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Abstract

Indian engineering school admissions, which draw more than 500,000 applications
per year, suffer from an important market failure: Through their affirmative action
program, a certain number of seats are reserved for different castes and tribes. How-
ever, when some of these seats are unfilled, they are not offered to other groups, and
the system is vastly wasteful. Moreover, since students care not only about the school
they are assigned to but also whether they are assigned through reserves or not, they
may manipulate the system both by not revealing their privilege type and by changing
their preferences over programs. In this paper, we propose a new matching model with
the ability to release vacant seats to the use of other students by respecting certain
affirmative action objectives. We design a new choice function for schools that respects
affirmative action objectives, and increases efficiency. We propose a mechanism that
is stable, strategy proof, and respects test-score improvements with respect to these
choice functions. Moreover, we show that some distributional objectives that can be
achieved by capacity-transfers cannot be achieved by slot-specific priorities.
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1 Introduction

Engineering school admissions in India function through a centralized matching market in
which students with differently privileged backgrounds, such as, different caste and tribe
membership, are treated with different admission criteria. Students have different preferences
over which admissions criteria they are admitted under. Therefore, students may prefer not
to reveal their caste and tribe information in the application process. Besides this strategic
calculation burden on students, the current system suffers from a crucial market failure which
is the main focus of this paper: The centralized assignment mechanism fails to transfer some
unfilled seats reserved for under-privileged castes and tribes to the use of remaining students.
Hence, it is vastly wasteful.

In this paper, we propose a remedy to this problem through a new matching model with
contracts and the ability to utilize vacant seats of certain types for other students1. Moreover,
our remedy removes the strategic manipulation burden, about which seat types they should
apply for at an engineering program, from students’ shoulders2. We propose a strategy proof
and stable mechanism that respects test-score improvements in this framework.

More specifically, our model addresses the real-life applications as follows: There are
schools and students to be matched. A given student may possibly match with a given
school under more than one type. Each school has a pre-specified order3 in which these
different privilege groups are to be considered. Different schools might have different orders.
Each student is a member of at least one privilege group.4 Each student has a preference
over school-privilege type pairs since students care not only about which institution they are
matched to but also about the contractual terms (or privilege type) under which they are
admitted. Each school has a target distribution5 of its slots over privilege types, but we do
not consider these target distributions as hard bounds.6 If there is less demand from at least
one privilege type, schools are given opportunity to utilize these vacant seats by transferring
them over to other privilege groups. Schools might have preferences over how to redistribute

1The idea of “reserves” is first introduced in a school choice framework by Hafalir, Yenmez and Yildirim
(2013). Capacity-transfer is first introduced by Westkamp (2013) in a matching problem with complex
constraints to study German university admissions system.

2Our remedy makes it weakly dominant strategy for each student to report their caste and tribe infor-
mation.

3We will call this order a precedence order, following the terminology of Kominers and Sönmez (2016).
4In the Indian engineering school admissions, students who do not belong to certain castes and tribes can

obtain school seats only through general category seats. General category is actually “no-privilege” category
that each student belongs to. However, for our modeling purposes we consider general category as one of
the privilege types by abusing the meaning of the word “privilege”. Hence, this is why we can say that each
student is a member of at least one privilege group.

5In India, this target distribution is dictated by law in the form of reserves.
6See Hafalir et. al (2013) and Ehlers et al. (2014).
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these unassigned slots7.
We design choice functions for schools that allows them to transfer capacities from low-

demand privilege types to high-demand privilege types. Each school respects an exogenously
given, possibly different, precedence order when it fills its slots. For each privilege type there
is an associated choice function, which we call a “sub-choice function”. Given the target
distribution of the school and the set of contracts, the first privilege type of the school fills
its slots according to its sub-choice function. Then, it moves to the second privilege type.
Sub-choice functions are linked to each other by two components. First, since we take a
pre-specified precedence order, the choice in each privilege group depends on what has been
chosen by the privilege groups that are considered earlier. Given the chosen contracts from
the first privilege type, the remaining set of contracts for the second privilege type can be
found as follows: if a student has one of her contracts chosen by the first privilege type, then
all of her contracts are removed (rejected) for the rest of the choice process. The second
component that links sub-choice functions of different privilege types is that the capacity
of a privilege type changes dynamically according to the number of unassigned slots in
the privilege types considered earlier in the choice procedure, i.e., the possible transfer of
unassigned slots from privilege groups to other privilege groups. The idea here is that the
capacity of the privilege type following the first privilege type is a function of the number
of unassigned seats in the first privilege type. The capacity of the third privilege type is a
function8 of the numbers of unassigned seats in the first and second privilege types, and so on.
In short, each sub-choice function has two inputs: the set of remaining contracts to consider,
which depends on the choices of the privilege types considered before it, and its capacity,
which changes dynamically according to the number of unassigned slots in the privilege
types considered earlier. The overall choice of an institution is the union of sub-choices by
its different privilege types.

In our main application of engineering college admissions at the Indian Institutes of
Technology (IITs) , which we describe in part 2, students are strictly ranked according to
test scores.9 Then, for each privilege type, students with that privilege type are ordered
according to their test-score ranking. Sub-choice functions for each privilege type, then, are
induced from these strict rankings. These types of choice functions are common in practice

7Currently, in many states in India, if there is less demand from the OBC category and some of the seats
that are reserved for OBC students are vacant, these seats can be utilized by general category applicants.
Transfers from the SC and ST categories even in the case of vacancies are not allowed by law.

8We require each such function to be monotonic. Monotonicity of a capacity transfer scheme is a very
mild requirement that is introduced by Westkamp (2013).

9In the cadet-branch matching problem, cadets are also ranked according to test scores, i.e., the order of
merit list. See Sönmez and Switzer (2013) and Sönmez (2013).
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and are called q-responsive.10

We present the cumulative offer algorithm as an allocation rule with overall functions of
schools described above. Our overall choice functions fail to satisfy unilateral substitutability
and the law of aggregate demand.11 We are, however, able to show that the cumulative
offer mechanism yields stable outcome, is strategy proof, and respects improvements in test
scores. The main purpose of introducing dynamic reserves is to increase efficiency. We show
that the outcome of the cumulative offer process under any monotonic capacity-transfer
scheme Pareto dominates the outcome of the cumulative offer mechanism outcome without
a capacity-transfer.

1.1 Literature Review

Affirmative action in school choice, the so-called controlled choice problem, is first intro-
duced by the seminal paper of Abdulkadiroğlu and Sönmez (2003). Authors approach the
school choice problem from a mechanism design perspective and extend their analysis to
accommodate a simple affirmative action policy with type-specific quotas. Kojima (2012)
investigates the consequences of these proposed affirmative action policies on students’ wel-
fare in a setup where there are two student types, minorities and majorities, and quotas for
majority students only. He finds examples in which all minority students are made worse off
under these affirmative action policies, and he concludes that authorities should be cautious
when implementing such affirmative action policies.

Hafalir, Yenmez and Yildirim (2013) is the first paper suggesting dynamic reserves, in a
simpler setup. To circumvent inefficiencies caused by majority quotas, authors offer minority
reserves. Schools assign minority reserves such that if the number of minority students in a
school is less than its minority reserves, then any minority student is preferred to any majority
student in that school. If there are not enough minority students to fill the reserves, majority
students can still be admitted to fill up that school’s reserved seats so that unfilled minority
seats are allowed to be transferred to majorities.

Westkamp (2013) studies a matching problem with complex constraints in the context
of German university admissions. The author develops a choice protocol for schools in a
way that transfers between different groups of seats within a university is possible. In his
model, a student might get assigned to the same school under different admissions criterion.
He assumes that students are indifferent between these different admissions criterion and
the ties in students’ preferences are broken according to the precedence order of the choice

10See Roth and Sotomayor (1990) and Chambers and Yenmez (2015).
11These two conditions on choice functions are sufficient for the cumulative offer mechanism to be strategy

proof. See Hatfield and Kojima (2010) and Aygün and Sönmez (2012).
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protocol he defines. The main difference of our work from his is that in our model (and also
in the Indian Engineering College admissions problem) students are not indifferent between
different admission criterion for the same school. The preference domain of students in
our setup is larger than his preference domain. The choice protocol he defines satisfies the
substitutes condition and also the law of aggregate demand whereas both of them fail in our
framework.

Our work is in the line of research that focuses on the real life applications of matching
models with contracts started with Sönmez and Switzer (2013) and Sönmez (2013). Both
papers consider the cadet-branch matching problem at US Army and provide the first practi-
cal application of matching problems with contracts in which choice functions of branches fail
to satisfy substitutability condition but satisfy the unilateral substitutability condition. The
priority ranking of cadets is known as order-of-merit-list, and is the same in every branch.
Each cadet is able to “buy” priority in some branches if he/she is willing to serve some extra
years. Cadet-matching problem is reminiscent of the engineering schools admissions problem
in India. In the former problem there are two ways for a cadet to obtain a certain branch: the
baseline contract and the extended service of years contract while there are three different
privileged groups in the latter: SC, ST, and OBC and also each student is able to obtain a
seat through merit slots. Their choice functions are special cases of ours when there is no
further utilization of vacant seats in the case of low demand. The solution with dynamic
reserves improves upon their solution with regard to efficiency. Their choice functions satisfy
the unilateral substitutability and the law of aggregate demand where our family of choice
functions may fail them both.

Matching with slot-specific priorities of Kominers and Sönmez (2016) is another work
that is closely related to ours. They study a many-to-one matching problem with contracts
where each student has a unit demand and schools may have multiple slots available. In
their model, each school slot has its own linear priority order over contracts and each school
chooses contracts by filling its slots sequentially according to an order of precedence. The
lexicographic choice function they develop may not satisfy the substitutability and the law
of aggregate demand conditions.12 Despite these difficulties, they show that the cumulative
offer mechanism is stable and strategy proof. It also respects unambiguous improvements in
priority. The main advantage of the choice functions we develop over theirs, as we show in
Section 7, some distributional objectives that can be achieved by using our choice functions
cannot be achieved by using the lexicographic choice functions. However, for the type of
problems we consider, every distributional objective that can be achieved by lexicographic

12As it is the case for our choice functions, their choice functions might fail the unilateral substitutes
condition.
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choice functions can also be achieved by our choice functions.
In a recent work, Hatfield and Kominers (2015) develop a nice theory in which, if a

choice function has a completion that is substitutable and satisfies the irrelevance of rejected
contracts conditions then the stable outcome exists under these choice functions. Also,
if this completion satisfies the law of aggregate demand condition, then the cumulative
offer algorithm becomes strategy-proof. We show that the family of choice functions we
design is substitutably completable and the completion satisfies the law of aggregate demand.
Therefore, we provide an important practical application for their theory.

Kamada and Kojima (2015) is another related paper to ours and is in the context of
Japanese medical residency matching market. In this market, each region consists of a
number of hospitals and is assigned a regional cap. Each hospital has a physical capacity.
However, total number of doctors assigned to hospitals in the same region cannot exceed
the regional cap. By defining a certain stability concept that is tailored to a particular
government goal to equalize the number of doctors across hospitals beyond target capac-
ities, they utilize specific capacity-transfer schemes between hospitals in the same region.
In Kamada and Kojima (2015b), the authors provides a general theory of matching under
distributional constraints to accommodate a wide range of policy goals. They define a pref-
erence relation for regions over the possible capacity-transfers. They require this preference
to be substitutable and acceptant. In their novel proof they create a hypothetical matching
problem between doctors and regions by regarding each region as a hypothetical consortium
of hospitals that acts as one agent. They define a region’s choice function over contracts
rather than doctors, where a contract specifies a doctor-hospital pair to be matched. The
main deviation of our work from theirs is that we do not require schools’ preferences over
possible capacity-transfer schemes to be substitutable and acceptant. To make this point
clear, currently, in Indian engineering school admissions in many states, only vacant OBC
seats are allowed to be transferred to general category. If there are vacant seats in SC and
ST categories these seats must remain unfilled by law. We can incorporate this policy re-
striction into our model by defining the stability notion with regard to the choice functions
that implements this specific policy. However, this type of choice function is not allowed in
their setting. Regions’ choice functions over contracts satisfy the substitutability and the
law of aggregate demand conditions in their model, however, schools’ choice functions in our
model may fail both.

The rest of the paper is organized as follows: In section 2 we introduce our main ap-
plication of engineering college admissions in IITs in India. We describe the shortcomings
of the current admissions procedure in the State of Maharashtra. In section 3 the model
is presented and the choice procedures of schools are designed. In section 4 conditions on
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preferences and (sub)choice functions are described. In section 5 the allocation procedure we
advocate, the cumulative offer process, is defined. In section 6 we present our main results.
In section 7 we explain the difference between our choice procedure and the lexicographic
choice procedures of Kominers and Sönmez (2015). Section 8 concludes. The technical
details and all of the lengthy proofs are in the Appendices.

2 Admissions to Engineering Schools (IITs) in India

Countries in which minority groups have suffered from historic discrimination are commonly
characterized by considerable schooling inequalities between these groups and the majority
of the population. Particularly when the inequality is great, governments have adopted
strong affirmative action policies in higher education to remedy it, eschewing a voluntary
preferential system in favor of a “reservation system” that reserves a fixed percentage of
seats in higher education institutions for the relevant groups. The fundamental assumption
underlying the imposition of a reservation system is that minority students gain admission to
selective programs, they would otherwise not have access to, and such gains generate social
return, in the near future.13

India is one of the few countries that practices affirmative action on a large scale. “Reser-
vation in India” is the process of setting aside a certain percentage of seats in government
institutions for members of underrepresented communities, defined primarily by castes and
tribes. Scheduled castes (SC), Scheduled Tribes (ST), and Other Backward Classes (OBC)
are the primary beneficiaries of the reservation policies under the constitution, which have
the objective of ensuring to level the playing field.14

Among all higher education institutions in India, engineering schools are the most pres-
tigious. The admission procedure in engineering schools is organized and regulated by the
Indian Institutes of Technology (IITs). The IITs practice affirmative action and offer reser-
vation to minority sectors of society. The following table shows the reservation structure of
engineering schools in the State of Maharashtra:15

13See Bertrand et al. (2010). They argue that affirmative action successfully targets the financially
disadvantaged in India. The authors find that, despite poor entrance exam scores, lower-caste entrants
obtain a positive return for admission.

14For a brief history of affirmative action policies in India, see Bertrand et al. (2010) and Weisskopf (2004).
15See “Rules for Admissions to First year of Degree Courses in Engineering/Technology in Government,

Govt. Aided and Unaided Engineering institutes in Maharashtra State-Academic year 2014-2015”.

7



Category Reservation

Scheduled Castes (SC) 13%

Scheduled Tribes (ST ) 7%

Other Backward Classes (OBC) 30%

General Category 50%

As shown in the above table, the reservation system sets aside a proportion of all possible
positions for members of a specific group. Those not belonging to the designated commu-
nities can compete only for general-category positions (merit slots), while members of the
designated communities can compete for both reserved seats and general-category seats.
However, a student who belongs to one of the designated groups is given an opportunity
to use his or her caste (or tribe) background as a privilege. If students from designated
communities do not use their caste or tribe privileges, then they are considered only for
general-category seats. Claiming a reserved seat for students from designated communities
is optional. If they state their privilege and get accepted to a program with a reserved seat
in that category, they have to prove their membership in the group by providing a legal
document.

2.1 Engineering School Admission Procedure and the DTE Mech-

anism

In the Maharashtra engineering school admission procedure, students are ranked based on
their total scores in the “Maharashtra Common Entrance Test (MT CET).” This ranking is
used to assign students to general-category seats. Rankings for privilege types SC, ST, and
OBC are derived as follows: For each category, the relative rankings of the same-category
students are preserved, and the students from other categories are removed. For students
with the same score, students are ranked first by their math scores, then by chemistry scores,
and finally by physics scores. In the circumstance that students have the same three scores in
each field, age determines the priority, i.e., the older student is given priority. As such, each
student has a unique ranking. Each student submits his or her preferences over engineering
programs. They can rank at most 100 programs. Together with their program rankings, they
can also submit their privilege type if they are coming from SC, ST, or OBC communities
and want to use this privilege.

The Directorate of Technical Education (DTE), the institution in charge of admissions
to engineering schools in Maharashtra, uses the following mechanism to allocate seats to
students in the centralized admission process (CAP):
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Step 1 : Each student applies to his or her top choice. Each school considers the appli-
cations for the general-seat category first, following the ranking �. Students are assigned
general-category seats one by one following � up to the capacity of general-category seats.
If there are more students than allowed by the capacity of the general-seat category, the
remaining students are considered for the reserved categories depending on their submitted
privilege type. For each reserved category SC, ST, and OBC, students are assigned seats
one by one following the priority order of privilege type up to the capacity of that category.
The remaining students are rejected.

In general, at step n:
Step n : Each student who was rejected in the previous step applies to his or her next-

choice school. Each school fills its general seats first following � from the tentatively held
students and new applicants. Students are assigned general-category seats one at a time
following � up to the capacity of the general-category seats. If there are more students than
allowed by the capacity of the general-seat category, the remaining students are considered for
the reserved categories depending on their stated privilege type. For each reserved category
SC, ST, and OBC, students are assigned seats one at a time following the priority ranking in
each privilege type up to the capacity of that category. The remaining students are rejected.

This algorithm ends in finitely many steps. When outcomes are announced, all stu-
dents learn their program assignments together with the privilege type under which they were
accepted. DTE announces privilege types together with the program assignment for each
student to show the public that reservations are actually respected.

After the above centralized admissions process is done, if there are empty seats in OBC
category, then these seats are converted into general seats16 and filled by general-category
applicants according to test score rankings. This process is called the “counseling” process.17

In our proposed solution we argue that transferring otherwise vacant seats from OBC cate-
gory to general category in the main admission round by designing a suitable choice functions
for schools preserves desirable strategic, fairness and efficiency properties.

2.2 The Shortcomings of the DTE Mechanism

The mechanism used by the DTE has significant shortcomings. Two main problems with
their admission procedure are listed below. The Indian authorities either are not aware of
the first problem or they find it insignificant; however, they realize that the second problem

16These types of assignment procedures are called “sequential” and are proven to have adverse fairness,
efficiency, and strategic properties. See Dur and Kesten (2014).

17In many of the other states in India, none of the vacant seats that are reserved for ST, SC, and OBC
categories are transferred into general-category seats.
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which is the main concern of our work is important and are trying to solve it.
(i) Students are asked to state their preferences over the set of programs, even though

their assignments specify a program name together with a seat type. The preference domain
is narrower than the allocation domain in that students’ preferences over seat types are not
investigated but are assumed in a specific way. For example, suppose a student, say from
OBC background, submits two schools in his preference list, school A and school B, such that
he prefers school A to school B. However, when his assignment is announced, it is going to
be in the following form: “general-category seat from school B” or “OBC-category seat from
school A.” The DTE assignment procedure simply assumes that students only care about
which program they are admitted to. They assume that for each program a student ranks
in his or her preference list, he or she prefers the general-category seat type of that program
over the reserved-type seat if the student submitted any privilege along with his application.
However, for several reasons, which we will discuss below, students may actually care about
what type of seats they receive with their program assignments. Their true preferences
might be over program name-seat type pairs, not just program names. As in the problem
of narrower preference domain of the cadet-branch problem in USMA and ROTC,18 the
DTE assumes each student prefers the general seats over the reserved seats given a program.
Hence, given a preference relation over schools, the DTE generates a new preference profile
such that the relative ranking of schools is the same, and in each school the general seat
is preferred over the reserved-category seat for every student. However, across different
programs with different types of seats, students might have more complicated preferences.

• Some students might not want to reveal their caste and tribe information and hence
would prefer general-category seats over type-specific seats. One of the main reasons
for this is the fact that students who obtain a seat from a reserved category are dis-
criminated against in some universities. Opponents of the reservation policies in India
argue that the policy is anti-meritocratic and decreases the average quality of Indian
engineering schools. As a result, many students who obtain reserved seats feel discrim-
inated against, as the following item illustrates:

“A survey among first year students (2013-14 batch) belonging to various SC,
ST and OBC categories, has revealed that an alarming 56% of them feel discrim-
inated against in the institution, albeit in a discreet manner. Nearly 60% of those
in the reserved category also said they experienced more academic pressure than

18See Switzer and Sönmez (2013) and Sönmez (2013).
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those in the general category.”19

Because of this pressure, some SC, ST, and OBC students might prefer general-category
seats rather than reserved-category seat for personal reasons such as pride and dignity.20

However, mechanisms currently in use do not let students express these concerns in their
preferences.

If a student from a designated community uses her privilege and is assigned to a reserved
seat, then she might be exempt from school fees or will pay very low fees, will receive book
grants, and will be able to live for free in college housing. Because of financial reasons, a
high-score, poor student from a designated community would prefer a reserved seat over a
general seat. Financial difficulties that SC, ST and OBC students might face is illustrated
in the following quote from an online education forum:

“It’s estimated that 70% of Below Poverty Line in India comprises of Sched-
uled caste people. It’s very difficult for an SC/ST/OBC student to crack JEE
advanced and once they crack this exam, they have to face even a bigger prob-
lem. How will they afford at least 1.20 lakh Rupees per year for this technical
education?... So what we conclude from all this is that it’s not an easy task for
reserved category students to get education in IITs. I do agree that there are some
reserved category students who take advantage of all this. I guess at least 30% of
reserved category students are economically well and they can afford all this on
their own. This is a flaw in the system and we have to accept it.”21

• General-category seats are regarded as more prestigious. Students from designated
communities who care about obtaining prestigious seats have more complicated pref-
erences than preferences simply over programs. Also, some give political reasons for
arguing against the reservation policy. Many students from designated communities
are against caste-based reservation policies and do not claim caste or tribe privileges.
In that case, they are considered for only general seats.

Example 1. Suppose that student i who has privilege ST submits the following preference
over schools: s1Pis2Pis3. The DTE generates the following preference relation from the

19http://www.dnaindia.com/mumbai/report-caste-discrimination-in-india-s-elite-institutions-students-
2016745

20http://www.quora.com/How-does-it-feel-to-be-an-SC-ST-category-student-in-IIT
21http://www.quora.com/Reservation-in-India/As-per-the-policy-of-my-institute-IIT-Roorkee-SC-ST-

students-are-provided-with-concession-and-waiver-in-fee-irrespective-of-their-family-income
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stated preference: sGen
1 Pis

ST
1 Pis

Gen
2 Pis

ST
2 Pis

Gen
3 Pis

ST
3 . However, student i’s true preference

might be as follows: sGen
1 Pis

Gen
2 Pis

Gen
3 Pis

ST
1 Pis

ST
2 Pis

ST
3 .

This student can manipulate the DTE mechanism by misrepresenting her preferences.
Also, the mechanism may create an adverse incentive to have lower test scores if a student
from a designated category wants to gain admission only through reserved-category seats;
i.e., in the above example, a student from an ST community might have the following true
preference: sST1 Pis

ST
2 Pis

ST
3 Pis

Gen
1 Pis

Gen
2 Pis

Gen
3 .

As such, it is obvious that the DTE mechanism is not fair, does not respect improvements,
and is manipulable. Furthermore, it is actually very easy to manipulate the DTE mechanism.
In our model, we expand the preference domain to program-seat type pairs to fully alleviate
this problem. Every preference profile over only schools can be represented when preferences
are defined over program type-seat type pairs.

The second problem, which is the main focus of this paper regarding the DTE mechanism,
is that every year, many reserved seats remain vacant and the public (especially general-
category applicants) react negatively to this fact.

(ii) The capacities of reserved seats in the SC and ST categories are taken to be hard
bounds. In other words, if there are not enough applications for one of the privilege types SC
or ST, some of the seats will remain empty. In Maharashtra, the data show that most years
applications from ST students have been low. Hence, some seats reserved for the ST students
have remained vacant.22 However, if there is any vacant seat from the OBC category, the
DTE converts that seat into a general-category seat.23 Also, the number of applications
from designated communities is volatile over time. Due to insufficient demand from some of
these communities, every year many seats that are reserved for SC and ST students remain
vacant:

“As admissions to engineering colleges across the state closed, seats in some of
the finest institutes that charge almost nothing have gone abegging. Not only are
seats open in some of the most prestigious colleges of the state, slots are vacant
in some of the top streams too: 69 in electronics, 38 in mechanical engineering,
27 in civil engineering, 23 in computer science and 10 in electrical engineering...
269 seats are yet to be filled.”24

In our model, we introduce a choice procedure with dynamic reserves such that capacity can
22See Weisskopf (2004). See also Bertrand et al. (2010).
23For the details of the admission procedure for engineering schools, see Weisskopf (2004), Kochar (2009),

and Bertrand et al. (2010).
24http://timesofindia.indiatimes.com/city/mumbai/Prestigious-government-engineering-colleges-still-

have-vacant-seats/articleshow/39833944.cms
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be transferred from one group of seats to another in a matching-with-contracts framework.
Allowing capacity-transfer increases efficiency by utilizing slots that would otherwise remain
vacant.

3 The Model

In a matching problem with dynamic reserves, there is a set of students I = {i1, ..., in}, a set
of schools S = {s1, ..., sm}, a set of privileges Θ = {t1, ...tk}, and a (finite) set of contracts
X = I×S×Θ. Each student i ∈ I has a set of privileges τ(i) ⊆ Θ he or she can claim, where
τ : I ⇒ Θ is a privilege correspondence. Each contract x ∈ X is between a student i(x) ∈ I
and a school s(x) ∈ S, and states the privilege t(x) ∈ τ(i(x)). We extend the notations
i(·), s(·), and t(·) to sets of contracts by setting i(Y ) ≡ ∪y∈Y {i(y)}, and s(Y ) ≡ ∪y∈Y {s(y)}
for any Y ⊆ X. For Y ⊆ X, we denote Yi ≡ {y ∈ Y : i(y) = i}; analogously, we denote
Ys ≡ {y ∈ Y : s(y) = s} and Yt ≡ {y ∈ Y : t(y) = t}.

Each student i ∈ I has a (linear) preference order P i (with weak order Ri) over contracts
in Xi = {x ∈ X : i(x) = i}. For ease of notation, we assume that each i ∈ I also ranks a
“null contract” ∅i, which represents remaining unmatched (and hence is always available), so
that we may assume that s ranks all the contracts in Xi.25 We say that the contracts x ∈ Xi

for which ∅iP ix are unacceptable to i. Let P denote the set of all preferences over S ×Θ. A
preference profile of students is denoted by P = (P i1 , ..., P in) ∈ Pn. A preference profile of
all students except student il is denoted by P−il = (P i1 , ..., P il−1 , P il+1 , ..., P in) ∈ Pn−1.

An allocation X ′ ⊂ X is a set of contracts such that each student appears in at most one
contract and no school appears in more contracts than its capacity allows. Let X denote the
set of all allocations. Given a student i ∈ I and an allocation X ′ with (i, s, t) ∈ X ′ , we refer
to the pair (s, t) as the assignment of student i under allocation X

′ . Student preferences
over allocations are induced by their assignments under these allocations.

Definition 1. (Pareto dominance) An allocation Y ⊆ X Pareto dominates allocation Z ⊆ X

if YiRiZi for all i ∈ I and YiP iZi for at least one i ∈ I.

A direct mechanism is a mechanism where the strategy space is the set of preferences P
for each agent i. Hence a direct mechanism is simply a function ψ : Pn −→ X that selects
an allocation for each preference profile.

25We use the convention that ∅iP ix if x ∈ X \Xi.

13



Choice Procedure of Schools

Each school s ∈ S reserves certain parts of its capacity for special student groups to achieve
some distributional objectives. These sorts of constraints are encoded in the choice procedure
of school s. First of all, each school pre-specifies a linear order in which privilege types are
considered. We assume that for each s ∈ S, the privileges are ordered to a (linear) order of
precedence Bs. The interpretation of Bs is that if t Bs t

′ , then, whenever possible, the slots
reserved for students with privilege t are filled before the slots reserved for students with
privilege t′ . Note that a student might have multiple privileges, so that a set of students I
may not be partitioned into disjoint sets of students with different privileges. In particular,
a given student may be considered multiple times by a choice procedure.

School s initially has a target distribution of its seats over different student groups with
different privileges. Let qs denote the total capacity of school s. The number of reserved
seats for students with privilege tj is denoted by qstj . Then, we have qs =

∑k
j=1 q

s
tj
. School s

has a strict preference for filling these slots according to its target distribution. If the target
distribution cannot be achieved because too few agents from one or more of the k privilege
groups apply, then school s can express its preferences over possible alternative distributions
of privilege types by specifying how its capacity is to be redistributed.

For a given school s ∈ S, Cs(.) : 2X −→ 2X denotes the overall choice function of school
s. Without loss of generality, assume that the precedence order is t1 Bs t2 Bs ... Bs tk

26.
Given a set of contracts Y ⊆ X, Cs(Y ) is determined as follows:

• Given qst1 and Y = Y 0 ⊆ X, let Y1 ≡ Cs
t1

(Y 0, q̄st1) be the set of chosen contracts with
privilege t1. Then, let r1 = qst1− | Y1 | be the number of vacant seats that were initially
reserved for students with privilege t1. Define Ỹ1 ≡ {y ∈ Y : i(y) ∈ i(Y1)}. This is
the set of all contracts of students whose contract is chosen by the sub-choice function
Cs

t1
(·, ·). If a contract of a student with privilege t1 is chosen, then all of the contracts

naming that student shall be removed from the set of available contracts for the rest
of the procedure. The set of remaining contracts is then Y 1 = Y 0 \ Ỹ1.

• Given the set of remaining contracts Y 1 and the capacity qst2 = qst2(r1)≥ q̄st2 , let Y2 =

Cs
t2

(Y 1, qst2) be the set of chosen contracts with privilege t2, where the capacity of the
group of seats for students with privilege t2 is a function of the number of unused seats
from the first group. Let r2 = qst2− | Y2 | be the number of unused seats that were
reserved for students with privilege t2. Define Ỹ2 ≡ {y ∈ Y 1 : i(y) ∈ i(Y2)}. If a

26It is important to note that our model allows for a privilege type to appear multiple times in the order
of precedence. For example, if there is too much demand from the students in the first privilege type, after
all privilege types are considered the first privilege type might be re-considered. Also,
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contract of a student with privilege t2 is chosen by the sub-choice function Cs
t2

(·, ·),
then all of the contracts belonging to that student will be removed from the set of
available contracts. Then, the remaining set of contracts is Y 2 = Y 1 \ Ỹ2.

• In general, let Yj = Cs
tj

(Y j−1, qstj) be the set of chosen contracts with privilege tj from
the set of available contracts Y j−1, where qstj = qstj(r1, ..., rj−1) ≥ q̄stj is the capacity of
the group of seats for students with privilege tj as a function of the vector of the number
of unused seats (r1, ..., rj−1) that are initially reserved for students with privileges
t1, ..., tj−1, respectively. Let rj = qstj− | Yj | be the number of vacant seats that were
reserved for students with privilege tj. Define Ỹj = {y ∈ Y j−1 : i(y) ∈ i(Yj)}. The set
of remaining contracts is then Y j = Y j−1 \ Ỹj.

• Given the set of contracts Y = Y 0 and the capacity qst1 of the group of seats reserved
for students with privilege t1, which comes first in the precedence order, we define the

overall choice function27 of school s as Cs(Y ) =
k⋃

j=1

Cs
tj

(Y j−1, qstj(r1, ..., rj−1)).

It is important to note that the choice procedure defined above creates a family of choice
functions. Different capacity-transfer schemes yield different choice functions. The class of
choice functions defined include slot-specific choice functions of Kominers and Sönmez (2016),
choice functions defined for cadet-branch matching problems in Sönmez and Switzer (2013)
and Sönmez (2013), choice protocols defined by Westkamp (2013), and choice functions
defined in Kamada and Kojima (2015).

Stability

An outcome is a set of contracts Y ⊆ X. We follow the Gale and Shapley (1962) tradition
in focusing on match outcomes that are stable in the sense that

• neither students nor schools wish to unilaterally walk away from their assignments,
and

• no student desires a slot at which she has a justified claim, with some desirable contract,
under the precedence structure and choice procedures.

Definition 2. We say that an outcome Y is stable if it is
(i) individually rational- Ci(Y ) = Yi for all i ∈ I and Cs(Y ) = Ys for all s ∈ S, and
(ii) unblocked- there does not exist a school s ∈ S and blocking set Z 6= Cs(Y ) such

that Z = Cs(Y ∪ Z) and Zi = Ci(Y ∪ Z) for all i ∈ i(Z).
27If there is no transfer of seats across different privilege groups this choice procedure collapses the choice

procedure Alva (2016) defines.
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Note that if the first condition fails, then there is either a student or a school who prefers
rejecting a contract that involves him/it. If the second condition fails, then there exists an
unselected contract x where not only student i(x) prefers (s(x), t(x)) over his assignment
but also contract x can be selected by school s(x) given its composition.

The standard stability definition stated above makes use of the choice functions we de-
velop. It is important to note that since different capacity-transfer scheme yield a different
choice function for a school, the stability definition is tailored to the capacity-transfer schemes
used. In a sense, the above definition gives us a family of stability notions. The normative
meaning of a blocking coalition depends on the capacity-transfer schemes that are used.

Monotone Capacity-Transfers

The idea behind the class of problems we study is that each school is required to reserve
certain parts of its capacity for different privilege types and may prefer making, or be re-
quired to make, some of these reserved seats available to other privilege types if its capacity
cannot be filled by the first privilege types. Each institution has a pre-specified order in
which different privileges are considered while filling its slots and also has a target capacity
distribution over these privilege groups. If its target distribution cannot be achieved because
too few students from one or more privilege types apply, the institution would like to have
an alternative distribution over privilege types. To guarantee the existence of stable match-
ings along with many other possibility results under capacity-transfers, in our framework we
require the capacity-transfer scheme to be monotonic.

Definition 3. A capacity-transfer scheme is monotonic, if for all j ∈ {2, ..., k} and all pairs
of sequences (rl, r̃l)

j−1
l=1 such that r̃l > rl for all l 6 j − 1, qstj(r̃1, ..., r̃j−1) > qstj(r1, ..., rj−1),

and
j∑

m=1

[qstm(r̃1, ..., r̃m−1)− qstm(r1, ..., rm−1)]≤
j∑

m=1

[r̃m − rm].

Monotonicity of capacity-transfer schemes requires that, whenever weakly more seats are
left unassigned in every privilege type from t1 to tj−1, weakly more seats should be available
for privilege type tj. Notice that no capacity-transfer trivially satisfies this definition, so it
is considered a monotonic capacity-transfer. The definition also requires that the difference
of the capacities of the same group of seats under two different vectors of number of vacant
seats cannot exceed the summation of the differences between the number of vacant seats
up to that group.

If the reserve structure is defined as imposing hard bounds, then there is no capacity-
transfer. In this paper, we propose that the control constraints be interpreted as soft bounds
or flexible capacities rather than hard bounds. For example, transferring all of the unas-
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signed seats from privilege types (other than general category) that have empty slots to
only general category satisfies the monotonic capacity-transfer definition and can be con-
sidered a flexible-capacity scheme. Even though transferring all of the unassigned seats
from other privilege types to the general category might seem more likely to occur in real-
life merit-based assignment procedures to promote competition among agents (students),
in our framework, the capacity-transfer schemes that institutions can implement are very
flexible because different institutions might have different distributional concerns. As long
as the capacity-transfer scheme is monotonic, each institution can express its preferences
over different capacity-transfers where it prefers to fill its slots according to its initial target
distribution.

4 Conditions on Choice Functions

Let X be the set of contracts. P(X) = 2X is the power set of X. A choice function is
C : P(X) −→ P(X) such that for every Y ⊆ X, C(Y ) ⊆ Y . We now discuss the extent
to which schools’ choice functions and sub-choice functions satisfy the conditions that have
been key to previous analyses of matching-with-contracts models.

Definition 4. A choice function Cs satisfies substitutability if for all z, z′ ∈ X and Y ⊆ X,
z /∈ Cs(Y ∪ {z}) =⇒ z /∈ Cs(Y ∪ {z, z′}).

Hatfield and Milgrom (2005) introduce this substitutability condition, which generalizes
the earlier gross substitutes condition of Kelso and Crawford (1982). Hatfield and Milgrom
(2005) also show that substitutability is sufficient to guarantee the existence of stable out-
comes. However, their analysis implicitly assumes the irrelevance of rejected contracts

(IRC)28 condition defined below:

Definition 5. Given a set of contracts X, a choice function Cs : 2X −→ 2X satisfies IRC if
∀Y ⊂ X, ∀z ∈ X \ Y , z /∈ Cs(Y ∪ {z}) =⇒ Cs(Y ) = Cs(Y ∪ {z}).

Aygün and Sönmez (2013) show that the substitutability condition together with the IRC
condition assures the existence of a stable allocation.

Substitutability of choice functions is necessary in the maximal domain sense for guar-
anteed existence of stable outcomes in a variety of settings. However, substitutability is
not necessary for the guaranteed existence of stable outcomes in settings where agents have
unit demand.29 Hatfield and Kojima (2010) show that the following condition, which is

28Alkan (2002) refers to it as “consistency.”
29See Hatfield and Kojima (2008) and (2010).
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weaker than substitutability, not only suffices for the existence of stable outcomes but also
guarantees that there is no conflict of interest among agents.30

Definition 6. A choice function Cs satisfies unilateral substitutability (US) if z /∈ Cs(Y ∪
{z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which i(z) /∈ i(Y ) (i.e., no
contracts in Y are associated with student i(z)).

Unilateral substitutability has been proven to be crucial in market design applications.
The choice functions of branches in the cadet-branch problem do not satisfy substitutability.
However, they do satisfy unilateral substitutability. Unilateral substitutability, together with
the law of aggregate demand, guarantees the existence of an agent-optimal stable allocation,
and under them the agent-proposing deferred-acceptance mechanism is strategy proof.

Definition 7. A choice function Cs satisfies bilateral substitutability (BS) if z /∈ Cs(Y ∪
{z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which i(z), i(z

′
) /∈ i(Y ).

Bilateral substitutability of a choice function is implied by unilateral substitutability. The
BS together with the IRC of overall choice functions guarantees the existence of a stable
allocation in a matching-with-contracts framework under no capacity-transfer. However,
BS and IRC together are weak conditions (even under no capacity-transfer) in the sense
that many well-known properties of stable allocations in the standard matching problem
do not carry over to the matching-with-contracts setting. For instance, the agent-optimal
stable allocation fails to exist. Strengthening BS to US restores most of these well-known
properties.31

The choice functions Cs do satisfy substitutability whenever each agent offers at most
one contract to school s.

Definition 8. A choice function Cs(·) satisfies weak substitutability (WS) if z /∈ Cs(Y ∪
{z}) =⇒ z /∈ Cs(Y ∪ {z, z′}) for all z, z′ ∈ X and Y ⊆ X for which | Y ∪ {z, z′} |=
| i(Y ∪ {z, z′}) |.

The WS condition, first introduced by Hatfield and Kojima (2008), is in general necessary
(in the maximal domain sense) for the guaranteed existence of stable outcomes (Proposition
1 of Hatfield and Kojima, 2008). Notice that if every student has only one privilege type,
WS corresponds to substitutability.

Definition 9. A choice function Cs(·) satisfies the law of aggregate demand (LAD) if
Y ⊆ Y

′
=⇒ | Cs(Y ) |≤| Cs(Y

′
) |.

30As in the work of Hatfield and Milgrom (2005), IRC is implicitly assumed throughout the work of Hatfield
and Kojima (2010). See Aygün and Sönmez (2012) for details.

31See Afacan and Turhan (2015) for the axiomatization of the gap between US and BS.
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That is, the size of the chosen set never shrinks as the set of contracts grows under the
law of aggregate demand.32 Hatfield and Milgrom (2005) introduce the LAD condition in a
matching-with-contracts framework, and it has proven to be critical. Hatfield and Kojima
(2010) show that if choice functions of schools all satisfy US and LAD, every student and
school signs the same number of contracts at every stable allocation (i.e., the rural-hospital
theorem holds). Moreover, the cumulative offer mechanism becomes strategy proof and
weakly Pareto efficient for agents. If schools do not have preferences that generate their
choices, then all of these results are obtained under the additional IRC condition of Aygün
and Sönmez (2012).

Definition 10. A choice function Cs(·) satisfies quota monotonicity (QM) if for any
q, q

′ ∈ Z+ such that q < q
′ , for all Y ⊆ X

Cs(Y, q) ⊆ Cs(Y, q
′
), and

| Cs(Y, q
′
) | − | Cs(Y, q) |≤ q

′ − q.

We introduce the above quota-monotonicity condition, which requires choice functions to
satisfy two conditions: First, given any set of contracts, if there is an increase in the capacity,
then we require the choice function to select every contract it was choosing before increasing
its capacity. It might choose some additional contracts. Second, if, say, the capacity of a
privilege type is increased by 2, then the difference between the number of contracts chosen
after and before the capacity increase cannot exceed 2. Since we allow capacities of privilege
types to change dynamically during the choice procedure by exogenously given monotonic
capacity-transfer schemes, quota monotonicity will be a crucial regulative condition on priv-
ileges’ sub-choice functions to obtain positive results. However, it will be trivially satisfied
if the sub-choice functions are derived from strict priority rankings induced by test scores in
merit-based allocation problems.

4.1 Conditions on Sub-choice Functions for Merit-Based Applica-

tions

In the Indian engineering school admission problem (and also in the cadet-branch matching
problem in USMA and ROTC), each sub-choice function (one for each privilege type) is
induced from a strict ranking of students according to test scores. Since each student from a
particular privilege type is acceptable for the privilege types she announces at every school,
the sub-choice functions of every privilege type are acceptant.

32In a different setting, Alkan (2002) refers to the LAD as “cardinal monotonicity.”
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Definition 11. A sub-choice function Cs
tj

(·, q) is q − acceptant if | C(Y ) |= min{q, | Y |}
for every Y ⊆ X. A sub-choice function is acceptant if it is q − acceptant for some q.

This definition basically says that if the number of applicants is less than the capacity
of the privilege type, every contract (each is associated with a different student/cadet) must
be chosen, and if the number of applicants is more than the capacity of the privilege type,
then the capacity must be filled.

The following is the standard responsiveness definition presented in the literature.

Definition 12. (Responsive priorities (Roth, 1985)) The preferences of school s are respon-
sive with capacity q if (i) for any i, j ∈ I, if {i} �s {j}, then for any I

′ ⊆ I \ {i, j},
I
′ ∪ {i} �s I

′ ∪ {j}, (ii) for any i ∈ I, if {i} �s ∅, then for any I ′ ⊆ I such that | I ′ |< q,
I
′ ∪ {i) �s I

′ , (iii) ∅ �s I
′ for any I ′ ⊆ I with | I ′ |> q.

In our framework, we can state both acceptance and responsiveness in a single condition,
following Chambers and Yenmez (2015). Note that each agent (cadet) has only one contract
with a given privilege type in our framework.33 Let� be the strict ranking of agents according
to test scores. For privilege type tj, the priority ranking associated with it, �tj , is obtained
from � as follows: for every i, j ∈ I such that tj ∈ τ(i) = τ(j), i �tj j if and only if i � j,
and for every k ∈ I such that τ(k) 6= t, ∅ �tj k.

Definition 13. A sub-choice function Cs
tj

(·, q) of institution s for privilege type tj is q-
responsive if there exists a strict priority ordering �tj on the set of contracts naming privilege
type tj, Xtj , and a positive integer q such that for any Y ⊆ (Xs ∩Xtj),

Cs
tj

(Y, q) =

q⋃
i=1

{y∗i },

where y∗i is defined as y∗1 = max
Y
�tj and, for 2 ≤ i ≤ q, y∗i = max

Y \{y∗1 ,...,y∗i−1}
�tj .

Responsiveness and acceptance are both crucial for matching applications where admis-
sions are merit-based. A sub-choice function Cs

tj
(·, q) is q − responsive if there is a strict

priority ordering over the agents for which the sub-choice function always selects the highest-
ranked available agents.34 If a school’s sub-choice functions are q-responsive, then for each
privilege type the school acts as if it has preferences over contracts with a capacity constraint,
and the school takes the highest-ranking students available to that privilege type up to its
capacity.

33This is not necessarily the case in Kominers and Sönmez (2015). In their slot-specific priorities setting,
an agent may have multiple contracts with a privilege type for a given institution.

34See Chambers and Yenmez (2015).
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4.2 Respect for Unambiguous Improvements

One of the most important parameters of the Indian engineering school admission problem is
the strict ranking of agents according to test scores. Let � be the strict ranking of students.
For each school s ∈ S the strict ranking of contracts in privilege type tj is obtained from �
as follows: x �s

tj
y if and only if i(x) � i(y) and t(x) = t(y) = tj. If tj /∈ τ(i), then ∅s �s

tj
x

for all x such that i(x) = i. The choice function for each privilege type is obtained from
these strict rankings, i.e., Cs

tj
(Y, qstj) = Cs

tj
(Y, qstj |�

s
tj

), which is q-responsive.
Clearly, a reasonable mechanism would never penalize a student as a result of an im-

provement in his standing in the strict ordering according to test scores. Given two strict
rankings of students according to test scores � and �′ , we say that �′ is an unambiguous
improvement for student i over � if

1. the relative ranking between all students except student i remains exactly the same
between � and �′ , although

2. the standing of student i is strictly better under �′ than under �.

Definition 14. A mechanism respects improvements if a student never receives a strictly
worse assignment as a result of an unambiguous improvement of his priority ranking.35

Violation of this condition may create adverse incentives for some agents to lower their test
scores to obtain a better outcome according to their true preferences, as in the current
application procedure for engineering school admissions in India.36

5 The Cumulative Offer Process

The cumulative offer algorithm, which is the generalization of the agent-proposing deferred
acceptance algorithm of Gale and Shapley, is the central allocation mechanism used in a
matching-with-contracts framework. We now introduce the cumulative offer process for
matching with contracts (see Hatfield and Kojima (2010); Hatfield and Milgrom (2005);
Kelso and Crawford (1982)).

Here, we provide an intuitive description of this algorithm; we give a more technical
statement in Appendix A.

Definition 15. In the cumulative offer process, students propose contracts to schools in
a sequence of steps l = 1, 2, ... :

35This property was first formulated by Balinski and Sönmez (1999).
36See Sönmez (2013), where the author discusses how cadets intentionally lower their OML to obtain

better outcomes.
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Step 1 : Some student i1 ∈ I proposes his most-preferred contract, x1 ∈ Xi1 . School s(x1)
holds x1 if x1 ∈ Cs(x1)({x1}), and rejects x1 otherwise. Set A2

s(x1) = {x1}, and set A2
s′

= ∅
for each s′ 6= s(x1); these are the sets of contracts available to schools at the beginning of
Step 2.

Step 2 : Some student i2 ∈ I for whom no contract is currently held by any school
proposes his most-preferred contract that has not yet been rejected, x2 ∈ Xi2 . School s(x2)
holds the contract in Cs(x2)(A2

s(x2) ∪ {x2}) and rejects all other contracts in A2
s(x2) ∪ {x2};

schools s′ 6= s(x2) continue to hold all contracts they held at the end of Step 1. Set A3
s(x2) =

A2
s(x2) ∪ {x2}, and set A3

s′
= A2

s′
for each s′ 6= s(x2).

Step l : Some student il ∈ I for whom no contract is currently held by any school
proposes his most-preferred contract that has not yet been rejected, xl ∈ Xil . School s(xl)
holds the contract in Cs(xl)(Al

s(xl)
∪ {xl}) and rejects all other contracts in Al

s(xl)
∪ {xl};

schools s′ 6= s(xl) continue to hold all contracts they held at the end of Step l − 1 . Set
Al+1

s(xl)
= Al

s(xl)
∪ {xl}, and set Al+1

s′
= Al

s′
for each s′ 6= s(xl).

If at any time no student is able to propose a new contract, that is, if all students for
whom no contracts are on hold have proposed all contracts they find acceptable, then the
algorithm terminates. The outcome of the cumulative offer process is the set of contracts
held by schools at the end of the last step before termination.

In the cumulative offer process, students propose contracts sequentially. Schools accu-
mulate offers, choosing at each step (according to Cs) a set of contracts to hold from the set
of all previous offers. The process terminates when no student wishes to propose a contract.

Remark 1. Note that we do not explicitly specify the order in which students make proposals.
Hirata and Kasuya (2014) show that in the matching-with-contracts model, the outcome of
the cumulative offer process is order-independent if the overall choice function of every school
satisfies the bilateral substitutability and the irrelevance of rejected contracts conditions. In
our setup, the overall choice function of every school satisfies BS and IRC, and hence, the
order-independence result holds for our mechanism.

6 Main Results

We now develop our general theoretical results. Overall choice functions of schools were
defined in Section 4 as the union of choices by sub-choice functions. Sub-choices are linked
by both their choices and the monotonic capacity-transfer scheme. Each sub-choice function
has two inputs: the set of remaining (rejected) contracts by the sub-choice functions that
precede it and the capacity of the privilege type as a function of the number of unassigned
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seats from all of the privilege types considered before it. For the overall choice function, to
guarantee the existence of a stable allocation under monotonic capacity-transfer schemes, we
impose certain conditions on sub-choice functions. As shown by Aygün and Sönmez (2012),
the IRC condition is needed for the overall choice functions of institutions to guarantee the
existence of a stable allocation. To achieve this, we require that every sub-choice function
satisfies IRC. Since sub-choice functions are linked by their two inputs in our framework, we
need to impose further axioms on top of BS and IRC, namely, the law of aggregate demand
and quota monotonicity under monotonic capacity-transfer schemes, in order to achieve an
overall choice function that satisfies the BS and IRC.

6.1 The Existence of a Stable Allocation under Monotonic Capacity-

Transfers

To ensure that overall choice functions satisfy IRC, it suffices to impose IRC on sub-choice
functions for any capacity-transfer scheme (not necessarily monotonic).

Proposition 1. Suppose that all sub-choice functions satisfy IRC. Then, the overall choice
function satisfies IRC.

Proof. See Appendix C.

Remark 2. For the rest of the paper we always assume that sub-choice functions satisfy IRC
so that the overall choice functions of schools satisfy it as well.

When each student has only one contract associated with a school, then substitutability
becomes identical to weak substitutability (WS). To obtain an overall choice function that
satisfies WS, it suffices for sub-choice functions to satisfy WS, LAD, and QM.

Proposition 2. Suppose that all sub-choice functions satisfy WS, LAD, and QM. If the
capacity-transfer scheme is monotonic, then the overall choice function also satisfies WS
and IRC.

Proof. See Appendix C.

The following proposition is key to guarantee the existence of a stable allocation. The
BS condition on overall choice functions, together with IRC, is sufficient to guarantee the
existence of stable outcomes.

Proposition 3. Suppose that sub-choice functions satisfy BS, LAD, and QM. If the capacity-
transfer scheme is monotonic, then the overall choice function satisfies BS and IRC.
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Proof. See Appendix C.

If overall choice functions of institutions satisfy BS and IRC, then by Hatfield and Kojima
(2010) and Aygün and Sönmez (2012), a stable allocation exists.

Theorem 1. Suppose that all sub-choice functions satisfy BS, LAD, and QM. If the capacity-
transfer scheme is monotonic, then there exists a stable allocation.

Proof. By Proposition 1 and Proposition 3, we know that the overall choice function of each
school satisfies BS and IRC. Then, by Theorem 1 of Hatfield and Kojima (2010), together
with Theorem 1 of Aygün and Sönmez (2012), the set of stable outcomes is non-empty.

In the Indian engineering school admission problem, sub-choice functions are derived from
strict priority rankings according to exam scores. These type of sub-choice functions trivially
satisfy BS, IRC, LAD, and QM. By Theorem 1, we have existence of a stable allocation under
these type of sub-choice functions. Also, the outcome of the cumulative offer process is a
stable allocation. We state them as a corollaries below:

Corollary 1. Suppose that all sub-choice functions are q-responsive. Then, under a mono-
tonic capacity-transfer scheme, there exists a stable allocation.

Corollary 2. Suppose that all sub-choice functions are q-responsive. Then, the cumulative
offer algorithm outcome under any monotone capacity-transfer scheme is stable.

6.2 Incentives

If the overall choice functions of schools satisfy US and LAD, then the cumulative offer
mechanism is (group) strategy proof.37 Even though US and LAD are sufficient for strategy-
proofness, they are not necessary in some frameworks. For example, Kominers and Sönmez
(2015) provide a choice function that violates both US and LAD, but they show that the
cumulative offer mechanism is strategy-proof in their slot-specific priorities setup. Later,
Hatfield and Kominers (2015) developed a theory in which a condition, substitutable com-
pletion, plays a key role. They show that if schools’ choice functions have substitutable
completions so that this completion satisfies the LAD, then the cumulative offer process
becomes strategy-proof under these choice functions. In our problem, if we set the capacity
of each privilege type equal to 1 and do not allow capacity-transfer, our problem collapses to
a specific version of the slot-specific priorities model of Kominers and Sönmez (2015). In our
Indian school choice application, each sub-choice function is induced from a strict priority

37See Hatfield and Kojima (2010) and Aygün and Sönmez (2012).
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ranking of contracts (also students since each student can have at most one contract for a
certain privilege type) that is obtained from a strict ranking of students according to test
scores.

Overall choice functions fail to satisfy the US in our setup:

Proposition 4. Suppose that sub-choice functions are q-responsive and the capacity-transfer
scheme is monotonic. The overall choice functions of schools may fail to satisfy unilateral
substitutability.

Proof. Consider X = {x1, x2, y2} with S = {s}, I = {i, j}, and θ = {t1, t2} where i(x1) =

i(x2) = i, i(y2) = j and t(x1) = t1, t(x2) = t(y2) = t2. Student i has a higher test score than
student j. Also, s(x1) = s(x2) = s(y2) = s. The school has two slots, where the first one is
reserved for type t1 students and the second one is reserved for type t2 students and s1 .s s2
with the following priorities:

Πs1 : x1 � ∅s1 and Πs2 : x2 � y2 � ∅s2 .
Suppose that the school set the following capacity-transfer scheme: q̄s1 = 1 is given.

qs2(r1) = 1 for both r1 = 0 and r1 = 1, i.e., even if the first slot remains empty, there will be
no transfer of this empty seat. Note that the monotonicity of a capacity-transfer scheme is
satisfied when there is no capacity-transfer.

Then, Cs fails to satisfy unilateral substitutability. To see why, consider Cs({x2, y2}) =

{x2} and Cs({x1, x2, y2}) = {x1, y2}. Note that y2 /∈Cs({x2, y2}) but y2 ∈ Cs({x1, x2, y2}).

Furthermore, overall choice functions in our setting might not satisfy the LAD.

Proposition 5. Suppose that sub-choice functions are q-responsive and the capacity-transfer
scheme is monotonic. The overall choice functions of schools may fail to satisfy the law of
aggregate demand.

Proof. Consider X = {x1, x2, y1} with S = {s}, I = {i, j}, and θ = {t1, t2} where i(x1) =

i(x2) = i, i(y1) = j, and t(x1) = t(y1) = t1, t(x2) = t2. Also, s(x1) = s(x2) = s(y1) = s. The
school has two slots, where the first one is reserved for type t1 students and the second one
is reserved for type t2 students and s1 .s s2 with the following priorities:

Πs1 : x1 � y1 � ∅s1 and Πs2 : x2 � ∅s2
Suppose that the school sets the following capacity-transfer scheme: q̄s1 = 1 is given.

qs2(r1) = 1 for both r1 = 0 and r1 = 1, i.e., even if the first slot remains empty there will
be no transfer of this empty seat. Then, Cs fails to satisfy the law of aggregate demand.
Consider Cs({x2, y1}) = {x2, y1} and Cs({x1, x2, y1}) = {x1}.
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Even though overall choice functions fail to satisfy US and LAD, if a contract is rejected
at any step of the cumulative offer algorithm, then that contract cannot be held at any
further step. In other words, there is no renegotiation of a rejected contract.

Proposition 6. Suppose that sub-choice functions are q-responsive. If a contract z is rejected
by school s at any step of the cumulative offer algorithm, then it cannot be held by school s
in any subsequent step.

Proof. See Appendix C.

When no renegotiation occurs in the cumulative offer process, the algorithm coincides
with the standard student-proposing deferred-acceptance algorithm.38

The standard definition of strategy-proofness is as follows:

Definition 16. A direct mechanism ϕ is strategy-proof if @i ∈ I, P−i ∈ P−i, P i, P̃ i∈ P such
that ϕ(P̃ i, P−i)P

iϕ(P ).

That is, no matter which student we consider, no matter what her true preferences P i

are, no matter what other preferences P−i other students report (true or not), and no matter
which potential “misrepresentation” P̃ i student i considers, truthful preference revelation is
in her best interests. Hence, students can never benefit from “gaming” the mechanism ϕ.

Theorem 2. Suppose that all sub-choice functions are q-responsive and that the capacity-
transfer scheme is monotonic. Then, the cumulative offer mechanism Φ as a direct mecha-
nism is strategy-proof.

Proof. See Appendix B.

The proof of Theorem 2 makes use of the theory developed by Hatfield and Kominers
(2015). We show that the choice function we design has a substitutable completion that
satisfies the LAD. In that regard, engineering school admissions in IITs provides an important
real-life application for the theory developed by Hatfield and Kominers (2015).

6.3 Student-Optimal Stable Outcomes

In our framework, a student-optimal stable outcome might not exist.

Proposition 7. A student-optimal stable outcome might not exist.
38See Hatfield and Kojima (2010).
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Proof. Consider X = {x1, x2, y2} with S = {s}, I = {i, j}, and θ = {t1, t2}, where i(x1) =

i(x2) = i, i(y2) = j, and t(x1) = t1, t(x2) = t(y2) = t2. Also, s(x1) = s(x2) = s(y2) = s.
The school has two slots, each with a different privilege type t1 and t2. The precedence
order is t1 .s t2. The priorities of each privilege type is as follows: Πt1 : x1 � ∅t1 and
Πt2 : x2 � y � ∅t2 . Student preferences are x2Pix1Pi∅ and y2Pj∅. Without capacity-
transfer, the cumulative offer algorithm outcome is {x2}. However, the outcome {x1, y2}
is also stable. Since there is no Pareto-domination relationship between the two outcomes
{x2} and {x1, y2}, and they are the only stable outcomes, there is no student-optimal stable
outcome in this example.

Even when student-optimal stable outcomes do exist, the cumulative offer process might
not select them.

Proposition 8. The cumulative offer algorithm outcome might be Pareto dominated by the
student-optimal stable outcome.

Proof. See Example 4 in Kominers and Sönmez (2015).

6.4 Respect for Unambiguous Improvements

The failure to respect improvements hurts the mechanism not only from a normative per-
spective but also via the adverse incentives it creates if students’ efforts play any role in
determining the strict ranking of students according to test scores. As in most merit-based
resource-allocation problems, this is the case for engineering school admissions in India.

Theorem 3. The cumulative offer mechanism Φ respects unambiguous improvements under
any monotonic capacity-transfer scheme.

Proof. See Appendix C.

6.5 Increasing Efficiency through Monotonic Capacity-Transfer Schemes

The following example illustrates the idea that the outcome of the cumulative offer algorithm
under monotonic capacity-transfers Pareto dominates the outcome of the cumulative offer
algorithm under no capacity-transfers.

Example 2. Consider X = {x1, x2, y1, y3, z1, z2, w2, w3} with S = {s}, and I = {i, j, k, l}
where i(x1) = i(x2) = i, i(y1) = i(y3) = j, i(z1) = i(z2) = k, and i(w2) = i(w3) = l.
All the contracts are with school s. Θ = {t1, t2, t3} where t(x1) = t(y1) = t(z1) = t1,
t(x2) = t(z2) = t(w2) = t2, and t(y3) = t(w3) = t3. School s has three seats, one for each
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type of student, i.e., q̄t1 = q̄t2 = q̄t3 = 1 is the target distribution of the school. Students are
ranked according to test scores from highest to lowest as: i− j − k− l. Hence, the following
priorities for each type are derived:

Πt1 : x1 � y1 � z1 � ∅t1
Πt2 : x2 � z2 � w2 � ∅t2

Πt3 : y3 � w3 � ∅t3
The student preferences over contracts naming them are as follows:

Pi : x2Pix1Pi∅i
Pj : y3Pjy1Pj∅j
Pk : z2Pkz1Pk∅k
Pl : w2Plw3Pl∅l

If there is no capacity-transfer, then the cumulative offer algorithm outcome is {x2, y3, z1}.
Now, suppose that the school has the following monotonic capacity-transfer scheme: q̄t1 = 1.
If r1 = 0, then qt2 = 1. If r1 = 1, then qt2 = 2. If r1 = 0 and r2 = 0, then qt3 = 1. If r1 = 1

and r2 = 0, then qt3 = 1. If r1 = 0 and r2 = 1, then qt3 = 2. If r1 = 1 and r2 = 1, then
qt3 = 2. Under this capacity-transfer scheme the outcome of the cumulative offer process
is {x2, y3, z2}. The important observation here is that the outcome of the cumulative offer
algorithm under a monotonic capacity-transfer scheme Pareto dominates the outcome of the
cumulative offer algorithm under no capacity-transfers. Even though agents i and j obtain
the same assignment, agent k obtains a strictly better assignment under the monotonic
capacity-transfer described above.

Now, we generalize the observation obtained from the example above:

Theorem 4. If the sub-choice functions are derived from an underlying strict ranking of
students � according to test scores, then the outcome of the cumulative offer algorithm under
any monotonic capacity-transfer, Φ�(P, q), Pareto dominates the outcome of the cumulative
offer algorithm under no capacity-transfer, Φ�(P, q̄).

Proof. See Appendix C.

Hence, introducing monotonic capacity-transfer increases efficiency by utilizing seats that
would remain unassigned without capacity-transfer.
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7 Capacity-Transfers versus Slot-specific Priorities39

At a first glance, distributional objectives that can be achieved by capacity-transfers might
seem to be handled by the slot-specific priorities model of Kominers and Sönmez (2015).
Below we provide a simple example of a distributional objective that can easily be achieved
by capacity-transfers but cannot be achieved using slot-specific priorities.

Proposition 9. Some distributional objectives that can be achieved by capacity-transfers
cannot be achieved by slot-specific priorities.

Proof. Consider the following problem with I = {i, j, k, l} and S = {s} with qs = 2. There
are three different types of students, i.e., Θ = {t1, t2, t3}. Student i only has type t1 and hence
a single contract x1. Student j only has type t2 and a single contract y2. Student k has two
types: type t2 and type t3; and two contracts related to these types z2 and z3, respectively.
Finally, student l has two types: type t1 and type t3; and two contracts related to these
types w1 and w3. Hence, the set of contracts for this problem is X = {x1, y2, z2, z3, w1, w3}.
Students have the following test score ordering from highest to lowest: i− j − k − l.

The school reserves the first seat for type t1 students, and the second seat for type t2
students. If either the first seat or the second seat cannot be filled with students whom the
seats are reserved for, they are filled with type t3 student(s). The precedence order is such
that first seat is filled first with a type t1 student if possible, and then the second seat is
filled with type t2 student if possible. If any of these seats cannot be filled with the intended
student types, all of the vacant seats are filled with type t3 student(s) at the very end, if
possible.

We can represent the distributional objective described above by capacity-transfers as
follows: Initially qt1 = qt2 = 1 and qt3 = 0. If either of the first two seats cannot be filled,
qt3 = r1 + r2 where r1, r2 ∈ {0, 1}. Some of the choice situations under the capacity-transfer
described above are given below:

39We would like to thank Andrei Gomberg, Fuhito Kojima, and Tayfun Sönmez, who recommended we
analyze the relationship between our model and the model of slot-specific priorities.
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Y C(Y )

{x1, y2, z2, z3, w1, w3} {x1, y2}
{y2, z2, z3} {y2, z3}
{x1, z2, z3} {x1, z2}
{y2, w1, w3} {y2, w1}
{x1, w1, w3} {x1, w3}
{z2, z3} {z2}
{w1, w3} {w1}

In order to implement the choices above with slot-specific priorities, we need to find a
strict ranking of the contracts in X for both of the slots. Since {x1, y2} is chosen from the
grand set, from one of the slots x1 and from the other slot y2 must be chosen.

Case 1: x1 is chosen from slot 1 and y2 is chosen from slot 2. Then, x1 is the highest
priority contract in slot 1. Since C({x1, z2, z3}) = {x1, z2}, then z2 must have higher priority
than z3 in the strict priority ranking of slot 2 because x1 will be chosen from the first slot.
Notice that both z2 and z3 must have lower priority than y2 in the strict ranking of slot 2.
Also, since C({y2, z2, z3}) = {y2, z3}, then it must be the case that z3 has higher priority
than z2 in the strict priority of the first slot. Notice that z3 can not be chosen from the
second slot as z2 has higher priority. However, C({z2, z3}) = {z2}. Contradiction.

Case 2: y2 is chosen from slot 1 and x1 is chosen from slot 2. Then, y2 has the highest
priority in slot 1. Since C({y2, w1, w3}) = {y2, w1}, then in the ranking of slot 2 w1 must
have higher priority than w3. Also, since C({x1, w1, w3}) = {x1, w3}, it follows that in the
ranking of slot 1 w3 must have higher priority than w1 because w3 cannot be chosen from
slot 2 as it has a lower priority than w1 there. However, C({w1, w3}) = {w1}. Contradiction.

Hence, the distributional objective described above can be achieved by capacity-transfers
and cannot be implemented by slot-specific priorities.

However, as long as the ranking of contracts that have the same privilege type respects
the test score ordering in each slot, it is easy to see that for every diversity objective that
can be achieved by slot-specific priorities, there exists an initial target distribution of seats
to privilege types and a monotonic capacity-transfer scheme that achieves the same diversity
objective.

8 Conclusion

In this paper we have studied a matching problem with distributional concerns where agents
care not only about the institution they are matched with but also about the contractual
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terms of the contract with the institution. In other words, we expand the preference domain
of agents from institutions only to institutions-contractual terms pairs. Each institution
can be thought as a union of different divisions, where each division is associated with
exactly one contractual term. Institutions have target distributions over their divisions in
the form of reserves. If these reserves are considered to be hard bounds, then in the case
that demand for a particular division is less than its target capacity, some slots will remain
empty. To overcome this problem and to increase efficiency, we introduce capacity-transfers
across divisions when one or more of the divisions is not able to fill to its target capacity.
The capacity-transfer scheme is embedded into divisions’ choice functions, i.e., sub-choice
functions. The overall choice function of an institution can be thought of as the union of
choices with these sub-choice functions.

We offer the cumulative offer mechanism under monotonic capacity-transfers as an al-
location rule in merit-based object allocation problems where agents are ranked strictly
according to certain test scores. When each privilege has a q-responsive choice function ob-
tained from a strict priority ranking, the cumulative offer mechanism is stable and strategy
proof. Moreover, the cumulative offer mechanism respects improvement in test scores, i.e.,
improvement in the ranking of an agent. By introducing monotonic capacity-transfers in the
matching-with-contracts framework, we obtain efficiency gain in the sense that the outcome
of the cumulative offer algorithm under monotonic capacity-transfer Pareto dominates the
outcome of the cumulative offer algorithm without capacity-transfer.

9 Appendices

A. Formal Description of the Cumulative Offer Process

The cumulative offer process associated to proposal order Γ is the following algorithm

1. Let l = 0. For each s ∈ S, let D0
s ≡ ∅, and let A1

s ≡ ∅.

2. For each l = 1, 2, ...

Let i be the Γl−maximal agent i ∈ I such that i /∈ i( ∪
s∈S
Dl−1

s ) andmax
P i

(X\( ∪
s∈S
Al

s))i 6=
∅i− that is, the agent highest in the proposal order who wants to propose a new
contract− if such agent exists. (If no such agent exists, then proceed to Step 3, below.)
(a) Let x = max

P i
(X \ ( ∪

s∈S
Al

s))i be i’s most preferred contract that has not been pro-
posed.
(b) Let s = s(x). Set Dl

s = Cs(Al
s ∪ {x}) and set Al+1

s = Al
s ∪ {x}. For each s′ 6= s,

set Dl
s′

= Dl−1
s′

and set Al+1

s′
= Al

s′
.

31



3. Return the outcome

Y ≡ ( ∪
s∈S
Dl−1

s ) = ( ∪
s∈S
Cs(Al

s))

consisting of contracts held by institutions at the point when no agents want to propose
additional contracts.

Here, the sets Dl−1
s and Al

s denote the set of contracts held by and available to institution
s at the beginning of the cumulative offer process step l. We say that a contract z is rejected

during the cumulative offer process if z ∈ Al
s(z) but z /∈ D

l−1
s(z) for some l.

B. Substitutably Completable Choice Functions

Definition 17. (Hatfield and Kominers, 2015) A completion of a many-to-one choice func-
tion Cs of school s ∈ S is a choice function Cs such that for all Y ⊆ X, either Cs

(Y ) = Cs(Y )

or there exists a distinct z, z′ ∈ Cs
(Y ) such that i(z) = i(z

′
).

If a choice function Cs has a completion that is substitutable and satisfies the irrelevance
of rejected contracts condition, then we say that Cs is substitutably completable. If every
choice function in a profile of choice functions C is substitutably completable, then we say
that C is substitutably completable.

Theorem 5. (Theorem 1 of Hatfield and Kominers, 2015) If C is substitutably completable,
then there exists an outcome that is stable with respect to C.

The following is useful in proving our results as well.

Theorem 6. (Theorem 2 of Hatfield and Kominers, 2015) If C is substitutably completable,
then the outcome of the student-proposing deferred-acceptance algorithm under any sub-
stitutable completion of C is the same as the outcome of the student-proposing deferred-
acceptance algorithm under C; moreover, that outcome is stable under C.

Our proof for strategy proofness of the cumulative offer mechanism with respect to the
choice functions with capacity-transfers we developed is heavily based on the following result
from Hatfield and Kominers, 2015.

Theorem 7. (Theorem 3 of Hatfield and Kominers, 2015) Let ϕ(CI , CS) be the mecha-
nism that implements the student-proposing deferred-acceptance algorithm given choice pro-
file (CI , CS). If, for each s ∈ S, the choice function Cs has a substitutable completion that
satisfies the law of aggregate demand, then ϕ(CI , CD) is (group) strategy-proof for students.
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Substitutable Completion of the Choice Function We Introduced

Let Cs be a choice function of school s ∈ S in the following way:

• Given qst1 and Y = Y
0 ⊆ X, let Y 1 ≡ Cs

t1
(Y

0
, qst1) be the set of chosen contracts with

privilege t1. Then, let r̃1 = qst1− | Y 1 | and Y
1

= Y
0 \ Y 1.

• For j ∈ {2, ..., k}, given the set of remaining contracts Y j−1 and the capacity q̃stj =

qstj(r̃1, ..., r̃j−1) ≥ qstj , let Y j ≡ Cs
tj

(Y
j−1
, q̃stj) be the set of chosen contracts with priv-

ilege tj, where the capacity of the group of seats for agents with privilege tj is a
function of the number of unused seats from the previous groups. Let r̃j = q̃stj− | Y j |
be the number of unused seats that were reserved for agents with privilege tj. Then,
Y

j
= Y

j−1 \ Y j.

• Given the set of contracts Y = Y
0 and the capacity qst1 of the group of seats reserved

for students with privilege t1, we define the overall choice function of school s ∈ S as

C
s
(Y ) =

k
∪
j=1

Cs
tj

(Y
j−1
, qstj(r̃1, ..., r̃j−1)).

The lemma below shows that the choice function above is the completion of the choice
function we define in section 3.2.

Lemma 1. Cs is a completion of Cs.

Proof. For a given Y = Y
0 ⊆ X, assume there is no pair of contracts z, z′ ∈ X such that

i(z) = i(z
′
) and z, z′ ∈ Cs

(Y ). If Cs is a completion of Cs, then Cs
(Y ) = Cs(Y ) must be

satisfied.
Given q̄st1 and Y = Y

0 ⊆ X, we have Y 1 = Cs
t1

(Y
0
, q̄st1) = Y1 due to the construction of

C
s. Moreover, r̃1 = r1 and q̃st2 = qst2 .
For t2, given the set of remaining contracts Y 1 and the capacity q̃st2 , we have Y 2 =

Cs
t2

(Y
1
, q̃st2). Since there are no two contracts of a student chosen by C

s, we can deduce
that all of the remaining contracts of agents whose contracts are chosen by Cs

t1
(Y

0
, q̄st1) are

rejected by Cs
t2

(Y
1
, q̃st2). Therefore, equality of capacities and the IRC of sub-choice functions

imply Cs
t2

(Y
1
, q̃st2)=C

s
t2

(Y
1
, qst2)=C

s
t2

(Y 1, qst2). Hence, we have Y 2 = Y2, r̃2 = r2, and q̃st3 = qst3 .
For tj where j ∈ {3, ..., k}, given the set of remaining contracts Y j−1 and the capacity

q̃stj , we have Y j = Cs
tj

(Y
j−1
, q̃stj). Since there are no two contracts of an agent chosen by Cs,

one can deduce that all of the remaining contracts of agents whose contracts are chosen by
previous sub-choice functions are rejected by Cs

tj
(Y

j−1
, q̃stj). Therefore, equality of capacities

and the IRC of sub-choice functions imply that Cs
tj

(Y
j−1
, q̃stj)=C

s
tj

(Y
j−1
, qstj)=C

s
tj

(Y j−1, qstj).
Hence, we have Y j = Yj, r̃j = rj, and q̃stj+1

= qstj+1
.
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Given the set of contracts Y and the capacity q̄st1 of the group of seats reserved for

students with privilege t1, we have Cs(Y ) =
k
∪
j=1

Yj=
k
∪
j=1

Y j = C
s
(Y ).

The completion defined above satisfies the IRC as stated in the following lemma.

Lemma 2. Cs satisfies the IRC.

Proof. For any Y ⊆ X such that Y 6= C
s
(Y ), let x be one of the rejected contracts, i.e., x ∈

Y \Cs
(Y ). To show that the IRC is satisfied, we need to prove that Cs

(Y ) = C
s
(Y \{x}). Let

Ỹ = Y \ {x}. Suppose (Y j, r̄j, Y
j
) and (Ỹj, r̃j, Ỹ

j) denote the sequence of chosen contracts,
the number of vacant slots, and the remaining set of contracts for each privilege type from
Y and Ỹ , respectively.

For privilege t1, since the sub-choice functions satisfy the IRC, we have Y 1 = Ỹ1. More-
over, r̄1 = r̃1 and Y

1 \ {x} = Ỹ 1. By induction, for each tj where j ∈ {2, ..., k}, since
each sub-choice function is assumed to satisfy the IRC, we have Y j = Ỹj, r̄j = r̃j, and
Y

j \ {x} = Ỹ j. Since for all j ∈ {1, ..., k}, Y j = Ỹj, we have Cs
(Y ) = C

s
(Ỹ ). Hence, Cs

satisfies the IRC.

The completion we define satisfies the substitutability condition, as well.

Lemma 3. Cs is a substitutable choice function.

Proof. For any Y ⊆ X such that Y 6= C
s
(Y ), let x be one of the rejected contracts and let z

be an arbitrary contract in X\Y , i.e., x ∈ Y \Cs
(Y ) and z ∈ X\Y . To show substitutability,

we need to show that x /∈ Cs
(Y ∪{z}). Let Ỹ = Y ∪{z}. Suppose (Y j, r̄j, Y

j
) and (Ỹj, r̃j, Ỹ

j)

denote the sequence of chosen contracts, the number of vacant slots, and the remaining set
of contracts for each privilege type from Y and Ỹ , respectively.

If z ∈ Ỹ \ Cs
(Ỹ ), then by the IRC of Cs, Cs

(Ỹ ) = C
s
(Y ). Therefore, x /∈ Cs

(Ỹ ).
Now, let z ∈ Cs

(Ỹ ). First, let j ′ be the privilege type such that z ∈ Ỹj′ . For any j < j
′ ,

by the IRC of sub-choice functions, x /∈ Ỹj = Y j. For the privilege tj′ , by the substitutability
of sub-choice functions, x /∈ Ỹj′ . Also, since sub-choice functions satisfy the LAD, we have
r̃j′ ≤ r̄j′ . By the monotone capacity-transfer scheme, qst

j
′
+1

(r̃1, ..., r̃j) ≤ qst
j
′
+1

(r̄1, ..., r̄j).

Moreover, by substitutability of sub-choice functions, Y j
′

⊆ Ỹ j
′
.

For privilege tj′+1, lower capacity and QM imply that x /∈ Cs
t
j
′
+1

(Ỹ j
′
, qst

j
′
+1

(r̃1, ..., r̃j′ )) ⊆
Y j′+1. Also, by the substitutability of sub-choice functions,

Y
j
′

⊆ Ỹ j
′

=⇒ x /∈ Cs
t
j
′
+1

(Ỹ j
′

, qs
j′+1

(r̃1, ..., r̃j′ )) = Ỹj′+1.
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Also, by the QM and LAD, r̃j′+1 ≤ r̄j′+1. By the monotone capacity-transfer scheme,
qst

j
′
+2

(r̃1, ..., r̃j′+1)≤qsj′+2
(r̄1, ..., r̄j′+1). Moreover, by the substitutability of sub-choice func-

tions, Y j
′
+1 ⊆ Ỹ j

′
+1.

By induction, for tj where j ∈ {j
′
+1, ..., k}, lower capacity and QM imply that x /∈Cs

tj
(Y

j−1
, qstj(r̃1, ..., r̃j−1))⊆

Y j. Also, by substitutability of sub-choice functions,

Y
j−1 ⊆ Ỹ j−1 =⇒ x /∈ Cs

tj
(Ỹ j−1, qstj(r̃1, ..., r̃j−1)) = Ỹj.

Since, for all j ∈ {1, ..., k}, x /∈ Ỹj, we have x /∈ C
s
(Ỹ ). Hence, Cs is a substitutable

choice function.

The last lemma in this section states that the completion defined satisfies the LAD.

Lemma 4. Cs satisfies the LAD.

Proof. For any Y ⊆ Ỹ ⊆ X, let (Y j, r̄j, Y
j
) and (Ỹj, r̃j, Ỹ

j) denote the sequence of chosen
contracts, the number of vacant slots, and the remaining set of contracts for each privilege
type from Y and Ỹ , respectively. To prove the LAD, we need to show that | Cs

(Y ) |≤|
C(Ỹ ) |.

For privilege t1, since the sub-choice functions satisfy the LAD, we have | Y 1 |≤| Ỹ1 |.
Therefore, r̃1 ≤ r̄1. Moreover, substitutability of sub-choice functions implies Y 1 ⊆ Ỹ 1.

Suppose that for some privilege tj, Y
j−1 ⊆ Ỹ j−1 and r̃l ≤ r̄l for all l ≤ j. We need to

show that the same statements hold for the privilege tj+1 as well. For privilege tj, by the
inductive assumption, qstj(r̃1, ..., r̃j−1)≤ qstj(r̄1, ..., r̄j−1). Moreover, by the LAD and QM of
sub-choice functions, the following inequalities hold:

| Y j | − | Ỹj |≤| Y j | − | Cs
tj

(Y
j−1
, qstj(r̃1, ..., r̃j−1)) |≤ qstj(r̄1, ..., r̄j−1)−q

s
tj

(r̃1, ..., r̃j−1) ≤ r̄j−r̃j.

Therefore, r̃2 = qst2(r̃1)− | Ỹ2 |≤ qst2(r̄1)− | Y 2 |= r̄2. The first inequality above is due to
the LAD, and the second and the third inequalities follow from the QM. Also, by the QM,
we can deduce:

Cs
tj

(Y
j−1
, qstj(r̃1, ..., r̃j−1)) ⊆ Y j, or

(Y
j−1 \ Y j

) ⊆ (Y
j−1 \ Cs

tj
(Y

j−1
, qstj(r̃1, ..., r̃j−1))),

and by the substitutability of sub-choice functions
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(Y
j−1 \ Cs

tj
(Y

j−1
, qstj(r̃1, ..., r̃j−1))) ⊆ (Ỹ j−1 \ Ỹ j).

So, we have Y j ⊆ Ỹ j. Hence, by our induction, r̃j ≤ r̄j, for all j.
Now, let the sequence kj be the difference in vacant slots, i.e., r̄j = r̃j + kj for all j. The

definitions of sequences r̄j and r̃j imply | Ỹj |=qstj(r̃1, ..., r̃j−1)−q
s
tj

(r̄1, ..., r̄j−1)+| Y j | +kj.
Hence,

j∑
l=1

| Ỹl |=
j∑

l=1

| Y l | +
j∑

l=1

[kl − (qstl(r̄1, ..., r̄l−1)− q
s
tl
(r̃1, ..., r̃l−1))],

j∑
l=1

| Ỹl |≥
j∑

l=1

[| Y l | +qstj(r̄1, ..., r̄l−1)− q
s
tj

(r̃1, ..., r̃l−1)],

j∑
l=1

| Ỹj |≥
j∑

l=1

| Y j | .

where the first inequality follows from the second part of the monotonicity definition, and
the second inequality follows from the first part of the definition of monotonicity. Since j is
arbitrary, the above inequality implies | Cs

(Y ) |≤| Cs
(Ỹ ) |, which completes the proof.

C. Proofs Omitted from the Main Text

• Proof of Proposition 1:

Proof. Take a set of contracts Y ⊆ X and a contract z ∈ X \ Y such that z /∈ Cs(Y ∪ {z}).
We need to prove that Cs(Y ) = Cs(Y ∪{z}). Suppose that t(z) = tj. Then the contract z is
not chosen by the sub-choice function of the privilege types tl, l = 1, ..., j−1. Note that if any
other contract of the agent i(z) is chosen by the sub-choice functions of privileges t1, ..., tj−1,
the proof is done because when another contract of agent i(z) is chosen at any step, the
contract z is removed from the process for the remaining steps. So we will consider the
non-trivial case where none of the contracts of agent i(z) are chosen up to the privilege type
tj. Since all the sub-choice functions satisfy IRC up to privilege type tj, the same contracts
will be chosen from the sets Y and Y ∪{z} by the sub-choice functions Cs

t1
(·, ·), ..., Cs

tj−1
(·, ·),

respectively. Let us denote the number of unused seats for privilege type tl from the initial
contract sets Y and Y ∪ {z} as rl and r̃l, respectively. Since t(z) = tj, we have rl = r̃l

for l = 1, ..., j − 1. This implies that qstj(r1, ..., rj−1) = qstj(r̃1, ..., r̃j−1). Let us denote the
remaining set of contracts after the choice by the choice function of privilege type tl from
the initial contract sets Y and Y ∪ {z} as Y land Ỹ l, respectively.
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By our assumption, we know that z /∈ Cs
tj

(Ỹ j−1, qstj(r̃1, ..., r̃j−1)) and Ỹ j−1 = Y j−1 ∪
{z}. By the IRC of the sub-choice function Cs

tj
(·, ·), we obtain C(Ỹ j−1, qstj(r̃1, ..., r̃j−1)) =

Cs
tj

(Y j−1, qstj(r1, ..., rj−1)). Also, rj = r̃j. If i(z) ∈ i[Cs
tj

(Ỹ j−1, qstj(r̃1, ..., r̃j−1))], then the
contract z is removed from the process. Otherwise, we have Ỹ j = Y j ∪ {z}. Since
qstj+1

(r1, ..., rj) = qstj+1
(r̃1, ..., r̃j) the same argument holds for the privilege type tj+1. By

proceeding in the same fashion, we obtain C(Ỹ l, qstj(r̃1, ..., r̃l)) = Cs
tj

(Y l, qstj(r1, ..., rl)) for all
l = 1, ..., k. Hence, we have Cs(Y ) = Cs(Y ∪ {z}).

• Proof of Proposition 2:

Proof. Since all sub-choice functions satisfy IRC, the overall choice function satisfies IRC as
well by Proposition 1. In order to prove that the overall choice function satisfies WS, we take a
set of contracts Y ⊆ X and two contracts x, z ∈ X\Y such that | Y ∪{x, z} |=| i(Y ∪{x, z}) |.
Suppose that z /∈ Cs(Y ∪ {z}). We need to show that z /∈ Cs(Y ∪ {x, z}). We consider two
cases:

Case 1: x /∈ Cs(Y ∪{x, z}). Since the overall choice function satisfies IRC, we then have
Cs(Y ∪ {x, z}) = Cs(Y ∪ {z}). Hence, by our assumption, we have z /∈ Cs(Y ∪ {x, z}).

Case 2: x ∈ Cs(Y ∪ {x, z}). Let the privilege type of agent i(x) be t(x) = tj where
j ∈ {1, ..., k}. Then for each l /∈ {1, ..., j − 1}, neither x nor z are chosen by sub-choice
functions. By IRC of sub-choice functions, since x is not chosen by the sub-choice functions
of privileges t1, ..., tj−1, sub-choices from the sets (Y ∪ {z}) and (Y ∪ {x, z}) for privilege
types t1, ..., tj−1 are identical. Hence, the number of unused seats of privilege types t1, ..., tj−1
from the sets (Y ∪{z}) and (Y ∪{x, z}) are the same, i.e., rl = r̃l for every l ∈ {1, ..., j− 1}.
This implies that the capacity of privilege type tj, qstj(r1, ..., rj−1), is equal to q

s
tj

(r̃1, ..., r̃j−1).
Let Y l be the set of remaining contracts after sub-choice for privilege type tj from the set
(Y ∪ {z}) and Ỹ l be the set of remaining contracts after sub-choice for privilege tj from the
set (Y ∪ {x, z}). Note that Ỹ l = Y l ∪ {x} for all l ∈ {1, ..., j − 1}.

Let Yj and Ỹj be the set of chosen contracts by sub-choice functions for privilege tj from
the sets (Y ∪ {z}) and (Y ∪ {x, z}), respectively. By the weak substitutability of sub-choice
functions for privilege tj, we have z /∈ Ỹj. It is easy to see that Y j ⊆ Ỹ j because otherwise
there exists a contract y ∈ Y j (means y /∈ Yj) but y /∈ Ỹ j (means y ∈ Ỹj). Since each agent
has only one contract, we have contradiction with the fact that sub-choice functions satisfy
weak substitutability (WS). By the LAD of the sub-choice functions, we have | Yj |≤| Ỹj |.
Hence, we have qstj+1

= qstj+1
(r1, ..., rj) ≥ q̃stj+1

= qstj+1
(r̃1, ..., r̃j) by monotonicity of the

capacity-transfer scheme as rj ≥ r̃j and rl = r̃l for every l ∈ {1, ..., j − 1}.
By our assumption, we know that z /∈ Cs

tj+1
(Y j, qstj+1

). By QM of sub-choice functions, we
have z /∈ Cs

tj+1
(Y j, q̃stj+1

). Then, WS and IRC of sub-choice functions imply that z /∈ Ỹj+1 =
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Cs
tj+1

(Ỹ j, q̃stj+1
). By the LAD of sub-choice functions, we have | Yj+1 |≤| Ỹj+1 |. This implies

that rj+1 ≥ r̃j+1, and, hence, qstj+2
(r1, ..., rj+1) ≥ qstj+2

(r̃1, ..., r̃j+1) by the monotonicity of
the capacity-transfer scheme. Also, it is easy to see that Y j+1 ⊆ Ỹ j+1. Repeating the
same arguments for the rest of the privileges gives us z /∈ Cs(Y ∪ {x, z}) and completes the
proof.

Lemma 5. Take Y ⊆ X and x, z ∈ X \ Y such that i(x) 6= i(y) and i(x), i(z) /∈ i(Y ).
Suppose that z /∈ Cs(Y ∪ {z}). Set Y 0 = Y ∪ {z} and Ỹ 0 = Y 0 ∪ {x}. Suppose also
that x ∈ Ỹj = Cs

tj
(Ỹ j−1, qstj(r̃1, ..., r̃j−1)). Let Y j = Y j−1 \ {x ∈ Y j−1 : i(x) /∈ i(Yj)} and

Ỹ j = Ỹ j−1 \ {x ∈ Ỹ j−1 : i(x) /∈ i(Ỹj)}. Then, Y j ⊆ Ỹ j.

Proof. Assume not. Then there exists a contract y ∈ Y j such that y ∈ Ỹj (hence, y /∈ Ỹ j) and
i(y) /∈ i(Yj). Since none of the contracts of agent i(y) are chosen from Y j−1, removing them
from Y j−1 does not change the set of chosen contracts by IRC of the sub-choice function, i.e.,
construct the set A =Y j−1\{y′ ∈ Y j−1 : i(y

′
) = i(y)}, and we have Cs

tj
(A, q) = Cs

tj
(Y j−1, q).

Now consider the choice from the sets A ∪ {y} and Ỹ j−1. We have y /∈ Cs
tj

(A ∪ {y},q).
Notice that y is the only contract of agent i(y) in A∪ {y}. Now consider the set A∪ {x, y}.
Since y ∈ Ỹj, by the IRC of the sub-choice function, we have y ∈ Cs

tj
(A ∪ {x, y}, q). This

contradicts with the BS of the sub-choice function because y /∈ Cs
tj

(A ∪ {y},q) and yet
y ∈ Cs

tj
(A ∪ {x, y}, q). This completes the proof.

• Proof of Proposition 3:

Proof. Since all sub-choice functions satisfy IRC, the overall choice function satisfies IRC
as well by Proposition 1. To prove that the overall choice function also satisfies bilateral
substitutability, consider a set of contracts Y ⊆ X and contracts x, z ∈ X \ Y such that
i(x), i(z) /∈ i(Y ). Suppose that z /∈ Cs(Y ∪ {z}). We need to show that z /∈ Cs(Y ∪ {x, z}).
There are two cases to consider:

Case 1 : x /∈ Cs(Y ∪ {x, z}).
Since the overall choice function satisfies IRC, we then have Cs(Y ∪{x, z}) = Cs(Y ∪{z}).

Hence, by our assumption, we have z /∈ Cs(Y ∪ {x, z}).
Case 2: x ∈ Cs(Y ∪ {x, z}).
There exist j ∈ {1, ..., k} such that x ∈ Ỹj = Cs

tj
(Ỹ j−1, qstj(r̃1, ..., r̃j−1)). For all i ∈

{1, ..., j − 1}, we know that x /∈ Ỹi and z /∈ Yi by our assumptions. Then, by the BS of sub-
choice functions of the privileges t1, ..., tj−1, we have z /∈ Ỹi. Also note that Ỹ i = Y i ∪ {x}
and z ∈ Y i for all i ∈ {0, 1, .., j − 1}. By Lemma 1, we know that Y j ⊆ Ỹ j. Also, since
r1 = r̃1,...,rj−1 = r̃j−1 we have qstj(r1, ..., rj−1) = qstj(r̃1, ..., r̃j−1). By the LAD, we know that
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| Yj |≤| Ỹj |. Hence we have qstj+1
(r1, ..., rj) ≥ qstj+1

(r̃1, ..., r̃j) by the monotonicity of the
capacity-transfer scheme.

We need to prove that z /∈ Cs
tj+1

(Ỹ j, qstj+1
(r̃1, ..., r̃j)). We know, by our assumption, that

z /∈ Cs
tj+1

(Y j, qstj+1
(r1, ..., rj)) where Y j ⊆ Ỹ j and qstj+1

(r1, ..., rj) ≥ qstj+1
(r̃1, ..., r̃j). Also, no-

tice that i(Ỹ j\Y j)∩i(Y j) = ∅. By QM of the sub-choice functions z /∈ Cs
tj+1

(Y j, qstj+1
(r1, ..., rj))

implies z /∈ Cs
tj+1

(Y j, qstj+1
(r̃1, ..., r̃j)). If i(Ỹ j \ Y j) /∈ i(Ỹj+1), then by the IRC of the sub-

choice function we have z /∈ Ỹj+1. Otherwise, there must exist y′ ∈ Ỹ j \ Y j such that
y
′ ∈ Ỹj+1 = Cs

tj+1
(Ỹ j, qstj+1

(r̃1, ...r̃j)). Note that i(y′) /∈ i(Y j). Let {y′ , ..., w′} be the set
of contracts in Ỹ j \ Y j such that each of them is chosen by Ỹj+1. By the IRC of the
sub-choice function, removing the other contracts of the doctors i({y′ , ..., w′}) from the
set Ỹ j does not change the chosen set. Therefore, Cs

tj+1
(Ỹ j, qstj+1

(r̃1, ...r̃j)) = Cs
tj+1

(Y j ∪
{y′ , ..., w′}, qstj+1

(r̃1, ..., r̃j)). The BS of the sub-choice function implies z /∈ Cs
tj+1

(Y j ∪
{y′ , ..., w′}, qstj+1

(r̃1, ..., r̃j)). Hence, z /∈ Ỹj+1.

We now need to prove Y j+1 ⊆ Ỹ j+1 . Take y ∈ Y j+1. We know that y /∈ Yj+1. Then,
by QM, this implies that y /∈ Cs

tj+1
(Y j, qstj+1

(r̃1, ..., r̃j)). Finally, BS and IRC imply that
y /∈ Ỹj+1 = Cs

tj+1
(Ỹ j, qstj+1

(r̃1, ..., r̃j)), i.e., y ∈ Ỹ j+1.
To finish the proof, we need to show that r̃j+1 ≤ rj+1, i.e., qj+1(r̃)− | Ỹj+1 |≤ qj+1(r)−

| Yj+1 |. By the monotonicity of the capacity-transfer scheme, we have q̃j+1 ≤ qj+1. By
the LAD, this implies | Cs

tj+1
(Y j+1, qsj+1(r)) | − | Cs

tj+1
(Y j+1, qsj+1(r̃)) |≤ qsj+1(r) − qsj+1(r̃).

Again by the LAD, we obtain | Cs
tj+1

(Ỹ j+1, qsj+1(r̃)) |≥| Cs
tj+1

(Y j+1, qsj+1(r̃)) |. The last two
inequalities together imply that
| Yj+1 | − | Ỹj+1 |=| Cs

tj+1
(Y j+1, qsj+1(r)) | − | Cs

tj+1
(Ỹ j+1, qsj+1(r̃)) |≤ qsj+1(r)− qsj+1.

Since the same observations apply to all of the remaining privileges after tj+1, this ob-
servation ends the proof.

• Proof of Proposition 6:

Proof. Towards a contradiction, let t′ be the first step a school s holds a contract z it
previously rejected at step t < t

′ . Since z is rejected by school s at step t, there are two
cases to consider:

(i) z was on hold at step (t− 1), i.e., z ∈ Cs(As(t− 1)), or
(ii) z was offered to school s at step t, i.e., z = As(t) \ As(t− 1).
In either case no other contract of student i(z) could be on hold by school s at Step

(t − 1). But then, since z is the first contract to be held after an earlier rejection, school s
cannot have held another contract by student i(z) at Step t. That is,

i(z) /∈ i[Cs(As(t))],
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Then by IRC z ∈ As(t) \ Cs(As(t)) implies that

z /∈ Cs(Cs(As(t)) ∪ {z}),

and yet
z ∈ Cs(As(t

′
)).

Consider every step t
′′ in the cumulative offer algorithm where t < t

′′ ≤ t
′ . In each stage

one of the following cases occurs:
(i) a new contract, x, from another student with the same privilege type as t(z) is offered,

i.e., i(x) 6= i(z) but t(x) = t(z) = tj,
(ii) a new contract, x, from another student with a different privilege type than t(z) is

offered, i.e., i(x) 6= i(z) and t(x) 6= t(z) = tj, or
(iii) a new contract from student i(z), z′ , with a different privilege type than t(z) is

offered, i.e., i(z′) = i(z) but t(z′) 6= t(z) = tj.
In each case and for each step of the cumulative offer algorithm between steps t and t′ ,

we will show that z is not going to be recalled.
(i) In this case note that both rl and Yl for l = 1, ..., j − 1 remain unchanged. Hence the

capacity of the privilege type tj will be as same as the capacity before receiving the offer x.
Since �tj is responsive with capacity qstj , z will be rejected as it was before the arrival of the
contract x, because now competition for slots is higher.

(ii) There are several sub-cases to consider in this case. If the contract x is chosen by a
sub-choice function of a privilege tl where l > j, then the contract z will be rejected again
since the capacity of the privilege type tj and all the chosen contracts Yk where k < j will
be the same. If the contract x is chosen by any privilege type tl where l < j, the number
of unused seats for all the privileges after the privilege tl will be weakly smaller. By the
monotonicity of capacity-transfer scheme, the capacity of the privilege type tj will be weakly
smaller. Note that the contract x cannot be the contract of any student whose contract is
on hold at the privilege type tj by the dynamics of the cumulative offer algorithm. Finally,
if the contract x is not chosen by any of privileges, then by the IRC of the overall choice
function z will be rejected.

(iii) For this case there are several cases to consider as well. If z′ is not chosen by any
privileges by the IRC of the overall choice function, z will be rejected. If z′ is chosen by the
privilege t(z′) = tl where l < j, then the contract z will be removed from the process by
the definition of our choice function, and, hence, z will be rejected again. If z′ is chosen by
a privilege t(z′) = tl where l > j, then neither the number of unused seats rk where k < j

nor the set of chosen contracts Yk where k < j changes. Privilege type tj will have the same
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capacity as it had before the arrival of z′ . Therefore, z will be rejected.
Hence it contradicts with z ∈ Cs(As(t

′
)).

• Proof of Proposition 7:

Proof. Let Y be the outcome of the cumulative offer algorithm. Since agents/students only
offer their acceptable contracts during the cumulative offer process, we have Ci(Y ) = Yi for
all i ∈ I. Towards a desired contradiction, suppose that Y is not stable. Then, there must
exist a school s ∈ S and a set of blocking contracts Z 6= Cs(Y ) such that Z = Cs(Y ∪ Z)

and Zi = Ci(Y ∪ Z) for all i ∈ i(Z). Consider an agent/student j ∈ i(Z) where ZjP
jYj.

By the definition of the cumulative offer algorithm, agent j must have offered contract Zj

before offering the contract Yj. Since Zj /∈ Y , then Zj must have been rejected at some step
of the cumulative offer process. It holds for every agent whose more preferred contract in
Y compared to their contract in Z. So there is a step t of the cumulative offer process in
which (Y ∪ Z) ⊆ As(t). By Proposition 6, a rejected contract during the cumulative offer
algorithm cannot be on hold at a further step under the monotone capacity-transfer scheme,
i.e., there is no renegotiation. It contradicts with our assumption that Z = Cs(Y ∪ Z).

• Proof of Theorem 2:

Proof. Lemmas 1-3 show that Cs is substitutably completable. Moreover, Lemma 4 shows
that the substitutable completion of Cs, Cs, satisfies the LAD. Therefore, our Theorem 2 is
a corollary of Theorem 3 in Hatfield and Kominers, 2015.

• Proof of Theorem 3:

Proof. Fix a student i and let �′ be an unambiguous improvement for student i over �.
We will first consider the outcome of the cumulative offer mechanism under a monotone

capacity-transfer when the sub-choice functions for each school are induced from strict pri-
ority rankings �′t1 ,�

′
t2
, ...,�′tk , respectively. Recall that, by Remark 1, the order of students

making offers has no impact on the outcome of the cumulative offer algorithm. Therefore, we
can obtain the outcome of the cumulative offer algorithm when the strict ranking of students
according to test scores is �′ : First, entirely ignore student i and run the cumulative offer
algorithm until it stops. Let X ′ be the resulting set of contracts. At this point, student i
makes an offer for her first-choice contract x1. Her offer may cause a chain of rejections,
which may eventually cause contract x1 to be rejected as well. If that happens, student i
makes an offer for her second choice x2, which may cause another chain of rejections, and
so on. Let this process terminate after student i makes an offer for her lth choice contract

41



xl. There may still be a chain of rejections after this offer, but it does not reach student i
again. Hence, student i receives her lth choice under ΦCOM(�′).

Next consider the outcome of the cumulative offer mechanism under the same monotone
capacity-transfer when the sub-choice functions for each school are induced from strict pri-
ority rankings �t1 ,�t2 , ...,�tk , respectively. Initially entirely ignore student i and run the
cumulative offer algorithm until it stops. Since the only difference between the two scenarios
is the standing of student i in the priority list, X ′ will again be the resulting set of contracts.
Next, student i makes an offer for her first-choice contract x1. Since �′ is an unambiguous
improvement for student i over �, precisely the same sequence of rejections will take place
until she makes an offer for her lth choice contract xl. Therefore, student i cannot receive
a better contract than her lth choice under ΦCOM(�), even though she can receive a worse
contract than her lth choice if the rejection chain returns back to her.

• Proof of Theorem 4:

Proof. Consider two problems (I, S, P |I|,�, (q̄stj)s∈S) and (I, S, P |I|,�, (qstj(r1, ..., rj−1))s∈S) in
which the first one has no capacity-transfer while the second one allows monotone capacity-
transfer across different privilege types; everything else is the same in both problems. Note
that for every institution s ∈ S and all privilege types tj, j = 1, ..., k, we have qstj(r1, ..., rj−1) ≥
q̄stj .

We need to show that each agent i ∈ I obtains a weakly better outcome in the cumulative
offer algorithm with monotone capacity-transfer than she obtains in the cumulative offer
algorithm without capacity-transfer. Consider the following proposal order �, the strict
ranking of agents according to test scores. Let i1− i2− ...− in be the enumeration of agents
according to � where i1 has the highest test score, i2 has the second highest test score, and
so on. Let I ′il ≡ {ij ∈ I: j < l} be the set of agents who have higher test scores than agent
il. We are going to prove the theorem by induction on students following the proposal order
�.

The first ranked student according to� obtains the same outcome under both a monotone
capacity-transfer scheme and no capacity-transfer. Hence, he weakly prefers the assignment
from the second problem over the assignment from the first problem. Suppose that x′l is the
contract agent il obtains in the cumulative offer algorithm with monotone capacity-transfer
and xl is the contract she obtains from the cumulative offer algorithm with no capacity-
transfer. Assume that for all l ≤ L, x′lRilxl. We need to show that this also holds for agent
iL+1, i.e., x

′
L+1R

iL+1xL+1. Assume not. Suppose that agent iL+1 obtains a contract y in the
cumulative offer algorithm with monotone capacity-transfer such that xL+1P

iL+1y where xL+1

is the contract she obtains in the cumulative offer algorithm without capacity-transfer. We
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know that qs(xL+1)

t(xL+1)
(r) ≥ q̄

s(xL+1)

t(xL+1)
by the monotone capacity-transfer. Also, by our inductive

hypothesis, the set of agents in (I
′
iL+1
∩Xs(xL+1) ∩Xt(xL+1)) whose contracts are not on hold

in the cumulative offer algorithm with monotone capacity-transfer at the step where agent
iL+1 offers her contract xL+1 is contained by the set of agents in (I

′
iL+1
∩Xs(xL+1) ∩Xt(xL+1))

whose contracts are not on hold in the cumulative offer algorithm without capacity-transfer
at the step where agent iL+1 offer her contract xL+1. Then, this means that when there are
weakly more seats available and there are fewer agents whose scores are higher than agent
iL+1 in the privilege type t(xL+1) at institution s(xL+1), her contract xL+1 is rejected, while
it is accepted when there are weakly more students whose scores are higher than iL+1 vying
for a seat in the same institution and for the same privilege type, and there are weakly less
seats available. This contradicts with the construction of our sub-choice functions, which
are q-responsive. Hence, x′L+1R

iL+1xL+1 completes the proof.
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