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ABSTRACT 

To estimate the bid-ask spread, we propose a new method that resembles the Roll measure 

(1984) but has some key advantages: it is fully independent of bid-ask bounces and benefits 

from a wider information set, namely, close, high, and low prices, which are readily available. 

Assessed against other low-frequency estimates, our estimator generally provides the highest 

cross-sectional and average time-series correlations with the TAQ effective spread 

benchmark. Moreover, it delivers the most accurate estimates for less liquid stocks. Finally, 

our estimator improves the measurement of systematic liquidity risk and commonality in 

liquidity for individual stocks and sorted portfolios.  
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Market liquidity is critical to market efficiency and financial stability. Inaccurate estimates of market 

liquidity can create misinformation about actual transaction costs and market malfunctioning, thus 

leading to an inefficient allocation of resources and a misperception of risks. As a result, the 

measurement of transaction costs has become a major topic in the financial literature. Whether and how 

one can precisely measure transaction costs if quote data are not available are key questions. 

This paper provides a new method to accurately estimate the bid-ask spread based on readily 

available daily close, high, and low prices. Akin to the seminal model proposed by Roll (1984), the 

rationale of our estimator is the departure of the security price from its efficient value because of 

transaction costs. However, our estimator improves the Roll measure in two important respects: First, our 

method exploits a wider information set, namely, close, high, and low prices, which are readily available, 

rather than only close prices like in the Roll measure. Second, our estimator is completely independent of 

trade direction dynamics, unlike in the Roll measure, which relies on bid-ask bounces expected to occur 

only for 25% of the days. By virtue of its closed-form solution and straightforward computation, our 

method delivers very accurate estimates of effective spreads, both numerically and empirically. 

Compared with other daily estimates of transaction costs, our estimator generally provides the highest 

cross-sectional and average time-series correlation with the effective spread based on Trade and Quotes 

(TAQ) data, which serve as the benchmark measure. Our estimator can be applied for a number of 

research purposes and to a variety of markets and assets because it is derived under very general 

conditions and is easy to compute.  

Our estimation of the effective spread shares the theoretical framework with the Roll (1984) model, 

in which the efficient price of an asset follows a geometric Brownian motion. Within this framework, we 

follow three innovative steps to derive our simple estimator. First, we build a simple proxy for the 

efficient price using the mid-range, which we define as the mean of the daily high and low log-prices. 

The mid-range of every day represents (at least) one point in the continuous path of the efficient log-

price process as half-spreads included in the high and low prices cancel out in the mid-range calculation. 



3 
 

Moreover, the mean of two consecutive daily mid-ranges represents a natural proxy for the midpoint or 

efficient price at the time of the closure. In fact, the continuous efficient price path of day 𝑡𝑡 (𝑡𝑡 + 1) hits 

the mid-range before (after) the closing time on day 𝑡𝑡. Second, we calculate the squared distance between 

the close log-price and the midpoint proxy at the time of the closure. We show that this squared distance 

is composed of the efficient-price variance and the squared effective spread at the closing time. As the 

third step, we derive an efficient-price variance estimator as a function of mid-ranges. The efficient-price 

variance is then removed from the squared distance between the close price and midpoint proxy 

(obtained in the previous step). The outcome is a simple measure for the proportional spread,  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎 = 2�𝐸𝐸[(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡+1)], in which 𝑐𝑐 is the daily close log-price and 𝜂𝜂 is the daily mid-

range, that is, the average of daily high and low log-prices. This simple closed-form solution resembles 

the Roll’s autocovariance measure. However, instead of the covariance of consecutive close-to-close 

price returns like in the Roll measure, our estimator relies on the covariance of close-to-mid-range returns 

around the same close price.    

Accurate measures of transaction costs also can be obtained from quote data, such as intraday or 

end-of-the-day bid and ask quotes. However, quote data at any frequency entail some difficulties and 

limitations. The use of high-frequency quote data involves drawbacks, including very limited access to 

recent data and to some securities, a restricted and delayed use, and the need for time-consuming data 

handling and filtering techniques.1 The approximation of transaction costs using bid and ask quotes 

snapped at daily or lower frequencies (e.g., Stoll and Whaley (1983)) is still relatively accurate (Chung and 

Zhang (2014)). However, it shares many drawbacks with the use of intraday quotes, such as limited 

access to bid and ask quotes that, in turn, are affected by intraday patterns at the point of time when 

recorded.2  The previous literature overcomes mentioned issues by employing price data to estimate the 

                                                   
1 The key advantages of using daily data, including large computational time savings, are comprehensively discussed by 
Holden, Jacobsen, and Subrahmanyam (2014). 
2 Rather than approximating and estimating transaction costs, an alternative approach to measuring illiquidity is to use 
proxies for the price impact, in particular the Amihud (2002) measure. 
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effective spread. Starting with the Roll (1984) measure (hereafter Roll), a number of models have been 

proposed. Hasbrouck (2004, 2009) proposes a Gibbs sampler Bayesian estimation of the Roll model 

(hereafter Gibbs). Lesmond, Ogden, and Trzcinka (1999) introduce an estimator based on zero returns 

(LOT). Compared with Roll, estimating the LOT measure is computationally intensive since it relies on 

optimizing the maximum likelihood function for every single month to get the monthly estimates. 

Following the same line of reasoning, Fong, Holden, and Trzcinka (2014) develop a new estimator 

(FHT) that simplifies existing LOT measures. Holden (2009), jointly with Goyenko, Holden, and 

Trzcinka (2009), introduces the Effective Tick measure based on the concept of price clustering 

(EffTick). And, more recently, Corwin and Schultz (2012) put forward an original estimation method 

using high and low prices rather than close prices (HL).     

This paper contributes to the literature by providing a new estimation method of transaction costs 

jointly based on close, high, and low prices. The rationale of our model is to bridge the two above-

mentioned estimation methodologies, that is, the long-established approach based on close prices 

originated from Roll (1984) and the most recent one relying on high and low prices (Corwin and Schultz 

(2012)). In doing so, our model has four main advantages over the previous estimation methods. First, 

the joint utilization of the daily high, low, and close prices allows our model to benefit from the richest 

readily available information set of price data.3 Second, unlike Roll (1984), our measure is independent of 

trade direction dynamics and, consequently, it does not rely on bid-ask bounces to capture the effective 

spreads. Third, unlike Corwin and Schultz’s (2012) HL estimator, our model neither needs to violate 

Jensen’s inequality in order to construct the closed-form estimator nor does it need ad hoc adjustments 

for nontrading periods, such as weekends, holidays, and overnight closings. Finally, our estimates are 

only marginally sensitive to the number of trades per day, whereas the Corwin and Schultz (2012) 

method generates substantially lower estimates of effective cost when the daily number of trades are 

lower, that is, when stocks (and markets) are less liquid.    
                                                   
3 Unlike close, high, and low prices, the availability of open prices is subject to additional limitations. For example, open 
prices are missing in the CRSP data between July 1962 and June 1992. 
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We empirically test our method by using daily CRSP data to estimate bid-ask spreads and compare 

the monthly estimates to TAQ data, which serves as the benchmark to compute the effective spread. As 

recommended by Holden and Jacobsen (2014), we use Daily (Millisecond) TAQ data to enhance the 

precision of our analysis. Thus, the availability of the Daily TAQ data naturally defines our main sample 

period, which spans from 2003 to 2014, that is, 135 months. Then, we assess the performance of our 

method by comparing bid-ask spread estimates with the Monthly TAQ data between January 1993 and 

September 2003 thus extending our analysis to 22 years of TAQ data, that is, from the beginning of 1993 

to the end of 2014. As emphasized in the literature, for example, by Goyenko, Holden, and Trzcinka 

(2009), the decision criteria for selecting the best estimator depends on the particular application of the 

estimates. To cover the widest range of possible applications, we use three different criteria to gauge the 

quality of the estimators: cross-sectional correlation, time-series correlation, and prediction errors. To 

ensure a comprehensive assessment, we consider the average correlations for all the available stocks, as 

well as for subsamples, based on a variety of criteria, including shorter time periods, primary exchanges 

(NYSE, AMEX, and NASDAQ), market capitalization, and the magnitude of bid-ask spreads.   

Three clear results emerge from our study. First, our estimator provides the highest cross-sectional 

correlation with the intraday effective spread compared with other bid-ask spread estimators, namely, the 

HL, Roll, Gibbs, EffTick, and FHT measures. On a monthly basis, the average cross-sectional correlation 

of our estimates with the Daily TAQ effective spreads is 0.74, whereas the other estimators range from 

0.38 to 0.65. The analysis of Monthly TAQ data from 1993 to 2003 delivers consistent results, that is, 

our estimates have the highest average cross-sectional correlation of 0.86, whereas those of other 

estimators range from 0.606 to 0.833. These results are consistent whether correlations are taken for 

estimates in levels or in changes, across subperiods, and across different markets. When breaking down 

the cross-section of stocks into quintiles based on companies’ size and effective spread size, we find that 

our estimator provides the highest cross-sectional correlations for small to medium market 

capitalizations and for a medium to large effective spread size. This can be seen as a suitable 
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characteristic because accurate estimates of transaction costs are particularly needed for less liquid 

securities. Second, our estimator also delivers the highest average time-series correlations with the 

effective spread benchmark. Compared with other estimators, it provides the highest average 

correlations over the entire sample period, across two out of three market venues (AMEX and 

NASDAQ), for small to medium market capitalizations, and for a medium to large effective spread size. 

Finally, our estimates generally exhibit the lowest prediction errors in terms of root-mean-squared errors 

(RMSEs) when compared with the TAQ benchmark. Overall, the empirical evidence indicates that our 

straightforward method generally offers the most accurate estimation of the intraday effective spread in 

three respects: cross-sectional correlation, time-series correlation, and RMSEs.  

A natural question is whether our estimator outperforms combinations of other estimators. We answer 

this question in two ways. First, we compare our estimates with the average of other estimates. 

Compared with the (overidentified) combinations of all other estimates, our estimates provide the 

highest average cross-sectional and time-series correlations with the TAQ effective spread benchmark, as 

well as the lowest average prediction errors. Second, we measure partial correlations between our 

estimates and the TAQ benchmark, while controlling for HL, Roll, Gibbs, EffTick, and FHT estimates. 

We find that the average partial cross-sectional and partial time-series correlations for our estimates are 

significantly positive for the entire sample, for every primary exchange, and for every effective-spread 

quintile. This confirms the additional explanatory power of our estimates. Average partial correlations 

are especially higher for quintiles with a medium to large effective spread size; that is, our estimator is 

even more effective in predicting the effective spread of less liquid stocks. We provide a numerical and 

empirical analysis showing that this quality is due to the marginal sensitivity of our estimates to the 

number of trades per day, whereas Corwin and Schultz’s (2012) method produces substantially smaller 

estimates of transaction costs for less-frequently traded stocks.     

An accurate measurement of transaction costs is important for at least two applications: First, to 

analyze how and to what extent transaction costs erode asset returns (e.g., Amihud and Mendelson 
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(1986)). To illustrate the potential application in this respect, we compute estimates of bid-ask spreads 

for NYSE and AMEX stocks for the period from 1926 through 2014. Then we discuss the reliability of 

our estimator in describing the developments of transaction costs over long time spans and for large cap 

and small cap stocks. Second, investors demand a premium for liquidity risk, that is, the chance that 

liquidity disappears when it is needed to trade. To comprehend this issue, it is necessary to obtain 

accurate estimates of transaction costs for individual stocks, stock portfolios, and the whole market. 

Through the lens of the liquidity-adjusted capital asset pricing model (LCAPM), proposed by Acharya 

and Pedersen (2005), we analyze which model provides accurate estimates of systematic liquidity risk for 

individual stocks and sorted portfolios, that is, estimates close to those based on the TAQ effective 

spreads. We show that our model precisely captures all the different components of systematic liquidity 

risk, in particular the component originated by comovements of liquidity of individual stocks and that of 

the whole market, that is, commonality in liquidity, as well as positive covariations between stock returns 

and liquidity. Overall, our model provides more accurate estimates for (liquidity) systematic risk than do 

the Roll and HL estimators, and it can be used to analyze commonality in liquidity and return-liquidity 

covariations. Our estimator has many potential applications in areas other than asset pricing, including 

corporate finance, risk management, and other important research areas that need an accurate measure 

of trading costs over long periods. 

I. The Estimator 

In this section, we explain our model in theory and provide details for best use in practice. At the 

end of the section, we numerically examine our estimator under different simulation scenarios.  

A. Model 

Our model relies on assumptions similar to those made in the Roll (1984) model. We assume that 

the efficient price follows a geometric Brownian motion (GBM) and the observed price at each time 
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point can be either buyer initiated or seller initiated. To keep the notation concise, we directly implement 

the model on log-price, and the superscript e refers to efficient prices. Equation (1) shows how the 

observed market price and efficient price at the closing time are related. The random variable 𝑐𝑐𝑡𝑡 

represents the observable close log-price, and the random variable 𝑐𝑐𝑡𝑡𝑒𝑒 represents the efficient log-price at 

the closing time. The random variable 𝑞𝑞𝑡𝑡 is the trade direction indicator, and 𝑠𝑠 is the relative spread, 

which we aim to estimate. In line with Roll (1984), we assume that trade directions are independent of 

the efficient price.   

Based on the assumption of a continuous efficient price path, the daily high price (ℎ𝑡𝑡) will always be 

buyer initiated (𝑞𝑞𝑡𝑡 = 1), and the daily low price (𝑙𝑙𝑡𝑡) will always be seller initiated (𝑞𝑞𝑡𝑡 = −1). Equations 

(2) and (3) represent these points.  

𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡𝑒𝑒 + 𝑞𝑞𝑡𝑡
𝑠𝑠
2

    , 𝑞𝑞𝑡𝑡 = ±1 , (1) 

ℎ𝑡𝑡 = ℎ𝑡𝑡𝑒𝑒 + 𝑠𝑠
2
 ,  (2) 

𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡𝑒𝑒 −
𝑠𝑠
2
 . (3) 

For the moment, we assume that the efficient-price movement during nontrading periods (e.g., 

overnight closings) is zero, but we will show later, both in numerical simulations and analytically, that our 

results are robust to the relaxation of this assumption (see the proof in Appendix B). We start with 

defining mid-range and then derive our estimator using the mid-range.  

Definition 1. We define the mid-range as the average of daily high and low log-prices: 

 𝜂𝜂𝑡𝑡 ≡ (𝑙𝑙𝑡𝑡 + ℎ𝑡𝑡)/2. (4) 

One can replace the efficient high and low log-prices with the observed values since the spreads 

cancel out.  

Proposition 1. Assuming that the efficient price follows a continuous path (in our case a GBM):  

(i) The mid-range of observed prices coincides with mid-range of efficient price: 
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𝜂𝜂𝑡𝑡 = (𝑙𝑙𝑡𝑡𝑒𝑒 + ℎ𝑡𝑡𝑒𝑒)/2. (5) 

(ii) 𝜂𝜂𝑡𝑡  represents at least one point in the efficient-price process. In other words, the efficient price hits 

𝜂𝜂𝑡𝑡 at least once during the day.  

(iii) A straightforward and unbiased proxy for the end-of-the-day midquote of day 𝑡𝑡 is the average of 

mid-ranges of the same day and the next day, since the end of the day midquote of day 𝑡𝑡 occurs between 

the time at which 𝜂𝜂𝑡𝑡 and 𝜂𝜂𝑡𝑡+1are hit. As shown in equation (6), this proxy is unbiased:  

𝐸𝐸[𝑐𝑐𝑡𝑡𝑒𝑒 − (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄ ] = 0. (6) 

Proposition 2. The squared distance between close log-price of day 𝑡𝑡 and the proposed mid-point proxy 

includes two components: bid-ask spread component and efficient price variance component. Equation 

(7) shows this relation:  

𝐸𝐸[(𝑐𝑐𝑡𝑡 − (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄ )2] = 𝑠𝑠2 4⁄ + (1 2⁄ − 𝑘𝑘1 8⁄ )𝜎𝜎𝑒𝑒2 ,   𝑘𝑘1 ≡ 4 ln (2). (7) 

Garman and Klass (1980) use the value of  𝑘𝑘1for the purpose of estimating volatility using the daily 

price range. Proofs for Propositions 2 and 3 are available in Appendix A. The effective spread, by 

definition, is the distance between the price and the contemporaneous midquote. We interpret equation 

(7) as a characterization of the standard definition of the effective spread, that is, when the unobservable 

midpoint is proxied by the average mid-ranges. We argue that the average of the consecutive mid-ranges 

of days 𝑡𝑡 and 𝑡𝑡 + 1 is a natural proxy for the midquote or the efficient price at the closing time of day 𝑡𝑡 

since the mid-range of day 𝑡𝑡 occurs before the closing time and the mid-range of the next day occurs 

after it. As expressed in equation (7), the squared distance between the close price and the proxy for the 

midquote contains two components: the squared effective spread and the transitory variance. The 

squared effective spread term represents the squared distance between the observed close price and the 

midquote at the time of market closure. The transitory variance term represents the squared distance 

between the midquote at the closure time and its approximation, that is, the average of two consecutive 
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mid-ranges. Figure 1 provides a graphical illustration of the two components of the dispersion measure 

introduced in equation (7) in the framework of the Roll (1984) model. The figure illustrates that the 

distance between the close price and the average of the two consecutive mid-ranges reflects two 

quantities, namely, the effective spread and the intraday efficient-price variation (𝜎𝜎𝑒𝑒2). As the next step, 

we propose a way to compute a measure of intraday volatility, which we will remove from the dispersion 

between the close price and the midquote proxy.     

Proposition 3. The variance of changes in mid-ranges is a linear function of efficient price variance. 

Equation (8) provides the accurate relation:  

𝐸𝐸[(𝜂𝜂𝑡𝑡+1 − 𝜂𝜂𝑡𝑡)2] = (2 − 𝑘𝑘1 2⁄ )𝜎𝜎𝑒𝑒2 ,   𝑘𝑘1 ≡ 4 ln (2). (8) 

Since the mid-ranges are both independent of the spread, their difference only reflects the volatility 

of the efficient-price path. We also perform several numerical simulations to assess the quality of the 

estimate of the efficient price volatility in Proposition 3. We find two main results: First, the estimated 

efficient price volatility implied by our model closely follows the “true” efficient price volatility. Second, 

our volatility estimate is less sensitive to the trading frequency. In other words, it is still accurate and less 

biased than the high-low volatility estimates, even for a very low frequency of trades. This is a favorable 

property of our volatility estimates compared to the use of price range, which, as shown in Garman and 

Klass (1980), is considerably biased if the trades are observed less frequently. Figure 2 illustrates the 

explained simulation results. Proposition 3 provides us with a way to remove the efficient price variance 

part introduced in Proposition 2.  

Theorem 1. The squared effective spread can be estimated as shown in equation (9):  

𝑠𝑠2 = 4𝐸𝐸[(𝑐𝑐𝑡𝑡 − (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄ )2] − 𝐸𝐸[(𝜂𝜂𝑡𝑡+1 − 𝜂𝜂𝑡𝑡)2] = 4𝐸𝐸[(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡+1)]. (9)   

Proof of Theorem 1: Multiplying both sides of equation (7) by four, subtracting equation (8), and 

simplifying the outcome expression leads to equation (9). 
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Interestingly, the estimator derived in Theorem 1 resembles the Roll autocovariance measure, in 

which 𝑐𝑐𝑡𝑡+1(𝑐𝑐𝑡𝑡−1) is replaced with 𝜂𝜂𝑡𝑡+1(𝜂𝜂𝑡𝑡). However, this simple and intuitive formulation leads to some 

important improvements. Hereafter, we compare our estimator to the Roll and HL measures. 

As illustrated in equation (10), the expected value of every two-day observation of our estimator 

gives the squared effective cost to trade independent of trade direction patterns. This independence 

provides two key advantages. First, contrary to the Roll measure, there is no need for any restrictive 

assumptions on the dynamics of the trade direction, for example, on the serial independence of trades 

and equal likelihood of buyer-initiated and seller-initiated trades. Second, there is no need for observing 

the bid-ask bounces because each two-day observation of days 𝑡𝑡 and 𝑡𝑡 + 1 only relies on 𝑐𝑐𝑡𝑡. In contrast, 

the Roll autocovariance estimates involve three-day closing prices (𝑐𝑐𝑡𝑡−1, 𝑐𝑐𝑡𝑡 , and 𝑐𝑐𝑡𝑡+1) that reveal the 

transaction costs only in case of reversals of trade direction at time t. As explained in Equation (11), 

these reversals across three days (that is, buy, sell, and buy or sell, buy, and sell) are expected to occur 

only one out of four times. This means that, on average, 15 observations in a 20-day month are 

completely uninformative about the bid-ask spread.4 

𝐸𝐸[4(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡+1)|𝑞𝑞𝑡𝑡] = 𝑞𝑞𝑡𝑡2𝑠𝑠2 = 𝑠𝑠2,   (10) 

𝐸𝐸[−4(𝑐𝑐𝑡𝑡+1 − 𝑐𝑐𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝑐𝑐𝑡𝑡−1)|(𝑞𝑞𝑡𝑡+1,𝑞𝑞𝑡𝑡,𝑞𝑞𝑡𝑡−1)] = −𝑠𝑠2(𝑞𝑞𝑡𝑡+1 − 𝑞𝑞𝑡𝑡)(𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−1) =

�4𝑠𝑠
2 , (𝑞𝑞𝑡𝑡+1 − 𝑞𝑞𝑡𝑡)(𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−1) = −4,    [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. = 0.25]

0     , (𝑞𝑞𝑡𝑡+1 − 𝑞𝑞𝑡𝑡)(𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−1) = 0,        [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. = 0.75].  (11) 

 

Compared to the HL estimates’ performance (Corwin and Shultz (2012)), our model should perform 

better since it uses a wider information set, that is, the close, high, and low prices, whereas the HL 

estimator only relies on high and low prices. Moreover, as discussed in Proposition 3, since our estimates 

                                                   
4 Choi, Salandro, and Shastri (1988) extend the Roll (1984) model by allowing for serial correlation in trade direction. 
With realistic conditional probabilities of trade continuation, this implies that trade reversals occur even more 
infrequently, that is, fewer than one out of ten times.   
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do not depend on the range, they are less sensitive to the number of trades per day. This feature is 

crucial to estimate accurately the transaction costs for less liquid stocks. We will return to this issue in 

Sections III and IV, when we empirically analyze various estimators of the effective spread.   

One practical way to get an estimate of 𝑠𝑠2 is to replace the term on the right-hand-side in equation 

(9) with monthly averages. However, the estimates of 𝑠𝑠2 can become negative. In the next section, we 

explain how to deal with this issue.   

B. Use in practice: How to deal with negative estimates 

We aim to use the model to estimate effective spreads for every month-stock. The first approach 

that comes to mind is to replace expectations with monthly averages in equation (9), and if the result is 

negative, report it as zero. We call this version the monthly corrected version.  

An alternative method is the following: First, we calculate estimates of squared spreads over two-day 

periods. If the two-day estimates are negative, then we set them to zero. Second, we take their square 

roots. Finally, we average them over a month. The three steps are summarized in equation (12):   

𝑠̂𝑠𝑡𝑡 = �max{4(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡+1) , 0}  ,                                    𝑠̂𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ

∑ 𝑠̂𝑠𝑡𝑡𝑡𝑡∈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ . (12) 

The estimate of the two-day spread and the monthly spread are represented by  𝑠̂𝑠𝑡𝑡 and 𝑠̂𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ. We call 

this version the two-day corrected version, as we replace negative two-day estimates with zero. This is similar 

to the correction method applied by Corwin and Schultz (2012). Although the two-day correction 

approach increases the bias because of setting more negative values to zero compared with the monthly 

corrected version, it provides better results in terms of higher correlation with the high-frequency 

benchmark, as documented by Corwin and Schultz (2012).  

The better performance of the two-day corrected version can be explained by some restrictive 

assumptions in the Roll (1984) model, which our estimator also relies on, in particular the constant 

spread and volatility. First, the monthly corrected estimate hinges on 𝐸𝐸(𝑠𝑠2), which consists of the 

squared mean, plus the variance of bid-ask spreads. This is larger than the squared mean when the spread 
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is not constant. With the use of a two-day period for the spread estimation, we isolate a single incident of 

a close-price transaction, and, therefore, no assumption on the distribution of the spread over 

consecutive days is needed. Second, the two-day time window is more prone to capturing transient price 

patterns, such as heteroskedasticity and volatility clustering.  

In the next part, by numerical simulations under different settings, we show that the two-day 

corrected version of our estimates is more precise, in terms of having a smaller estimation variance. We 

also show that when the trading cost is not constant, the two-day corrected version can be less biased 

than the monthly corrected version. 

C. Simulation results 

In this subsection, we perform several numerical simulations under different settings. For ease of 

comparison, we set the setting of simulations, including the less-than-ideal conditions, similar to the 

settings proposed by Corwin and Schultz (2012). We compare two versions of our measure with the HL 

and Roll estimates, that is, the monthly corrected and the two-day corrected versions.5  

Table I shows the results of the simulation exercise in five different scenarios. We label our estimator 

CHL because it is based on the close, high, and low prices. Panel A shows the results for the near-ideal 

settings. For each relative spread under analysis, we perform 10,000 time simulations for 21-day months 

of the price process. Each day consists of 390 minutes in which trades are observable. We simply draw 

from 𝑀𝑀𝑡𝑡 = 𝑀𝑀𝑡𝑡−1𝑒𝑒𝑧𝑧𝑧𝑧/√390 ,    𝑃𝑃𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑒𝑒𝑞𝑞𝑡𝑡𝑠𝑠/2,   𝑧𝑧~𝑁𝑁(0,1), where 𝑀𝑀𝑡𝑡 and 𝑃𝑃𝑡𝑡 represent the efficient price 

and observed transaction price at time 𝑡𝑡, respectively. We set the daily standard deviation of efficient-

price returns, 𝜎𝜎, to be 3%. Panel B has the same setting as panel A, but a lower trade frequency. Under 

this setting, each per-minute trade has a of 10% chance of being observed. This “imperfection” 

                                                   
5 Shane Corwin has kindly provided the SAS codes for the HL estimator on his personal Web site. The code produces 
several versions of spread estimates. We consider two of them in our simulations. The first version, named 
MSPREAD_0, is calculated by setting two-day negative estimates to zero and then taking the monthly average. The 
second version, named XSPREAD_0, is calculated by directly setting the negative monthly averaged estimates to zero. 
Although the second version produces less-biased results in some simulation cases, Corwin and Schultz (2012) advocate 
the former method, which is better associated with the TAQ benchmark.   



14 
 

represents an interesting case as Garman and Klass (1980) introduce the bias in the range-based volatility 

estimation when the full price path is not observable. The setting in panel C is the same as in panel A, 

except that the spreads are no longer constant. By considering various spread sizes (𝑎𝑎% spreads), the 

spreads for each day are randomly drawn from a uniform distribution with the range of (0 , 2𝑎𝑎). The 

setting in panel D adds an “overnight” price change corresponding to a half standard deviation of daily 

price returns to panel A. Overnight characterization actually represents more general nontrading periods, 

such as weekends, holidays, and overnight closings. Finally, panel E, all at once, encompasses the 

previous imperfections analyzed in panels B, C, and D. 

Four main findings arise from the simulation analysis in Table I. First, in almost all of the cases, the 

standard deviations of two-day corrected spread estimates from the HL and our model are lower than 

those of the monthly corrected estimates. This finding supports the idea of tolerating a relatively small 

bias added by the two-day correction method in order to benefit from lower estimation variances. This 

lower estimation variances might also explain why the two-day corrected estimates are more strongly 

correlated with the TAQ benchmark than the monthly corrected ones. Second, the introduction of 

random spreads does not change the two-day corrected CHL estimates as much as it changes the 

monthly corrected estimates. This evidence also motivates the use of the two-day corrected version, 

rather than the monthly corrected one. Third, the standard deviations of the two-day corrected version 

of the HL and CHL estimates are very similar and about one-fourth of those of the Roll estimates, 

suggesting higher precision in the HL and CHL estimates. Finally, considering all imperfections together 

in the last panel of Table I, for the cases of larger spreads (from 3% to 8%) CHL two-day corrected 

estimates show the lowest bias and mean-squared errors, computed as the sum of estimation variances 

and the squared biases. This finding suggests that our model provides more accurate estimates than do 

the HL and Roll models for the less liquid securities, for which transaction costs and liquidity issues are 

of much more concern. 



15 
 

II. Other Spread Estimators that Use Daily Data 

Of the different estimators developed by researchers, none jointly utilize close, high, and low prices 

data. In the rest of this section, we concisely describe the most common methods for bid-ask spread 

estimation, which we empirically analyze in the next sections.  

A. Estimation based on return autocovariance and its improvements  

Roll (1984) assumes that the efficient price follows a random walk and the observed transaction 

prices recorded at the end of day differ a half spread from the efficient price. The observed price can be 

a half spread higher or lower than the efficient price depending on whether the trade is buyer or seller 

initiated. Assuming an equal chance of observing a buyer- or seller-initiated price, the proportional 

spread can be estimated with the following formula:  

𝑠𝑠 = 2�−𝐸𝐸[∆𝑝𝑝𝑡𝑡∆𝑝𝑝𝑡𝑡−1], (13) 

where 𝑠𝑠 represents percentage spread and 𝑝𝑝 is the logarithm of the close price.6 To return a nonnegative 

spread, the first-order autocovariance of the price changes in equation (13) must be negative. However, 

Roll (1984) finds positive estimated autocovariances for several stocks, even over a one-year sample 

period. Hasbrouck (2004, 2009) uses a Gibbs sampler Bayesian estimator to overcome this issue. Using 

annual estimates, Hasbrouck (2009) shows that the spreads originated from the Gibbs method have 

higher correlations with the high-frequency benchmark. Following Corwin and Schultz (2012), among 

others, we perform our empirical analysis on a monthly basis.7 This time granularity facilitates the time-

series and cross-sectional comparisons with the previous literature and the high-frequency benchmark.   

                                                   
6 As discussed in Roll (1984), the spread estimator can be computed with price changes or percent returns to estimate 
the spreads or proportional spreads, respectively. We use log-price and log-returns to estimates the proportional spreads. 
Percent and log returns deliver similar results. Furthermore, the use of log-prices eases the comparison with other 
models studied in the literature.    
7 Joel Hasbrouck has kindly provided the SAS codes for the Gibbs sampler estimator on his personal Web page. We 
modify the codes by altering the estimation windows from stock-years into stock-months. We only consider stock-
months in which there are at least 12 days with trades. As he already noted in the Web page, the monthly estimator is 
less accurate than the annual version because of the overweigh role of the prior density in the outputs.    
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B. Estimation based on zero returns  

Lesmond, Ogden, and Trzcinka (1999) introduce an effective-spread estimator based on the idea that 

the stock price return follows a market model. It is larger than the spread and zero otherwise. They use a 

maximum likelihood approach for their estimations. Goyenko, Holden, and Trzcinka (2009) propose 

two alternative methods to define the three feasible regions for the maximum likelihood estimation. The 

first alternative, named LOT Mixed, separates the different regions of observations according to the 

stock return and market return. In the second alternative, named LOT Y-Split, the separation of the three 

regions is solely based on the stock return. Goyenko, Holden, and Trzcinka (2009) document that these 

two measures can produce somewhat different results.  

More recently, Fong, Holden, and Trzcinka (2014) develop another estimator, named FHT, which 

simplifies the existing LOT Mixed measure. Assuming that nonzero returns are observable only if they 

are larger than the spread, they calculate the proportional spread as follows: 

 𝑠𝑠 = 2𝜎𝜎𝑁𝑁−1 �1+Zeros
2

� ,                            Zeros = ZRD
TD+NTD

,   (14) 

where 𝑍𝑍𝑍𝑍𝑍𝑍 refers to the number of zero return days, 𝑇𝑇𝑇𝑇 refers to the number of trading days, and 𝑁𝑁𝑁𝑁𝑁𝑁 

refers to the number of no-trade days in a given stock-month. They assess the quality of their measure in 

estimating liquidity of the global equity market and find that it is one of the most accurate measures.8   

C. Estimation based on price clustering  

Holden (2009), jointly with Goyenko, Holden, and Trzcinka (2009), develops a proxy for the 

effective spread based on observable price clustering. Larger spreads are associated with larger effective 

tick sizes. Assuming that trade prices are clustered to minimize the negotiation costs among dealers, they 

consider the four possible 𝑆𝑆𝑗𝑗 spreads of $1/8, $1/4, $1/2, and $1 to be randomly drawn with 

                                                   
8 Fong, Holden, and Trzcinka (2014) consider three measures as the best bid-ask spread proxies, namely, their FHT 
estimator, the HL estimator, and the approximation using end-of-the-day bid and ask quotes as explained by Chung and 
Zhang (2014). We consider the HL and their FHT estimator in this paper, but we skip Chung and Zhang’s (2014) 
measure because it directly uses quote data.  
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probability 𝛾𝛾𝑗𝑗 . They assume that price clustering is completely determined by the spread size. Then they 

calculate the empirical probabilities of trades on prices corresponding the 𝑗𝑗th spread as  

𝐹𝐹𝑗𝑗 = 𝑁𝑁𝑗𝑗
∑ 𝑁𝑁𝑗𝑗
𝐽𝐽
𝑗𝑗=1

.     

The unconstrained probability of the effective spread is  

𝑈𝑈𝑗𝑗 = �
2𝐹𝐹𝑗𝑗,                  
2𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑗𝑗−1,     
𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑗𝑗−1,       

𝑗𝑗 = 1                 
𝑗𝑗 = 2, … , 𝐽𝐽 − 1
𝑗𝑗 = 𝐽𝐽                 

.  (15) 

To avoid negative probabilities, and to make sure that the probabilities sum to one, they construct a 

constrained probability of the jth spread. Going from smallest to largest spreads, they compute the 

constrained probabilities as follows: 

𝛾𝛾�𝑗𝑗 = �
Min�Max�𝑈𝑈𝑗𝑗 , 0�, 1�,                           𝑗𝑗 = 1                
Min�Max�𝑈𝑈𝑗𝑗, 0�, 1 − ∑ 𝛾𝛾�𝑘𝑘

𝑗𝑗−1
𝑘𝑘=1 �,       𝑗𝑗 = 2, … , 𝐽𝐽      

.  (16) 

The reliance on the constrained probabilities makes it possible to calculate the expected spreads for 

the time interval 𝑖𝑖. 

Effective Ticki =
∑ 𝛾𝛾�𝑗𝑗𝑆𝑆𝑗𝑗
𝐽𝐽
𝑗𝑗=1

𝑃𝑃�𝑖𝑖
.  (17) 

We compute this measure by considering records of days for which a positive price and volume are 

recorded.    

D. Estimation using high and low prices 

Corwin and Schultz (2012) develop an estimator based on daily high and low prices. They argue that 

high (low) prices are almost always buyer (seller) initiated. Therefore, the daily price range reflects both 

the stock’s volatility and its bid-ask spread. They build their model on the comparison of one- and two-

day price ranges. The latter should twice reflect the variance of the former, but they should have the 

same bid-ask spread. This reasoning results in a nonlinear system of two equations with two unknowns 

that does not have a closed-form solution. The authors provide a simplified solution by neglecting 

Jensen’s inequality and under the assumption that the expected efficient-price range squared has to be 

equal to the square of the expected efficient-price range.  

By using the above simplification, they calculate the two-day spread as 
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𝑠𝑠 = 2(𝑒𝑒𝛼𝛼−1)
1+𝑒𝑒𝛼𝛼

,       𝛼𝛼 = �2𝛽𝛽−�𝛽𝛽
3−2√2

− � 𝛾𝛾
3−2√2

 , (18) 

where 𝛽𝛽 represents a two-day sum of the daily log-price squared range and 𝛾𝛾 represents one observation 

of the two-day log-price squared range. The monthly estimates are calculated as the average of the above 

two-day estimates, where the negative two-day estimates are set to zero.  

Their method needs an additional adjustment for nontrading periods, such as weekends, holidays, 

and overnight closings. If the close price on day 𝑡𝑡 is higher (lower) than the high (low) price for day 𝑡𝑡 +

1, they adjust day 𝑡𝑡 + 1 high and low prices by shifting both of them together such that the high (low) 

price of day 𝑡𝑡 + 1 and close price of day 𝑡𝑡 match.  

III. A Comparison of Spread Estimates from Daily Data Using the TAQ 

Benchmark 

We now turn to the analysis and comparison of the main estimation methods of transaction costs 

used in the literature. Using CRSP daily data, we estimate the effective spreads for common stocks listed 

in the main three stock markets in the United States, namely, NYSE, AMEX, and NASDAQ. In addition 

to our estimator, labeled CHL, we estimate the spreads originating from the following estimators: Roll 

(Roll (1984)), Gibbs (Hasbrouck (2009)), EffTick (Holden (2009); Goyenko, Holden, and Trzcinka 

(2009)), HL (Corwin and Schultz (2012)), and FHT (Fong, Holden, and Trzcinka (2014)). In the 

following analysis, we use the two-day corrected version for our estimator and for the HL measure, as 

recommended by Corwin and Schultz (2012).  

To calculate our measure, we do the following: (1) we keep the previous daily high, low, and close 

prices on those days when a stock does not trade; (2) we use the two-day corrected version; that is, we 
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set negative two-day estimates of squared spreads to zero and then take the square roots and average 

over the month; and (3) we discard estimates for months in which there are less than 12 trading days.9,10  

To calculate the HL estimates, we exactly follow Corwin and Schultz (2012). More specifically, (1) 

we keep the previous daily high, low, and close prices on those days when a stock does not trade; (2) we 

perform the ad hoc overnight adjustment as explained in their paper; (3) we use the two-day corrected 

version; that is, we set negative two-day estimates to zero; and (4) we discard stock-months with less 

than 12 two-day estimates. We then calculate the other measures and merge all the estimations. We 

finally discard stock-months in which (1) any of the estimates produce a missing value, (2) a stock split or 

enormous distribution occurred, (3) a change of the primary exchange occurred, or (4) a stock has a 

time-series of less than six monthly estimates.11, 12  

We construct the main high-frequency benchmark for our analysis by calculating the effective spread 

from Daily TAQ data. Equation (19) defines the proportional effective spread at time 𝑡𝑡. As 

recommended by Holden and Jacobsen (2014), we use Daily TAQ data, with milliseconds time stamps, 

instead of the Monthly TAQ data. In fact, the authors show that in fast, competitive markets of today, 

the Daily TAQ granularity is more precise, whereas the usage of Monthly TAQ data might lead to 

incorrect statistical inferences.  

𝐸𝐸𝑆𝑆𝑡𝑡 = 2|𝑃𝑃𝑡𝑡−𝑀𝑀𝑡𝑡|
𝑀𝑀𝑡𝑡

   ,                   𝑀𝑀𝑡𝑡 = 𝐵𝐵𝑡𝑡+𝐴𝐴𝑡𝑡
2

.  (19) 

The time span of the data set, covering 135 months of Daily TAQ data, starts in October 2003 and 

ends in December 2014. To calculate the effective spread from Daily TAQ data, we closely apply the 

                                                   
9 A trading day is defined as one with a positive closing price, high price, and low price and positive volume. Inclusion or 
exclusion of the volume criterion does not change any conclusions. It is also possible and accurate to replace missing 
𝜂𝜂𝑡𝑡+1 values, for the two-day estimates in which no trade occurs on day 𝑡𝑡 + 1, with readily available mid-quotes. 
However, to have a fair comparison with other estimates, we refrain from using mid-quotes. 
10 As we merge the estimates in the next step, this filter will be applied to other estimates as well. Therefore, all the 
estimates will have similar quality in terms of the selected sample.   
11 We discard stock-months in which the cumulative price adjustment factor (cfacpr) changes more than 20%.   
12 For example, the Gibbs estimator’s code returns errors for the few stock-months in which the price remains constant 
for most of the days in the month, because the initial trade directions used in the simulations are calculated as sign of 
daily returns.  



20 
 

procedure explained by Holden and Jacobsen (2014).13 More precisely, we first clean up the National 

Best Bid and Offer (NBBO) data set by removing any best bid (ask) in which the bid-ask spread is above 

five dollars and the bid (ask) is more than 2.5 dollars above (below) the previous midpoint. We also 

remove any quotes from the consolidated quotes (CQ) file if the spread is more than five dollars. 

Second, we merge the CQ and NBBO (cleaned) data to construct a complete official NBBO data set. 

Third, we match trades with constructed official NBBO quotes one millisecond before them. In addition 

to the above-mentioned filters, we discard all trades outside the market opening hours and with 

proportional effective spreads above 40%. We compute the dollar-weighted average for intraday 

proportional effective spreads to obtain the average daily spreads. Then we take the average of daily 

spreads to construct the monthly benchmark. 

The final step in the data preparation is to link the CRSP and Daily TAQ using CUSIPs in the TAQ 

monthly master files.14 This matching strategy allows us to cover 98% of stock-months estimates from 

the CRSP. We provide the summary statistics for the estimates in Table II. As we compare the pooled 

data in Table II, both the mean and standard deviation convey valuable information about the 

explanatory power of the estimators. The mean provides a simple measure for the level or size of the 

estimated transaction costs, and the standard deviation gives information about the time-series and 

cross-sectional dispersion of spread estimates around the mean. We also include overall correlations of 

estimates with the effective spreads benchmark, confirming the choice of two-day corrected estimates 

over monthly corrected estimates for our measure, as well as for the HL measure. Calculating EffTick 

estimates, we observe some stock-months in which none of the prices are divisible by the base-eight 

denomination increments. We report the estimates for these stock-months as zeros. For the purpose of 

comprehensiveness, we consider a second variant of the EffTick measure using the tick sizes of 1¢, 5¢, 

10¢, 25¢, 50¢, or $1.00 as our sample time span lies after the decimalization of stock markets. In Table II, 
                                                   
13 To calculate the effective spreads using Daily TAQ data, we use the same SAS codes kindly provided by Craig Holden 
on his Web site. We add additional criteria to keep the trades/quotes records with no symbol suffixes.    
14 We use the information in monthly master, files rather than that in the daily master files, because only the monthly 
master files are available for the entire sample period. 
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this second variant is labeled - EffTick – Alt. Incr. Clearly, this variant underestimates both the mean and 

the variations of the effective spread. Therefore, in the next sections we perform our analysis using the 

original base-eight denomination.  

In addition to the effective spread and its estimates, we include Amihud (2002) illiquidity measure as 

the last row of the Table II. We multiply Amihud illiquidity proxy by one million to obtain easier-to-read 

values. The Amihud measure is a price impact proxy, rather than a transaction cost measure. This 

explains why (1) its mean and standard deviation are not directly comparable with the other spread 

estimates and (2) the correlation between the Amihud measure and the effective spread benchmark is 

generally lower than that for the spread estimators.  

As a decomposition of the standard deviations reported in Table II, we also compute the cross-

sectional standard deviation of the estimates on a monthly basis to assess how well the estimators’ 

dispersion follows that of the TAQ benchmark across time. Figure 3 shows the results for some 

estimators. It is clearly evident that the cross-sectional dispersions from our estimator most closely track 

that of the benchmark.  

We now turn to identifying which criteria should be used to assess the measurement performance of 

the effective spread estimators. As stressed by Goyenko, Holden, and Trzcinka (2009), the choice of the 

best estimator, depending on the specific application, should be based on different criteria. For the sake 

of completeness, our analysis encompasses the three main criteria used in the literature: cross-sectional 

correlation, time-series correlation, and prediction errors. This set of criteria should support a complete 

assessment and cover a wide range of applications. In the following part, we analyze the measurement 

performance of a set of estimators applying the three above-mentioned criteria.  

A. Cross-sectional correlations 

Cross-sectional correlation is an important criterion in assessing the estimation performance. This 

criterion is relevant in many applications, especially when the analysis is conducted for levels of 

transaction costs and for cross-sectional comparisons.  
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For each month, we calculate the correlation of the estimates with TAQ effective spreads that serve 

as the benchmark. Panel A in Figure 4 shows the development across time for the cross-sectional 

correlations of different estimators with the spread benchmark. It is clearly discernable that our estimator 

always provides the highest cross-sectional correlation. The results in panel A of Table III confirm that 

the estimates from our model (labeled CHL) have the highest cross-sectional correlation over the entire 

sample and across all subperiods. We apply the approach proposed by Goyenko, Holden, and Trzcinka 

(2009) to perform the statistical inferences to assess whether the average correlations are significantly 

different. More specifically, to compare the average correlation of the two estimators, we compute the 

pairwise difference of their cross-sectional correlations with the benchmark at each month. We then test 

if the average value for this time series is significantly different from zero, while adjusting for the 

autocorrelations using Newey-West (1987) standard errors with four lags. The findings in Table III 

indicate that the higher correlation coefficients of our estimator are statistically significant compared with 

any other measures.       

We substantiate the previous analysis by examining the cross-sectional correlations in first 

differences, that is, taking the changes in monthly (estimated) spreads. Panel B of Figure 4 shows their 

developments across time, and panel B of Table III indicates whether these correlations are statistically 

significant. As expected, correlations based on changes in spreads are lower than those based on spread 

levels. However, the result is qualitatively the same. As for the correlation in levels, the average 

correlation in first differences of our estimator with the benchmark is the highest and significantly 

different from the other estimates.  

Next, we perform a subsampling analysis of the cross-sectional correlation for levels of effective 

spreads across three dimensions: market venues, market capitalization, and effective spread size.  First, 

we identify the three primary exchanges in which the stocks are listed using the CRSP exchange codes, 

that is, NYSE, AMEX, and NASDAQ. Second, we examine whether our results from the cross-sectional 

analysis depend on firm size. To do this, we decompose the entire sample into five quintiles by the firm’s 
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market capitalization value for each individual stock at the last observed period. Third, we consider 

whether our findings are sensitive to the magnitude of transaction costs. As before, we form five 

quintiles according to the average effective spread size over the entire sample period. The results of these 

three subsampling analyses are reported in panels C, D, and E of Table III, respectively.  

Three main findings arise: First, our estimator provides the best results for stocks listed on the 

AMEX and NASDAQ. Though, when only NYSE stocks are considered, it shares the highest cross-

sectional correlation with the HL and EffTick measures. Second, our estimator significantly outperforms 

the other measures across all market capitalizations, except for the fifth quintile (Quintile 5), which 

includes the largest capitalization. Third, our estimator performs significantly better than the other 

estimators for stocks traded with medium and large transaction costs (from Quintiles 3 to 5 sorted by 

smallest to largest effective spreads). In sum, our estimator provides the overall highest cross-sectional 

correlations with the effective spread benchmark. Its estimates are particularly accurate for stocks with 

lower liquidity, proxied by small-medium market capitalizations and effective spreads of medium and 

large magnitude. 15 

B. Time-series correlation 

As the second criterion, we analyze stock-by-stock time-series correlations between the different 

spread estimates and the TAQ effective spread. We first calculate the time-series correlation between 

bid-ask spread estimates and the effective spread benchmark for each individual stock and each 

individual estimator. Then we compute the average of these time-series correlations across all sample 

stocks for each individual estimator. To compare the average correlations originating from different 

estimates, we use paired t-test.  

                                                   
15 To make sure that the outperformance of our estimates are not potentially driven by the overweight of illiquid stocks 
in the linear correlation, we also calculate spearman’s rank correlations for the cross-section of stocks. On a monthly 
basis, the average cross-sectional spearman’s correlation of our estimates with the TAQ effective spreads is 0.68, 
whereas the other estimators range from 0.28 to 0.62.     
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Table IV shows the main results. Similar to Table III, panel A (B) of Table IV shows the average 

time-series correlations for the levels (changes) of effective spreads, while stocks are sorted by 

exchanges, market capitalization, and spread size in panels C, D, and E, respectively.  Our model 

provides the highest average time-series correlation for monthly spreads of the overall sample and for 

two out of three subperiods. The only exception is the 2012–2014 subperiod, in which time-series 

correlations drop for all estimators and the HL measure performs slightly better than our model. For 

changes of spreads, the HL method generates the highest time-series correlation. Our estimator provides 

the second-highest time-series correlations, except for the 2008–2011 subperiod, which, in statistical 

terms, is not significantly lower than the HL one. The remaining parts of Table IV suggest that (1) our 

estimators outperform the others for stocks listed on the AMEX and NASDAQ, whereas the HL has 

the highest time-series correlation for NYSE stocks; (2) our measure (the HL measure) performs best for 

small- and medium-sized (large-sized) firms; and (3) our measure (the HL measure) performs best when 

stocks are traded with large (small) effective spreads.16 The time-series correlation analysis confirms the 

previous findings that our estimator generally provides the most accurate estimates of effective costs, 

especially for less liquid stocks. 

C. Prediction errors 

A straightforward way to assess the quality of an estimator is to observe how far it is from its 

benchmark value. We measure this by root-mean-squared errors (RMSEs) and mean-absolute errors 

(MAEs) of monthly estimates with respect to the TAQ effective benchmark. In line with Goyenko, 

Holden, and Trzcinka (2009), we calculate prediction errors every month and then average them during 

that time.  

As shown in panel A of Table V, our estimator (labeled CHL) provides the lowest RMSEs compared 

with other estimators across the entire time series. The difference between average RMSEs of our 
                                                   
16 As an additional test, which we report in the Internet Appendix, we construct equally weighted portfolios of stocks 
and then compare the correlation of the estimated portfolios’ spread to that of the high-frequency benchmark. The 
market-wide portfolio shows a time-series correlation of 0.965 with the TAQ benchmark.   
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estimates and the other estimates is also significant, using Newey-West (1987) standard errors with four 

lags to test whether the time-series of pairwise difference of RMSEs is statistically different from zero.  

As our sample includes several stock-months without any observed zero returns, FHT estimates are 

zero for about 60% of stock-months (see Table II). Therefore, one shall interpret the reported prediction 

errors of FHT estimates considering this limit; doing so translates into lower prediction errors at the cost 

of lower association with the benchmark, in terms of time-series and cross-sectional correlations (see 

Tables III and VI). Using MAEs, as in panel B of Table V, we observe even lower prediction errors for 

FHT estimates. Interestingly, even in this setting, our estimates provide the lowest MAEs for AMEX 

and NASDAQ stocks. 

All in all, our estimates generally show the highest average time-series and cross-sectional 

correlations, as well as the lowest RMSEs, with respect to the Daily TAQ benchmark. As showed in 

Table VI, these results are fully confirmed when we repeat the analysis for the period of January 1993 to 

September 2003 using the Monthly TAQ effective spreads.17  

IV. Further Analysis of CHL Performance 

Since our CHL estimates jointly use close, high, and low prices, which are also partially used in other 

estimators discussed in the paper, it is worth comparing the quality of our estimates with combinations of 

estimates originated by the other models. The main purpose of this analysis is to make certain that the 

CHL estimates contain additional information compared to that provided by other models. To do this, 

we proceed in two steps. First, we compare the performance of CHL with a set of overidentified models, 

which are averages of spread estimates. Second, and more rigorously, we regress TAQ effective spreads 

on a set of estimates, including CHL. Using this setting, we calculate the partial correlation between 

CHL and TAQ effective spreads, controlling for the explanatory power of the other estimates. The main 

result of these analyses is that the CHL estimates do provide additional explanatory power to explain the 

                                                   
17 See the Internet Appendix for more details on the construction of Monthly TAQ benchmark and additional analysis.  



26 
 

variations in effective spreads, even after controlling for its common sources of variation with other 

estimates. In the final part of this section, we try to understand why.    

A. Comparison with naïve combinations of models 

Using the estimates from Section III, we compare the performance of the CHL estimates with 

combinations of other estimates. As is common in the literature (e.g. Chordia, Roll, and Subrahmanyam 

2000), we compute averages across estimates, as we expect doing so will reduce the noise due to 

estimation errors in different estimates.18 As all the estimates proxy the size of the effective spread, we 

are entitled to compute a simple average. As comparison criteria, we use cross-sectional correlation, 

time-series correlation, and RMSEs with respect to the TAQ benchmark.  

Table VII shows the main results. As observable in panel A of Table VII, the average of the Roll and 

HL estimates (fourth column) and of any combinations of the other estimates (fifth and sixth columns) 

provide lower average cross-sectional correlations with the TAQ benchmark than the CHL estimates, 

even when the CHL estimates are included (last two columns). This result holds true when we consider 

changes in bid-ask spread estimates, subsamples of the stocks and primary markets. Furthermore, the 

results are fully consistent when we analyze average time-series correlations with the TAQ benchmark 

(panel B of Table VII) and prediction errors (panel C of Table VII). 

All in all, the results of this subsection show that our method provides more accurate estimates of 

effective costs than do (overidentified) combinations of estimates obtained from other methods. This 

speaks in favor of the joint utilization of the close, high, and low prices in building estimates of 

transaction costs, like in our model, rather than using more limited information sets, like in other models. 

We combine the results. In the next subsections, we shed light on the additional explanatory power of 

the CHL estimates.     

                                                   
18 We also consider weighted average measures. To do so, we perform a principal component (PC) analysis and use the 
coefficients in first PC as the weights of the estimates in the weighted average. The results using this approach are 
consistent and do not outperform CHL. For instance, the pooled correlation for the first PC of HL, Roll, Gibbs, EffTick, 
and FHT with the TAQ effective spread is 0.51, compared to 0.62 for the simple average and 0.75 for CHL alone.   
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B. Partial correlations 

In a more rigorous attempt to analyze the explanatory power of CHL, we examine the ability of 

CHL to predict the effective spread benchmark, while the predictive power of other estimates is already 

taken into account. We do this by using the partitioned regression framework of equation (20):  

𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝜷𝜷 𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡 + 𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡  ,  (20) 

where 𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡 represents the TAQ effective spread for stock 𝑖𝑖 in month 𝑡𝑡, and 𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡  is a vector of other 

estimates including HL and Roll. By using this setting, we are interested in calculating the partial 

correlation between  𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 and 𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡 , while controlling for the other estimates. By using the Frisch-

Waugh-Lovell theorem, we first regress 𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡   on 𝑬𝑬𝑬𝑬𝑻𝑻𝒊𝒊,𝒕𝒕  and then calculate the correlation 

between the orthogonal complements yielded from of above regressions, that is, 𝜖𝜖𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡|𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡  , 

and 𝜖𝜖𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡|𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡 . To calculate time-series (cross-sectional) partial correlations, we perform the above 

regressions in the time-series (cross-sectional) dimension for every stock (month) and average the 

calculated partial correlations across stocks (months). 

Table VIII shows the average partial correlations calculated while controlling for different set of 

estimates in the following order: we control for HL (third column titled “CHL|HL”), we add Roll 

(fourth column titled “CHL|HL, Roll”), and we move forward by adding other estimators to the set of 

controls (adding Gibbs in the fifth column, EffTick in the sixth column, and FHT in the last column). 

Panel A of Table VIII shows the average partial cross-sectional correlations testing whether they are 

different from zero by using Newey-West (1987) standard errors with four lags in the time-series of 

monthly-estimated cross-sectional correlations. All average cross-sectional correlations are significantly 

different from zero and positive, indicating that CHL has some additional explanatory power, not 

already included in any overidentified models, in predicting the effective spread. For instance, the 

average partial cross-sectional correlation of CHL and TAQ effective spreads after controlling for HL, 

Roll, Gibbs, EffTick, and FHT is 0.426 for the entire sample and 0.166, 0.401, and 0.444 for NYSE, 
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AMEX, and NASDAQ stocks, respectively. Another interesting result is that the additional explanatory 

ability of CHL is larger for less liquid stocks as indicated by the increasing partial correlations from 

quintiles 1 to 5 in rows 8 to 12. All these findings remain consistent when average partial time-series 

correlations are considered (panel B of Table VIII).   

C. Illiquidity and accuracy of estimates 

The previous analysis suggests that the additional explanatory power of CHL is larger for less liquid 

stocks. To confirm that this additional explanatory ability is related to illiquidity rather than to volatility, 

we double sort the stocks by these two properties. First, we construct illiquidity tertiles by sorting the 

stocks by average effective spreads across the entire sample. Then we construct volatility tertiles within 

every illiquidity tertile by sorting stocks according to their daily price volatility across the entire sample. 

We then calculate average partial cross-sectional and time-series correlations with the TAQ effective 

spread benchmark for the nine groups controlling for the explanatory power of HL and Roll. Panel A (B) 

of Figure 5 shows the average partial cross-sectional (time-series) correlations for the nine groups. It 

delivers two main messages: First, correlations are considerably higher for the illiquid tertiles 

corroborating the previous findings. Second, there is no discernable pattern in terms of volatility within 

the three illiquidity tertiles, suggesting that illiquidity rather than volatility explains the additional 

explanatory power of CHL. 

We substantiate this idea by performing a numerical simulation about the sensitivity of the CHL 

effective spread estimates to the number of trades per day. We repeat this analysis for the HL estimator, 

which is the nearest competitor, as documented in Section III. For this purpose, we simulate 10,000 

months of 21 days, in which the stocks trade certain number of times per day. For simplicity, we assume 

that the intraday trades are equally distant from each other. We simply draw from 𝑀𝑀𝑡𝑡 =

𝑀𝑀𝑡𝑡−1𝑒𝑒𝑧𝑧𝑧𝑧/√𝑛𝑛 ,    𝑃𝑃𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑒𝑒𝑞𝑞𝑡𝑡𝑠𝑠/2,   𝑧𝑧~𝑁𝑁(0,1), where 𝑀𝑀𝑡𝑡 and 𝑃𝑃𝑡𝑡 represent the efficient price and observed 

transaction price at time 𝑡𝑡, respectively. We set the daily standard deviation of efficient-price returns, 𝜎𝜎, 
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to be 3% and the bid-ask spread 𝑠𝑠 to be constant at 1%. We perform the simulations for different 

number of trades per day, n, ranging from 3 to 390, and calculate the CHL and HL estimates in every 

attempt.19  

Figure 6 shows two main findings: First, the CHL estimates are only marginally sensitive to the 

number of observed trades per day and this is essentially due to the two-day correction approach. On the 

other hand, the HL estimates are much more sensitive to the number of trades per day. In comparative 

terms, from 3 to 390 trades per day, the HL estimates range from 70 to 175 bps (instead of the 100-bps 

“true” proportional spread), whereas the CHL estimates remain in a narrow range from 129 to 132 bps. 

The steepness of the HL curve in Figure 6 illustrates the high sensitivity of the HL estimates to the 

number of trades per day. Perhaps a more important concern is the direction of this sensitivity, which 

entails that the HL estimates indicate a narrower spread when fewer transactions take place, contrary to 

common wisdom that the occurrence of fewer trades indicates more illiquid stocks or markets.20  

 To have a better sense of the actual number of trades per day, we look into the TAQ consolidated 

dataset and count how many regular trades occurred between 9:30 a.m. to 4:00 p.m. EST. We refer to 

the landmark of 100 trades represented by the dotted line in Figure 6. We find two revealing values. 

First, 25.6% of stock-days in our sample include less than 100 trades; second, 77.5% of stocks 

experienced at least one day with fewer than 100 trades. These numbers suggest that the HL estimates’ 

sensitivity to the daily number of trades can be a broader issue that goes way beyond a limited number of 

illiquid stocks.  

To provide empirical support to the numerical analysis above, we group stocks into five quintiles 

sorting them by their average number of daily trades during the sample period. Panel A of Table IX 

shows the correlation coefficients between different estimates and the TAQ effective spread benchmark 

                                                   
19 When we run simulations for a large number of trades, we obtain estimates close to those for 390 trades.    
20 In the Internet Appendix, we provide a similar figure based on actual estimates. We sort the stock-month estimates 
into decile groups based on monthly averages of number of trades per day. We then calculate the bias of CHL (HL) 
estimates as the average difference between the estimates and the TAQ effective spread benchmark. This additional 
analysis confirms that the HL negative bias is substantially larger for less frequently traded stock-months.   
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for each quintile and for the entire sample (already seen in Table II). As expected, the CHL estimates 

have the highest correlation with the TAQ benchmark for the entire sample, as well as for the first three 

quintiles representing stocks less frequently traded.    

By virtue of the low sensitivity of the CHL estimates to the number of trades per day, we expect that 

the CHL estimates generally explain market illiquidity better than the HL estimates do. To confirm this, 

we compute the correlations of spread estimates with the Amihud illiquidity measure, as a broader 

measure for market illiquidity. As observable in panel B of Table IX, the CHL estimates show the 

highest correlation coefficients for the entire sample and for the first four quintiles, that is, for all stocks, 

except for the ones with the highest number of trades.         

In sum, the results in this section provide evidence that the CHL estimates have explanatory ability 

that goes beyond other estimators and are even more informative for less liquid stocks. Numerical 

simulations, followed by an empirical analysis, suggest that the CHL (HL) estimates are marginally 

(substantially) sensitive to the number of trades per day.   

V. Example Applications 

Well-performing estimators of transaction costs can be applied in a variety of research areas. To 

illustrate their potential uses, we propose two simple applications. The first example is a description of 

the historical spread estimates for stocks listed on NYSE (AMEX) from 1926 (1962) to 2014. In the 

second example, the spread estimates are applied to measure systematic risks originating from liquidity 

issues.     

A. Estimating historical spreads for U.S. stocks  

By using the close, high, and low price data from CRSP and the methodology explained above, we 

calculate the estimates of the bid-ask spreads based on our model. Specifically, we use the price values 
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from previous days for the days with missing price values and construct the two-day corrected version of 

our estimates. We finally discard stock-months with fewer than 12 trading days. 

Figure 7 shows the time development of the estimated spreads computed for three equally weighted 

portfolios: the smallest and largest market capitalization deciles, as well as the entire stocks sample. The 

spreads originated from our model display relatively stable variation over time. Reassuringly, this also 

applies to the smallest market capitalization decile. In contrast, Corwin and Schultz (2012) document that 

the spread estimates generated by their model display considerable variation over time, and these are 

extraordinarily high during the Great Depression, in which the market-wide average estimates of the 

effective spreads are as high as 20% for NYSE stocks and 50% for small cap stocks. Instead, panel A (B) 

of Figure 7 shows that our estimates for the NYSE (AMEX) stocks evolve pretty steadily across every 

decade, remaining within an economically reasonable range; that is, the market-wide estimated effective 

spread does not exceed 4% (6%) for NYSE (AMEX) stocks. Moreover, the average estimated effective 

spread for the small cap stocks listed on the NYSE (AMEX) does not exceed 12% (19%) during the 

whole sample.    

The results in this subsection suggest that our estimator can be used in various research areas across 

many types of markets and assets, including the less liquid ones. This is especially true for researchers 

interested in the ability of an estimator to capture the temporal evolution of spreads over long time spans 

that predate intraday data or international markets without intraday data. 

B. Estimating systematic liquidity risk for individual stocks 

The results presented in Section III show that the spread estimates from our model closely follow 

the effective spread benchmark, suggesting that our estimator can be adopted for gauging transaction 

costs and liquidity. Another crucial application of spread estimates is liquidity risk. As liquidity risk is not 

diversifiable, its accurate measurement is crucial for at least two purposes: first, to identify and gauge 

systematic risk stemming from illiquidity issues, and, second, to perform effective asset and risk 

management. The collapse of Long-Term Capital Management L.P. (LTCM) and more recent 
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experiences during the last financial crises are vivid examples of an incorrect consideration of liquidity 

risk. 

Acharya and Pedersen (2005) propose a liquidity-adjusted capital asset pricing model (LCAPM) in 

which expected returns in time t for stock i (𝑟𝑟𝑡𝑡𝑖𝑖) net of its transaction costs (𝑠𝑠𝑡𝑡𝑖𝑖) are explained by the risk-

free interest rate (𝑟𝑟𝑓𝑓) and expected market returns (𝑟𝑟𝑡𝑡𝑀𝑀) net of market transaction costs (𝑠𝑠𝑡𝑡𝑀𝑀). Then the 

systemic risk of return net of trading costs is decomposed into four components:  

𝐸𝐸�𝑟𝑟𝑡𝑡+1𝑖𝑖 − 𝑠𝑠𝑡𝑡+1𝑖𝑖 � = 𝑟𝑟𝑓𝑓 + 𝐸𝐸�𝑟𝑟𝑡𝑡+1𝑀𝑀 − 𝑠𝑠𝑡𝑡+1𝑀𝑀 − 𝑟𝑟𝑓𝑓�
𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑡𝑡+1

𝑖𝑖 −𝑠𝑠𝑡𝑡+1
𝑖𝑖 ,𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �
,  (21) 

𝐸𝐸�𝑟𝑟𝑡𝑡+1𝑖𝑖 � = 𝑟𝑟𝑓𝑓 +  𝐸𝐸�𝑠𝑠𝑡𝑡+1𝑖𝑖 �+ 𝜆𝜆𝑡𝑡(𝛽𝛽1 + 𝛽𝛽2 − 𝛽𝛽3 − 𝛽𝛽4),  (22) 

𝛽𝛽1 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑡𝑡+1
𝑖𝑖 ,𝑟𝑟𝑡𝑡+1𝑀𝑀 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �
 , 

𝛽𝛽2 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑠𝑠𝑡𝑡+1
𝑖𝑖 ,𝑠𝑠𝑡𝑡+1𝑀𝑀 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �
 , 

𝛽𝛽3 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑡𝑡+1
𝑖𝑖 ,𝑠𝑠𝑡𝑡+1𝑀𝑀 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �
 , 

𝛽𝛽4 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑠𝑠𝑡𝑡+1
𝑖𝑖 ,𝑟𝑟𝑡𝑡+1𝑀𝑀 �

𝑣𝑣𝑣𝑣𝑣𝑣�𝑟𝑟𝑡𝑡+1𝑀𝑀 −𝑠𝑠𝑡𝑡+1𝑀𝑀 �
.  

While 𝛽𝛽1 represents the standard market beta, 𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4 capture important aspects of systematic 

risk due to liquidity issues. 𝛽𝛽2 measures the commonality of liquidity with the market-wide liquidity and 

is expected to be positive (Chordia, Roll, and Subrahmanyam (2000)). Higher 𝛽𝛽2 translates into less 

liquid stocks in times of market illiquidity. Huberman and Halka (2001) and Hasbrouck and Seppi (2001) 

document the presence of a systematic, time-varying component of liquidity that co-moves with 

individual stock’s liquidity. Kamara, Lou, and Sadka (2008) show important implications of the cross-

sectional variation of commonality in liquidity, including the decline over time of diversification benefits 

against aggregate liquidity shocks by holding large-cap stocks.  𝛽𝛽3 is typically negative as market liquidity 

tends to dry up when stock prices decline. Pastor and Stambaugh (2003) show that investors demand a 

premium for the sensitivity of stock returns to aggregate liquidity shocks. Watanabe and Watanabe 
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(2008) document that aggregate liquidity is priced and the liquidity risk premium is twice as high as the 

value premium in high-beta states. 𝛽𝛽4 is also expected to be negative as the liquidity of individual stocks 

tend to decrease in downturn markets. Hameed, Kang, and Viswanathan (2010) provide empirical 

evidence of significant increases of bid-ask spreads when the stock market experiences large negative 

returns.   

The above-mentioned literature points to the importance of an accurate measurement of different 

dimensions of liquidity risk and its variation in the cross section of stocks. By using the effective spread 

estimates of Section III, we calculate the four systematic risk components of equation (22) for each stock 

in our sample based on the Daily TAQ effective spreads, as well as the Roll estimates, the HL estimates, 

and our estimates. In addition to the filtrations explained in Section III, we discard stocks with fewer 

than 30 months of data and the stock-months in which the monthly CRSP return is missing. Following 

Asparouhova, Bessembinder, and Kalcheva (2010, 2013), we use a gross return-weighted portfolio of all 

the stocks to construct the market return and market liquidity to avoid biases calculating portfolio 

returns.  To assess the quality of the estimates for systematic risk, we compare them to those based on 

the TAQ effective spreads. In other words, we gauge how close the cross-sectional variation of liquidity 

risks generated by the Roll, the HL, and our model are to those obtained from Daily TAQ data. To be 

consistent with the previous tables, we report the results in the form of correlation coefficients. In fact, 

the square of the correlation coefficients reported in Table X are 𝑅𝑅2s of the regression framework 

shown in equation (23), which also shows the proportion of cross-sectional variation in the systematic 

liquidity risks that can be explained by the estimates.  

𝛽𝛽𝑘𝑘,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛿𝛿𝑘𝑘 + 𝛾𝛾𝑘𝑘𝛽𝛽𝑘𝑘,𝑖𝑖

𝐸𝐸𝐸𝐸 + 𝜀𝜀𝑘𝑘,𝑖𝑖   ,𝑘𝑘 = 1, . . ,4 , 𝑖𝑖 = 1, . . ,𝑁𝑁.   (23) 

𝛽𝛽𝑘𝑘,𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 represents the LCAPM systematic risk component k for stock i, computed using the Roll 

estimates, the HL estimates, or our estimator, while 𝛽𝛽𝑘𝑘,𝑖𝑖
𝐸𝐸𝐸𝐸 represents the same factor computed with TAQ 

effective spreads.  We then compare the correlation between the liquidity risk estimates from our model 

and from the TAQ data to that between the other estimates and TAQ data. Table X shows the main 
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results of this analysis for 𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4. Because the correlations for 𝛽𝛽1are close to one as a result of 

the secondary importance of transaction costs to compute standard betas, they are not tabulated. Thus, 

we concentrate our analysis on 𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4 because they are more influenced by transaction costs. 

Overall, the results for all stocks, shown in panel A of Table X, clearly indicate the superiority of our 

estimator to capture the cross-sectional estimation of systematic liquidity risks. The correlation between 

CHL estimates and the benchmark spreads for 𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4 are pretty high, that is, 0.829, 0.937, and 

0.761, respectively. The same correlation coefficients for the HL and the Roll estimators are lower, 

especially for 𝛽𝛽2 and 𝛽𝛽4, which are around 0.1 lower for the HL and around 0.2 lower for the Roll. In 

many of the cases, these differences are statistically significant using a two-tailed Fisher’s z-test with a 5% 

significance level. The same picture generally holds when we perform the subsampling analysis across the 

2003–2007, 2008–2011, and 2012–2014 subperiods.  

Following Acharya and Pedersen (2005), we analyze liquidity innovations generated from an AR(2) 

model. The analysis of liquidity in innovations, rather than by levels, helps us control for the persistence 

in the transaction cost process, thereby capturing the unexpected component of transaction costs. The 

results in panel B of Table X confirm the high accuracy of CHL estimates to gauge systematic liquidity 

risks using spread innovations. The correlation coefficients between the estimates of 𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4 from 

our model and the TAQ spreads are 0.511, 0.860, and 0.535, while the same correlations for HL 

estimates are 0.439, 0.879, and 0.258, and those for the Roll estimates are 0.152, 0.588, and 0.251, 

respectively. The subsampling analysis across shorter periods delivers consistent results, confirming that 

CHL estimates provide systematic risk estimates that behave more similarly to the TAQ benchmark, no 

matter if transaction costs are in levels or innovations.   

As in Sections III and IV, we reiterate the subsampling analysis across primary exchange, market 

capitalization, and effective spread size (panels C, D, and E).21 Overall, our estimator outperforms the 

                                                   
21 To facilitate comparisons, we use the same quintile groups like in Section III. However, here we remove a few more 
stocks that have fewer than 30 months of data.    
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other measures when stocks are grouped by market venues, market capitalization, and spread size. The 

only exceptions are 𝛽𝛽4 for the NYSE and the largest capitalization quintile, for which the correlation 

between HL estimator and TAQ benchmark is higher, but the difference is not statistically significant.  

When stocks are subsampled from smallest to largest transaction costs, our estimator (the HL estimator) 

performs better across less (more) liquid stocks.  

C. Estimating systematic liquidity risk for portfolios of stocks 

A common approach in the empirical asset-pricing literature is to use portfolios rather than 

individual stocks. The final question we address is whether transaction cost estimates can be reliably used 

in applying this approach. As in Acharya and Pedersen (2005), we construct 25 portfolios sorted by 

illiquidity level to fit the LCAPM model. We create 25 portfolios sorted by the TAQ effective spread 

benchmark and the bid-ask spread estimates from the CHL, HL, and Roll models. Then we measure 

how close the LCAPM systematic risk betas of the estimated portfolio spreads follow the betas of the 

TAQ benchmark. More precisely, we apply the following procedure: First, we sort stocks using the TAQ 

effective spreads of previous month and construct 25 gross-return-weighted portfolios using gross 

returns of the previous month as weights. Second, we calculate betas using the TAQ effective spread 

benchmark. Third, we repeat the same steps of sorting stocks, constructing portfolios, and calculating 

betas for the bid-ask spread estimates of CHL, HL, and Roll. Finally, we apply the previous framework 

explained in equation (23) to assess the overall quality of the estimates. 

Table XI reports the main results. As the estimates are also used in the portfolio construction, 𝛽𝛽1 of 

the estimated portfolios might differ from the TAQ benchmark ones. Therefore, Table XI includes all 

four betas. The row labeled “levels” reports betas calculated with effective spreads in levels. The overall 

result is that for every 𝛽𝛽, CHL portfolio betas more accurately follow the TAQ ones. Compared with the 

single-stock analysis, the correlations for 𝛽𝛽1 are no longer close to one, ranging from 0.238 for Roll, 0.621 

for HL, and to 0.693 for CHL. While the correlations for 𝛽𝛽2 are pretty high for the three estimation 
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models, the differences are quite large for 𝛽𝛽3 and 𝛽𝛽4. For 𝛽𝛽3, the highest correlation is 0.352 for the 

CHL estimates, while the correlation between 𝛽𝛽3 for HL estimates and that of that of the TAQ 

benchmark is negative (-0.473). For 𝛽𝛽4, correlations span from a relatively low 0.155 for Roll to 0.901 for 

CHL estimates. In general, these results point to the importance of using accurate estimates in sorting 

stocks and call for some caution in the selection of estimation models to construct portfolios. 

We repeat our analysis of betas for liquidity shocks of an AR(2) model fitted to portfolio effective 

spreads. As discernable in the row labeled “shocks” of Table XI, the results of liquidity shocks are in line 

with those of liquidity levels. The CHL estimates provide very high correlations (𝛽𝛽2, 𝛽𝛽3, and 𝛽𝛽4, are 

0.966, 0.952, and 0.957, respectively), which are the highest across the estimation models, except for 𝛽𝛽2. 

Now, the HL correlation for 𝛽𝛽3 is closer to the CHL correlation.  

In sum, this simple asset-pricing analysis shows that our estimator provides accurate estimations of 

LCAPM systematic risks, commonality in liquidity, and covariation between stock returns and liquidity 

using sorted portfolios and individual stocks. 

VI. Conclusion 

Building on the seminal model proposed by Roll (1984), we derive a new way to estimate bid-ask 

spreads. Compared with the Roll measure, our model has two important benefits: First, it takes advantage 

of a richer information set of daily close, high, and low prices, whereas the Roll measure solely relies on 

the close prices. Thereby, our model improves estimation accuracy. From the high and low prices, we 

can compute the mid-range, that is, the mean of the daily high and low log-prices, that proxies the 

efficient price. Second, our estimator is fully independent of order-flow dynamics, and therefore it does 

not rely on bid-ask bounces, as the original Roll measure does. Our method of estimating effective 

spreads is straightforward, easy to compute, and has an intuitive closed-form solution that resembles the 
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Roll measure. While the Roll measure relies on the covariance of consecutive close-to-close price returns, 

our estimator relies on the covariance of close-to-mid-range returns around the same close price. 

We numerically and empirically test our method by using Daily Trade and Quotes (Millisecond 

TAQ) data. The simulation analysis shows that considering all imperfections together (that is, infrequent 

trading, inconstant spreads, and nontrading periods), our model provides more accurate estimates than 

those from the high-low estimator proposed by Corwin and Schultz (2012) and the Roll model for less 

liquid securities, for which transaction costs and liquidity issues are of much more concern. In the 

empirical analysis, the effective spread computed with Daily TAQ data serves as the benchmark for our 

comparative considerations. Assessed against other daily estimates, our estimator generally provides the 

highest cross-sectional and average time-series correlation with the TAQ effective spread benchmark, as 

well as the smallest prediction errors.  

We also document the additional explanatory ability of our estimates that systematically goes beyond 

that of other estimates. This additional predictive ability is especially larger for less liquid stocks. The 

numerical and empirical analyses suggest that our estimates are stable and much less sensitive to the 

number of trades per day, whereas the Corwin and Schultz (2012) high-low estimates produce 

substantially smaller spread estimates for lower number of trades per day , that is, for more illiquid 

stocks. The ability of our estimator to provide much more accurate spread estimates for less liquid stocks 

is a suitable characteristic because accurate estimates of transaction costs are particularly needed for less 

liquid securities and markets.        

To illustrate some potential applications, we reconstruct the historical development of our spread 

estimates for stocks listed on NYSE (AMEX) from 1926 (1962) through 2014. These patterns display 

relatively stable variation over time and remain within an economically meaningful range, even for small-

cap stocks. Then we estimate the components of systematic liquidity risk like in the liquidity-adjusted 

capital asset pricing model (LCAPM), which was postulated by Acharya and Pedersen (2005). The overall 

result is that our estimator provides very accurate estimations of the systematic liquidity risks for 
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individual stocks and sorted portfolios, in the sense that systematic risk betas based on our estimates are 

close to those of the TAQ benchmark and that our model generally outperforms other models in 

estimating systematic risk originating from commonality in liquidity and covariation between stock 

returns and illiquidity. 

Our estimator has many potential applications for future research. It should be useful for researchers 

who work in asset pricing, corporate finance, risk management, and other important research areas and 

need a simple but accurate measure of trading costs over long periods. Our model could be suitably 

applied to many securities, including emerging markets or over-the-counter markets, and not only U.S. 

stocks, for which data are of limited quality or availability. 
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Appendix A. Proof of Propositions 2 and 3  

We first derive two propositions A1 and A2 that we need for the proofs.  

Proposition A1. Under the model assumptions, equation (A1) holds:  

𝐸𝐸[(ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)] = (2 log(2) − 1)𝜎𝜎𝑒𝑒2. (A1) 

Proof of proposition A1: to prove Proposition A1, we use the two following equations from Garman 

and Klass (1980):  

𝐸𝐸[(ℎ𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)2] = 4 log(2)𝜎𝜎𝑒𝑒2, (A2) 

𝐸𝐸[(ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)2] = 𝐸𝐸[(𝑙𝑙𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)2] = 𝜎𝜎𝑒𝑒2.  (A3) 

Plugging (A2) and (A3) into (A1) leads to the proof 

𝐸𝐸[(ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)] = 1
2
𝐸𝐸[(ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)2 − (ℎ𝑡𝑡𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)2 − (𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)2] = (2 log(2)−

1) 𝜎𝜎𝑒𝑒2.  (A4) 

Proposition A2. Under the model assumptions, equation (A5) holds:  

𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2] =  𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡+1𝑒𝑒 )2]. (A5) 

Proposition A2 is the result of the symmetry of Brownian motion in forward-looking and backward-

looking expressions. More specifically, the distance between the efficient close price of day 𝑡𝑡 and the 

efficient high (low) price of the same day is equal to the distance between the efficient open price and 

the efficient high (low) price of the next day: 

𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2] =  𝐸𝐸[(𝑜𝑜𝑡𝑡+1𝑒𝑒 − ℎ𝑡𝑡+1𝑒𝑒 )2]. (A6) 

Proof of Proposition A2: We assume no overnight price movements, so the efficient close price of day 𝑡𝑡 

and the efficient open price of day 𝑡𝑡 + 1 are identical, and, therefore, replacing 𝑜𝑜𝑡𝑡+1𝑒𝑒  with 𝑐𝑐𝑡𝑡𝑒𝑒 leads to the 

proof. 

Proof of Proposition 2 
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Now we use the two propositions for the proof of Proposition 2 of the paper. The stepwise proof is as 

follows: 

𝐸𝐸[(𝑐𝑐𝑡𝑡 − (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄ )2] = 𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 + 𝑞𝑞𝑡𝑡𝑠𝑠 2⁄ − 𝜂𝜂𝑡𝑡 2⁄  − 𝜂𝜂𝑡𝑡+1 2⁄ )2]  (A7) 

= 𝐸𝐸[𝑞𝑞𝑡𝑡2𝑠𝑠2 4⁄ + 1 4(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡)2⁄ + 1 4(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡+1)2⁄ + 1 2(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡+1)(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡)⁄ + 𝑞𝑞𝑞𝑞 4⁄ (𝑐𝑐𝑡𝑡𝑒𝑒 −

𝜂𝜂𝑡𝑡+1) + 𝑞𝑞𝑞𝑞 4⁄ (𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡)] , (A8) 

= 𝑠𝑠2 4⁄ + 1 2𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒 2⁄ − 𝑙𝑙𝑡𝑡𝑒𝑒 2⁄ )2]⁄  , (A9) 

= 𝑠𝑠2 4⁄ + (1 2⁄ )𝐸𝐸[(1 4⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2 + (1 4⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)2 + (1 2⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)] , (A10) 

= 𝑠𝑠2 4⁄ + 𝜎𝜎𝑒𝑒2 4⁄ − (log(2) 2⁄ − 1 4⁄ )𝜎𝜎𝑒𝑒2 = 𝑠𝑠2 4⁄ + (1 2⁄ − log(2) 2⁄ ) 𝜎𝜎𝑒𝑒2 . (A11) 

Equation (A7) is the result of the definition of the Roll (1984) model. Equation (A9) is the result of 

Proposition A2, and, finally, we derive equation (A11) using Proposition A1. 

Proof of Proposition 3 

The proof for Proposition 3 of the paper is similar to that of Proposition 2: 

𝐸𝐸[(𝜂𝜂𝑡𝑡+1 − 𝜂𝜂𝑡𝑡)2] = 𝐸𝐸[(𝜂𝜂𝑡𝑡+1 − 𝑐𝑐𝑡𝑡𝑒𝑒 + 𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡)2], (A12) 

= 2𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝜂𝜂𝑡𝑡)2] = 2𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒 2⁄ − 𝑙𝑙𝑡𝑡𝑒𝑒 2⁄ )2], (A13) 

= 2𝐸𝐸[(1 4⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2 + (1 4⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)2 + (1 2⁄ )(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑙𝑙𝑡𝑡𝑒𝑒)(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)] , (A14) 

= (2 − 2 log(2))𝜎𝜎𝑒𝑒2.  (A15) 

Equation (A13) is the result of Proposition A2, and, finally, we derive equation (A15) using Proposition 

A1. 
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Appendix B. Proof of robustness to nontrading periods 

To prove the robustness of our estimator to nontrading periods, we repeat the logical steps followed in 

the paper by including the nontrading period in the efficient price variance. We then show that this term 

cancels out when we derive the outcome expression.   

Definition B1. The nontrading period (e.g., overnight) efficient-price variance is defined as follows: 

𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 = 𝐸𝐸[(𝑜𝑜𝑡𝑡+1𝑒𝑒 − 𝑐𝑐𝑡𝑡𝑒𝑒)2]. (B1) 

 

Proposition B1. If we consider a price movement during nontrading periods with the variance of 

𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 , equation (B2) holds:   

𝐸𝐸[(𝑐𝑐𝑡𝑡 − (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄ )2] = 𝑠𝑠2 4⁄ + (1 2⁄ − log(2) 2⁄ )𝜎𝜎𝑒𝑒2 + 1 4⁄  𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 .  (B2) 

Proof of Proposition B1: The proof is similar to the proof of Proposition 2, which is explained in 

Appendix A. The only difference arises because the distance between efficient close price of day 𝑡𝑡 and 

the efficient high (low) price of day 𝑡𝑡 + 1 is higher than the distance between efficient close price of day 

𝑡𝑡 and the efficient high (low) price at the same day. Therefore, equation (A5) no longer holds, and, 

instead, equation (B3) shows the link between the two quantities. Using equation (B3) and following the 

steps of the proof in in Appendix A leads to the proof of Proposition B1.  

𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡+1𝑒𝑒 )2] =  𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − 𝑜𝑜𝑡𝑡+1𝑒𝑒 + 𝑜𝑜𝑡𝑡+1𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2] = 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 + 𝐸𝐸[(𝑜𝑜𝑡𝑡+1𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2] = 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔2 +

𝐸𝐸[(𝑐𝑐𝑡𝑡𝑒𝑒 − ℎ𝑡𝑡𝑒𝑒)2]. (B3) 

 

Proposition B2. If we consider a price movement during nontrading periods (e.g., overnight) with the 

variance of 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 , equation (B4) holds:  

𝐸𝐸[(𝜂𝜂𝑡𝑡+1 − 𝜂𝜂𝑡𝑡)2] = (2 − 2 log(2))𝜎𝜎𝑒𝑒2 + 𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 .  (B4) 

Proof of Proposition B2: The proof is very similar to the proof of Proposition B1.  

 

Proof of robustness to nontrading periods 
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When calculating 𝑠𝑠2 using the two equations of proposition B1 and B2, the nontrading variance terms 

cancel out, and the result is identical to equation (9): 

𝑠𝑠2 = 4 𝐸𝐸[(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡)(𝑐𝑐𝑡𝑡 − 𝜂𝜂𝑡𝑡+1)]. (B5) 

Therefore, the spread estimates are independent of price movements during nontrading periods.  
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Figure 1. The Schematic Decomposition of the Distance between Closing Price and Average Mid-ranges 
The log-price process is simulated with minute increments for the duration of two days of working hours. Each working day consists 
of 390 minutes. The figure provides a simple illustration that the distance between 𝑐𝑐𝑡𝑡 and (𝜂𝜂𝑡𝑡 + 𝜂𝜂𝑡𝑡+1) 2⁄  can be decomposed into 
two compnents: (1) the distance between close price and efficient close price, that is, the effective spread, and (2) the distance between 
efficient close price and the midquote proxy. 
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Figure 2. Estimated Variance from a Simulated Discrete Random Walk  
For every case with a certain number of trades per day, ranging from 3 to 390, simulations of 200,000 days with pre-assigned daily 
volatility of 3% are performed. The variance based on the mid-range is calculated as 𝜎𝜎𝜂𝜂2 = 1 (2− 2 log(2)) 𝐸𝐸[(𝜂𝜂𝑡𝑡 − 𝜂𝜂𝑡𝑡−1)2⁄ ] , and 
the range-based variance is calculated as  𝜎𝜎ℎ−𝑙𝑙2 = 1 (4 log(2))𝐸𝐸[(ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)2] ⁄ . Expected values are estimated by using the means of a 
sample of 200,000 simulations. The estimation outputs are divided by the pre-assigned variance of 0.032 in order to be comparable 
with 1. 
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Figure 3. Cross-sectional Dispersion of Monthly Spread Estimates 
This figure shows the standard deviations of spread estimates across stocks for each month from October 2003 to December 2014. In 
addition to the effective spread based on the Daily TAQ data, the labels refer to our estimator (CHL) and the estimators proposed by 
Corwin and Schultz (HL; 2012) and Roll (Roll; 1984). 
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Panel A. Correlations Based on Percentage Spreads 

  

Panel B. Correlations Based on First Difference in Percentage Spreads 

 

Figure 4. Cross-sectional Correlation of Monthly Spread Estimates 
This figure shows the cross-sectional correlation between model-implied spread estimates and effective spreads from the Daily TAQ 
data for each month from October 2003 to December 2014. The labels refer to our model (CHL) and the models proposed by 
Corwin and Schultz (HL; 2012), Roll (Roll; 1984), and Hasbrouck (Gibbs; 2009). Panel A (B) displays correlations for levels (changes). 
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Panel A. Average Partial Cross-Sectional Correlations  

 

Panel B. Average Partial Time-Series Correlations  

 

Figure 5. Average Partial Correlations after Controlling for HL and Roll 
We split the stocks sample into three illiquidity tertiles by sorting them with their average effective spread during the sample period. 
Then we break down each illiquidity tertile into three volatility tertiles using the daily volatility of the stocks during the sample period. 
The partial correlations are the correlations between the residuals of regressing TAQ effective spreads and our estimates (CHL) on 
Corwin and Schultz’s (HL; 2012) and Roll’s (Roll; 1984) estimates.        
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Figure 6. Sensitivity of Estimates to the Number of Daily Trades 
The horizontal axis refers to the equally spaced number of trades per day, ranging from 3 to 390, in the simulations of 10,000 months 
with 21 days. For each case, we simulate the trajectory of observed prices at the times of trades following a geometric Brownian 
motion, with a daily volatility of 3%, and constant relative spread of 1%. The labels in the legend refer to the estimators from our 
model (CHL) and Corwin and Schultz model (HL; 2012).  
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Panel A. NYSE Listed Stocks 

  

Panel B. AMEX Stocks 

 

Figure 7. Time-Series Evolution of Estimated Spread, Calculated as Equally Weighted Portfolios of Stocks 
This figure shows the monthly historical developments of spread estimates from our model. Small cap and large cap portfolios are 
represented by the first and last decile of stocks sorted by market capitalization at the end of each month. Panel A (B) shows the 
estimates for stocks listed on the NYSE (AMEX) between 1926 (1962) and 2014. 
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Table I. Estimated Bid-Ask Spreads from Simulations  
Each simulation consists of 10,000 21-day months of stock prices, and each day consists of 390 minutes. For each minute, the 
trajectory of a geometric Brownian motion with daily volatility of 3% and a constant relative spread with the values mentioned in the 
table is simulated. The labels in the first row refer to the estimators from the following models: ours (CHL), Corwin and Schultz’s 
(HL; 2012), and Roll’s (Roll; 1984). Two-day and monthly refer to the two-day corrected and monthly corrected versions, in which 
two-day or monthly negative estimates are set to zero. We run the simulations in five separate scenarios. Panel A shows the results in 
the near-ideal situation. Panel B shows the results when trades in each minute are observable with only a 10% chance. Panel C shows 
the results when the spreads of each day are uniformly distributed between zero and twice the nominal average value. Panel D shows 
the results when there are “overnight” price movements and the standard deviation of the overnight price change is 50% of the 
standard deviation of the daily price change. The overnight adjustment procedure for HL estimates is exactly as in Corwin and 
Schultz (2012). Panel E encompasses the “imperfections” in scenarios B, C, and D at the same time. 

 CHL HL Roll 
 Two-Day Monthly Two-Day Monthly  
Panel A: Near-Ideal Conditions 
0.5% Spread Mean 1.2% 0.7% 1.4% 0.6% 1.2% 
 σ 0.4% 0.8% 0.3% 0.5% 1.4% 
1.0% Spread Mean 1.3% 0.9% 1.7% 1.0% 1.3% 
 σ 0.4% 0.8% 0.4% 0.6% 1.4% 
3.0% Spread Mean 2.4% 2.9% 3.2% 2.9% 2.6% 
 σ 0.5% 0.7% 0.5% 0.6% 1.8% 
5.0% Spread Mean 4.3% 5.0% 5.0% 4.9% 4.6% 
 σ 0.6% 0.6% 0.6% 0.6% 2.2% 
8.0% Spread Mean 7.6% 8.0% 7.8% 7.8% 7.6% 
 σ 0.6% 0.5% 0.6% 0.6% 2.6% 
       
Panel B: Each Trade Is Visible with a Chance of 10% 
0.5% Spread Mean 1.2% 0.7% 1.0% 0.2% 1.2% 
 σ 0.4% 0.8% 0.3% 0.3% 1.4% 
1.0% Spread Mean 1.3% 1.0% 1.3% 0.4% 1.3% 
 σ 0.4% 0.8% 0.3% 0.5% 1.4% 
3.0% Spread Mean 2.4% 2.9% 2.6% 2.1% 2.6% 
 σ 0.5% 0.7% 0.5% 0.6% 1.8% 
5.0% Spread Mean 4.3% 4.9% 4.2% 4.0% 4.6% 
 σ 0.6% 0.6% 0.6% 0.6% 2.1% 
8.0% Spread Mean 7.5% 7.9% 7.0% 7.0% 7.6% 
 σ 0.6% 0.5% 0.6% 0.6% 2.6% 
       
Panel C: Random Spreads 
0.5% Spread Mean 1.2% 0.7% 1.4% 0.6% 1.2% 
 σ 0.4% 0.8% 0.3% 0.5% 1.3% 
1.0% Spread Mean 1.4% 1.0% 1.7% 1.0% 1.4% 
 σ 0.4% 0.9% 0.4% 0.6% 1.5% 
3.0% Spread Mean 2.7% 3.4% 3.1% 2.8% 3.0% 
 σ 0.6% 0.8% 0.5% 0.7% 2.0% 
5.0% Spread Mean 4.7% 5.7% 4.7% 4.5% 5.3% 
 σ 0.8% 0.8% 0.7% 0.8% 2.3% 
8.0% Spread Mean 7.7% 9.2% 7.0% 7.0% 8.8% 
 σ 1.1% 1.0% 1.1% 1.1% 3.0% 
       
      (continued) 
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Table I. Continued 

 CHL HL Roll 
 Two-Day Monthly Two-Day Monthly  
Panel D: Overnight Price Movement with Half of the Daily Standard Deviation 
0.5% Spread Mean 1.4% 0.8% 1.4% 0.4% 1.3% 
 σ 0.4% 0.9% 0.3% 0.4% 1.5% 
1.0% Spread Mean 1.5% 1.0% 1.6% 0.6% 1.4% 
 σ 0.4% 1.0% 0.4% 0.6% 1.6% 
3.0% Spread Mean 2.5% 2.9% 3.0% 2.4% 2.6% 
 σ 0.6% 0.9% 0.5% 0.7% 2.0% 
5.0% Spread Mean 4.2% 4.9% 4.6% 4.3% 4.5% 
 σ 0.7% 0.7% 0.6% 0.7% 2.3% 
8.0% Spread Mean 7.4% 8.0% 7.4% 7.3% 7.6% 
 σ 0.7% 0.6% 0.7% 0.7% 2.8% 
       
Panel E: All Imperfections Together 
0.5% Spread Mean 1.4% 0.8% 1.1% 0.2% 1.3% 
 σ 0.4% 0.9% 0.3% 0.3% 1.5% 
1.0% Spread Mean 1.5% 1.1% 1.3% 0.3% 1.5% 
 σ 0.4% 1.0% 0.3% 0.4% 1.6% 
3.0% Spread Mean 2.8% 3.3% 2.5% 1.8% 3.0% 
 σ 0.6% 0.9% 0.5% 0.8% 2.1% 
5.0% Spread Mean 4.6% 5.7% 4.0% 3.6% 5.3% 
 σ 0.8% 0.9% 0.7% 0.9% 2.5% 
8.0% Spread Mean 7.6% 9.2% 6.3% 6.1% 8.7% 
 σ 1.2% 1.1% 1.1% 1.2% 3.1% 
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Table II. Summary Statistics for Different Estimators  
This table provides the main summary statistics for the pooled sample of the main estimators considered in this paper. The column 
labeled N refers to the number of stock-months of estimates in the sample. The column labeled 𝜌𝜌 ( . ,𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡) refers to the correlation 
of different estimates with the TAQ effective spread benchmark. The row labels refer to the TAQ effective spread benchmark 
(Effective Spread), our estimator (CHL), and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), 
Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014). For calculating the CHL estimates, 
we replace the missing high, low, and close price with the previous days’ values. We then discard monthly estimates for the months 
with fewer than 12 trading days (that is, days with positive high, low, and close price, as well as positive volume). The HL estimates 
are exactly calculated as in Corwin and Schultz (2012); that is, (1) missing daily high and low prices are replaced with those of previous 
days, (2) overnight adjustments are applied, and (3) monthly estimates with fewer than 12 two-day estimates are discarded. We merge 
the results of different estimators and discard stock-months in which any of the estimates are missing. We compute two versions of 
the HL (CHL) estimator, that is, the two-day corrected and monthly corrected versions labeled two-day and monthly. In the two-day 
corrected version for HL (CHL), we set each negative two-day spread (squared spread) to zero, and then the spreads (square roots of 
estimated squared spreads) are averaged within a month. The monthly corrected HL estimates are calculated by averaging all the two-
day spreads within the month and then setting negative monthly averages to zero. The monthly CHL estimates are calculated by 
inserting monthly averages in equation (9), setting negative estimates of squared spreads to zero and, finally, taking the square roots. 
The Roll estimates are calculated by setting positive monthly autocovariance estimates to zero. The zeros reported for EffTick 
estimates reflect the months in which none of the prices are divisible by the base-eight denomination increments. We consider a 
second variant of EffTick measure (EffTick – Alt. Incr.) by using the tick sizes of 1¢, 5¢, 10¢, 25¢, 50¢, or $1.00 as our sample time span 
lies after the decimalization of stock markets. For the sake of completeness, we include the Amihud price impact measure (Amihud 
ILLIQ, 2002), which captures the price impact. For the sake of convenience, the Amihud ILLIQ measure is multiplied by 106 in 
reporting the results.  

 N Mean Median Standard 
Deviation 

𝜌𝜌 ( . ,𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡) % ≤ 0 

Effective Spread  
 

536,275 0.84% 0.28% 1.43% 1.00 0.00% 

CHL - Two-Day 
 

536,275 1.40% 1.03% 1.32% 0.75 0.00% 

CHL - Monthly 
 

536,275 0.63% 0.38% 0.94% 0.68 33.69% 

HL - Two-Day 
 

536,275 1.22% 0.94% 1.04% 0.66 0.00% 

HL - Monthly 
 

536,275 0.58% 0.32% 0.88% 0.63 24.33% 

Roll  
 

536,275 1.52% 0.72% 2.59% 0.46 42.88% 

Gibbs 
 

536,275 2.14% 1.48% 2.95% 0.41 0.00% 

EffTick  
 

536,275 2.06% 0.67% 4.82% 0.42 26.94% 

EffTick – Alt. Incr. 
 

536,275 0.25% 0.07% 0.72% 0.52 0.00% 

FHT 
 

536,275 0.26% 0.00% 0.69% 0.44 61.14% 

Amihud ILLIQ 536,275 0.847 0.0087 8.816 0.45 0.00% 
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Table III. Average Cross-Sectional Correlations with the TAQ Benchmark 
This table shows the average cross-sectional correlations between estimates of transaction costs and the TAQ benchmark for each 
month. The monthly correlations are averaged over the specified sample periods. The labels in the first row refer to our estimator 
(CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 
2009), and Fong, Holden, and Trzcinka (FHT; 2014). N is the average number of stocks per month.  An asterisk indicates numbers 
not significantly different from the estimator with the highest correlation marked in bold in every row. We test our hypotheses on the 
time series of pairwise difference in correlations for two estimators and assess whether the mean is significantly different from zero. 
We adjust for any potential time-series autocorrelation by using Newey-West (1987) standard errors with four lags autocorrelation. 
The size quintiles are sorted by increasing market capitalization at the last observed period for each individual stock. The spread 
quintiles are sorted by increasing average effective spreads during the whole sample period.    

 N  CHL HL  Roll Gibbs EffTick FHT 
Panel A: Average Cross-sectional Correlations with Effective Spreads for Monthly Estimates  
Full Period 3,972.4 0.742 0.646 0.427 0.376 0.414 0.492 
2003–2007 4,381.1 0.762 0.664 0.435 0.374 0.458 0.570 
2008–2011 3,870.9 0.736 0.635 0.428 0.430 0.391 0.471 
2012–2014 3,528.9 0.722 0.633 0.414 0.307 0.381 0.407 
        
Panel B: Average Cross-sectional Correlations with Changes in Effective Spreads for Monthly Estimates 
Full Period 3,920.8 0.303 0.287 0.117 0.096 0.026 0.054 
2003–2007 4,266.7 0.328 0.306 0.128 0.093 0.029 0.075 
2008–2011 3,765.9 0.304 0.292 0.121 0.120 0.028 0.052 
2012–2014 3,410.5 0.248 0.241* 0.089 0.060 0.019 0.017 
        
Panel C: Analysis across Different Markets 
NYSE 1,337.7 0.496* 0.481* 0.212 0.232 0.511 0.423 
AMEX 306.0 0.743 0.655 0.458 0.547 0.324 0.516 
NASDAQ 2,328.7 0.712 0.590 0.406 0.344 0.371 0.416 
        
Panel D: Analysis across Market Capitalization 
Size Quintile 1 587.2 0.695 0.570 0.383 0.384 0.243 0.386 
Size Quintile 2 682.1 0.557 0.378 0.330 0.272 0.192 0.249 
Size Quintile 3 789.5 0.455 0.341 0.201 0.158 0.263 0.273 
Size Quintile 4 867.9 0.457 0.439* 0.166 0.166 0.383 0.331 
Size Quintile 5 1046 0.426 0.477 0.147 0.175 0.475* 0.356 
        
Panel E: Analysis across Effective Spread Size 
ES Quintile 1 1,031.5 0.381 0.450 0.132 0.170 0.353 0.153 
ES Quintile 2 842.6 0.375 0.419 0.143 0.156 0.342 0.217 
ES Quintile 3 764.4 0.403 0.389 0.150 0.160 0.339 0.290 
ES Quintile 4 725.5 0.494 0.384 0.245 0.204 0.256 0.279 
ES Quintile 5 608.4 0.700 0.588 0.420 0.482 0.229 0.363 
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Table IV. Average Time-Series Correlations for Spread Estimates of Individual Stocks Compared to the TAQ Benchmark 
The labels in the first row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 
1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014). N is the number of stocks in 
the subsamples with, at least, six months of estimates. The averages are computed across stocks. An asterisk indicates numbers not 
significantly different from the estimator with the highest correlation marked in bold in every row. We use a paired t-test for the 
statistical inferences. The size quintiles are sorted by increasing market capitalization at the last observed period for each individual 
stock. The spread quintiles are sorted by increasing average effective spreads during the whole sample period.    

 N  CHL HL  Roll Gibbs EffTick FHT 
Panel A: Average Time-Series Correlations with Effective Spreads: Monthly Estimates 
Full Period 6,961 0.523 0.513 0.246 0.339 0.311 0.182 
2003–2007 5,652 0.393 0.377 0.140 0.247 0.252 0.124 
2008–2011 4,783 0.611 0.604 0.317 0.435 0.267 0.150 
2012–2014 4,144 0.287 0.295 0.096 0.166 0.127 0.060 
        
Panel B: Average Time-Series Correlations with Changes in Effective Spreads: Monthly Estimates 
Full Period 6,882 0.292* 0.295 0.116 0.170 0.052 0.023 
2003–2007 5,574 0.256* 0.258 0.096 0.167 0.040 0.012 
2008–2011 4,727 0.340 0.351 0.146 0.211 0.064 0.034 
2012–2014 4,074 0.187* 0.192 0.067 0.100 0.017 -0.003 
        
Panel C: Analysis across Different Markets 
NYSE 2,100 0.430 0.447 0.186 0.281 0.301 0.127 
AMEX 815 0.557 0.508 0.259 0.417 0.292 0.268 
NASDAQ 4,411 0.548 0.534 0.263 0.345 0.309 0.186 
        
Panel D: Analysis across Market Capitalization 
Size Quintile 1 1,392 0.702 0.654 0.386 0.526 0.334 0.340 
Size Quintile 2 1,392 0.578 0.528 0.294 0.405 0.314 0.191 
Size Quintile 3 1,392 0.482 0.476* 0.215 0.289 0.307 0.156 
Size Quintile 4 1,392 0.436 0.460 0.164 0.230 0.305 0.134 
Size Quintile 5 1,393 0.416 0.448 0.173 0.248 0.297 0.089 
        
Panel E: Analysis across Effective Spread Size 
ES Quintile 1 1,392 0.412 0.442 0.170 0.246 0.264 0.063 
ES Quintile 2 1,392 0.429 0.470 0.165 0.233 0.310 0.122 
ES Quintile 3 1,392 0.467 0.478 0.194 0.277 0.338 0.203 
ES Quintile 4 1,392 0.591 0.537 0.285 0.372 0.335 0.248 
ES Quintile 5 1,393 0.715 0.640 0.418 0.570 0.310 0.274 
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Table V. Prediction Errors 
We measure the accuracy of different monthly estimates by computing their root-mean-squared errors (RMSEs), as well as mean 
absolute errors (MAEs) with respect to the TAQ benchmark. Prediction errors are calculated every month and then averaged through 
the months in the sample. N is the average number of stocks per month.  The labels refer to our estimator (CHL) and the estimators 
proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, 
and Trzcinka (FHT; 2014). An asterisk indicates numbers not significantly different from the estimator with the lowest average 
prediction error marked in bold in every row. We test our hypotheses on the time series of pairwise difference in prediction errors for 
two estimators and assess whether the mean is significantly different from zero. We adjust for any potential time-series 
autocorrelation by using Newey-West (1987) standard errors with four lags autocorrelation 

 N CHL HL  Roll Gibbs EffTick FHT 

Panel A: RMSEs, Breakdown for different periods, and across different markets 

Full Period  3,972.4  0.0105 0.0107 0.0223 0.0285 0.0440 0.0131 

2003–2007  4,381.1  0.0084 0.0086 0.0182 0.0252 0.0369 0.0101 

2008–2011  3,870.9  0.0141 0.0141* 0.0292 0.0325 0.0551 0.0175 

2012–2014  3,528.9  0.0087 0.0092 0.0187 0.0280 0.0394 0.0117 

NYSE  1,337.7  0.0089 0.0077 0.0163 0.0237 0.0165 0.0030 

AMEX  306.0  0.0115 0.0125 0.0286 0.0237 0.0981 0.0192 

NASDAQ  2,328.7  0.0112 0.0119 0.0239 0.0308 0.0436 0.0155 

Panel B: MAEs, Breakdown for different periods, and across different markets 

Full Period  3,972.4  0.0083 0.0083 0.0134 0.0145 0.0182 0.0068 

2003–2007  4,381.1  0.0067 0.0068 0.0112 0.0130 0.0155 0.0055 

2008–2011  3,870.9  0.0113 0.0110 0.0180 0.0177 0.0234 0.0087 

2012–2014  3,528.9  0.0065 0.0068 0.0105 0.0125 0.0153 0.0059 

NYSE  1,337.7  0.0076 0.0068 0.0099 0.0131 0.0074 0.0016 

AMEX  306.0  0.0082 0.0092 0.0189 0.0146 0.0506 0.0136 

NASDAQ  2,328.7  0.0087 0.0091 0.0148 0.0154 0.0204 0.0089* 
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Table VI. Comparison with the Monthly TAQ (MTAQ) Benchmark, January 1993-September 2003 
This table compares different estimates with the MTAQ benchmark between January 1993 and September 2003. The labels in the first 
row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), Hasbrouck 
(Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014). The spread quintiles are sorted by increasing 
average effective spreads during the whole sample period. In Panel A, N refers to the average number of stocks per month. Cross-
sectional correlations are calculated per month and averaged across the sample. We test our hypotheses on the time series of pairwise 
difference in correlations for two estimators and assess whether the mean is significantly different from zero. In Panel B, N refers to 
the number of stocks in the subsamples with at least 6 months of estimates. Time-series correlations are calculated for each individual 
stock and then averaged across assets. We use a paired t-test for the statistical inferences. In Panel C, N refers to the average number 
of stocks per month. RMSEs are calculated for every month and then averaged through time. We test our hypotheses on the time 
series of pairwise difference in prediction errors for two estimators and assess whether the mean is significantly different from zero. 
We adjust for any potential time-series autocorrelation by using Newey-West (1987) standard errors with four lags autocorrelation. An 
asterisk indicates numbers not significantly different from the highest correlation marked in bold in every row of Panel A and B, and 
from the estimator with the lowest average prediction error marked in bold in every row in Panel C. 

 N  CHL HL  Roll Gibbs EffTick FHT 
Panel A: Average Cross-Sectional Correlations with the TAQ Benchmark 
All Stocks, Levels 5057.2 0.860 0.833 0.606 0.715 0.637 0.645 
All Stocks, Changes 4973.6 0.470 0.459 0.206 0.267 0.191 0.152 
NYSE 1616.5 0.814 0.810* 0.461 0.636 0.811* 0.757 
AMEX 363.0 0.927 0.915 0.653 0.849 0.788 0.740 
NASDAQ 3077.7 0.817 0.774 0.571 0.660 0.604 0.585 
ES Quintile 1 1385.3 0.428 0.440 0.153 0.296 0.658 0.425 
ES Quintile 2 1125.6 0.579 0.575* 0.275 0.339 0.526* 0.426 
ES Quintile 3 967.7 0.668 0.627 0.359 0.431 0.482 0.413 
ES Quintile 4 923.9 0.750 0.708 0.450 0.567 0.491 0.459 
ES Quintile 5 654.7 0.799 0.776 0.537 0.698 0.481 0.511 
        

Panel B: Average Time-Series Correlations for Spread Estimates of Individual Stocks  
All Stocks, Levels 10788 0.586 0.580 0.281 0.445 0.464 0.403 
All Stocks, Changes 10683 0.401 0.399* 0.155 0.284 0.220 0.116 
NYSE 2759 0.343 0.353 0.096 0.285 0.459 0.409 
AMEX 1084 0.644 0.623 0.286 0.507 0.601 0.355 
NASDAQ 7744 0.645 0.632 0.326 0.482 0.450 0.383 
ES Quintile 1 2157 0.200 0.209 0.015 0.169 0.333 0.402 
ES Quintile 2 2157 0.526 0.552 0.189 0.325 0.458 0.400 
ES Quintile 3 2157 0.686 0.674 0.325 0.483 0.483 0.376 
ES Quintile 4 2157 0.743 0.716 0.406 0.574 0.524 0.402 
ES Quintile 5 2160 0.773 0.747 0.469 0.674 0.521 0.434 
        

Panel C: Root-Mean-Squared Errors w.r.t TAQ Benchmark 
All Stocks 5057.2 0.0143 0.0152 0.0309 0.0251 0.0466 0.0225 
NYSE 1616.5 0.0065 0.0059 0.0169 0.0161 0.0186 0.0075 
AMEX 363.0 0.0125 0.0162 0.0326 0.0189 0.0535 0.0246 
NASDAQ 3077.7 0.0223 0.0234 0.0408 0.0341 0.0591 0.0326 
        

  



59 
 

Table VII. Comparison with Combinations of Models 
We combine the bid-ask spread estimates of different models by computing simple averages and then compare the results with our 
estimates. The labels in the first row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), 
Roll (Roll; 1984), Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014). “The Rest” refers 
to the three latter mentioned estimators. In panels A and C, N refers to the average number of stocks per month. In panel B, N refers 
to the number of stocks in the subsamples with at least 6 months of estimates. The spread quintiles are sorted by increasing average 
effective spreads during the whole sample period. Cross-sectional correlations are calculated per month and averaged across the 
sample. Time-series correlations are calculated for each individual stock and then averaged across assets. RMSEs are calculated for 
every month and then averaged through time.   

  N CHL HL & Roll HL, Roll, CHL, HL, All 
& the Rest & Roll 

Panel A: Average Cross-Sectional Correlations with the TAQ Benchmark 
All Stocks, Levels 3,972.4 0.742 0.547 0.585 0.631 0.621 
All Stocks, Changes 598.1 0.303 0.171 0.133 0.216 0.159 
NYSE 1,337.7 0.496 0.314 0.477 0.380 0.494 
AMEX 306.0 0.743 0.584 0.549 0.660 0.588 
NASDAQ 2,328.7 0.712 0.511 0.537 0.596 0.575 
ES Quintile 1 1,031.5 0.381 0.232 0.296 0.284 0.319 
ES Quintile 2 842.6 0.375 0.234 0.322 0.284 0.341 
ES Quintile 3 764.4 0.403 0.236 0.359 0.293 0.377 
ES Quintile 4 725.5 0.494 0.323 0.356 0.389 0.382 
ES Quintile 5 608.4 0.700 0.531 0.476 0.610 0.522 
Panel B: Average Time-Series Correlations for Spread Estimates of Individual Stocks  
All Stocks, Levels 6,961 0.523 0.353 0.418 0.420 0.448 
All Stocks, Changes 6882 0.292 0.173 0.182 0.215 0.207 
NYSE 2,100 0.430 0.277 0.357 0.330 0.380 
AMEX 815 0.557 0.369 0.437 0.447 0.471 
NASDAQ 4,411 0.548 0.374 0.432 0.444 0.466 
ES Quintile 1 1,392 0.412 0.260 0.312 0.312 0.338 
ES Quintile 2 1,392 0.429 0.268 0.329 0.324 0.355 
ES Quintile 3 1,392 0.467 0.298 0.396 0.359 0.420 
ES Quintile 4 1,392 0.591 0.398 0.477 0.479 0.512 
ES Quintile 5 1,393 0.715 0.541 0.574 0.625 0.616 
Panel C: Root-Mean-Squared Errors w.r.t TAQ Benchmark 
All Stocks, Levels 3,972.4 0.0105 0.0141 0.0147 0.0123 0.0135 
All Stock, Changes 3,920.8 0.0083 0.0150 0.0147 0.0118 0.0129 
NYSE 1,337.7 0.0089 0.0109 0.0098 0.0099 0.0094 
AMEX 306.0 0.0115 0.0170 0.0232 0.0141 0.0202 
NASDAQ 2,328.7 0.0112 0.0152 0.0156 0.0131 0.0144 
ES Quintile 1 1,031.5 0.0077 0.0089 0.0075 0.0083 0.0074 
ES Quintile 2 842.6 0.0098 0.0120 0.0108 0.0109 0.0104 
ES Quintile 3 764.4 0.0106 0.0141 0.0139 0.0124 0.0130 
ES Quintile 4 725.5 0.0103 0.0148 0.0174 0.0125 0.0157 
ES Quintile 5 608.4 0.0146 0.0208 0.0232 0.0176 0.0208 
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Table VIII. Partial Correlations 
We calculate the partial correlation between the TAQ effective spread and our estimates (CHL) removing the effects explained by 
other estimates, that is, 𝜌𝜌�𝜖𝜖𝐸𝐸𝑆𝑆𝑖𝑖,𝑡𝑡|𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡  , 𝜖𝜖𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡|𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡�.  𝑬𝑬𝑬𝑬𝑬𝑬𝑖𝑖,𝑡𝑡 includes a constant, Corwin and Schultz (HL; 2012), Roll (Roll; 1984), 
Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014) estimates. The spread quintiles are 
sorted by increasing average effective spreads during the whole sample period. In panel A, N refers to the average number of stocks 
per month, and, in panel B, N refers to the number of stocks in the subsamples with at least 24 months of estimates. Panel A shows 
the average partial cross-sectional correlations. The bold numbers are significantly different from zero using a 5% two-tailed 
confidence interval. The statistical test for the average of cross-sectional correlations is based on Newey-West (1987) standard errors 
with four lags autocorrelation. Panel B shows the average partial time-series correlations, as the average of partial time-series 
correlations for individual stocks. The bold numbers are significantly different from zero using a t-test for the average of time-series 
correlations. To avoid overfitting in calculating the partial time-series correlations, we discard the stocks with fewer than 24 months of 
estimates. 

  N CHL|HL CHL|HL, 
Roll 

CHL|HL, 
Roll, 

Gibbs 

CHL|HL, 
Roll, Gibbs, 

EffTick 

CHL|HL,  
Roll, 

Gibbs, 
EffTick, 

FHT 
Panel A: Average Partial Cross-Sectional Correlations with the TAQ Benchmark 
All Stocks, Levels 3,972.4 0.482 0.460 0.453 0.442 0.433 
All Stocks, Changes 3,920.8 0.162 0.157 0.152 0.152 0.151 
NYSE 1,337.7 0.194 0.209 0.198 0.173 0.167 
AMEX 306.0 0.476 0.440 0.415 0.411 0.408 
NASDAQ 2,328.7 0.498 0.471 0.465 0.457 0.450 
ES Quintile 1 1,031.5 0.049 0.072 0.061 0.053 0.051 
ES Quintile 2 842.6 0.084 0.100 0.094 0.079 0.075 
ES Quintile 3 764.4 0.164 0.181 0.179 0.167 0.161 
ES Quintile 4 725.5 0.338 0.324 0.329 0.324 0.318 
ES Quintile 5 608.4 0.473 0.429 0.400 0.399 0.399 
              
Panel B: Average Partial Time-Series Correlations for Spread Estimates of Individual Stocks Compared to the 
TAQ Benchmark 
All Stocks, Levels 5,748 0.222 0.231 0.200 0.186 0.183 
All Stocks, Changes 5,683 0.134 0.139 0.120 0.119 0.119 
NYSE 1,818 0.125 0.152 0.122 0.113 0.113 
AMEX 575 0.323 0.310 0.262 0.250 0.247 
NASDAQ 3,558 0.252 0.256 0.226 0.211 0.206 
ES Quintile 1 1,280 0.090 0.122 0.099 0.093 0.093 
ES Quintile 2 1,185 0.098 0.134 0.114 0.104 0.102 
ES Quintile 3 1,108 0.171 0.192 0.173 0.155 0.153 
ES Quintile 4 1,125 0.337 0.331 0.299 0.275 0.266 
ES Quintile 5 1,050 0.454 0.410 0.342 0.331 0.325 
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Table IX. Correlations for Quintiles Based on Average Number of Trades 
We group the stocks into five quintiles sorting them by their average number of trades per day during the sample period. The daily 
number of trades is counted using TAQ consolidated trades data for trades that occur between 9:30 and 16:00 and have a positive 
price and volume. The first four quintiles are constructed of 1,392 stocks, and the fifth is constructed of 1,393 stocks. The labels in 
the first row refer to our estimator (CHL) and the estimators proposed by Corwin and Schultz (HL; 2012), Roll (Roll; 1984), 
Hasbrouck (Gibbs; 2009), Holden (EffTick; 2009), and Fong, Holden, and Trzcinka (FHT; 2014). N refers to the number of stock-
months of estimates for the entire sample, as well as for each quintile. Panel A shows the correlation coefficients between different 
monthly estimates and the TAQ effective spread benchmark. Panel B shows the correlation coefficients between different monthly 
estimates and the Amihud illiquidity measure (Amihud 2002). The bold numbers are the highest correlations coefficients in each row. 
An asterisk indicates numbers not significantly different from the estimator with the highest correlation, using Fisher’s z-test to 
compare the correlation coefficients.  

 
N CHL HL  Roll Gibbs EffTick FHT 

Panel A: Correlation of monthly estimates with the TAQ effective spread benchmark 

Full Sample 536,275 0.747 0.663 0.456 0.406 0.424 0.445 

ANTD Quintile 1 72,873 0.823 0.767 0.579 0.707 0.378 0.380 

ANTD Quintile 2 96,875 0.789 0.725 0.461 0.465 0.412 0.463 

ANTD Quintile 3 100,951 0.707 0.681 0.362 0.330 0.440 0.460 

ANTD Quintile 4 120,935 0.619 0.634 0.290 0.268 0.493 0.445 

ANTD Quintile 5 144,641 0.529 0.561 0.241 0.242 0.547 0.474 

Panel B: Correlation of monthly estimates with the Amihud illiquidity measure 

Full Sample 536,275 0.409 0.330 0.264 0.221 0.189 0.199 

ANTD Quintile 1 72,873 0.521 0.452 0.368 0.442 0.230 0.252 

ANTD Quintile 2 96,875 0.411 0.331 0.275 0.243 0.199 0.176 

ANTD Quintile 3 100,951 0.342 0.285 0.209 0.154 0.196 0.199 

ANTD Quintile 4 120,935 0.175 0.140 0.087 0.067 0.122 0.093 

ANTD Quintile 5 144,641 0.179 0.158 0.088 0.070 0.218 0.178 
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Table X. Estimating Systematic Liquidity Risks from the LCAPM Model for Individual Stocks 
We calculate the components of systematic risk implied by the LCAPM model (Acharya and Pedersen (2005)) by using the TAQ 
effective spreads, Roll model estimates (Roll; 1984), the HL estimates (Corwin and Schultz; 2012), and the estimates from our model 
(labeled CHL). N refers to the number of stocks. The table reports the cross-sectional correlation of betas based on Roll, HL, and 

CHL estimates (𝛽𝛽𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸), with betas based on the TAQ effective spreads (𝛽𝛽𝑖𝑖𝐸𝐸𝐸𝐸). We discard stocks with fewer than 30 months of 
effective spread estimates. Betas are calculated for the spreads in levels and the residuals of AR(2) regressions in panels A and B, 
respectively. Panels C, D, and E show the results from subsampling analyses across exchanges (NYSE, AMEX, and NASDAQ), 
market capitalization, and spread size. In panel D, the size quintiles are sorted by increasing market capitalization at the last observed 
period for each individual stock. In panel E, the spread quintiles are sorted by increasing average effective spreads during the whole 
sample period. An asterisk indicates values not significantly different from that with the higher correlation marked in bold for every 
set of values. The statistical inferences are performed using Fisher’s z-test. 

   𝜌𝜌�𝛽𝛽2𝐸𝐸𝐸𝐸,𝛽𝛽2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�  𝜌𝜌�𝛽𝛽3𝐸𝐸𝐸𝐸,𝛽𝛽3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�  𝜌𝜌�𝛽𝛽4𝐸𝐸𝐸𝐸,𝛽𝛽4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 
 N  CHL HL Roll  CHL HL Roll  CHL HL Roll 

Panel A: Cross-section of Estimated Systematic Risks: All Stocks 
Full Period 5396  0.829 0.742 0.650  0.937 0.930 0.832  0.761 0.672 0.484 
2003-2007 4119  0.501 0.457 0.171  0.671 0.659* 0.407  0.532 0.439 0.214 
2008-2011 3575  0.736 0.604 0.353  0.971 0.970* 0.896  0.557 0.427 0.296 
2012-2014 3068  0.615 0.319 0.125  0.591 0.386 0.223  0.407 0.325 0.102 

   0000.0 0000.0 0000.0  0000.0 0000.0 0000.0  0000.0 0000.0 0000.0 
Panel B: Cross-section of Estimated Systematic Risks Considering Liquidity Shocks of AR(2) Model 
Full Period 5,308  0.511 0.439 0.152  0.860 0.879 0.588  0.535 0.258 0.251 
2003–2007 4,012  0.287 0.161 -0.077  0.795 0.776 0.554  0.369 0.148 0.066 
2008–2011 3,565  0.394 0.267 -0.030  0.892 0.914 0.627  0.520 0.108 0.143 
2012–2014 3,057  0.087* 0.084* 0.088  0.676 0.736 0.540  0.206 0.089 0.053 

              
Panel C: Analysis across Different Markets 
NYSE 1,724  0.696 0.679* 0.434  0.937 0.934* 0.837  0.678* 0.683 0.257 
AMEX 510  0.882 0.825 0.686  0.923 0.916* 0.819  0.780 0.701 0.536 
NASDAQ 3,316  0.854 0.780 0.696  0.938 0.930 0.830  0.786 0.692 0.493 

              
Panel D: Analysis across Market Capitalization 
Size Quintile 1 987  0.865 0.784 0.745  0.949 0.941* 0.849  0.806 0.724 0.575 
Size Quintile 2 990  0.741 0.600 0.560  0.926 0.915* 0.787  0.626 0.513 0.373 
Size Quintile 3 1,053  0.591 0.458 0.296  0.931 0.930* 0.848  0.520 0.417 0.235 
Size Quintile 4 1,128  0.558 0.502* 0.297  0.917 0.903* 0.790  0.590 0.575* 0.209 
Size Quintile 5 1,238  0.478 0.465* 0.290  0.932 0.930* 0.835  0.456* 0.491 0.119 

              
Panel E: Analysis across Effective Spread Size 
ES Quintile 1 1,237  0.556* 0.558 0.339  0.908* 0.908 0.778  0.538* 0.574 0.210 
ES Quintile 2 1,119  0.709* 0.721 0.360  0.940 0.934* 0.838  0.623 0.672 0.141 
ES Quintile 3 1,035  0.719 0.707* 0.375  0.939 0.929* 0.841  0.675 0.645* 0.258 
ES Quintile 4 1,055  0.786 0.727 0.508  0.928 0.921* 0.811  0.738 0.699* 0.387 
ES Quintile 5 950  0.881 0.819 0.776  0.944 0.939* 0.845  0.826 0.754 0.585 
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Table XI. Estimating Systematic Liquidity Risks from the LCAPM Model for 25 Portfolios of Stocks Sorted by Illiquidity 
Level 
We calculate the components of systematic risk implied by the LCAPM model (Acharya and Pedersen (2005)) for 25 portfolios sorted 
by illiquidity levels, constructed using the TAQ effective spreads, Roll model estimates (Roll; 1984), the HL estimates (Corwin and 
Schultz; 2012), and the estimates from our model (labeled CHL). The table reports the cross-sectional correlation of portfolio betas 
based on Roll’s, HL’s, and CHL’s estimates (𝛽𝛽𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸), with portfolio betas based on the TAQ effective spreads (𝛽𝛽𝑖𝑖𝐸𝐸𝐸𝐸). Portfolio 
spreads are in levels or as shocks, defined by residuals of AR(2) regressions. An asterisk indicates values not significantly different 
from that with the higher correlation marked in bold for every set of values. The statistical inferences are performed using Fisher’s z-
test. 

Cross-Sectional Correlations of Betas with those Calculated using TAQ Effective Spreads      (continued) 

 𝜌𝜌�𝛽𝛽1𝐸𝐸𝐸𝐸,𝛽𝛽1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝜌𝜌�𝛽𝛽2𝐸𝐸𝐸𝐸,𝛽𝛽2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝜌𝜌�𝛽𝛽3𝐸𝐸𝐸𝐸,𝛽𝛽3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 

 CHL HL Roll CHL HL Roll CHL HL Roll 

Levels  0.693 0.621* 0.238 0.978   0.976* 0.933 0.352 -0.479 0.132 

Shocks 0.693 0.621* 0.238 0.966* 0.970 0.159 0.952 0.940* 0.668 

 

Table XI. Continued 

Cross-Sectional Correlations of Betas with those Calculated using TAQ Effective Spreads 

 𝜌𝜌�𝛽𝛽4𝐸𝐸𝐸𝐸,𝛽𝛽4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝜌𝜌�𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 ,𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 

 CHL HL Roll CHL HL Roll 

Levels  0.901 0.848* 0.155 0.754 0.698* 0.311 

Shocks 0.957 0.930* 0.509 0.744 0.682* 0.296 
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