurred, the current offerer

i(t) has a share-v demanding offer for each v ∈ V and type θi(t) for which fi(t)(θi(t)) > 0.

When there is no ambiguity, we say that an alternating offer negotiation “includes share-

demanding offers” if it includes share-demanding offers for [0, S̄].

Theorem 2 If a negotiation problem with n items has a known surplus S̄ > 0 and the

alternating offer negotiation Γ includes share-demanding offers, then in all weak perfect

Bayesian equilibria:

• agreement is reached immediately,

• the full surplus is realized, and

• the agents’ expected payoffs equal to their Rubinstein shares; i.e., (1−δb)S̄
1−δbδa

for Alice, and
δb(1−δa)S̄

1−δbδs
for Bob.

14Payoffs expressed here are not-discounted; i.e., they are evaluated in the current period.
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Theorem 1 is a corollary to Theorem 2, since both negotiation games (Sections 3.3.3 and

3.3.2) have share-demanding offers. In particular, for the negotiation in Section 3.3.3: at any

point of the game and for any share v, a share-v demanding offer is (θi, v) - the current offerer

lists the types truthfully and demands a total share of v. Such an offer, once accepted, gives

the offerer exactly payoff of v regardless of the responder’s decisions, and gives the responder

S̄− v if the responder chooses the efficient choices, given the offerer’s (listed) types and own

types.

As for the combinatorial negotiation (Section 3.3.2): actually any offer available in the

negotiation from Section 3.3.3 has an equivalent offer in the combinatorial negotiation.15

In this sense, the combinatorial negotiation has a “richer” message space. As a result, the

combinatorial negotiation also has share-demanding offers. In general, any expansion of the

offers space (in which the responder can only accept one offer), still has share-demanding

offers and so results in efficiency.

Moreover, the combinatorial negotiation has the advantage of allowing for a general payoff

structure. In particular, the agents’ utilities can be non-additively separable across items,

but quasi-linear in money; i.e. (assuming all choices made in the same period)

U0
a = δta(ua(x, θa) + p),

U0
b = δtb(ub(x, θb)− p),

S(θa, θb) = max
x∈Xn

(ua(x, θa) + ub(x, θb)),

where θi ∈ Θn
i is agent i’s joint type. In such an environment, when the surplus is known,

under the combinatorial negotiation efficiency is achieved in all equilibria.

In contrast, the item-by-item negotiation (3.3.1) does not have share-demanding offers:

the offerer’s payoff depends on which items the recipient accepts - and the offerer cannot

request an overall surplus that must be taken as a whole rather than in part. This creates

a tension between the offerer’s incentives and the realization of full surplus. For instance, in

Example 2 the seller is able to demand a value of v = 6, say by asking for a price of 3 on

each item. However, the buyer would rather just accept the price of 3 on the more valuable

item, thus realizing a total surplus of 7, instead of accepting both and only getting a surplus

of 6. This would only lead to a surplus of 3 for the seller.

With additional assumptions on distributions, the results in Theorem 2 can be extend to

the frequency negotiations (3.3.4).16 The small size of frequency protocol’s strategy space is

also helpful when we turn to settings with approximately known surplus in Section 5.3.2.

15Any offer (e.g. from the seller) (θs, vs) in the negotiation protocol from Section 3.3 has an equivalent

offer p(x) =
∑
k∈x θsk + vs,∀x in the combinatorial protocol.

16In particular, if type distributions are exchangeable then a sufficient condition is that the valuations

are i.i.d. across items and independent across agents. Then in all exchangeable equilibria (such that an

agent adopts the same strategy (in Phase 1) for types that have the same frequency), Phase 2 has a unique
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Reopened negotiation for not-yet-agreed Items

Our general definition of negotiation allows the agent to continue the negotiation over

the not-yet-agreed-upon items. Furthermore, when a negotiation has share-demanding offers,

the corresponding negotiation game allowing for reopening for the not-yet-agreed-upon items

also has share-demanding offers. Therefore, as a corollary to Theorem 2, it follows that the

efficiency of all equilibria is robust to the opportunity of reopening the negotiation.

The opportunity to reopen exchange usually complicates the analyses of many settings,

from Walrasian exchange to auctions to contracting. Here, the robustness comes from the

share-demanding offers. Even though there is substantial uncertainty, and the potential to

reopen discussions usually distorts incentives for screening, those incentives are completely

circumvented with the share-demanding offers.

5 Multi-Item Negotiations with a ‘Nearly-Known’ Sur-

plus

Our analysis so far illustrates that with known surplus, share-demanding offers provide for

efficient negotiation and are essential for such results. The ability to bargain over a full

bundle, means that the known surplus dominates the screening of particular items. Thus,

we end up with a sort of “Rubinstein” result, rather than a “Myerson-Satterthwaite” result,

with many items and uncertainty over each item but a known surplus overall.

The exact knowledge of the full surplus is a expository device, as we can imagine that

with large numbers of items agents will have a good idea of the total surplus possible, but still

have substantial uncertainty about which decisions should be made on each item or aspect.

Thus, it is useful to verify that there is not a substantial discontinuity between having the

total surplus being ‘nearly-known’ versus exactly-known. And, given that all equilibria are

efficient in the limit, it is enough to look for upper-hemi continuity.

In this section we explore that continuity. There are several technical difficulties with

establishing upper-hemi continuity.

The first is that incomplete information game theory is still not well-understood in the

case of continua of types and actions - as measurability issues and other issues of updating

beliefs conditional on atomless events is cumbersome (e.g., sequential equilibria are not well

defined for such settings, see, Myerson & Reny (2015)). This prompts us to discretize the

games - so that measurability issues are avoided. In particular, we require that the transfers

between the agents can only be selected from some arbitrarily large but finite grid.

equilibrium: the responder makes the efficient choices given the other’s listed types and own types, provided

that the surplus thus obtained exceeds the payoff demanded by the offerer. As a best response, the offerer

lists the types truthfully.
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The second difficulty is that the updating of beliefs is problematic even in very simple

incomplete information games. Notice that in the previous section we did not impose any

restriction on belief updating off the equilibrium path. Once there is non-trivial uncertainty

of the surplus, restrictions on belief updating off-path are needed to have any hope for

upper hemi-continuity, which we show via examples. It is important to note that this is a

general problem with incomplete information games and not just our setting. In particular,

under standard equilibrium notions including sequential equilibria (even when well-defined)

or using stronger refinements, the upper-hemi continuity of the set of equilibria can fail at the

limit (when uncertainty diminishes). Therefore, a new refinement, or restriction on beliefs,

is needed.

The third difficulty is that in order to have the total surplus be ‘nearly-known’ it makes

sense to work large numbers of items - so that one can appeal to laws of large numbers.

However, that means that the action space in our previously discussed negotiation proto-

cols explodes exponentially. This leads to challenges in characterizing how beliefs evolve in

equilibria.

To handle these three issues we work with a fixed number of items with uncertainty that

converges to full knowledge, and have agents tremble so that beliefs are tied down; and we

analyze protocols in which the strategy space satisfies a size restriction, but still allows for

share-demanding offers (such as the frequency protocol) - thus allowing us to bound beliefs

and characterize the equilibrium correspondence. In the appendix we also show that similar

results hold in more general games if one directly bounds the rate at which beliefs update.

We begin by illustrating some of the technical issues via examples.

5.1 Multi-Item Negotiation with Converging Surplus

We index settings by a sequence m, to allow (but not require) the rate at which uncertainty

converges not to depend directly on the number of items. The m-th economy has nm items

or aspects.

A sequence of negotiation problems with priors fm ∈ ∆(Θnm
a × Θnm

b ) have surpluses

converging to a per-item surplus s̄ > 017 if

Sm

nm
→p s̄, as m→∞

where Sm is the random total surplus in the m-th problem; i.e.,

S(θa, θb) ≡ max
x∈Xn

∑
k

[ua(xk, θak) + ub(xk, θbk)] .

17We use the capital letter S to represent the total surplus, and the lower letter s for the per-item surplus.
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This embodies the idea that there can be substantial uncertainty about which decisions

should be made. In addition, the above allows for correlations of types across items and

between agents. It also allows for heterogeneities across decisions.

Transfer grids Consider some grid of transfers, so that P∆ is finite with a grid structure

{−Smax, . . . , 0,∆, 2∆, . . . , Smax}, 18 in which Smax = maxS(θa, θb).

5.2 A Technical Challenge: Failure of Upper-Hemicontiunity of

Sequential Equilibria at the Limit of Certainty

We first illustrate the challenge that is substantial but is of a ‘technical’ nature: sequential

equilibria often fail a fundamental upper hemi-continuity condition. We view this as a

shortcoming of sequential equilibrium and the current tool-box of game theory. Moreover,

this is not solved by standard existing refinements.

A game with arbitrarily small uncertainty is very different from its counterpart with

certainty, in the sense that some sequences of sequential equilibria of the former game have

no limit in the set of sequential equilibria (subgame-perfect equilibria) of the limit game

with certainty. This happens because the the notion of sequential equilibria allows for a lot

of freedom in off-path beliefs, and as a result lots of outcomes can be supported as part of a

sequential equilibrium by extreme off-path beliefs, and leads to a failure of basic conditions

like upper hemicontinuity of the equilibrium correspondence19 This challenge is not specific

to our multi-item negotiation games. It applies to many simple games. Here we show that

upper hemi-continuity even fails in simple single-item Rubinstein bargaining with the most

basic forms of uncertainty.

The problem that we are pointing out here is endemic: the example still works with

perturbations in the payoffs and/or how the small uncertainty is introduced, as it is free-

dom in specifying beliefs that cause problems, and not exact indifferences (which lead to

lower hemi-continuity problems). Thus, there is a fundamental sort of discontinuity between

equilibrium concepts with slight amounts of incomplete information and the limit of full

information, which seems symptomatic of the tools of game theory rather than a real phe-

nomenon. This does not contradict the fact that when both the sequence of priors and its

limit are in the interior of the distribution space, the set of sequential equilibria satisfies

upper hemi-continuity (Kreps and Wilson (1982), Proposition 2, p.876). Here upper-hemi

continuity fails since we are converging to complete information. Given the importance of

18The increment ∆ can be viewed as a smallest currency unit (e.g., van Damme, Selten, and Winter

(1990)), also the grids can be as fine as possible simply by renormalizing Smax.
19Upper hemi-continuity generally holds for Bayesian equilibrium (e.g., see Jackson, Simon, Swinkels and

Zame (2002)), but fails for sequential equilibria and perfect Bayesian equilibria.
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the complete information case in the theory and (its approximation) in practice, the failure

of upper hemi-continuity is important and disturbing.

Consider a Rubinstein bargaining game with one item and one-sided uncertainty (let

δa = δb = δ = 0.8): Bob’s value is commonly known as 10, and Alice’s cost is either 0 or

8, so that it is commonly known that the agents should always trade immediately to get

efficiency. In addition, suppose that Alice’s cost has increasing probability on 8 along the

sequence. One may conjecture that all sequential equilibria in this game converge to the

unique equilibrium in the limiting complete information bargaining game in which Alice’s

cost is 8 for sure, however this is not the case.

In particular, consider a price grid P∆ = {0, 1, 2, . . . , 10} in order to have a nice finite

game. The unique subgame perfect equilibrium of the limiting game (i.e., a complete in-

formation game with θa = 8 and θb = 10) is immediate trade at a price of 9. Below we

show that with arbitrarily small uncertainty, so that fa(8) = 1− ε for any tiny ε , sequential

equilibria allow for substantial inefficiency, and a wide range of prices at which the agents

trade. We illustrate this point with the following example.

Example 3 With above parameters, there exists a sequential equilibrium with no trade in

the first period. In particular, the following occurs on equilibrium path: at t = 0, both types

of the seller offer p = 10 and are rejected; at t = 1, the buyer offers a p = 9, which is

accepted by both types of the seller.

To see why the claim is true, consider the following equilibrium specification. The on-

path behavior is supported by the buyer’s off-path belief Pr(θa = 8) = 0 upon seeing any

offer p 6= 10 at t = 0.20 Given this belief, the buyer plays as if in a complete information

Rubinstein bargaining with with “0 meets 10”, i.e. always offering p = 5, and rejects any

offer with p > 5. It is then easy to verify that given the buyer’s off-path behavior, both

types of the seller prefer to stay on path.

The problem of substantial inefficiency as presented in Example 3 remains with a discount

factor arbitrarily close to 1: one can construct sequential equilibria with no trade in the first

several periods, and for which the efficiency loss from delay is at least as big as in the example

(1− 0.8 = 20%). The same problem also remains with an arbitrarily fine grid of transfers.

With arbitrarily small uncertainty, the set of sequential equilibria allows for substantial

multiplicity in outcomes, unlike the uniqueness feature in the limiting game with exactly

known surplus. This multiplicity is due to dramatic belief updating off-path that is robust

20It is direct to check that this satisfies the consistency conditions of sequential equilibrium, as one can

have a sequence of mixed strategies where the 0 types are arbitrarily more likely to play strategies other

than 10 compared to the 8 types.
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to standard refinements21: in Example 3, upon seeing one off-path offer, the buyer believes

the seller is of a 0 type for sure, completely discarding the prior belief which puts almost

all weights on the 8 type. This dramatic change in beliefs results in a continuation of the

game that is very different from the one where the agents started with, hence a lack of

unique prediction of outcomes. Whereas in the limiting complete information game, there

is no room for belief updating. Hence there is a loss of upper hemi-continuity of the set of

sequential equilibria at the limit of certainty.

Since we aim to understand the case in which the overall surplus is increasingly known,

and in all equilibria, additional structure on the game is necessary due to deal with above

challenge.

Our main approach is to introduce trembles - which can be small, but are not forced to

0 - to deal with belief-updating. This places all actions on the equilibrium path with some

minimal weight from all types, and precludes the problems due to lack of belief restrictions,

and avoids us having to make ad hoc restrictions concerning off-path beliefs. Alternative

approaches and results are discussed in Appendix A.

5.3 Approximate Efficiency Results with Trembles

We introduce trembles that naturally regulate the rate at which beliefs can be updated. We

first illustrate the idea in the single-item bargaining game.

5.3.1 Single-item bargaining: an illustrative example

First, reconsider Example 3. Consider a variation on the game such that there is some

small 0 < γ < 1 such that at every node in the game, each type of the player who moves

at that node places probability at least γ/|P∆| on each possible action (or γ/2 on each

of accept/reject for the responder); and subject to that constraint chooses the remaining

probability according to a best response under the agent’s beliefs.22 So, it is as if an agent

best responds with probability 1 − γ and then trembles with the remaining probability γ -

picking an action uniformly at random. The exact ‘uniform at random’ aspect of trembles

is not needed, as is clear from the proofs; but it is necessary that the trembles not become

21Beyond Kreps and Wilson (1982), see Rubinstein (1985), Banks and Sobel (1987), Grossman and Perry

(1986), and Cho and Kreps (1987).
22Kreps and Wilson (1982) also use trembles when defining sequential equilibria, but consider a sequence of

vanishing trembles, so the size of trembles become eventually negligible, whereas we consider a limit theorem

where the size of trembles is fixed (although they can be arbitrarily small) and then there is vanishing

uncertainty about overall surplus. Our motivation is quite different from the literature on bargaining with

“reputational types, where each agent has some type(s) being fully rational and some being irrational (e.g.,

Compte and Jehiel (2002), Abreu and Pearce (2007), Wolitzky, (2012), and the papers cited therein).
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infinitely more likely on some actions than others. With trembles, all nodes are reached and

so beliefs are completely tied-down by Bayes’ Rule, and so we can work with a trembling

version of Bayesian equilibrium in which agents’ update beliefs via Bayes’ rule at all nodes

and they best respond with probability 1− γ and tremble with the remaining probability.

Example 4 Consider P∆ = {0, 1, 2, ..., 10}, and γ = 0.11 so that the probability of trembles

to each possible price (in all periods) is γ/|P∆| = .01. If the prior is .999 on some type, then

the posterior after one-period of belief updating is at least .9 on that type.

The claim in this example follows easily from bounds on Bayesian updating (see Lemma 1

in the Appendix). In particular, 1−Pr(ai | θ′i) ≤ (.01)−1× .999 ≤ .1, hence Pr(ai | θ′i) ≥ .9.

When agents tremble at some minimal rate, after one period of belief updating the

posterior still puts substantial probability on the most probable types. Therefore, even very

small trembles can make the posteriors more congruent with the priors in each period.

The following proposition shows that this convergence of beliefs is enough to generally

restore continuity of the equilibrium correspondence with respect to small amounts of un-

certainty.

Proposition 1 Consider a single-item alternating-offer (Rubinstein) bargaining game. For

any ε > 0 and correspondingly fine enough P∆, there is a small enough tremble probability

γ(ε) > 0, such that for any γ ∈ (γ(ε), 0) there exists low enough uncertainty (f < 1 such

that if f places probability at least fγ on a single pair of types (θa, θb), then in all Bayesian

equilibria, with probability at least 1− ε:

• if θb > θa, then the price offered in the initial period is in ((1− ε)p, (1 + ε)p) and is

accepted, where the price p = θa + (1−δb)(θb−θa)
1−δbδa

is the Rubinstein price associated with

the high probability types θa, θb; and

• if θb < θa, then trade does not occur.

Thus, Proposition 1 shows that introducing small trembles can completely eradicate the

discontinuities associated with incomplete information. The proof of this proposition is a

variation on that of Theorem 3, and so we omit it.

Let us be explicit about the order of the quantifiers, as the order is subtle, but not as

restrictive as it might superficially appear. Given any ε it is clear that we need a fine enough

grid and small enough trembles to be sure that an ε-approximate efficiency is possible. If the

grid is too coarse then the right prices could not be chosen, and if the trembles are too likely

then bargaining breakdown because of random behavior becomes too likely. Once these are

fine enough so as not to get in the way of efficiency, they can be as small as we like. However,
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as trembles become smaller, we need to have closer to complete information, f is chosen as a

function of γ, so that belief on ‘very unlikely types’ cannot become too large under trembles.

Effectively, trembles tie down beliefs and avoid the problems of updating off the path

that drove the discontinuities in sequential equilibria without sustained trembles. Here, we

get a continuity result at the limit (a technique that could also be helpful in other settings,

beyond negotiations).

5.3.2 Multi-item negotiation under the frequency protocol.

Next, we illustrate how the near efficiency result with trembles applies to negotiations with

multiple items, under the frequency protocol introduced in Subsection 3.3.4. We work with

the frequency protocol since it has a “small” strategy space and this makes the handling of

beliefs under trembles tractable. We discuss extensions to other negotiation protocols in the

appendix.

Recall that there is some grid of transfers, P∆ = {−Smax, . . . , 0,∆, 2∆, . . . , Smax}, that

is finite.

Again, consider trembles in Phase 1 in any period by all types of any player with prob-

ability γ, uniformly to each of the feasible actions.23 As noted above, uniformity of the

trembles is an expository convenience, and all that is needed is that trembles are distributed

in a manner such that the relative probability of trembling to any two different actions is

bounded above (and hence below).

The following distributional assumptions help put the frequency protocol to work. For

simplicity, suppose agent i’s (i = a, b) valuations (θi1, ..., θik, ..., θin) are i.i.d distributed

according to a frequency φ̄i over Θi, and independent across agents.24 Without loss of

generality, let φ̄i(θik) > 0,∀θik ∈ Θi (i.e., defining Θi to be the support).

With such distributions, there is an expected surplus (per item) of

s̄ =
∑
θa

∑
θb

φ̄a(θa)φ̄b(θb) max
x∈X

[ua(xk, θak) + ub(xk, θbk)] .

With these exchangeable distributions, it is natural to restrict attentions to exchangeable

strategies and equilibria: each agent adopts the same strategy (in Phase 1) for each of his

or her types that have the same frequency. We can then prove the following approximate

efficiency result for the frequency protocol.

23Trembles are not needed in Phase 2. Nonetheless, Theorem 3 is robust to adding similar trembles to

Phase 2 as well.
24These assumptions are stronger than needed. All that is needed is that the distribution over

types is exchangeable (fm remains the same under any permutation of θ: if π is a bijection,

then fm(θπ) = fm(θ) for all θ, where θπk = θπ(k)); and there is an exponential rate of preci-

sion improvements, sufficient conditions for which are stationarity and with summable covariance (cf.

https://stat.duke.edu/courses/Fall11/sta205/lec/wk-07.pdf Section 7.2).
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Theorem 3 Consider a sequence of problems indexed by the number of items n with nego-

tiation under the frequency protocol with given δa, δb, and i.i.d. distributions over types on

each item. For any ε > 0, there exists a small enough tremble probability γ(ε) > 0, such that

for any γ ∈ (0, γ(ε)) there exists nγ such that if n > nγ:

1. There exist exchangeable (weak) perfect Bayesian equilibria, subject to the trembles.25

2. In any such equilibrium, with probability at least 1− ε:

• agreement is reached in the initial period,

• the realized surplus is at least (1− ε)ns̄; and

• Expected payoff / ‘Full-Information Rubinstein share’ for each agent lies in (1− ε, 1 + ε).

Although we do not provide rates of convergence, they are direct to deduce for Theorem

3. The inefficiency per-item, when trembles are set to be as small as possible as a function

of n (as otherwise they drive the inefficiency), is of order O(n−0.5−τ ),∀τ > 0. Thus, the inef-

ficiency vanishes at a rate arbitrarily close to the square-root of n. In particular, inefficiency

comes from several sources: First, there is a potential inefficiency due to the increment in

price grids. Here that naturally disappears with n since negotiation is over total surplus

which is normalized by the number of items, so the inefficiency due to the lumpiness in the

grid is of the order O( 1
n
). Second, there is inefficiency due to the trembles, which is propor-

tional to γ, which can be picked as disappearing with n, in particular of order O( 1
n
). Third,

the realized surplus can be different from the limit surplus, and such a difference induces

inefficiency that is of the order of O(n−0.5−τ ), ∀τ > 0, a rate similar to ones provided by

standard central limit theorems.26

The theorem is stated for exchangeable equilibria. We suspect that the result also holds

for non-exchangeable equilibria, but in those cases the second phase of the protocol becomes

more difficult to analyze, as now an agent may have a posterior that places more weight on

25In this game with trembles all nodes are reached by all types with positive probability, and so perfect

Bayesian equilibria, sequential equilibria, and weak perfect Bayesian equilibria coincide.
26Fixing any rate of trembles γ > 0, and time T such that the time-0 continuation value after period T is

negligible, the rate at which time-T posterior on some event may different from time-0 prior is of the order

O(γ−Tn|Θi|T ) due to the trembles, where the size of i’s action space is ∼ O(n|Θi|). Setting γ ∼ O( 1
n ), this

becomes O(n(|Θi|+1)T ). Let d be an amount allowed between the realized and limit surpluses. By standard

concentration inequalities, e.g. Hoeffding (1963), the beliefs that the actual surplus and realized surplus

differs by more than d (at some belief condition on a period-T ) is at most αT ∼ O(e−2d2n×n(|Θi|+1)T ) which

is still of the order O(e−2d2n) since the exponential term dominates.

max{O(d), O(e−2d2n)} is minimized with an optimal selected difference d ∼ O(n−0.5−τ ), resulting in an

overall inefficiency of the order of O(n−0.5−τ ). Notice that the square-root rate of convergence cannot be

achieved because we need to simultaneously control the difference allowed and the likelihood of the tails.
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some types with a given frequency than others. We conjecture that a similar result holds

when extending to those equilibria, as the rate at which helpful information is gained is

bounded by the trembles, but we have not been able to find a proof or counter-example for

the non-exchangeable case.

6 Unknown Surplus

Our attention in the paper has been on the case of (nearly) known overall surplus. Clearly

getting approximate efficiency in all equilibria cannot hold generally, as that would violate the

Myerson-Satterthwaite Theorem. Nonetheless, the result that full efficiency can be obtained

in settings far beyond known surplus is true. While a full characterization of all settings for

which universal negotiations lead to efficient outcomes is a challenging open question, we

can provide some intuitive sufficient conditions, that in fact appear to be close to necessary

in order to get efficiency in all equilibria.

Consider a negotiation problem, (n, u,X,Θ, f) as defined above. Here, for ease of expo-

sition, we focus on the exchange of items, but the logic extends.

6.1 An Example with Substantial Uncertainty about the Total

Surplus

Under a negotiation protocol that is a variation of the combinatorial negotiation, there exists

a fully efficient equilibrium. With a refinement on belief updating, all equilibria lead to the

fully efficient outcome with a unique division of the gains from trade.

Consider a two-item exchange problem, in which the seller’s cost vector (θa1, θa2) is either

(0, 8) or (8, 0), and the buyer’s value vector (θb1, θb2) is either (2, 10) or (10, 2), all equally

likely and independent across agents. The corresponding total surplus from trade is either 4

or 10, equally likely.

The following table depicts the efficient trades.

(2, 10) (10, 2)

(0, 8) trade both trade 1st

(8, 0) trade 2nd trade both

Consider an alternating offer negotiation protocol, in which an offer consists of a triple

(k, p{k}, p{1,2}), which specifies an item k ∈ {1, 2} which the offerer is willing to trade indi-

vidually at a price p{k} ∈ R, as well as a price p{1,2} ∈ R for both items. The responder, if

accepting the offer, can choose to trade either just the k-th item or esle both items, at the

corresponding price. Note that this negotiation protocol is universal.
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We now provide one condition on belief updating. To do so, we say a type is of category-k

if it is possible that (with that type) the efficient outcome is to trade k-th item individually.

In the above example, the seller’s (0, 8) and the buyer’s (10, 2) are of category-1, and (8, 0)

and (2, 10) are of category-2.

Here is a condition on belief updating:

Upon receiving an offer (k, p{k}, p{1,2}), the responder updates his or her belief to be sure

that the offerer is of type of category-k (provided that belief does not contradict the prior).

For the above example, under the given negotiation protocol, There exists a weak perfect

Bayesian equilibrium that is efficient and satisfies the belief updating condition.

7 Concluding Remarks

Despite the fact that ‘real-world’ negotiations frequently involve several aspects of a contract

or deal, the formal theory of negotiation, as exemplified by the seminal work of Rubinstein

(1982) and the literature that follows, focuses on a situation in which there is a single aspect

(often a monetary transfer) to be determined. We extend that theory to encompass negoti-

ations when an agreement includes many aspects. We distinguish two different dimensions

of asymmetric information: that about each individual aspect, or the optimal decision re-

garding each aspect; and that about the overall surplus. Involved parties can 1) have a good

knowledge about the overall surplus, even when 2) there is substantial Bayesian uncertainty

regarding the valuation of each of these aspects. When 1) holds, we show that all “share-

demanding” negotiations (a rich set of negotiation games) lead to efficient exchange in all

equilibria, while item-by-item protocols result in inefficiency in all equilibria.

These negotiation games are extensions of Rubinstein (1982) alternating offer bargaining

game. Also these protocols are ‘universal’ or ‘detail-free’, in the sense that their game forms

are not tailored to the knowledge about the distribution of agents’ types. This is in constrast

to many mechanisms, including the linking mechanisms of Jackson and Sonnenschein (2007),

which are designed according to the statistical dispersion of information. The investigation of

mechanisms that are independent of the (distributional knowledge of the) uncertainty faced

by the agents, and operate for many settings, is an important issue for applications beyond

negotiations and auctions, as the existence of mechanism designers with precise statistical

knowledge is certainly far from ubiquitous.

In showing that our results are robust to small amounts of uncertainty about the over-

all surplus, we confronted a fundamental game-theoretic difficulty: the failure of upper-

hemicontiunity of sequential equilibria at the limit of certainty. Our approach of introduc-

ing non-vanishing trembles may be useful as a natural approach to restoring upper hemi-

continuity of the equilibrium correspondence in general settings - a topic for further research.
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Appendix

A Proofs

Proof of Theorem 1:

This Theorem is a corollary to Theorem 2 given the fact that the protocol 3.3 includes

share-demanding offers. In particular, for any v, a share-v demanding offer is to announce

the truth θni and demand a payoff of v.

Proof of Example 2:

Let Ls be the seller’s worst continuation payoff in any seller-offer period in any sequential

equilibria with both items remaining. This means when the buyer makes an offer, he gets a

continuation payoff of at most δ(12− δLs) since the seller can always rejects on both items

and counteroffers in the subsequent period.

Consider the seller’s offer (p, p) with some p > 2. The buyer rejects p on the value-2

item, and accepts p on the value-10 item for sure if p < p̃, s.t.

10− p̃+
2δ

1 + δ
= (12− δLs)δ,

where on the left-hand side 10 − p is the payoff from the value-10 item and 2δ
1+δ

from the

value-2 item (the corresponding Rubinstein share, since it is commonly known that the item

left is of value-2).

Therefore, with an offer of (p̃−ε, p̃−ε) ∀ε > 0, the seller can always get an acceptance on

the value-10 and a discounted Rubinstein share on the value-2 , i.e. a payoff of p̃+ 2δ2

1+δ
− ε.

On the other hand, since Ls is the seller’s payoff in some SE, it must exceeds the payoff

from the above deviation (p̃− ε, p̃− ε). This requires

Ls ≥ p̃+
2δ2

1 + δ
− ε.

This, combined with the definition of p̃, gives (1− δ2)Ls ≥ 10(1− δ)− ε, i.e. (since ε can

be arbitrarily small)

Ls ≥
10

1 + δ

Finally, for both items to be traded in the initial period the seller’s expected payoff is at

most 4, which is not possible in any sequential equilibria: In order to have both items traded

with a positive probability, the seller’s strategy in the first period must put positive weight

(if mixing) on an offer that has prices at most 2 on each item. The seller gets a payoff of at

most 4 from such an offer, and hence an expected payoff of at most 4 from the game since

the seller must be indifferent among any strategies used with positive probability.
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Proof of Theorem 2:

We begin with some notation. Let Θn(f) ≡ {(θs, θb) | f(θs, θb) > 0} be the set of (profiles

of) types that are “possible” under the joint prior distribution f , and Θn
i (f) ≡ {θi | fi(θi) >

0} is similarly defined for agent i.

Note that the assumption of known surplus implies that S(θs, θb) = S̄ for all (θs, θb) ∈
Θn(f). In addition, in a sequential equilibrium, after any history, the joint posterior distribu-

tion f̃ ’s support is a subset of Θn(f), and similarly the posterior over i’s type has a support

as a subset of Θn
i (f). This is true both on and off the equilibrium path since consistent

beliefs must have a support that is a subset of the prior’s support.

Let M t
i be the supremum of the expected per-item continuation payoff for agent i, starting

at the beginning of period t over all sequential equilibria histories, and all i’s types in

θ̃i ∈ Θn
i (f)

We now establish the upper and lower bounds of the seller’s utility in any equilibrium, as

well as the buyer’s utility, and show that they all correspond to a unique equilibrium payoff

that corresponds to immediate and efficient trade, and the Rubinstein shares.

We first show that M0
s ≤ 1−δb

1+δsδb
S̄.

At t+ 1 (k even), the buyer makes the offers. We argue that any buyer with θb ∈ Θn
b (f)

can guarantee a payoff arbitrarily close to

Lt+1
b ≡ S̄ − δsM t+2

s .

The buyer does so by offering a share-vt+1 demanding offer with vt+1 ≡ n(Lt+1
b − η) for

η > 0 arbitrarily small. Such an offer is accepted for sure for a seller with any type θ̂s s.t.

(θ̂s, θb) ∈ Θn(f): notice that θ̂s ∈ Θn
s (f) by construction, hence S(θ̂s, θb) = S̄; therefore by

accepting the offer (and picking any items on which her cost is lower than the announced

buyer values) the seller gets δsM
t+2
s + η, which exceeds δsM

t+2
s , the present value of the

payoff from the continuation of the game if rejecting the offer. Finally, the buyer gets a

payoff of Lt+1
b − η if the above offer is accepted, regardless which items the seller picks to

trade.

At t, the seller makes offer. We argue that a seller with any type θs ∈ Θn
s (f) can get a

payoff at most S̄ − δbLt+1
b : With any type θb ∈ Θn

b (f), by rejecting an offer at t, the buyer’s

payoff from the continuation of the game has a present value of at least δbL
t+1
b − δbe for

∀η > 0. Hence the payoff left to the seller with θs ∈ Θn
s (f) is at most S̄ − δbLt+1

b , as the

(expected) surplus is S̄ by construction.

By definition of M t
s, we have M t

s ≤ S̄ − δbLt+1
b ≤ (1− δb)S̄ + δsδbM

t+2
s

The above is true for any k = 0, 2, 4, ...,. Iteratively applying the above leads to

M0
s ≤

1− δb
1 + δsδb

S̄.
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By a similar argument, it follows that

L0
s ≥

1− δb
1 + δsδb

S̄.

Therefore, the payoff for the seller with any possible type θs ∈ Θn
s (f) in any sequential

equilibrium is Us ≤ 1−δb
1+δsδb

S̄.

From the above, we also know that M2
s = L2

s = 1−δb
1+δsδb

S̄, hence M1
b = L1

b = 1−δs
1+δsδb

S̄

(both in terms of the present value then), i.e. the total surplus realized is at least 1−δb
1+δsδb

S̄ +

δb
1−δs

1+δsδb
S̄ = S̄ which is the surplus from efficient trade. Hence the negotiation outcome must

be efficient, which means immediate trade with the efficient set of items being exchanged.

The utility terms correspond to the Rubinstein shares.

Next, we turn to the case with uncertainty. We begin by a lemma that establishes a rate

of updating in a protocol with trembles.

Lemma 1 For any event E ⊂ Θi, let Pr(E) be its prior in some period and Pr(E | ai) be

the posterior one-period after conditional an action ai. It follows that

Pr(E | ai) ≤ Pr(E)/γ,

where γ > 0 is the lower bound of the size of trembles (from any type) to ai.

Proof of Lemma 1:

Giving updating according to Bayes’ rule:

Pr(E | ai) =
Pr(ai | E) Pr(E)

Pr(ai | E) Pr(E) + Pr(ai | Ec) Pr(Ec)
≤ Pr(E)/γ,

where Ec is the complement of E, and the inequality comes from Pr(ai | E) ≤ 1 and

Pr(ai | ·) ≥ γ due to trembles.

Proof of Theorem 3:

To simplify notations we prove this theorem for the private-good exchange application, with

θak being the seller’s cost and θbk being the buyer’s private value for the k-th item.

Notation:

Let Φn
i ⊂ ∆(Θi) be the collection of all possible frequencies of n items with valuations

picked from Θi.

Let φ[θi] ∈ ∆(Θi) denote the frequency of a valuation type θi. So φ : {Θn
i }i,n → {Φn

i }i,n,

and the notation φ[θi](θk) denotes the fraction of items having a specific value θk.
27

27Notice that a term in the square brackets is the valuation type, i.e. a (n-)vector, whereas a term in the

parentheses is a number. For instance, if the seller s’s valuations are drawn from {0,8} for each of the n = 5

items, then Φ5
s = {(x, y) ∈ {0, 1

5 , ..., 1}
2 | x+ y = 1}; and with a type θs = (0, 0, 8, 8, 8), s’s true frequency is

φ[θs] = ( 2
5 ,

3
5 ), where φ[θs](0) = 2

5 and φ[θs](8) = 3
5 .
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When there is no confusion, we also use φni ∈ Φn
i for i’s true frequency, and φ̂ni for a

feasible frequency that can be announced.

Recall that S(θs, θb) is the surplus with the corresponding pair of valuation types. With

a slight abuse of notation, we extend the definition of this function to capture the expected

surplus as a function of a frequencies:

• S(θs, φ
n
b ) =

∑
k

∑
θbk
φnb (θbk) · (θbk − θsk)+

• S(φns , θb) =
∑

k

∑
θsk
φns (θsk) · (θbk − θsk)+

• S(φns , φ
n
b ) =

∑
k

∑
θsk,θbk

φns (θsk)φ
n
b (θbk) · (θbk − θsk)+

Note that S(φ[θi], φ
n
j ) = S(θi, φ

n
j ), ∀θi, φnj , i.e. the expected surplus (given a frequency of

the other agent) depends only on one’s true frequency φ[θi], due to the independence across

agents’ valuations.

Although the agents’ beliefs are defined over each other’s valuation types θi, when both

agents use exchangeable strategies in Phase 1, the above observation implies that it suffices

to focus on each other’s frequencies (when analyzing beliefs at any nodes except the last part

of Phase 2 at which point beliefs are not longer relevant).

We next define sets of frequencies that are less than some pre-specified distance d from the

expected frequency: Φn
i (d) ≡

{
φni : |φni − f i| < d

}
and Φn(d) ≡

{
(φns , φ

n
b ) : |φni − f i| < d, i = s, b

}
,

where | · | is sup norm. Note that the sets naturally depend on f̄i’s, but we omit them in the

notation since they are fixed throughout the statement and proof of the theorem.

Let

α0
i (n, d) ≡ Pr(|φni [θi]− f i| ≥ d)

be the time-0 prior on frequencies that differ by at least d from the expected frequency. Let

αti(n, d, γ) ≡ (γn)−tα0
i (n, d), where γ is the total rate of trembles and γn = γ

maxi |Φni |·|V n|
is

the (minimal) rate of trembles to each action when there are n items. Then, by Lemma

1, conditional on any history ht up to time-t, the likelihood of frequencies that are at least

distance d from the expected frequency is bounded above by αti(n, d, γ), i.e.

Pr(|φni [θi]− f i| ≥ d|ht) ≤ αti(n, d, γ) (1)

When there is no confusion, we simplify notation by using α0
i and αti’s, for a given set of

parameters (n, d, γ).

The proof proceeds as follows: We first show the existence of exchangeable equilibria. Then

we extend the idea in the proof of Theorem 2, providing expected payoff bounds. Due

to the uncertainty about overall surplus, we are no longer able to provide useful bounds

over all types nor in an ex-post sense; however we can focus on the types that are less than
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distance d from the expected frequency and bound their expected payoffs. The bounds do not

exactly pin down one’s payoffs, but approximately so - thanks to the bounds on posteriors.

In addition, we show that the overall errors brought by types that are at least distance d

from the expected frequency and approximate bounds vanish as n becomes large. Finally

we illustrate that of the vanishing errors imply our main statements, i.e. the approximate

efficiency and uniqueness of divisions.

Existence of exchangeable equilibria.

For any original negotiation game G with n items, construct an induced game G̃ as follows:

Suppose an agents i only observes i’s frequency type φ[θi], instead of the valuation type θi,

until the beginning of Phase 2. (The phase 1 of) such a game G̃ has finite type spaces, finite

action in each period, and “continuity at infinity”, thus has an sequential equilibrium.28

Given a sequential equilibrium of G̃, we construct the following exchangeable strat-

egy/belief profile for G which is also an equilibrium. In Phase 1, an agent i with type

θni copies the type φ[θi]’s strategy in the sequential equilibrium for G̃. The belief system

induced by the belief system of in G̃, so that in each information set an agent/type θni shares

the beliefs that the type φ[θi] has in game G̃ over the frequency space; and over the valuation

type spaces, the beliefs are equally assigned to types corresponding to a same frequency.

The strategy is exchangeable by construction. In addition, such a strategy/belief profile

is a Bayesian equilibrium of the original game G: In Phase 1, for any i, given that the

other agent always assign the same beliefs over i’s types with a same frequency, i cannot be

strictly better off by deviating to an non-exchangeable strategy. Therefore we have shown

the existence of exchangeable Bayesian equilibria in the original game G.

Expected payoff from an offer.

Exchangeability of strategies, together with the iid distributions and exchangeable trem-

bles, implies the following strategies as part of an equilibrium continuation in Phase 2: The

recipient has a unique strict best reply to trade X = {k | θbk > θsk} and pay an amount that

exactly delivers the payoff demanded by the offerer - provided these lead to positive payoffs,

and otherwise to say ‘No’ (and do either if there is indifference),29 If the offerer was truthful

in the first Phase on the announced frequency, then given recipient’s strategy is to truthfully

list valuations. (What happens in other subgames will not be important for the argument

below.)

The Phase 2 strategies imply the following expected payoff from offering/accepting an

offer in Phase 1: An offerer of type θni gets a (non-discounted) payoff of v̂i with a “truthful”

28“Continuity at infinity” means the (time-0) continuation value of the game after period T vanishes as T

goes to infinity. See, Fudenberg and Levine (1983), p.258 for the definition, and p.267 Theorem 6.1 for an

existence result.
29Generally, if items can have the same value for buyers and sellers then the strategy specification on

whether those particular items trade is undetermined and does not influence the argument.
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offer (φ[θi], v̂i) if the offer is accepted; recall that φ[θi] is the true frequency of θi. A recipient’s

(non-discounted) expected payoff from accepting an offer (φ̂ni , v̂i) is Evj = S(θj, φ̂
n
i )−v̂i. This

is true regardless of whether φ̂ni is i’s true frequency, since that is the constraint subject to

which i has to list valuations in Phase 2.

Payoff bounds for agents with frequencies that are less than distance d from the

expected frequency.

Next we bound the expected payoffs of agents whose frequencies are less than distance

d from the expected frequency in any Bayesian equilibrium, and then show the upper and

lower bounds to an agent’s payoffs are close to each other. Formally, define the following

payoff bound(s), for i ∈ {s, b}:

• Mi(αs, αb; d, n) [Li(αs, αb; d, n)] is the sup [inf] of expected payoff from the continuation

of the game (discounted to the current point of the game) that agent i can obtain in

any equilibrium, with any φni ∈ Φn
i (d), and at any decision node of the game such that

the current posteriors satisfy Pr(|φns [θs]− f s| < d|ht) ≥ 1− αs and Pr(|φnb [θb]− f b| <
d|ht) ≥ 1− αb.

When there is no confusion we write them as Mi(αs, αb) and Li(αs, αb), but notice that the

payoff bounds do depend on (d, n).

Note that the expected surplus with any type whose frequency is less than distance d

from the expected frequency is close to the limit surplus S̄:

|ES(φns , φ
n
b )− S̄| < 2dSmax,∀(φns , φnb ) ∈ Φn(d). (2)

1. We now show that when i makes an offer at t and j is the responder:

Mi(α
t
s, α

t
b) ≤ S̄ + 2dSmax − δj(1− αt+1

j )Lj(α
t+1
s , αt+1

b ) +
1

n
(3)

where the αti’s are the previously defined bounds on posteriors (of frequencies that at least

distance d from the expected frequency).

Li(α
t
s, α

t
b) ≥ (1− γ)(1− αtj)

[
S̄ − 2dSmax − δjMj(α

t+1
s , αt+1

b )− 1

n

]
(4)

Proof of (3) and (4):

(3) is straightforward, by noting that S̄+2dSmax is an upper bound on the expected total

surplus that remains by (2), and δjLj(α
t+1
s , αt+1

b ) is a lower bound of j’s expected present

value of rejecting i’s current offer, with the extra 1
n

being the largest possible (per-item) loss

due to the unit gap of payoff grids.

(4): Noting that S̄+ 2dSmax is a lower bound on the expected total surplus that remains

by (2) Consider an offer from i with her true frequency φni and any demanded payoff of
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nor more than S − 2dSmax − δMj(α
t+1
s , αt+1

b ). Such an offer will be accepted by j with

any frequency φnj ∈ Φn
j (d), since j’s payoff from this offer exceeds the present value of

Mj(α
t+1
s , αt+1

b ), the upper bound of what she can get when rejecting the offer. Hence the

probability of acceptance is at least (1 − αtj)(1 − γ), with 1 − γ being the likelihood that

trembles do not apply.

2. Iteratively applying Equations (3) and (4) lead the following time-0 bounds on payoffs

(assuming S is the offerer in the initial period, the other case is analagous).

First let δmax ≡ max{δs, δB}. Next let error2t be a bound on “error terms” that will

bound how far expected payoffs can differ from the Rubinstein shares, which is defined by

error2t = (α2t
s +α2t

b +δmax(αt+1
s +αt+1

b ))Smax+(1+δmax)2dSmax+(1+δmax) 1
n

+δmaxγSmax.

Then it follows that∑T−1
t=0 error

2t =
∑2T−1

t=0 [δtmax(αts + αtb)]Smax + 1−δ2T−2
max

1−δmax
(2dSmax + 1

n
+ δmaxγSmax).

Then, from an iterative application of (3) and (4):

Ms(α
0
s, α

0
b) ≤ S̄(1− δb) + δsδbMs(α

2
s, α

2
b) + error0

= S̄(1− δb)(1 + δsδb...+ δTs δ
T
b ) + δTs δ

T
b Ms(α

2T
s , α2T

b ) +
∑T−1

t=0 error
2t

≤ 1−δb
1−δsδb

S̄ + (
δTs δ

T
b

1−δsδb
Smax +

∑T−1
t=0 error

2t),

(5)

Ls(α
0
s, α

0
b) ≥ S̄(1− δb) + δsδbLs(α

2
s, α

2
b)− error0

= S̄(1− δb)(1 + δsδb...+ δTs δ
T
b ) + δTs δ

T
b Ls(α

2T
s , α2T

b )−
∑T−1

t=0 error
2t

≥ 1−δb
1−δsδb

S̄ −
∑T−1

t=0 error
2t.

(6)

This implies that

1−δb
1−δsδb

S̄ −
∑T−1

t=0 error
2t ≤ Ls(α

0
s, α

0
b) ≤Ms(α

0
s, α

0
b) ≤

1−δb
1−δsδb

S̄ + (δ2T
maxSmax +

∑T−1
t=0 error

2t),

(7)

3. Next, we show that all “error” terms go to 0 as n → ∞. In particular, for ∀ε > 0,

∀δs, δb < 1, first pick η > 0 such that max{4η, 4η
δ(S̄−η)

+ η
5Smax

, 6(1−δsδb)η
5δb(1−δs)S̄

, (1−δs)δbη
1−δbS̄

} < ε - this

is the tolerance level of errors in payoff bounds that we allow for. Then in turn:

• pick T ∈ Z+ such that δ2T
maxSmax < η/5

• pick d > 0 such that 2dSmax
1−δmax

< η/5

• pick γ(ε) < ε
5(1−δmax)Smax

, hence γ(η)Smax
1−δmax

< η/5

• for any γ ∈ (0, γ(ε)) and d (already picked), pick the threshold number of items, nγ,

so that for ∀n > nγ we have
∑2T−1

t=0

[
δ

[ t
2

]
s δ

[ t
2

]+1

b (αts(d, n, γ) + αtb(d, n, γ))
]
Smax < η/5.

To do so, recall αti(d, n, γ) = γ−tn α
0
i (d, n), where
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� γ−tn ∼ O(nmaxi |Θi|t), where |Θi| is the number of feasible valuations (for each item);

� α0
i = Prn

(
|φ̂ni − f i| ≥ d

)
≤ 2e−2d2n (the Dvoretzky-Kiefer-Wolfowitz (1956) in-

equality),

� hence fix any t, αti = γ−tn α
0
i → 0 as n→∞; so does their discounted sum (up to

T − 1),

• finally, if 1
nγ(1−δmax)

≥ η/5, replace nγ by 5
η(1−δmax)

so that 1
n(1−δmax)

< η/5 for ∀n > nγ.

4. We now put the pieces together to obtain tight equilibrium payoff bounds. In any

equilibrium, the seller’s expected time-0 payoff

EU0
s (φns ) ∈

(
1− δb

1− δsδb
S̄ − η, 1− δb

1− δsδb
S̄ + η

)
,∀n > n,∀φns ∈ Φn

s (d) (8)

Similarly, the buyer’s expected time-1 payoff (whenever time-1 is reached)

EU1
b (φnb ) ∈

(
1− δs

1− δsδb
S̄ − η, 1− δs

1− δsδb
S̄ + η

)
,∀n > n,∀φnb ∈ Φn

b (d) (9)

Hence the buyer’s expected time-0 payoff, in any equilibrium, is at least

EU0
b (φnb ) ≥ δb(1− γ)

(
1− δs

1− δsδb
− η
)
>
δb(1− δs)
1− δsδb

− 6

5
η, ∀n > n,∀φnb ∈ Φn

b (d) (10)

By the construction of η, we have EU0
s (φns ) and EU0

s (φns ) are both in the region of (1 −
ε, 1 + ε) times the corresponding Rubinstein shares with the limit surplus.

Realized surplus and likelihood of immediate trade.

From Equations (8) and (10), ∀n > n, in any equilibrium, the realized surplus is at least

EU0
s (φns ) + EU0

b (φnb ) > S̄ − 3η, ∀(φns , φnb ) ∈ Φn(d) (11)

In expectation, the surplus realized is at least:

Pr(Φn(d))(S̄ − 3η) ≥
(

1− η

5Smax

)
(S̄ − 3η) > S̄ − 4η > S̄ − ε (12)

recall Pr(Φn(d)) = (1− α0
s)(1− α0

b) ≥ 1− 2d > η
5Smax

for ∀n ≥ n.

Now we turn to the likelihood of immediate trade:

With any pair of types whose frequencies are less than distance d from the expected

frequency, the maximal surplus is at most S̄ + η, and the total cost of delay for one period

is at least δ(S̄ − η). Hence with such types, the likelihood of delay is at most Pr(delay |
Φn
Emp(d)) = 4η/

[
δ(S̄ − η)

]
. This gives a bound on overall delay:
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Pr(delay) ≤ Pr(delay | Φn(d)) Pr(Φn(d)) + 1− Pr(Φn(d))

≤ 4η

δ(S̄ − η)
+

η

5Smax

< ε

(13)
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Supplementary Appendix: Additional Results with a

Nearly-Known Surplus

(to “A Theory of Efficient Negotiations”

by Matthew O. Jackson, Hugo F. Sonnenschein, and Yiqing Xing)

Subsection 5.2 discussed a (technical) challenge associated with the multiplicity of sequential

equilibria due to dramatic updating in posteriors. This challenge was handled in subsection

5.3 by introducing trembles and working with the frequency protocol. Here, we present

two other approaches. The first approach imposes a restriction on how fast beliefs can be

updated. The second approach considers trembles, but with a fixed number of items. Thus,

in the second approach the convergence of beliefs is not derived from the law of large numbers

but must come from some justification based on the knowledge the agents have about their

environment.

The main advantage of these approaches is that they work with all protocols that have

share-demanding offers (see definition 1, including our first protocol from Section 3.3 and the

combinatorial protocol from Section 3.3.2, as well as their variations that allow for continued

negotiation over not-yet-decided-upon items).

Both approaches consider a sequence of negotiation problems {(nm,Θ, fm)}m=1,2,... whose

(per-item) surpluses converges to s̄ > 0, i.e.

Sm

nm
→p s̄, as m→∞

where recall that Sm is the surplus in the m-th problem.

We do not impose further additional assumptions, hence allow for, for instance:

• correlations across players (e.g., common shocks),

• correlations across items, and

• asymmetries across items.

We use m as an index since the numbering of the sequence may differ from the number

of items. For example, the second approach has nm = n,∀m. Thus, the sequence applies

to settings in which agents have increasingly accurate knowledge of the surplus based on

some fundamental economic reason - e.g., having good information about the environment -

rather than just relying on the law of large numbers.

Let the m-th problem have a surplus grid V nm,∆ = {0,∆, 2∆, ..., nmSmax} from which an

agent can demand a total surplus.

1



A.1 Approximate Efficiency Results with Bounded Belief Updating

For simplicity we consider protocols for which all agents’ past actions are commonly ob-

served; e.g., our first protocol from Section 3.3 and the combinatorial protocol from Section

3.3.2. In such protocols, at the beginning any period t agents share a common history

ht−1 ≡ (a1
i(1), a

1
j(1), . . . , a

t−1
i(t−1), a

t−1
j(t−1)), and after the offerer moves the common history be-

comes (ht−1, ati(t)). We denote the set of all possible histories by H, including h0 ≡ ∅ being

the initial decision node of the negotiation game.

An agent i’s beliefs f̃j : H → ∆(Θn
j ) map histories to a distribution over the other agent’s

type space. In particular, we let f̃j(E, h
t−1, θi) denote i’s belief over E conditional history

ht−1. Note that an agent i’s posterior belief can depend on i’s own type θi.

The beliefs at the initial node (before types are drawn) are the common prior, i.e. f̃(· |
∅) = f(·).

We require agents’ initial beliefs conditional upon their types to be consistent with the

common prior, in particular, f̃j(·, ∅, θi) = fj(·, θi),∀θi, where fj(·, θi) is the marginal distri-

bution (of f) over Θn
j .

Now we introduce a restriction on how fast beliefs can be updated. We say a belief system

f̃j(·) satisfies bounded updating at rate β ≥ 1 if for ∀ E ⊂ Θn, ht−1 ∈ H, ati(t) ∈ Ai(t)(ht−1),

and θi ∈ Θn
i :

f̃j(E, (h
t−1, ati(t)), θi) ≤ βf̃(E, ht−1, θi);

and for ∀ E ⊂ Θn, (ht−1, ati(t)) ∈ H, atj(t) ∈ Ai(t)(ht−1, ati(t)), and θi ∈ Θn
i :

f̃j(E, (h
t−1, ati(t), a

t
j(t)), θi) ≤ βf̃j(E, h

t−1, ati(t), θi).

We consider (arbitrarily) large but bounded βs. This means that the assumption only

affects events that are very unlikely according to the prior. In particular, when f̃(E | ht−1) >
1
β
, the constraint is not binding for the updating at history ht−1.

Next, we introduce an equilibrium notion with bounded belief updating.

Definition 2 (Equilibrium with bounded belief updating) An equilibrium with bounded

belief updating at rate β is a profile of the agents’ (mixed) strategies and posterior systems

f̃j, j = s, b, such that

1. At any decision node, the mover i’s strategy maximizes his/her expected payoff given

the other’s strategies and his/her posterior system about the other’s types f̃j;

2. Both agents’ posterior systems f̃s and f̃b satisfy bounded updating at rate β.

Definition 2 imposes only minimal requirements on beliefs other than the bounded-

updating requirement. In particular, we do not require that agents’ posterior systems be

2



induced by some joint posterior system, nor do we require that the agents’ posterior systems

are common knowledge, nor do they even have to be consistent with Bayes’ rule. So this can

be viewed as a notion that allows for the most possible outcomes as equilibria, under some

(arbitrarily large) bound on updating. We show that even with such a minimal restriction,

all equilibria are approximately efficient with vanishing uncertainty about overall surplus.30

Theorem 4 Consider a sequence of negotiation problems {(nm,Θ, fm)}m=1,2,... such that

the distributions {fm} have a converging per-item surplus S̄ > 0, and the protocol includes

share-demanding offers. For any ε > 0, ∀β ∈ [1,∞), ∀δs, δb < 1, there is ∆(ε) > 0 such that

for any ∆ ∈ (0,∆(ε)) there exists m∆ such that if m > m∆ then:

1. There exist equilibria with bounded belief updating at rate β;

2. In any such equilibrium, with probability at least 1− ε:

• agreement is reached in the initial period;

• the realized surplus is at least (1− ε)S̄; and

• Expected payoff / ‘Full-Information Rubinstein share for S̄’ for each agent lies in

(1− ε, 1 + ε).

A sketch of the proof of Theorem 4:

Most parts of the proof are similar to Proof of Theorem 3 and so are not repeated here. The

new feature of the current theorem is that it does not impose the assumption of independence

across agents’ types, so that an agent’s beliefs about the other’s types may depend on his

or her own type. This brings extra steps in proving the theorem, which are our main focus

here.

First, for any distance d > 0 and any type θi, let Θnm
j (θi, d) = {θj | |S(θi, θj)− S̄| < d} be

the set of other’s types for which the per-item surplus is close enough to the limit S̄ (within

a distance of d).

Recursively, construct the following sequences of subsets of the agents’ types (for i = s, b),

given some ι0, ι1, ... > 0

0. Θ̃nm
i (d, 0, ι0) =

{
θi | fb

(
Θnm
j (θi, d), θi

)
> 1− ι0

}
, i = s, b;

1. Θ̃nm
i (d, 1, ι1) =

{
θi | fb

(
Θnm
j (θi, d)

⋂
Θ̃nm
j (d, 0, ι0), θi

)
> 1− ι1

}
, i = s, b;

. . .

30An alternative notion would apply a variation on sequential equilibria, but with the modification that

“beliefs are rounded to the boundary”; i.e., if the posterior on any event exceeds β times the prior, that

belief on that event is replaced by β times the prior. Same theorem holds under that alternative notion.
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t. Θ̃nm
i (d, t, ιt) =

{
θi | fb

(
Θnm
j (θi, d)

⋂
Θ̃nm
j (d, t− 1, ιt−1), θi

)
> 1− ιt

}
, i = s, b;

. . .

Intuitively, for an agent i with any type in the t-th set above, i’s prior is such that with

a probability of at least 1− ιt the surplus is close to the limit S̄ (within a distance of d) and

that the other has a type in the (t− 1)-th set. In terms of posteriors: for any period t′, i’s

posterior (following any history up to that period) is at least βt
′
(1− ιt) for the above events.

To simply notation we omit the superscript nm when there is no confusion.

We provide payoff bounds for those sets. In particular, for some fixed T ∈ N and

{ι0, . . . , ι2T} (we discuss how to pick these below), for i ∈ {s, b}, let M t
i [Lti] be the sup [inf]

of the expected payoff from the continuation of the game (discounted to the current point

of the game) that agent i can obtain in any equilibrium, with any θi ∈ Θ̃i(d, 2T − t, ι2T−t).
We derive the bounds recursively:

• Backward from period 2T :

M2T
i < β2T (1− ι2T−t)(1− ι0)(S̄ + d) + (1− β2T (1− ι0))Smax; and

L2T
i ≥ 0.

. . .

• In period t < 2T , agent it makes the offer:

M t
i(t) < βt(1− ι2T−t)(S̄ + d− δi(t+1)L

t+1
i(t+1)) + (1− βt(1− ι2T−t))ι2T−tSmax, which is the

maximum surplus left minus the share that must be delivered to the other agent with

types in Θ̃i(t+1)(d, 2T − t, ι2T−t); and

Lti(t) > (1−β2T−tι2T−t)(S̄−d− δi(t+1)M
t+1
i(t+1)−∆), since any offer that delivers at least

δsM
2T
s is accepted for sure by the other agent with types in Θ̃i(t+1)(d, 2T − t, ι2T−t).

. . .

The above process bounds time-0 payoffs for the types in sets Θ̃i(d, 2T, ι2T ). It is easy to

verify that (for any fixed T ) when d, ι0, ι1, ..., ι2T > 0 and ∆ > 0 go to 0, the time-0 bounds

M0
s and L0

s become arbitrarily close to each other, hence the expected payoff for any type in

Θ̃(d, 2T, ι2T ) is approximately determined. In addition, that payoff can be arbitrarily close

to the corresponding Rubinstein share with a surplus S̄, for large enough T .

The final step is to show that the above bounds have bite for most types (according to

prior probabilities). Formally, notice that (fixing any T ) for large enough m, i.e. as the prior
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knowledge over surplus becomes precise enough, we can find small enough d, ι0, ι1, ..., ι2T > 0

while keeping Pr
(

Θ̃i(d, 2T, ι2T )
)

close enough to 1.

To do so, for any d > 0, let α = Pr(|S − S̄| < d) which converges to 0 according to the

definition of converging surplus. We construct ι’s from α0:

• ι0 =
√
α, easy to verify that fi(Θ̃i(d, 0, ι0)) ≥ α√

α
= ι0,

hence Pr
(
|S − S̄| < d and θj ∈ Θ̃j(d, 0, ι0)

)
≥ 1− (α + ι0);

• ι1 =
√
α + ι0, easy to verify that fi(Θ̃i(d, 0, ι0)) ≥ α+ι0√

α+ι0
= ι1; and

. . .

• ιt =
√
α + ιt−1;

. . .

Continue this process until we get ι2T , which converges to 0 as α goes to 0 (i.e. with large

enough m).

In summary, we can approximately determine expected payoffs for all types in Θ̃i(d, 2T, ι2T ),

whose (prior) probability is at least 1 − ι2T , for arbitrarily small ι2T as m becomes large.

The rest of the proof parallels the corresponding parts of the proof of Theorem 3.

A.2 Trembles with Fixed Number of Items.

When there is no confusion we write Mi(αs, αb) and Li(αs, αb), but note that the payoff

bounds depend on (d, n). We now work with sequences of economies, where the number(s)

of items are bounded above (or fixed), and in which uncertainty over total surplus vanishes

but substantial uncertainty about each item remains. This captures agents have accurate

information about the surplus rather than relying on laws of large numbers to give them

accurate information about the surplus.

The bound on the number of items implies boundedness of sizes of action spaces (given

any increment ∆ > 0 in the grids of surplus), and thus allows for an approximate efficiency

results derived with trembles, instead of putting an artificial restriction on beliefs.

A bounded number of items and the vanishing uncertainty over overall surplus need

not contradict with each other: the assumption captures an environment in which agent’s

knowledge of each other’s total valuation is strong, which is natural in many settings.

In particular, we consider a sequence of negotiation problems {(n,Θ, fm)}m=1,2,... (note

the additional restriction that nm = n,∀m), and again we work on the finite grids surplus

V n,∆. Trembles are introduced similar to those in subsection 5.3: consider trembles in any

period by all types of any agent with probability γ, uniformly to each of the feasible actions.
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Theorem 5 Consider a sequence of negotiation problems {(n,Θ, fm)}m=1,2,... such that the

distributions {fm} have a converging per-item surplus S̄ > 0, and the protocol includes share-

demanding offers. For any ε > 0, there exist a small enough tremble probability γ(ε) > 0

and increment of grids ∆(ε) > 0 such that for any γ ∈ (0, γ(ε)) and ∆ ∈ (0,∆(ε)) there

exists mγ,∆ such that if m > mγ,∆ then:

1. There exist (perfect) Bayesian equilibria with trembles;

2. In any such equilibrium, with probability at least 1− ε:

• agreement is reached in the initial period;

• the realized surplus is at least (1− ε)S̄; and

• Expected payoff / ‘Full-Information Rubinstein share for S̄’ for each agent lies in

(1− ε, 1 + ε).

We omit a formal proof of Theorem 5. The existence part is straightforward. The rest

of the theorem follows by the same logic as Theorem 4, since with fixed number of items

(hence fixed action space) and trembles, beliefs are updated at bounded rates (per-period)

that are invariant to m. The only exception involves the errors directly due to the trembles,

which are arbitrarily small as the total size of trembles goes to 0.
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