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Abstract. This paper builds a continuous time model of N heterogeneous

agents whose CRRA preferences differ in their level of risk aversion and con-
siders the Mean Field Game (MFG) in the limit as N becomes large. I add to

the previous literature by characterizing the limit in N and by studying the

short run dynamics of the distribution of asset holdings. I find that agents dy-
namically self select into one of three groups depending on their preferences:

leveraged investors, diversified investors, and saving divestors, driven by a

wedge between the market price of risk and the risk free rate. The solution is
characterized by dependence on individual holdings of the risky asset, which in

the limit converge to a stochastic flow of measures. In this way, the mean field

is not dependent on the state, but on the control, making the model unique
in the literature on MFG and providing a convenient approach for simulation.

I simulate both the finite types and continuous types economies and find that
both models match qualitative features of real world financial markets. How-

ever, the continuous types economy is more robust to the definition of the

support of the distribution of preferences and computationally less costly than
the finite types economy.

Introduction

Each day, trillions of dollars worth of financial assets change hands. Being simply
a piece of paper, a financial security gives its bearer the right to a stream of future
dividends and capital gains for the infinite future. The price of this abstract object
is so difficult to determine that if you ask two analysts for an exact price they will
generally disagree. This fact has been well documented in studies such as Andrade
et al. (2014) or Carlin et al. (2014). These observations are in direct contrast to
a representative agent model of financial markets. Take for instance the aspect of
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trade in financial assets previously mentioned. With a single agent there can be no
exchange because there is no counter party. We look for a set of prices to make the
representative agent indifferent to consuming everything, holding the entire capital
stock, etc. In order to have exchange in an economic model we must introduce two
or more agents who are heterogeneous in some way.

In this paper I build a continuous time model of heterogeneous risk prefer-
ences and study the limit as N → ∞. The majority of the theoretical work
on heterogeneous risk preferences focuses on two agents (Dumas (1989); Coen-
Pirani (2004); Guvenen (2006); Bhamra and Uppal (2014); Chabakauri (2013);
Gârleanu and Panageas (2015); Cozzi (2011)). My work most closely resembles
that of Cvitanić et al. (2011), who study an economy populated by N agents who
differ in their risk aversion parameter, their rate of time preference, and their be-
liefs. However, they focus on issues of long run survival and price. I build on their
results by studying how changes in the distribution of preferences effect the short
run dynamics of the model, while focusing on a single aspect of heterogeneity: risk
aversion. Additionally, I take their work to the limit as N →∞. This formulation
results in very similar results in terms of economic intuition, but simulation is more
robust and one can explicitly model the distribution of preferences.

Models of a continuum of agents are not necessarily new, but the study of such
models in continuous time stochastic settings has recently garnered a large amount
of attention thanks to a series of papers by Jean-Michel Lasry and Pierre-Louis
Lions (Lasry and Lions (2006a), Lasry and Lions (2006b), Lasry and Lions (2007)).
These authors studied the limit of N -player stochastic differential games as N →∞
and agents’ risk is idiosyncratic, dubbing the system of equations governing the limit
a ”Mean Field Game” (MFG). Their work has then been applied to macroeconomics
in works such as Moll (2014) and Achdou et al. (2014). However, these papers focus
on idiosyncratic risk and do not study the problem of aggregate shocks. Recent
work, such as Carmona et al. (2014), Carmona and Delarue (2013), Chassagneux
et al. (2014), and Cardaliaguet et al. (2015) to name but a few, has focused on the
issue of analyzing equilibria in MFG models with common noise. The approach
is often to use a stochastic Pontryagin maximum principle to derive a system of
forward-backward stochastic differential equations governing the solution. In this
paper I take a different approach, solving a MFG model with common noise using
Girsanov theory and the martingale method, a tool ubiquitous in finance. The
solution is characterized by mean field dependence through the control, as opposed
to the state, and the equilibrium is a stochastic field described by an Ito diffusion
process. This result is reminiscent of infinite dimensional models of the term struc-
ture (Carmona and Tehranchi (2007)), but where the cylindrical Brownian motion
is homogeneous in the state. This points towards a new way to consider control
in the mean field setting, where one begins from an infinite dimensional space and
models the idiosyncratic risk and aggregate risk as a correlated cylindrical Brownian
motion.

The qualitative features of the economy which are matched by models of het-
erogeneous preferences are characterized by non-stationary paths. When returns
are endogenous and we allow there to exist inherent differences in agents’ risk pref-
erences, the problem ceases to be time consistent and we end up with constantly
shifting distributions of wealth and consumption. Additionally, financial variables
cease to take on steady state values. The dynamics of financial variables become
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themselves stochastic and the number of state variables explodes. Although this
time inconsistency and growth in the number of state variables makes the use of dy-
namic programming impossible1, we can employ the martingale method pioneered
by Harrison and Pliska (1981) and further refined by Karatzas et al. (1987). In
fact, the time-inconsistent nature of the problem may be the very characteristic
that brings it closer to the real world. I think few people would claim that interest
rates and dividend yields are stationary processes (see Figure 1; sources: FRED,
Yahoo! Finance), but that they have exhibited clear downward trends since the
1980s This paper finds that these trends are consistent with an economy populated
by agents with heterogeneous risk preferences.

(a) 3 month treasury rate (b) Dividend yield of US economy

Figure 1. The evolution of both interest rates and dividend yields
since 1980 show how financial variables are clearly non-stationary.
Note: ”Dividend yield” is here calculated as the ratio of GDP to
the level of the S&P 500 in order to match the model presented
below.

In the simulations presented in Section 4, we will see that the dividend-price ratio
exhibits a similar downward trend. This indicates predictability of stock returns
up to some deterministic drift. This result is consistent with those of Campbell
and Shiller (1988b) and Campbell and Shiller (1988a), who find that the returns on
stocks can be predicted as a function of dividend yield. This could also explain the
result of Mankiw (1981), who rejects the permanent income hypothesis on the basis
that asset price co-movements with the stochastic discount factor are forecast-able
When agents exhibit heterogeneous preferences, the stochastic discount factor does
not correspond to a specific agent in every period, but to a time varying level of
risk aversion. This level is falling through time and correlated to asset prices. Asset
prices are rising faster than dividends at the same time and move more than one
to one with dividends. This excess volatility and time variation in the stochastic
discount factor produce a slightly predictable dividend yield.

If we think of individual agents as each having a supply and demand function
for risky assets and risk free bonds, it is possible to think of a model of heteroge-
neous risk preferences as one of market break down. Each agent populates a single
theoretical market, but only one market can clear, as in models of the leverage
cycle, e.g. Geanakoplos (2010)2. The market which clears is the one corresponding

1Or at least impractical for mere mortals.
2I also should thank John Geanakoplos, since his work inspired this paper.
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to the agent who is indifferent between buying or selling their shares or bonds. In
fact, the formulas for the risk free rate and the market price of risk derived in this
paper resemble greatly those in Basak and Cuoco (1998). In that paper, two agents
participate in the economy, but one is restricted from participating in the finan-
cial market while the participating agent determines the value of financial assets.
However in this paper, contrary to the limited participation literature, the clearing
markets for stocks and bonds do not have to correspond to the same agent, nor
does the corresponding agent even need to exist in the economy. We will see in
Section 2.2 that two moments of the distribution of consumption shares determine
the market clearing agents. Additionally, these values will vary over time and will
be endogenously determined.

To compare the finite types case to the MFG formulation I simulate several
economies and study the results. I take the naive approach of evenly discretizing
the support for the preference parameter and find that the results converge very
slowly in the number of bins. Conversely, I find that, when approximating integrals
using Gaussian quadrature, that the MFG simulation converges very quickly in the
number of nodes. Additionally, I find that one could not match the MFG model
using the finite types simulation without a prohibitively large number of simulated
agents. These results imply that despite the mathematics of the MFG economy
being slightly more complex, the simulation is greatly simplified, more robust, and
more versatile.

The paper is organized as follows: in Section 1, I construct a continuous time
model of financial markets populated by a finite number of agents who differ in their
preferences towards risk. Section 2 solves the model up to an estimable equation for
asset prices, giving closed form solutions for the interest rate, the market price of
risk, and dynamics, as well as discussing market segmentation. In Section 4, I give
simulation results for changing the number of agents over a given support. Finally,
Section 5 concludes and gives some ideas for future research and applications. The
more technical analysis and proofs have been relegated to the appendix.

1. The Model

In this section, I will describe the general setting of the model. The key compo-
nents are the definition of agent heterogeneity, the economic uncertainty, agent opti-
mization, portfolio admissibility, and equilibrium conditions. The solution method
will be discussed in the following section.

1.1. Agent Heterogeneity. I consider a continuous time economy populated by
a number, N , of heterogeneous agents indexed by i ∈ {1, 2, ..., N}. Each agent has
constant relative risk aversion (CRRA) preferences with relative risk aversion γi:

U(c(t), γi) =
c(t)1−γi − 1

1− γi
∀i ∈ {1, 2, ..., N}

Additionally, agents will begin with a possibly heterogeneous initial wealth, Xi(0) =
xi. Agents’ initial conditions will be distributed according to a density (γi, xi) ∼
f(γ, x). In this paper, I will consider γ ∈ (1, γ) for ease of exposition and for
simulations I will take f(γ, x) = f(γ)δx∗ , where δx is the Dirac delta function, such
that agents begin with homogeneous wealth. These assumptions can be relaxed,
but can induce numerical difficulties.
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Assuming this type of random initial condition and preference level provides
the independence necessary to study asymptotics. In the sense of Lasry and Lions
(2007), this is similar to the independent noise on individual state variables. Inde-
pendence in this noise allows for the propagation of chaos, while here independence
in the initial condition and preference parameter do the same. These assumptions
can be thought of economically as a sample. The economy as a whole is too large
to measure, so an econometrician must study a random sample of individuals.

1.2. Financial Markets. Agents have available to them a forest of N Lucas trees
with perfectly correlated dividends, D(t), which follow a geometric Brownian mo-
tion, and risk free borrowing and lending at an interest rate r(t) in zero net supply.
Each Lucas tree represents an average dividend process or per-capita production

dD(t)

D(t)
= µDdt+ σDdW (t)(1.1)

where µD and σD are constants. Agents can continuously trade in claims to the
dividend process whose price, S(t), also follows a geometric Brownian motion:

dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t)(1.2)

whose share will be denoted π(t, γi, xi) = πi(t). Throughout the paper the notation
is suppressed where possible for readability, but one should remember that the index
i implies dependence both on the initial condition in x and the preference parameter
γ. Here µS(t) and σS(t) are time varying and determined in general equilibrium.
Additionally, agents can borrow and lend at a time varying interest rate r(t) using
a risk free bond, whose individual share is denoted bi(t). The price of the risk
free bond, denoted S0(t), thus follows a deterministic3 process whose dynamics are
given by

dS0(t)

S0(t)
= r(t)dt(1.3)

1.3. Budget Constraints and Individual Optimization. All agents are ini-
tially endowed with a share in the average tree, as well as an initial bond po-
sition. If we denote by Xi

1(t) and Xi
2(t) an individuals financial wealth held in

risky assets and risk free assets, respectively, then total wealth can be written
Xi(t) = Xi

1(t) + Xi
2(t) = πi(t)S(t) + bi(t)S0(t), where πi(t) and bi(t) represent

individual shares in the risky and risk free asset, respectively. At any time t an
agents dynamic budget constraint can be written as

dXi(t) =

[
Xi(t)r(t) +πi(t)S(t)

(
µS(t) +

D(t)

S(t)
− r(t)

)
− ci(t)

]
dt(1.4)

+πi(t)σs(t)S(t)dW (t)

where the set of variables {ci(t), πi(t), Xi(t), D(t), S(t), r(t),W (t)} represent an
agent’s consumption, risky asset holdings, and wealth, as well as the dividend,
market clearing asset price, market clearing risk free interest rate, and Wiener
process governing the Brownian motion, respectively.

3It is not necessarily the case that r(t) is deterministic.
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An individual agent’s constrained maximization subject to instantaneous changes
in wealth can be written as:

max
{ci(u),pii(s),bi(u)}∞u=t

E
∫ ∞
t

e−ρ(u−t)
ci(u)1−γi − 1

1− γi
du

s.t. Equation (1.4)

1.4. Admissibility. If an agent’s optimal policy implies that they could hold more
debt than equity, driving their wealth into negative territory, they could borrow
infinitely. This case is ruled out in the real world and we should thus limit our
attention to a smaller set of admissible policies. This issue was first treated in the
continuous time setting by Karatzas et al. (1986) and I follow their assumptions
here. Assume shares πi(t) and consumption ci(t) measurable, adapted, real valued
processes such that ∫ ∞

0

πi(t)2dt <∞ a.s.∫ ∞
0

ci(t)dt <∞ a.s.

Then we can define the set of admissible policies by the following:

Definition 1. A pair of policies (πi(t), ci(t)) is said to be admissible for the initial
endowment xi ≥ 0 for agent i’s optimization problem if the wealth process X(t)
satisfies

Xi(t) ≥ 0, ∀ t ∈ [0,∞) a.s.

Denote by A(xi) the set of all such admissible pairs.

1.5. Equilibrium. Each agent will be considered to be a price taker. This implies
an Arrow-Debreu type equilibrium concept.

Definition 2. An equilibrium in this economy is defined by a set of processes
{r(t), S(t), {ci(t), Xi(t), πi(t)}Ni=1} ∀ t, given preferences and initial endowments,
such that {ci(t), πi(t), Xi(t)} solve the agents’ individual optimization problems and
the following set of market clearing conditions is satisfied:

1

N

∑
i

ci(t) = D(t)

1

N

∑
i

πi(t) = 1(1.5)

1

N

∑
i

Xi(t) = S(t)

2. Equilibrium Characterization

This section will derive a solution to each agent’s maximization problem and
give results on the characteristics of equilibrium. I briefly describe the martingale
method and then formulas for financial market variables as functions of consump-
tion weights, which can be describes as Itô diffusion processes.
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2.1. The Static Problem. Following Karatzas and Shreve (1998) we can define
the stochastic discount factor as

H0(t) = exp

(
−
∫ t

0

r(u)du−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ(u)2du

)
(2.1)

where

θ(t) =
µs(t) + D(t)

S(t) − r(t)
σs(t)

(2.2)

represents the market price of risk. This implies that the stochastic discount factor
also follows a diffusion of the form

dH0(t)

H0(t)
= −r(t)dt− θ(t)dW (t)(2.3)

Following Proposition 2.6 from Karatzas et al. (1987), given an admissible pair
(πi(t), ci(t)) we can rewrite each agent’s dynamic problem as a static one beginning
at time t = 0

max
{ci(u)}∞u=0

E
∫ ∞

0

e−ρu
ci(u)1−γi − 1

1− γi
du

s.t. E
∫ ∞

0

H0(u)ci(u)du ≤ xi

If we denote by Λi the Lagrange multiplier in individual i’s problem, then the first
order conditions can be rewritten as

ci(u) = (eρuΛiH0(u))
−1
γi(2.4)

which holds for every agent in every period. It is important to point out that
the Lagrange multiplier is constant in time and a function only of the preference
parameter and initial condition: Λi = Λ(γi, xi). This will be a key fact in deriving
the convergence in N .

2.2. Consumption Weights. Given each agent’s first order conditions, we can
derive an expression for consumption as a fraction of per-capita dividends.

Proposition 1. One can define the consumption of individual, i, at any time, t,
as a share ωi(t) of the per-capita dividend, D(t), such that

ci(t) = ωi(t)D(t)(2.5)

where ωi(t) =
N (Λie

ρtH0(t))
−1
γi∑N

j=1 (ΛjeρtH0(t))
−1
γj

(2.6)

This expression recalls the results in Basak and Cuoco (1998) or Cuoco and He
(1994), where ω(t) acts like a time-varying Pareto-Negishi weight. In those works,
however, participation is driven by an imperfection in the information structure or
some exogenous constraint. Here the choice of participation is driven by preferences
towards risk. The value of the stochastic discount factor is equal across agents, but
differs in its weight for each agent as they differ in risk aversion. This leads one to
think that perhaps it would be better to think of this as an incomplete market. If
markets were fully complete, there would be a risky asset for each agent, but here
agents are forced to bargain over a single asset.
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To derive an expression for the risk free rate and the market price of risk, we
will need the following lemma about the drift and diffusion of agents’ consumption
processes:

Lemma 1. If we model an agent’s consumption as a geometric Brownian motion
with time varying drift and diffusion coefficients µci(t) and σci(t), then we have the
following relationship between µci(t), σci(t), r(t) and θ(t), and for all i ∈ {1, ..., N}

r(t) = ρ+ µci(t)γi − (1 + γi)γi
σci(t)

2

2
θ(t) = σci(t)γi

These formulas are very similar to those one would find in a standard represen-
tative agent model. However, these expressions hold simultaneously for all agents,
meaning that the growth rate and volatility of consumption for each agent must
adjust, while for a representative agent they would be replaced by the drift and
diffusion of the dividend process. In order to better understand how these values
adjust, rewrite Lemma 1 in terms of µci(t) and σci(t) and differentiate to get

∂µci(t)

∂θ(t)
=

1 + γi
γ2
i

θ(t)(2.7)

∂µci(t)

∂r(t)
=

1

γi
(2.8)

∂σci(t)

∂θ(t)
=

1

γi
(2.9)

∂σci(t)

∂r(t)
= 0(2.10)

Equations (2.7) and (2.8) imply that the growth rate of every individual’s con-
sumption is increasing in both the market price of risk and in the interest rate.
All things being equal, holding portfolios and preferences constant, a higher mar-
ket price of risk implies greater returns. Thus, any given agent will earn more on
their portfolio and can expect a higher (or less negative) growth rate in consump-
tion. However, the magnitude of this effect depends both on the prevailing market
price of risk and the agent’s preferences. First, consider Equation (2.7). When
γi = 1, the coefficient is 2 and as γi increases the coefficient falls asymptotically
towards zero. For more risk averse agents, the change in the expected growth rate
of consumption in response to changes in θ(t) is smaller, going to zero as gamma
goes to infinity. This is driven by a consumption smoothing motive. More risk
averse agents dislike fluctuations in their consumption and are thus less sensitive
to changes in the market.

Second, consider Equation (2.8). Every agent’s expected growth rate in con-
sumption is increasing in the interest rate. This makes sense for agents who are net
lenders, as they see greater returns on their savings, but this is counter-intuitive for
agents who are net borrowers. It implies that, despite having to pay a higher in-
terest rate on their borrowing they prefer to grow their consumption more quickly.
This is driven by a wealth effect. An increase in the interest rate lowers the stochas-
tic discount factor, reducing the price of consumption today and in the future. A
higher interest rate implies a lower present value of lifetime consumption, whether
an agent is a lender or borrower. This makes the budget constraint less binding
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for both. Because markets are complete, agents borrow solely to finance their con-
sumption choices. So the loosening of the budget constraint will cause an increase
in consumption growth rates for all agents despite their financial position.

Finally, Equations (2.9) and (2.10) imply that diffusion in consumption is in-
creasing in the market price of risk, but this effect is decreasing in γi, while changes
in the interest rate have no effect on consumption volatility. First, Equation (2.10)
states that a change in the risk free rate has no effect on the volatility of any agent’s
consumption, except for its indirect effect on the market price of risk. Agents need
to be compensated for volatility in their consumption stream and that compensa-
tion comes only from risky assets. Second, Equation (2.9) is decreasing in γi as a
more risk averse agent will respond less to changes in the market; more risk averse
agents desire a smoother consumption path. However, why consumption co-moves
positively with the market price of risk is unclear. In order to understand this
effect, we need to understand the determinants of the market price of risk.

2.3. The Risk-Free Rate and Market Price of Risk. Given Lemma 1, we can
derive expressions for the market price of risk and the risk free rate:

Proposition 2. The interest rate and market price of risk are fully determined by

the sufficient statistics ξ(t) = 1
N

∑N
i=1

ωi(t)
γi

and φ(t) = 1
N

∑N
i=1

ωi(t)
γ2
i

such that

r(t) = ρ+
µD
ξ(t)
− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D(2.11)

θ(t) =
σD
ξ(t)

(2.12)

by Lemma 1 and Equation (1.5).

Proposition 2 is in terms of only certain moments of the empirical joint distri-

bution of consumption shares and risk aversion: ξ(t) = 1
N

∑N
i=1

ωi(t)
γi

and φ(t) =

1
N

∑N
i=1

ωi(t)
γ2
i

. These represent the first and second moment of the distribution of

elasticity of intertemporal substitution (EIS) with respect to consumption shares.
In other words, an agent’s preferences only effect the market clearing interest rate
and market price of risk up to their amount of participation in the market for
consumption.

In (2.12), we can see that the market price of risk in the heterogeneous economy
is equal to the market price of risk that would prevail in a representative agent econ-
omy populated by an agent whose elasticity of inter-temporal substitution is equal
to the consumption weighted average in our economy. This is because the market
price of risk is determined by agents choosing the diffusion of their consumption. In
the face of shocks each agent will increase or decrease their consumption such that
the diffusion of their consumption is equal the market price of risk scaled down by
their risk aversion (see Lemma 1).

Looking at (2.11), the first two terms are very reminiscent of the interest rate in
a representative agent economy populated by the same agent that would determine
the market price of risk. That is if we were to use a representative agent model where
the agent’s CRRA parameter satisfied 1

γ = ξ(t) we would find the same market price

of risk and nearly the same interest rate. We can rewrite Equation (2.11) as the
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interest rate that would prevail in our hypothetical economy plus an extra term:

r(t) = ρ+
µD
ξ(t)
− 1

2

ξ(t) + 1

ξ(t)2
σ2
D −

1

2

1

ξ(t)

(
φ(t)

ξ(t)2
− 1

)
σ2
D

If it were the case that φ(t) = ξ(t)2, then this additional term would be zero and
the interest rate and market price of risk in this model could be exactly matched
by those in an economy populated by a representative agent with time varying risk
aversion, similar to the model of habit formation by Campbell and Cochrane (1999).
However, we can apply the discrete version of Jensen’s inequality to show4 that
φ(t) > ξ(t)2, ∀ t < ∞ . This causes the additional term to be strictly negative.
The risk free rate is then lower than it would be in an economy populated by a
representative agent. This introduces a sort of ”heterogeneity wedge”, which I’ll

define as φ(t)
ξ(t)2 > 1, between the price of risk and the price for risk free borrowing.

the larger the difference between ξ(t)2 and φ(t) the greater the wedge. This wedge
is also one plus the coefficient of variation squared in the effective distribution of
EIS. The more diverse the consumption shares of individual agents with respect
to the elasticity of intertemporal substitution, the greater the wedge. The driving
force behind the heterogeneity wedge is the market segmentation that occurs when
agents differ in their preferences towards risk.

2.4. Market Segmentation. When this economy is populated by two or more
agents who have different values of γ, the markets for risky and risk free assets will
never clear at the same level and will generate a market segmentation involving three
distinct groups. Define {γr(t), γθ(t)} to be the RRA parameters in a representative
agent economy that would produce the same interest rate and market price of risk,
respectively:

r(t) = ρ+ γr(t)µD − γr(t)(1 + γr(t))
σ2
D

2
θ(t) = γθ(t)σD

Equating these expressions to those in Proposition 2 we can solve for these prefer-
ence levels, such that

γr(t) =
µD
σ2
D

− 1

2
−

√(
µD
σ2
D

)2

− µD
σ2
D

(
1 +

2

ξ(t)

)
+
ξ(t) + φ(t)

ξ(t)3
+

1

4

γθ(t) =
1

ξ(t)

Finally, with a bit of algebra, it can be shown that γr(t) < γθ(t), ∀t < ∞. This
implies that the markets for risky and risk-free assets do not coincide in finite t.
Additionally, it shows that the two markets overlap (see Figure 2). This implies

4φ(t) = 1
N

∑
i
ωi(t)

γ2i
= 1

N

(
ω1(t)

γ21
+
ω2(t)

γ22
+
ω3(t)

γ23
+ . . .

)
= (ω1(t) +

ω2(t))

(
ω1(t)

ω1(t)+ω2(t)
1

Nγ21
+

ω2(t)

ω1(t)+ω2(t)
1

Nγ22

)
+

ω3(t)

Nγ23
+ · · · > (ω1(t) +

ω2(t))
(

ω1(t)

ω1(t)+ω2(t)
1

Nγ1
+

ω2(t)

ω1(t)+ω2(t)
1

Nγ2

)2
+

ω3(t)

Nγ23
+ · · · > (ω1(t) +

ω2(t))
(

ω1(t)

ω1(t)+ω2(t)
1

Nγ1
+

ω2(t)

ω1(t)+ω2(t)
1

Nγ2
+
ω3(t)
Nγ3

+ . . .
)2

=
(

1
N

∑
i
ωi(t)
γi

)2
= (ξ(t))2, by

the strict concavity of the quadratic and induction.
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a sort of market segmentation with three groups: leveraged investors, diversifying
investors, and saving divestors.

γ γγr(t) γθ(t)

Leveraged Investor Diversifying Investor Saving Divestor

Investor Divestor

Borrower Lender

Figure 2. The market is segmented depending on an agent’s pref-
erences relative to the representative agent solution. The markets
for risky and risk-free assets do not coincide and there are three seg-
ments. Agents with low risk aversion are simultaneously borrowing
and investing. Agents with middling risk aversion are lending and
investing. Agents with high risk aversion are saving and divesting.

The three market segments in this economy represent buyers and sellers of risky
and risk-free assets. Agents who have low risk aversion will sell bonds in order to
buy a larger share in the risky asset. Agents with a middling level of risk aversion
will be purchasing both bonds and shares in the risky asset. They do this by
capitalizing their gains in the risky asset. As we’ll see in Section 4, as the low risk
aversion agents dominate the market, they drive up asset prices, producing high
returns. The diversifying investors capitalize these gains in both the risky and the
risk-free assets. Finally, agents with high risk aversion will be purchasing bonds
and shrinking their share in the risky asset. In general, these agents are simply
exchanging with the low risk aversion agents their risky shares for bonds. This
causes the risky asset to be concentrated amongst the low risk aversion investors
as time progresses and pushes up asset prices, again as we’ll see in Section 4.

2.5. Consumption Weight Dynamics. We can study the dynamics of an agent’s
consumption weight by applying Itô’s lemma to the expression given in Proposi-
tion 1.

Proposition 3. Assuming consumption weights also follow a geometric Brownian
motion such that

dωi(t)

ωi(t)
= µωi(t)dt+ σωi(t)dW (t)
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an application of Itô’s lemma to (2.6) gives expressions for µωi(t) and σωi(t):

µωi(t) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
(2.13)

+
θ(t)2

2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
σωi(t) = θ(t)

(
1

γi
− ξ(t)

)
(2.14)

Consider first the case where an agent’s preferences coincide with the weighted
average, ie γi = γθ = 1

ξ(t) (as in Section 2.4). In (2.14), which describes how an

agent’s consumption weight co-varies with the risk process, σωi = 0. If an agent
has the same EIS as the market then they will not desire to vary their consumption
weight in the face of shocks. As in the analysis of the previous sub-section, this is
because the agent is perfectly in agreement with the market. However, notice that

in this case µωi = θ(t)2
(

1
γ2
θ
− φ(t)

)
= σ2

D

(
1− φ(t)

ξ(t)2

)
, by Proposition 2. This is an

indicator of the speed with which the economy is moving through this equilibrium.
Although the agent is instantaneously satisfied with the current market price of
risk, they are deterministically moving out of this position. The speed with which

this is occurring is driven by the heterogeneity wedge, φ(t)
ξ(t)2 . When this wedge is

high, the rate at which the marginal agent moves out of the marginal position is
greater.

Next consider the case where an agent is more patient than the weighted average,
that is γi > γθ. Then σωi < 0 and agent i’s weight is negatively correlated to
the market. This implies that if an agent is more patient than the average, or
alternatively more risk averse, then their consumption share will increase when
there are negative shocks and decrease when there are positive shocks. This is a
prudence motive and these agents can be thought of as playing a ”buy low, sell high”
strategy. They do not want to grow their consumption faster than the economy,
but to pad their position against future shocks. They smooth consumption over
time, providing a very stable consumption path. For this reason, their decisions are
driven not by a desire to increase their consumption today, but to insure themselves
against shocks in the distant future and, in turn, increase their wealth. These agents
will have a consumption stream which is less volatile than the economy.

Conversely, if an agent is less risk averse than the average, ie γi < γθ, their
consumption shares covary positively with the market. These agents are essen-
tially buying high and selling low, a strategy that will cause their wealth to be
highly volatile. An agent with a lower risk aversion has a higher elasticity of inter-
temporal substitution and, thus, can be thought of as less patient. Given a shock
to the dividend process, the expected growth rate remains constant, but the level
shifts permanently because of the martingale property of the Brownian motion.
Since less patient agents see the current output of the dividend as more important
than its long-run behavior, present shocks have a greater effect on their personal
price. Thus, a negative shock causes them to reduce their price and in turn their
consumption shares, while a positive shock causes them to increase their price and
consumption share. These are the day-traders, riding booms and busts to try to
make a quick buck while not losing their shirts. Although they may benefit in the
short fun, their consumption will be more volatile than the economy.



HETEROGENEOUS RISK PREFERENCES IN FINANCIAL MARKETS 13

The analysis of (2.13) is quite difficult for the case of γi 6= γθ. The first term
is the product of two separate terms: one involving the interest rate and rate of
time preference, the other the agent’s position in the distribution. If the interest
rate is above the rate of time preference, the first term is positive. If the interest
rate differs from the rate of time preference then the agent should desire to shift
consumption across time periods, either from today to tomorrow or vice versa.
However, the direction will be determined by their preference. If γi > γθ then
the product will be negative and this first term will contribute negatively to their
growth rate µωi(t). The opposite is true when γi < γθ. The combined effect of
these two terms is to say that if an agent is less patient than the average and the
interest rate is greater than their rate of time preference, they will want to grow
their consumption faster than the rate of growth in the economy, while if they are
more patient than the average then they will tend to grow their consumption more
slowly than the rate of growth in the economy. This effect is only partial, however,
and it is necessary to take into consideration the second term.

The second term is quite a bit more complex. The term in brackets is a sort of
quadratic in deviations from the weighted average of risk aversion. Whether this
term is positive or negative depends in a complicated way on ξ(t) and φ(t) 5. It
is sufficient to note that, when the distribution is not too skewed, there exists a
level of risk aversion such that if an agent is above this the second term in (2.13) is
negative and that this level of risk aversion is not equal to γθ or γr. This is related
to the deterministic nature of the shifting distribution of asset holdings. Although
these two preference levels represent the instantaneous market clearing levels, they
do not reflect how the distribution is evolving over time.

2.6. Asset Prices and Portfolios. Now, given expressions to describe the evo-
lution of consumption choices over time, one can give a formula describing asset
prices6.

Proposition 4. Under a transversality condition on wealth, that is if we assume

Et
[

lim
s→∞

H0(s)Xi(s)
]

= 0, then it can be shown that asset prices satisfy the follow-

ing:

S(t) = Et
∫ ∞
t

H0(u)

H0(t)
D(u)du(2.15)

Proposition 4 matches classic asset pricing formulas and defines asset prices today
in terms of expectations of the future outcome of the dividend process, discounted
at the market rate. (2.15) can be rewritten by substituting for H0(t) using (2.4) as

S(t) = Et
∫ ∞
t

e−ρ(u−t)
(
ci(u)

ci(t)

)−γi
D(u)du

for every i, which is exactly equal to the asset pricing formula derived from the
Euler equation in a representative agent economy. The key difference, however, is
that the dynamics of the consumption process in this economy are not equal to the

5It can be shown that the roots of this quadratic are 1
γi

= ξ(t)− 1
2
±
√

1
4

+ φ(t) − ξ(t)2. Because

φ(t) > ξ(t)2, there will always be two real roots. However, whether these are positive or negative

depends on the values of ξ(t) and φ(t).
6Bear in mind that it is not trivial to solve for each individual agent’s asset price, as it depends
in a non-linear way on their consumption weight.
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dynamics of the dividend process. It may be possible to construct an agent whose
consumption share remains fixed over a short period of time and thus whose price in
a representative agent economy would equal the price in the heterogeneous economy,
but it is not necessarily true that that agent exists in the model being solved here.
For instance, in the case of two agents, the price will always be somewhere between
the price that would prevail in the two individuals’ autarkic economies.

Asset price dynamics and portfolios being necessary for numerical simulation, it
is possible to derive estimable expressions for the volatility of asset prices and for
the optimal portfolio weight of agents. The following proposition is identical to two
given in Cvitanić et al. (2011)7 and is thus provided without proof:

Proposition 5. The volatility of the stock price is given by

σS(t) = σD +
Et
∫∞
t

(θ(t)− θ(u))H0(u)D(u)du

Et
∫∞
t
H0(u)D(u)du

(2.16)

and optimal portfolios by

πi(t)σS(t)S(t)H0(t) = θ(t)Et
∫ ∞
t

H0(u)D(u)ωi(u)du(2.17)

+
1− γi
γi

Et
∫ ∞
t

H0(u)D(u)θ(u)ωi(u)du(2.18)

This proposition essentially states that, if θ(s) < θ(t), then there will be excess
volatility, and that risk averse agents will hold a smaller share of their wealth in the
risky asset. I refer the interested reader to the previously mentioned paper for a
thorough treatment of the asymptotic results. From the statement in Proposition 5,
one can find µS(t) using Equation (2.12), or by similarly matching coefficients in
the Clark-Ocone derivation.

3. Extension to Infinite Types

Consider now the limiting case as N →∞. This corresponds to a special type of
mean field game with common noise, where the idiosyncratic volatility is degenerate.
That is, although there are two degrees of randomness in the model corresponding
to the random initial condition and the Brownian motion, there is no idiosyncratic
risk process. Agents’ states evolve idiosyncratically because of their heterogeneous
preferences, but are subject only to a common noise. This implies for a given level
of wealth and a given preference level, γ, all agents will have the same control.
This fact is similar to symmetry in permutations of the state in Lasry and Lions
(2007) and other papers on mean field games, but one can think of the preference
parameter as being a degenerate state variable, i.e. dγ = 0. Additionally, because
the constraint is determined by initial wealth, one can consider heterogeneity in the
initial condition as being the key driver of the mean field. This characteristic makes
the model dependent on the initial condition and the realization of the Brownian
motion. Because of this the mean field will be with respect to the control and the
determinant distribution will be over the initial condition.

7I am grateful to the authors of that paper for helping me to understand the derivation using the
Malliavan Calculus and the Clark-Ocone theorem.



HETEROGENEOUS RISK PREFERENCES IN FINANCIAL MARKETS 15

If we take the control, ωi(t) = ω(t, γi, xi), we have a function of an empirical
mean:

ω(t, γi, xi) =
N (Λ(γi, xi)e

ρtH0(t))
−1
γi∑N

j=1 (Λ(γj , xj)eρtH0(t))
−1
γj

By the strong law of large numbers (assuming the variance in consumption across
agent types is bounded), the empirical average converges to the mean with respect
to the distribution of the initial condition:

ω(t, γi, xi) →
N→∞

ω(t, γ, x) =
(Λ(γ, x)eρtH0(t))

−1
γ∫

(Λ(γ, x)eρtH0(t))
−1
γ dF (γ, x)

Since ω(t, γ, x) acts as the only state variable determining all individual and aggre-
gate outcomes in the model, the same is true for the rest of the propositions, where
one simply replaces the market clearing conditions and the variables ξ(t) and φ(t):

D(t) =

∫
c(t, γ, x)dF (γ, x)

1 =

∫
ω(t, γ, x)dF (γ, x)

S(t) =

∫
X(t, γ, x)dF (γ, x)

ξ(t) =

∫
ω(t, γ, x)

γ
dF (γ, x)

φ(t) =

∫
ω(t, γ, x)

γ2
dF (γ, x)

θ(t) =
σD
ξ(t)

r(t) =
µD
ξ(t)

+ ρ− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D

The market clearing condition for consumption weights implies something in-
triguing about their relationship to the initial distribution. If we think of ω(t, γ, x)
as a ratio of probability measures, we can think of ω(t, γ, x) as the Radon-Nikodym
derivative of a stochastic measure with respect to the distribution of the initial

condition. That is, define ω(t, γ, x) = dG(t,γ,x)
dF (γ,x) . Then we have∫

ω(t, γ, x)dF (γ, x) = 1∫
dG(t, γ, x)

dF (γ, x)
dF (γ, x) =∫

dG(t, γ, x) =

The evolution of this distribution would be difficult to describe directly, but the
expressions in Proposition 4 give the dynamics of this stochastic distribution. So
ω(t, γ, x) allows one to calculate exactly the evolution of this stochastic distribution
by use of a change of measure. Alternatively, one can think of ω(t, γ, x) as a sort
of importance weight, where as the share of risky assets is concentrated towards
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one area in the support, the weight of this area grows in the determination of asset
prices.

Additionally, the Radon-Nikodym interpretation allows one to compare the con-
tinuous types to finite types. Say for instance we would like to discretize the above
expression for the market clearing condition on ω(t, γ, x) using a Riemann sum with
an evenly space partition (e.g. a midpoint rule):∫

ω(t, γ, x)dF (γ, x) ≈
(γ − γ)(x− x)

JK

K∑
k=1

J∑
j=1

ω(t, γk, xj)f(γk, xj)

This looks quite similar to the market clearing conditions in the finite type model
(Equation (1.5)). So, could we construct a finite types sample that matches this
approximation, at least initially? Make the identification N = JK and notice that
since ω(t, γ, x) is a geometric Brownian motion, such that ω(t, γ, x) = ω(0, γ, x)ω̂(t, γ, x)
where ω̂(t, γ, x) is a stochastic process. If we define the initial condition on omega
as ω(0, γ, x) = 1

(γ−γ)(x−x)f(γ,x) , then the above market clearing condition becomes∫
ω(t, γ, x)dF (γ, x) ≈ 1

N

K∑
k=1

J∑
j=1

ω̂(t, γk, xj)

This market clearing condition looks exactly like the condition in Equation (1.5).
However, this has particular implications about the Radon-Nikodym derivative.
From the definition of the Radon-Nikodym derivative we can write

G(t, A) =

∫
A

ω(t, γ, x)dF (γ, x)

=

∫
A

ω(t, γ, x)f(γ, x)dγdx

Substituting the imposed definition of ω(t, γ, x) we have

G(t, A) =

∫
A

ω̂(t, γ, x)

(γ − γ)(x− x)
dγdx

Now, since ω̂(0, γ, x) = 1, the above implies

G(0, A) =

∫
A

1

(γ − γ)(x− x)
dγdx

Thus the initial condition of the stochastic measure G(0, A) is a uniform distribu-
tion.

All of this to say that if one attempts to approximate the continuous model
by a finite model not taking into account the initial distribution f(γ, x), one
can only generate a certain initial condition. That is, the product distribution
ω(0, γ, x)f(γ, x) = 1

(γ−γ)(x−x) in a simulation of finite types and any Riemann sum

approximation to the integral. One could also attempt to use a monte-carlo scheme,
sampling many agents from the initial distribution. However, the variance will be
large for any value of N which one can compute on a desktop computer.

The continuous types model encompasses the discrete types model completely,
in that if the true distribution f(γ, x) were a discrete distribution one could get
identical results. On the other hand, the continuous types model seems more com-
plex at first glance. Although this seeming addition of complexity provides little
in the way of new economic insight, it does provide several nice explicit modeling
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tools. First, the joint distribution of initial wealth and risk aversion is explicitly
modeled. In a model of finite types one can only model a product distribution
such that ω(0, γ, x)f(γ, x) is uniform. Second, but closely related, is the computa-
tional simplification provided by the continuum. For finite types one must simulate
many agents in order to match some distribution of preferences. Because the main
drivers of financial variables in this model are moments of the distribution of risk
preferences, one can simulate quadrature points to approximate a continuous dis-
tribution, whereas to do the same for the finite types model would require many
simulated agents. This fact will become quite apparent in simulations.

4. Simulation Results and Analysis

In this section, I review the simulation strategy as well as some simulation results
and compare them. The underlying assumption in all of these simulations is that
I am attempting to approximate a continuous distribution of types (for a recent
survey on estimating risk preferences see Barseghyan et al. (2015) and for evidence
on heterogeneity see Chiappori et al. (2012)). One could argue that this is the
goal of any model of heterogeneous risk preferences with finite types, as in Dumas
(1989) or Chabakauri (2013), but that one assumes finite types for tractability and
with the hope that the results generalize. This section will try to convince you
that, quantitatively, the results for the continuous types model are not the same
as those for the finite types model and that the continuous types model is in fact
computationally less costly than an equally accurate finite types model.

These simulations can be separated into two steps: simulating the processes for
consumption shares and the associated market clearing interest rate and market
price of risk, and estimating portfolios and asset prices by Monte Carlo. First,
the Ito processes are discretized using a Euler-Murayama scheme. Then, individ-
ual nodes or agents are simulated by taking an initial distribution for ω(0, γ, x).
This initial distribution implies a certain initial asset price and portfolio weights,
both of which are calculated by Monte Carlo using a Rhomberg extrapolation (see
Glasserman (2003) or Guyon and Henry-Labordère (2013)). Using this, one can
generate an initial wealth and initial bond holdings for individual agents. This
initial distribution also implies values for ξ(0) and φ(0), which imply values for
r(0) and θ(0). Then, using the above mentioned scheme I simulate forward the set
of consumption weights, ωi(t) or ω(t, γi, xi), estimating asset prices and portfolio
weights each period in the same fashion.

For all of the simulations, I will hold the following group of parameters fixed at
the given values: µD = 0.03, σD = 0.06, and ρ = 0.01. These settings correspond to
a yearly parameterization. Additionally, for simulating asset prices by Monte Carlo,
I need to specify a truncation level T = 300, as well as the number of path iterations
M = 6.24×105. Finally, I simulate forward 25 periods at a ∆t = 0.5 discretization.
These simulations were run on a set of Amazon Web Services c4.8xlarge compute
optimized cluster nodes, each with two Intel Xeon E5-2666 v3 (Haswell) processors
sporting 36 virtual cores and 60Gb of memory.

I’ll show first simulation results for a shocked five agent model. Then I’ll look
at two, five, and ten agents around a non-stochastic sample path, showing how
the change in number of agents drastically changes the level and the dynamics of
all variables, while leaving unchanged the asymptotic value of aggregate variables.
Finally, I’ll compare this to simulating a continuous types economy with two, five,



18 HETEROGENEOUS RISK PREFERENCES IN FINANCIAL MARKETS

or ten quadrature points. We will see that the effect of changing the number of
quadrature points converges quickly to zero when the initial distribution is uniform.
Thus, in terms of robustness to the discretization choice, the model of continuous
types dominates the model of finite types.

4.1. Finite Types versus Continuous Types. If one believes there to be a con-
tinuous distribution of risk preferences, one could choose to use either a finite types
model or an approximation of a model of continuous types. However, the compu-
tational complexity and accuracy will not be equal across the two approximations.
For finite types, we can consider different numbers of types, approximating the
continuous distribution of types by a histogram, and see if the assumptions about
the discretization alter the results. For the continuous types model we must ap-
proximate the integrals in some way, here choosing to use a quadrature rule, and
consider how these approximations change the results.

As an example, consider the definition of ξ(t) and its associated quadrature
approximation:

ξ(t) =

∫
ω(t, γ, x)

γ
dF (γ, x) ≈

M∑
m=1

K∑
k=1

ψmψk
ω(t, γm, xk)f(γm, xk)

γm

where (ψm, ψk) are the appropriate quadrature weights and (γm, xk) the associated
quadrature points. The useful feature here is that the points are fixed in time,
that is if one would like to simulate this model forward, it is only necessary to fix
a set of points (γm, xk) and simulate forward the associated consumption weights
ω(t, γm, xk). In this way, we can compare the accuracy and robustness of the two
types of simulations, finite types or continuous types, for a given number of points
simulated. One should expect (and we will see this is the case) that the results are
not the same, as the simulated models have drastically different assumptions about
the distribution f(γ, x), as discussed in Section 3.

For finite types, changing the number of simulated points changes the distribu-
tion f(γ, x) in the model, while for the continuous types simulation, changing the
number of quadrature points does not change the assumptions about f(γ, x), but
only affects the accuracy of the quadrature approximation. This will be the key
feature that differentiates the two simulations. Although the qualitative features
will be similar, the robustness of the continuous types simulation will be far supe-
rior to the finite types simulation. However, for longer time periods the continuous
types approximation will break down. This is driven by the fact that the agent with
the lowest risk aversion will dominate the economy in the long run (see Cvitanić
et al. (2011)). Mass will eventually build up on the lower area of the support and,
when one fixes the quadrature points using a gaussian quadrature rule, this area
will be below the lowest quadrature point. Because of this, a gaussian quadrature
approximation is most likely not the most accurate method for longer simulations,
but it is sufficient for comparison purposes here.

4.2. Five Agents: Shocked. Let’s begin with five agents with CRRA parameters
[γi] = [1, 3.25, 5.5, 7.75, 10]. For this first simulation I’ll allow the shock process,
dW (t), to realize away from its expectation.

Figure 3 shows the interest rate and dividend yield in this first economy. Here
we see clear negative trends in both processes. First, as the most impatient agent
begins to dominate the market for risky assets, the market interest rate begins
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Figure 3. Dividend yield defined as D(t)
S(t) and interest rate, r(t),

for five agents under a shocked process.

to converge towards their preferred rate. That is, in the long run, the prevailing
interest rate will correspond to that which one would find in an economy populated
by a single agent with the lowest value of γi. Similarly, asset prices are converging
to a similar long run value. This causes S(t) to grow faster than D(t), pushing
down the dividend yield.

The downward trend in dividend yields points towards a possible explanation
for the predictability in asset prices described in Campbell and Shiller (1988b) and
Campbell and Shiller (1988a). Here dividend yield is trending downward as asset
prices are growing faster than the dividend. Because of this, we can expect periods
of high yield relative to this trend to predict subsequent periods of low yield. In
this way, asset prices have a predictable component8 The conclusion I draw from
this is that the portion of asset price movements that are explainable are driven by
the time variation in the discount factor, moving across market clearing values of
γθ and γr.

In the face of a changing interest rate and market price of risk, agents are dy-
namically optimizing their consumption shares and portfolio weights, depicted in
Figure 4. In relative terms, the most risk neutral agent stands apart from the
rest of the economy in the level and volatility of their choices. Additionally, we
can observe the differences in agents’ choices in the face of shocks. During periods
5 through around 15 the economy undergoes a recession. The most risk neutral
agent reduces their portfolio shares and their consumption weights. However, the
opposite is true of the rest of the agents, and in fact the most risk averse agents
increase their shares and weights by the largest amount. Their consumption choices
will change the effective distribution of preferences and their portfolio choices will
determine the volatility in their wealth.

8Indeed, a quick regression of dividend yield on past values shows that in a simple AR(1) model
previous values of the dividend yield have a strongly significant coefficient.
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Figure 4. Agent portfolio shares in a five agent economy subject
to shocks.

Figure 5. Sufficient statistics for the distribution of risk aver-
sion, where ξ(t) = 1

N

∑N
i=1

ωi(t)
γi

and φ(t) = 1
N

∑N
i=1

ωi(t)
γ2
i

, and the

heterogeneity wedge is defined as φ(t)
ξ(t)2 .

The distribution of consumption shares can be described by the evolution of ξ(t)

and φ(t), as well as the heterogeneity wedge φ(t)
ξ(t)2 . These values are displayed in

Figure 5. You’ll notice that the market clearing level of risk aversion, or conversely
the average EIS, is converging towards one. Additionally, the wedge introduced by
agent heterogeneity is falling over time. It is these facts that are driving the falling
interest rate and market price of risk. Additionally, portfolio and consumption
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decisions affect the evolution of agents’ wealth. In Figure 6 you can see that the
least risk averse agent has a very volatile wealth process and a large amount of
borrowing. This agent is highly leveraged and is the most exposed to swings in
asset prices, so their wealth process moves more than one to one with the dividend
process. These results are difficult to interpret, as one can’t necessarily separate
the effects of shocks from the drift. To that end, we can look at simulations around
a sort of non-stochastic trend.

Figure 6. Agent bond holdings and wealth in a five agent econ-
omy subject to shocks. The most volatile line corresponds to the
least risk averse agent.

4.3. Increasing Agents: No Shock. In order to look at distributional outcomes
for different numbers of agents, it is easiest to study the non-stochastic path (that
where dW (t) = 0). Here I study the outcome for several economies with two, five,
and ten agents. Each simulation takes the vector of preference parameters to be
evenly spaced over [1, 10]9. The motivation behind these simulations is to consider
the convergence in the number of agents and to compare to the simulations of
continuous types in Section 4.4. The change in the number of agents has a significant
change in the level of all variables, implying that misspecification of the support of
the distribution of risk preferences has a non-trivial effect on the model’s short run
predictions about market variables.

Observe in Figure 7 individual wealth and portfolio processes over time for two
and ten agents, where I’ve highlighted the lowest risk aversion level for simplicity.
The most striking features of these plots is the growth rate in wealth of the least
risk averse agent and the high portfolio weigth, and corresponding high volatility
of wealth, of the same agent. The least risk averse agent is growing their portfolio
share throughout time, but the value of that share is also growing. In Figure 8
you’ll see that dividend yield is falling through time, implying that asset prices are
growing faster than the economy. Recall that the volatility in any agent’s wealth is
given by πi(t)σs(t)S(t), so as S(t) grows this volatility becomes larger. Because the
most risk neutral agent has such a large share in the stock market, their exposure
to this volatility is greater.

9For two agents [γi] = [1, 10], for five agents [γi] = [1, 3.25, 5.5, 7.75, 10], and for ten agents
[γi] = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
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(a) Two Agents (b) Ten Agents

(c) Two Agents (d) Ten Agents

Figure 7. Wealth and portfolios around the non-stochastic trend
and a 95% confidence interval (dots is positive, dash is negative
shocks).

The distribution of consumption shares across individuals can be summed up by
the sufficient statistics ξ(t) and φ(t), as shown in Figure 9 for all three simulations.

There you can see that the heterogeneity wedge, defined as φ(t)
ξ(t)2 , converges more

slowly for five agents. This is driven by the dynamics of these variables, which are
determined by higher moments of the distribution of consumption weights. Because
both ξ(t) and φ(t) are non linear transformations of γ, changing the number of
agents will change the level of both variables. Beyond this, the more agents there
are, the more total mass there is in the economy. Although the averages are what is
important for levels, changing the mass of agents over the support changes the rate
of convergence, as in order for the most risk neutral agent to dominate they must
accumulate a greater consumption share to bring ξ(t) and φ(t) to the same long
run level. Additionally, both ξ(t) and φ(t) are lower for ten agents than for five,
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(a) Two Agents (b) Ten Agents

Figure 8. Dividend yield, D(t)
S(t) around the non-stochastic trend

and a 95% confidence interval (dots is positive, dash is negative
shocks).

and for five agents than for two, and the simulations are converging very slowly in
the number of agents.

These facts combine to cause the interest rate and market price of risk to be
higher for more agents. In Figure 10 you can see that the underlying assumptions
of the model imply that changing the support of the distribution of risk aversion
causes a shift in levels, volatility, and rate of convergence of the interest rate and
market price of risk. If one believes there is a continuum of types, then the way
that one discretizes or bins this distribution into a finite support has a substantial
effect on the model’s outcome. This is the driving interest in a continuous types
simulation, as explicitly modeling the continuous distribution will provide stability
to simulations with a comparable computational cost.

4.4. Continuous Types: No Shock. Consider a similar exercise, attempting to
model a continuous distribution by some finite set of points, except instead use
the model of continuous types. Instead of changing the number of agents one
changes the number of quadrature points used for approximation. Here I’ll use
two, five, and ten quadrature points to match the above simulations. Additionally,
since the above simulations began with an equal number of agents consuming equal
shares in the consumption good and holding equal wealth, the initial marginal
distribution of wealth will be a point mass and the distribution of preferences will
be uniform (ie f(γ, x) = δx∗

γ−γ = δx∗
9 ) 10. The key point is that the change in the

number of quadrature points changes the points in the support in which one is
interested, but this change does not necessarily affect the underlying model being
simulated. I present plots for sufficient statistics of the consumption shares and
the aggregate variables. The results for shares and wealth follow a similar trend,

10This also reduces the required number of quadrature points, since the initial distribution is
essentially one dimensional.
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Figure 9. Sufficient statistics for the distribution of the risk aver-
sion with finite types, where ξ(t) = 1

N

∑N
i=1

ωi(t)
γi

and φ(t) =

1
N

∑N
i=1

ωi(t)
γ2
i

, and the heterogeneity wedge is defined as φ(t)
ξ(t)2 . N

corresponds to the number of types.

Figure 10. Comparison across simulations for aggregate variables
with finite types. N corresponds to the number of types.

but are more difficult to compare visually given they are distributions instead of
finite dimensional vectors. You will see that the qualitative characteristics are the
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same as before, but that the simulations converge much more quickly in the number
of quadrature points than the finite types simulations do in the number of agent
types.

Figure 11. Sufficient statistics for the distribution of the risk
aversion with continuous types, where ξ(t) =

∫ ω(γ,x,t)
γ dF (γ, x)

and φ(t) =
∫ ω(γ,x,t)

γ2 dF (γ, x), and the heterogeneity wedge is de-

fined as φ(t)
ξ(t)2 . N corresponds to the number of quadrature points.

The heterogeneity wedge φ(t)
ξ(t)2 converges quickly to one particular initial condi-

tion and evolves along a very similar trend11 which is smooth and hump-shaped.
As you can see in Figure 11, the lines for five and ten quadrature points lie on top
of each other initially. Additionally, the finite types simulation seems to be con-
verging to the same path, albeit much more slowly. In fact, in order to match the
continuous types model by using the finite types simulations one needs many agent
types, a prohibitive number. This implies that, if one is attempting to match a
continuous distribution of types, a low number (e.g. two, three, etc.) is insufficient

11The lines begin to diverge towards the end of the simulation. This is related to an earlier point
about the quadrature approximation. As the most risk neutral agent accumulates all the wealth
in the long run, and because the quadrature points do not include the end point, the simulations

are converging to different long run solutions. This problem would be alleviated with a different
integral approximation which does include the endpoints, but as mentioned before this is left for
later study.
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to match the level of the heterogeneity wedge that would be present in the true
model. Beyond the number required, the definition of the continuous distribution
frees the modeler from specifying preference levels and instead can simply spec-
ify the shape of the distribution. This removes a degree of freedom, but provides
another by separating the distributions as described in Section 3.

Figure 12. Comparison across simulations for aggregate variables
with continuous types. N corresponds to the number of quadrature
points.

In terms of financial variables, the fact that ξ(t) and φ(t) are converging im-
plies directly that r(t), θ(t), and S(t) will be converging quickly in the number of
quadrature points. In Figure 12 one can see that indeed the solutions for five and
ten quadrature points are almost identical. However, they are diverging towards
the end of the simulation. In fact, because they are converging to different values,
they will cause the Monte Carlo estimators to differ, as these rely on long path
simulations of the stochastic discount factor. Indeed, in Figure 13 you can see that
the dividend yield is diverging and that the level of the stock price volatility is
different. Although this is somewhat disappointing, the results are still superior to
those for finite types and may be improved with a different integral approximation.

5. Conclusion

In this paper I have studied how the distribution of risk preferences affects fi-
nancial variables, consumption shares, and portfolio distributions. The distribu-
tion of risk preferences has a large effect on financial variables driven mainly by
consumption weighted averages of the EIS. The implication is that the amount of
participation by individuals in the market for consumption, not the market for risky
assets, determines to what degree their preferences affect price. In fact, the evolu-
tion of individual shares is determined by each agent’s relative position to weighted
averages of the EIS and its square. Given the heterogeneity in preferences, markets
for risk free bonds and risky assets clear at different levels, implying three groups.
Leveraged investors have low risk aversion and borrow in order to grow their share
in the risky asset. Saving divestors are highly risk averse and lend in order to shrink
their share in the risky asset. Somewhere in the middle we have the diversifying
investor, who is growing their share in the stock market and simultaneously lending
by buying bonds.
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Figure 13. Comparison across simulations for aggregate variables
with continuous types. N corresponds to the number of quadrature
points.

Outcomes are driven by a heterogeneity wedge12 which describes how different
are the market clearing risk free rate and market price of risk. This value can
also be thought of as the squared coefficient of variation plus one in the weighted
distribution of EIS. When this wedge is high, corresponding to two very different
marginal investors and/or a diverse group of investors, asset prices are low, interest
rates are high, and dividend yields are high. Conversely, when this wedge is low,
corresponding to a concentration of consumption shares towards a single agent, as-
set prices are high, interest rates are low, and dividend yield is low. Naturally, when
one agent dominates the variation in preferences is low. However, these statements
are history contingent, for example a representative agent economy will always have
a low wedge. Conditional on there being multiple agents, these statements hold for
the heterogeneity wedge in relative terms.

Additionally, dividend yield in this model is falling over time and co-moves neg-
atively with the growth rate in dividends. This implies a predictable component in
stock market returns. A negative shock to this economy implies a shift of the distri-
bution of consumption shares towards more risk averse agents. This reduces asset
prices and predicts a faster growth rate in the dividend in the future. We know
from simulations that economies with a lower weighted average of EIS will have a
higher rate of return on risky assets. Papers such as Campbell and Shiller (1988a),
Campbell and Shiller (1988b), Mankiw (1981), and Hall (1979) drew differing con-
clusions about the standard model of asset prices, but, broadly speaking, they all
deduced that there was some portion of asset prices that was slightly predictable
as a function of the growth rate in aggregate consumption. In the model presented
here, we can take a step towards explaining this predictability as the dividend yield
co-moves with the average EIS. This is similar to a model of time varying pref-
erences, but where individuals preferences remain constant and aggregate features
vary over time.

12Defined as
φ(t)

ξ(t)2
=

∑ ωi(t)

γ2
i[∑ ωi(t)

γi

]2 or

∫ ω(t,γ,x)

γ2
dF (γ,x)[∫ ω(t,γ,x)

γ
dF (γ,x)

]2 in the continuous types case.
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Finally, I’ve shown how to extend the finite types model to one of a continuum of
types. The results are reminiscent of theoretical work on Mean Field Games (MFG)
with common noise, such as Carmona et al. (2014). However, this model takes a
novel approach to solving such a MFG model by applying the Martingale Method,
a typical tool in mathematical finance. The feature which makes this particular
model so tractable is the dependence on the initial condition. This, in turn, is
driven by market completeness. Agents seek to grow their consumption at some
rate relative to the growth rate in the economy and do so by accumulating financial
assets. They can accumulate assets by borrowing essentially without limit13. An
interesting direction for future research would be to carry this approach over to
incomplete markets, as in Chabakauri (2015), to study how borrowing constraints
would affect the accumulation of assets and market dynamics.

13CRRA preferences rule out the chance of default and agents are always able to borrow.
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Appendix A. Proofs

Proof of Proposition 1. Taking ratios of consumption first order conditions for two
arbitrary agents, i and j we find

ci(t)

cj(t)
= Λ

1
γj

j Λ
−1
γi
i

(
H0(t)eρt

) 1
γj
− 1
γi

To solve for the consumption weight of an individual i, take the market clearing
condition in consumption and divide through by agent i’s consumption

1

N

N∑
j=1

cj(t) = D(t)

⇔
1
N

∑N
j=1c

j(t)

ci(t)
=
D(t)

ci(t)

⇔ ci(t) =
ci(t)

1
N

∑N
j=1 c

j(t)
D(t)

⇔ ci(t) =

 N (eρtΛi(t)H0(t))
−1
γi∑N

j=1 (eρtΛj(t)H0(t))
−1
γj

D(t)

⇔ ci(t) = ωi(t)D(t)

�

Proof of Lemma 1. Modeling consumption as a geometric Brownian motion implies
that for every agent i the consumption process can be described by the stochastic
differential equation

dci(t)

ci(t)
= µci(t)dt+ σci(t)dW (t)(A.1)

Armed with this knowledge, take the first order condition for an arbitrary agent i’s
maximization problem, solve for H0(s), and apply Itô’s lemma:

H0(t) =
1

Λi
ci(t)−γie−ρt

⇒dH0(t)

H0(t)
=

(
−ρ− γiµci(t) + γi(1 + γi)

σci(t)
2

2

)
dt− (γiσci(t)) dW (t)

Now, match coefficients to those in (2.3) to find

r(t) = ρ+ γiµci(t)− γi(1 + γi)
σci(t)

2

2
θ(t) = γiσci(t)

Solving for µci and σci gives

µci(t) =
r(t)− ρ
γi

+
1 + γi
γ2
i

θ(t)2

2

σci(t) =
θ(t)

γi

�
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Proof of Proposition 2. Recall the definition of consumption dynamics in (A.1) and
the market clearing condition for consumption in (1.5). Apply Itô’s lemma to the
market clearing condition:

1

N

N∑
i=1

ci(t) = D(t)⇒ 1

N

N∑
i=1

dci(t) = dD(t)

⇔ 1

N

N∑
i=1

(
ci(t)µci(t)dt+ ci(t)σci(t)dW (t)

)
= D(t)µDdt+D(t)σDdW (t)

⇔
1
N

∑N
i=1

(
ci(s)µci(t)dt+ ci(t)σci(t)dW (t)

)
D(t)

= µDdt+ σDdW (t)

⇔ 1

N

N∑
i=1

ωi(t)µci(t)dt+
1

N

N∑
i=1

ωi(t)σci(t)dW (t) = µDdt+ σDdW (t)

By matching coefficients we find

µD =
1

N

N∑
i=1

ωi(t)µci(t)

σD =
1

N

N∑
i=1

ωi(t)σci(t)

Now use Lemma 1 to substitute the values for consumption drift and diffusion, then
solve for the interest rate and the market price of risk to find

θ(t) =
σD
ξ(t)

r(t) =
µD
ξ(t)

+ ρ− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D

where

ξ(t) =
1

N

N∑
i=1

ωi(t)

γi

φ(t) =
1

N

N∑
i=1

ωi(t)

γ2
i

�

Proof of Proposition 3. Assume that consumption weights follow a geometric Brow-
nian motion given by

dωi(t)

ωi(t)
= µωi(t)dt+ σωi(t)dW (t)(A.2)
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Recall the definition of consumption weights in (2.6) and gather terms:

ωi(t) =

(
ΛieρtH0(t)

)−1
γi∑N

j=1 (ΛjeρtH0(t))
−1
γj

⇔ ωi(t) =

 N∑
j=1

Λ
−1
γj

j Λ
1
γi
i (eρtH0(t))

1
γi
− 1
γj

−1

(A.3)

Recall the definition of Itô’s lemma, where ωi(t) is a function of H0(t) and t:

dωi(t) =
∂ωi(t)

∂t
dt+

∂ωi(t)

∂H0(t)
dH0(t) +

1

2

∂2ωi(t)

∂H0(t)2
(dH0(t))2

Substituting for dH0(t) by (2.3) and using the Itô box calculus to see that (dH0(t))2 =
H0(t)2θ(t)2dt, we see that

dωi(t)

ωi(t)
=

1

ωi(t)

(
∂ωi(t)

∂t
− r(t)H0(t)

∂ωi(t)

∂H0(t)
+H0(t)2θ(t)2 1

2

∂2ωi(t)

∂H0(t)2

)
dt

− θ(t) 1

ωi(t)

∂ωi(t)

∂H0(t)
dW (t)

Matching coefficients with those in (A.2) it is clear that

µωi(t) =
1

ωi(t)

(
∂ωi(t)

∂t
− r(t)H0(t)

∂ωi(t)

∂H0(t)
+H0(t)2θ(t)2 1

2

∂2ωi(t)

∂H0(t)2

)
σωi(t) = −θ(t) 1

ωi(t)

∂ωi(t)

∂H0(t)

Differentiating the expression in (A.3), carrying out some painful algebra, and sim-
plifying gives

µωi(t) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
+
θ(t)2

2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
σωi(t) = θ(t)

(
1

γi
− ξ(t)

)
�

Proof of Proposition 5. Following a trick in Gârleanu and Panageas (2015), we can
arrive at an expression for asset prices. Take a straight forward application of Itô’s
lemma to the time t present value of time u wealth:

d(H0(u)Xi(u)) = Xi(u)dH0(u) +H0(u)dXi(u) + dH0(u)dXi(u)

= Xi(u) (−r(u)H0(u)− θ(u)H0(u)dW (u))

+H0(u)

[(
r(u)Xi(u) + πi(u)S(u)

(
µS(u) +

D(u)

S(u)
− r(u)

)
− ci(u)

)
du

+πi(u)S(u)σS(u)dW (u)

]
− θ(u)H0(u)πi(u)σS(u)S(u)du

Now, notice that ci(s) = ωi(s)D(s) and that σS(t)θ(t) = µS(t) + D(t)
S(t) − r(t) by

(2.2). This implies that the above expression simplifies to

d(H0(s)Xi(s)) = −H0(u)ωi(u)D(u)du+H0(u)[πi(u)σS(u)S(u)−Xi(u)θ(u)]dW (u)
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By the definition of the Itô differential this is equivalent to

lim
u→∞

H0(u)Xi(u)−H0(t)Xi(t) = −
∫ ∞
t

H0(u)ωi(u)D(u)du

+

∫ ∞
t

H0(u)[ωi(u)σS(u)S(u)−Xi(u)θ(u)]dW (u)

If we take expectations, then the first term on the left hand side is zero by a
transversality condition on the present value of wealth. Also, notice that the Brow-
nian integral on the right hand side is zero in expectation by the martingale property
(Oksendal (1992)). So we can write

−H0(t)Xi(t) = −Et
∫ ∞
t

H0(u)ωi(u)D(u)du

Finally, we arrive at an expression for wealth today

Xi(t) = Et
∫ ∞
t

H0(u)

H0(t)
ωi(u)D(u)du

Now take the market clearing condition for wealth and substitute this new formula

S(t) =
1

N

N∑
i=1

Xi(t)

=
1

N

N∑
i=1

Et
∫ ∞
t

H0(u)

H0(t)
ωi(u)D(u)du

= Et
∫ ∞
t

H0(u)

H0(t)

(
1

N

N∑
i=1

ωi(u)

)
D(u)du

= Et
∫ ∞
t

H0(u)

H0(t)
D(u)du

�

Appendix B. Numerical Simulation Method

Gathering all of the stochastic processes we have the following definitions to
describe the evolution of the economy:

dD(t)

D(t)
= µDdt+ σDdW (t)

dωi(s)

ωi(s)
= µωi(s)dt+ σωi(s)dW (t)

dH0(t)

H0(t)
= −r(t)dt− θ(t)dW (t)(B.1)

θ(t) =
σD
ξ(t)

r(t) =
µD
ξ(t)

+ ρ− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D
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where

µωi(t) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
+
θ(t)2

2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
σωi(t) = θ(t)

(
1

γi
− ξ(t)

)
ξ(t) =

1

N

N∑
i=1

ωi(t)

γi

φ(t) =
1

N

N∑
i=1

ωi(t)

γ2
i

given a set of initial conditions {ωi(0)}Ni=1 and D(0). All of the above variables
can be determined as a function of the realization of the risk process W (t). If we
combine those values with an estimation of asset prices, volatilies, portfolios, and
the following formulas

θ(t) =
µs + D(t)

S(t) − r(t)
σs(t)

dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t)

we can back out the coefficients µS(t) and σS(t) and study the dynamics of the
economy, as well as characteristics of asset prices.

The numerical scheme follows the following steps:

(1) Specify a time discretization such that t ∈ {0, 1, ..., T} and a time step ∆t.
Note that the specification of parameters and this time step will determine
the discretization as being yearly, quarterly, monthly, etc.

(2) Specify a set of agents indexed by i ∈ {1, ..., N} for some number N , each
agent’s risk aversion parameter γi, and each agents’ initial wealth Xi(0).

(3) Specify initial conditions {ωi(0)}Ni=1 and D(0).
(4) Simulate a process {dW (t)}Tt=0 where dW (t) ∼ N (0,∆t).
(5) Using (B.1) and the simulated Wiener process, for each period t ∈ {0, 1, ..., T}

calculate {D(t), {ωi(t)}Ni=1, r(t), θ(t), ξ(t), φ(t)}.
(6) Using the monte-carlo approach described in Appendix B.1, for each period

t ∈ {0, 1, ..., T} calculate Ŝ(t), π̂i, σ̂S(t), and µ̂S(t).

(7) Given the processes for Ŝ and π̂, calculate wealth Xi(t) and bond holdings
bi(t) for each period using the definitions Xi(0) = πi(0)S(0) + bi(0) and
(1.4).

(8) Calculate any measures you might find enlightening!

B.1. Monte Carlo Method. The expressions we wish to estimate (Equations (2.15)
to (2.17)) are of the form

Y (t) = Et
∫ ∞
t

f ((Z(u)) du

for some function f and some multidimensional stochastic process Z(t).
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In order for the integral to be defined, it must be that the integrand converges
towards zero as u → ∞. If this is the case, then we could estimate the integral
by truncating the upper bound at some level, t+ T . In this way we would look to
approximate the true value in the economy by another:

Y (t) ≈ Y ∗(t) = Et
∫ t+T

t

f(Z(t))du

This expression can easily be estimated by monte-carlo. Given that one must dis-
cretize the stochastic process in numerical simulations, replacing Z(t) by its Euler-

Murayama approximation Ẑ(t) implies that a trapezoid rule exactly approximates
the time integral. Define the discretization by partitioning the interval (t, t + T )
into H evenly spaced intervals such that ∆t is the distance between points in the
partition. Sample M paths for the process W (t) and simulate the economy along

these paths to extract processes in Ẑ(t). Indicating draws by a super-script m the
estimator is given by:

Ŷ ∗(t) =
1

M

M∑
m=1

[
1

2

(
f
(
Ẑm(t)

)
+ f

(
Ẑm(t+ T )

))

+

T/∆t−1∑
i=1

f
(
Ẑm(t+ ∆ti)

)(B.2)

Given the computational simplicity of this expression, it can be calculated quite
easily. However, the dimension of the random variables involved is very large. For
example, if Deltat = 0.5 and T = 100, the driving noise is 600 dimensional. Add
to that the fact that the state variable has the same number of dimensions, but
multiplied by the number of agents or nodes. This implies that for 10 agents the
random variables involved are 6000 dimensional. This means that variance will be
high for even seemingly large numbers of sample paths. In the set of simulations
currently included in the paper, 6.24 × 105 simulation paths are used, but the
estimators still exhibit noisy behavior, in particular for estimating portfolios and
volatility, which are ratio estimators.

To calculate these values, the present set of simulations was run on a cluster of 6
AWS c4.8xlarge compute optimized nodes, each with 36 vCPU’s. The simulations
ran in roughly 18 hours.

To estimate, the steps are as follows for a given distribution of {γi}Ni=1 and an
initial condition for the distribution of wealth {ωi(t)}Ni=1:

(1) Simulate M sample paths for dW (t) of length T , where M is an integers,
using the knowledge that dW (t) ∼ N (0, t).

(2) Using the M sample paths, simulate the evolution of M different economies
populated by the same agents under the same initial condition. Extract the
values for

(
H0(t), D(t), {ωi(t)}Ni=1, θ(t)

)
.

(3) Approximate all of the expectations in Equations (2.15) to (2.17) using
Equation (B.2).

(4) Repeat the above process for every period.
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Cvitanić, J., Jouini, E., Malamud, S., and Napp, C. (2011). Financial markets
equilibrium with heterogeneous agents. Review of Finance, page rfr018.

Dumas, B. (1989). Two-person dynamic equilibrium in the capital market. Review
of Financial Studies, 2(2):157–188.



36 HETEROGENEOUS RISK PREFERENCES IN FINANCIAL MARKETS
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