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Abstract

Robustness of aircraft schedules is essential for an airline to improve on-
time performance and accomplish high levels of consumer satisfaction. This
paper addresses the question how airlines adjust their schedule robustness
when market structure changes. To answer this question, the paper first
recreates each flight’s ground buffer time using historical flight schedules and
uses it as a measure for schedule robustness. Examining the relationship
between ground buffers and market structure shows that there exists service
quality competition in the airline market. Empirical estimations reveal that
carriers adopt more robust flight schedules when airport concentration at the
origin airport decreases, or when route competition increases. However, such
an effect is slightly reduced for hub originating flights, as competitors trade
off robust schedules for shorter layover times at the hubs when competition
heats up.
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1 Introduction

Starting from as early as 1987, air traffic delays and their impact on consumers

have become a significant issue in the airline industry. Over the past 20 years,

on-time arrival performance (percentage of flights arriving at the destination gate

within 15 min of scheduled arrival) has fluctuated between 65% and 90% on a sea-

sonal basis.1 The successful implementation of solutions to flight delays depends on

understanding the airline’s scheduling decisions, given the impact of these decisions

on delays. While a large literature studies the factors that affect airlines’ scheduling

decisions, little attention has been paid to the relationship between market structure

and airlines’ schedule robustness (how well can a schedule cope with a delay to a

particular aircraft). To remedy this issue, the present paper attempts to answer

the question of how airline decisions on schedule robustness are affected by market

structure. The contribution of this paper is to measure a flight’s “ground buffer”,

which equals the excess turnaround time over the minimum possible time, and to

relate it to measures of competition. The results show how competition affects the

“tightness” of airline scheduling, and thus the schedule’s robustness to disruptions.

More generally, this paper provides evidence on product-quality competition in the

airline industry, asking whether carriers improve the robustness of their schedules

when markets become more competitive.

High costs arise from delays for airlines and passengers. For airlines, delays

increase the costs of staffing, fuel, maintenance and potential rebooking (Peterson

et al. 2013). Besides these direct costs, delays also have a impact on airlines’ rev-

enue, as inferior on-time performance may lead passengers to switch to airlines with

better on-time performance (Cook, Tanner, and Lawes 2012). For passengers, delays

cause unanticipated additional travel time, hence creating opportunity costs both

for leisure and business activities (Baumgarten et al., 2014). In addition, delays also

1The terrorist attack of 9-11 and the subsequent crisis of SARS alleviated the flight delay
concerns for a short period after 2001, but the issue returned in 2005.
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induce a welfare loss incurred by passengers who avoid air travel. Using economet-

ric and simulation models, Ball et al. (2010) estimate the costs of delays borne by

airlines in 2007 due to above factors to be $8.3 billion, and the total costs of delay

borne by passengers to be $18.9 billion. Moreover, travel delays are also estimated

to reduce gross domestic product (GDP) by a further $4 billion.

To identify the cause of delays, airlines are required by DOT to report the causes

of flight delays using the following five tracking codes: 1) carrier delays: airline-

specific factors including mechanical failures, limited labor resources, gate/ramp

congestion, etc. 2) extreme weather 3) National Airspace System (NAS): delays and

cancellations attributable to the national aviation system arising from a broad set of

conditions, such as non-extreme weather conditions, airport operations, heavy traffic

volume, and air traffic control 4) security: delays caused by bomb threats, weapon

issues and excessive lines at security screening area, etc. 5) late arriving aircraft. It

should be noted that airport congestion caused by limited airport capacity is one of

the major contributors to NAS delays (i.e. aircraft queuing for runways).

Figure 1 summarizes the total number of delay minutes associated with each

cause in the period Aug 2004 - May 2005. It shows that carrier-related delays cause

28% of overall flight delays, and NAS related delays are responsible for around

31% of delays. It should be noted that the most important source of delays is

aircraft late arrivals, which account for 34% of total delays. Moreover, as Figure 2

shows, this percentage has been increasing over the years. Since the year 2004, late

arriving aircraft delays have become the #1 cause of delays. Taking a closer look

at the cause of delays through a single day, Figure 3 shows that late aircraft delays

snowball through the day as the follow-on impact of carrier, weather and airspace

delays is felt on future flight departures using the impacted aircraft (Jenkins et al.

2012).

Airport congestion is a major cause of NAS delays and may be the original

cause of late arriving aircraft delays (i.e. aircraft encountered runway congestion
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Figure 1: Minutes of flight delays and percentage of total delays for different causes
of delay. Aug 2004-May 2005

during their previous flight segment), and a large literature focuses on mitigating

such congestion, mainly through investigating the relationships between on-time

performance, airlines’ bank structure, airport hubbing, and airports’ competitive

structure (Mazzeo and Michael, 2003; Rupp et al. 2006). Among these studies, the

existence of internalization of airport congestion has been shown to have important

public policy implications for the magnitude of airport congestion tolls. Internal-

ization by airlines (where carriers take account of self-imposed congestion) implies

that flight operations in airports where one airline operates most of the flights will

be organized to generate less congestion on the runways and gates than in airports

where multiple airlines operate and each airline operates a small share of the flights,

limiting the extent of internalization (Brueckner, 2002; Brueckner and Pels, 2005;

Pels and Verhoef, 2004; Zhang and Zhang, 2006; Basso and Zhang, 2007; Brueckner,

2009).

Mixed results are found by the empirical literature on whether internalization

actually occurs. While Brueckner (2002) and Mayer and Sinai (2003) offer some

empirical support for internalization, Rupp (2009), Daniel (1995) and Daniel &

Harback (2008) find no support for internalizing behavior. Trying to solve the puz-
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Figure 2: Percentage of total delay minutes by cause, from 2003 to 2014.
SOURCE: Bureau of Transportation Statistics

Figure 3: Average delay per scheduled flight, by cause and hour of day.
SOURCE: “The State of US Aviation: Comprehensive Analysis of Airline Schedules
and Airport Delays” by Jenkins et al. 2012, American Aviation Institute

zle, further discussion has delved deeper into understanding the interaction between

competition and airlines’ scheduling decisions and their impact on the congestion.

Ater (2012) studies the relationship between bank length, airport concentration and

delays, and finds that banks are stretched longer maybe for better on-time perfor-
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mance when less competition is present in hub airports, providing some evidence

consistent with internalizing behavior.

However, one should also realize that, besides reducing airport congestion and

increasing airport capacity, on-time performance can also be improved through mit-

igating the “snowball effect” of late aircraft delays by loosening aircraft rotation

schedules, allowing more “buffer” time between flights. Therefore, it is crucial to

understand how such scheduling decisions are made and how they depend on the

competitive structure of the market.

Combining elements of previous approaches, this paper explores this issue, of-

fering an innovative addition to the theoretical and empirical literature on the cause

of delays and the effect of market structure on delays. While empirical literature on

the subject mainly focuses on the relationship between market structure and airport

congestion-related delays (Daniel (1995) and Ater (2012)), this paper explores how

market structure affects airlines’ scheduling-related delays. In particular, this pa-

per hypothesizes airlines would respond to competition by adjusting the operational

robustness of their schedules, which is captured by the buffer time built into an

aircraft’s turnaround time. This buffer time equals the extra time beyond the mini-

mum time required for loading and unloading that is incorporated in the turnaround

interval. The connection is explored by relating the length of buffer time (in min-

utes) to the extent of route competition (measured by the number of carriers serving

the same route) and airport concentration (measured by the Herfindahl-Hirschman

index (HHI), which is computed from airline flight shares at the airport).

Theoretically, buffer time should be added until the resulting marginal cost

equals the marginal benefit from fewer flight delays caused by foreseeable factors.

However, such marginal costs and marginal benefits are also subject to change un-

der a different competitive environment. Following this intuition and to motivate

the empirical analysis, section 2 provides a simple theoretical model with price and

service-level competition (each firm simultaneously chooses a service level and a
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price level). Such “attraction models” (Bernstein and Fedegruen (2004)) are com-

monly used in the marketing and operations research literature. For example, Calton

(1989) and Calton and Perloff (1999) argue that demand functions should be spec-

ified as a function of prices and customer service levels, which they quantify by the

customer’s waiting time. Banker et al. (1998) and Tsay and Agrawal (2000) charac-

terize the equilibrium behavior of oligopolies with a fixed number of firms competing

simultaneously with their price and a “quality” or service instrument. Similar mod-

els are also used to explain flight frequency in the airline industry (Brueckner and

Flores-Fillol (2006), Brueckner and Zhang (2010), Brueckner (2010), and Brueckner

and Luo (2012)).

The model points out that airlines face a trade-off between benefits arising from

increased operational robustness through adding buffers into flight schedules and the

costs due to a decrease in fleet utilization. Moreover, the model yields an unique

Nash equilibrium and provide comparative-static properties of the equilibrium. A

large empirical literature studies such a choice of product quality using structural

models (Berry (1994), Berry, Levinsohn and Pakes (1995)), yielding estimates of

taste and cost parameters, which are then used to simulate the effects of mergers

on product quality or variety. By contrast, the goal of this paper is to measure

the direction and strength of market-structure effects on airline scheduling deci-

sions instead of identifying the underlying parameters of the utility and production

parameters.

Guided by the theoretical model in section 2, the first step of the empirical anal-

ysis is to use a Tobit model to verify that an increase in the length of the ground

buffer indeed reduces departure and arrival delays (the negative empirical relation-

ship is shown in Figure 4) after controlling for other factors that may contribute to

delays (including schedule-related factors like airport congestion and non-schedule

related factors like weather). The measure of ground buffer is derived using flight

schedules, following a detailed procedure described in section 3.2. The estimation
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reveals that around 0.35 minutes of departure delay can be eliminated by 1 extra

minute of buffer, while the effect of buffers on arrival delays is around 0.23 minutes.

The second step of the empirical analysis examines how buffer length is affected

by market structure, which is quantified at the route and airport level using the air-

port concentration level and route competition. While route competition is used to

account for the direct effects of competition driven by the non-stop passengers on

the route, it should be noted that airlines operating hub-and-spoke networks will

inevitably compete on one-stop routes that originate at the airport, flying passen-

gers to the same destinations via different hubs. Hence effects of competition at

such a level is captured by the airport concentration at the origin airport, as the

concentration levels reflect the choice sets of airlines for the originating passengers.

Controlling for route-specific effects, the baseline estimations reveal a signif-

icant positive effect of competition on buffer time, so that decreasing the market

concentration at the origin airport, or increasing the number of competitors serving

a route, increases the operational robustness of flight schedules, improving on-time

performance. As an extension of the baseline estimations, the paper also explores

whether this positive relationship between competition and buffer time is hetero-

geneous across routes playing different roles in a hub-and-spoke network. In such

a network, a longer buffer time at hub airports not only improves the operational

robustness of the schedule, but it also serves as a tool to synchronize the arrival

and departure banks (waves of flights departing or arriving at the hubs). Moreover,

longer buffer time at the hubs also prolongs the layover time for connecting pas-

sengers. With this additional trade-off between achieving economies of density and

lower demand (due to the longer layovers), the effect of market structure on buffer

decisions for hub originating flights is expected to differ from non-hub originating

flights. Interacting the market structure measures with an indicator of an airline-

hub originating flight, extended estimation in section 4 reveals that the effect of

competition on operational robustness is weaker for the hub originating flights.
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Figure 4: The relationship between ground buffer time and departure delay for
airports with at least 1 percent of flights, calculated from flights departed during
Aug 2004 - May 2005. This figure displays a negative empirical relationship between
ground buffer length and departure delay experienced by flights.The bubble size
denotes the percentage of total flights handled by the airport.

The remainder of the paper is organized as follows. Section 2 describes the the-

oretical model that guides the empirical estimation. Section 3 presents the sources

of data and the construction of variables used in the estimation. Section 4 discusses

the empirical model and presents the estimation results. Section 5 concludes the

paper.

2 Theoretical Framework

2.1 Turnaround time and buffer

Before the theoretical model is presented, it is important to clarify the concepts

of turnaround time and buffer, as well as the relationships between them and delay.

Before an airplane can make another trip, it must remain at the gate to allow pas-

sengers to disembark, have cargo and baggage unloaded, have the airplane serviced,
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have cargo and baggage loaded, and to allow passengers to board for the next trip.

According to Geodeking (2010), the time span from touching the gate (“on blocks”)

until pushing back from the gate again (“off blocks”) is called turnaround time, or

TAT, of an aircraft.

Figure 5: The relationships between turnaround time, buffer and departure delay.
The solid arrows represent the scheduled arrival time and the scheduled departure
times of flights a and b. The dotted arrows represent the actual departure and
arrival times of flights a and b. The scheduled turnaround time (TAT) is the time
in between flight a’s scheduled arrival and flight b’s scheduled departure. The TAT
must be larger than the minimum turnaround time (minTAT) required for turning
the aircraft, and the additional time in TAT in excess of minTAT is the (ground)
buffer.

Because each aircraft routing is a sequence of flight segments flown by a single

aircraft, and arrival delay will result in a departure delay if not enough TAT is

scheduled between the two consecutive flight segments in that routing. This “delay

propagation” often results in delays for downstream flight segments. Building buffers

into ground times2 helps reduce departure delays, as shown in Figure 5. The solid

arrows in Figure 5 represent the original schedule for two flight segments a and b,

performed by one aircraft. The dotted arrows represent the actual departures and

arrivals of these flight segments. As illustrated in the figure, the scheduled TAT

consists of two components: the minimum turnaround time (minTAT) which is the

minimum time required to turn the plane around, and the buffer built into the TAT

2Adding buffers to “airtime” was found ineffective in reducing delays by the airlines, as these
buffers were reabsorbed probably due to down-prioritization when approaching a congested airport
and to less favorable taxiing routes or gate allocation (Geodeking, 2012, p.69).
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to reduce the vulnerability of the schedule structure to delays. Hence, buffer is the

additional time in TAT in excess of minTAT:

Bufferab = TATab −minTAT (1)

If the arrival delay of flight a is shorter than the buffer built into the turnaround

time (i.e., the actual departure and arrival time follows a′), then the arrival delay

can be absorbed by the buffer and the aircraft can depart on time for its next flight

segment b. However, if the actual arrival delay of flight a is longer than the buffer

built into the turnaround time between flight a and b (i.e., the actual departure and

arrival time follows a′′), then some portion of the arrival delay cannot be absorbed

and is propagated to flight b, causing the actual departure and arrival time at b to

be postponed to b′.

2.2 Theoretical model

Consider a travel market connecting two cities. Passengers in the market have

mass M , and the market is served by n identical competing airlines. First consider

the demand side of the model, where consumers value consumption and travel, and

travel valuation depends on the airline used to make the trip. Assume a random

utility model in which consumers make a discrete choice among the n airlines in

the market, selecting the alternative yielding the greatest utility (Ben-Akiva and

Lerman, 1985; McFadden, 1974). In the model, indirect utility for consumer i

traveling by airline j is given by y − pj + travel benefit− flight delay costj + εij,

where y is income, and pj is airline j’s fare, so that y − pj is consumption of other

goods if the price of the other goods is normalized to 1. The term εij represents an

individual-specific component of utility that is uncorrelated with price, pj.

Flight delay measures the difference between the scheduled departure and the

actual departure times. As was previously discussed, shorter turnaround time for

a flight means a higher expected departure delay, implying an negative correlation
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between turnaround time Tj and expected departure delay. For determinate results,

assume that the expression for expected departure delay takes the following specific

form: D + ω
Tj

, where ω > 0 indicates the magnitude of reduction in departure

delay from adding turnaround time (or adding buffer time, since turnaround time

Tj equals the minimum turnaround time plus buffer time). When the turnaround

time is set to a value that is sufficiently large (so that ω
Tj

is sufficiently small),

departure delay can still happen due to other factors such as weather; hence the

expected departure delay given enough turnaround time is denoted by D. Flight

delay cost is given by a disutility parameter ψ > 0 times the above expression, thus

equaling ψ(D + ω
Tj

) ≡ F + φ
Tj

, for j = 1, 2...n where F = ψD and φ = ψω.

Given the expression for the flight delay cost, the indirect utility function for

consumer i flying on airline j is y− pj + b−F − φ
Tj

+ εij, where b denotes the travel

benefit, assumed to be constant for all airlines and consumers. Hence, the only

quality difference among different airlines is on-time performance. Let B = b − F ,

so the indirect utility function can be simplified to y − pj +B − φ
Tj

+ εij.

If the εij’s are independently and identically distributed according to the Type

I extreme value distribution, the choice probability, or the aggregate market share

of airline j, has the familiar multinomial logit form:

Πj =
exp(y − pj +B − φ

Tj
)

n∑
k=1

exp(y − pk +B − φ
Tk

)
(2)

Recalling that the total consumer population is M , the quantity of passengers for

airline j is simply

qj = MΠj (3)

On the cost side, following Brueckner(2004), but changing the specification of

cost per flight to cost per hour, the cost of operating a flight per hour is given by

θ + τs, where s equals the number of seats on the flight. Each operation hour thus
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entails a fixed cost θ, and also a marginal cost per seat τ . Under such a specification,

cost per seat (given by θ
s

+ τ) realistically falls with the total number of seat flown

per hour. Multiplying the expression by total air time e gives the total air-time cost

e(θ + τs).

In addition to the cost incurred while an aircraft is in the air, the fixed cost per

hour (θ) is also incurred when an aircraft is not generating passenger miles (when the

aircraft is on the ground). Recalling that the turnaround time (TAT) scheduled for a

flight before take-off is T , the total cost of operating a flight is c(T ) = e(θ+τs)+θT ,

or c(T ) = eτs + (e + T )θ, where the first term denotes the variable cost per flight,

and the second term is the fixed cost per flight. Under this specification, total cost

per flight rises with the number of seats on an aircraft and rises if more operation

time is required by a flight (if e+ T increases).

To account for aircraft utilization in the model, let H denote the total number of

hours that an aircraft is “available” in a given period (i.e. a year)3. Hence, dividing

aircraft availability H by the operation time of a flight (e+ T ) gives the maximum

number of flights an aircraft can complete in a given period. Moreover, the total

number of flights provided by an airline is the product of the number of aircraft it

operates and the maximum number of flights that can be provided by each aircraft,

or fH
e+T

, where f represents the number of aircraft operated by the airline. Using

this information, the airline’s total cost is assumed to be given by

c(T ) = (eτs+ (e+ T )θ)

(
fH

e+ T

)α
(4)

where α is the economies of scale parameter. For example, when α = 1, the average

cost per flight does not rise with the total number of flights operated (the total cost

is linear in fH
e+T

). However, when α > (<)1, the average cost per flight increases

(decreases) when the total number of flights operated increases.

A final assumption in the model is that all aircraft seats are filled, with the

3In the airline industry, H is usually called the aircraft availability (Mirza, 2008).
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load factor equal to 100 percent. Under this assumption, total seats provided by the

airline must be sufficient to accommodate its passenger volume, requiring

sfH

(e+ T )
= q (5)

Combing the above elements, airline j’s profit-maximization problem can be

stated. Given that an airline can adjust its flight schedule fairly easily, it may be

reasonable to assume that in maximizing profit to the constraint in (5), the airline

chooses the fare and the length of turnaround time simultaneously, taking the choices

of its competitors as given in Nash fashion. Thus, the problem is

max
{pj ,Tj}

πj = pjqj − (eτs+ (e+ Tj)θ)

(
fH

e+ Tj

)α
(6)

= pjqj − (eτs+ (e+ Tj)θ)
(qj
s

)α
(7)

= pjMΠj − (eτs+ (e+ Tj)θ)

(
MΠj

s

)α
(8)

where the second equality is derived using (5) and the third equality is derived using

(3).

With the model specification now clear, the first-order conditions are

∂πj
∂pj

= MΠj +Mpj
∂Πj

∂pj
−
(

1

s

)α
(eτs+ (e+ Tj)θ)αM(MΠj)

α−1∂Πj

∂pj
= 0 (9)

∂πj
∂Tj

= pjM
∂Πj

∂Tj
−
(

1

s

)α [
θ (MΠj)

α + (eτs+ (e+ Tj)θ)αM(MΠj)
α−1∂Πj

∂Tj

]
= 0

(10)

The second-order conditions ∂2πj/∂p
2
j , ∂

2πj/∂T
2
j < 0 are satisfied if α > 1 and

the remaining positivity condition on the Hessian determinant is assumed to hold.

Consider the choice of Tj holding p fixed. The first-order condition for T says that

the increase in revenue after increasing turnaround time should equal the increase

in costs, which consist of the increase in cost per flight and the increase in the total
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number of flights operated to accommodate the increased number of passengers.

While the optimality rule embodied in (10) is unsurprising, its usefulness lies in

formalizing the trade-off between better on-time performance and higher operation

costs.

It is easily verified that, the price sensitivity of each firm’s market share with re-

spect to its own price is given by
∂Πj

∂pj
= −Πj(1−Πj). Similarly, it can be proven that

∂πj
∂Tj

= φ
T 2
j

Πj(1 − Πj). Moreover, with firm symmetry, the symmetric equilibrium is

the natural focus. This equilibrium can be found by setting pj = pk, Tj = Tk,∀j 6= k

and Πj = 1
n
,∀j in (9) and (10) and solving for these values. Substituting (8) into

(9), the Tj and pj solution satisfies

pj = (
1

s
)α(eτs+ (e+ Tj)θ)α(

M

n
)α−1 +

n

n− 1
(11)

Tj =

√
sαφnα−1

θMα−1
(12)

The optimal T is increasing in the number of seats (s) and the efficiency of

turnaround time φ, while decreasing in the amount of fixed cost (θ). These results

also capture the trade-off between improving service quality (higher T ) and the

increased cost from the increased cost per flights (longer (e+T )) and the requirement

of a larger fleet (higher f).

Moreover, the effect of the number of competitors on turnaround time depends

on the parameter α. When the cost function exhibits diseconomies of scale (α−1 >

0), an increase in the number of competitors (n) increases turnaround time (T ).

However, there has been an ongoing debate over the existence of economies of scale

in the airline industry. Caves et al. (1984) show that there is little evidence of

economies of scale in the airline industry. However, that paper and others focus on

evaluating the economies of scale on the network level instead of the route level.

Hence, given the current empirical literature, the magnitude of α and thus the effect

of market competition on T is hard to infer. Given this lack of generality, the
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current analysis should be viewed as only providing an example of how optimal

turnaround time can be derived in a full theoretical model, a demonstration that

helps to motivate the ensuing empirical work.

A final point is that, the model only considers the decision on the turnaround

time at the route level, and the role of network structures and banking behaviors in

the choice of buffer time is overlooked. For instance, prolonging buffers for aircraft

at a hub airport allows the hub originating flights to “collect” connecting passengers

from more arrival flights, which lowers the average cost per seat for the airlines by

increasing load factors of the airline-hub originating flights. However, prolonging

the buffer time of such flights also induces longer layovers for connecting passengers,

hence presenting a new trade-off for the airlines on their decisions on buffer length

at hubs. Such issues are explored further in the empirical models.

3 Data and variable construction

3.1 Dataset

The most important data source for this study is the On-Time Performance

Database from Bureau of Transportation Statistics (BTS), which includes data on

all non-stop domestic flights operated by airlines carrying more than 1% of US

domestic passengers. The 19 reporting carriers during the sample period, Aug 2004-

May 2005 were American, Alaska, JetBlue, Continental, Independence, Delta, Ex-

pressJet, Frontier, AirTran, Hawaiian, America West, Envoy, Northwest, Comair,

Skywest, ATA, United, US Airways and Southwest. For each flight, the dataset

provides the scheduled and actual departure and arrival times, the departure and

arrival delays, flight origin and destination, distance, and tail number of the aircraft

that flew the flight. A majority of the variables used in the empirical estimation are

constructed from the original dataset of 5 million flights during the sample period.

For example, the tail numbers are used to reproduce historical aircraft rotations
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(routes and schedules of a specific aircraft), which is then used to derive the sched-

uled and actual Turnaround Time (TAT) before each flight, as well as the scheduled

buffer time before each flight in the dataset. Due to computational constraints pre-

sented by such a large dataset, a 10% sample from the original dataset is randomly

selected after all the variables are constructed, reducing the sample size to around

0.5 million.

The On-Time Performance Database has limits that prevent this study from

fully reproducing the historical schedule. First, international flights are not included.

This is an issue because some airports analyzed in the study are also important

international hubs. Thus, the study is missing a proportion of the airlines’ scheduled

operations as international departures and arrivals at not accounted for. Hence, in

this study, buffer time and on-time performance for international flights cannot be

observed and no formal conclusion on how international flights are handled in airline

scheduling can be drawn. The second limitation of the On-Time database is that

it does not include all flights flown domestically, as many small affiliate airlines

are not required to report their on-time statistics. Without these affiliate airline

flights, market structures including route competition and airport concentration,

operation rates and flight frequencies at the origin and destination airports cannot

be accurately calculated.

Using the aircraft tail number, the characteristics of the aircraft are known

including type of the aircraft and seat capacity.4 The number of runways of each

airport in the dataset is tabulated using the FAA’s airport data (from the National

Flight Data Center (NFDC)).5 Finally, daily weather data at both origination and

destination airports are collected from the U.S. National Oceanic & Atmospheric

4Since some of the tail numbers in the On-Time dataset are actually fleet numbers (or reg-
istration numbers), two websites (rzjet and avitop) are used to recreate the tail numbers of the
aircraft (available at http://rzjets.net/aircraft and http://www.avitop.com). Then, the “Land-
ings” database (available at http://www.landings.com) and the FAA aircraft registration database
(available at http://registry.faa.gov/aircraftinquiry) are used to find the type of aircraft for each
tail number.

5Available at http://nfdc.faa.gov/xwiki/bin/view/BFDC/Airport+Data
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Administration (NOAA).6

3.2 Measuring Turnaround Time and Buffer

The BTS on-time performance data includes reported scheduled gate departure

and arrival times, the actual gate departure and arrival times, and the tail num-

ber of each flight as a unique identifier for the aircraft. This information is used

to construct each aircraft’s daily itinerary and to derive the scheduled and actual

turnaround times by calculating the elapsed time between the arrival and departure

of consecutive flight segments. The same method is employed by Robingson et al.

(2011) using Airline Service Quality Performance (ASPQ) data. For example, Table

1 shows the BTS flight records from October 28, 2004 for Delta Airlines (DL) tail

number N326DL. This aircraft was scheduled to arrive at ORD at 7:48am and to

depart ORD to return to ATL at 9:05am, leaving 77 minutes to “turn” the aircraft.

Using a similar method, the scheduled and actual TATs are calculated for all flights

in the sample period. If the scheduled TAT is greater than 200 minutes,7 then it is

most likely that the previous flight segment of the aircraft happened on the previous

day, or that the aircraft was on a flight with international endpoint and hence the

record is incomplete, resulting in large TATs. Such TATs were considered invalid

and the observations were deleted.

Table 1: October 28, 2004 aircraft rotation for Delta Airline Tail Number N326DL
Origin Destination Scheduled Actual

Depart Arrive Turn Depart Arrive Turn
Time Time Time Time Time Time

ATL ORD 6:50 7:48 N/A 6:59 7:50 N/A
ORD ATL 9:05 12:06 77 9:31 12:18 99
ATL MKE 12:49 13:49 43 12:55 14:03 36
MKE ATL 14:55 17:57 66 14:56 18:21 53
ATL RIC 18:47 20:23 50 19:39 21:15 78

6Available at http://www.ncdc.noaa.gov/cdo-web
7The maximum turnaround time for a large aircraft type such as the Boeing 747, DC-8 or MD-

11 is 180 minutes according to Schaefer and Tene (2003). Allowing for some slack, 200 minutes is
used as the cutoff point.

18



Figure 6 shows the distribution of all turnaround times under 200 minutes.

The distribution is skewed to the right, with the mean TAT equal to 53.9 minutes

and 99% of flights having a TAT greater than 16 min (the 1st percentile of the

distribution is thus 16 minutes).

Figure 6: Distribution of turnaround times that are under 200 min

Note that the TAT of a flight depends upon the aircraft type, the airline oper-

ating the aircraft and the airport at which the turn occurs. The same logic applies

to the minimum TAT. Without official data on airport, airline and aircraft specific-

minimum TATs, the BTS dataset is exploited to measure the minimum TAT for

each airport-airline-aircraft configuration. The minimum TAT is set equal to the

1st percentile8 of all the valid actual TATs in a specific airport-airline-aircraft config-

uration. For example, among all Delta operated Boeing 757-232s (with a passenger

capacity of 240) that departed from Atlanta (ATL), 1% of them departed with an

TAT of less than or equal to 42 minutes. Thus the minimum TAT for the configu-

ration ATL-DL-Boeing 757-232 is 42 min. Similarly, for a smaller aircraft like the

Boeing 737-2H4 (with a passenger capacity of 130) operated by Southwest departing

8Buffers can also be derived using the a minimum TAT set equal to the 5th percentile. However,
the estimation results are qualitatively unchanged. These results are available upon request.
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from Houston (IAH), the minimum TAT is 10 minutes. Finally, applying equation

(1), the scheduled ground buffer time of a flight was then calculated by subtracting

the minimum TAT from the scheduled TAT.

3.3 Airport concentration and route competition

To examine the effect of competition on schedule robustness, airport concen-

tration (the HHI based on the share of flights by the various airlines that serve the

airport each day) and route competition (the number of airport-pair competitors)

are constructed. The role of affiliate airlines in the airline scheduling process is also

considered when constructing the two measures since affiliate airlines can make up

a large portion of total operations at hub airports.

Affiliate airlines developed in response to the creation of the hub-and-spoke

network (Gillen 2005). Since major airlines do not have enough aircraft to serve all

the endpoints in their hub-and-spoke networks, they seek arrangements with smaller

airlines operating regional aircraft, with these “feeder” airlines “feeding” passengers

from smaller origins/destinations to/from the hubs. To identify partnerships, the

regional carrier assignment information provided by Pai (2007) and the annual 10K

reports filed each year with the Securities and Exchange Commission for all the

carriers are analyzed, and the carriers are regrouped using the assignments in Table

2.

In all, the sample includes 4475 routes and 486 airports. Route competition

and airport concentration variables are then constructed using the adjusted carrier

identifications. Slightly more than 50% of flights serve monopoly routes, and one

third of the flights are on duopoly routes while the rest of the flights are serving

routes with more than two carriers. Table 3 identifies the major carriers and re-

ports airport concentration, average buffer time and average departure delay for all

airports with at least 1 percent of the total flights during the sample period.

Note that the two competition measures capture the effects of competition on
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Table 2: Affiliated Airlines Assignment, Aug 2004 May 2005

Major Carrier Feeder Airline

United(UA) Skywest
a

Independence Air

American(AA) Envoy*

Delta(DL) Independence Air

Skywest
b

Comair*

Continental(CO) ExpressJet

Skywest
c

Southwest(WN) ATA*
Note : Flights of Independence Air are assigned based on hub identities. Asterisks

indicate that the feeder airline is owned by the major carrier.
a   

Including routes involving Portland, OR (PDX), Seatle/Tacomo, WA (SEA), Los

Angeles, CA (LAX),  Denver, CO (DEN),  Chicago, IL (ORD).
b  

Only routes involving Dallas, TX (DFW) for flights in 2004, and routes involving

Salt Lake City, UT (SLC) for flights in 2005.
c   

Only routes involving Houston, TX(IAH).

service quality from different sources. Route competition captures the direct ef-

fect under which non-stop passengers on this route may switch to another airline

if their flight is frequently delayed. However, in current hub-and-spoke networks, a

large proportion of the passengers are transported from the origin to the destination

through connecting flights at the airline’s hub. Hence, airlines can compete in the

same origin and destination market without operating the same route. As such, com-

petition cannot be captured by the route-competition measure alone, being partially

measured by airport concentration.

Airport concentration at the origin affects the available airline choices for all

originating passengers. For example, if an airport is served by only one airline (hav-

ing an airport concentration of 1), then all the passengers in the catchment area of

this airport can only travel on this particular airline, regardless of their destination.

With other airlines present, passengers unhappy with the on-time performance of a

given flight could switch to a connecting (rather than nonstop) flight to their des-

tination. In this way, lower airport concentration can raise competition on a route

even while route-level competition itself remains fixed. Another source of competi-
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tion captured by origin-airport concentration is competition for frequent fliers in the

catchment area (Bilotkach & Lakew, 2014), as airlines at less concentrated airports

are expected to compete more aggressively for frequent fliers residing in the airport’s

catchment area.

3.4 Other control variables

To isolate the effect of market structure on schedule robustness, it is necessary

to control for factors that also affect the choice of buffers. One such variable is

a bank departure indicator, which equals one if the flight departs during a bank

period. As was mentioned in section 2, operational stability and hubbing activities

are also interdependent, and flights that depart in a bank at the airline’s hub airport

may have longer buffers to synchronize the arrival banks and the departure banks.

Because of the irregularity in the spacing and length of banks, heuristic procedures

for identifying bank flights are developed for this study. The appendix contains a

detailed description of the bank identification procedure. In all, around 30% of the

flights in the sample were identified as departing their airline’s hub (from which the

airline serves more than 26 destinations) during a bank. Among all the flights that

depart from their airline’s hub, more than 70% depart during a bank period.

Congestion at the origin and sometimes the destination airport is also included

as a control variable. Congestion is measured by the operation rate per hour, which

divides the airport’s daily operations (takes-offs at the origin airport and landings

at the destination airport) by the number of runways at the airport. As runway

congestion reduces the efficiency of the buffer (with on-time departures becoming

less efficient in reducing arrival delays), shorter buffers may be assigned to flights

departing or landing during peak hours. In addition, a longer buffer can be crucial

for an aircraft departing later in a day as these aircraft are more likely to experience

an arrival delay on their previous flight segment. Moreover, for an aircraft flying a

longer route (i.e., from the East coast to the West coast), a longer buffer may be
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required as it takes a longer time to prepare these flights for take-off. For aircraft

scheduled to fly “ping-pong” schedules (a daily routing with multiple short-haul

flight segments between the hub and non-hub airports), shorter buffers are natural

because of the need to operate many segments per day. Hence, the departure hour

(measured on a 24-hour clock), flight distance, and flight segments per day (to

capture the “ping-pong” effect) are also included as control variables.

4 Empirical estimation

4.1 Delays and buffer

Before exploring the relationship between market structure and scheduled ro-

bustness, it is important to confirm that improving schedule robustness through

adding buffers into the schedule can actually reduce delays. Departure and arrival

delays happen when the time a flight is ready to take off or land is later than the

scheduled time of departure or arrival. In most cases, a flight would choose to de-

part or arrive on time even if it is ready to depart or arrive before schedule, so

that the dependent variables of departure and arrival delays are truncated at zero.

Hence, a Tobit model is used to estimate the impact of buffers on delays, aiming

at establishing a link between ground buffers and better on-time performance. The

empirical Tobit model for the estimation of the impact of buffers on departure or
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Table 3: Buffer and concentration for airports with at least 1 percent of flights
during Aug 2004-May 2005

Airports
% of Total
Flights

Average
Buffer
(min)

Airport
Concentrationa

(flights’)

Dominant
Carrier

Departure
Delay (min)

Atlanta(ATL) 5.95 31.11 0.37 Delta 11.04
Chicago O’Hare (ORD) 4.8 29.62 0.37 American+bUnited 9.73
Dallas-Fort Worth (DFW) 4.51 27.15 0.58 American 6.59
Los Angeles (LAX) 3.26 31.92 0.21 United+Delta 5.94
Houston (IAH) 2.91 36.54 0.52 Continental 3.91
Cincinnati (CVG) 2.9 34.59 0.55 Delta 6.79
Phoenix (PHX) 2.39 22.95 0.26 Southwest 8.45
Las Vegas (LAS) 2.28 20.76 0.22 Southwest 10.21
Denver (DEN) 2.19 30.29 0.38 United 5.88
Newark (EWR) 2.16 31.90 0.44 Continental 8.34
Salt Lake City (SLC) 2.08 30.38 0.26 Skywest 5.13
Washington Dulles (IAD) 2.06 29.72 0.48 United 7.53
Detroit (DTW) 1.99 38.14 0.40 Northwest 5.65
Minneapolis-St.Paul (MSP) 1.97 43.71 0.42 Northwest 3.91
Philadelphi (PHL) 1.83 29.75 0.26 US Airways 13.60
Boston (BOS) 1.83 29.59 0.13 American+Delta 7.01
San Fransisco (SFO) 1.77 38.40 0.29 United 5.65
LaGuadia (LGA) 1.74 31.18 0.16 American+Delta 6.82
Orlando(MCO) 1.61 20.59 0.10 Southwest 7.99
Charlotte (CLT) 1.59 30.92 0.36 US Airways 6.63
Baltimore (BWI) 1.49 16.67 0.22 Southwest 7.05
Seattle (SEA) 1.47 25.35 0.16 Alaska 8.75
Washinton National(DCA) 1.39 29.01 0.21 US Airways 5.04
New York International (JFK) 1.37 30.29 0.11 JetBlue+ExpressJet 3.80
Chicago Mideway (MDW) 1.25 18.63 0.45 Southwest 7.81
San Diego (SAN) 1.22 19.27 0.13 Southwest 6.23
Tempa (TPA) 1.09 20.37 0.08 Southwest 7.27
Oakland (OAK) 0.99 14.95 0.21 Southwest 7.67
Fort Lauderdale (FLL) 0.98 20.42 0.14 Southwest 11.00

a Note: The measurement of market concentration is affiliation adjusted so that feeder carriers and its major carrier
are considered the same carrier and their total operation at one airport is used to calculate the market
share and the market concentration.

b Note: ”+” here denotes that the airlines have similar shares of total operation at the airport.
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arrival delays of flight i flying from airport j to airport k at time t is:

delayijkt = β0 + β1Bufferijkt + β2Prev delayijkt

+ β3Orig hubjt + β4Dest hubkt

+ β5Operation ratejt + β6Operation ratekt

+ β7SeatCapacity+β8Distancei + β9Dep time

+
∑
w

ωwWeathert +
∑
l

δlCarrierl +
∑
w

σwDay of weekw

+
∑
m

σmMonthm +
∑
n

γnQuartern + εijkt (13)

The control variables include prev delay, which is the arrival delay of the previous

flight segment. In addition, delays may also depend on whether an airport is a hub,

since hub airports may experience greater delays due to the banking activities by

the hub airline (i.e., waiting for connecting passengers). Mayer and Sinai’s (2003a)

definition for hub airport is used, with airports that serve more than 26 destinations

considered hubs. In addition to these control variables, the two congestion measures

mentioned above are also included in the regressions. A high operation rate at the

origin may produce departure delays, and a high operation rate at the destination

may have the same effect, with aircraft subject to origin “ground holds” when the

destination is congested.

Important logistical factors such as seat capacity of the aircraft, distance of

the flight and departure time are also included as control variables. The control

variable Weather is a vector covering the daily weather conditions at both ori-

gin and destination airports, including daily precipitation, minimum and maximum

temperature, average wind speed and snow depth. To address carrier-specific char-

acteristics and weekly and seasonal demand fluctuations, all estimations include

Carrierl, Day of Weekw, Monthm and Quartern, which are carrier, day of week,

month and quarter fixed effects, respectively. Dummy variables for each origin and
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destination airport are included in some of the regressions to control for unobserved

airport-specific effects that may affect delays, such as runway layout, equipment and

maintenance facilities. Note that the hub indicators for the origin and destination

airports are dropped in such regressions, as there is not enough variation in hub

status over time to identify the airport hub effects. Descriptive statistics for the

variables are presented in Table 5.

The Tobit results are shown in Table 4.9 The first two columns of the table

give the effect of buffers on departure delays, and columns 3 and 4 give the effect of

buffers on arrival delays. Origin and destination airport fixed effects are included in

the even columns. All the regressions reveal that a longer ground buffer before the

scheduled departure time of a flight reduces departure and arrival delays. In all the

regressions, the buffer coefficients are negative with an absolute value smaller than

1 minute, implying that departure or arrival delays decrease by less than 1 minute

with a 1 minute increase in the buffer. More specifically, according to the Tobit

estimations, a buffer increase of 1 minute is associated with a 0.35 minute reduction

in departure delay. The effect of buffers on arrival delay is slightly smaller, implying

that, although buffering ground time is useful when preventing the propagated delay

from spreading to an aircraft’s other flight segments, on-time departure alone does

not guarantee on-time arrival of a flight, as other factors like weather and airport

congestion occurring after take-off also contribute to arrival delay.

The coefficients on the arrival delay from the previous flight segment are posi-

tive and significant, as expected. Increasing the arrival delay of the previous flight

segment by 1 minute increases the departure delay of the next flight operated by the

same aircraft by as much as 0.9 minutes, which indicates that delay propagation is a

9Estimations for the subset of non-slot constrained airports are also conducted and the results
are provided in the Appendix, Table A.1. The four airports during the sample period that operated
under the FAA’s High Density Traffic Airports Rule (HDR) established in 1969 are ORD (Chicago
O’Hare), LGA (Laguadia New York), JFK (New York), and DCA (Washington Reagan), this rule
requires that each carrier obtain a “slot” for each take-off and landing during a specific 60 minute
period, which may affect the delays experience by flights related to such airport. The results
show that excluding the slot controlled airports slightly increases the effect of buffers in reducing
departure and arrival delays.
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Table 4: Tobit estimation of the effect of ground buffers on departure and arrival
delay, 10% sample of U.S. domestic flights, Aug 2004 May 2005

Dependent Variable: Minutes of:

Coef Std Error Coef Std Error Coef Std Error Coef Std Error

Ground buffer (min) -0.35*** (0.01) -0.35*** (0.01) -0.24*** (0.01) -0.23*** (0.01)

Previous delay (min) 0.99*** (0.01) 0.98*** (0.01) 0.90*** (0.01) 0.89*** (0.01)

Hub airport at origination 3.27*** (0.34) 2.43*** (0.41)

Hub airport at destination 0.00 (0.98) 1.11*** (0.29)

Operation rate at origination 0.23*** (0.04) 0.33*** (0.04) 0.21*** (0.03) 0.53*** (0.05)

Operation rate at destination 0.06*** (0.01) 0.04** (0.02) -0.15 (0.18) 0.06*** (0.02)

Distance (100 miles) 0.29*** (2.58) 0.25*** (2.58) 0.24*** (0.03) 0.32*** (0.03)

Seat Capacity 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00)

Scheduled departure time 0.57*** (0.03) 0.58*** (0.03) 0.32*** (0.03) 0.40*** (0.03)

Weather Yes Yes Yes Yes

Carrier FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Quarter FE Yes Yes Yes Yes

Airport FE No Yes No Yes

R square 0.12 0.13 0.08 0.09

Observations 432,918 432,918 432,918 432,918

* Significant at the 10% level

** Idem. 5% level
*** Idem. 1% level

Departure Delay Arrival Delay

Note: Standard errors are clustered by carrier, month and year (i.e Delta August 2004). Hubs are defined as airports that serve more than 26

markets. Operation rate is calculated by dividing the total number of flights per day by the number of runways at the orgin or destination

airport. Scheduled departure time  are measured by a 24 hour clock. Airport fixed effects are included in even columns, and hub airport

indicators are dropped in even columns as there is little variation through out time for these variables.

(1) (2) (3) (4)
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Table 5: Descriptive Statistics

Variables Description Mean Std

Dep_delay 9.274 27.386

Arr_delay 10.892 28.612

Buffer 26.097 22.978

Prev_delay 9.524 24.873

Bank_flight 0.315 0.463

Airp_conc_orig 0.337 0.177

Route_competition 1.696 0.842

Orig_hub 0.744 0.493

Dest_hub 0.744 0.493

Operation_rate_orig 5.925 4.233

Operation_rate_dest 8.271 9.956

Distance 7.144 5.687

Dep_time 13.130 4.647

Segment 5.568 2.159

Orig NA NA

Dest NA NA

Carrier NA NA

Month NA NA

Day_of_week NA NA

Quarter NA NA

Prcp_orig 25.170 81.878

Snow_orig 1.820 13.128

Tmax_orig 149.016 616.170

Tmin_orig 84.557 90.494

Awnd_orig 36.968 16.564

Prcp_dest 25.263 82.430

Snow_dest 1.794 12.907

Tmax_dest 185.488 96.584

Tmin_dest 84.478 90.611

Awnd_dest 36.977 16.605Average wind speed at the origin airport on the day of flight

(tenths of meters per second)

Precipitation level at the destination airport on the day of flight

Snow level at the destination airport on the day of flight (tenths
Maximum temperature at the destination airport on the day of

flight

Minimum temperature at the origin airport on the day of flight

Average wind speed at the origin airport on the day of

flight(tenths of meters per second)

Minimum temperature at the destination airport on the day of

flight

Precipitation level at the origin airport on the day of flight

(tenths of mm)
Snow level at the origin airport on the day of flight (tenths of

mm)

Maximum temperature at the origin airport on the day of flight

Month of flight

Dummy variables indicating the day of the week of flight

Dummy variables indicating the quarter of flight

Difference between the actual departure time and the scheduled

departure time
Difference between the actual arrival time and the scheduled

arrival time
The excess  turnaround time over the minium possible time

Arrival delay of the previous flight in an aircraft rotation (not

applicable to the first flight in an aircraft rotation)

Airport concentration (HHI) at the origin airport of flight

Total number of flight segments scheduled in the day for the

aircraft used by flight

Number of competitors on the route of flight

Dummy variable=1 if the origin airport is a hub

Dummy variable=1 if the destination airport is a hub

The origin airport's hourly operations divided by the number of

runways at the scheduled departure time of flight

Dummy variables indicating the airline that flew flight (adjusted

for affiliated airline)

Dummy variables=1 if the flight depart from a bank of its

airline's hub

Dummy variables indicating the origin airport of flight

Dummy variables indicating the destination airport of flight

The destination airport's hourly operations divided by the

number of runways at the scheduled arrival time of flight

Length of flight in miles

Scheduled time of departure of the flight
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major factor in departure delays. Hubbing at the origin airports also contributes to

departure and arrival delays, as flights with a hub-airport origin experience 3 more

minutes of departure delay. The coefficients for the operation rate at the origin

airport is positive and significant: adding one flight per runway can increase the

departure delay and arrival delay of flights by around 0.2-0.5 minutes, while the

effect of runway congestion at the destination is much smaller. Such results imply

that runway congestion, especially runway congestion at the origin airport, has a

strong impact on the length of delays. The coefficients for distance are positive, so

that longer flights are more likely to be delayed (increasing the distance of a flight

by 100 miles increases the departure delay by 0.3 minutes). The coefficients on

the scheduled departure hour are positive, implying that both departure delays and

arrival delays increase as a day progresses onward, so that flights departing later

during a day experience more delays than flights departing early in the morning.

4.2 Market structure and buffers

With the results in the previous section confirming that schedule robustness

can effectively improve on-time performance, this section explores the main focus

of this study: the effect of airport concentration and route competition on schedule

robustness, as measured by buffers. The central question then is: all else equal, will

competition increase or decrease the length of buffers and thus schedule robustness?

An underlying assumption is that airlines, operating flights on a daily basis, can learn

first hand how many flights other airlines operate and when. Using information on

the amount of traffic, market structure at the origination and destination airports,

competition at route level, departure time, day of the flight, and the type of aircraft,

the hub carrier can adjust the length of the buffer of each flight.

4.2.1 Empirical model

a. Baseline estimation

29



To estimate how the length of buffers of flight i departing from airport j to

airport k at time t varies with the market structure, variations of the following

baseline equation are estimated:

Bufferijkt = β0 + β1Airp Concjt + β2Route Competjkt

+ β3Bank flightjt + β4Operation ratejt

+ β5Aircraft char + β6Route char

+
∑
c

σcCarrierc +
∑
m

σmMonthm +
∑
n

γnQuartern

+
∑
j

φjOriginj +
∑
k

φkDestk + εijkt (14)

As described in section 3, in addition to market structure measures, variables

that could affect carriers’ decisions on buffer times are included. These factors

include the bank-departing flight indicator, the operation rates at the origin airport,

as well as aircraft characteristics variables (seat capacity and the type of engine)

and route characteristics, including scheduled departure time, flight distance, and

the total number flight segments each day scheduled for the aircraft used by flight

i. Again, all estimations include carrier, day-of-week, month and quarter fixed

effects. As buffer choices are likely to be clustered due to unobserved influences

like carrier experience or previous weather conditions, standard errors are clustered

into the following groups: carrier × month × year (i.e., Delta August 2004). Basic

descriptive statistics of all the variables are also presented in Table 5.

In this set of regressions, airport fixed effects are also added to control for

unobserved airport-specific effects that may affect buffer choices, such as equip-

ment, airport facility and the airport’s position in the carrier’s network. Since these

variables eliminate any time-invariant airport specific effects, identification of the

coefficients is driven by the variation in variables within, not across, airports and

routes. For instance, the coefficient on airport concentration reveals how buffers

respond to changes in concentration at the endpoint airports of a route over time,
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not how buffers respond to differences across airports. Note that as the market

structure measures are constructed daily and the panel is sufficiently long, within-

route variation in the key market structure measures is enough for identification of

market-structure effects.

b. Hub vs. non-hub originating flights

According to Mirza (2008), buffer (and turnaround time) for flights departing

a hub may be longer to allow for synchronization between the feeder network and

trunk routes. However, longer turnaround times at the hub airport usually mean

a longer connecting time for passengers (Geodeking 2010) as aircraft will have to

wait longer on the ground, shifting the departure bank away from the previous ar-

rival bank and prolonging bank length. This relationship between buffers for hub

departure flights and bank length (reflecting average layover times of the passen-

gers) at hubs is depicted empirically in figure 7, where bank length is calculated

heuristically using the method described in the appendix. As these longer layovers

may generate disutility for the passengers, buffer decisions for flights leaving a hub

also take into consideration the trade-off between bank synchronization (lower cost

through economies of density) and longer layovers (less demand). With such con-

siderations, the sources of service competition is different for flights flying different

routes: while passengers on a flight originating from the airline’s hub airport care

about both layover time and on-time performance, passengers on a flight originat-

ing from a non-hub airport are mostly local passengers who only care about on-time

performance. Consequentially, the market-structure/schedule-robustness relation-

ship may be different between flights originating from the airline’s hub airport and

flights originating from a non-hub airport.

In order to test the above prediction and better understand the effect of mar-

ket structure on buffers at the network level, the main sample is supplemented by

a sub-sample including flights destined for non-hub airports. As passengers on such

flights are terminating, not connecting at the destination, possible hubbing activi-
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ties are not considered by airlines when making the buffer choice for these flights.

Moreover, in regressions using the sub-sample, interaction terms between an airline-

hub-originating indicator variable (equal to 1 if the flight originates from the airline’s

hub) and the market-structure variables are added to the baseline estimation, so that

the difference in market structure’s effect on schedule robustness between airline-hub

originating flights and non-hub originating flights can be captured.

Figure 7: The relationship between airport average buffer time and average bank
length for the 30 biggest airport in the US. This figure displays a strong positive
relationship between the buffer times of flights departing these airports and bank
length. Bank length is derived using a peak and trough identification algorithm
described in the appendix A.1

4.2.2 Results

a. Baseline estimation

Results for the baseline estimations are shown in Table 6.10 While column 1

and 2 only include one of the two market-structure measures, column 3 includes

both measures in the estimation. The most noteworthy finding from Table 6 is that,

10Estimations for the subset of non-slot constrained airports are also conducted. However, the
results are qualitatively unchanged. These results are available upon request.
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when market structure becomes more competitive (airport concentration decreases

or route competition increases), longer buffers are chosen. Numerically, when market

concentration at the origin airport decreases by 0.1, buffer time increases by around

1.3 minutes. Moreover, an increase of one competitor on a route would cause the

carriers to increase the buffer of the flights on this route by around 0.4 minutes.

The results thus show evidence of service competition in the airline industry, as

competition drives the carriers to improve the robustness of their schedules and

thus on-time performance. Moreover, recall that, in the theoretical model presented

in section 2, buffer increases with the number of competitors on a route when α > 1

is satisfied. Therefore, the empirical positive effect of competition on the buffer is

consistent with decreasing returns of scale in the number of flights on a route.

There are no surprises present in the coefficients for control variables. The

regression reveals that flights departing in a bank period at the airline’s hub expe-

rience around 2.7 minutes of additional buffer time, confirming the argument that

flights are waiting longer at the hub airport to synchronize the arrival and departure

banks, “collecting” passengers and thus increasing load factors. Increasing the oper-

ation rate at the origin airport shortens buffers, as congestion on the origin runways

reduces the efficiency of buffers in limiting departure delays. Aircraft configurations

also affect the choice of buffer length. Larger aircraft are given less buffer time, prob-

ably because the long minimum turnaround time assigned for these larger aircraft

makes buffers less important. Turboprops are scheduled longer buffers probably be-

cause such aircraft are sometimes not assigned a gate after they land, so that longer

buffers are needed to control for such an uncertainty. Other control variables all

show the expected signs. Flights that depart later in a day, or flights flying a longer

distance are given longer buffers, and aircraft flying more segments per day are given

shorter buffers, probably due to their demanding schedules. Although not shown in

the tables, the signs of the carrier fixed effects also show expected signs and mag-

nitudes, with the hub-and-spoke carriers like United, American, Delta, Continental
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Table 6: The effect of market structure on ground buffer, 10% sample of U.S. do-
mestic flights, Aug 2004- May 2005

Coef Std Error Coef Std Error Coef Std Error

Airport concentration at origin -13.67*** (2.54) -13.11*** (2.54)

Route competition 0.48*** (0.13) 0.40*** (0.12)

Depart in a bank 2.70*** (0.30) 2.79*** (0.31) 2.77*** (0.30)

Operation rate at origin -0.15*** (0.06) -0.15** (0.06) -0.15*** (0.06)

Seat capacity -0.01*** (0.00) -0.01*** (0.00) -0.01*** (0.00)

Turboprop 6.90*** (0.72) 7.06*** (0.72) 7.00*** (0.71)

Scheduled departure hour 0.45*** (0.03) 0.45*** (0.03) 0.45*** (0.03)
Distance 0.18*** (0.02) 0.19*** (0.02) 0.19*** (0.02)
Segment -1.95*** (0.13) -1.97*** (0.13) -1.95*** (0.13)

Carrier FE Yes Yes Yes

Day of Week FE Yes Yes Yes

Month FE Yes Yes Yes

Quarter FE Yes Yes Yes

Year FE Yes Yes Yes

Airport FE Yes Yes Yes

432,918 432,918 432,918

0.18 0.18 0.18

* Significant at the 10% level

** Idem. 5% level

*** Idem. 1% level

Note:Standard errors are clustered by carrier, month and year (i.e Delta August 2004). Operation rate is calculated by dividing the total number of

flights per hour by the number of runways at the orgin or destination airport. Segment is the total number of flight segment served by an aircraft per

day.

Banking and Congestion

Aircraft Charateristics

Route Characteristics

Fixed Effect

Observations

R-squared

Dependent Variable: Minutes of Ground Buffer

(1) (2) (3)

Market Structure
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and Northwest scheduling longer buffers, and low cost carriers like Southwest and

Jetblue scheduling shorter buffers.

b. Hub vs. non-hub estimations

Taking into consideration the network effect on schedule decisions, Table 7

give the results after sub-sampling flights heading toward a non-hub airport and

including interaction terms between the origin airline-hub indicator and the market

structure variables from the baseline model. Several stylized facts appear from the

tables. First, similar to the results obtained in the baseline model, lower market

concentration and higher route competition are associated with longer buffers for

flights destined for non-hub airports. Numerically, a flight between two non-hub

airports experience an additional 2.3-2.6 minutes additional buffer, when the origin

airport market concentration falls by 0.1. Moreover, a flight between two non-hub

airports with one more competitor serving the same route is given around 0.8-1

minutes more buffer. Note that the market structure effects in this sub-sample

almost double the effect estimated in the baseline model. Therefore, it appears that

the results for the full sample estimation are mainly driven by flights with passengers

terminating at the destination.11 While passengers care most about the on-time

arrival performance at their final destination (arriving late at a hub for connecting

trips may not generate disutilities for the passengers, as long as the delays do not

lead to missed connections), it is expected that service competition is the fiercest

on routes where most of the passengers are terminating at the destination.

Second, as predicted in section 4.2.1, the association between buffers and com-

petition is slightly weakened for flights departing from an airline’s hub airport, as

the signs of the coefficients on the interaction terms are the opposite of those on the

market structure variables, reducing the effects. According to column 3 in Table 7,

11Regressions using flights destined for the airline-hub airport shows that origin airport concen-
tration has little effect on buffer choices. These results are available upon request.
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hub originating flights are scheduled around 2.2 more minutes12 of additional buffer

time when the origin airport market concentration falls by 0.1. Similarly, the ef-

fect of an extra route competitor reduces to around 0.4 minutes for hub originating

flights. Although the individual coefficients on the interaction terms in column 1 and

column 2 are insignificant, an F-test also finds joint significance of sum the market

structure coefficient (airport concentration or route competition) and the interac-

tion term coefficient for each regression. The above results provide some evidence

that airlines are less motivated to compete via on-time performance on routes orig-

inating from the airline’s hub, since longer buffers for such flights improve on-time

performance, at the expense of prolonging layover time, which reduces the utility of

connecting passengers.

12The effect of market concentration on buffer for flights originating from the airline-hub airport
is calculated as follows: (−26.09 + 5.85) ∗ 0.1 = 2.24 minutes.
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Table 7: Sub-sample estimation of the effect of market structure on buffer with
interaction terms

Coef Std Error Coef Std Error Coef Std Error

Airport concentration at origin -23.45*** (3.68) -26.09*** (3.85)

Route competition 0.81*** (0.21) 0.99*** (0.25)

Airport concentration at origin * airline hub at origin 2.00 (1.72) 5.85*** (2.03)

Route competition * airline hub at origin -0.06 (0.26) -0.55* (0.31)

Depart in a bank 1.77*** (0.38) 2.02*** (0.38) 1.86*** (0.38)

Operation rate at origin 0.00 (0.06) 0.01 (0.06) 0.00 (0.06)

Seat capacity -0.03*** (0.00) -0.03*** (0.00) -0.03*** (0.00)

Turboprop 10.81*** (0.91) 11.10*** (0.91) 11.02*** (0.91)

Scheduled departure hour 0.44*** (0.03) 0.44*** (0.03) 0.44*** (0.03)

Distance 0.13*** (0.03) 0.14*** (0.03) 0.14*** (0.03)

Segment -2.38*** (0.18) -2.41*** (0.18) -2.37*** (0.18)

Carrier FE Yes Yes Yes

Day of Week FE Yes Yes Yes

Month FE Yes Yes Yes

Quarter FE Yes Yes Yes

Year FE Yes Yes Yes

Airport FE Yes Yes Yes

328,364 328,364 328,364

0.13 0.13 0.13

* Significant at the 10% level

** Idem. 5% level

*** Idem. 1% level

R-squared

Note:Standard errors are clustered by carrier, month and year (i.e Delta August 2004).  Airline hubs is defined as dummy variable that equal to

one if the carrier serves more than 26 destinations at the airport. Operation rate is calculated by dividing the total number of flights per hour by the

number of runways at the airport.  Segment is the total number of flight segment served by an aircraft per day.

Market Structure and Interaction Terms

Congestion

Aircraft Charateristics

Route Characteristics

Fixed Effect

Observations

Dependent Variable: Minutes of Ground Buffer

(1) (2) (3)
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5 Conclusion

This paper differs from most papers examining on-time performance in the

airline industry in one important way. Instead of looking at how market structure

directly affects on-time performance at the route level, this study asks how carriers

adjust their schedule robustness when market structure changes, recognizing that

schedule robustness is an important factor affecting the flight on-time performance.

To answer this question, the paper first recreates each flight’s ground buffer

time from historical flight schedules, using it as a measure of schedule robustness.

Examining the relationship between on-time performance and buffers of flights con-

firms that lack of schedule robustness is a major culprit in producing delays.

Further examining the relationship between buffers and market structure shows

that there exists service-quality competition in the airline market, with carriers

adopting more robust flight schedules when competition heats up. Furthermore,

examining the association between competition and schedule robustness using in-

teraction terms shows that market structure’s effect on buffer choices is slightly

attenuated for hub-originating flights.

Such results shed new light on the debate in the internalization literature, where

some empirical evidence fails to support the basic prediction that more-concentrated

airports should have better on-time performance. While congestion externalities can

be internalized when an airport is dominated by one carrier, this study shows that

airport domination may also induce worse on-time performance as the dominant

carriers reduce their schedule robustness, hence offsetting the probable improved

on-time performance brought about by internalization.
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A Appendix

A.1 Bank structure measurements construction

Because of the irregularity in the spacing and length of banks, heuristic proce-

dures for identifying bank characteristics are developed for this study.

For each hub airport, and each major carrier in the hub airport, the total

number of departure and arrival flights for each 5 minutes is derived using the

BTS dataset. Then, as depicted by Figure (A.1), a 1-hour moving average (MA)

is calculated to smooth out the flight frequency time series. The smoother MA

is then compared with the daily mean of flight frequency per 5 minutes. A peak

occurs when the MA is higher than the daily mean of the departure frequency (the

constant threshold) while trough occurs when the MA is lower than the daily mean.

The algorithm then locates the point with the minimum MA level for each trough

period, and these minimum points are identified as the “cutoff points” between

banks, and the length of time between the cutoff points is derived and considered

the length of a bank. However, without further constraint, it is possible that two

cutoff points are extremely close to each other if the MA process exhibit a volatile

fluctuation, as in the cases illustrated by the black circles in the upper panel of

Figure (A.1). Hence, to eliminate such cases, the second cutoff point is deleted if

the time gap between two points is within 1 hour.

In all, around 30% of the flights in the sample were identified to be departing

their airline’s hub (an airport serving more than 26 destinations for the airline)

during a bank. The average departure bank length is around 110 minutes (less

than 2 hours), so that on average, a hub would operate around 10 banks per day

(assuming it operates from 6am to 11pm).

43



Figure A.1: Departure Bank of AA at DFW on 08/01/2004. The figure illustrates
the algorithm used to identify banks in DFW, where AA operates as a hub-carrier.
The smooth line depicts the 1 hour moving average based on the hub-carrier number
of departing flights.
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Table A.1: Tobit estimation of the effect of ground buffers on departure and arrival
delay, 10% sample of U.S. domestic flights excluding slot controlled airports, Aug
2004- May 2005

Dependent Variable: Minutes of:

Coef Std Error Coef Std Error Coef Std Error Coef Std Error

Ground buffer (min) -0.46*** (0.01) -0.47*** (0.01) -0.33*** (0.01) -0.33*** (0.01)

Previous delay (min) 0.95*** (0.01) 0.94*** (0.01) 0.85*** (0.01) 0.84*** (0.01)

Hub airport at origination 3.62*** (0.36) 3.37*** (0.36)

Hub airport at destination -0.91*** (0.30) -0.84*** (0.32)

Operation rate at origination 0.37*** (0.05) 0.29*** (0.05) 0.28*** (0.05) 0.41*** (0.06)

Operation rate at destination 0.24*** (0.04) -0.08* (0.04) 0.47*** (0.04) 0.36*** (0.05)

Distance (100 miles) 0.28*** (0.03) 0.28*** (0.02) 0.21*** (0.04) 0.19*** (0.04)

Seat Capacity 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00)

Scheduled departure time 0.62*** (0.04) 0.58*** (0.04) 0.41*** (0.04) 0.41*** (0.03)

Weather Yes Yes Yes Yes

Carrier FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Quarter FE Yes Yes Yes Yes

Airport FE No Yes No Yes

R square 0.12 0.13 0.08 0.09

Observations 331,328 330,822 331,328 330,822

* Significant at the 10% level

** Idem. 5% level

*** Idem. 1% level

Note: Standard errors are clustered by carrier, month and year (i.e Delta August 2004). Hubs are defined as airports that serve more than 26

markets. Operation rate is calculated by dividing the total number of flights per day by the number of runways at the orgin or destination

airport. Scheduled departure time  are measured by a 24 hour clock. Airport fixed effects are included in even columns, and hub airport

indicators are dropped in even columns as there is little variation through out time for these variables.

Departure Delay Arrival Delay

(1) (2) (3) (4)
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