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Abstract

We develop a framework to analyze economies with agents facing time-varying concerns for

model misspecification. These concerns lead agents to interpret economic outcomes and make

decisions through the lens of a pessimistically biased ‘worst-case’ model. We combine survey

data and implied theoretical restrictions on the relative magnitudes and comovement of forecast

biases across macroeconomic variables to identify ambiguity shocks as exogenous fluctuations

in the worst-case model. Our solution method delivers tractable linear approximations that

preserve the effects of time-varying ambiguity concerns and permit estimation using standard

Bayesian techniques. Applying our framework to an estimated New-Keynesian business cycle

model with frictional labor markets, we find that ambiguity shocks explain a substantial portion

of the variation in labor market quantities.
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and Mathias Trabandt for sharing codes with us.



1 Introduction

Survey data on households’ expectations about future macroeconomic outcomes reveal significant

pessimistic average biases and comovement of these biases at business cycle frequencies. In this

paper, we present a theory where such pessimism stems from households’ concerns that the under-

lying model they use for decision-making is potentially misspecified. In doing so, we depart from

the rational expectations assumption and replace it with a tightly specified framework that links

households’ decisions and expectations adjusted for plausible misspecification fears. This depar-

ture is disciplined using data on macroeconomic variables along with survey data on households’

expectations. We use this framework to quantify the magnitude and economic channels through

which misspecification concerns affect aggregate outcomes.

Our theoretical foundation is an extension of the robust preference model of Hansen and Sargent

(2001a,b). Agents endowed with robust preferences are concerned that the particular model they

view as their ‘benchmark’ model of the economy may be misspecified. Instead of only using the

benchmark model, they consider a set of models that are statistically hard to distinguish from the

benchmark model. The concerns for model misspecification lead them to choose the model from

this set that delivers the lowest utility. This ‘worst-case’ model is then the basis for their decisions,

as in the utility-minimizing prior in the multiple prior framework of Gilboa and Schmeidler (1989)

and Epstein and Schneider (2003). The robust preference framework thus represents a particular

form of ambiguity aversion.

We extend this robust preference framework to allow the agents to be exposed to shocks to

their ambiguity concerns. The time-variation in ambiguity concerns induces fluctuations in agents’

worst-case beliefs and endogenously affects equilibrium dynamics. While our extension delivers a

more flexible specification of the time-variation in the worst-case model, it still tightly restricts

the beliefs across alternative states in a given period. Agents fear outcomes with adverse utility

consequences and overweight their probabilities in a specific way.

In order to identify the variation in the worst-case model empirically, we assume that agents’

forecasts in the survey data are based on their worst-case model. Our theoretical framework yields

directly testable predictions about the mean distortions and comovement of these forecasts under

the worst-case model. Specifically, the model predicts a one-factor structure for the survey forecasts

of macroeconomic variables, with loadings determined by the covariance of these variables with

shocks that have adverse utility consequences. These cross-equation restrictions also allow us to

distinguish fluctuations in ambiguity concerns from alternative specifications of subjective beliefs.

We show that household forecasts for key macroeconomic variables in the University of Michigan

Surveys of Consumers are indeed significantly pessimistically biased, with a discernible business

cycle component. We start by estimating a vector-autoregression (VAR) that embeds household

survey data, explicitly restricting the belief distortion (or wedge) between the worst-case model

and the data-generating probability measure. A common component of these belief distortions in

alternative survey answers identifies a latent factor that captures the time-variation in the worst-

case model, and its impact on observable macroeconomic quantities.
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We then combine the robust preference framework and the survey data in a dynamic stochastic

general equilibrium model with frictional labor markets, sticky prices and a monetary authority

that follows an interest rate rule. We estimate this model using Bayesian methods and study the

quantitative role of the ambiguity shocks in the dynamics of the labor market and the comovement

of macroeconomic variables.

The results from the VAR and structural models show a common pattern. The worst-case belief

is identified from the common variation of the biases in survey answers, and it explains a significant

amount of variation in these biases. Ambiguity-averse households interpret high unemployment,

low GDP growth and high inflation states as particularly adverse to their utility, and overweight

worst-case probabilities of those states substantially.

An adverse ambiguity shock also has significant contractionary effects, propagated particularly

strongly through the labor market. In the labor market with search and matching frictions, cre-

ation of new matches and hiring depend on the assessment of the future surpluses generated in a

new match. An increase in ambiguity concerns leads to a more pessimistic evaluation of future

surpluses and therefore to lower match creation, which increases unemployment and decreases out-

put. Fluctuations in ambiguity concerns effectively act as variation in the risky component of the

stochastic discount factor, providing a testable structural explanation of the discount rate shock in

Hall (2015) linked to observable survey data.

On the technical side, we develop a series expansion technique that incorporates the impact of

time-varying ambiguity concerns in the first-order approximation of the model. The main challenge

is that the worst-case model distortion arises endogenously and needs to be computed jointly

with the equilibrium dynamics, as agents overweight states with low utility realizations. The

approximation method leads to a tractable linear solution for the equilibrium dynamics with a role

for ambiguity shocks that can be estimated using standard Bayesian techniques.

The paper contributes to the growing literature that quantitatively assesses the role of ambiguity

aversion in the macroeconomy, building on alternative decision-theoretical foundations by Gilboa

and Schmeidler (1989), Epstein and Schneider (2003), Klibanoff et al. (2005, 2009), Ju and Miao

(2012), Hansen and Sargent (2001a,b), Strzalecki (2011) and others. Applications to macroeconomic

models include Cagetti et al. (2002) and Bidder and Smith (2012). For a survey of applications in

finance, see Epstein and Schneider (2010).

Perhaps the closest to our paper is the work by Ilut and Schneider (2014) and Bianchi et al.

(2014), who utilize the recursive multiple-prior preferences of Epstein and Schneider (2003). The

main difference between their approach and ours to model ambiguity aversion is how the set of

potential misspecifications is parameterized in each case. The multiple-prior framework does not

restrict the relative magnitudes of individual shock distortions under the worst-case model, and thus

introduces a heavier burden on identification through observable data. In our setting, exposures

of household continuation values to the underlying shocks endogenously determine the distortions.

These exposures are pinned down by cross-equation restrictions that arise from optimizing behav-

ior of forward-looking agents and impose consistency between the worst-case model and implied
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continuation values. We explicitly characterize these restrictions and utilize them in our estimation

and identification of ambiguity shocks. Another difference is that we use data on cross-sectional

average distortions measured in household survey answers, for which our theory has direct quanti-

tative predictions, as a source of identification of the ambiguity shocks. Ilut and Schneider (2014)

instead use the forecast dispersion as a proxy for confidence and show an empirically plausible

relation of this measure to the notion of ambiguity aversion. Despite these differences, we view

both approaches as complementary.

The paper is organized as follows. Section 2 describes key empirical findings from the survey

data and discusses empirically testable predictions that distinguish ambiguity shocks from other

potential explanations of the belief biases. In Section 3, we estimate a latent factor model that

captures the time-variation in the common component of the belief biases. Motivated by these

findings, we introduce our extension of the robust preference framework in Section 4, link the

implications of the theory to the belief biases in survey data, and develop a tractable solution

technique for approximating the equilibrium dynamics. Section 5 is devoted to the construction and

estimation of the structural business cycle model that embeds robust preferences, and in Section 6,

we discuss implications of the findings and the role of ambiguity shocks in business cycle dynamics.

Section 7 concludes. The appendix contains detailed derivations of the developed approximation

method, description of the data, estimation details, and further results and robustness checks.

2 Survey expectations

We start by analyzing data on households’ expectations from the University of Michigan Surveys of

Consumers (Michigan Survey). These surveys collect answers to questions about the households’

own economic situation as well as their forecasts about the future state of the economy. Specifi-

cally, we focus on the forecasts of future inflation, unemployment rate and the Index of Consumer

Expectations, which we use as a proxy for GDP growth forecast. A detailed description of the

construction of the data and additional statistics are provided in Appendix C.

We are interested in deviations in these survey answers from rational expectations forecasts.

The construction of these belief wedges necessarily requires taking a stand on how to determine

the probability measure that generates the data. We assume that the Survey of Professional Fore-

casters (SPF) provides unbiased estimates for the variables we study. Ang et al. (2007), Croushore

(2010), Faust and Wright (2013) and others document that professional survey forecasts systemati-

cally outperform other forecasting methods.1 We also prefer the SPF forecasts to rational forecasts

generated in our model because potential misspecification in the constructed model would system-

atically bias the measurement of the belief wedges, a critical input to our analysis. Nevertheless, as

a robustness check, we construct these wedges in Appendix G using several alternatives that also

1While some studies report modest biases in SPF forecasts, these biases are an order of magnitude smaller
than those we find in household surveys, and not robust to the chosen time period. See, e.g., Elliott et al. (2008)
and Capistrán and Timmermann (2009), who rationalize these biases by assuming forecasters with asymmetric loss
functions.
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Figure 1: Difference in survey expectations between the Michigan Survey and Survey of Profes-
sional Forecasters. Top panel original data, bottom panel HP-filtered and standardized. GDP
growth forecast for the Michigan Survey is constructed using a projection on the Index of Con-
sumer Expectations, and the GDP growth wedge is plotted with a negative sign. Details on the
construction of the data series are in Appendix C. NBER recessions shaded.

use model-implied forecasts. We show that for each variable these wedges are highly correlated

across alternative measurements and yield similar results.

Figure 1 shows the differences in survey expectations between the Michigan Survey and the

Survey of Professional Forecasters for inflation, unemployment and GDP growth. The survey

expectations are mean one-year ahead expectations in the survey samples. The Michigan Survey

does not contain a question about GDP growth, and we therefore proxy it by projecting GDP

growth on the Index of Consumer Expectations (ICE) constructed from survey answers. We detail

the construction of the time series in Appendix C. Table 5 in Appendix C summarizes the moments

and correlations for the belief wedges.

The top panel of Figure 1 reveals that households’ expectations are systematically pessimisti-

cally biased — relative to professional forecasters, households overpredict future unemployment
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and inflation, and underpredict GDP growth (with the exception of the boom period during the

late 1990s). The average belief wedge over the sample period for the inflation, unemployment and

GDP growth wedge is 1.01%, 0.55% and −1.73%, respectively.2

Moreover, despite a substantial amount of noise, the three time series for the belief wedges have

a common business cycle component and are statistically significantly correlated. The correlation

coefficient for the unemployment and GDP growth wedges is −0.63, while the correlation between

the inflation and GDP growth wedges is −0.32, with a standard error of 0.07 and 0.08, respectively.

The comovement over the business cycle can be visually confirmed in the bottom panel of Figure 1

that plots HP-filtered and standardized data. All three variables are significantly correlated with

the business cycle, measured both using realized GDP growth and the output gap (see Table 5 in

Appendix C).

While the unemployment rate wedge appears small relative to the other wedges, this is consistent

with a low volatility of the innovations to the realized unemployment rate. The large magnitude of

the inflation wedge, in particular in the post-2006 period, is consistent with the findings of Coibion

and Gorodnichenko (2015) and others. The fluctuations in the GDP growth wedge may appear

large, peaking at −4.37% in 2011Q3, in the quarter of the U.S. debt ceiling crisis.3 These large

fluctuations ask for additional scrutiny, especially given that the Michigan forecast is constructed

using the projection on the ICE index. First, given that GDP growth is volatile, it is not surprising

and in fact consistent with our theory that households report larger pessimistic biases. Second,

Figure 9 in Appendix C shows that while the constructed household forecast is systematically

pessimistically biased, it exhibits very similar business cycle patterns as the actual GDP growth and

the SPF forecasts. Finally, our theory predicts that the ratio of the mean of the belief wedge relative

to its time-series volatility should be constant across responses for different variables. Table 5 in

Appendix C shows that these ratios for the empirically measured belief wedges are in fact in the

very tight range of 1.28–1.47, despite the fact that they are all constructed from independent data.

This evidence is reassuring regarding the plausibility of the constructed wedges.

2.1 Forecast dispersion

Our theoretical framework formalizes the notion of pessimistic belief distortions through the struc-

ture of the robust preference model. The common component of the three belief wedges from

Figure 1 identifies the fluctuations in the worst-case model of economic agents. We embed the be-

lief distortions in a representative agent framework, which provides a justification for using average

forecasts as a measure of subjective expectations in the model.

Mankiw et al. (2003), Bachmann et al. (2012) and others use measures of cross-sectional forecast

dispersion as a proxy for economic uncertainty. This proxy is typically based on the presumption

that a higher dispersion is indicative of more difficulty in estimating the forecast distribution,

2The average bias in the SPF data for the three variables is 0.19%, 0.00% and 0.04%, respectively. None of these
numbers are statistically significant.

3As Figure 9 in Appendix C shows, professional forecasters in that quarter were predicting one-year ahead growth
of 2.42%, while the constructed household forecast is −1.95%.

5



1985 1990 1995 2000 2005 2010 2015
−2

−1

0

1

2

3
su
rv
ey

w
ed

ge
(%

)

unemployment rate mean interquartile range

1985 1990 1995 2000 2005 2010 2015
−6

−4

−2

0

2

4

6

su
rv
ey

w
ed

ge
(%

)

inflation mean median interquartile range

Figure 2: Dispersion in survey expectations in the Michigan Survey. The graphs show different
quantiles of the distribution of responses in the Michigan survey, net of the mean response in the
Survey of Professional Forecasters. The top panel shows the unemployment responses, bottom
panel the inflation responses. Details on the construction of the data series are in Appendix C.
NBER recessions shaded.

and therefore implies more ambiguity. Ilut and Schneider (2014) apply the same logic to use the

dispersion in the SPF forecasts as a proxy of household confidence in the forecasting model.

We plot the dispersion data from the Michigan survey for the unemployment rate and inflation

rate forecasts in Figure 2 for comparison. For the inflation data, we have information on the

quantiles of the cross-sectional distribution. For the unemployment rate forecast, we fit a sequence

of normal distributions to categorical answers using the same method as in Carlson and Parkin

(1975) and Mankiw et al. (2003), see Appendix C for details.

There is indeed substantial cross-sectional dispersion in the survey answers across individual

households. However, the interquartile range appears to be stable (except for the inflation answers

from early 1980s), and in the case of the unemployment answer also visibly comoves with the

business cycle. In Table 6 in Appendix C, we also report average inflation and unemployment

forecasts from the Michigan Survey for alternative age groups, geographical regions, quartiles of
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the income distribution, men and women, and different levels of education. While there is some

heterogeneity in the biases, usually in the expected direction, substantial biases persist even for

groups with high incomes and high levels of acquired education. This justifies our assumption of

systematic pessimistic biases in the broad population of households.

While it may be appealing to use cross-sectional dispersion in forecasts as a proxy for the am-

biguity concerns of each individual household, our theory does not provide such a direct link. We

seek to keep ambiguity concerns separate from the notion disagreement in forecasts across house-

holds. The model we develop in this paper is based on a representative agent framework that does

not feature heterogeneity in individual forecasts, and therefore yields no predictions about forecast

dispersion measures. However, it is possible to extend the framework by introducing heterogeneity

in agents’ concerns for uncertainty. Agents with differing degrees of ambiguity aversion deduce

alternative worst-case models from observable data, which then generates dispersion in forecasts in

the model. While conceptually interesting, this extension is beyond the scope of this paper.

2.2 News shocks and learning

Fluctuations in macroeconomic survey forecasts have also been investigated through the lens of

other theories. Barsky and Sims (2012) study the impact of innovations to the measure of consumer

confidence from the Michigan Survey and decompose these innovations into the contribution of news

shocks, representing arrival of information about future productivity (Pigou (1927), Beaudry and

Portier (2004)), and ‘animal spirits’ that capture fluctuations in agents’ subjective beliefs. We

address the decomposition problem by constructing the belief wedge as the difference between

households’ and professionals’ forecasts, thus differencing out the impact of news shocks while

preserving the role of fluctuations in subjective beliefs in the form of the households’ worst-case

model.

Carroll (2003), Reis (2009), Coibion and Gorodnichenko (2012) and many others contribute to

the large literature on learning and information acquisition in macroeconomics, imposing alternative

learning mechanisms on the side of economic agents. Learning is a plausible way of introducing a

wedge between agents’ beliefs and the data-generating measure, but it does not explain the large

and systematic pessimistic biases observed in household survey responses. Further, it is generally

inconsistent with the cross-equation restrictions in the structural model that we derive in Section 4,

which imply larger biases for shocks with a more adverse utility impact. Finally, learning models

imply slow adjustment of agents’ beliefs to economic shocks, and would therefore predict a relatively

optimistic bias in recessions, as agents do not fully incorporate the adverse realization of the current

state. We observe the opposite correlation between belief wedges and the business cycle in the data.

We consider a combination of ambiguity concerns and learning to be an appealing extension, see

Epstein and Schneider (2007), Hansen and Sargent (2007, 2010) or Bhandari (2015), but as in the

case of belief heterogeneity leave it for further research.
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3 A one-factor model of distorted beliefs

We want to formalize the empirical facts that we established in the previous section. In order to do

that, we specify a statistical model that describes the joint dynamics of macroeconomic variables

and households’ expectations. In this model, households’ expectations are allowed to differ from

the expectations implied by the distribution of the data-generating process in ways consistent with

the robust preference specification derived in Section 4.

We extract a common component in the variation of the belief wedge data, and study its

impact on the dynamics of the macroeconomic variables. We allow this component to depend

on a latent factor that represents exogenous movements in households’ expectations, relating the

resulting statistical setup to the factor-augmented vector autoregression (FAVAR) approach of Ang

and Piazzesi (2003) and Bernanke et al. (2005). Formally, this common component is a restricted

version of a change of measure that links subjective beliefs and the data-generating process, derived

in Appendix A. Piazzesi et al. (2015) and Jurado (2015) use analogous specifications to model

subjective beliefs in the bond market and in the macroeconomy, respectively.

We specify a (k − 1)× 1 vector of observable economic variables yt and an unobservable scalar

latent process ft. In particular, consider the model

yt+1 = ψyyt + ψyfft+1 + ψyww
y
t+1

ft+1 = ρfft + σfw
f
t+1

where w′
t+1 =

((
wy
t+1

)′
, wf

t+1

)
∼ N (0, Ik) is a k × 1 vector of normally distributed iid shocks. We

can rewrite these equations, expressing the joint process xt
.
= (y′t, ft)

′ as follows:

(
yt+1

ft+1

)
=

(
ψy ψyfρf

0 ρf

)(
yt

ft

)
+

(
ψyw ψyfσf

0 σf

)(
wy
t+1

wf
t+1

)
. (1)

This process generates a filtered probability space (Ω, {Ft}∞t=0 , P ) where P is the objective, data-

generating probability measure. Households’ expectations are represented by a subjective proba-

bility measure P̃ that can differ from P . We describe the construction of P̃ next.

Let ζt be a subset of observable variables yt for which survey data is available. We define the

τ -period belief wedge ∆
(τ)
t as the difference between the τ -period forecasts under the beliefs of the

households and under objective expectations:

∆
(τ)
t

.
= Ẽtζt+τ − Etζt+τ

where Ẽtζt+τ is the time-t expectation of ζt+τ under the subjective probability measure of the

households. In addition we define the τ -period average belief wedge ∆
(τ)
t as the average difference
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in forecasts under the beliefs of the households and under objective expectations:

∆
(τ)
t

.
=

1

τ

τ∑

s=1

∆
(s)
t

We impose that the dynamics of belief wedges ∆
(τ)
t and ∆

(τ)
t can be summarized using the

scalar factor

θt = (Fy, Ff )

(
yt

ft

)
. (2)

Individual one-period forecasts of the innovation means under the households’ expectations are

then represented by a vector of factor loadings H:

Ẽt [wt+1] = Hθt. (3)

Applying the law of iterated expectations, belief wedges for the τ -period forecasts can be written

as

∆
(τ)
t = G(τ)

x xt +G
(τ)
0

where the coefficients G
(τ)
x and G

(τ)
0 are derived in Appendix A.

While we specified a flexible VAR specification for the dynamics of observable variables, we

imposed tight restrictions on the households’ expectations. The model (2)–(3) implies a one-factor

structure of belief wedges where θt captures the common comovement in these wedges. In this

latent factor model, we interpret θt as the time-varying measure of pessimism among the households

reflected in the survey data that impacts the dynamics of macroeconomic variables. In Section 4,

this one-factor structure together with particular restrictions on H and F = (Fy, Ff ) is derived

from the decision problem of the household endowed with robust preferences, where θt reflects the

time-variation in households’ ambiguity concerns.

3.1 Data and estimation

Data on macroeconomic variables are obtained from the Federal Reserve Bank of St. Louis database

(FRED), at quarterly frequency. The vector yt includes real GDP growth, the unemployment rate,

inflation, and the Federal Funds rate. We include three belief wedges from Figure 1 in the vector

∆
(4)
t , constructed as 4-quarter ahead average belief wedges between the Michigan Survey and SPF

forecasts for GDP growth, the unemployment rate and inflation. Appendix C provides details on

the construction of the data, presented in Section 2. The data for yt covers the period 1960Q2–

2015Q4. The belief wedges for GDP growth, the unemployment rate and inflation cover the periods

1968Q4–2015Q4, 1977Q4–2015Q4, and 1981Q2–2015Q4 respectively.

In order to keep the estimation and interpretation of the model transparent, we restrict the

dynamics of beliefs and set Fy = 0, thereby setting θt = ft. This implies that fluctuations in

the belief wedges are driven purely by the belief factor ft, and not directly by the dynamics of
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endogenous macroeconomic variables yt. In addition, we normalize Ff = 1 and set the element of

H corresponding to the GDP growth shock to be −1 in order to identify the sign and scale of θt.
4

More specifically, we estimate the model (1) together with a vector of observation equations for

the wedges

∆
(4)
t+1 = ψ∆fft+1 + σ∆ε

∆
t+1

where σ∆ is diagonal and ε∆t+1 ∼ N (0, I) is a vector of normally distributed iid measurement errors.

yt and ∆
(4)
t are demeaned. We introduce a measurement error for every belief wedge in order to

absorb idiosyncratic noise in the survey responses, and focus on the extraction of the persistent

common factor predicted by the theoretical model. We seek estimates for the parameters

{ψy, ψyf , ψyw, ρf , σf ,H, σ∆}

and the belief factor θt = ft. Appendix A solves for ψ∆f from the above parameters.

We estimate the model using Bayesian methods. Further details, including the imposed priors

and estimated posteriors are summarized in Appendix D.

3.2 Results

A variance decomposition at the modal parameter estimate, summarized in Table 8 in Appendix D,

reveals that the factor shock explains 67.5%, 23.2%, and 9.7% of the variation in the GDP growth

wedge, unemployment wedge, and inflation wedge respectively. These results confirm the strong

correlation between the belief wedges that concern real quantities. Moreover, the posterior estimates

shown in Table 8 in Appendix D reveal a very tightly identified persistence ρf of this factor with

posterior mean of 0.8 at the quarterly frequency. The fact that a sizeable fraction of variation in the

wedges is explained by the persistent fluctuations in the factor θt provides evidence of systematic

comovement in households’ beliefs about future economic outcomes.

Figure 3 plots the impulse response functions of yt and ∆
(4)
t to a positive one standard deviation

shock wf
t to θt = ft, with the factor response plotted in the bottom right panel. An increase in

θt leads household forecasts for GDP growth to be biased further downward relative to the SPF

forecasts, while the biases in the household forecasts for unemployment and inflation increase

relative to the SPF forecasts. The impulse responses of the belief wedges are consistent with the

correlations and average signs of the wedges described in Section 2.

These results support the interpretation of θt as a time-varying measure of the level of pessimism

among households. From the perspective of the robust preference model that we develop in the

next section, households are concerned about a future path that exhibits low GDP growth, a high

unemployment rate and high inflation. An increase in θt makes these concerns stronger, biasing

households’ beliefs more strongly in this direction.

4The shock exposure matrix ψyw is only identified as the covariance matrix ψywψ
′

yw. For the purpose of estimation,
we shall impose a recursive identification scheme for ψyw. However, ψyw only appears as ψywψ

′

yw in the formulas
for the belief wedges. Therefore, given an estimate of ψywψ

′

yw, the identification of ψyw does not play a role in the

estimation of the factor shocks wf
t .
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Figure 3: Bayesian impulse response functions to the belief shock wf in the factor model. The
solid lines indicate median estimates, while the dashed line correspond to 10th and 90th percentile
error bands. GDP growth, inflation, and interest rate are annualized and in percentage deviations.
The unemployment rate is in percentage points. The GDP growth wedge and inflation wedge are
scaled to correspond to the belief wedges of annualized GDP growth and annualized inflation. The
horizontal axis is in quarters.

The belief shock wf also has real effects. In response to a positive shock to θt, GDP growth

falls and unemployment rises. The impulse response for inflation is positive for the first year and

close to zero subsequently. The interest rate declines in response to the belief shock. At the modal

parameter estimate, θt explains 13.1%, 21.0%, 4.0% and 5.3% of the movements in GDP growth,

unemployment, inflation and interest rates, respectively.

Our estimates suggest that a rise in pessimism has contractionary effects, and we emphasize

the especially large adverse response of unemployment. In Section 5, we develop and estimate a

structural macroeconomic model with a frictional labor market and ambiguity averse agents and

revisit these empirical findings. In line with the results from the factor model, the ambiguity shock

in the structural model generates nontrivial recessionary responses, with a particularly pronounced

response in the labor market.

In Appendix G, we conduct two robustness exercises. First, we reestimate the factor model

using the median household inflation forecast instead of the mean and show that the results remain

virtually unchanged. Second, we replace the SPF forecast with the model-implied rational forecast

in the construction of the belief wedges. In this case, we find quantitatively modest differences that

we interpret as supportive of our approach in the construction of the belief wedges.
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4 Robust preferences

Motivated by the empirical results from Sections 2 and 3, we now introduce a preference specifica-

tion that generates endogenous deviations of agents’ beliefs from the data-generating probability

measure. This model extends the robust preference framework of Hansen and Sargent (2001a,b)

to allow for a more flexible form of belief distortions, similar to Hansen and Sargent (2015). The

flexibility allows for time-variation in the degree of agents’ pessimism over time, which we identify

from survey data, while tightly restricting the structure of pessimistic distortions across individual

states, linking them to agents’ continuation values and equilibrium dynamics. We then develop

an approximation technique that incorporates the effects of time-varying belief distortions in a

tractable linear solution.

Agents’ preferences are represented using the continuation value recursion

Vt = min
mt+1>0

Et[mt+1]=1

u (xt) + βEt [mt+1Vt+1] +
β

θt
Et [mt+1 logmt+1] (4)

with period utility u (xt). Here, xt is an n× 1 vector of stationary economic variables that follows

the Markovian law of motion

xt+1 = ψ (xt, wt+1) , (5)

where wt+1 ∼ N (0k, Ik×k) an iid vector of normally distributed shocks under the data-generating

probability measure P .5

These preferences have been formulated by Hansen and Sargent (2001a,b) as a way of introduc-

ing concerns for model misspecification on the side of the agents. The agent treats the measure P

as an approximating or benchmark model and considers potential stochastic deviations from this

model, represented by the strictly positive, mean-one random variable mt+1. The minimization

problem in (4) captures the search for a ‘worst-case’ model that serves as a basis for the agent’s

decisions. The models that are considered by the agent are difficult to distinguish statistically from

the benchmark model, and the degree of statistical similarity is controlled by the entropy penalty

Et [mt+1 logmt+1], scaled by the penalty parameter θt. More pronounced statistical deviations that

are easier to detect are represented by random variables mt+1 with a large dispersion that yields

a large entropy. Here, recursion (4) is specified for a fixed stochastic utility flow u(xt). In Section

5, we endow the agent with a set of controls, which gives rise to a min–max specification of the

recursion.

The preferences considered by Hansen and Sargent (2001a,b) impose a constant parameter

θ > 0. As θ ց 0, the penalty for deviating from the benchmark model becomes more severe, and

the resulting preferences approach a utility-maximizing agent with rational expectations.

We are interested in a specification that permits more flexibility in the set of models that the

5For now we take the function ψ as given, but later derive it as a solution to a set of equilibrium conditions.
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agent views as plausible. In particular, we envision the time-varying model

θt = θxt. (6)

where θ is a 1× n vector of parameters. The solution of (4) satisfies

mt+1 =
exp (−θtVt+1)

Et [exp (−θtVt+1)]
(7)

and mt+1 completely characterizes the worst-case model distortions relative to the benchmark

model. The variation in θt thus implies a time-varying model for the worst-case distortion.6 The

chained sequence of random variables mt+1 specifies a strictly positive martingale M recursively as

Mt+1 = mt+1Mt with M0 = 1 that defines a probability measure P̃ with conditional expectations

Ẽt [xt+1]
.
= Et [mt+1xt+1] .

Consequently, the wedge between the one-period forecasts of xt+1 under the worst-case and bench-

mark models is given by

∆t
.
= Ẽt [xt+1]− Et [xt+1] . (8)

Notice that the distortion (7) implies a large value of mt+1 for low realizations of the continuation

value Vt+1. The worst-case model, represented by the probability measure P̃ , thus overweighs

adverse states as ranked by the preferences of the agent. In this way, the preference model implies

tightly restricted endogenous pessimism on the side of the agents, generated by concerns for model

misspecification. The degree of pessimism is controlled by the evolution of θt.

4.1 A linear approximation

A wide range of dynamic stochastic general equilibrium models with robust agents can be cast as

a solution to a system of expectational difference equations:

0 = Et [g̃ (xt+1, xt, xt−1, wt+1, wt)] (9)

where g̃ is an n×1 vector function. This vector of equations includes Euler equations of the robust

household, which can be represented using worst-case belief distortions mt+1 that are embedded

in g̃. We are interested in deriving a tractable approximation of the equilibrium dynamics for xt

in the form of a Markovian law of motion of the form (5) from the system of equations (9). Part

of the solution is the worst-case distortion (7) with continuation values Vt+1 consistent with the

equilibrium dynamics, and the resulting biases (8). In this section, we sketch out how to compute

approximations to equilibria of this class of problems, with detailed calculations with provided in

6Since θt is measurable with respect to the agent’s information set at time t, the preferences are dynamically
consistent. The linear specification of θt in general allows for negative values, in which case the conditional minimiza-
tion problem in (4) turns into a maximization problem of an ‘ambiguity-loving’ agent, and the distortion (7) implies
optimistic biases in survey responses.
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Appendix B.

Our approximation is constructed using a perturbation technique in the spirit of Sims (2002)

and Schmitt-Grohé and Uribe (2004). Intuitively, the method builds a small-noise expansion around

agents’ worst-case model, in order to deliver time-varying effects of ambiguity concerns in a linear

approximation of the solution. The challenge stems from the endogeneity of the worst-case model

that agents use as a basis for their decisions. The feedback between agents’ worst-case model and

the equilibrium law of motion requires jointly solving for the continuation value recursion (4), the

probability measure P̃ , and the law of motion (5).

Assuming that the function ψ (x,w) is sufficiently smooth, we combine the series expansion

method of Holmes (1995) and Lombardo (2010) with an extension of the worst-case model approxi-

mation used in Borovička and Hansen (2013, 2014). The method, outlined in detail in Appendix B,

approximates the dynamics in the neighborhood of the deterministic steady state x̄ that is given

by the solution to x̄ = ψ (x̄, 0). The dynamics of the state vector xt can be approximated as

xt ≈ x̄+ qx1t

where q is a perturbation parameter. The law of motion for the ‘first-derivative’ process x1t that

represents the local dynamics in the neighborhood of the steady state can be derived from the

linear approximation of (5):

x1t+1 = ψq + ψxx1t + ψwwt+1 (10)

where ψq, ψx and ψw are conforming coefficient matrices. Similarly, we can construct a linear

approximation of the continuation value (4) where the deviation of the continuation value from its

steady state satisfies

V1t = Vxx1t + Vq. (11)

We show in Appendix B how to construct the solution (10)–(11) from a set of equilibrium conditions

(9), and how the solution depends on the dynamics of θt. Further, we show that under the agent’s

worst-case model P̃ , the innovations wt+1 are distributed as

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′ , Ik×k

)
.

Instead of facing a vector of zero-mean shocks wt+1, the agent perceives these shocks as having a

time-varying drift. The time-variation is determined by a linear approximation to θt from equation

(6), given by θ (x̄+ x1t). The relative magnitudes of the distortions of individual shocks are given

by the sensitivity of the continuation value to the dynamics of the state vector, Vx, and the loadings

of the state vector on individual shocks, ψw. The agent perceives larger distortions during periods

when θt is large, and distorts relatively more the shocks which impact the continuation value more

strongly.
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Consequently, the dynamics of the model (10) under the agents’ worst-case beliefs satisfy

x1t+1 =
[
ψq − ψwψ

′
wV

′
xθx̄
]
+
[
ψx − ψwψ

′
wV

′
xθ
]
x1t + ψww̃t+1 (12)

= ψ̃q + ψ̃xx1t + ψww̃t+1.

The worst-case model alters both the conditional mean and the persistence of economic shocks.

Moreover, variables that tend to move ambiguity and the continuation value in opposite directions

tend to exhibit a higher persistence under the worst-case model.7

4.2 Worst-case model and survey responses

In Section 3, we estimated a one-factor model of biases embedded in survey responses on household

expectations of future economic variables. The preference framework introduced in this section

derives these biases using the endogenous worst-case probability distribution P̃ . Assuming that

surveyed households provide answers regarding economic forecasts using P̃ we can connect the

empirical observations on survey responses to the theoretical predictions on decisions under robust

preferences.

Using the survey data and the rational forecasts from the linearized model (10), we identify the

belief wedges (8) as

∆
(1)
t = ψwẼt [wt+1] = −θ (x̄+ x1t)

(
ψwψ

′
w

)
V ′
x. (13)

The one-factor structure in survey answers is driven by the time-variation in θ (x̄+ x1t), with the

constant vector of loadings − (ψwψ
′
w)V

′
x. This is the key restriction that the robust preference

model imposes on the joint dynamics of the survey answers.

Observe that this specification of belief wedges is a restricted case of the reduced-form model

(1)–(3). In the notation from Appendix A, we have

F = θ, H = −
(
ψwψ

′
w

)
V ′
x, H = −θx̄

(
ψwψ

′
w

)
V ′
x.

The terms θ, ψw, Vx are functions of structural parameters in the model. Belief wedges for longer-

horizon forecasts are then computed using formulas from Appendix A.

4.3 Dealing with non-stationarities

For the purpose of applying the expansion method, we assumed that the state vector xt is stationary.

Our framework can, however, deal with deterministic or stochastic trends featured in macroeco-

nomic models. Specifically, let us assume that there exists a vector-valued stochastic process zt

such that the dynamics of xt can be written as

xt = x̂t + zt (14)

zt+1 − zt = φ (x̂t, wt+1)

7This statement is precisely correct in the scalar case, when ψ2
xVxθ < 0.
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where x̂t is a stationary vector Markov process that replaces dynamics (5):

x̂t+1 = ψ (x̂t, wt+1) .

The process zt thus has stationary increments and xt and zt are cointegrated, element by element.

A typical example of an element in zt is a productivity process with a permanent component. Once

we solve for the stationary dynamics of x̂t, we can obtain the dynamics of xt in a straightforward

way using (14).

In order to compute the non-stationary version of the continuation value recursion and the

appropriate worst-case distortions, consider as an example

u (xt) = logCt = log
[
Ĉt exp (zt)

]
= log Ĉt + zt, (15)

where Ct is agent’s consumption process and Ĉt = Ĉ (x̂t) is its stationary rescaling. We show in

Appendix B.6 that in this case, the continuation value can be written as

Vt = V̂ (x̂t) +
1

1− β
zt (16)

and the worst-case model distortion is given by

mt+1 =
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)−1 φ (x̂t, wt+1)

))

Et

[
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)−1 φ (x̂t, wt+1)

))] .

This type of belief distortion has stationary increments mt+1 and can be dealt with by applying

the first-order series expansion to the functions V̂ (x̂t+1) and φ (x̂t, wt+1) as above. Consequently,

the worst-case distribution of the shock vector is given by

wt+1 ∼ N

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)−1 φw

)′
, Ik×k

)
.

The distortions thus inherit the contribution of the increment (1− β)−1 φw of the non-stationary

process zt to the dynamics of the continuation value. The worst-case dynamics (12) and the belief

wedges (13) are modified accordingly. Specifically, we can compute the multiperiod belief wedges

∆
(τ)
t using the recursive calculations outlined in Appendix A, imposing

F = θ

H = −ψw

(
Vxψw + (1− β)−1 φw

)′

H = −
(
θx̄
)
ψw

(
Vxψw + (1− β)−1 φw

)′
.
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5 A structural business cycle model

In this section we introduce the robust preference framework from Section 4 into a dynamic stochas-

tic general equilibrium model of the macroeconomy. We use this model to shed light on the ob-

servations in Section 3, especially the role of ambiguity shocks in explaining large fluctuations in

labor market outcomes.

We implement and estimate a version of the New-Keynesian framework with a frictional labor

market introduced in Ravenna and Walsh (2008) and Christiano et al. (2015). In the frictional

labor market with search and matching, incentives of workers and firms to search for jobs and post

job vacancies are directly linked to their forecasts about the present value of a potential match.

Ambiguity shocks impact this present value by overweighting the probability of states with low

continuation values for the households, which are correlated with low values of the worker-firm

matches. Moreover, the search and matching environment and nominal rigidities provide a well-

defined notion of unemployment and inflation which directly map to the survey questions.

5.1 Model

The model economy is populated by a representative household endowed with robust preferences,

competitive producers of a homogeneous final good, and a two-tier structure of monopolistic pro-

ducers of intermediate goods who hire workers in a frictional labor market. Here, we focus on key

components of the model relevant for the analysis of the role of ambiguity shocks — households’

preferences, contracting in the labor market, and specification of exogenous sources of variation in

the model — deferring additional details to Appendix E.8

5.1.1 Representative household

The preferences of the representative household are given by the recursion

Vt = min
mt+1>0

Et[mt+1]=1

max
Ct,It,Bt+1

u (xt) + βEt [mt+1Vt+1] +
β

θt
Et [mt+1 logmt+1] (17)

with time preference coefficient β and period utility over aggregate consumption Ct,

u (xt) = log (Ct − bCt−1)

where b determines the degree of habit formation. In line with our factor model specification from

Section 3, we assume that the stochastic process for the robust concerns is given by θt = θxt
.
= ft

where ft follows an AR(1) process

ft+1 = (1− ρf ) f + ρfft + σfw
f
t+1. (18)

8A concise set of model equations can be found in the online technical appendix to Christiano et al. (2015).
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The worst-case belief of the household is

mt+1 =
exp (−θtVt+1)

Et [exp (−θtVt+1)]
. (19)

The magnitude of the belief distortion is determined by fluctuations in θt specified exogenously

in (18). However, the equilibrium dynamics in the model endogenously determines which states

yield low continuation values Vt+1 and are therefore evaluated as adverse by the household. These

states are then perceived as more likely under the worst-case model. Naturally, the dynamics of the

worst-case belief then endogenously depends on other sources of shocks introduced into the model,

which we describe in Section 5.1.4.

The household faces the budget constraint

PtCt + PI,tIt +Bt+1 ≤
(
RK,tu

K
t − au

(
uKt
)
PI,t

)
Kt + (1− lt)PtDt + ξtlt +Rt−1Bt − Tt.

Pt is the price of consumption goods and PI,t is the price of investment goods. Bt+1 denotes the

one-period risk-free bonds purchased in period t with return Rt, It is the quantity of investment

goods and Tt lump sum taxes net of profits. Household’s capital stock Kt earns rental rate RK,t,

is utilized at rate uKt subject to capital utilization cost au
(
uKt
)
, and follows the law of motion

Kt+1 = (1− δK)Kt +

(
1− aI

(
It
It−1

))
It

where aI (·) is an adjustment cost that is increasing and convex.

5.1.2 Labor market

The household consists of a unit mass of workers who perfectly share consumption risk. Fraction lt

is employed and earns a wage ξt. Fraction 1− lt is unemployed and collect unemployment benefits

Dt financed through lump sum taxes. At the end of period t, employed workers separate with

probability 1 − ρ and join the pool of unemployed who search for jobs at the beginning of period

t+ 1. The total number of searchers at the beginning of period t+ 1 therefore is 1− ρlt and these

searchers face a job finding probability jt+1. The law of motion for the mass of employed workers

thus is

lt+1 = ρlt + (1− ρlt) jt+1 = (ρ+ ηt+1) lt

where

ηt+1 =
jt+1 (1− ρlt)

lt

is the hiring rate. The value of an employed worker is

Wt = ξt + Ẽt

[
St+1

St
((ρ+ (1− ρ) jt+1)Wt+1 + (1− ρ) (1− jt+1)Ut+1)

]
(20)
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where St+1/St is the period t stochastic discount factor, ξt is the period t wage, and Ut+1 is the

value of being unemployed next period, given by the recursion

Ut = Dt + Ẽt

[
St+1

St
(jt+1Wt+1 + (1− jt+1)Ut+1)

]
.

Denote by ϑt the real marginal revenue in period t from hiring an additional worker. The value of

the worker to a firm is given by the revenue generated in the match net of the wages paid,

Jt = ϑt − ξt + ρẼt

[
St+1

St
Jt+1

]
. (21)

Free entry of firms implies that in equilibrium,

Qt (Jt − κt) = st

where Qt is the probability of filling a vacancy, κt is the fixed cost of hiring a worker, and st is the

cost of posting a vacancy.

The important insight in this frictional labor market is that expectations operators in recur-

sions (20)–(21) inherit the probability measure P̃ , indicating that both workers and firms evaluate

the distribution of future values of Wt, Ut and Jt under the worst-case beliefs of the household.

Ambiguity shocks then directly affect the incentives of firms to hire through their effect on the

valuation of the match surplus.

This is a striking difference relative to the Walrasian spot market where workers are hired only

using one-period employment contracts. In such an environment, ambiguity concerns are absent

from the labor market decisions, since there is no uncertainty about economic conditions prevailing

in the given period.

What remains to be determined is the split of the surplus from a match between the firm’s

surplus, Jt , and the worker’s surplus,Wt−Ut. As in Hall and Milgrom (2008) and Christiano et al.

(2015), we adopt the alternating offer bargaining protocol of Rubinstein (1982) and Binmore et al.

(1986). The outcome of this bargaining mechanism is the surplus splitting rule

Jt = β1 (Wt − Ut)− β2γt + β3 (ϑt −Dt)

with parameters βi, i = 1, 2, 3 that depend on the parameters of the bargaining problem and are

described in detail in Appendix E. Notice that when β2 = β3 = 0, we obtain the Nash bargaining

solution with worker’s share (1 + β1)
−1. Relative to the Nash bargaining solution, the alternative

offer bargaining makes the firm’s surplus more procyclical, leading to smoother wages and more

procyclical hiring patterns over the business cycle.
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5.1.3 Production and market clearing

The frictional labor market is embedded in a New-Keynesian framework with Calvo (1983) price

setting. A homogeneous final good Yt with price Pt is produced in a competitive market using the

production technology

Yt =

[∫ 1

0
(Yi,t)

1

λ di

]λ
, λ > 1.

where Yi,t are specialized inputs with prices Pi,t. Final good producers solve the static competitive

problem

max
Yi,t

PtYt −
∫ 1

0
Pi,tYi,tdi,

leading to the first-order conditions

Yi,t =

(
Pt

Pi,t

) λ
λ−1

Yt, i ∈ [0, 1] .

Specialized inputs are produced by monopolist retailers indexed by i, using the production tech-

nology

Yi,t = kαi,t (Athi,t)
1−α − φt,

where ki,t is the quantity of capital purchased, hi,t is the quantity of intermediate goods, At is the

neutral technology level, and φt is a fixed cost of production. The retailer purchases intermediate

goods at price P h
t from a wholesaler in a competitive market and must finance the purchase by

borrowing P h
t hi,t at the nominal interest rate Rt. The loan is repaid at the end of period t after

the retailer receives its sales revenues. Finally, the retailer is subject to the sticky price friction,

implying that every period he is allowed to reset the price with probability 1− χ.

Intermediate goods are produced by wholesalers using a technology that turns one unit of labor

into one unit of intermediate good. This implies the market clearing condition

∫ 1

0
hi,tdi = ht = lt.

Market clearing for services of capital requires

∫ 1

0
ki,tdi = uKt Kt.

The model is closed with an aggregate resource constraint

Ct +
(
It + au

(
uKt
)
kt
)
/Ψt + (st/Qt + κt) ηtlt−1 +Gt = Yt

whereGt denotes government consumption and Ψt = Pt/PI,t denotes the relative price of investment

and reflects investment-specific technological progress.
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5.1.4 Shock structure and monetary policy

We complete the model by specifying the sources of exogenous variation to the model. The monetary

authority follows the interest rate policy rule

log
(
Rt/R

)
= ρR ln

(
Rt−1/R

)
+ (1− ρR) [rπ log (πt/π) + ry log (Yt/Y∗

t )] + σRw
R
t

where wR
t is a monetary policy shock and

Yt = Ct + It/Ψt +Gt

denotes real GDP. Y∗
t is the value of Yt along the non-stochastic steady state growth path, scaled

by the current level of productivity.

Finally, we prescribe the dynamics of technology shocks. The neutral technology process At

exhibits iid growth

log (At/At−1)
.
= log (µA,t) = σAw

A
t

while the investment-specific technological process Ψt has a mean-reverting growth rate

log (Ψt/Ψt−1)
.
= log (µΨ,t) = ρΨ log (µΨ,t−1) + σΨw

Ψ
t .

The final source of exogenous variation is the ambiguity shock process (18). We assume that all

innovations are independent under the data-generating measure P :

(
wR
t , w

A
t , w

Ψ
t , w

f
t

)′ iid∼ N (0, I) .

As we have seen in Section 4, this property does not carry over to the worst-case model where the

distribution of future realizations of the shocks depends on the current level of ambiguity concern θt.

Lastly, to ensure a balanced growth path in the non-stochastic steady state, the parameters

{φt, st, κt, γt, Gt,Dt} need to grow at the growth rate of the economy. The details of these adjust-

ments are in Appendix E.2.

5.2 Model solution and estimation

The equilibrium of the structural model sketched out in the previous section fits in the general

framework that we developed in Section 4. We use the expansion methods from Section 4.1 to

compute a linear approximation to the solution for the equilibrium dynamics. This facilitates the

implementation of standard Bayesian estimation methods for the estimation of the parameters and

latent processes in the structural model. Our goal is to quantify the role of ambiguity shocks in

the joint dynamics of output, unemployment, inflation and interest rates as well as the households’

belief wedges associated with these variables. Compared to the analysis in Section 3, the impact of

these shocks on the economy is restricted through the structure of the model, and we use survey

data as an additional source of information to aid identification.
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The crucial force driving the role of ambiguity concerns in the model is the interaction of

ambiguity shocks with other sources of exogenous variation under the households’ worst-case model.

Therefore, in order to make the estimation tractable and transparent, we calibrate a subset of

parameters to the posterior estimates from Christiano et al. (2015) listed in the bottom part of

Table 1, and focus our estimation on the parameter vector

{ρR, rπ, ry, σR, σA, ρΨ, σΨ, ρf , σf , σ∆,π, σ∆,u, σ∆,dY} ,

which consists of parameters associated with the monetary policy rule and the underlying shock

processes. The last three parameters are the standard deviations on the measurement errors. Our

priors for the monetary policy rule coefficients and stochastic processes for technology and monetary

policy shocks in line with those in Christiano et al. (2015).

As in Section 3, we use data on GDP growth, the unemployment rate, Federal Funds rate, infla-

tion rate, the GDP growth wedge, unemployment wedge and inflation wedge with iid measurement

errors on the three wedges. The first part of Table 1 summarizes the results of our estimation.9

6 Understanding the role of ambiguity shocks

Table 2 provides the variance decomposition for key macroeconomic variables and the belief wedges.

Despite the noise in the survey answers, the estimated model picks up a meaningful amount of

common variation from the survey answers (up to 22%), and has a substantial impact on key

macroeconomic variables. In this section, we analyze in detail the mechanism through which

ambiguity shocks propagate into the economy. In Appendix G we provide additional discussion

and conduct a set of robustness checks with alternative belief wedge specifications that corroborate

our quantitative results.

6.1 Belief wedges and the worst-case model

Figure 4 depicts the impulse responses for the ambiguity shock wf
t . A one-standard deviation

increase in ambiguity leads to a fall of about 2% in output growth on impact, and to almost

a 1 percentage point increase in the unemployment rate that peaks after about four quarters.

Inflation increases in the moment of the impact of the shock as well. These responses are larger

than those estimated using the factor model from Section 3 and depicted in Figure 3 but they

tell the same qualitative story — an increase in ambiguity is contractionary. The bottom row

of Figure 4 shows that households become pessimistic about GDP growth, expecting even lower

growth than the one predicted using the impulse response from the top left panel. Households also

overpredict inflation and unemployment. All shifts in beliefs are again consistent with the factor

model findings from Section 3.

9The details of the data construction are in Appendix C. We estimate the model using a Metropolis–Hastings
algorithm. We take five chains with different initial draws and make 20,000 draws in each chain. The first 10,000
draws of each chain are dropped.
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Prior Posterior
Parameter D(Mean,Std) Mean(90% HPD)

Monetary policy rule

ρR Smoothing B(0.7, 0.1) 0.79 (0.77, 0.81)
rπ Inflation G(1.5, 0.1) 1.67 (1.59, 1.77)
ry Output G(0.06, 0.01) 0.03 (0.02, 0.03)

Shock processes

ρf AR(1) ambiguity B(0.5, 0.1) 0.87 (0.85,0.89)
σf Std. dev. ambiguity shock G(0.1, 0.1) 0.02 (0.01,0.02)
100σA Std. dev. neutral tech. shock G(0.1, 1.0) 0.86 (0.81,0.91)
ρΨ AR(1) invest. tech. B(0.5, 0.1) 0.29 (0.25,0.33)
100σΨ Std. dev. invest. tech. shock G(0.1, 1.0) 2.88 (2.56,3.18)
100σR Std. dev. monetary policy shock G(0.2, 1.0) 0.24 (0.22,0.26)

Measurement errors

100σ∆,dY GDP growth wedge IG(0.8, 0.4) 0.40 (0.36,0.43)
100σ∆,u Unemployment wedge IG(0.4, 0.2) 0.17 (0.15,0.19)
100σ∆,π Inflation wedge IG(0.6, 0.3) 0.29 (0.26,0.32)

Calibrated parameters

β Discount factor 0.9968 -
100δk Physical capital depreciation rate 2.5 -
χ Calvo price stickiness 0.75 -
λ Price markup 1.42 -
ρ Job survival probability 0.9 -
M Max. bargaining rounds per quarter 60 -
σ Matching function elasticity 0.55 -
100δ Probability of bargaining breakup 0.19 -
400µ̄ Output growth per capita 1.7 -
D Replacement ratio 0.37 -
100ηh Hiring costs 0.46 -
100ηs Vacancy costs 0.03 -
400µ̄Ψ Investment per capital growth rate 1.2 -
400π̄ Inflation rate 2.5 -
g Government consumption to output 0.2 -
b Consumption habit 0.8 -
α Capital share 0.26 -

Table 1: Structural model estimated and calibrated parameters. The priors B(µ, σ), G(µ, σ), and
IG(µ, σ) denote Beta, Gamma and Inverse-Gamma distributions with mean µ and standard devi-
ation σ.
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Variable wA wΨ wR wf
meas.
error

log (Yt/Yt−1) GDP growth 38.4 36.1 0.8 24.8 -
ut Unemployment 41.1 45.0 0.4 13.6 -
πt Inflation 53.2 44.1 0.1 2.6 -
Rt Nominal interest 46.7 46.0 5.5 1.9 -
ct − log Φt Consumption 58.0 6.0 0.3 35.7 -
it − log (ΦtΨt) Investment 70.2 21.7 0.3 7.8 -
ηt Hiring rate 38.2 38.9 1.1 21.8 -
Vt − log Φt Continuation value 67.3 6.9 0.2 25.6 -

∆
(4)
t (dY) GDP growth wedge - - - 16.4 83.6

∆
(4)
t (u) Unemployment wedge - - - 6.3 93.7

∆
(4)
t (π) Inflation wedge - - - 22.0 78.0

Table 2: Structural model variance decomposition at the posterior modes. All values are in percent.
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Figure 4: Bayesian impulse response functions to the ambiguity shock wf in the structural model.
The responses of GDP growth, inflation rate and interest rate are reported in annualized percent,
and unemployment rate is in percentage points. The solid lines indicate median estimates, while
the dashed line correspond to the 10th and 90th percentile error bands. Horizontal axis in quarters.

The structural model allows us to explain the economic mechanism underlying the role of

the ambiguity shock. This shock affects households’ concerns about model misspecification and

therefore alters their worst-case model P̃ . In order to understand the impact of the ambiguity

shock, it is therefore useful to distinguish between the impulse responses under the data-generating

process P and under the worst-case model P̃ . The former impulse responses are those observed by

the rational econometrician, while the latter are perceived by the household in the model.

Figure 5 compares both responses to the ambiguity shock wf
t . After an increase in ambiguity,
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Figure 5: Impulse response functions to the ambiguity shock wf in the structural model under
the data-generating measure P (black dashed line) and the worst-case model P̃ (red solid line).
Impulse response functions evaluated at the mode of the posterior distribution. Horizontal axis in
quarters.

the households’ worst-case model becomes more pessimistically biased. In line with expression (12),

the worst-case impulse responses are more persistent — households expect the adverse effects of an

ambiguity increase on the economy to persist longer.

The bottom row of Figure 5 depicts the impulse responses for the individual exogenous shocks

in the model. The dashed line in the bottom right panel depicts the response of the belief process

θt = ft to the innovation wf
t under the data-generating measure P . The household indeed expects

that under the worst case model (red solid line) the ambiguity increase will be more persistent.

Since the individual exogenous shocks are uncorrelated, there is no response of the technology

processes or the monetary policy shock to the innovation wf
t — the dashed lines in the corre-

sponding panels are flat. The story under the worst-case model is very different and critical to the

understanding of the endogenous response of the macroeconomy to the ambiguity shock. Under

the worst-case model, the household believes that the shocks are correlated in an adverse way. An

increase in ambiguity worsens households’ expectations about the future path of the neutral and

investment-specific technology, and leads households to expect a monetary tightening.

This particular correlation structure arises because these three innovations to the exogenous

processes all affect the continuation value Vt. In times with low neutral and investment-specific

productivity growth, and times in which the economy is hit by an exogenous monetary tightening

through the shock wR
t are bad times, with a low continuation value Vt. Moreover, the continuation

value recursion (17) indicates that these bad times must be generated by low levels of current

and future consumption under the households’ worst-case model. The first panel Figure 6 indeed
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confirms this intuition — the household that faces an increase in ambiguity forecasts a large and

very persistent drop in consumption.

The second panel in Figure 6 shows that the increase in ambiguity is also accompanied by an

increase in expected investment activity under the data-generating measure P , reflecting intertem-

poral consumption smoothing. However, the households’ worst-case expectations are much more

pessimistic, and this strong effect arises from the large distortion of the investment specific produc-

tivity shock. Under our estimated parameterization (see Table 1), the investment specific shock is

volatile, which allows for large pessimistic distortions that are hard to distinguish statistically and

therefore not penalized heavily by the entropy penalty in (17). At the same time, the shock has

a large impact on the productivity of the investment technology and future capital accumulation,

which in turn strongly affects future output and consumption paths. Combining these two effects

leads to the strong adverse response of investment and capital under the worst-case model.

The effect on the inflation rate comes from a balance of two forces. Lower contemporaneous

aggregate demand pushes the intermediate goods producers that change prices to set them to lower

levels. At the same time, expectations of lower productivity imply higher marginal costs and this

pushes current and future prices upwards. At our current estimates, the net effect of an increase in

ambiguity is a higher equilibrium inflation rate in the year after the impact of the ambiguity shock.

At the same time, the response of the inflation wedge is positive, implying that the worst-case

model is biased toward an even higher inflation rate in the future.
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6.2 Labor market dynamics

These pessimistic expectations interact in crucial ways through the frictional labor market whose

dynamics is captured by impulse responses in Figure 6. With search and matching rigidities,

hiring and bargaining decisions are based on the value of the discounted future surplus generated

by a match. Both firms and workers inherit the representative household’s beliefs to make future

forecasts when they compute their respective continuation values. Lower expected productivity and

higher expected interest rates lower the value of the match from the perspective of the worst-case

beliefs shared by the worker-firm pair. This lowers equilibrium hiring rates, and lower employment

also implies lower output. Equilibrium wages also fall, reflecting the decline in the surplus that is

particularly large and persistent under the worst-case model. All these effects are captured by the

remaining responses in Figure 6.

This channel induced by fluctuations in household’s ambiguity concerns is a potent source of

fluctuations in the labor market. The variance decomposition in Table 2 reveals that ambiguity

shocks drive a substantial portion of the overall variation in labor market variables, for instance

more than 20% of the variation in the hiring rate.

Our results also provide a structural explanation for the discount rate shocks in Hall (2015)

and their role in the labor market dynamics. When ambiguity concerns increase, agents evaluate

more pessimistically those cash flows that positively correlate with households’ continuation values.

Since the match surplus is procyclical, it is effectively discounted at a higher rate. Contrary to

Hall (2015), the discounting arises endogenously through the optimization problem of the robust

household, and the time-variation is empirically linked to the observable survey data.

6.3 The role of permanent shocks

In the model description, we emphasized the unit root specification of the technology processes

as a source of large and volatile belief wedges. An innovation to a persistent technology process

affects productivity for a long period of time, and therefore leads to a large movement in today’s

continuation value Vt. As a consequence, the belief distortion mt+1 in (19) is sufficiently volatile,

generating a large wedge between the data-generating process and the worst-case belief whose

magnitude is controlled by fluctuations in the belief shock θt. This persistence effect is exacerbated

when represented under the worst-case belief.

We also estimated a version of the model with stationary technology shocks. In that version, the

magnitude of the belief distortions pushed the estimation of the dynamics of the belief shock into

the non-stationary region under the worst-case model. Stationary fluctuations in the model were

not sufficient to generate a sufficiently large distance between the data-generating and worst-case

model.

The importance of persistent shocks is analogous to the role of ‘long-run risk’ shocks under

recursive preferences of the Epstein and Zin (1989) type. Under these preferences, the stochastic

discount factor is directly exposed to fluctuations in the continuation value Vt, generating aversion to

persistence for parameterizations where risk aversion is larger than the inverse of the intertemporal
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Figure 7: A comparison of the extracted ambiguity factor with the negative of the Michigan Survey
measure of contemporaneous Index of Consumer Sentiment. The solid blue line is the smoothed
factor from the structural model, the purple dash-dotted line the smoothed factor from the VAR
specification. All data series are standardized.

elasticity of substitution. The crucial difference lies in the fact that an agent endowed with recursive

preferences understands aversion to uncertainty as a risk adjustment, not a belief distortion that is

reflected in the survey responses.

6.4 Time-series variation

While the ambiguity factor ft is treated as unobservable to the econometrician in both the factor

and structural model, we can extract the filtered path for ft and compare it to observable statistics

to see whether fluctuations in ambiguity concerns are reflected in other time series. In Figure 7 we

plot the extracted series for the ambiguity factor obtained from the factor model and the structural

model, along with the negative of the Index of Consumer Sentiment reported by the Michigan

Survey.10

All three series are highly correlated and increase during recessions, attesting to a consistent

narrative of how ambiguity fluctuations interact with business cycle dynamics. Particularly notable

is the large increase in the extracted factor during the 2007–2009 recession and a subsequent slow

decline. Through the lens of the model, pessimistic expectations connected to a prolonged period

of increased ambiguity played a role in the slow recovery following the recession.

6.5 Mean distortions and detection error probabilities

So far we focused on the role of ambiguity shocks in business cycle fluctuations. The model also

implies restrictions on the relative magnitude of the mean biases in the survey responses. We set

the mean level of ambiguity concerns E [θt] = θ · f to minimize the distance between the mean

10In Figure 12 in Appendix G, we also plot the time paths for the ambiguity factor and implied belief wedges
estimated using alternative belief wedge specifications that confirm the cyclical nature of the ambiguity factor and
associated belief wedges, providing additional robustness checks to our quantitative results.
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mean wedges forecast
data model error std.

GDP growth −1.73 −1.76 1.88
Unemployment 0.55 0.35 0.46
Inflation 1.01 1.19 1.24

Table 3: Mean belief wedges ∆
(4)
t in the data and implied by the structural model for the 4-quarter

ahead forecasts of inflation, unemployment and GDP growth, compared to the standard deviation
of the forecast errors in the factor model. The mean level of ambiguity concerns E [θt] = θ · f is
found by minimizing the sum of squared percentage deviations in the mean belief wedges in the
model and in the data. Normalizing θ = 1, we find f = 0.1076.

belief wedges implied by the model and measured in household survey responses. The results are

summarized in Table 3. The relative magnitude of the model-implied mean belief wedges concerning

inflation, unemployment and GDP growth forecasts (1.19%, 0.55% and −1.76%, respectively) is

quite close to that in the data (1.01%, 0.55% and −1.73%, respectively). This is remarkable because

we estimated the model using fluctuations in the deviation of the belief wedges from their long-run

averages, without utilizing information on the mean wedges in any way.

Anderson et al. (2003) and Hansen and Sargent (2011) advocate a different way of calibrating

the level of ambiguity concerns that is based on the statistical distinguishability of the benchmark

and worst-case model. They consider the likelihood ratio

lT = logLT
W − logLT

B

where LT
W and LT

B are the likelihoods of a data sample of length T under the worst-case (W) and

benchmark (B) models, respectively. The probability of a classification error committed using the

likelihood ratio statistic for a data sample drawn from the benchmark model is

pTB = P
(
lT > 0 | B

)
,

and, vice versa,

pTW = P
(
lT < 0 | W

)
.

The detection error probability is then defined as

pT =
1

2

(
pTB + pTW

)
.

The (constant) penalty parameter θ from equation (4) that captures the level of ambiguity concerns

is then fine-tuned to achieve a desired level of detection error for a data sample of a given length.

We pinned down the level of ambiguity concerns E [θt] using the mean biases in household

survey forecasts. In Figure 8, we plot the implied detection error probabilities as a function of the

length of the data sample. Details of the calculations are provided in Appendix F.
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Figure 8: Detection error probabilities in the structural model as a function of data sample length.
Probabilities constructed by simulating 100,000 samples from the benchmark and worst-case model,
respectively, and constructing sample versions of classification errors pTB and pTW , and the detection
error probability pT .

The calculation reveals that the implied detection error probabilities are relatively low — it

takes about 5 years of data to tell the benchmark and worst-case model apart at a 5% error

probability, and about 9 years to achieve a 1% detection error. Viewed through the lens of the

structural model, the pessimistic biases embedded in the household survey answers are quite strong,

implying that households require a very high level of confidence to discard a model as implausible.

Table 3 shows that the mean belief wedges for the 4-quarter ahead forecasts are comparable to one

standard deviation of the forecast error computed using the factor model.

Detection error calibrations in the existing literature are typically substantially more conser-

vative than our findings. For instance, Barillas et al. (2009) or Bidder and Smith (2012) choose

detection error probabilities in the range of 1% − 5% for data samples spanning about 50 years

to fit the magnitude of the equity premium. Although these detection error probabilities seem

to be low, our direct evidence from household surveys suggests that these calibrations may still

be too conservative when dealing with macroeconomic applications and households from typical

populations.

7 Conclusion

We develop a framework in which time-variation in ambiguity perceived by households generates

fluctuations in aggregate dynamics of the macroeconomy. The framework is based on an extension

of the robust preference model that introduces shocks to agents’ concerns about model misspec-

ification. We identify these ambiguity shocks using survey data from the University of Michigan

Surveys of Consumers and the Survey of Professional Forecasters. We show that in the data and in

an estimated business cycle model, the ambiguity shocks are a potent source of variation in labor
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market variables.

The developed solution techniques are applicable to an extensive class of models that feature

agents with robust preferences. The linear approximation that captures time-variation in ambigu-

ity concerns is easy to implement and estimate, which immensely facilitates quantitative work in

dynamic equilibrium models with robust agents.

In the paper, we consider ambiguity shocks generated by an exogenous source and identified

through fluctuations in biases of households’ survey responses. However, our framework also allows

for fluctuations in ambiguity concerns caused by movements in endogenous variables in the model

— for instance, ambiguity could increase in response to an increase in aggregate unemployment. We

leave the structural modeling and empirical identification of such mechanisms for future research.

The structural interpretation of ambiguity shocks identified in our framework opens new direc-

tions for policy analysis under ambiguity, extending the work of Hansen and Sargent (2012), Adam

and Woodford (2012), Karantounias (2013), Orlik and Presno (2013), or Kwon and Miao (2013).

In parallel work, we study the implications of this framework for optimal monetary policy. A mon-

etary authority facing households endowed with robust preferences infers that policy changes lead

to endogenous changes in the worst-case model. The choice of optimal policy therefore involves

explicit management of households’ expectations by the monetary authority. Reciprocally, belief

wedges in survey responses are structurally tied to the dynamics of equilibrium allocations in the

model, and serve the useful purpose of providing the monetary authority with information about

the decision-making process of private agents.
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Appendix

A Distorted beliefs in the one-factor model

Let (Ω, {Ft}∞t=0 , P ) be the probability space generated by the innovations of model (1). The subjective

probability measure P̃ is formally defined by specifying a strictly positive martingale M with one-period

increment

mt+1 =
Mt+1

Mt

= exp

(
−1

2
|νt|2 + ν′twt+1

)
.

We then have Ẽt [wt+1] = νt. Using the notation xt = (y′t, ft)
′, the factor structure (2)–(3) of households’

expectations is obtained by imposing the restriction

νt = H +HFxt

where F = (Fy, Ff ) in an 1× n vector and H , H are k × 1 vectors.

Let ζt = Zxt be the vector of variables for which we have observable data on households’ expectations

where Z is a selection matrix. Here, we derive results for more general dynamics that is in line with the

non-stationary model from Section 4. Specifically, we assume that

ζt = Zxt = Zx̂t + zt

x̂t+1 = ψq + ψxx̂t + ψwwt+1

zt+1 − zt = φq + φxx̂t + φqwt+1.

The process zt introduces an additional component of the dynamics that has stationary growth rates. The

factor model framework from Section 3 is obtained by setting the matrices H, ψq, ψx, ψw and φq to zero, in

which case

xt+1 = ψxxt + ψwwt+1

is a concise form for (1).

We are interested in τ -period ahead belief wedges

∆
(τ)
t = Ẽt [ζt+τ ]− Et [ζt+τ ] .

Guess that

Et [ζt+τ − ζt] = G(τ)
x x̂t +G

(τ)
0

Ẽt [ζt+τ − ζt] = G̃(τ)
x x̂t + G̃

(τ)
0

where G
(τ)
x , G

(τ)
0 , G̃

(τ)
x and G̃

(τ)
0 are conformable matrix coefficients with initial conditions

G
(τ)
0 = G̃

(τ)
0 = 0n×1 G(τ)

x = G̃
(τ)
0 = 0n×n.
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We can then establish a recursive formula for the expectations under the data-generating measure

G(τ)
x x̂t +G

(τ)
0 = Et [ζt+τ − ζt] = (22)

= Et

[
Z (xt+1 − xt) +G(τ−1)

x x̂t+1 +G
(τ−1)
0

]

= G
(τ−1)
0 + φq +

(
Z +G(τ−1)

x

)
ψq +

[(
Z +G(τ−1)

x

)
ψx + (φx − Z)

]
x̂t

+
((
Z +G(τ−1)

x

)
ψw + φw

)
Et [wt+1] .

Since Et [wt+1] = 0, we obtain

G(τ)
x =

(
Z +G(τ−1)

x

)
ψx + (φx − Z)

G
(τ)
0 = G

(τ−1)
0 + φq +

(
Z +G(τ−1)

x

)
ψq.

Under the subjective measure, the derivation is unchanged, except the last line in (22) that now involves the

subjective expectation Ẽt [wt+1] = H +HFx̂t. Then

G̃(τ)
x =

(
Z + G̃(τ−1)

x

)
ψx + (φx − Z) +

((
Z + G̃(τ−1)

x

)
ψw + φw

)
HF

G̃
(τ)
0 = G̃

(τ−1)
0 + φq +

(
Z + G̃(τ−1)

x

)
ψq +

((
Z + G̃(τ−1)

x

)
ψw + φw

)
H

Consequently

∆
(τ)
t =

(
G̃(τ)

x −G(τ)
x

)
x̂t + G̃

(τ)
0 −G

(τ)
0 .

In the case considered in Section 3 when H , φq, φx, φw and φq are all zero, we get explicit expressions

G(τ)
x = Z (ψx)

τ

G
(τ)
0 = Z

τ−1∑

i=0

(ψx)
i
ψq = Z (I − ψx)

−1
(I − (ψx)

τ
)ψq

G̃(τ)
x = Z (ψx + ψwHF )

τ

G̃
(τ)
0 = Z

τ−1∑

i=0

(ψx + ψwHF )
i
ψq = Z (I − (ψx + ψwHF ))

−1
(I − (ψx + ψwHF )

τ
)ψq.

B Series expansion of the worst-case model

The linear approximation in this paper is an extension of the series expansion method used in Holmes

(1995) or Lombardo (2010). Borovička and Hansen (2013, 2014) adapt the series expansion method to an

approximation of models with robust preferences that feature a constant penalty. Here, we further extend

this methodology to derive a linear approximation that allows for endogenously determined time-varying

belief distortions. The critical step in the expansion lies in the joint perturbation of the shock vector wt and

the penalty process θt.

B.1 Law of motion

We start with the approximation of the model for the law of motion (5) with a sufficiently smooth policy rule

ψ. We consider a class of models indexed by the scalar perturbation parameter q that scales the volatility
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of the shock vector wt

xt (q) = ψ (xt−1 (q) , qwt, q) (23)

and assume that there exists a series expansion of xt around q = 0:

xt (q) ≈ x̄+ qx1t +
q
2

2
x2t + . . . .

The processes xjt, j = 0, 1, . . . can be viewed as derivatives of xt with respect to the perturbation parameter,

and their laws of motion can be inferred by differentiating (23) j times and evaluating the derivatives at

q = 0, assuming that ψ is sufficiently smooth. Here, we focus only on the approximation up to the first

order:

x̄ = ψ (x̄, 0, 0) (24)

x1t = ψxx1t−1 + ψwwt + ψq.

We begin with a case where the equilibrium dynamics of xt is stationary. Extensions to non-stationary

environments are considered in Appendix B.6.

B.2 Continuation values

We now focus on the expansion of the continuation value recursion. Substituting the worst-case belief

distortion (7) into the recursion (4) yields

Vt = u (xt)−
β

θt
logEt [exp (−θtVt+1)] . (25)

We are looking for an expansion of the continuation value

Vt (q) ≈ V̄ + qV1t. (26)

In order to derive the solution of the continuation value, we are interested in expanding the following

perturbation of the recursion:

Vt (q) = u (xt (q) , q)− β
q

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)

q
Vt+1 (q)

)]
. (27)

Here, we utilized the fact that θt = θxt ≈ θ (x̄+ x1t). More importantly, the perturbation scales jointly

the volatility of the stochastic processes for Vt and u (xt) with the magnitude of the penalty parameter θt.

In particular, the penalty parameter in the perturbation of equation (4) becomes q/θt and decreases jointly

with the volatility of the shock process. This assumption will imply that the benchmark and worst-case

models do not converge as q → 0, and the linear approximation around a deterministic steady state yields

a nontrivial contribution of the worst-case dynamics.

Using the expansion of the period utility function

u (xt (q) , q) ≈ ū+ qu1t = ū+ q (uxx1t + uq)
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we get the deterministic steady state (zero-th order) term by setting q = 0:

V̄ = (1− β)
−1
ū.

The first-order term in the expansion is derived by differentiating (27) with respect to q and is given by the

recursion

V1t = u1t − β
1

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)V1t+1

)]
(28)

Since x̄ is constant and x1t has linear dynamics (24), we hope to find linear dynamics for V1t as well. Since

ut = u (xt), we can make the guess that V i
t (q) = V i (xt (q) , q) which leads to the following expressions for

the derivative of Vt:

V1t = Vxx1t + Vq.

Using this guess and comparing coefficients, equation (28) leads to a pair of algebraic equations for the

unknown coefficients Vx and Vq:

Vx = ux −
β

2
Vxψwψ

′
wV

′
xθ + βVxψx

Vq = uq −
β

2
θx̄Vxψwψ

′
wV

′
x + βVxψq + βVq

The first from this pair of equations is a Riccati equation for Vx, which can be solved for given coefficients

ψx and ψw.

B.3 Distortions

With the approximation of the continuation value at hand, we can derive the expansion of the one-period

belief distortion mt+1 that defines the worst-case model relative to the benchmark model. As in (27), we

scale the penalty parameter θt jointly with the volatility of the underlying shocks:

mt+1 (q) =
exp

(
− 1

q
θtVt+1 (q)

)

Et

[
exp

(
− 1

q
θtVt+1 (q)

)] ≈ m0,t+1 + qm1,t+1.

It turns out that in order to derive the correct first-order expansion, we are required to consider a second-order

expansion of the continuation value

Vt (q) ≈ V̄ + qV1t +
q

2
V2t,

although the term V2t will be inconsequential for subsequent analysis. Substituting in expression (26) and

noting that V̄ is a deterministic term, we can approximate mt+1 with

mt+1 (q) ≈
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q

2V2t+1

))

Et

[
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q

2V2t+1

))]

Differentiating with respect to q and evaluating at q = 0, we obtain the expansion
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m0t+1 =
exp

(
−θ (x̄+ x1t)V1t+1

)

Et

[
exp

(
−θ (x̄+ x1t)V1t+1

)] (29)

m1t+1 = − 1

2θ (x̄+ x1t)
M0t+1 [V2t+1 − Et [M0t+1V2t+1]]

This expansion is distinctly different from the standard polynomial expansion familiar from the perturbation

literature. First, observe that m0t+1 is not constant, as one would expect for a zeroth-order term, but

nonlinear in V1t+1. However, since Et [m0t+1] = 1 we can thus treat M0t+1 as a change of measure that will

adjust the distribution of shocks that are correlated with m0t+1. We will show that with Gaussian shocks,

we can still preserve tractability. Further notice that Et [m1t+1] = 0.

The linear structure of V1t also has an important implication for the worst-case distortion constructed

from m0t+1. Substituting into (29) yields

m0t+1 =
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)

Et

[
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)] .

This implies that for a function f (wt+1) with a shock vector wt+1 ∼ N (0, I),

Ẽt [f (wt+1)] = Et [mt+1f (wt+1)] ≈ Et [m0t+1f (wt+1)] .

The distortion generating the P̃ (worst-case) measure is therefore approximated by the ‘zero-th’ order term

m0t+1, and the vector wt+1 has the following distribution:

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′
, Ik
)
. (30)

The mean of the shock is therefore time-varying and depends on the linear process x1t.

B.4 Equilibrium conditions

We assume that equilibrium conditions in our framework can be written as

0 = Et [g̃ (xt+1, xt, xt−1, wt+1, wt)] (31)

where g̃ is an n × 1 vector function and the dynamics for xt is implied by (5). This vector of equations

includes expectational equations like Euler equations of the robust household, which can be represented

using worst-case belief distortions mt+1. We therefore assume that we can write the j-th component of g̃ as

g̃j (xt+1, xt, xt−1, wt+1, wt) = m
σj

t+1g
j (xt+1, xt, xt−1, wt+1, wt) .

where σj ∈ {0, 1} captures whether the expectation in the j-th equation is under the household’s worst-case

model.11 In particular, all nonexpectational equations and all equations not involving agents’ preferences

have σj = 0. System (31) can then be written as

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)]

11The generalization to multiple agents with potentially heterogeneous concerns for robustness is straightforward,
see the construction in Borovička and Hansen (2013).
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where Mt+1 = diag
{
mσ1

t+1, . . . ,m
σn

t+1

}
is a diagonal matrix of the belief distortions, and g is independent of

the robustness parameter θt. As in Borovička and Hansen (2013), the zero-th and first-order expansions are

0 = Et [M0t+1g0t+1] = g0t+1

0 = Et [M0t+1g1t+1] + Et [M1t+1g0t+1] = Et [M0t+1g1t+1]

where the last equality follows from Et [m1t+1] = 0.

For the first-order derivative of the equilibrium conditions, we have

0 = Et [M0t+1g1t+1] (32)

The first-order term in the expansion of gt+1 is given by

g1t+1 = gx+x1t+1 + gxx1t + gx−x1t−1 + gw+wt+1 + gwwt + gq = (33)

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq + (gx+ψw + gw+)wt+1

where symbols x+, x, x−, w+, w, q represent partial derivatives with respect to xt+1, xt, xt−1, wt+1, wt and q,

respectively. Given the worst-case distribution of the shock vector (30), we can write

Ẽt [wt+1] = − (Vxψw)
′
θ [(x̄+ ψq) + ψxx1t−1 + ψwwt]

Let [A]
i
denote the i-th row of matrix A. Notice that

[gx+ψw + gw+]
i
(Vxψw)

′
θ

is a 1× n vector. Construct the n× n matrix E by stacking these row vectors for all equations i = 1, . . . , n:

E = stack
{
σi [gx+ψw + gw+]

i
(Vxψw)

′
θ
}

which contains non-zero rows for expectational equations under the worst-case model. Using matrix E, we

construct the conditional expectation of the last term in g1t+1 in (33). In particular

0 = Et [M0t+1g1t+1] =

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq − E [(x̄+ ψq) + ψxx1t−1 + ψwwt]

Equation (32) is thus a system of linear second-order stochastic difference equations. There are well-

known results that discuss the conditions under which there exists a unique stable equilibrium path to this

system (Blanchard and Kahn (1980), Sims (2002)). We assume that such conditions are satisfied. Comparing

coefficients on x1t−1, wt and the constant term implies that

0 = (gx+ψx + gx − E)ψx + gx− (34)

0 = (gx+ψx + gx − E)ψw + gw (35)

0 = (gx+ψx + gx+ + gx)ψq + gq − E (x̄+ ψq) (36)
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These equations need to be solved for ψx, ψw, ψq and Vx where

Vx = ux − β

2
Vxψwψ

′
wV

′
xθ + βVxψx

and

E = stack
{
σi [gx+ψw + gw+]

i (Vxψw)
′ θ
}
. (37)

B.5 Special case: θt is an exogenous AR(1) process

In the application, we consider a special case that restricts θt to be an exogenous AR(1) process. With a

slight abuse in notation, this restriction can be implemented by replacing the vector of variables xt with

(x′t, ft)
′
where ft is a scalar AR(1) process representing the time-variation in the concerns for robustness as

an exogenously specified ‘belief’ shock:

ft+1 = (1− ρf ) f̄ + ρfft + σfw
f
t+1. (38)

The dynamics of the model then satisfies

xt = ψ (xt−1, wt, ft) (39)

with steady state
(
x̄′, f̄

)′
. The vector θ in (6) is then partitioned as θ

′
=
(
θ
′

x, θf

)
= (01×n−1, 1) and thus

θt = ft. Constructing the first-order series expansion of (39), we obtain

(
x1t+1

f1t+1

)
=

(
ψq

0

)
+

(
ψx ρfψxf

0 ρf

)(
x1t

f1t

)
+

(
ψw σfψxf

0 σf

)(
wt+1

wf
t+1

)

where wt+1 and wf
t+1 are uncorrelated innovations. The matrices ψx and ψw thus do not involve any direct

impact of the dynamics of the belief shock f1t and the matrix ψxf captures how the dynamics of f1t influences

the dynamics of endogenous state variables.

Let us further assume that the system (31) represents the equilibrium restrictions of the model except

equation (38). In this case, the function g does not directly depend on f . Repeating the expansion of the

equilibrium conditions from Section B.4 and comparing coefficients on xt−1, ft−1, wt and the constant term

yields the set of conditions for matrices ψx, ψw, ψxf and ψq:

0 = (gx+ψx + gx)ψx + gx− (40)

0 = (gx+ρfψxf − E) + (gx+ψx + gx)ψxf (41)

0 = (gx+ψx + gx)ψw + gw (42)

0 = (gx+ψx + gx+ + gx)ψq + gq − Ef̄ (43)

with

Vx = ux + βVxψx (44)

Vf = uf − βθ

2

(
V 2
f σ

2
f + 2Vxψxfσ

2
fVf + Vx

(
σ2
fψxfψ

′
xf + ψwψ

′
w

)
V ′
x

)
(45)

+β (Vfρf + Vxψxfρf )

E = stack
{
σi
[
gx+ψxfσ

2
f (Vf + Vxψxf ) + (gx+ψw + gw+)ψ

′
wV

′
x

]i}
θ. (46)
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This set of equations is the counterpart of equations (34)–(37) and can be solved sequentially. First, notice

that equations (40) and (42) can be solved for ψx and ψw, and these coefficients are not impacted by the

dynamics of ft. But the equilibrium dynamics of xt is affected by movements in ft through the coefficient

ψxf . The coefficient ρfψxf introduces an additional component in the time-varying drift of xt, while σfψxf

is an additional source of volatility arising from the shocks to household’s concerns for robustness.

We solve this set of equations by backward induction. First, we use (34), (37) and (44) to find the

no-ambiguity solution for ψx, ψw, Vx. Then we postulate that (39) is in fact a time-dependent law of motion

xt = ψt (xt−1, wt, ft)

with terminal condition at a distant date T

xT = ψT (xT−1, wT , 0) .

This corresponds to assuming that starting from date T , ambiguity is absent in the model. Plugging this

guess to the set of equilibrium conditions, we obtain the set of algebraic equations

0 =
(
gx+ψ

t+1
xf ρf − E

t+1
)
+ (gx+ψx + gx)ψ

t
xf (47)

V t
f = uf − βθ

2

((
V t+1
f σf

)2
+ 2Vxψ

t+1
xf σ2

fV
t+1
f + Vx

(
σ2
fψ

t+1
xf

(
ψt+1
xf

)′
+ ψwψ

′
w

)
V ′
x

)
(48)

+βρf

(
V t+1
f + Vxψ

t+1
xf

)

E
t+1 =

[
gx+ψ

t+1
xf

(
V t+1
f + Vxψ

t+1
xf

)
σ2
f + (gx+ψw + gw+)ψ

′
wV

′
x

]
θ. (49)

Equation (47) can then be solved for

ψt
xf = (gx+ψx + gx)

−1
(
E
t+1 − gx+ψ

t+1
xf ρf

)
(50)

Iterating backwards on equations (48)–(50) backward until convergence yields the stationary solution of the

economy with ambiguity as a long-horizon limit of an economy where ambiguity vanishes at a distant T .

The system converges as long as its dynamics are stationary under the worst-case model. Once we find the

limit limt→−∞ E
t = E, we can also determine

ψq = (gx+ψx + gx+ + gx)
−1 (

Ef̄ − gq
)
.

B.6 Nonstationary models

Consider the nonstationary dynamics introduced in Section 4.3. When the period utility function is given by

(15), i.e., u (xt) = û (x̂t) + zt, then using the guess for the continuation value (16), we can rewrite equation

(25) as

V̂ (x̂t) = û (x̂t)−
β

θt
logEt

[
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)

−1
φ (x̂t, wt+1)

))]

with û (x̂t) = log Ĉ (xt). The first-order expansion of φ yields

z̄t+1 − z̄t = φ (x̄, 0)

z1t+1 − z1t = φq + φxx̂1t + φwwt+1
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where x̄ is the steady state of x̂t. We can now proceed as in the stationary case except using the expansion

of functions û and V̂ . We have

V̄ = (1− β)
−1
[
ū+ β (1− β)

−1
φ (x̄, 0)

]

and

V̂1t = Vxx̂1t + Vq

with

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

θ

Vq = uq + β
[
Vq + Vxψq + (1− β)

−1
φq

]
− β

2
θx̄
∣∣∣Vxψw + (1− β)

−1
φw

∣∣∣
2

.

The zero-th order distortion is consequently given by

m0t+1 =
exp

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
φw

)
wt+1

)

Et

[
exp

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
φw

)
wt+1

)]

so that under the worst-case model,

wt+1 ∼ N

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
φw

)′
, Ik

)
. (51)

Equation (12) then becomes

x̂1t+1 = ψq − θx̄ψw

(
Vxψw + (1− β)

−1
φw

)′

+

[
ψx − ψw

(
Vxψw + (1− β)

−1
φw

)′
θ

]
x̂1t + ψww̃t+1

= ψ̃q + ψ̃xx1t + ψww̃t+1.

We are still solving the set of equations (34)–(36) but now with Vx and E given by

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

θ

E = stack

{
σi [gx+ψw + gw+]

i
(
Vxψw + (1− β)−1 φw

)′
θ

}
.

In the special case described in Section B.5, the belief shock ft is modeled as an exogenous AR(1) process.

The first-order dynamics of the stochastic growth rate can be expressed as

z1t+1 − z1t = φq + φxx̂1t + φxff1t + φwwt+1 + φwfw
f
t+1.

The only modifications appearing in the model solution are those related to the continuation value recursion

40



and the shock distortion in E. Specifically,

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]

Vf = uf + β
(
ρfVf + ρfVxψxf + (1− β)

−1
φxf

)

−βθ
2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

− βθ

2

∣∣∣Vxψxfσf + Vfσf + (1− β)
−1
φwf

∣∣∣
2

E = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)

−1
φw

)′]i
}
θ

+stack

{
σi
[
gx+ψxfσf

(
Vfσf + Vxψxfσf + (1− β)

−1
φwf

)]i}
θ

In the recursive form, Vf and E can be solved by iterating on the pair of equations

V t
f = uf + β

(
ρfV

t+1
f + ρfVxψ

t+1
xf + (1− β)

−1
φxf

)

−βθ
2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

− βθ

2

∣∣∣Vxψt+1
xf σf + V t+1

f σf + (1− β)
−1
φwf

∣∣∣
2

E
t+1 = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)

−1
φw

)′]i
}
θ

+stack

{
σi
[
gx+ψ

t+1
xf σf

(
V t+1
f σf + Vxψ

t+1
xf σf + (1− β)−1 φwf

)]i}
θ.

together with equation (50) which remained unchanged.

C Data

Macroeconomic data is collected from the Federal Reserve Bank of St. Louis database (FRED).12 Data for

the Survey of Professional Forecasters are collected from the Federal Reserve Bank of Philadelphia website.13

The data on households’ expectations are obtained from the University of Michigan Survey of Consumers.14

See Table 4 for details.

For the inflation rate, we record the cross-sectional mean, median and quartile answers. The survey

question on unemployment rate only records up/same/down responses. We use the method from Carlson

and Parkin (1975) and Mankiw et al. (2003) to fit a time series of normal distributions to these qualitative

responses. Let qut , q
s
t and qdt be the fractions of survey answers up, same, down, respectively, recorded at

time t. We assume that these categories are constructed from a continuous cross-sectional distribution of

responses with normal density N
(
µt, σ

2
t

)
. In particular, there exists a response threshold a such that an

answer on the interval [−a, a] is recorded as ‘same’. This implies

qdt = Φ

(−a− µt

σt

)
qut = 1− Φ

(
a− µt

σt

)

and thus

− a− µt = σtΦ
−1
(
qdt
)

a− µt = σtΦ
−1 (1− qut )

12https://research.stlouisfed.org/fred2/
13https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
14http://www.sca.isr.umich.edu/ See also Thomas (1999) for details on the survey methodology.
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Macroeconomic variables (FRED)
πt Consumer price index for all urban consumers: All items, seasonally adjusted

(CPIAUCSL). Quarterly logarithmic growth rate, last month to last month of quarter.
ut Civilian unemployment rate, quarterly, seasonally adjusted (UNRATE).
log (Yt/Yt−1) Real gross domestic product, quarterly, seasonally adjusted annual rate (GDPC96).

Quarterly logarithmic growth rate.
it Effective Federal Funds Rate (FEDFUNDS). Quarterly averages.

Households’ expectations (Michigan Survey)

Ẽt

[∑4
j=1 πt+j

]
Expected change in prices during the next year (Table 32, variable PX1), mean response
and quartiles of the cross-sectional distribution of individual answers. As response for
quarter t, we use the survey round from the first month of quarter t + 1. Questions:
“During the next 12 months, do you think that prices in general will go up, or go down,

or stay where they are now?” and “By about what percent do you expect prices to go

up, on the average, during the next 12 months?”

Ẽt[ut+4] Expected unemployment rate during next year (Table 30, variable UMEX), construc-
tion of mean response detailed in the main text. As response for quarter t, we use the
survey round from the first month of quarter t+ 1. Question: “How about people out

of work during the coming 12 months – do you think there will be more unemployment

than now, about the same, or less?”

Ẽt[log (Yt+4/Yt)] Index of current conditions (Table 5, variable ICC) and index of consumer expectations
(Table 5, variable ICE) used as a proxy for the GDP growth forecast. Construction
described in the main text. As response for quarter t, we use the survey round from
the first month of quarter t+ 1.

Survey of Professional Forecasters

Et

[∑4
j=1 πt+j

]
Forecasted CPI inflation rate, seasonally adjusted (CPI). Forecast at time t is con-
structed as the mean survey forecast made in second month of quarter t + 1, for CPI
inflation rate between quarters t and t+ 4.

Et[ut+4] Forecasted unemployment rate, seasonally adjusted (UNEMP). Forecast at time t is
constructed as the mean survey forecast made in second month of quarter t+1, for the
average unemployment rate in quarter t+ 4.

Et[log (Yt+4/Yt)] Forecasted GDP growth rate, logarithmic annual growth rate (RGDP). Forecast at
time t is constructed as the mean survey forecast made in second month of quarter
t+ 1, for the logarithmic growth rate in quarterly GDP between quarters t and t+ 4.

Table 4: Data definitions for the macroeconomic and survey variables.
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and therefore

σt =
2a

Φ−1 (1− qut )− Φ−1
(
qdt
)

µt = a− σtΦ
−1 (1− qut )

The constant a is then determined so that the time-series average of the cross-sectional dispersions σt divided

by the observed average cross-sectional dispersion for the SPF forecast corresponds to the analogous ratio

for the inflation responses, for which we have dispersion data readily available.

To construct a proxy for the GDP growth survey response, we regress the realized 4-quarter GDP growth

log (Yt/Yt−4) on the index of current conditions ICCt (see Table 4)

log (Yt/Yt−4) = β0 + β1ICCt + εt.

We then use the estimated regression coefficients to construct a proxy for the household’s subjective GDP

growth forecast using the index of consumer expectations ICEt

Ẽt [log (Yt+4/Yt)] = β̂0 + β̂1ICEt.

We construct the time series of belief wedges for the period 1982Q2–2015Q4 by taking the difference between

the household and SPF forecasts.

C.1 Details on the belief wedges

Table 5 contains time-series characteristics of the belief wedges. Table 6 shows the conditional time-series

averages of the households’ forecasts for different demographic groups.

D Estimation of the one-factor model

Recall that we estimate the model

(
yt+1

ft+1

)
=

(
ψy ψyfρf

0 ρf

)(
yt

ft

)
+

(
ψyw ψyfσf

0 σf

)(
wy

t+1

wf
t+1

)

∆
(4)

t+1 = ψ∆fft+1 + σ∆ε
∆
t+1

We estimate the model using a Metropolis–Hastings algorithm. We take five chains with different initial

draws and make 20,000 draws in each chain. The first 10,000 draws of each chain are dropped.

The priors and posterior parameter estimates are reported in Table 7. The Inverse-Gamma priors on

the standard deviations shrink the estimates away from zero in order to prevent overfitting. The priors for

the measurement error standard deviations have means that are scaled by the standard deviations of the

wedges. The variance decomposition at the estimated mode of the parameters is reported in Table 8.
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Figure 9: One-year GDP growth forecasts from the Survey of Professional Forecasters and Michigan Survey,

and the realized GDP growth (shifted one year ahead). The Michigan Survey forecast is constructed using

a projection on the Index of Consumer Expectations, see text in the appendix for details. NBER recessions

shaded.

correlation matrix

mean std ∆
(4)
t (π) ∆

(4)
t (u) ∆

(4)
t (dY) log (Yt/Yt−4) log

(
Yt/Ȳt

)

Inflation wedge ∆
(4)
t (π) 1.01 0.79 1.00 0.04 −0.32 −0.26 −0.31

Unemployment wedge ∆
(4)
t (u) 0.55 0.39 1.00 −0.63 −0.46 −0.34

GDP growth wedge ∆
(4)
t (dY) −1.73 1.18 1.00 0.41 0.68

GDP growth log (Yt/Yt−4) 2.66 2.02 1.00 0.60
Output gap log

(
Yt/Ȳt

)
−1.87 2.30 1.00

Table 5: Time-series and business cycle statistics for the belief wedges. All values are in percent, time

period 1981Q2–2015Q4.

actual SPF all 18-34 35-44 45-54 55-64 65+ W NC NE S
π 2.82 3.01 4.05 4.14 4.07 4.02 3.86 3.96 3.98 4.00 4.00 4.18
u 6.34 6.34 6.88 6.74 6.90 6.97 6.98 6.88 6.86 6.87 6.93 6.86

male female bottom 2nd Q 3rd Q top HS SC COL GS
π 3.47 4.56 4.99 4.28 3.77 3.27 4.58 3.98 3.57 3.46
u 6.79 6.95 7.03 6.90 6.85 6.73 6.97 6.88 6.77 6.79

Table 6: Demographic characteristics of households’ expectations on inflation and unemployment rate.

Time-series averages, all values are annualized and in percent, time period 1981Q2–2015Q4. Actual : actual

average inflation and unemployment rate; SPF : average SPF forecast; all : average household forecast; 18-34

etc: age groups; W : West region; NC : North-Central; NE : North-East; S : South; bottom, 2nd Q, 3rd Q, top:

income quartiles; HS : high-school education; SC : some college; COL: college degree; GS : graduate studies.
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Prior Posterior
Parameter D (Mean,Std) Mean (90% HPD)

VAR coefficients
ψy,ii B (0.7, 0.2)
ψy,ij , i 6= j N (0, 2)
100ψw,ii IG (1, 0.5)
ψw,ij/ψw,jj, i 6= j N (0, 2)
ψyf,dY N (0, 1) −0.39 (−0.61,−0.16)
ψyf,u N (0, 1) 0.10 (0.01, 0.19)
ψyf,π N (0, 1) 0.08 (−0.00, 0.16)
ψyf,R N (0, 1) −0.06 (−0.12, 0.00)

Factor coefficients
ρf B (0.5, 0.1) 0.80 (0.73, 0.88)
100σf IG (0.5, 0.2) 0.47 (0.28, 0.63)
Hu N (0, 1) 0.51 (0.09, 0.88)
Hπ N (0, 1) 0.56 (0.20, 0.92)
HR N (0, 1) 0.14 (−1.62, 1.94)
Hf N (0, 1) −0.72 (−1.18,−0.26)

Measurement errors
100σ∆,dY GDP growth wedge IG (0.6, 0.3) 0.16 (0.14, 0.17)
100σ∆,u Unemployment wedge IG (0.8, 0.4) 0.33 (0.30, 0.37)
100σ∆,π Inflation wedge IG (0.4, 0.2) 0.19 (0.17, 0.21)

Table 7: Factor model prior and posterior estimates. The priors IG (µ, σ) and B (µ, σ) denote Inverse-
Gamma and Beta distributions with mean µ and standard deviation σ.

Variable wdY wu wπ wR wf
meas.
error

log (Yt/Yt−1) GDP growth 56.0 27.2 1.8 2.0 13.1 -
ut Unemployment 5.4 31.0 18.3 24.3 21.0 -
πt Inflation 3.3 17.2 70.0 5.5 4.0 -
Rt Nominal interest 4.4 19.3 36.3 34.7 5.3 -

∆
(4)

t (dY) GDP growth wedge - - - - 67.5 32.5

∆
(4)

t (u) Unemployment wedge - - - - 23.2 76.8

∆
(4)

t (π) Inflation wedge - - - - 9.7 90.3

Table 8: Factor model variance decomposition at the posterior modes. All values are in percent.
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E Details on the New-Keynesian model

E.1 Alternating offer bargaining

As in Hall and Milgrom (2008) and Christiano et al. (2015), we assume that wages are determined by the

alternating offer bargaining protocol of Rubinstein (1982) and Binmore et al. (1986).

At the start of period t, lt matches are determined. Each worker then engages in bilateral bargaining

with a wholesaler firm over the current wage rate ξt that is conditional on all other period t matches as well

as beliefs about future wage bargains.

The bargaining takes place across τ subperiods within the period, where τ is even. Conditional on all

previous offers having been rejected, the firm makes a wage offer every odd subperiod, while the worker

makes a wage offer every even subperiod. The recipient can accept or reject an offer. If the recipient rejects

an offer, she can end negotiations or plan to make a counteroffer in the next subperiod. In the latter case,

the bargaining breaks down with probability δ. We assume that when indifferent between accepting and

rejecting an offer, an agent accepts it.

Christiano et al. (2015) show that the solution to the bargaining problem yields the condition

Jt = β1 (Wt − Ut)− β2γt + β3 (ϑt −Dt)

where βi = αi+1/αi, with αi defined as follows:

α1 = 1− δ + (1− δ)
τ

α2 = 1− (1− δ)
τ

α3 = α2
1− δ

δ
− α1

α4 =
1− δ

2− δ

α2

τ
+ 1− α2.

E.2 Growth rate and functional forms

The model has two sources of growth — neutral and investment-specific technological progress. For a

balanced growth path in the nonstochastic steady state, we require that the elements {φt, st, κt, γt, Gt, Dt}
grow in the long run at the same rate

Φt = Ψ
α

1−α

t At

which corresponds to the stochastic aggregate growth rate of the economy. We thus set

(φt, st, κt, γt, Gt, Dt)
′
= (φ, s, κ, γ,G,D)

′
Ωt

where Ωt is defined as

Ωt = Φ0.05
t−1Ω

0.95
t−1 .

The capacity utilization cost is set to

au
(
uKt
)
=

0.11

2
ϕ
(
uKt
)2

+ 0.89ϕuKt + ϕ

(
0.11

2
− 1

)
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where ϕ is chosen so that the steady state value of uKt is one. Finally, investment adjustment costs are given

by

aI

(
It
It−1

)
=

1

2

[
exp

(√
15.7

(
It
It−1

− µ× µΨ

))
+ exp

(
−
√
15.7

(
It
It−1

− µ× µΨ

))]
− 1

where µ and µΨ denote the unconditional growth rates of Φt and Ψt respectively. The functional forms and

parameter values for Ωt, au and aI are taken from Christiano et al. (2015).

F Detection error probabilities

Let {xt}Tt=1 be a sample of data simulated from the linear approximation of the benchmark model (10). The

log-likelihood of the data under the benchmark model is, up to an additive constant15

logLT
B = −1

2

T−1∑

t=0

(xt+1 − ψq − ψxxt)
′
(ψwψ

′
w)

−1
(xt+1 − ψq − ψxxt) =

= −1

2

T−1∑

t=0

w′
t+1wt+1.

Under the worst-case model (12), the data follows

logLT
W = −1

2

T−1∑

t=0

(
xt+1 − ψ̃q − ψ̃xxt

)′
(ψwψ

′
w)

−1
(
xt+1 − ψ̃q − ψ̃xxt

)

= −1

2

T−1∑

t=0

[
wt+1 + θt

(
Vxψw + (1− β)

−1
φw

)′]′ [
wt+1 + θt

(
Vxψw + (1− β)

−1
φw

)′]

= −1

2

T−1∑

t=0

w̃′
t+1w̃t+1

where the second line follows from the distribution of wt+1 under the nonstationary version of the worst-case

model (51), and θt = θ (x̄+ x̂t). Simulating N samples from the law of motion for the benchmark model,

we compute the classification error pTB as the fraction of samples for which logLT
W > logLT

B, and revert the

role of the two models to compute pTW .

G Robustness checks

In this appendix, we show the robustness of our findings for two alternative definitions of belief wedges:

(i) Median: We construct the belief wedge for the inflation forecast using the median (instead of mean)

responses in the Michigan Survey and SPF.

(ii) Model-implied: We use the forecasts from the Michigan Survey and construct the wedges relative to

the forecast implied by the model (VAR forecast for the factor model and the forecast generated by

the structural model at the modal parameters, respectively).

We re-estimate both the factor model from Section 3 and the structural model from Section 5 using these

alternative definitions. For the model-implied specification, the observation equations for wedges are replaced

15For notational simplicity, we assume that data xt is a subset of the observable variables that makes the law of
motion (10) stochastically non-singular, so that ψwψ

′

w is invertible.
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with

Ẽtζt+τ = Etζt+τ +∆
(τ)

t + σ∆
t εt

where Ẽtζt+τ are the observed data on household forecasts, Etζt+τ is the model-based forecast, ∆
(τ)

t is the

implied belief wedge, and εt are the measurement errors.

The results for the factor model are summarized in Tables 9 and 10 and the corresponding impulse

responses are in Figure 10. The estimation using median inflation forecasts yields essentially unchanged

results. The results for the estimation that computes belief wedges relative to model-implied forecasts show

qualitatively very similar responses but the relative magnitudes of the belief wedge responses are smaller for

the GDP growth and the unemployment rate. Table 10 reveals that the belief factor in the specification with

model-implied wedges is able to explain a large share of variation in the household forecasts (63%, 29% and

13%, respectively), but is significantly less successful in explaining the variation in the constructed wedges

(35%, 10% and 21%). This confirms our view that it is appropriate to construct belief wedges directly from

observable data on household and SPF forecasts, rather than relying on household forecast data relative to

model-implied forecasts.

For the structural model, the estimation results and the variance decomposition are summarized in

Tables 11 and 12. The corresponding impulse responses are in Figure 11. These results corroborate those

from the robustness checks in the factor model and we see that the results are essentially unchanged across

the different ways of defining the wedges.

In Figure 12, we plot the time-series paths for the belief wedges and the implied factor across the alter-

native measurement choices in the structural model. The model-implied wedges (dotted red) are constructed

using the smoothed shocks at the posterior modes. The last panel in Figure 12 plots the standardized time

series for the extracted factor in all the three cases. We see that the wedges are highly correlated and

the common component has very similar dynamics over the business cycle, confirming the results from the

baseline specification.
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Figure 10: Impulse response functions to the belief shock wf in the factor model. GDP growth, inflation
rate and interest rate in annualized percent, and unemployment rate in percentage points. The solid lines
use wedges defined as the difference in the mean responses of the household and professional forecasters, the
dashed lines use the wedges computed with the median household survey responses, and the dotted lines use
the wedges relative to the model-implied forecasts. Horizontal axis in quarters.

Parameter base med mod

VAR coefficients
ψyf,dY −0.39 −0.41 −0.27
ψyf,u 0.10 0.11 0.08
ψyf,π 0.08 0.08 0.05
ψyf,R −0.06 −0.05 −0.02

Factor coefficients
ρf 0.80 0.81 0.85
100σf 0.47 0.56 0.51
Hu 0.51 −0.46 0.80
Hπ 0.14 0.53 0.29
HR 0.56 0.22 1.03
Hf −0.72 −0.72 −1.68

Measurement errors
100σ∆,dY GDP growth wedge 0.16 0.16 0.12
100σ∆,u Unemployment wedge 0.33 0.33 0.38
100σ∆,π Inflation wedge 0.19 0.22 0.22

Table 9: Factor model parameters estimated using alternative measures of wedges. The column ‘base’ uses
wedges defined as the difference in the mean responses of the household and professional forecasters, the
column ‘med’ computes the wedges using the median household survey responses, and the column ‘mod’
computes the wedges relative to the model-implied forecasts.

49



Variable wdY wu wπ

base med mod base med mod base med mod
log (Yt/Yt−1) GDP growth 56.0 56.7 62.7 27.2 26.9 22.3 1.8 1.7 1.8
ut Unemployment 5.4 5.3 4.0 31.0 30.5 23.9 18.3 18.6 17.3
πt Inflation 3.3 3.1 3.5 17.2 16.7 17.7 70.0 70.8 62.9
Rt Nominal interest 4.4 4.2 6.1 19.3 18.8 27.2 36.3 36.7 18.5

∆
(4)

t (dY) GDP growth wedge - - - - - - - - -

∆
(4)

t (u) Unemp. wedge - - - - - - - - -

∆
(4)

t (π) Inflation wedge - - - - - - - - -

Ẽt log (Yt+4/Yt) GDP growth forecast - - 2.2 - - 7.7 - - 8.6

Ẽtut+4 Unemp. forecast - - 3.3 - - 17.6 - - 17.0

Ẽtπt+4 Inflation forecast - - 4.2 - - 20.4 - - 36.9

Variable wR wf meas. error
base med mod base med mod base med mod

log (Yt/Yt−1) GDP growth 2.0 1.9 1.6 13.1 12.8 11.6 - - -
ut Unemployment 24.3 24.3 29.9 21.0 21.3 25.0 - - -
πt Inflation 5.5 5.6 8.8 4.0 3.8 7.1 - - -
Rt Nominal interest 34.7 34.6 32.1 5.3 5.7 16.0 - - -

∆
(4)

t (dY) GDP growth wedge - - - 67.5 67.0 35.1 32.5 33.0 64.9

∆
(4)

t (u) Unemp. wedge - - - 23.2 24.6 10.5 76.8 75.4 89.5

∆
(4)

t (π) Inflation wedge - - - 9.7 5.8 20.7 90.3 94.2 79.3

Ẽt log (Yt+4/Yt) GDP growth forecast - - 7.8 - - 63.2 - - 10.6

Ẽtut+4 Unemp. forecast - - 29.4 - - 29.0 - - 3.6

Ẽtπt+4 Inflation forecast - - 10.6 - - 12.7 - - 15.2

Table 10: Factor model variance decomposition using estimates from alternative measures of wedges. The
column ‘base’ uses wedges defined as the difference in the mean responses of the household and professional
forecasters, the column ‘med’ computes the wedges using the median household survey responses, and the
column ‘mod’ computes the wedges relative to the model-implied forecasts.
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Figure 11: Impulse response functions to the ambiguity shock wf in the structural model. GDP growth,
inflation rate and interest rate in annualized percent, and unemployment rate in percentage points. The solid
lines use wedges defined as the difference in the mean responses of the household and professional forecasters,
the dashed lines use the wedges computed with the median household survey responses, and the dotted lines
use the wedges relative to the model-implied forecasts. Horizontal axis in quarters.

Parameter base med mod

Monetary policy rule
ρR Smoothing 0.79 0.79 0.72
rπ Inflation 1.67 1.68 1.50
ry Output 0.03 0.03 0.03

Shock processes
ρf AR(1) ambiguity 0.87 0.86 0.86
σf Std. dev. ambiguity shock 0.02 0.02 0.02
100σA Std. dev. neutral tech. shock 0.86 0.86 0.86
ρΨ AR(1) invest. tech. 0.29 0.29 0.25
100σΨ Std. dev. invest. tech. shock 2.88 2.97 2.72
100σR Std. dev. monetary policy shock 0.24 0.24 0.26

Measurement errors
100σ∆,dY GDP growth wedge 0.40 0.40 0.55
100σ∆,u Unemployment wedge 0.17 0.17 0.29
100σ∆,π Inflation wedge 0.29 0.29 0.41

Table 11: Structural model parameters estimated using alternative measures of wedges. The column ‘base’
uses wedges defined as the difference in the mean responses of the household and professional forecasters,
the column ‘med’ computes the wedges using the median household survey responses, and the column ‘mod’
computes the wedges relative to the model-implied forecasts.
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Variable wA wΨ wR

base med mod base med mod base med mod
log (Yt/Yt−1) GDP growth 38.4 37.9 43.2 36.1 37.7 31.2 0.8 0.9 0.6
ut Unemployment 41.1 40.2 46.2 45.0 47.1 39.6 0.4 0.4 0.2
πt Inflation 53.2 52.1 52.4 44.1 45.6 45.6 0.1 0.1 0.1
Rt Nominal interest 46.7 45.9 47.3 46.0 47.2 46.2 5.5 5.8 5.5
ct − logΦt Consumption 58.0 61.9 70.7 6.0 6.8 4.7 0.3 0.3 0.2
it − log (ΦtΨt) Investment 70.2 72.1 81.4 21.7 23.7 18.3 0.3 0.4 0.2
ηt Hiring rate 38.2 38.0 42.9 38.9 40.4 33.8 1.1 1.1 0.9
Vt − logΦt Continuation value 67.3 68.7 74.0 6.9 7.6 5.0 0.2 0.2 0.1

∆
(4)

t (dY) GDP growth wedge - - - - - - - - -

∆
(4)

t (u) Unemp. wedge - - - - - - - - -

∆
(4)

t (π) Inflation wedge - - - - - - - - -

Ẽt log (Yt+1/Yt) GDP growth forecast - - 28.8 - - 37.8 - - 0.2

Ẽtut+4 Unemp. forecast - - 46.3 - - 39.6 - - 0.2

Ẽtπt+4 Inflation forecast - - 57.3 - - 32.5 - - 0.1

Variable wf meas. error
base med mod base med mod

log (Yt/Yt−1) GDP growth 24.8 23.5 25.0 - - -
ut Unemployment 13.6 12.2 14.0 - - -
πt Inflation 2.6 2.1 1.9 - - -
Rt Nominal interest 1.9 1.2 1.0 - - -
ct − logΦt Consumption 35.7 31.0 24.5 - - -
it − log (ΦtΨt) Investment 7.8 3.8 0.1 - - -
ηt Hiring rate 21.8 20.6 22.4 - - -
Vt − logΦt Continuation value 25.6 23.5 20.9 - - -

∆
(4)

t (dY) GDP growth wedge 16.4 15.1 6.9 83.6 84.9 93.1

∆
(4)

t (u) Unemp. wedge 6.3 5.3 2.5 93.7 94.7 97.5

∆
(4)

t (π) Inflation wedge 22.0 19.9 9.1 78.0 80.1 90.9

Ẽt log (Yt+4/Yt) GDP growth forecast - - 11.4 - - 21.9

Ẽtut+4 Unemp. forecast - - 13.2 - - 0.7

Ẽtπt+4 Inflation forecast - - 1.6 - - 8.5

Table 12: Structural model variance decomposition using estimates from alternative measures of wedges.
The column ‘base’ uses wedges defined as the difference in the mean responses of the household and profes-
sional forecasters, the column ‘med’ computes the wedges using the median household survey responses, and
the column ‘mod’ computes the wedges relative to the model-implied forecasts.

52



1985 1990 1995 2000 2005 2010 2015
−4

−2

0

2

4
G
D
P

g
ro
w
th

w
ed
g
e baseline median model-implied

1985 1990 1995 2000 2005 2010 2015
−2

−1

0

1

2

u
n
em

p
lo
y
m
en
t
w
ed
g
e

1985 1990 1995 2000 2005 2010 2015
−4

−2

0

2

4

in
fl
a
ti
o
n
w
ed
g
e

1985 1990 1995 2000 2005 2010 2015
−3

−1.5

0

1.5

3

a
m
b
ig
u
it
y
fa
ct
o
r

Figure 12: Comparison across structural model specifications with alternative measures of belief wedges.
The first three panels are the smoothed time-series for the GDP growth wedge, unemployment wedge and
inflation wedge. All wedges are annualized and demeaned. The last panel is the smoothed time-series for
the standardized factor. In all panels, the ‘baseline’ specification uses wedges defined as the difference in
the mean responses of the household and professional forecasters, ‘median’ computes the wedges using the
median household survey responses, and ‘model-implied’ computes the wedges relative to the model-implied
forecasts.
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Bachmann, Rüdiger, Steffen Elstner, and Eric R. Sims. 2012. Uncertainty and Economic Activity:

Evidence from Business Survey Data. American Economic Journal: Macroeconomics 5 (2):217–

249.

Barillas, Francisco, Lars Peter Hansen, and Thomas J. Sargent. 2009. Doubts or Variability?

Journal of Economic Theory 144 (6):2388–2418.

Barsky, Robert B. and Eric R. Sims. 2012. Information, Animal Spirits, and the Meaning of

Innovations in Consumer Confidence. American Economic Review 102 (4):1343–1377.

Beaudry, Paul and Franck Portier. 2004. An Exploration into Pigou’s Theory of Cycles. Journal

of Monetary Economics 51 (6):1183–1216.

Bernanke, Ben S., Jean Boivin, and Piotr Eliasz. 2005. Measuring the Effects of Monetary Pol-

icy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach. The Quarterly Journal of

Economics 120 (1):387–422.

Bhandari, Anmol. 2015. Doubts, Asymmetries, and Insurance. Job market paper.

Bianchi, Francesco, Cosmin Ilut, and Martin Schneider. 2014. Uncertainty Shocks, Asset Supply

and Pricing over the Business Cycle.

Bidder, Rhys and Matthew E. Smith. 2012. Robust Animal Spirits. Journal of Monetary Economics

59 (8):738–750.

Binmore, Ken, Ariel Rubinstein, and Asher Wolinsky. 1986. The Nash Bargaining Solution in

Economic Modelling. RAND Journal of Economics 17 (2):176–188.

Blanchard, Olivier Jean and Charles M. Kahn. 1980. The Solution of Linear Difference Models

under Rational Expectations. Econometrica 48 (5):1305–1312.

54
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