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Abstract

We demonstrate that large funding value adjustments (FVAs) being made by derivatives

dealers to the disclosed valuations of their swap books are not consistent with any coherent

notion of fair market value. This funding cost adjustment is instead a reduction in the dealer’s

equity value, and is offset by the sum of an upward adjustment to a dealer’s debt valuation (as

a wealth transfer from shareholders) and a change in the present value of the dealer’s financial

distress costs. While others have already suggested that FVA accounting suffers from coherence

problems, this paper is the first to identify and characterize these problems in the context of a

full structural model of a dealer’s balance sheet. In addition to giving a theoretical foundation

for funding value adjustments, our model shows how dealers’ bid and ask quotes should be

adjusted so as to compensate shareholders for the impact of both funding costs and the dealer’s

own default risk. We also establish a pecking order for preferred swap financing strategies,

characterize the valuation effects of initial margin financing (known as “MVA”), and provide a

new interpretation of the standard debit value adjustment (DVA).
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I. Introduction

This paper provides a theory of funding value adjustments (FVAs) for the costs to dealer banks

of financing the cash necessary to enter and maintain financial positions such as swaps. As opposed

to the current practice by dealers of adjusting swap market values for funding costs, we show that

the funding value adjustment is actually a reduction in the dealer’s equity valuation that arises

from debt overhang. We calculate the significant adjustments to swap bid and ask quotations that

are necessary to compensate dealer shareholders for the impact of FVA.

While others have already suggested that FVA accounting suffers from coherence problems,

this paper is the first to identify and characterize these problems in the context of a full structural

model of a dealer’s balance sheet. We establish a pecking order for preference among swap financing

strategies, characterize the valuation effects of initial margin financing (MVA), and provide a new

interpretation of the standard debit value adjustment (DVA).

When reporting their earnings from derivatives trading, dealers have long been making adjust-

ments to their financial statements that reflect the impact of default risk on the market valuations

of contracts. For instance, a credit value adjustment (CVA) is commonly deducted from bank

assets to account for derivatives counterparty default risk. Conversely, a debit value adjustment

(DVA) is deducted from the value of dealer liabilities to account for the potential default of the

dealer itself. These adjustments, CVA and DVA, are now reasonably well established in finance

theory and generally accepted principles for fair-value accounting.1

Recently, however, a range of other valuation adjustments have emerged, the most prominent of

which is FVA, a putative adjustment to the market value of derivatives for the costs of funding the

cash needed to enter or maintain unsecured derivatives positions. A typical dealer argument in favor

of this FVA is that their derivatives desks do not have access to funding at secured financing rates,

and instead must rely on the firm’s treasury to finance their activities, often through the issuance

of unsecured debt. The financial crisis of 2007-2009 increased spreads on bank debt significantly,

making these financing activities much more costly to a bank-affiliated dealer’s derivatives desk,

which is charged for access to cash at the firm’s unsecured borrowing rate. Ostensibly, the FVA

is the present value of these financing costs, and is presented by dealers as an adjustment to the

market values of derivatives.

Although we show that FVA accounting disclosure practice is not coherent, we also explain that

it can be motivated as a way to align the incentives of the derivatives desks with the preferences

of shareholders, with respect to the impact of derivatives financing costs on equity valuation.

Funding costs have long been informally considered an input to dealer trading decisions. Until

recently, however, the costs of derivatives funding have not shown up in fair-market-value accounting

disclosure. In a significant change of market practice, major dealer banks recently started to

formally show FVAs on their balance sheets, as indicated by Cameron (2014b) and Becker (2015).

Many of the resulting write-downs of assets and corresponding adjustments to earnings are large.

1For DVA and CVA analysis, see, for example, Sorensen and Bollier (1994), Duffie and Huang (1996), and Gregory
(2015).
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Table I Funding value adjustments of major dealers (millions). Source: supplementary notes of quarterly or annual
financial disclosures.

Amount Date Disclosed

Bank of America Merrill Lynch $497 Q4 2014
Morgan Stanley $468 Q4 2014
Citi $474 Q4 2014
HSBC $263 Q4 2014
Royal Bank of Canada C$105 Q4 2014
UBS Fr267 Q3 2014
Crédit Suisse Fr279 Q3 2014
BNP Paribas e166 Q2 2014
Crédit Agricole e167 Q2 2014
J.P. Morgan Chase $1,037 Q4 2013
Nomura $98 Q1 2014
ANZ AUD61 Q4 2013
Bank of Ireland e36 Q4 2013
Deutsche Bank e364 Q4 2012
Royal Bank of Scotland $475 Q4 2012
Barclays £101 Q4 2012
Lloyds Banking Group e143 Q4 2012
Goldman Sachs Unknown Q4 2011

For example, as indicated in Table I, in 2013 J.P. Morgan Chase recorded an FVA charge of over

$1 billion to the fair value of its assets. Details on how these accounting adjustments have been

made are discussed by Albanese, Andersen, and Iabichino (2015).

The move by dealers to introduce funding value adjustments probably has several causes. First,

beginning in 2008, severe deviations of dealers’ borrowing rates from risk-free rates resulted in

funding costs so large that excluding them from financial statements might have been considered

imprudent. (Indeed, we provide assumptions under which large FVAs should be made, although not

to the asset side of the balance sheet.) Second, the finance departments of many dealers now feel

confident that funding cost adjustments are observable in market transaction terms. (Our model

explains why this should be the case.) Third, despite the absence of published financial accounting

standards that support FVA practice, large accounting firms have signaled a willingness to accept

FVA disclosures in dealers’ financial statements. See, for example, KPMG (2013) and Ernst and

Young (2012).

While FVA accounting has seemed natural to many practitioners, the practice has not been

without controversy. Concerns about the validity of FVA accounting have been raised, for in-

stance by Hull and White (2012, 2016), Cameron (2013, 2014a), Becker and Sherif (2015), and

Sherif (2016b). Some have pointed to questionable asset-liability asymmetries in FVA accounting,

a seeming absence of accounting for the DVA effects of the associated debt issuance, and an in-

congruity in the way that FVA for derivatives liabilities overlap with already-reported DVA for

derivatives. These issues have been discussed by Hull and White (2012, 2014, 2016), Albanese

and Andersen (2014), and Albanese et al. (2015), among others. In addition, there appears to

be significant variation across dealers in the manner in which dealers compute their FVA metrics,

particularly with respect to measurement of the relevant unsecured borrowing rates. Recently, the
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Office of the Comptroller of the Currency, a U.S. banking regulator, announced the formation of a

working group to examine industry practices for FVA determination. (See Sherif (2015b).)

Missing from the controversy over FVA, to this point, has been a model that is consistent with

underpinning theories of asset pricing and corporate finance and that accounts for the impact of

unsecured derivatives funding strategies on the market valuation of claims on a dealer’s assets, most

importantly equity and debt. We provide such a model, along with a number of implications for

swap market quotations and preferred financing strategies.

We show, by theory and calibrated numerical examples, that financing cost adjustments are

also an important determinant of dealer bid-ask spreads. Because the financing of collateral or

cash upfront payments can cause a change in capital structure that is costly to dealer shareholders,

dealers maximize shareholder value by using quoting strategies that overcome this cost to their

shareholders with a sufficient widening of bid-ask spreads. As an empirical example, Wang, Wu,

Yan, and Zhong (2016) estimate the impact of the 2009 “big-bang” introduction of upfront payments

for credit default swaps on CDS bid-ask spreads. They write: “Intuitively, the upfront payment is

an impediment to trading, and so reduces the market liquidity, leading to higher bid-ask spreads.”

Our model justifies this intuition. Wang et al. (2016) indeed find that big-bang upfronts widened

bid-ask spreads significantly.2

More generally, our model may be viewed as part of a growing body of work, including for

example Adrian, Etula, and Muir (2014) and Brunnermeier and Pedersen (2009), that examines

the impact of dealer funding and leverage on asset price behavior.

To our knowledge, of prior related work on FVA,3 only Burgard and Kjaer (2011) and Castagna

(2013, 2014) specifically incorporate the incremental cash flows of a swap into a model of the balance

sheet of a dealer. Using a reduced-form model of the event of the dealer’s default, but explicitly

capturing the impact of swaps on the dealer’s default recovery, Burgard and Kjaer (2011) show that

adding an appropriately hedged derivative has no impact on the dealer’s funding costs.4 They do

not use their balance-sheet model to isolate the nature of FVA as a cost to shareholders. Indeed,

contrary to our results, their approach allows swap market values to be affected by dealer funding

costs.5 In a narrower setting, Castagna (2013, 2014) calculates a marginal funding-cost impact on

shareholders that is similar in spirit to our own. In the end, however, Castagna (2014) concludes

that the market valuation of derivatives should include the FVA component, which is opposite

to our result. The similar approach but different conclusion of Castagna arises from his implicit

assumption that the valuation of a financial instrument is the value of only that component of its

2 They find that “for a CDS contract with a spread level of 300 basis points, at the average level of the Libor-OIS
spread in our sample, 32 basis points, the upfront payment introduced by the CDS Big Bang increases the bid-ask
spread by 1.5 basis points. This is a sizeable effect as the bid-ask spread in our sample has a mean of 9.6 basis points
and median of 5.3 basis points.”

3There is a large body of applied derivatives valuation research that addresses FVA and related concepts. Key
examples include Pallavicini, Perini, and Brigo (2012), Pallavicini, Perini, and Brigo (2011) and Elouerkhaoui (2016).

4See, for example, their equations (20)-(25).
5Burgard and Kjaer (2011) also construct dealer strategies that can “shield the balance sheet” from funding costs,

thus eliminating or reducing inconsistencies that arise in current practice when the same swap cash flows are not
valued symmetrically by their two counterparties due to funding value adjustments.
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cash flows that is ultimately assigned to equity shareholders.6

The rest of this paper is organized as follows. Section II introduces a basic two-period model

of the marginal effects of investments and investment financing decisions on the market valuation

of the firm’s debt and equity. Section III applies and extends these basic results to swap valuation,

the impact of swap valuation on a dealer’s equity and debt, and swap rate quotation. Here, we

provide a theoretical foundation for funding value adjustment, showing how it applies to a dealer’s

equity with a compensating partial adjustment to debt valuation, but with no impact on fair swap

valuation. We treat swaps with and without upfront payments, as well as the impact of initial and

variation margin. In Section IV, we illustrate the magnitudes and directional responses of FVAs

and DVAs that may be anticipated in practical settings of plain-vanilla interest-rate swaps, based

on a reduced-form analogue of a structural multi-period version of the model that is developed in

an appendix. Section V summarizes our key results and discusses some key implications. Proofs

and other extensions are found in appendices.

II. Shareholder Financing Costs

This section characterizes effect on a firm’s shareholders and creditors of financing an invest-

ment, or a package of financial transactions. The results include explicit calculations of the impact

of an investment on market valuations, as well as a pecking order of preferred financing methods.

These results recapitulate standard concepts of asset pricing and corporate finance in a somewhat

novel form that is useful for later solving the valuation and price quotation problems faced by a

swap dealer.

A. Representation of Fair Valuations

Our most basic setting is a market at time 0 for claims to uncertain cash flows at time 1. For

simplicity, we assume that the set of possible states of the world at time 1 is finite. All of our results

apply in the general case of infinitely many states of the world under standard technical continuity

conditions.7 The proofs of our results, given in the appendix, cover both finite-state and infinite-

state cases. Without loss of generality, each state has some given strictly positive probability. All

investors in our model have the same information.

6For example, Castagna (2014) states, at page 14, that “The results just shown confirm also that the practice of
including the funding valuation adjustment (FVA) in the valuation (i.e.: internal pricing) process of a contract is
fully justified: this thesis was supported in Castagna [7] (arguing against the opposite view in Hull&White [12] and
[14]) but not proved analytically.”

7For general one-period models with the potential for infinitely many states or infinitely many traded instruments,
we can fix an arbitrary probability space (Ω,F , P ). In addition to the given assumptions, sufficient additional
regularity is obtained by assuming that the set L of payoffs to which a valuation is assigned is a linear subspace of the
set L1(P ) of random variables with finite expectation having the property that L − L1(P )+ is closed in L1(P ). The
existence of a bounded stochastic discount factor ν then follows from Yan’s Separation Theorem. See, for example,
Schachermayer (1992). Dalang, Morton, and Willinger (1990) extends this representation result in the obvious way,
without need for finite-state or continuity assumptions, to settings with a finite number of intermediate trading
periods and with a finite number of primitive traded financial instruments.
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In order to characterize the “fair valuation” of financial instruments that may appear on the

balance sheet of a dealer, we fix the set L of payoffs at time 1 to which a fair value at time

zero is assigned by some given “fair-market-value” function V : L → R. We impose only minimal

coherency assumptions on fair-market-value assignments, namely that V ( · ) is linear8 and increasing

in payoffs. That is, (i) the value of a portfolio of different cash flows is the sum of the values of the

elements of the portfolio, and (ii) if payoff X is greater than or equal to payoff Y in every state of

the world, and if X > Y in some states of the world, then V (X) > V (Y ).

Some of the controversy about FVA arises in part from tension over how to measure fair values.

For example, international accounting standard IFRS 13 refers to the use of “exit prices,” meaning

roughly the price that the firm would receive when selling (if a net asset) or transferring (if a net

liability) a derivatives portfolio to a new counterparty in an orderly transaction. This approach

to fair valuation raises some additional consistency issues that we do not address. Both U.S.

accounting standards (in particular FASB 157 and 159) and international accounting standards

(IFRS 13) require that traded OTC derivatives be disclosed at their fair value, rather than by

ordinary accrual (or cost) accounting. We merely take fair valuation as a given concept subject

only to the two coherency axioms stated above (linearity in payoffs and increasing in payoffs), which

are rather compelling for any approach to measuring fair market value.

Under these two coherency assumptions, Stiemke’s Lemma implies that there is stochastic

discount factor, that is, a strictly positive random variable ν with the property that the value of

any payoff Y is V (Y ) = E(νY ). We take one of the payoffs to be that of a risk-free bond. The

associated risk-free discount is δ = E(ν), implying a risk-free gross rate of return of R = δ−1.

It follows that fair valuations, henceforth called “valuations” or simply “values,” can be assigned

according to “risk-neutral” expectation. That is, we can define risk-neutral expectation E∗ by

letting E∗(Y ) = E(νY )R, so that the value of any payoff Y can be represented as V (Y ) = E(νY ) =

δE∗(Y ). The associated risk-neutral probability measure P ∗ is defined by P ∗(B) = E∗(1B) for any

event B, with indicator 1B. Because ν is not necessarily uniquely determined, the risk-neutral

probability measure P ∗ is not necessarily unique.

Although this seems familiar from the standard setup of an arbitrage-free asset pricing model,

we do not actually assume the absence of arbitrage in the usual sense. We have merely given a

representation of how fair valuations are assigned by V ( · ). Fair valuations need not coincide in all

cases with the prices at which instruments are actually traded in an over-the-counter market. In

fact, we will show that a dealer should refuse to trade some types of financial instruments unless

it can buy them at prices strictly below fair valuation or sell them at prices strictly above fair

valuation. The ability of dealers to execute trades at prices reflecting non-zero bid-ask spreads

arises from the imperfect nature of financial markets, particularly over-the-counter swap markets,

in which search costs and other frictions frequently give dealers a trading advantage over non-

dealers. As we shall explain, bid-ask spreads are needed to cover more than a dealer’s overhead

8That is, L is a linear space and for any two payoffs X and Y and any scalars a and b, the value of the portfolio
payoff aX + bY is V (aX + bY ) = aV (X) + bV (Y ).
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and trading expenses (which we ignore here). We will show the amounts by which a swap dealer

may need to widen its a bid-ask spread so as to overcome a variant of debt overhang, representing

the cost to the dealer’s shareholders of financing the cash needed to enter swap positions.

B. Preliminaries on the Valuation of Corporate Assets, Liabilities, and other Claims

We consider a firm whose assets and liabilities have payoffs at time 1 (before additional trades

are considered) are given by some random variables A and L, respectively. The firm defaults in the

event D = {A < L}. At default, liquidation or reorganization may lead to distress costs. The asset

value remaining after default, net of distress costs, is κA, for some recovery parameter κ ∈ (0, 1].

The values of the firm’s equity and debt are δE∗[(A − L)+] and δE∗(κA1D + L1Dc), respectively,

where Dc = {A ≥ L} is the event of no default.

We now consider a potential new investment by the firm, such as a swap, whose time-1 payoff

Y to the firm may be positive in some states and negative in other states. Our convention is to

treat the positive part Y + = max(Y, 0) as an asset and the negative part Y − = max(−Y, 0) as a

contingent liability. The positive part Y + is measured net of any losses due to counterparty default.

If the contingent liability Y − is fully secured (that is, if A > Y −), then it has a value to the firm

of −δE∗(Y −), so that the total value of the financial instrument is δE∗(Y ).

If the contingent liability Y − is not fully secured, we must specify how the associated coun-

terparty recovers on its claim in case the firm defaults. We assume throughout that the firm’s

unsecured liabilities are pari passu with each other, so that the various claimants’ default recoveries

are pro rata with their claim sizes. In practice, the unsecured portions of a firm’s swap contingent

liabilities are normally pari passu with its unsecured senior debt claims. If the firm acquires a

new financial instrument with cash flow Y whose liability component Y − is the firm’s only other

unsecured default claim, then the value to the firm of this claim is δE∗(C), where C is net actual

cash flow to the firm, given by

C = 1{A+Y ≥L} Y + 1{A+Y <L}Y
+ − 1{A+Y <L} ρκA, (1)

where

ρ =
Y −

L+ Y −

is the pro-rata share of this contingent liability.

In order to later treat collateralized swap positions, we will also need to consider cases in which

the contingent liabilities include both secured and unsecured components. For this purpose, we

allow for the case of a financial position whose cash flows to be paid to the firm at time 1, before

considering the effect of the firm’s own default, have a decomposition of the form Y = Y1+Y2, where

the first contingent liability Y −1 is secured and the second contingent liability Y −2 is unsecured and

pari passu in default with other unsecured creditor claims. In this case, the firm’s valuation of the
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associated net time-1 cash flow is δE∗(C), where C is the net actual cash flow at time 1, given by

C = Y1 + 1{A+Y ≥L}Y2 + 1{A+Y <L}Y
+
2 − 1{A+Y <L}κ(A+ Y1)ρ, (2)

where

ρ =
Y −2

L+ Y −2

is the pro-rata share of the unsecured liability Y −2 . (Here, we have assumed for simplicity that

adding the given position has no impact on the proportional default recovery coefficient κ.) In

order to guarantee that the contingent liability Y −1 is truly secured, we assume that A+ Y1 ≥ 0.

For a position that has net actual cash flows at time 0 of c0 and at time 1 of c1, the total

valuation is of course c0 + δE∗(c1). In the next subsection, we examine the preferences of the firm’s

shareholders for how the initial cash flow c0 is financed, meaning transformed into time-1 cash flows

by issuing new debt or new equity.

C. Marginal Shareholder Financing Preferences

The firm contemplates entering some quantity q of an investment, such as a package of financial

instruments with one or more counterparties. In this subsection, we are mainly concerned with

the impact of entering this investment on the firm’s shareholders. Before considering the effect of

the firm’s default, the per-unit payoff of the package at time 1 is given by some random variable

Y , which may have a negative outcome with positive probability. The net cash-flow to the firm at

time 1 for a position of size q is therefore qY . We allow that Y may be of the form Y = Y1 + Y2,

where Y −1 is secured and Y −2 is unsecured.9

The investment cost for q units of the new position is some given amount U(q). We do not

require that the firm’s investment cost is equal to the fair value qδE∗(Y ) of the future net cash

flows generated by the investment. The marginal investment cost, u ≡ limq↓0 U(q)/q is assumed to

be well-defined. We allow U(q) to have either sign. If U(q) is positive, the initial investment cost

must be financed at time 0. If U(q) is negative, the firm may invest the cash received, −U(q), or

use it to retire debt or equity. We assume that the firm faces a competitive capital market for new

debt and equity issuances. That is, those competing to offer equity or debt financing to the firm

break even by paying the fair value of any claim issued to them by the firm.

We now calculate the marginal value of the investment for the firm’s shareholders, for each of

three strategies for funding the initial investment cost. Throughout the remainder, “marginal value”

means the first derivative of the fair value of the claim under consideration, per unit of the claim.

Except for cases in which the size of the investment is large relative to the firm’s entire balance

sheet, this first-order valuation approach accurately characterizes the benefit of the investment, and

provides intuitively natural and simple analytical results. Appendix A shows how the second-order

9Given a risk-neutral measure P ∗, the following calculations also apply without change to an infinite-state setting
provided that, with respect to P ∗, the random variables A, L, Y1, and Y2 have finite expectations, and provided that
A and L have a continuous joint probability density.
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valuation effect (in the sense of the Taylor series) explicitly reflects the asset-substitution benefit

to shareholders of adding risk.10

Case 1. The firm finances the position by issuing new unsecured debt. For an investment of q

units, let s(q) be the credit spread on the new debt that must be issued to finance the cost U(q)

of the new position. If U(q) is negative, the associated cash proceeds to the firm are used to retire

debt by purchasing it on the capital market. We assume throughout that capital markets price the

dealer’s debt and equity at fair value. This rules out additional sources of gain or loss, for example

“liquidity” spreads.

Because we assume that the new creditors who finance the cost U(q) are pari passu with all

of the other unsecured senior creditors of the firm (including the unsecured counterparty of the

new position), the credit spread s(q) is determined by both the legacy balance sheet and the new

position. A detailed calculation of s(q) is provided in Appendix A.

Although s(q) depends in general on the decomposition of Y into the sum Y1 +Y2 of its secured

and unsecured components, we also show in Appendix A that the limiting spread limq↓0 s(q) is

S =
E∗(φ)R

1− E∗(φ)
,

reflecting the proportional default loss to creditors of

φ =
L− κA
L

1D. (3)

We also show in Appendix A that S is invariant to the decomposition of Y into its secured and

unsecured components. In the case that L is deterministic, S is identical to the credit spread of

the firm’s legacy debt.

The contractual new debt payback at time 1 is (R+s(q))U(q). Shareholders receive the residual

A + qY − L − U(q)(R + s(q)), unless this amount is negative, in which case the firm defaults

and shareholders get nothing. The marginal increase in the value of the firm’s equity, per unit

investment, is therefore

G =
∂E∗[δ(A+ qY − L− U(q)(R+ s(q)))+]

∂q

∣∣∣∣
q=0

, (4)

provided of course that this derivative is well defined. The appendix includes a proof of the next

result, and of all results to follow.

PROPOSITION 1: THE MARGINAL VALUE TO SHAREHOLDERS OF DEBT FINANCING.

Under the stated conditions, the marginal value G to shareholders of the debt-financed investment

10The potential for a strictly positive gain to shareholders from the purchase of risky assets, even at an investment
cost that is equal to or somewhat above the fair market value δE∗(Y ), is commonly known as “asset substitution,”
as characterized by Jensen and Meckling (1976) and Myers (1977).
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is well defined and given by

G = δE∗[1Dc(Y − u(R+ S))], (5)

where Dc = {A ≥ L} is the event of no default.

By the definition of a first derivative, shareholders strictly prefer to enter some strictly positive

amount of the new debt-financed position if and only if G > 0, which is equivalent to

E∗(1DcY ) > (S +R)uP ∗(Dc).

The left-hand-side expectation reflects the benefit to shareholders of receiving a relatively higher

asset payoff when the firm survives. Shareholders have limited liability and do not care how low

the payoff is when the firm defaults. The right-hand side of the inequality is the marginal value of

the portion of the net financing costs that is borne by shareholders, who only bear this cost when

the firm does not default.

Case 2. The firm finances the position by issuing new equity. Because the investors in a competitive

market for newly issued equity break even on their purchase of shares, the incremental effect on

the valuation of the legacy shareholders’ equity is δE∗[(A + qY − L)+] − δE∗[(A − L)+] − U(q).

A calculation shown in Appendix A implies that the marginal value to the legacy shareholders of

entering the position is in this case

G0 = δE∗(1DcY )− u. (6)

The calculation (6) of G0 reflects the fact that legacy shareholders must give up the entire valuation

of the incremental cash flows that arise from the investment when the firm defaults.

Case 3. The firm is able to, and does, finance the position by using cash from its balance sheet.

In this case, the initial equity valuation is δE∗[(A − U(q)R + qY − L)+]. The marginal value of

entering the position to the shareholders is shown in Appendix A to be

G0 = δE∗(1DcY )− uP ∗(Dc). (7)

PROPOSITION 2: A PECKING ORDER OF FINANCING PREFERENCES. Suppose that the

firm’s probability of default is not zero and that the marginal investment cost u is strictly positive.

The marginal value G0 to the firm’s existing shareholders of financing the investment with existing

cash is strictly higher than the marginal value G under debt financing, which in turn is strictly

higher than the marginal value G0 under equity financing. That is, G0 < G < G0.

For the case in which the investment cost u is strictly negative, the strict pecking order shown

in Proposition 2 is reversed. If u = 0, meaning there is no up-front cash flow to finance, then
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G0 = G = G0.

Proposition 2 also incorporates a well known principle of corporate finance theory known as

“debt overhang,” by which even an investment whose upfront cost u is strictly below the value

δE∗(Y ) of its payoff may sometimes be declined by a firm because the payoffs accrue excessively

to creditors rather than shareholders.11 In Section III, debt overhang will play a significant role in

our analysis of the impact of financing costs on dealer swap quotation.

Other financing strategies could be considered, beyond those covered by Proposition 2. For

instance, the firm could sell non-cash assets or could arrange a combination of equity, cash, and

debt funding. Dealer industry metrics are rarely based on these alternative strategies, and we

shall not consider them further here. (A linear combination of financing strategies generates the

corresponding linear combination of the respective marginal values.)

III. Funding Effects for Swap Valuation and Swap Rates

We now apply the basic theory of the previous section to a dealer’s swap transactions. Interest

rate swaps, a primary example in practice and the focus of our numerical examples in Section IV,

make up the majority of a typical dealer’s derivatives inventory, representing tens of trillions of

dollars of total notional positions for each of the largest dealers.

We will consider three of the most representative valuation settings for swaps: (i) an unsecured

swap transaction, (ii) an unsecured swap transaction packaged with an inter-dealer hedge, and (iii)

a swap secured by initial margin. As the price discovery process for swaps often centers around

so-called “par swap rates,” rather than outright price levels, our analysis considers both swap rates

as well as swap valuation.

In our one-period setting, a swap is a contract promising some underlying floating payment

X > 0 in exchange for some fixed payment K. We take K as given for now, and assume that the

dealer pays fixed and receives floating, for a net contractual receivable at time 1 of X −K, before

considering the effect of counterparty default.12 Results for the reverse case, in which the dealer

receives fixed and pays floating, are obvious by analogy.

A. Valuing Unsecured Swaps with Upfronts

In this subsection, the swap is assumed to be fully unsecured. That is, the swap is not covered

by collateral. For simplicity, we suppose that there are no pre-existing positions between the swap

client and the dealer. Otherwise, the results would be complicated by the effect of netting the

new swap cash flows against those of the dealer’s legacy positions with the same client. This more

general case is analyzed in Appendix D.

We let B denote the event of the client’s default. At the client’s default, the dealer recovers a

fraction β, possibly random, of any remaining contractual amount due to the dealer, (X−K)+. In

11See Myers (1977).
12For an extension to the infinite state case, the following calculations apply if A, L, and X have finite risk-neutral

expectations, and if the dealer’s legacy assets A and liabilities L have a continuous joint risk-neutral density function.
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the event that X < K and the dealer defaults, the unsecured swap client recovers a pro-rata share

of the dealer’s estate, pari passu with the dealer’s unsecured creditors.

A swap position of size q requires the dealer to make an upfront payment of U(q). Given our

pecking order for dealer financing preferences, a positive payment is preferably funded by excess

balance-sheet cash, and a negative payment is preferably used to retire equity. In practice, however,

dealers’ swap trading units are typically cash-constrained and are not in a position to freely retire

equity. Consistent with industry practice, we therefore assume that a positive financing requirement

amount is funded by issuing debt. Likewise, any net positive cash flow to the dealer is used to retire

debt.

Our resulting definition of FVA is therefore “symmetric,” in the sense that cash inflows and

outflows are assumed to be financed or to reduce financings, respectively, at a spread of S. For the

case of cash inflows, this implicitly assumes that there is always some short-term unsecured debt

to roll over whose total amount can be reduced by swap cash inflows. This is a simplifying abstrac-

tion of a practical setting in which much of the surplus funds created temporarily by derivatives

trading would more likely be “parked” in short-term low-risk assets. A corresponding definition

of “asymmetric funding value adjustment” (AFVA) is provided by Albanese and Andersen (2014).

Asymmetric funding strategies of this and other types are captured in a straightforward, albeit

more complicated, way within our modeling framework by assuming that cash inflows are financed

with unsecured debt and cash outflows are financed at the risk-free rate. The basic thrust of our

conclusions, however, is not changed when substituting FVA with AFVA. In the simple one-period

model of this section, the AFVA is merely the positive part of the FVA.

In the absence of a dealer default, the payment flowing to the dealer at time 1, per unit notional

position, is

Y = y(K) ≡ X −K − γ(X −K)+, (8)

where γ = (1− β)1B is the fractional counterparty default loss.

Given the debt financing of the position, the marginal value of the position to the dealer’s

shareholders, from Proposition 1, is

G = g(u) = δE∗ [1Dc(Y − u(R+ S))] , (9)

where, we recall, u = limq↓0 U(q)/q is the marginal upfront payment.

In order to establish the fair value of the swap, we must consider the potential default of the

dealer. With q units of the swap traded, we can use (1) to express the effective time-1 payoff of the

swap to the dealer as

C(q) = q(X −K)− qγ(X −K)+ + (1− κρ(q)) q (X −K)− 1D(q),
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where, given debt financing, the asset-to-debt payoff ratio is

ρ(q) =
A

L+ U(q) (R+ s(q)) + q (X −K)−
.

and where

D(q) = {A− L+ qY − U(q)(R+ s(q)) < 0}

is the dealer’s default event after considering the new position. Our basic valuation framework of

the previous section implies that the fair value of the swap payoff is V(q) = δE∗ (C(q)).
The proof of the following proposition, provided in Appendix A, shows that the marginal value

v = ∂V(q)/∂q|q=0 of the swap payoff at time 1, after financing the upfront, does not depend on the

financing strategy. This invariance of the marginal value to the financing method can be thought

of as a consequence of the Modigliani-Miller Theorem.13 Nevertheless, the value V(q) of a non-

trivial position of size q > 0 in general depends non-trivially on the financing method, because the

incremental distress costs depend on the financing method.

PROPOSITION 3: FAIR MARKET VALUE OF AN UNSECURED SWAP. Whether the dealer

finances a swap by issuing debt, issuing equity, or using existing cash on its balance sheet, the

marginal value of the swap payoff is well defined and given by

v = δE∗(X −K)− δE∗
(
γ(X −K)+

)
+ δE∗

(
φ (X −K)−

)
, (10)

where φ = 1D(L− κA)/L.

The swap value (10) includes two adjustments of the default-free value, δE∗(X − K), for de-

fault risk. The first of these, a reduction of δE∗ (γ(X −K)+), is the earlier mentioned credit

valuation adjustment (CVA) for the contingent asset component of the swap. The second adjust-

ment, δE∗
(
φ (X −K)−

)
, is the debit valuation adjustment (DVA) for the contingent liability. The

marginal valuation v may easily be verified to be equal in magnitude, and opposite in sign, to the

total marginal value of the package of transactions to the dealer’s swap counterparty.14

If there are no default distress costs (κ = 1), we may view v as the choice of upfront payment

u that would make a total claimant on the dealer’s balance sheet (debt plus equity) indifferent to

entering the swap transaction. Whenever trading decisions are made, however, we assume that the

dealer’s preferences are determined by shareholder value maximization. We therefore focus on the

upfront payment v∗ for the swap that would leave shareholders indifferent to the swap transaction.

From (9), assuming that the dealer’s survival probability is non-zero, we have

v∗ =
E∗(1DcY )

(R+ S)P ∗(Dc)
. (11)

13See Modigliani and Miller (1958).
14For this, we can note that the dealer’s CVA (DVA) is the counterparty’s DVA (CVA). While sometimes ques-

tioned, the inclusion of self-default benefits through the DVA term is critical to ensure symmetry in the dealer and
counterparty valuations.
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If the dealer’s default indicator 1D and the swap cash flow Y are uncorrelated (under P ∗), then

v∗ = (v − d)
R

R+ S
, (12)

where d = δE∗
(
φ (X −K)−

)
is the DVA of the swap transaction. In this simple case, from the

viewpoint of shareholder value maximization, the dealer’s breakeven upfront price v∗ for entering

the swap is an adjustment of the fair market value v that:

(i) removes the DVA term d from v.

(ii) substitutes the dealer’s unsecured discount rate R+ S for the risk-free rate R.

The first of these adjustments does not depend on the funding strategy and reflects the lack of

any shareholder benefit from paying the swap counterparty less than the contractually promised

amount when the dealer defaults (because the equity holder receives nothing at default). The

second adjustment is for the funding cost to shareholders, who must pay the credit spread S to

the new creditors without gaining any marginal benefit from the right to default on the new debt.

(This is a negative adjustment if the upfront is negative.)

When ignoring distress costs (by taking κ = 1), the difference between the shareholder break-

even value v∗ and the total value v to all dealer claimants (debt plus equity) amounts to a wealth

transfer by the dealer’s equity shareholders to the dealer’s creditors. This wealth transfer is triggered

both by the swap cash flow itself (through the DVA) and also by the financing strategy used by

the dealer to fund the upfront. The net shareholder cost v∗− v of entering the swap is not entirely

transferred to other stakeholders if the dealer has distress costs at default. In general, the net gain

to the dealer’s legacy creditors is calculated in Appendix A.

B. Dealer Quotation and FVA for Unsecured Swaps

Assuming that the dealer maximizes shareholder value, it would rationally not trade the swap

unless the upfront payment to the dealer is at least v∗. If the dealer manages to execute the trade

at this level, the firm as a whole would make a trading profit of v− v∗. This profit can have either

sign. Although the DVA effect always lowers15 v∗ relative to v, the funding-cost component can

either increase v∗ relative to v (which occurs if v < d), or decrease it (whenever v > d). Loosely

speaking, the funding component increases shareholder value for swaps that are predominantly

liabilities (have a high fixed rate K relative to E∗(X)) and decreases shareholder value for swaps

that are predominantly assets (have a low K relative to E∗(X)).

From the viewpoint of shareholder value maximization, bank quotation practices have tradition-

ally adjusted appropriately for the DVA effect, but have not correctly accounted for the funding-cost

effect. That is, rather than quoting v∗ as suggested by the shareholder breakeven upfront payment

15This is true unless the swap is a pure asset with no DVA at all, that is, unless K is so low that X −K > 0.

14



(11), banks have instead conventionally quoted

v − d = δE∗(X −K)− δE∗(γ(X −K)+), (13)

which is the fair-market value of a default-free swap less the CVA, but removing the DVA adjustment

that is now an accepted element of the fair value accounting for swaps reflected in (10). If the swap

is executed at this conventional level v−d, then (9) implies that shareholders experience a marginal

gain in value of

g(v − d) = g(δE∗(Y )) = δ cov(1Dc , Y )− Φ, (14)

where

Φ = δ(δE∗(Y ))SP ∗(Dc). (15)

The quantity Φ is the debt funding valuation adjustment (FVA), recently introduced by dealers to

adjust their reported accounting incomes.16 The FVA Φ may be interpreted as a transfer of wealth

away from dealer’s shareholders due to the adverse impact of funding costs. This conceptual

basis for FVA, however, is not commonly recognized within the dealer community. The dealer’s

shareholders are not compensated for this wealth transfer unless they can obtain an offsetting

wealth transfer from their swap counterparties through a widening of the effective bid-ask spread.

In order to make this point more transparent, we Taylor-expand the expression (12) for the

shareholder valuation v∗ of the swap position, for a small credit spread S and for a survival prob-

ability P ∗(Dc) close to 1. We see that

v∗ = (v − d)
1

1 + S/R
≈ (v − d)

(
1− S

R

)
≈ v − d− Φ. (16)

Thus, the current practice by dealers of making a downward FVA adjustment to their mark-to-

market swap valuations, although not consistent from a valuation viewpoint, causes a valuation

bias that better aligns the interests of the dealer’s traders with the dealer’s shareholders.

In order to trade with a dealer that quotes swaps in a manner reflecting these shareholder

incentives, the client swap counterparties must be willing to “donate” the sum of the DVA d and

the FVA Φ. In practice, this “donation” would be implemented through an effective widening of the

dealer’s bid-ask spread, manifested either in the upfront u or in the swap rate K, or both. In Section

IV, we provide a numerical example that illustrates the magnitude of the minimal compensating

bid-ask widening. We argue that the magnitudes are economically significant.

The fact that asset valuations do not depend on funding costs is especially obvious for a transac-

tion such as the purchase of a liquidly traded risk-free bond that is funded by a dealer through new

unsecured borrowing. Clearly, the dealer’s accounting disclosure should reflect the market value of

the purchased risk-free bond at its actual fair value 1/R, rather than at its funding-cost-adjusted

16 As we mentioned earlier, there are variations in industry practice. For instance, while (15) is a common definition
of FVA, some dealers ignore the terms associated with counterparty default and instead use δ(δE∗(X−K))S as their
measure of FVA.
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value to shareholders of 1/(R+ S).

C. Variation Margin and Inter-Dealer Hedging

When a dealer trades an unsecured swap with a client, the dealer is likely to combine the position

with a suitable hedge. In practice, two separate hedges would typically be used. One hedge would

mitigate the risk of default of the swap counterparty, for instance using a credit default swap (CDS)

referencing the counterparty. Another position would be taken as a hedge against the market risk

exposure of the floating-side payment X.

Using the setup in Section III.A, we can incorporate the effect of hedging a swap by assuming

that the hedge simply takes the form of an offsetting position paying −Y , where Y is the net

payout given by (8). As an abstract simplification, this covers both the counterparty risk and the

underlying market risk X. The hedge is executed with another dealer, called the “hedge dealer.”

As is standard practice in inter-dealer transactions, the hedge requires the posting of variation

margin, a running exchange of collateral that is sufficient to cover the entire present value of the

transaction. In addition to providing default protection for both dealers, the variation margin

mechanism provides an automatic source of cash funding of the hedge position, as we mentioned

earlier.

In our one-period model, we can capture the effect of a running posting of variation margin in

the following simplified way.

• At time 0, the dealer receives a cash payment from the hedge dealer equal to the fair value

δE∗(Y ). The dealer immediately posts this cash amount back to the hedge-dealer as a

variation margin payment, earning the risk-free rate on the associated posting of collateral.

As the two initial cash payments cancel, neither the dealer nor the hedge-dealer needs any

financing to instantiate the hedge transaction.

• At time 1, but before other cash flows at time 1 are paid, the collateral is refreshed. That

is, the dealer receives E∗(Y ) back from the hedge dealer. (This is margin posted at time

zero, plus the risk-free interest.) The dealer pays Y to the hedge-dealer. The hedge-dealer is

assumed to be paid with priority over all other creditors.17 As the swap itself pays Y, given

this assumed priority, the dealer will always be able to make this payment. This abstracts

from some potential loss of priority that might apply in extreme practical cases, for example

in an administrative failure resolution process that could override contractual termination

rights.

Netting the cash flows, the total package consisting of an unsecured asset and the hedge will

17This effective priority over standard debt claims follows from exemptions for swaps from automatic stays in
bankruptcy or other insolvency proceedings. Even under proposed methods for resolving the failure of a systemically
important dealer that would apply the effect of an automatic stay on swap terminations, the dealer’s swaps would
likely retain priority over ordinary creditors, who would be “bailed in.” This would fully prioritize swap counterparties
except in the most extreme scenarios, in which even the cancellation of all debt subject to bail-in is insufficient to
re-capitalize the dealer.
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pay the dealer E∗(Y ) at time 1, an amount that is known at time zero. As desired, the hedge

removes the variability of the payment Y , replacing it with its fair forward value.

Assuming that the dealer finances the purchase of the client asset by issuing debt, we can now

repeat the funding cost analysis shown in Section III.A. The results, found in Appendix A, are

obvious. Because the hedge removes net payout variance, the covariance term in (15) disappears,

and the FVA for the package consisting of the asset and its hedge is simply g(v − d) = −Φ.

As we have explained, the assumption of a perfectly offsetting hedge payout of −Y is an ideal-

ization. In practice, the risk associated with the client swap payoff is not completely extinguished.

This allows small default covariance terms to creep back into the breakeven price v∗. Further, inter-

dealer hedge swaps are virtually always executed at par, that is, at a fixed rate of K̃ = E∗(X),

rather than at an arbitrary rate of K. We deal with this minor complication in the next section.

D. Par Swaps and Forward Swap Rates Without Margin

In practice, the fixed swap rate K is typically negotiated so that there is no upfront payment.

In this case, the swap is known as a “par-valued swap.” The resulting fixed rate K is often known

as the “forward swap rate.” In our setting, three different forward swap rates are of interest:

• The forward swap rate K̃ for a fully collateralized dealer-to-dealer swap. The swap has a

market value of δE∗(X − K̃), so the fair forward swap rate K̃ = E∗(X) reflects no credit

risk component. This is the benchmark forward swap rate typically shown on standardized

trading screens. In practice, the risk-neutral probability measure P ∗ used by dealers for fair

valuation would typically be calibrated so as to match the risk-neutral expected payment

E∗(X) to the “screen rate” K̃, and likewise for other liquidly traded financial instruments.

• The forward swap rate K̂ for an unsecured client swap that is executed at fair-market pricing.

If we express v in (10) as v = η(K), then K̂ is the solution in K of the equation η(K) = 0.

• The forward swap rate K ′ for an unsecured client swap that leaves shareholders indifferent

to the trade. From (8) and (11), K ′ is determined by the equation E∗(1Dcy(K ′)) = 0.

Neither K̂ nor K ′ depend on the financing strategy used by the dealer. Without an upfront, no

financing is required, putting aside for now the issue of initial margin, which we will get to later in

this section. Here, K̂ and K ′ differ only because the DVA benefit on the swap is excluded from K ′.

LEMMA 1: ORDERING OF FORWARD SWAP RATES. Suppose that either (a) the dealer’s

default indicator 1D is uncorrelated (under P ∗) with the swap payment Y , or (b) the swap position

is fully hedged by an inter-dealer swap. Then K ′ ≤ K̂ and K ′ ≤ K̃.

In a model with several time periods, even a position with no upfront cash payment may involve

a funding value adjustment. For example, consider a position entered a time zero with no upfront

payment, requiring a significant positive expected cash payment by the dealer at some intermediate
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date or dates, before compensating payments are later received by the dealer. A common example

of this is a long-dated swap issued in an environment with a steeply sloped yield curve. As we will

explain in more detail in Section IV, such a position can be associated with a substantial funding

value adjustment.

E. Par Swaps with Initial Margin, and Margin Value Adjustment (MVA)

Par-valued swaps require no upfront funding and therefore have no FVA in our one-period

setting. This situation changes with the introduction of initial margin, whether on the client swap

itself or on the hedge swaps. In fact, it is becoming increasingly common to encounter swap

agreements that require one or both counterparties to post risk-based initial margin, providing an

additional layer of credit risk protection beyond variation margin. For instance, such agreements

are routinely required by CCPs and are supposed to be mandatory under the Dodd-Frank act for

all inter-dealer trades executed after September 2016 (see BCBS (2013)). European regulators have

delayed the application of this rule to 2017. Because initial margin always implies a positive initial

cash outlay, even for par-valued swaps, funding valuation adjustments for margin will inevitably

result in costs to dealer shareholders.

To be concrete, we consider the funding cost impact on the shareholders of a swap dealer

that hedges an unsecured par-valued swap with a par-valued hedge transaction that requires the

dealer to post initial margin. In summary, the swaps dealer in question is contemplating a pair of

transactions consisting of:

(i) An uncollateralized swap with a client, by which the dealer pays a fixed rate K in exchange

for a floating payment X, for a net contractual receivable at time 1 of X −K. We take K

as given for now, and assume that the client swap terms involve no initial exchange of cash.

The terms of trade for the swap are thereby captured entirely by the fixed-side payment K.

(ii) A hedge-motivated fully collateralized swap with another dealer or a central counterparty,

by which the dealer has a net receivable at time 1 of K̃ − X, at the fair forward swap rate

K̃ = E∗(X). As before, we suppose that the hedge swap involves variation margin and no

net initial payment. In this case, however, the swap additionally requires the dealer to post a

specified cash initial margin of I > 0. The recipient of the margin, typically either a CCP or

a third-party custodian, invests the margin in risk-free assets, paying the dealer RI back at

time 1 (unless the dealer defaults). As a simplification, we assume that the margin agreement

is sufficient to ensure that both of the counterparties to the hedge swap are fully secured

against loss.

The hedge swap payout K̃−X is not an exact match for the client swap, except in the unlikely

case that K = K̃. We do not consider a CDS hedge against default, but our results can be trivially
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extended to this case.18 Our results are unaffected if the initial margin Iq for a position of size q is

not necessarily proportional to q, provided that the per-unit margin has some limit I ≡ limq↓0 Iq/q.

Likewise, our results remain as stated if the swap fixed-side terms K and K̃ depend on q, provided

only that they converge with q to limits denoted K and K̃, respectively. These generalizations are

avoided merely for notational simplicity.

We carry over all notation from Section III.A. Once again, the effect of any pre-existing positions

between the swap counterparties is considered only in the appendix. We model variation margin

in the same manner as in Section III.C, so that the net payment at time 1 on the hedge swap is

E∗(X − K̃)− (X − K̃) = K̃ −X. Before considering the impact of dealer default, the package of

swap transactions therefore has a per-unit cash flow to the dealer at time 1, including the return

of the margin with interest, of

Y = RI + K̃ −K − γ(X −K)+.

The initial required per-unit cash investment u is merely the initial margin I, because the swaps

themselves are all executed without upfront payments.

Assuming that the initial margin is funded by debt issuance, Proposition 1 implies that the

marginal value of the transaction to the dealer’s shareholders is

G = δP ∗(Dc)(K̃ −K)− δE∗[1Dcγ(X −K)+]− Λ, (17)

where Λ = δP ∗(Dc)SI is the funding cost adjustment for the payment of initial margin, known

in industry practice as the margin value adjustment (MVA). In this simplest of settings, the value

adjustment Λ for initial margin is the initial market value of the component of net margin-funding

interest expense SI that is borne by shareholders at time 1. The shareholders bear the entire

expense SI if the dealer does not default, and bear none of the expense if the dealer defaults.

We also calculate the total market value of the package of swap transactions. For a position of

q units, the initial margin payment generates cash flow of −qI to the dealer at time 0. At time 1,

the payment of the hedging swap, including the return of margin with interest, is q(K̃ −X) + qIR.

The payment of the client-to-dealer swap to the dealer is q(X−K) before considering default. The

cash flow q(X −K) is not paid in full at time 1 in either of two events: (i) the client defaults and

q(X −K) > 0, in which case the dealer receives βq(X −K)+ from the client; and (ii) the dealer

defaults and q(X −K) < 0, in which case the client is pari passu with the other creditors of the

dealer, and the swap client receives R(q)q(X −K)−, where, based on (2),

R(q) =
κ(A+ q(K̃ −X) + qIR)

L+ q(X −K)− + qI(R+ s(q))

is the fractional recovery of the dealer’s assets in default on the event that X − K < 0. The

18As we have already seen in Section III.C, adding a CDS hedge essentially removes the covariance effects in the
CVA term. For instance, the term δE∗[1Dcγ(X −K)+] in (17) would become δP ∗(Dc)E∗[γ(X −K)+].
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numerator of R(q) is the amount of the dealer’s assets that are recovered if the dealer defaults

and X − K < 0. The denominator is the aggregate liabilities of the dealer, which include the

legacy liabilities L, the liabilities due to financing the initial margin, which is qI(R+ s(q)), and the

liabilities to the swap client, which is q(X −K)−. By assumption, A+ qIR+ q (X −K)+ is always

sufficient to pay the amount q(K̃ −X)− due on the secured hedge.

Following the definitions of Section II.B, the net actual cash flow at time 1 of the package of

swap transactions is

Ĉ(q) = q(K̃ −X) + qIR+ q(X −K)− qγ(X −K)+ + q1D̂(q)(1−R(q))(X −K)−,

where

D̂(q) = {A+ q(K̃ −K)− qγ(X −K)+ − L− qIs(q) < 0}

is the event of the dealer’s default.

The total market value of the package of transactions is

V(q) = −qI + δE∗(Ĉ(q)).

One can see that the initial payment I of margin at time 0 and the return payment of RI

at time 1 have offsetting impacts on the total market value of the swap. When considering the

marginal value of the transaction to shareholders, however, the computation (eq:G3) shows the

crucial impact on shareholder value of of financing the initial margin.

Similar to the case of Proposition 3, the marginal value of the swap,

v =
∂V(q)

∂q

∣∣∣∣
q=0

= δ(K̃ −K)− δE∗[γ(X −K)+] + δE∗[φ(X −K)−], (18)

is decomposed into the present value of the gross swap spread K̃−K, less the CVA, plus the DVA.

As anticipated, the per-unit fair market value v of the combined swap position does not depend on

the amount I of required initial margin, nor does v depend on how the margin was financed. As

we have noted, however, this invariance of valuation to the financing of initial margin is contrary

to current dealer valuation practice.

Appendix A calculates the impact of the value H of the package on the legacy creditors. If

there are no default distress costs, we have usual value-conservation identity H + G = v.

The fair-market level of the spread K̃ −K between the two swap rates, obtained from (18) by

setting v equal to zero, is

S = E∗[γ(X −K)+]− E∗[φ(X −K)−], (19)

which is merely the net risk-neutral expected default loss on the client swap (loss from client default

net of loss from dealer default). The swap spread S ′ = K̃−K that makes the dealer’s shareholders
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indifferent to the trade is instead obtained from (17) by setting G = 0, leaving

S ′ = SI +
E∗[1Dcγ(X −K)+]

P ∗(Dc)
.

In order to generate positive shareholder returns in this setting, the dealer must be able to

identify hedged swap positions at fixed swap rates that improve on fair-market rates by S ′ −S. In

gauging how difficult this may be for the dealer’s swap desk, we suppose that the dealer’s default

event is uncorrelated under P ∗ with the client default loss γ(X −K)+. The dealer must then be

able to improve on fair-market swap rates by at least

S ′ − S = SI + E∗(φ)E[(X −K)−].

For the typical (small) credit spreads of major dealers, and for small risk-free interest rates (that

is, R near 1), we have the Taylor approximation S ' E∗(φ), and thus

S ′ − S ' S
(
I + E∗[(X −K)−]

)
, (20)

where the first term originated from the margin funding costs and the second from the DVA. This

is the adjustment to the swap quote necessary to overcome effect of value impact on shareholders

shown by Equation (16).

Because initial margins set by CCPs or in the inter-dealer swap market are standardized, the

right hand side of (20) is the dealer’s credit spread S multiplied by some positive swap-specific

amount that does not depend on the identity of the dealer. It follows that the most creditworthy

dealers, those with the lowest credit spread S, usually have a head start over less well capitalized

dealers in finding swap clients willing to enter trades at terms that are beneficial to the dealer’s

shareholders. Even the best capitalized dealer, however, must attract clients that are sufficiently

anxious to trade (given their own hedging or speculative motives) that they are willing to give up

some value to the dealer. This concession can be buried into the bid-ask spread quoted by the

dealer.

A dealer sometimes finds itself in a position to enter a swap that lowers its aggregate margin

requirement, because the new swap hedges or offsets a legacy position with the same counterparty.

In this case, the margin that is released by the trade is a source of profit to the dealer’s shareholders

in the form of a reduction in FVA, giving the dealer an advantage over other dealers (even some

dealers with lower credit spreads) in “winning” the trade.

IV. Valuation Adjustments for Long-Term Swaps

This section illustrates the numerical implications of our model for valuation adjustments in

some practical settings. After setting up a general reduced-form swap valuation framework that

parallels the structural model of the previous sections and Appendix B, we provide a numerical
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illustration of the magnitude of valuation adjustments for plain-vanilla interest rate swaps, showing

that funding valuation adjustments are economically important in practice, and also indicating

relative responses to the term structure of interest rates and to the fixed coupon rate of swaps.

For this purpose, we begin with a relatively standard continuous-time setting that allows us

to appeal to prior reduced-form models of default timing and recovery. Our reduced-form model

is otherwise conceptually faithful to the solution for funding value adjustments in our structural

model. In order to capture the effects of interim coupon and variation margin payments in a

manner consistent with the spirit of the structural model, Appendix B generalizes the basic one-

period model of Section III to a two-period model that allows for the financing of coupon and

intermediate-date margin payments, and also allows for default at the intermediate date.

A. Reduced-Form Valuation Framework

Our continuous-time framework is based on standard technical assumptions given, for ease of

exposition, in Appendix C. The model begins with a default-risk-free short-rate process r = {rt :

t ≥ 0}, implying that the risk-free discount at time t for risk-free cash flows at time T is E∗t (δt,T ),

where δt,T = e−
∫ T
t r(s) ds.

Before considering the effect of incremental cash flows associated with a new position, the

derivatives dealer defaults at a stopping time τD whose conditional mean arrival rate at time t

is λD(t). The fractional loss to the creditor claim associated with default at time t is `D(t).

That is, an unsecured claim of size C on the dealer’s estate at default is paid (1 − `D(τD))C, for

some proportional loss process `D taking outcomes in [0, 1]. This implies that the dealer’s short-

term credit spread at time t is St = λD(t)`D(t). That is, each unit of the dealer’s short-term

unsecured debt can be continually renewed, or “rolled over,” by making continual floating-rate

interest payments at the adjusting rate rt +St, as justified in Appendix C. Similarly, a given client

swap counterparty has default risk characterized by a default time τC whose conditional mean

arrival rate at time t is λC(t), and by a proportional loss given default at time t of `C(t).

We will characterize various valuation adjustments (CVA, DVA, FVA, and MVA) for an unse-

cured swap between the dealer and the client.19 This swap has maturity date T and contractually

promises the dealer, before considering the effect of counterparty default, net payments C1, . . . , CN

at some respective increasing sequence {t1, . . . , tN = T} of coupon exchange times. For notational

simplicity, for any time t ≤ T , we let η(t) ∈ {0, 1, ..., N} denote the index of the associated coupon

period. That is, t ∈
(
tη(t)−1, tη(t)

]
, taking t−1 = −∞.

The market value at time t < T of a default-free version of the swap is, by definition,

Vt = E∗t

 N∑
j= η(t)+1

δt,tjCj

 .

19As we discussed in Section III.E, MVA applies if the dealer hedges the unsecured client swap with an inter-dealer
swap that requires the dealer to post initial margin.
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By direct analogy with the structural multi-period model of Appendix B, the CVA and DVA

are, respectively,

Πc = E∗
(
1{T>τC , τD>τC}δ0,τC `CV (τC)+

)
=

∫ T

0
E∗
(
δ0,tκtλC(t)`CV

+
t

)
dt, (21)

where κt = e
∫ t
0 −[λD(s)+λC(s)] ds, and

Πd = E∗
(
1{T>τD, τC>τD}δ0,τD`DV (τD)−

)
=

∫ T

0
E∗
(
δ0,tκtλD(t)`DV

−
t

)
dt. (22)

By direct analogy with the marginal valuation of the swap that we provided for our discrete-time

structural model, the market value of the swap is

v ≡ V0 −Πc + Πd. (23)

To repeat, this is the total value of the swap cash flows to both equity and debt claimants. By

implication of the structural model, there is no funding value adjustment assignable to this swap

market value.

In order to compute funding value adjustments, we suppose that the dealer can enter small

notional positions of the swap at a per unit upfront payment of u. Just as for our structural model,

we do not require that this upfront payment u is the equal to the initial value v of the swap.

(Because this is merely a reduced-form model as opposed to a structural model, there is no point

in making a distinction here between the marginal value and the per-unit value of a position of a

given non-zero size.)

In order to compute the FVA, we suppose that the dealer issues short-term unsecured debt

to finance any pre-default swap-related payments, including the upfront payment and any interim

coupon payments. Any swap-related receivables to the dealer are likewise used to retire outstanding

short-term unsecured debt. The FVA of swap position can in this case be defined by direct analogy

with that of the multi-period model of Appendix B by

Φ(u) = E∗

u∫ τ

0
St dt−

η(τ)−1∑
i=0

δ0,ti Ci

∫ τ

ti

St dt

 ,

where τ = min(τC , τD, T ). Given our default-time assumptions, this reduces to

Φ(u) = E∗

(
u

∫ T

0
κt St dt−

N−1∑
i=0

δ0,tiCi

∫ T

ti

κtSt dt

)
. (24)

If the dealer hedges the unsecured swap with a fully collateralized inter-dealer swap that requires

the dealer to post variation margin and intial margin, as will soon be the case under Dodd-Frank

and MiFID regulations, there is also a “margin value adjustment” (MVA), which can be computed
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by analogy with the multi-period structural model of Appendix B as

Ψ = E∗
(∫ T

0
κtItδtSt dt

)
, (25)

where It is the initial margin at time t. For the special case in which the unsecured swap is executed

at an upfront equal to the default-free market value V0, direct algebra as in Appendix B yields the

FVA

Φ(V0) = E∗
(∫ T

0
κtVtδtSt dt

)
. (26)

By analogy with (16), the upfront v∗ that would leave shareholders indifferent to the swap trans-

actions is approximated as

v∗ ≈ V0 −Πc − Φ(V0)−Ψ = v −Πd − Φ(V0)−Ψ. (27)

B. Illustrative Numerical Example of XVAs

We now give illustrative magnitudes of FVAs, MVAs, DVAs, and CVAs based on a simple

parametric term-structure model. While the term-structure models used by major dealers are

generally more sophisticated than our illustrative model, we believe that the magnitudes of these

“XVAs” that we calculate give reasonable indications of their relative economic importance in

practice, and help us understand how they vary with swap rates, credit risk, and the slope of the

term structure.

For this purpose, we consider an unsecured 10-year, semi-annual-coupon, plain-vanilla interest

rate swap with a notional size of $100 million. The underlying floating rate is six-month LIBOR.

For our example, this floating rate is the simple six-month (money-market) interest rate associated

with a hypothetical borrower whose six-month credit spread over the risk-free six-month simple

interest rate is taken to be some constant ε. At base case, we take ε to be 30 basis points. For the

initial term structure of risk-free interest rates, we calibrate to the risk-free discount term structure

given by

p(0, t) = E∗(δ0,t) = e−(0.005+0.001t)t, (28)

roughly corresponding to market conditions in January 2016. That is, the continuously compound-

ing yield curve starts at 50 basis points and slopes upward at a rate of 10 basis points per year.

Until default, the net coupon Ci paid to the dealer at the i-th coupon date ti is the current six-

month LIBOR floating rate less some fixed coupon rate K. (We will consider various fixed coupon

rates.) In addition to this payer swap, we will also provide results for the corresponding receiver

swap, by which the dealer receives the fixed rate K net of the six-month LIBOR floating rate. A

default-free swap whose market value V0 is zero corresponds to a fixed coupon rate of K = 1.783%.

The risk-free short-rate process r, which we treat as the short rate underlying the overnight index

swap (OIS) swap term structure, is determined by a one-factor Hull-White term-structure model20

20See Hull and White (1993).
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calibrated consistently with (28). That is, the short-rate process r satisfies rt = −d log(p(0, t))/dt+

zt, where p(0, t) is given by (28) and zt satisfies the stochastic differential equation

dzt = (θt − αzt) dt+ σ dWt, z0 = 0, (29)

where α and σ are constants, W is a standard Brownian motion under the valuation measure P ∗,

and

θt =

∫ t

0
σ2e2α(u−t) du, (30)

We set α = 0.05% and σ = 0.70%, which approximate the implied volatility levels of long-dated

Bermudan LIBOR swaptions as of January 2016.

We assume that the swap counterparty has a constant default intensity λC of 4% and a constant

fractional loss given default `C of 50%. The dealer has a constant default intensity of λD of 2%

and a constant fractional loss given default `D of 50%. This implies a constant short credit spread

S for the dealer of 1%, and for the counterparty of 2%.

We assume that the dealer hedges the unsecured swap with a fully collateralized inter-dealer

swap that requires initial margin. When calculating the MVA, the initial margin It is set at the level

required by BCBS/IOSCO (BCBS (2013)), that is, at the 99th percentile of the 2-week change in

market value Vt of the default-free version of the swap, excluding any jumps associated with coupon

payments. A detailed analysis of the computation of the CVA, DVA, FVA, and MVA, based on

the formulae provided in the previous section, is found in Appendix C.

Table II shows these “XVAs.” For the FVA, we report Φ(V0), meaning the FVA associated with

an upfront equal to the default-free market value V0.

C. Discussion of Magnitudes of XVAs and Their Impacts on Dealer Quotation

To interpret the results in Table II, we focus at first on the payer swap at a fixed coupon rate of

1.783%, and consider how the shareholder value v∗ of (27) differs from the market value v of (23).

The fair value of the swap is obtained by subtracting the CVA net of the DVA from the

value V0 of a default-risk-free swap (which in this example is zero), for a total reduction of

$479, 000−$124, 000 = $355, 000, which is economically equivalent to 5.1−1.3 = 3.8 basis points in

running-coupon terms. Relative to this fair value, the funding value adjustment Φ(V0) for the swap

represents a cost to shareholders of approximately $116,000, which is economically equivalent in

terms of its cost to shareholders to an increase of approximately 1.2 basis points in the fixed coupon

rate paid by the dealer. The margin value adjustment Ψ (assuming that the dealer is actually sub-

ject to initial margin) represents an additional $116, 000 cost to shareholders. (The approximate

numerical equivalence of FVA and MVA in this example is merely coincidental.) Finally, the DVA

benefit of approximately $124, 000 is of no value to shareholders, so the impact of the swap trade

on the value of the dealer’s equity is less than the fair market value v of the swap by approximately

$116, 000 + $116, 000 + $124, 000 = $356, 000 (which is economically equivalent to an impact on

shareholders of 1.2 + 1.2 + 1.3 = 3.7 basis points running).
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Table II This table shows XVAs, in thousands of dollars, for a 10-year plain-vanilla interest-rate
swap of notional size $100 million. Each cell of the table uses the format xP |xR to show the XVA
xP of the dealer’s payer version of the swap on the left and the corresponding XVA xR of the
dealer’s receiver version of the same swap on the right. Shown in parentheses are the running-
spread equivalents of the associated XVAs, in basis points, meaning the adjustments to the fixed
swap rate K that substitute that compensate for eliminating the upfront payments. The columns
of the table correspond to the fixed coupon rate of the swap. The rows correspond, respectively, to
the funding value adjustment (FVA) given by Φ(V0) of (26), the margin value adjustment (MVA)
given by Ψ of (25), the credit value adjustment (CVA) given by Πc of (21), and the debit value
adjustment (DVA) given by Πd of (22).

K = 1.0% K = 1.783% K = 2.5%

FVA
428 | − 428 116 | − 116 −171 | 171

(4.6 | − 4.6) (1.2 | − 1.2) (−1.8 | 1.8)

MVA
116 | 116 116 | 116 116 | 116

(1.2 | 1.2) (1.2 | 1.2) (1.2 | 1.2)

CVA
942 | 85 479 | 247 236 | 577

(10.0 | 0.9) (5.1 | 2.6) (2.5 | 6.1)

DVA
42 | 471 124 | 240 289 | 118

(0.5 | 5.0) (1.3 | 2.5) (3.1 | 1.3)

From a quotation perspective, the “par” coupon rate K, that making the swap have a zero

market value, is approximately 178.3 − 3.8 = 174.5 basis points. However, as we just noted,

entering the swap at these “fair-market” terms represents a swap-rate disadvantage to the dealer’s

shareholders of 3.7 basis points. That is, the dealer’s swap desk, if acting on behalf of shareholders,

should be willing to enter the swap only if the fixed rate paid by the dealer is no greater than 170.8

basis points.

As for the receiver version of this swap, the dealer’s shareholders benefit only if they receive an

upfront that is increased above the initial fair market value of the swap by the sum of the FVA,

MVA, and DVA, which is $240,000, or a running-spread equivalent of 2.5 basis points of notional.

(In this case, the FVA is negative, but this funding benefit to shareholders is more than offset by the

total of the MVA and DVA.) Equivalently, the shareholder breakeven receiver swap rate is 2.5 basis

points above the fair-market rate of 178.3 + 2.6− 2.5 ' 178.4 basis points. That is, the swap desk

should not enter as a receiver at a zero upfront payment unless it can receive a swap rate of at least

178.4+2.5 = 180.9 basis points. If quoting both sides of the swap so as to ensure that shareholders

break even, this represents a bid-ask spread of approximately 180.9− 170.8 = 11.1 basis points, an

enormous widening of the spread relative to current unsecured dealer-to-client bid-ask spreads of

under 0.2 basis points.

This example, however, is extreme relative to typical XVA impacts on dealer shareholders and
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on bid-ask spreads. First, dealers have not yet been paying initial margin. Removing the MVA

impacts would reduce the bid-ask spread by 2.4 basis points, leaving a bid-ask spread widening

effect of 8.7 basis points, corresponding to the impact on shareholders of FVA and DVA.

Furthermore, the FVA and DVA impacts of new swaps are frequently beneficial to the dealer,

through netting effects relative to legacy swap positions. This is shown in a structural version

of our model found in Appendix D. In practice, according to OCC (2015), on average across the

largest U.S. swaps dealers as of the end of the third quarter of 2015, netting reduced the gross

positive fair value of swaps by 87%. There is no available breakdown, however, of the impact

of netting on dealer-to-client swaps versus inter-dealer swaps, and no breakdown of the effects of

netting cash flows across counterparties (which reduces FVA impacts on shareholders) and netting

within counterparty positions (which reduces both FVA and DVA impacts on shareholders).

If, for example, the dealer has 25% more payers than receivers, implying a reduction from gross

to net notional positions of 8/9, then the average FVA effect on the total book of all swaps is a

loss to shareholders of only about 1/9 of the impact of a stand-alone payer, per unit of total gross

notional. In our example, the FVA effects for standalone payers and receivers are the same at

all of the coupon rates that we considered. This 1.2 basis point spread compensation to dealer

shareholders is then reduced by netting to about 0.13 basis points running of the gross notional,

or, equivalently, a market value impact on shareholders of about $12,900 per $100 million notional.

Any MVA effects also benefit from netting, by the degree to which the dealer’s initial margin

payments are concentrated among its different CCPs and dealer counterparties. For the case of

credit default swaps, the degree to which initial dealer margin to CCPs and other dealers is reduced

by netting is examined empirically by Duffie, Scheicher, and Vuillemey (2015).

As opposed to the case of FVA, the impact of netting on shareholder DVA costs do not net

across counterparties. However, DVA impacts do net across offsetting positions with the same

counterparty. For example, if the dealer has a DVA that is reduced through counterparty-level

netting by an average factor of two, then the adverse DVA effect on shareholders (relative to

market value) is also reduced by a factor of two. In our example of interest-rate swaps entered at a

fixed rate of 178.3 basis points, the adverse DVA effects on shareholders per $100 million notional,

of $124,000 for payers and $240,000 for receivers, would then each be cut in half.

These illustrative netting effects would imply an average net bid-ask running spread effect of

FVA and DVA of 2× 0.13 = 0.26 basis points and (1.3 + 2.5)/2 = 1.9 basis points respectively, for

a total average widening of the bid-ask spread necessary to compensate shareholders of about 2.2

basis points. Again, these numerical effects of netting are purely illustrative. Nevertheless, they

portray the importance of netting in reducing the adverse impacts on shareholders of FVA and

DVA, and they illustrate the still large residual adverse impacts on shareholders, relative to typical

inter-dealer bid-ask spreads. As we have emphasized, if the dealer aligns the incentives of its swap

trading desk appropriately, the shareholder costs are passed through to clients in the form of wider

bid-ask spreads.

Naturally, as shown in Table II, FVA decreases with the fixed coupon rate K. At a coupon
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rate K of 1.0%, this FVA impact is nearly four times bigger than for a coupon rate of 1.783%.

That is, the higher is the fixed rate, the lower is the value to the dealer, resulting in lower upfront

financing costs to shareholders. For a sufficiently high coupon rate, the FVA becomes negative,

corresponding to a net funding benefit to the dealer. Even though the swap has almost no upfront

at a fixed rate of K = 1.783%, its has a positive FVA because of the upward-sloping yield curve.

That is, the swap is projected to increase in market value over time, as the net coupons flowing

to the dealer are expected (under the valuation measure P ∗) to increase over time. In our model

setting, the MVA is invariant to the fixed coupon rate K.

As of January 2016, the bid-offer spread on a 10-year par-coupon plain-vanilla LIBOR swap

has been around 0.1 bps to 0.2 bps, or about $10,000 to $20,000 in dollar terms. As one can see,

the impacts of FVA, DVA, and MVA on equity breakeven swap rates are much larger than these

typical bid-offer spreads. The fact that dealers now pay close attention to “XVA optimization,” as

reported by Sherif (2016a), is therefore not surprising.

V. Concluding Remarks

We now conclude by briefly recapitulating our main results and then discussing additional

implications and new research directions.

Based on a neoclassical structural model of the balance sheet of a dealer, we show that the

quantity known in practice as the “funding value adjustment” is essentially the cost to the dealer’s

shareholders for financing up-front counterparty cash payments and collateral requirements. This

cost to shareholders (which can be negative for swaps that generate positive cash flows to the

dealer) is at least partially offset by a change in the value of dealer creditor claims. The total of

these value effects on shareholders and creditors is a change in the value of the dealer’s frictional

financial distress costs.

Our modeling approach is to (i) provide a marginal valuation theory for debt and equity benefits

associated with financing new investments, (ii) derive a pecking order for shareholder financing

preferences, (iii) apply our framework to the impact on equity and debt values of the unsecured

debt financing of swap upfront payments and initial and variation margin cash flows, (iv) analyze

the impact of shareholder preferences on dealer swap quotations, (v) extend by analogy our simple

discrete-time structural model to a reduced-form continuous-time term-structure setting, and (vi)

for a parametric example of the continuous-time model calibrated to recent interest-rate derivatives,

obtain illustrative magnitudes of XVAs and their running-spread equivalents in various examples.

We show that the FVA, and its close cousin the margin value adjustment (or “MVA,” the

cost to shareholders for financing any applicable initial margin), can be viewed as forms of debt

overhang that can easily discourage dealers from entering swaps, even on terms that may add a

significant positive market value to the dealer’s balance sheet. On average across the swap book, a

dealer’s shareholders must be compensated for FVAs, MVAs, and debit value adjustments (DVAs)

by counterparty “donations” in the form of swap pricing terms that imply trading losses to swap
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clients. In particular, for a dealer’s shareholders to avoid a loss when their firm enters a new swap

position, the swap terms must imply a gain the market value of the dealer’s swap positions that is

at least as large as the sum of the incremental FVA, MVA, and DVA of the swap. (In some cases,

however, this sum can be negative, implying a gain to shareholders above and beyond the P&L on

the trade.)

For example, consider the stand-alone $100 million notional interest-rate payer swap of our

illustrative numerical example, at a fixed coupon rate of 1.78%. For a term structure of interest

rates and swap-rate volatility like those for the US dollar swap market in January 2016, entering this

unsecured swap is beneficial to the dealer’s shareholders only if the swap terms imply a trading gain

to the dealer’s balance sheet of $356,000, in roughly equal parts for FVA, MVA (if initial margin

is applicable), and DVA. In practice, as we have discussed in the previous section and modeled

formally in Appendix D, netting the swap cash flows against those of legacy swaps would typically

reduce this required threshold gain significantly, and in proportion to the degree of netting, case

by case.

Although the implications of DVA for swap market values are widely treated in the research

literature and in practice, as far as we are aware they are for the first time shown in this paper

to have a significant incremental impact on shareholder breakeven valuation and breakeven swap

quotation.

Others21 have already noted (although without a supporting structural model) that treating

FVA as an adjustment to the market value of a dealer’s swaps causes various logical contradictions.

A common informal argument has been that adjusting the market value of a swap for funding costs

is a violation of the Modigliani-Miller (MM) Theorem. We confirm that this is the case in the

absence of frictional distress costs and provided that valuation impacts are measured in a marginal

sense. (Otherwise, MM theory does not precisely apply.22) Another inconsistency, emphasized by

Burgard and Kjaer (2011), is that an FVA adjustment to swap values violates the simple symmetry

condition by which (in the absence of frictional default distress costs) the value to a dealer for

entering a swap must be equal and opposite to the value of the swap to the counterparty. These

same inconsistencies apply to margin value adjustments (MVAs). In particular, unless there are

frictional financial distress costs, it would be impossible for two dealers entering a swap with each

other to both suffer a loss in the market value of their swap books for the associated margin

financing costs, given that the total of the cash flows on the new swap to the two dealers is clearly

zero. Further, Hull and White (2012) and Burgard and Kjaer (2011) point out that funding cost

adjustments to swap values can imply windfall profits to counterparties or creditors.

Although the common practice of FVA and MVA adjustments to swap market values is inap-

propriate, it may have arisen from the understandable incentive of large bank holding companies

21 We have already cited Hull and White (2012), Cameron (2013), Cameron (2014a), Becker and Sherif (2015),
Hull and White (2014), Albanese and Andersen (2014), and Albanese, Andersen, and Iabichino (2015).

22The MM principle is that in the absence of distress costs the dealer’s total balance-sheet cash flows and thus
total market value are invariant to its capital structure. This is not enough on its own to treat the valuation effects
of swap financing, given that adding a swap changes the dealer’s total cash flows.

29



to discourage their swap desks from entering positions that require significant cash financing, given

that these are (as we show) a drag on shareholder returns. These funding costs became obvious only

after the financial crisis caused significant increases in dealer credit spreads. If accounting practices

eventually change so as to correctly reflect the true nature of FVA, some other form of incentives

for swap traders should presumably be substituted. For example, the variable component of swap

traders’ compensation could be based on their trading P&L, less an estimate of the incremental

impact of their trading on the firm’s FVA, MVA, and DVA.

As we have noted, the clients of dealers must, on average, pay extra, above and beyond the

fair market values of their swap positions, in order to give dealers sufficient incentives to enter

swaps with them. Swap clients are often willing to do so because they have motives to enter swaps,

such as hedging, that dominate these XVA-related trading losses. To the extent that these XVA

“donation effects” are positive, which is the case on average, there is a significant business advantage

to relatively highly capitalized dealers. The losses that clients must incur in order to compensate

dealer shareholders for FVA, MVA, and DVA are all roughly proportional to the dealer’s credit

spread. (Appendix C provides numerical support for the near linearity of these XVAs over a wide

range of dealer credit spreads.) Thus, if Bank A has a credit spread that is half of that of Bank B,

then the shareholders of Bank A can break even with a widening of bid-ask spreads for FVA, MVA,

and DVA that is only about half of the corresponding widening of bid-ask spreads that Bank B

must quote to its customers. For the average case in which FVA, MVA, and DVA sum to a negative

impact on dealer shareholders, this would obviously cause buy-side firms to prefer to trade with

Bank A over Bank B, other things equal. Our illustrative numerical example showed this advantage

to Bank A to be quite significant in economic terms. This XVA advantage to Bank A in attracting

more clients is further magnified by the increased degree of netting that would be expected with

a larger number of swap positions, thus further reducing the XVA-related component of bid-ask

spreads quoted by Bank A, with a positive feedback effect. For special cases in which there is a

significant funding benefit associated with an incremental position, the dealer with the higher credit

spread would be expected to benefit most from the position, and to bid more aggressively for the

trade. This explains recent aggressive bidding by dealers for cross-currency swaps, because of their

typically high funding benefits to dealers, as explained by Wood (2016).

The effect of legacy swap positions for the matching of a buyside firm to a dealer on a new swap

trade, however, can swamp any credit spread advantage of one dealer over another. The dealer

whose netting (and credit spread) result in the lowest incremental sum of FVA, MVA, and DVA

is the dealer that is most efficiently positioned to get the trade. Search costs and OTC market

opaqueness, however, can prevent this most advantaged dealer from actually winning the trade.

Even when there are no legacy swap positions with a given client, the dealer may quote for the

effect of XVA costs to shareholders on the basis of expected future netting effects with that client.

The accounting disclosures of dealers such as J.P. Morgan (2014) state that FVA adjust-

ments originate primarily from unsecured derivatives positions with non-financial corporate clients.

Dealer-to-dealer transactions normally have had little FVA, as they typically exploit a variation-
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margin mechanism that, as suggested by Piterbarg (2010), provides the effect of “built-in” financing.

Starting in late 2016, however, inter-dealer derivatives positions will be required by U.S. regulators

to incorporate initial margin, in order to mitigate the risk of missing payments during the closeout

period that would follow a dealer’s default, as explained by BCBS (2013). European regulators

have delayed implementation of this rule. Initial margin need not be re-pledgable by either party.

The “trapped” portion of initial margin will need to be financed by dealers.23 According to ISDA

(2013), these new regulations will lock up trillions of additional dollars worth of posted margin. For

example, Duffie, Scheicher, and Vuillemey (2015) estimate that new inter-dealer margin require-

ments will increase the aggregate amount of collateral needed in the CDS market by about 70%,

before considering other effects such as central clearing and compression trading.

While accounting value adjustments to swap books for initial margin funding (MVAs) have not

yet been systematically implemented by dealers, one may expect these adjustments for initial margin

financing to ultimately have a significant adverse impact on the shareholder returns of major dealer

banks, unless swap businesses are reduced dramatically or further collateral economies are achieved.

As we have shown, these MVA adjustments should not be made to swap books, as is current

practice, but rather to dealer equity value, but the net impact on reported shareholder returns

would be significant and negative by either approach. This implies sharply increased incentives for

central clearing and new forms of compression trading. Some of these MVA-related costs to dealer

shareholders will end up being passed through to swap clients, as we have explained, in the form

of wider bid-ask spreads. This will likely dampen the overall demand for swaps.

It is no surprise that some major dealers have initiated “XVA optimization” programs.24 Some

dealers may find it necessary to significantly reduce their swap intermediation businesses. One

major dealer, Deutsche Bank, has already eliminated the bulk of its single-name CDS intermediation

business, although the precise motive for this decision was not specifically reported to be motivated

by XVA costs. In 2016, another major dealer, Barclays, sold its substantial “non-core” swap

portfolio to J.P. Morgan.25 Our model shows that this novation trade can be motivated by the fact

that the associated funding costs to J.P. Morgan’s shareholders are lower than those to Barclay’s

shareholders, given that J.P. Morgan’s credit spreads are significantly lower.26 If FVA were to

be treated instead, as suggested by current dealer accounting, as an adjustment to the value of

the derivatives themselves, the novation of this swap portfolio to JP Morgan cannot be motivated

by any such gain to Barclays’ shareholders, who cannot avoid a mark down in the value of their

swaps merely by selling the swaps at a reduced market value. Alternatively, and also consistent

23An international accord reported by Financial Stability Board (2013) mandates the central clearing of standard-
ized swaps, subject to rules and exemptions that vary by jurisdiction, will also have an impact on collateral demand.
The advent of regulations governing initial margin will soon further reduce systemic risk, as explained by BCBS
(2013).

24See Sherif (2016a).
25See Morris (2016) and Parsons (2016).
26As explained by Sherif (2016a), and consistent with our model, “For banks trying to estimate other banks’ FVA

costs, SG CIB’s Lascar describes a rule-of-thumb method that involves using their five-year credit default swap (CDS)
spread. The bank would take its own FVA, divide it by its own CDS spread, and then multiply the result by the
other bank’s CDS spread.”
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with our model, there may be cases in which the novation generates better netting for one dealer’s

shareholders than the other’s, and thus a net gain in both FVA and DVA, when summed across

the two dealers.27

Our structural model of dealer funding costs also has implications for other areas of asset

pricing. For example, based on an extension of our model that allows for the alternative of repo

financing of derivatives hedging positions, Song (2016) shows that some supposed “no-arbitrage”

pricing relationships frequently break down to an economically important degree in the presence

funding costs to derivatives dealers’ shareholders for carrying and hedging dealing inventory. In

particular, Song (2016) shows that put-call parity must be adjusted significantly for longer-dated

options in order to obtain reasonable synthetic pricing for equity dividend strips. He shows that

a failure to do so may have lead to a potentially important bias in prior research on the term

structure of S&P 500 equity risk premia.

In addition to their FVA and MVA adjustments, some banks have recently begun to make further

valuation adjustments, so as to factor other regulatory effects into their accounting valuations.

For instance, as discussed by Sherif (2015a) and Sherif (2016a), a “capital value adjustment”

known as “KVA” is purportedly a markdown of the market value of the dealer’s swaps associated

with the amount of capital needed to support derivatives trading, whether to meet economic risk

management requirements or regulatory capital rules. In practice, KVAs are not based on any

sort of coherent model. Our basic theory in Section II does indeed imply that when swap or other

positions calls for additional equity capital, there is an associated cost to shareholders, which we

calculate. This is not, however, an adjustment to the value of the positions themselves, but rather

to the value of equity and debt clams on the dealer. Our calculations, however, consider only the

amount of equity needed for financing cash or collateral, and not any additional equity that is

required to meet specific regulations, such as those associated with Risk Weighted Assets or the

Supplementary Leverage Ratio. We have also ignored the incremental costs to shareholders for

swap or other new positions associated with meeting the Liquidity Coverage Ratio rule (which may

trigger the need to finance additional High Quality Liquid Assets), the Net Stable Funding Ratio,

and stress tests (such as CCARs). These rules imply incremental costs to legacy shareholders, and

thus have implications for dealer quotation and trader compensation analogous to, but structurally

different from, those that we have analyzed in this paper. We leave these KVA and other related

implications to future work.

Also left for future research are models determining optimal intermediation strategies, from the

viewpoint of dealer shareholder value maximization, given the implications that we have shown

for a divergence between fair market values of new positions (in the form of “P&L”) and the

associated changes in the equity value of the dealer’s firm. For example, it is interesting to note

that two banks are able to execute trades with each other at prices that can improve the shareholder

values of both firms, especially in the context of MVA. Margin lending strategies, as explained by

27In this case, however, the novation can also be motivated in part by the associated reduction through netting in
deadweight expected financial distress costs.
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Albanese, Andersen, and Iabichino (2015), can give dealers access to comparatively cheap funding,

and provide efficient collateralized funding for lower-rated banks. We believe this is also a topic

that will increase in recognized importance.

In general, the management of various “XVA costs” to bank shareholders will test the ability

of financial market participants to adapt to a new reality in which a variety of previously under-

appreciated financing and regulatory costs to dealer shareholders must be managed in order for

robust over-the-counter market intermediation by regulated dealers to remain viable.
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Appendix A Proofs and Calculations for Sections II and III

This appendix supplies proofs of Propositions 1, 2, and 3, and a supplementary calculation of

the marginal valuation of the swap transaction package to legacy creditors in Section III.E. For

generality, we consider two cases: (i) there are finite states of the world, (ii) there are infinitely

many states of the world with a continuous joint density function of A and L. In either case, we

assume that A, L, and some given random payoff Y have finite expectations with respect to P ∗.

Proof of Proposition 1: Because we have assumed a competitive capital market with complete

information, creditors offering the new debt break even. That is, the market credit spread s(q) on

the new debt, which is issued to finance the cost U(q) of the new position, solves

U(q) = δE∗
[
1Dc(q)U(q)(R+ s(q)) + 1D(q)

κ(A+ qY1 + qY +
2 )

L+ U(q)(R+ s(q)) + qY −2
U(q)(R+ s(q))

]
,

where we recall Dc(q) is the dealer’s survival event {A+ qY −L−U(q)(R+ s(q)) ≥ 0}. By letting

q go to zero, one can easily see from the equation that limq→0 s(q) exists, and that limq→0 s(q) =

S = RE∗(φ)/(1− E∗(φ)), where φ = 1D(L− κA)/L.

(1) If the dealer finances the position by issuing new debt, the marginal value of the asset

purchase to shareholders is defined by

G =
∂E∗[δ(A+ qY − L− U(q)(R+ s(q)))+]

∂q

∣∣∣∣
q=0

.

We intend to show that the derivative exists and is given by

G = δE∗[1Dc(Y − u(R+ S))].

By definition,

G = lim
q→0

δ
E∗[1Dc(q)(A+ qY − L− U(q)(R+ s(q)))]− E∗[1Dc(A− L)]

q

= lim
q→0

δ
E∗[1Dc(q)(qY − U(q)(R+ s(q)))] + E∗[(1Dc(q) − 1Dc)(A− L)]

q
.

We know

lim
q→0

δ
E∗[1Dc(q)(qY − U(q)(R+ s(q)))]

q
= lim

q→0
δE∗[1Dc(q)(Y − U(q)/q(R+ s(q)))]

= δE∗[1Dc(Y − u(R+ S))],

where the last equality is due to that limq→0 U(q)/q and limq→0(R + s(q)) exist, and that A, L,
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and Y have finite expectations, allowing interchangeability of the limit and expectation. We only

need to show

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
= 0. (31)

There are two cases to be considered:

(i) If the set of possible states of the world is finite, then there exists a q0 such that for any

q < |q0|, 1Dc(q) − 1Dc = 0. Thus, (31) is immediate.

(ii) If there are infinitely many states of the world, under which A and L have a joint continuous

density function, then we know

lim
q→0

P ∗(Dc(q)) = P ∗(Dc).

It is easy to see that

1Dc(q) − 1Dc = 1Dc(q)∩D − 1D(q)∩Dc ,

and that |A− L| ≤ q|Y − (r + s(q))U(q)/q| on the events Dc(q) ∩D and D(q) ∩Dc. Thus,

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
≤ lim

q→0
δ
E∗[|1Dc(q)∩D(A− L)|] + E∗[|1D(q)∩Dc(A− L)|]

q

= lim
q→0

δE∗[|(1Dc(q)∩D + 1D(q)∩Dc)(Y − U(q)/q(R+ s(q)))|].

By the Lebesgue Dominated Converge Theorem,

lim
q→0

E∗[|(1Dc(q)∩D + 1D(q)∩Dc)Y |] = E

[
lim
q→0
|(1Dc(q)∩D + 1D(q)∩Dc)Y |

]
= 0.

Since limq→0 U(q)/q and limq→0(r + s(q)) exist, we have

lim
q→0

E∗
[
(1Dc(q)∩D + 1D(q)∩Dc)

U(q)

q
(R+ s(q))

]
= lim

q→0
E∗[(1Dc(q)∩D+1D(q)∩Dc)]

U(q)

q
(R+s(q)) = 0.

Thus,

lim
q→0

δ
E∗[|(1Dc(q) − 1Dc)(A− L)|]

q
= 0,

and we have shown that

G = δE∗[1Dc(Y − u(R+ S))].

(2) We also characterize the marginal valuation of the new position to the dealer’s legacy

creditors. Recall that Y = Y1 + Y2, where Y −1 is secured and Y −2 is unsecured. For an investment

of q units, the dealer’s assets at time 1 are

A(q) = A+ qY +
2 + qY1,
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and the dealer’s total liabilities due at time 1 are

L(q) = L+ qY −2 + U(q)(R+ s(q)).

Thus, the marginal value of the transaction package to the existing creditors is defined by

H =
∂δE∗

[
(1− 1D(q))L+ 1D(q)

κA(q)
L(q) L

]
∂q

∣∣∣∣∣∣
q=0

,

where we recall D(q) is the dealer’s default event with the new position. Thus,

H = lim
q→0

δ
E∗
[
(1− 1D(q))L+ 1D(q)

κA(q)
L(q) L

]
− E∗[(1− 1D)L+ 1DκA]

q

= lim
q→0

δ
E∗[1D(q)(A(q)−A)]− (1− κ)E∗[1D(q)A(q)− 1DA]− E∗

[
1D(q)

L(q)−L
L(q) κA(q)

]
q

,

where the last equality is due to that limq→0E
∗[(1Dc(q) − 1Dc)(A − L)]/q = 0, as we have shown.

For simplicity, we write

ψ ≡ lim
q→0

E∗
(
A(q)1D(q)

)
− E∗ (A1D)

q
= E∗[1D(Y +

2 + Y1)] + lim
q→0

E∗[A(1D(q) − 1D)]

q
,

where we write γ = (1− β)1B. There are two cases to be discussed:

(i) In the finite-space case, 1D(q) − 1D = 0 for sufficiently small q. Thus, limq→0E
∗[A(1D(q) −

1D)]/q = 0, and

ψ = E∗[1D(Y +
2 + Y1)].

(ii) In the infinite-state space case,

ψ = E∗[1D(Y +
2 + Y1)] + J,

with J ≡ limq→0E
∗[A(1D(q) − 1D)]/q. The existence of J is guaranteed by the fact that A and L

have a continuous joint density.

Thus, the marginal value of the package to the existing creditors is

H = δE∗[1D(Y +
2 + Y1)]− δE∗

[
1D

κA

L
(Y −2 + u(R+ S))

]
− δ(1− κ)ψ

= δE∗[1D(Y − uR)] + δE∗(φY −2 ) + δE∗(1DcuS)− δ(1− κ)ψ,

where the last equality is due to that E∗(1DuR) − E∗[1Du(R + S)κA/L] = E∗(1DcuS). In the
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special case that the deadweight frictional loss is zero (that is, if κ = 1), then

H = δE∗[1D(Y − uR)] + δE∗(φY −2 ) + δE∗(1DcuS).

The asset-substitution effect: Our first-order analysis captures the effect of debt overhang,

but not the effect of asset substitution, by which there may be some offsetting shareholder ben-

efit associated with adding more volatile cash flows, given the option-like effect of the limited

liability of equity positions. Here, we provide supporting calculations for the second-order, asset-

substitution, impact on shareholder value. By the usual Taylor-series argument, the second-order

asset-substitution effect is always dominated by the first-order debt-overhang effect for sufficiently

small incremental positions.

Here, in order to get simple explicit expressions, we treat only settings in which (A,L, Y ) has a

continuous joint density function. Cases with finitely many states of world are therefore omitted.

The existence of the derivative s′(q) of the credit spread with respect to the new position size

q is guaranteed by the joint continuous density function for (A,L, Y ).) We assume that U(q) is

differentiable, and that limq→0 U
′(q) = u.

We first calculate the marginal shareholder value

G(q) ≡ δ
∂E∗[(A+ hY − L− U(h)(R+ s(h)))+]

∂h

∣∣∣∣
h=q

.

By definition,

G(q) = lim
h→q

δ
E∗
[
(A− L+ hY − U(h)(R+ s(h))1Dc(h)

]
− E∗

[
(A− L+ qY − U(q)(R+ s(q)))1Dc(q)

]
h− q

= lim
h→q

δ
E∗
[
((h− q)Y − (U(h)− U(q))R)1Dc(h)

]
h− q

− lim
h→q

δ
E∗
[
(U(h)s(h)− U(q)s(q))1Dc(h)

]
h− q

+ lim
h→q

δ
E∗
[
(A− L+ qY − U(q)(R+ s(q)))

(
1Dc(h) − 1Dc(q)

)]
h− q

= δE∗[(Y − U ′(q)R)1Dc(q)]− δE∗[1Dc(q)(U(q)s′(q) + s(q)U ′(q))] + Π(q),

where

Π(q) = lim
h→q

δ
E∗[(A− L+ qY − U(q)(R+ s(q)))(1Dc(h) − 1Dc(q))]

h− q
.

By arguments similar to those above, Π(q) ≡ 0. Thus,

G(q) = δE∗[(Y − U ′(q)R)1Dc(q)]− δE∗[1Dc(q)(U(q)s′(q) + s(q)U ′(q))].

We have shown that

G(0) = δE∗[1Dc(Y − uR)]− δE∗[u1DcS].
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The second derivative of shareholder value with respect to position size q is

g = lim
q→0

G(q)−G(0)

q

= lim
q→0

δ
E∗[1Dc(q)(Y − u(R+ s(q)))]− E∗[1Dc(Y − u(R+ S))]

q
− δE∗[1Dcus′(0)]

= lim
q→0

δ
E∗
[(

1Dc(q) − 1Dc
)

(Y − u(R+ S))
]

q
− 2δE∗[1Dcus

′(0)]

= δE∗[(Y − u(R+ S))2f(L |L, Y )]− 2δE∗[1Dcus
′(0)], (32)

where f(x |L, Y ) denotes the density at x of A conditional on (L, Y ). In the special case that L is

constant and Y is independent of A, we have

g = δf(L)E∗[(Y − u(R+ S))2]− 2δus′(0)P ∗(Dc). (33)

This second derivative g captures the additional effect of “asset substitution,” by which the dealer’s

shareholders benefit more by adding an asset whose net payoff in the second period after interest

expense, Y − u(R+ S), is more volatile, in the sense of its second moment.

Proof of Proposition 2: The calculations G0 = δE∗(1DcY )−u and G0 = δE∗(1DcY )−uE∗(1Dc)
are obtained in a fashion similar to that shown in the proof of Proposition 1, and omitted for brevity.

Now we will show that G0 ≤ G ≤ G0, and that the inequalities are strict if the dealer’s default

probability is positive. By the fact that

G = δE∗[1Dc(Y − u(R+ S))] = δE∗(1DcY )− δu(R+ S)E∗(1Dc),

we have G0 ≥ G. Moreover, G0 > G if the credit spread S is strictly positive.

By the fact that G0 = δE∗(1DcY )− u, it suffices to show that u ≥ δu(R+ S)E∗(1Dc) in order

to see that G ≥ G0. We recall that S = RE∗(φ)/(1− E∗(φ)) and φ = 1D(L− κA)/L. Thus,

1− E∗(φ) ≥ P ∗(Dc),

which is equivalent to 1 ≥ δ(R+ S)P ∗(Dc). Again, the inequality is strict if S is positive.

Proof of Proposition 3: The proof has three parts.

(i) We have characterized the net cash flow of the package of transactions if the dealer finances

the upfront payment U(q) by issuing new debt. The net cash flow at time 1, from the viewpoint of

the dealer, is

C(q) = q(X −K)− q(1− β)(X −K)+1B + (1− κρ(q))q(X −K)−1D(q)
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where D(q) = {A − L + qY − U(q)(R + s(q)) < 0} is the event of the dealer’s default with

Y = X −K − (1− β)(X −K)+1B, and ρ(q) is the asset-to-debt payoff ratio

ρ(q) =
A

L+ U(q)(R+ s(q)) + q(X −K)−
.

Thus, the market value of the package of transactions is

V(q) = δE∗[C(q)].

(ii) Suppose the dealer finances the initial investment by issuing new equity. The dealer’s default

event in this case is D0(q) = {A− L+ qY < 0}. The cash flow q(X −K) of the unsecured client-

to-dealer is not paid in full at time 1 in either of the two events: (a) the event that the client

defaults and q(X −K) > 0, in which case the dealer receives βq(X −K) from the client, and (b)

the event that the dealer defaults and q(X −K) < 0, in which case the client is pari passu with

other creditors of the dealer, and the proportional recovery rate is

κρ0(q) =
κA

L+ q(X −K)−
.

Thus, the net cash flow at time 1, from the viewpoint of the dealer, is

C0(q) = q(X −K)− q(1− β)(X −K)+1B + (1− κρ0(q))q(X −K)−1D0(q).

The market value of the package of transactions is

V0(q) = δE∗[C0(q)].

(iii) If the dealer finances the initial investment by using cash from its balance sheet, the dealer’s

default event is D0(q) = {A+ qY − L− U(q)R < 0}. Thus, the net cash flows at time 1, from the

dealer’s perspective, is

C0(q) = q(X −K)− q(1− β)(X −K)+1B + q(1− κρ0(q))(X −K)−1D0(q),

where ρ0(q) = (A−U(q)R)/(L+q(X−K)−). Thus, the market value of the package of transactions

is

V0(q) = δE∗[C0(q)].

It is easy to see that whether the dealer finances the initial investment by issuing debt, by

issuing equity, or by using existing cash, the marginal value of the package to the dealer is

V = lim
q→0

V(q)

q
= lim

q→0

V0(q)
q

= lim
q→0

V0(q)
q

= δ(X −K) + δE∗[φ(X −K)−]− δE∗[γ(X −K)+],
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where the last equality is due to the fact that A, L, and Y have finite expectations, allowing

interchangeability of the limit and expectation.

Marginal Valuation to Legacy Creditors: We characterize the marginal valuation of the swap

transaction package to legacy creditors in Section III.E.

(1) We calculate the marginal value of the package of transactions to the legacy creditors H,

by assuming the dealer finances the initial investment by issuing new debt. For an investment of q

units, the dealer’s assets at time 1 are

A(q) = A+ q(X −K)+ − q1B(1− β)(X −K)+ + q(K̃ −X) + qIR.

The dealer’s total liabilities due at time 1 are

L(q) = L+ q(X −K)− + qI(R+ s(q)).

As in the proof of Proposition 1, we can show that the marginal value of the package to the existing

creditors is

H = δP ∗(D)(K̃ −K) + Λ + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ,

where (i) in the finite-state space case,

ψ = E∗[1D((X −K)+ + (K̃ −X) + IR)]− E∗[γ1D(X −K)+],

and (ii) in the infinite-state space case,

ψ = E∗[1D((X −K)+ + (K̃ −X) + IR)]− E∗[γ1D(X −K)+] + J

with J = limq→0E
∗[A(1D(q) − 1D)]/q. The existence of J is guaranteed by the fact that A and L

have a continuous joint density.

(2) If the dealer finances the initial investment by issuing new equity, it can be shown similarly

that the marginal value of the package of transactions to the dealer’s legacy creditors H0 is

H0 = δP ∗(D)(K̃ −K) + E∗(1D)I + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ0,

where (i)

ψ0 = E∗[1D(K̃ −X + IR+ (X −K)+)]− E∗[γ1D(X −K)+]

in the finite-state space case, and (ii)

ψ0 = E∗[1D(K̃ −X + IR+ (X −K)+)]− E∗[γ1D(X −K)+] + Ĵ
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in the infinite-state space case with Ĵ = limq→0E
∗[A(1D0(q) − 1D)]/q.

(3) If the dealer finances the initial investment by using cash on the balance sheet, the marginal

value of the package of transactions to the dealer’s legacy creditors H0 is

H0 = δP ∗(D)(K̃ −K) + δE∗[φ(X −K)−]− δE∗[γ1D(X −K)+]− δ(1− κ)ψ0,

where (i)

ψ0 = E∗[1D(K̃ −X + (X −K)+)]− E∗[γ1D(X −K)+]

in the finite-state space case, and (ii)

ψ0 = E∗[1D(K̃ −X + (X −K)+)]− E∗[γ1D(X −K)+] + J̃

in the infinite-state space case with J̃ = limq→0E
∗[A(1D0(q) − 1D)]/q.

If there are no deadweight frictional losses at the dealer’s default (that is, if κ = 1), we have

the following result.

COROLLARY 1: MODIGLIANI-MILLER INVARIANCE. If the fractional default recovery rate

κ is 1, then the total marginal value of the forward portfolio to the dealer is invariant to how the

collateral is financed, and identical to the market value of the forward portfolio. That is,

G+H = G0 +H0 = G0 +H0 = v.

Appendix B Multi-Period Model

We generalize the basic model of Section III to 2 periods with 3 dates t = 0, 1, 2. New informa-

tion is revealed at the interim date 1 through observation of a collect Z of random variables. All

uncertainty is resolved at date 2. We let E∗1 denote expectation under P ∗ conditional on Z. We

assume that the one-period gross risk-free returns are R0 and R1 at time 0 and 1, respectively. We

don’t require R1 to be constant. Thus, the fair market value of cash flows of {Ct}2t=1 is defined as∑2
t=1E

∗(δtCt), where δ1 = 1/R0 and δ2 = 1/(R0R1).

We consider a dealer whose pre-existing assets have payoffs at time 2 are given by some random

variable A. The firm has short-term liabilities L1 that expire at time 1 and long-term liabilities

L2 that expire at time 2. We assume that the dealer liquidates a portion of its legacy assets to

pay back the maturing liabilities L1 at time 1 and pay out dividend π1, which is also a random

variable. If the liquidation value of asset is not enough to cover L1, the dealer defaults, which

we denote the event as D1. We let W denote the payoff at time 2 of the liquidated assets. As

a result, the firm defaults at time 2 in the event D2 = {A −W < L2}. In the dealer’s default

events D1 and D2, we assume all liabilities are pari passu with each other, and the recovery rates of

assets are some constant κ1 and κ2, respectively. We let τD denote the dealer’s default time. If the
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dealer survives at time 2, that is, τD =∞, the firm is liquidiated and the remaining cash flows are

attributed to shareholders after paying back creditors. Thus, the total value of the firm’s equity is

E∗[δ11{τD>1}π1] + E∗[δ21{τD>2}(A−W − L2)]. The total value of the dealer’s liabilities is

E∗[δ11{τD>1}L1 + δ11{τD=1}κ1E
∗
1(A)/R1] + E∗[δ21{τD>2}L2 + δ21{τD=2}κ2(A−W )].

We assume either (i) finite states of the world, or (ii) infinitely many states of the world with

standard continuity conditions of (A,W,L1, L2) as in Section II. As in Section II, the dealer’s

marginal credit spread at time 0 for short-term (one-period) debt is

S0 =
E∗(φ1)R0

1− E∗(φ1)
,

where φ1 = 1D1(L1 + E∗1(L2)/R1 − κ1E∗1(A))/(L1 + E∗1(L2)/R1). If the dealer survives at 1, the

dealer’s marginal credit spread at time 1 for one-period debt is

S1 =
E∗1(φ2)R1

1− E∗1(φ2)
,

where φ2 = 1D2(L2 − κ2(A−W ))/L2.

In this two-period setting, a swap is a contract promising (i) floating payment X1 in exchange

for fixed payment K1 at time 1, and (ii) floating payment X2 in exchange for fixed payment K2

at time 2, before considering the effect of counterparty default. We let C1 ≡ X1 − K1 and let

C2 ≡ X2 −K2. We focus on the payer swap, that is, the positive cash flow of this contract is an

asset to the dealer, whereas the negative cash flow is a contingent liability. A swap position of size

q requires the dealer to make an upfront payment of U(q). We assume u = limq↓0 U(q)/q exists.

Results for the reverse case are obvious by analogy.

The supporting calculations for the following results are similar to Appendix A and are omitted

for brevity.28

A Valuing Unsecured Swaps with Upfront

In this section, we extend the results in Section III.A. That is, the client swap is assumed to be

fully unsecured. For simplicity, we assume that at the interim period, swap counterparties default

after the coupon payment.29 We let τC denote the swap client’s default time. At the client’s default,

the dealer recovers a fraction β1 and β2 of any remaining contractual amount due to the dealer at

time 1 and time 2, respectively. We also suppose that there are no pre-existing positions between

the swap client and the dealer. The effect of netting the new swap flows against those of the legacy

positions with the same client is analyzed in Appendix D.

We have the following natural extension of the basic one-period swap valuation model in Section

III.A.

28The calculations will be provided to readers upon request.
29This assumption is valid for the purpose of marginal analysis.
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PROPOSITION 4: Whether the dealer finances any net payments by issuing debt, issuing equity,

or using existing cash on its balance sheet, the marginal market value of the swap is well-defined by

v = E∗

(
2∑
t=1

δtCt − u

)
+E∗

(
2∑
t=1

δt1{τD=t,τC>t−1}φtV
−
t

)
−E∗

(
2∑
t=1

δt1{τC=t,τD>t−1}(1− βt)V
+
t

)
,

(34)

where V1 = E∗1(C2)/R1 and V2 = C2.

As in the single-period model, the swap value (34) includes two credit-related adjustments for

the default free value, V0 = E∗(δ1C1) + E∗(δ2C2), for default. The CVA is

E∗

[
2∑
t=1

δt1{τC=t,τD>t−1}(1− βt)V
+
t

]

and the DVA is E∗
[∑2

t=1 δt1{τD=t,τC>t−1}φtV
−
t

]
. The market value of the same swap from the

viewpoint of the swap client is of course −v.

Now, we analyze the marginal value of the new swap to shareholders of the dealer, we as-

sume that the positive financing requirement is financed by issuing short-term (one-period) debt.

Likewise, any net positive cash flow to the dealer is used to retire short-term debt.

PROPOSITION 5: If the dealer issues debt to finance net payments and uses received cash to retire

outstanding debt, then the marginal value of the swap to the dealer’s shareholders is well defined by

G = E∗

[
1{τD>2}

(
2∑
t=1

δtCt − u

)]
− E∗

[
1{τD>2}

(
2∑
t=1

δt1{τC=t}(1− βt)V
+
t

)]
− Φ(u), (35)

where

Φ(u) = E∗
[
δ11{τD>1}uS0 + δ21{τD>2,τC>1}uR0S1

]
− E∗

[
δ21{τD>2,τC>1}C1S1)

]
,

is the debt funding valuation adjustment.

As in Section III.B, if the swap is executed at the “conventional” upfront,

u∗ = V0 − c∗ = V0 − E∗
(

2∑
t=1

1{τC=t}δt(1− βt)V
+
t

)
,

then the marginal value of the swap portfolio to the dealer’s shareholders is

G = cov

(
1{τD>2},

2∑
t=1

δtCt −
2∑
t=1

1{τC=t}δt(1− βt)V
+
t

)
− Φ(u∗). (36)

In practice, c∗ is often known as Unilateral Credit Valuation Adjustments (UCVA),30 and it is

30See Albanese and Andersen (2014) for details on UCVA.
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different from the CVA in (34) as it does not take into account the dealer’s default. In the case

that the dealer’s default is independent of the swap cash flows, the shareholder value is

G = −Φ(u∗).

In analogy with (16), for a small spread S, we see that the dealer’s indifference quote is approxi-

mately u∗ − Φ(u∗).

B Inter-dealer Hedge, Initial Margin, and MVA

In this subsection, we consider a swap dealer hedges the unsecured swap with a fully collateral-

ized inter-dealer swap that requires the dealer to post both initial margin and variation margin. We

assume that the hedge-motivated collateralized swap with another dealer or a central counterparty

has a net receivable of −C1 = K1 − X1 at time 1 and a net receivable of −C2 = K2 − X2 at

time 2. The hedging swap requires the dealer to post both cash initial margin of I0 and I1, and

variation margin M0 and M1 at time 0 and time 1, respectively. We follow the same variation

margin mechanism as in Section III.C,and we assume that M0 = V0 = E∗
(∑2

t=1 δt(Xt −Kt)
)

and

M1 = V1 = E∗1(X2 −K2)/R1, the standardized margin payment that equal to the market value of

the hedging swap. We assume this hedging swap is transacted at the fullly collateralized value V0.

We have the following natural extension of the basic one-period swap valuation model with

inter-dealer hedge.

PROPOSITION 6: If the dealer issues debt to finance margin payments and uses received margin

to retire outstanding short-term debt obligations, then the marginal value of the swap portfolio to

the dealer’s shareholders is well defined by

G = E∗
[
1{τD>2} (V0 − u)

]
− E∗

[
1{τD>2}

(
2∑
t=1

δt1{τC=t}(1− βt)V
+
t

)]
− Φ(u)−Ψ,

where

Φ(u) = E∗
[
δ11{τD>1}uS0 + δ21{τD>2,τC>1}V1S1

]
+ E∗

[
δ21{τD>2,τC>1}(u− V0)

]
,

is the funding value adjustment, and

Ψ = E∗
(
δ11{τD>1}I0S0

)
+ E∗

(
δ21{τD>2,τC>1}I1S1

)
is the margin value adjustment.

In the special case that the unsecured swap is executed at the default-free market value, that

is, u = V0, the FVA is

Φ(V0) = E∗
[
δ11{τD>1}V0S0 + δ21{τD>2,τC>1}V1S1

]
.
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C Imperfect Variation Margin and FVA

So far, we have assumed that the client swap is fully unsecured. It is also of interest to consider

the case that the client swap requires both counterparties to post some variation margin. To be

concrete, we assume the client swap requires some “imperfect” variation margin, so that m0 and m1

are the amount of variation margin in the dealer’s possenssion at time 0 and time 1, respectively.

We assume this client swap is hedged with the same fully collateralized inter-dealer swap in Section

B.B.

By direct algebra, the FVA in this case is

Φ(u) =E∗
[
δ11{τD>1}(V0 −m0)S0 + δ21{τD>2,τC>1}(V1 −m1)S1

]
+ E∗ [δ11τD>1(u− V0)] + E∗

[
δ21{τD>2,τC>1}(u− V0)

]
.

In the case that the client swap is execuated at the default-free market value V0, then the FVA is

Φ(V0) = E∗
[
δ11{τD>1}(V0 −m0)S0 + δ21{τD>2,τC>1}(V1 −m1)S1

]
.

If the “imperfect” margin becomes “perfect”, that is, if m0 = V0 and m1 = V1, then the FVA

Φ(V0) = 0.

D Cash Management Strategy and Asymmetric FVA

Our denition of FVA is symmetric, in the sense that cash inflows and outflows are assumed to

be financed or to reduce financings, respectively, at a spread of S. For the case of cash inflow, this

implicitly assumes that there is always some short-term unsecured debt to roll over whose total

amount can be reduced by swap cash inflows.

Now, we consider the case that the cash outflows are financed with unsecured debt and cash

inflows are invested at the risk-free rate. All else are equal as in Section B.B. Correspondingly, we

can calcuate the “asymmetric funding value adjustment” (AFVA) as

Φ̃(u) = E∗
[
δ11{τD>1}u

+S0
]

+ E∗
[
δ21{τD>2,τC>1}(V1 + u− V0)+S1

]
.

If the unsecured swap is executed at u = V0, then the AFVA is

Φ̃(V0) = E∗
[
δ11{τD>1}V

+
0 S0

]
+ E∗

[
δ21{τD>2,τC>1}V

+
1 S1

]
.

Appendix C Details for Continuous-Time Reduced-Form Model

This appendix provides additional details underlying the continuous-time reduced-form model

of Section IV.
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A Technical Assumptions

We fix our probability space, (Ω,F , P ∗) and a filtration {Ft : t ≥ 0} of sub-σ-algebras of

F satisfying the usual conditions, as defined by Protter (2005). We take the short-rate process

r = {rt : t ≥ 0} to be progressively measurable and adapted, and such that
∫ t
0 |rs| ds is finite

almost surely for all t. As usual, we let E∗t denote conditional expectation with respect to Ft.
All probabilistic statements to follow are with respect to our valuation probability measure P ∗.

This means, by definition, that the market value at time t of a fully collateralized claim to some

payment C at some bounded stopping time T ≥ t is by definition E∗t (δt,T C), where δt,u = e−
∫ u
t r(s) ds

for any times t and u ≥ t. Here, C is measurable with respect to FT and such that e−
∫ T
0 rs dsC has

a finite expectation with respect to P ∗.

Before considering the effect of incremental cash flows associated with a new position, the

derivatives dealer defaults at a stopping time τD with intensity process31 λD. An unsecured claim

of size C on the dealer’s estate at default is paid (1−`D(τD))C, for some proportional loss process32

`D taking outcomes in [0, 1]. This implies that the dealer’s short-term credit spread at time t is

St = λD(t)`D(t). That is,33 each unit of the dealer’s short-term unsecured debt can be continually

renewed, or “rolled over,” until any fixed time U , or until default, whichever comes earlier, by

making continual floating-rate interest payments at the adjusting rate rt + St, and by making a

final payment of 1 at time U in the event that default occurs after time U . In the event that the

default time τD is before U , each unit of this debt recovers 1− `D(τD) at default.

Similarly, a given client swap counterparty has default risk characterized by a default time τC

with intensity process34 λC , and by a proportional loss-given-default process `C .

The CVA and DVA definitions and calculations shown in Section IV.A, from Duffie and Huang

(1996), differ from the so-called “unilateral” CVA and DVA, which are given, respectively, by

Π′c = E∗
(
1{T>τC}δ0,τC `CV

+
t

)
and

Π′d = E∗
(
1{T>τD}δ0,τD`DV

−
t

)
.

See Albanese and Andersen (2014) for details. The unilateral definitions abstract from the fact

that the dealer’s default is irrelevant if the customer has already defaulted, and vice versa.

31 The default time τD of the dealer is doubly stochastic driven by a sub-filtration {Gt : t ≥ 0} of {Ft : t ≥ 0} to
which the short-rate process and all payment processes that we consider are adapted. See Duffie (2001), Chapter 11,
for details.

32We assume that `D is a predictable process. One can generalize so as to get essentially the same result, under
mild regularity, by replacing `D with the dual predictable projection of a loss-given-default random variable.

33This follows from the fact that a martingale M is defined by

Mt = E∗t

(∫ U

0

δt,u(ru + Su)1{τD>u} du+ 1τD>Uδ0,U + 1τD≤U δt,τD `D(τD)

)
.

The same result applies if U is any given bounded stopping time relative to the driving sub-filtration {Gt : t ≥ 0}.
34The counterparty default time τC is jointly doubly stochastic with τD, and driven by the same sub-filtration
{Gt : t ≥ 0}.
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B Computational Analysis

We provide the computational analysis underlying the numerical examples in Section IV.B of

XVAs for an unsecured semi-annual plain-vanilla interest rate swap. We assume the swap has a

maturity of 10 years and that the coupon payment dates are {ti}Ni=0, where ti = i∆ with ∆ = 0.5.

At time ti, a payer swap to the dealer has a contractual payment of Ci = ∆(Xi−1 − K), where

Xi−1 is the LIBOR rate fixed at time ti−1 and K is the fixed coupon rate. The first LIBOR fixing

is assumed to take place at t0 = 0, and the last coupon time is tN = 10.

We use the overnight index swap (OIS) rate as a benchmark for the instantaneous risk-free rate

rt, corresponding to a risk-free discount of

p(t, u) = E∗t (δt,u) = E∗t

(
e−

∫ u
t rs ds

)
,

where E∗t denotes conditional expectation at time t under P ∗. As a result, the default-free market

value of the payer swap is

Vt = 1t<tη(t)∆
(
Xη(t)−1)−K

)
p
(
t, tη(t)

)
+ E∗t

 N−1∑
i=η(t)

e−
∫ ti+1
t ru du∆(Xi −K)

 .

C Term Structure Model

We use a one-factor Hull-White term structure model for the short rate rt, as given in Section

IV.B, implying that rt is normally distributed with conditional distribution given rs ofN (m(s, t), v(s, t)) ,

where, with ft = −d log(p(0, t))/dt,

m(s, t) = ft + e−α(t−s)(rs − fs) + e−αt
σ2

2α2

(
eαt − eαs + e−αt − e−αs

)
,

and v(s, t) = σ2/(2α)
(
1− e−2α(t−s)

)
. The associated discount factor at time t for cash flows at

T > t is

p(t, T ) =
p(0, T )

p(0, t)
e−

1
2
G(t,T )2θt−(rt−ft)G(t,T ), (37)

where θt was defined in (30) and G(t, T ) = (1− e−α(T−t))/α.
For simplicity, we assume that the spread ε between the LIBOR rate and the OIS rate is constant

over time. Thus, the LIBOR rate is

Xi = ∆−1
(
p(ti, ti+1)

−1 (1 + ε∆)− 1
)
.

For notational simplicity, we define an annuity factor by

a(t; j) =
N−1∑
i=j

p(t, ti+1)∆,
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an OIS forward yield by

y(t; j) =
p(t, tj)− p(t, TN )

a(t; j)
,

as well as a LIBOR forward yield by yL(t; j) = ε+ (1 + ε∆)y(t; j). By direct algebra, the default-

risk-free version of the swap has market value

Vt = 1t<tη(t)
[
∆
(
Xη(t)−1)−K

)
p(t, tη(t))

]
+ a(t, η(t)) (yL(t, η(t))−K) . (38)

D CVA, DVA, FVA Calculations

For the numerical examples in Section IV.B, we assume that the swap client has a constant

default intensity of λC = 4%. We also assume that the dealer has a constant default intensity

of λD = 2%. We assume that the proportional loss process `C and `D are also constant, and

`C = `D = 50%. This implies a credit spread SD = 1% for the dealer. We further assume that

dealer default and client default are independent of each other and of the state of interest rates.

Thus, the CVA, DVA and FVA are, respectively,

Πc = `CλC

∫ T=10

0
E∗(δ0,tV

+
t )e−(λC+λD)t dt,

Πd = `DλD

∫ T=10

0
E∗(δ0,tV

−
t )e−(λC+λD)t dt,

Φ = SD

∫ T=10

0
E∗(δtVt)e

−(λC+λD)t dt.

As Vt is driven by a single-factor Gaussian model, the expected values in these integrals are easy

to compute from equations (37) and (38); they are shown in Figure 1 below for the payer swaps in

our numerical example, using three different fixed coupon levels.

We write

Ft ≡ E∗t

 N−1∑
i=η(t)

e−
∫ ti+1
t ru du∆(Xi −K)

 ,

and Dt,t+l ≡ Ft+l − E∗t (Ft+l), where l is assumed to be two weeks. When calculating the MVA,

we assume that the margin It is set as the 99th percentile of Dt,t+l. As Dt,t+l is here very closely

approximated by Gaussian random variable, the computation of It is straightforward. The resulting

MVA is

Ψ = SD

∫ T=10

0
E∗(δtIt)e

−(λC+λD)t dt.

In Figure 2 we show E∗(δtIt) for our numerical example. Notice how the initial margin decreases

over time as the duration of the swap shrinks as it approaches the final maturity.
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Figure 1: Exposure profiles for 10-year payer swap.
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Figure 2: Margin exposure profile E∗(δ0,tIt) for 10-year payer swap.

Appendix D The Effect of Netting with Legacy Positions

In this section, we extend the results in Section III.A to the case in which the dealer has a

pre-existing swap position with the swap client.

The dealer purchases a new unsecured swap from a client, which is identical to that in Section

III.A. This same client already has a legacy swap position with the dealer, whose contractually
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promised payment is c0 and requires the dealer to make an upfront payment of u0. As has been our

convention, the positive cash flow of this contract is an asset to the dealer, whereas the negative

cash flow is a contingent liability.

As in the main context, we characterize the marginal value of the new swap investment for the

dealer’s legacy shareholders and legacy creditors (excluding the swap counterparty). We also char-

acterize the marginal market value of the new swap investment. As we have noted, this first-order

valuation approach is sufficiently accurate to analyze the investment, except for the cases in which

the size of the the investment is large relative to the dealer’s entire balance sheet. To this end, we

compute the first-order valuation effects of the aggregate positions and the legacy swap with the

client. The difference between the two is the first-order valuation of the new swap investment.

Market Value: As explained by (Mengle (2010)), in the event of counterparty default, the ISDA

agreement requires one nets every position held with each counterparty before establishing the

default claim. We let B denote the client’s default event, which is assumed to be independent of

the swap trades for simplicity. By direct analogy with calculations in Appendix A, the marginal

market value of the new swap is well defined by

V = −u+ δ
(
E∗(X −K) + E∗

[
φ
(
(X −K + c0)

− − c−0
)]
− E∗

[
γ
(
(X −K + c0)

+ − c+0
)])

, (39)

and V is invariant to whether the dealer finances the swap by issuing debt, issuing equity, or using

existing cash on its balance sheet. That is, δE∗[γ((X−K+c0)
+−c+0 )] and δE∗[φ((X−K+c0)

−−c−0 )]

are the incremental CVA and DVA due to the new swap position.

Shareholder Value: From now on, we focus on the case that the dealer finances swap positions

by issuing new debt. From Proposition 1, the first-order valuation effect to shareholders of the

swap portfolio is

Ga = δE∗[1Dc(X −K + c0)]− δE∗[1Dc(u0 + u)(R+ S)]− δE∗[1Dcγ(X −K + c0)
+].

Similarly, the first-order valuation effect of the legacy swap to shareholders is

G0 = δE∗(1Dcc0)− δE∗[1Dcu0(R+ S)]− δE∗(1Dcγc+0 ).

Thus, the marginal value of the new swap to the shareholders is

G = Ga −G0 = δE∗[1Dc(X −K)]− δE∗[1Dcu(R+ S)]− δE∗[1Dcγ((X −K + c0)
+ − c+0 )].

Creditor Value: We also consider the marginal value of the new swap to the dealer’s existing

creditors (excluding the swap client). To this end, we characterize the first-order effect of the legacy

swap, and we characterize the first-order effect of the swap portfolio. Thus, the marginal value of
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the new swap to the dealer’s legacy creditors is

H = δE∗[1D(X −K)]− δE∗(1DuR) + δE∗(1DcuS) + δE∗[φ((X −K + c0)
− − c−0 )]

− δE∗[γ1D((X −K + c0)
+ − c+0 )]− δ(1− κ)J,

where

J = lim
q→0

E∗
(A(q)1D(q) −A0(q)1D0(q)

q

)
,

and J is well defined by the same argument in Appendix A.

In the special case with zero distress cost (κ = 1), we konw V = G+H.
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