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Abstract

This paper investigates the effect of cascade of detection, that is, how detection of

a criminal triggers detection of his network neighbors, on criminal network formation.

We develop a model in which criminals choose both links and actions. We show that the

degree of cascade of detection plays an important role in shaping equilibrium criminal

networks. Surprisingly, greater cascade of detection could reduce ex ante social welfare.

In particular, we prove that full cascade of detection yields a weakly denser criminal

network than that under partial cascade of detection. We further characterize the

optimal allocation of the detection resource and demonstrate that it should be highly

asymmetric among ex ante identical agents.
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1 Introduction

Criminal decision-making is often interdependent. Social interaction is both theoretically

and empirically identified as an important channel through which neighborhood criminal

behavior affects individual criminal behavior. While the structure of social networks plays

a key role in facilitating crimes, it can also be utilized by law enforcement agencies to trace

linked criminals. In a criminal network, detection of an agent could potentially trigger further

detection of his network neighbors. We call this triggering effect cascade of detection. In

this paper, we study how cascade of detection affects ex ante social welfare in the presence of

endogenous network formation among criminals. Interestingly, we find that a higher degree of

cascade of detection may backfire. The relationship between the degree of cascade and ex ante

social welfare is non-monotonic. Although enhancing cascade of detection is ex post efficient,

it could be ex ante sub-optimal precisely because criminal network formation adjusts upon

the degree of cascade. Under a higher degree of cascade, as additional cost of connecting

to an indirect network neighbor becomes lower, criminals become less selective in choosing

their linking partners, thus rendering a denser equilibrium network. Our work highlights that

the degree of cascade of detection has very nuanced implication on social welfare, thereby

shedding light on the nexus between law enforcement and criminal networks.

In our model, the government first announces a detection policy. It consists of two

components, the degree of cascade and the allocation of the detection budget. The former

is the key innovating feature of our model. After observing the detection policy, agents

play a two-stage game. In the first stage, they propose links to each other and it requires

bilateral consent to form a link. Creating a new link does not incur any explicit cost, but a

well-connected agent tends to be more likely to be detected. In the second stage, agents play

a game with local complementarities in the fashion of Ballester et al. (2006). The payoff of

an agent increases with his centrality in the network. Therefore, each agent is faced with

the trade-off between increase of his centrality in the network and being more likely to be

detected. Under a given detection policy, we consider two equilibrium notions, pairwise

stable Nash equilibrium and its refinement, strongly stable Nash equilibrium. We say an

equilibrium is pairwise stable if it is stable against bilateral coordination of link formation

(Jackson and Wolinsky, 1996; Hiller, 2014) and an equilibrium is strongly stable if it is stable

against multilateral coordination of link formation (Jackson and van den Nouweland, 2005).

As a starting point, we consider three scenarios: (1) no cascade of detection – detection of

an agent does not trigger any further detection; (2) partial cascade of detection – detection of

2



an agent only triggers detection of his direct network neighbors; (3) full cascade of detection –

detection of an agent triggers detection of every agent who is directly or indirectly connected

with him. We show that the equilibrium network in any pairwise stable Nash equilibrium,

including the strongly stable Nash equilibrium if any, under partial cascade of detection is

weakly sparser than the equilibrium network in the unique strongly stable Nash equilibrium

under full cascade of detection. This result holds for any allocation of the detection budget.

Using the unique strongly stable Nash equilibrium under full cascade of detection as a

benchmark, we also fully characterize the optimal allocation of detection budget. We show

that the optimal budget allocation is highly asymmetric among ex ante identical agents.

Intuitively, when the government is unable to refrain agents from linking to each other, the

best strategy is to minimize the number of linked agents. To achieve this, the government

needs to create certain gradient in terms of scrutiny among agents such that a subset of

agents will be excluded from link formation.

Our model is built upon the framework of Baccara and Bar-Isaac (2008). Using terrorist

networks as a motivating example, they investigate the optimal information structure in a

criminal organization and its implication on the optimal detection policy. Our work com-

plements theirs from two aspects. First, we focus on individual incentive to form networks,

while the notion of the optimal information structure in Baccara and Bar-Isaac (2008) is

from a group perspective. Different from their centralized view of the organized crime, we

take a decentralized approach to tackle criminal networks. Second, this paper examines in

detail the cascade of detection. With very few exceptions1, most of the existing work in the

literature on detection policy of criminal networks assumes either no cascade of detection or

full cascade of detection. Our work offers insights on how the degree of cascade of detection

could affect ex ante social welfare in a surprising direction.

Our paper adds to the literature that investigates crime and punishment in a network

framework. Economic modeling of crime and punishment can be dated back to Becker

(1968), but it is only until very recently that social networks, which have long been per-

ceived as a crucial ingredient in crime decisions, are explicitly formulated in this context2.

Calvó-Armengol and Zenou (2004) is among the first few papers that introduce the network

geometry into a model of criminal activity. As a seminal paper, Ballester et al. (2006) pro-

1A notable exception is the follow-up work by Baccara and Bar-Isaac (2009), but again they focus on the
efficient network from a group perspective, which is more applicable to highly organized criminal networks
like terrorist networks.

2Garoupa (1997) provides an excellent review of the literature prior to the introduction of the network
framework.
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vide a tractable model in which agents play a network game with local complementarities.

Their paper spurs a series of subsequent work that explores from the standpoint of a social

planner which player in the criminal network should be removed so as to achieve the greatest

reduction in aggregate criminal activity, namely, the “key player” policy3. Following Becke-

rian incentive approach, Ballester et al. (2010) use a model of delinquent networks to derive

the key player policy and extend it to target the key group as well as the key link. Liu et al.

(2012) structurally estimate a key-player model and find that the key player policy achieves

sizable reduction of criminal activity. In a more recent work, Chen et al. (2015) further

extend Ballester et al. (2006) to allow agents to have multiple types of interdependent activ-

ities and demonstrate that isolating the criminal activity from other activities could render

the key-player policy mis-targeted.

Our paper also ties into the growing literature that integrates network formation with a

network game with local complementarities. The structure of our model is closely related

to Hiller (2014) in which two-sided link formation is introduced before agents play a net-

work game. In a parallel study, Baetz (2015) incorporates one-sided link formation into a

model with strategic complementarities. In both papers, certain types of social hierarchy

endogenously emerge as equilibrium outcome. The idea of combining network formation

with network games is also studied in a dynamic setting by König et al. (2014) and Lager̊as

and Seim (2015). By imposing myopic assumptions on individual decision and introduc-

ing stochastic arrival of linking opportunity, these two papers point out the prominent role

played by the so-called nested split graphs as equilibrium network structures.

From a substantive point of view, our work shares with Garoupa (2007) the insights that

stricter law enforcement could have unintended consequences, albeit through very different

channels. Garoupa (2007) argues that more severe punishment tends to change the internal

organization of criminal networks and consequently reduces effectiveness of the policy. Using

a very different framework, our work explicitly accounts for the network structure among

criminals and its formation. With a network grounding, our model captures how aggregate

criminal activity reacts to the cascade of detection and explains why ex ante social welfare

could be dampened under stricter law enforcement.

The rest of the paper is organized as follows. We present the baseline model and define

equilibrium notions in section 2. In section 3, we study criminal network formation under

different degrees of cascade of detection. In light of emergence of a unique strongly stable

equilibrium under full cascade of detection, we characterize the optimal detection policy in

3Zenou (2014) provides an extensive survey of the recent literature on key players in networks.

4



section 4. Extensions are discussed in section 5. We conclude in section 6.

2 Model

There are finite agents and a government which acts as an external authority. Denote the set

of agents by N = {1, 2, ..., n}. The timing structure of the game closely follows Baccara and

Bar-Isaac (2008). As is illustrated by Figure 1, the government first announces its detection

policy which consists of the allocation of the detection budget and the degree of cascade.

The government decides the allocation of the detection budget, while the degree of cascade

is an exogenous feature of the law enforcement institutions that is not freely chosen by the

government. The core of our theoretical exercise is to understand efficacy of law enforcement

under different degrees of cascade. After observing the detection policy, agents play a two-

stage game. At the first stage, agents propose and form links with each other. At the second

stage, agents decide the effort level of criminal activity, which is modeled as a game with

local complementarities on the criminal network à la Ballester et al. (2006).

Figure 1: Timing Structure

2.1 Government Policy

The government detection policy has two dimensions: the detection resource allocation and

the degree of cascade. First, the government allocates a fixed amount of the detection budget

B over n agents. Denote the probability of agent i being directly detected by βi ∈ [0, 1]. Let

βββ = (β1, β2, ..., βn). Following Baccara and Bar-Isaac (2008), we assume that the detection
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technology is linear, and therefore
∑n

i=1 βi ≤ B. Without loss of generality, n agents are

ranked such that β1 ≤ β2 ≤ ... ≤ βn. Second, the degree of cascade of criminal detection

concerns how detection of an agent triggers further detection of his network neighbors. It

is the key departure from the existing literature, but notice that the cascade of detection is

not a choice variable of the government. Once a given agent i is detected, we consider three

scenarios: (1) no cascade of detection, i.e., detection of agent i will not affect anyone directly

or indirectly connected to him; (2) full cascade of detection, i.e., those who are directly or

indirectly connected to agent i will also be detected; (3) partial cascade of detection, i.e.,

only those who are directly connected to agent i will be detected. Admittedly stark as these

three scenarios are, we will demonstrate that the main intuition can be captured without

losing tractability of the model. We also discuss other degrees of cascade in Section 5.1.

Before we formally specify the degree of cascade, we first introduce network notation and

terminology.

2.2 Network Formation

Denote the set of all n-by-n symmetric Boolean matrices with zeros on the diagonal by G.

A criminal network can be fully characterized by an adjacency matrix g ∈ G with gij = 0

if two agents i and j are not linked and gij = 1 if they are linked. Following notational

convention, gii = 0 for any i ∈ N . We define the distance dij between agent i and j as the

length of the shortest path connecting i and j. By definition, dii = 0 for any i ∈ N and

dij < n for any pair i and j connected by a path. If there is no path connecting agent i and

j, the distance is defined as∞. A network g is said to be complete if gij = 1 for any i, j ∈ N
such that i 6= j. A network g is said to be empty if gij = 0 for any i, j ∈ N . A component

consists of a subset of agents C ⊂ N and links among them such that any pair of agents

in C are connected by a path and there is no path connecting an agent in C with an agent

outside C. We say a criminal network g is sparser than another criminal network h if the

set of links in g is a subset of the set of links in h, or to put it in another way, hij = 0 implies

gij = 0 for any i, j ∈ N .

Given a criminal network g, the probability of agent i not being detected is given by

pi(g;βββ, d) = Πj∈N,dij≤d(1− βj),

where d is the degree of cascade and d = 0, 1, n corresponds to the three cases aforementioned.

If d = 0, pi = 1−βi. This is the case of no cascade of detection. The probability of an agent
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not being detected is the same as the probability of an agent not being directly detected. If

d = 1, pi = (1−βi) ·Πdij=1(1−βj), which means agent i will be detected if and only if either

himself or his direct network neighbors get directly caught. We call this partial cascade of

detection. If d = n, anyone who is directly or indirectly connected to agent i shares the same

probability of being detected. This corresponds to full cascade of detection. In the network

shown by Figure 2, it can be easily seen that p1(g;βββ, 0) = 1− β1, p1(g;βββ, 1) = Π4
i=1(1− βi),

and p1(g;βββ, 6) = Π6
i=1(1− βi).

Figure 2: Degree of Cascade: An Example

After the government announces the detection policy, the detection resource allocation

βββ and the degree of cascade d become common knowledge among all agents. They then

make their link proposals contingent on βββ and d. Denote the set of all n-by-n (symmetric or

asymmetric) Boolean matrices with zeros on the diagonal by G. Link proposals by n agents

can be fully characterized by an adjacency matrix g ∈ G with gij = 1 if agent i proposes

a link to agent j and gij = 0 otherwise. Following notational convention, gii = 0 for any

i ∈ N . Link formation is bilateral. A link between agent i and j is formed if and only

if both of them agree to form that link. Therefore, a criminal network g ∈ G is given by

g(g) ≡ min(g, g′)4 for any adjacency matrix of link proposals g ∈ G. Denote by Gi the set

of all n-by-1 Boolean vector with i-th element to be zero. Gi is the set of all possible link

proposals by agent i.

2.3 A Game with Local Complementarities

Once a criminal network g ∈ G is formed, agents play a game with local complementarities

on the network. Each agent chooses an effort level. Denote agent i’s effort level by xi ∈ R+.

4Throughout the paper, the transpose of a matrix M is denoted by M ′.
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Let xxx = (x1, x2, ..., xn). Denote by πi the payoff to agent i in the stage game. Following

Ballester et al. (2006), the payoff function is of the form

πi(xxx, g;λ) = xi −
1

2
x2i + λ

n∑
j=1

gijxixj

where λ ∈ (0, 1/(n − 1)) measures the degree of complementarities, capturing the interde-

pendence of criminal activity documented in the empirical literature. With a positive λ,

effort levels exerted by network neighbors reinforce each other.

We assume that an agent gets zero payoff if he is caught by the government5. Therefore,

agent i’s net payoff πi is given by

πi(xxx, g;βββ, λ, d) = pi(g;βββ, d) · πi(xxx, g;λ).

2.4 Definition of Equilibrium

The timing structure of the model can be formally written as follows.

1. The government announces the allocation of the detection budget βββ and the degree of

cascade d.

2. After observing βββ and d, agents propose link with each other. A criminal network g is

formed via bilateral agreement.

3. Given the network g, each agent chooses his effort level xi.

4. Payoff is realized.

Denote the set of all mappings from G to R+ by X. A given agent i’s strategy is a

pair of a vector of link proposals gi ∈ Gi and an effort mapping xi(·) ∈ X. Let xxx(·) =

(x1(·), x2(·), ..., xn(·)). Given a strategy profile (xxx(·), g), agent i’s payoff can be rewritten as

a function of the strategy profile

Πi(xxx(·), g;βββ, λ, d) ≡ πi(xxx(g(g)), g(g);βββ, λ, d).

As βββ, λ, and d are treated as parameters in the n-player two-stage game, we will omit them

in the payoff function if it does not cause any confusion.

5We will discuss later how our results change if each agent has an outside option with positive payoff.
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We first define two standard notions of equilibrium.

Definition 1. A Nash equilibrium is a strategy profile (xxx∗(·), g∗) such that

Πi(xxx
∗(·), g∗) ≥ Πi(xi(·), x∗−i(·), gi, g∗−i), ∀i ∈ N, xi(·) ∈ X, gi ∈ Gi.

Definition 2. A subgame-perfect Nash equilibrium is a strategy profile (xxx∗(·), g∗) such that

a Nash equilibrium is played for every subgame.

Before defining a stronger notion of equilibrium that is more suitable for network forma-

tion, we introduce an additional matrix operator. For any g ∈ G, g⊕ (i, j) sets (i, j)-element

to be one with all the other elements in g unchanged6. Our next equilibrium definition

follows Hiller (2014).

Definition 3. A pairwise stable Nash equilibrium (PSNE) is a strategy profile (xxx∗(·), g∗)
such that

1. (xxx∗(·), g∗) is a subgame-perfect Nash equilibrium.

2. There is no profitable bilateral deviation at the stage of link formation. For any (i, j)-

pair such that g(g∗)ij = 0 (i 6= j),

Πi(xxx
∗(·), g∗ ⊕ (i, j)⊕ (j, i)) > Πi(xxx

∗(·), g∗)

implies

Πj(xxx
∗(·), g∗ ⊕ (i, j)⊕ (j, i)) < Πj(xxx

∗(·), g∗).

Throughout this paper, we restrict our attention to coordination of link formation, so we

only allow agents to coordinate in the first stage of the game. This assumption effectively

restricts the set of deviation strategies. In the presence of strategic complementarities, if we

allow two agents to coordinate with each other in terms of effort levels, both of them will

achieve higher payoffs by choosing higher-than-equilibrium effort levels.

3 Criminal Network Formation

In this section, we characterize and refine equilibria under a given detection policy (βββ, d).

We solve the game by backward induction. The equilibrium characterization of the stage

6If gij = 1, g ⊕ (i, j) = g.
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game with local complementarities can be found in Ballester et al. (2006). Proposition 1

guarantees a unique equilibrium in this stage game.

Proposition 1. Given a criminal network g ∈ G, if λ ∈ (0, 1/(n−1)), there exists a unique

interior Nash equilibrium for the stage game with local complementarities. In particular, the

equilibrium effort level is of the form

xxx(g) = (I− λg)−1 · 1,

where I is an n-dimensional identity matrix and 1 is an n-by-1 vector with all elements equal

to one. Moreover, agent i’s net payoff is given by pi(g)x2i (g)/2.

All the proofs are delegated to the appendix. Because of the uniqueness of the equilibrium

in the second-stage game and its analytical tractability, we can mainly focus our analysis

on strategic network formation among agents. The central trade-off faced by each agent is

between connectivity and riskiness. Due to local complementarities, connecting with more

agents implies higher payoff in the stage game, while it is also riskier to be well connected. In

the following three subsections, we will characterize and compare equilibrium under different

degrees of cascade (d = 0, 1, n).

3.1 No Cascade of Detection (d = 0)

It becomes entirely costless for each agent to form links, if there is no cascade of detection

at all. Because of strategic complementarity, it is always beneficial to have more links. The

following proposition states this simple result.

Proposition 2. If there is no cascade of detection (d = 0), there exists a generically unique

pairwise stable Nash equilibrium in which agents form a complete network7.

When detection is purely individual-based, the equilibrium criminal network is complete

except some polar cases, and as a result, the equilibrium network structure is independent

from the detection budget allocation βββ.

3.2 Full Cascade of Detection (d = n)

In this subsection, we turn to the other extreme by considering full cascade of detection

(d = n). Detection of agent i triggers detection of any agent that is in the same component

7A sufficient condition for the uniqueness of equilibrium is that βi < 1 for any i ∈ N .
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as agent i. This implies that once agent i chooses to form a link with agent j, there is no

additional cost for him to add more links with agents who are in the same component as

agent j. Therefore, two agents who are indirectly connected always have incentive to form

a direct link with each other. The following lemma formalizes this intuition.

Lemma 1. Under full cascade of detection (d = n), if βi < 1 for any i ∈ N , each component

of the criminal network is complete in a pairwise stable Nash equilibrium.

An interesting observation can be drawn from this simple lemma. Though our setting is

purely network based, our equilibrium solution resembles a problem of coalitional formation.

Because the equilibrium network is always component-wise complete, it can be equivalently

expressed as a partition of agents.

Figure 3: Multiple Pairwise Stable Nash Equilibria (β1 = β2 = β3 = 0.18, λ = 0.1)

However, there typically exists multiple PSNE. For example, figure 3 illustrates two

PSNE networks in a three-agent setting with β1 = β2 = β3 = 0.18 and λ = 0.1. It can

be calculated that equilibrium A Pareto dominates equilibrium B (from criminals’ point of

view), but equilibrium B is still pairwise stable because agent 1 has no incentive to form a

link to agent 2 if agent 3 stays unconnected with agent 2 and vice versa. Under equilibrium

A, all three agents will be able to fully reap the benefit of a complete network by adding two

links between agent 2 and the other two agents. Hence, if multilateral coordination of link

formation is allowed, only equilibrium A is stable.

To further sharpen our equilibrium characterization, we need to introduce a stronger

notion of equilibrium. Following Jackson and van den Nouweland (2005), we say a network

h ∈ G is obtainable from g ∈ G via deviations by a nonempty subset S ⊂ N if the following

two conditions are satisfied.
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1. gij = 0 and hij = 1 implies i, j ∈ S;

2. gij = 1 and hij = 0 implies {i, j} ∩ S 6= ∅.

In words, for each link addition, both partners are required to be within this subgroup S,

while for each link deletion, at least one partner has to be in S. For example, in the upper

panel of Figure 4, network B is obtainable from network A via deviations by S = {2, 5, 6},
while in the lower panel, network D is not obtainable from network C via deviations by

S = {2, 5, 6}, because a new link is added between agent 1 and 6, but agent 1 is not from

the deviation group S.

Figure 4: Obtainability

We now define the strongly stable Nash equilibrium à la Jackson and van den Nouweland

(2005).

Definition 4. A strongly stable Nash equilibrium (SSNE) is a strategy profile (xxx∗(·), g∗) such

that

1. (xxx∗(·), g∗) is a subgame-perfect Nash equilibrium.

2. For any nonempty S ⊂ N , h ∈ G that is obtainable from g(g∗) via deviations by S,

and i ∈ S such that πi(xxx
∗(h), h) > πi(xxx

∗(g(g∗)), g(g∗)), there exists j ∈ S such that

πj(xxx
∗(h), h) < πj(xxx

∗(g(g∗)), g(g∗)).

12



By definition, a strongly stable Nash equilibrium is always a pairwise stable Nash equilib-

rium, because it allows not only bilateral coordination but also multilateral coordination of

link formation. In a pairwise stable Nash equilibrium, an agent is not allowed to add several

links simultaneously even though doing so is mutually beneficial for all agents involved in

link addition. A strongly stable Nash equilibrium rules out this implausible limitation by al-

lowing multilateral coordination. The following result indicates that the criminal network in

a strongly stable Nash equilibrium is formed assortatively: each agent tends to be connected

with agents with similar probability of being directly detected.

Lemma 2. In any strongly stable Nash equilibrium, the equilibrium partition of agents8

“preserves” the order of detection probability{
{1, 2, ..., n1}, {n1 + 1, n1 + 2, ..., n1 + n2}, ..., {

k−1∑
i=1

ni + 1,
k−1∑
i=1

ni + 2, ...,
k∑
i=1

ni}

}

where n ≡
∑k

i=1 ni and agents are labeled such that β1 ≤ β2 ≤ ... ≤ βn.

The central idea in proving this lemma is to show that if agent i is connected with agent

j, they must be connected with any agent with detection probability in between βi and βj.

Intuitively, the least risky agent always wants to pick the second least risky agent if he is

ever willing to connect, and this incentive of connection is also aligned with that of the

second least risky agent. The lemma is a direct generalization of this intuition. The next

proposition establishes the existence of a unique strongly stable Nash equilibrium and fully

characterizes the equilibrium network structure, or equivalently, the equilibrium partition.

This characterization is particularly useful, because it operationalizes the key target of an

optimal detection policy, that is, the size of the non-singleton component.

Proposition 3. There exists a generically unique strongly stable Nash equilibrium with the

equilibrium partition {{1, 2, ..., n0}, {n0 + 1}, {n0 + 2}, ..., {n}} and

n0 = max

{
arg max

k∈N
πk
}
, (1)

8Recall that the equilibrium network under full cascade of detection is always component-wise complete,
so the equilibrium network can be equivalently expressed as the equilibrium partition of agents.
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where πk is the individual payoff of a complete component formed by the first k agents,

πk =
1

2

(
1

1− (k − 1)λ

)2

Πk
i=1(1− βi). (2)

More precisely, this equilibrium is unique if at least one of the following conditions holds:

(a) n0 = 1; (b) β1 < βn0 ; (c)
1− β1

2
<

1

2

(
1

1− (n0 − 1)λ

)2

Πn0
i=1(1− βi).

If none of these three conditions holds, there exists another equilibrium in which the equilib-

rium network is empty.

The proof of this proposition consists of three steps. We first show that in any SSNE

agents are divided into two groups: the first group form a complete component, while each

agent in the second group is isolated. This network structure is also known as the dominant

group architecture9 (Goyal and Joshi, 2003). We then demonstrate that the equilibrium par-

tition constructed above yields an SSNE. As a last step, we provide necessary and sufficient

conditions to guarantee the uniqueness of equilibrium. Since there exists a unique SSNE

except some rather restrictive cases, we are able to further analyze the optimal detection

policy without concerning issues of equilibrium selection.

Figure 5: Individual Payoff of the Largest Component (n = 10; βk = k/20;λ = 0.08)

This proposition also suggests how to find a strongly stable Nash equilibrium via simple

9Formally, the dominant group architecture is characterized by a complete non-singleton component and
a set of isolated nodes.
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calculation. Given βββ and λ, the individual payoff of a complete component consisting of the

first k agents, πk, can be readily calculated, and n0 is simply given by the largest maximizer

of πk. As a numerical example, consider a 10-agent game with βk = k/20 and λ = 0.08.

This example is illustrated by Figure 5. It can be seen that k = 3 is the unique maximizer

of πk, and therefore the equilibrium partition is obtained as {{1, 2, 3}, {4}, {5}, ..., {10}}.

3.3 Partial Cascade of Detection (d = 1)

Under partial cascade of detection (d = 1), each agent is faced with a more nuanced trade-

off: unlike full cascade of detection, adding a new link always brings about additional risk

of being detected, so each agent becomes more selective in link formation. This selection

motive tends to reduce the number of links each agent is willing to form. On the other hand,

compared with full cascade of detection, agents become less vulnerable to link formation,

because each agent is only exposed to the risk of his direct neighbors. Interestingly, it turns

out that the selection motive dominates. In particular, any PSNE, including SSNE if any10,

yields a criminal network weakly sparser than that of the unique SSNE under full cascade

of detection. The following proposition states one of the central results in this paper.

Proposition 4. Those players who are isolated in the strongly stable Nash equilibrium under

full cascade of detection remain isolated in any pairwise-stable Nash equilibrium under partial

cascade of detection.

The key step in the proof is to show that in any PSNE no one wants to be directly

connected with those agents who are isolated in the unique SSNE under full cascade of

detection. Recall that the individual effort level increases with the number of links an agent

has. Since any PSNE network under partial cascade of detection consists of a subset of

links of the SSNE criminal network under full cascade of detection, the aggregate criminal

activity in any PSNE under partial cascade of detection is also weakly lower than that in

the SSNE under full cascade of detection. Although we do not have a complete equilibrium

characterization of a PSNE under partial cascade of detection, this proposition provides

an “upper bound” in terms of the equilibrium network structure as well as the aggregate

criminal activity. Moreover, the proposition also suggests that criminal network formation

exhibits strong discontinuity with respect to the degree of cascade: when the detection policy

10Under partial cascade of detection, SSNE may not exist. For example, when n = 3, β1 = β2 = β3 = 0.195,
and λ = 0.1, there exists a unique PSNE which yields an empty network and there is no SSNE.
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switches from no cascade to partial cascade, it tends to achieve a social outcome that is as

desirable as, if not better than, that of the unique SSNE under full cascade of detection.

4 Optimal Detection Policy

The optimal allocation of detection resources hinges on the degree of cascade of detection.

When there is no cascade of detection, detection resource allocation plays little role in shaping

the criminal network formation; in the presence of partial or full cascade of detection, optimal

allocation of detection resource further depends on which equilibrium n agents choose to play.

To highlight the core trade-off the government is faced with, we consider a very specific form

of the decision problem as follows

min
βββ∈Rn

+

n0(βββ), s.t.
n∑
i=1

βi ≤ B,

where n0(βββ) is defined in Equation 1 and it is interpreted as the size of the largest compo-

nent of the criminal network in the unique SSNE under full cascade of detection given the

detection resource allocation βββ. We take the unique SSNE under full cascade of detection

as a benchmark for two reasons. First, uniqueness of SSNE guarantees the minimization

problem is well-defined. Second, since this decision problem is equivalent to minimizing the

total effort level in the SSNE under full cascade of detection11, in light of Proposition 4,

this formulation of the government decision problem can be alternatively interpreted as a

minimax problem: it is to minimize the upper bound of the aggregate criminal activity in

any PSNE under partial cascade of detection.

Apparently, if the total detection resource B is sufficiently large, the government is always

able to keep the SSNE criminal network empty. We therefore consider a variant of the

original problem: if the government wants every agent to be isolated in the SSNE, what is

the minimum detection resource required? Specifically, we have

min
βββ∈Rn

+

n∑
i=1

βi, s.t. πk(βββ) ≤ π1(βββ), k ∈ N,

11Formally, it is equivalent to assume that the government has the following decision problem under full
cascade of detection

min
βββ∈Rn

+

n∑
i=1

x∗i s.t.

n∑
i=1

βi ≤ B,

where x∗i is the effort level chosen by player i in the SSNE and it depends on the resource allocation βββ.
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where πk(βββ) is the individual payoff of a complete size-k component defined in Equation

2. According to Proposition 3, the criminal network in the SSNE is empty if and only

if πk(βββ) < π1(βββ) for k = 2, 3, ..., n. Therefore, this minimization problem yields a lower

bound of detection resource to ensure an empty criminal network. The following proposition

establishes this lower bound and specifies one optimal allocation of the detection budget

provided that the detection budget exceeds the lower bound.

Proposition 5. Under full cascade of detection, the government can keep each agent isolated

in the strongly stable Nash equilibrium if and only if

B > B1 ≡ n− 1−
n∑
k=2

(
1− (k − 1)λ

1− (k − 2)λ

)2

,

and the optimal allocation of the detection budget is given by β1 = 0 and

βk = 1−
(

1− (k − 1)λ

1− (k − 2)λ

)2

+
B −B1

n− 1
, k = 2, 3, ..., n.

Although the proof of this proposition is complicated by the implicit ordering of βββ, the

underlying logic is very intuitive. The government first allocates its detection budget such

that π1(βββ) = πk(βββ) for any k ∈ N and let the first agent be free of risk, β1 = 0. In that

πk(βββ) is convex with respect to k, βk also has to be convex with respect to k for k ≥ 2. This

allocation gives rise to a knife-edge situation in which a complete size-n criminal network

is formed, but this equilibrium is not robust even to a small perturbation of βββ. Imposing

ε-increment of scrutiny on each agent except agent 1, the government will achieve the first-

best by making π1(βββ) > πk(βββ) for any k ≥ 2. In the optimal allocation of the detection

budget we choose, the government simply divide the extra budget, B − B1, equally among

n− 1 agents.

Without enough detection resource (B ≤ B1), the government has to tolerate cer-

tain degree of networking among agents. If the government makes the compromise and

only attempts to keep the size of the largest component in the SSNE network to be S ∈
{2, 3, ..., n − 1}, what is the minimum requirement of the detection budget? Similarly, this

question can be formulated as

min
βββ∈Rn

+

n∑
i=1

βi, s.t. πi(βββ) ≤ πS(βββ), ∀i ∈ N.
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Solving this minimization problem and applying the same argument as above yields the

following generalization of Proposition 5.

Corollary 1. Under full cascade of detection, the government can keep the size of the

largest component of the criminal network in the strongly stable Nash equilibrium to be

S ∈ {2, 3, ..., n− 1} if and only if

B > BS ≡ n− S −
n∑

k=S+1

(
1− (k − 1)λ

1− (k − 2)λ

)2

,

and the optimal allocation of the detection budget is given by βk = 0 for k ≤ S and

βk = 1−
(

1− (k − 1)λ

1− (k − 2)λ

)2

+
B −BS

n− S
, k = S + 1, S + 2, ..., n.

Despite agents being ex ante identical, our results say that they are subject to hetero-

geneous levels of scrutiny under the optimal detection policy. This finding complements

earlier theoretical results by Baccara and Bar-Isaac (2008) in which they derive the optimal

detection resource allocation in consideration of a criminal network of information sharing

from a group perspective. In contrast, we obtain our optimal allocation rules in a model

featuring local complementarities and individual incentives of network formation. Although

our model is admittedly stylized, we believe our results have broad policy implications. Our

model highlights that local complementarities have very important implication on the op-

timal resource allocation. In the presence of local complementarities, agents tend to exert

more effort when connecting with more other agents. This “scale effect” gives rise to the

asymmetric allocation of the detection budget, as a sequence of increasing scrutiny levels is

introduced to deter agents from forming increasingly larger networks. Moreover, we can show

that ∂BS/∂λ > 0 for any S ∈ {1, 2, ..., n − 1}. The comparative statics says the minimum

requirement of the detection resource monotonically strictly increases with the degree of local

complementarities. Intuitively, if effort levels among neighbors tend to significantly reinforce

each other and thereby agents have strong incentive to connect, it becomes more difficult

for the government to restrict criminal network formation. Therefore, to inform the detec-

tion policy, future empirical work needs to quantify the degree of local complementarities in

different types of criminal networks.
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5 Extension and Discussion

5.1 Degree of Cascade

In the benchmark model, we have focused on three specific cases of the degree of cascade:

d = 0, 1, n. A natural question is whether our results, Proposition 4 in particular, are robust

under other degrees of cascade. The answer is of affirmative.

Proposition 6. Those players who are isolated in the strongly stable Nash equilibrium under

full cascade of detection (d = n) remain isolated in any strongly stable Nash equilibrium under

positive degree of cascade (d ∈ {1, 2, ..., n}).

The proposition says that as long as there is positive degree of cascade, any SSNE yields

a criminal network weakly sparser than the one under full cascade of detection. It should

be noticed that this proposition is not a strict generalization of Proposition 4 in that it

focuses exclusively on SSNE12. However, if we restrict our attention to SSNE, this proposition

reassures that the equilibrium aggregate criminal activity under full cascade of detection

serves well as an upper bound of the aggregate criminal activity under any positive degree

of cascade.

5.2 Outside Option

In our baseline setting, agents have no outside option. A more plausible assumption is that

each agent is allowed to opt out if the payoff of the criminal activity is sufficiently low.

Denote the payoff of the outside option by π0. We assume that after the criminal network

g ∈ G is formed and before each agent exerts any effort, they can choose to opt out. We

first consider full cascade of detection. Recall that πk is defined as the individual payoff of

a complete component formed by the first k agents. Proposition 3 suggests that maxk∈N π
k

is the individual payoff of the largest component in the unique SSNE. In the presence of the

outside option, the equilibrium network structure solely depends on the comparison between

π0 and maxk∈N π
k. If the outside option is sufficiently attractive such that π0 > maxk∈N π

k,

there exists a unique SSNE that gives rise to an empty criminal network13. Every agent opts

out in the equilibrium because even the highest attainable payoff in a criminal network is

strictly less than the payoff of the outside option. On the other hand, if π0 < maxk∈N π
k,

12In fact, for d ≥ 2, we can always find examples such that PSNE gives rise to a criminal network with
more links than that of the unique SSNE under full cascade of detection.

13In this case, the unique SSNE also coincides with the unique PSNE.
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Proposition 3 continues to hold with a slight modification: the size of the largest component

is still determined by Equation 1, while isolated agents may choose to opt out given their

own individual payoffs. If π0 = maxk∈N π
k, the criminal network in SSNE can be either

empty or dominant group architecture. Therefore, a small change of π0 around maxk∈N π
k

may considerably change the equilibrium network. Under partial cascade of detection, it can

still be shown that anyone who is isolated in the unique SSNE under full cascade of detection

remains isolated in any PSNE. The proof carries over because introducing the outside option

does not alter the core trade-off each agent is faced with. However, the outside option does

add another layer to the optimal detection policy, as the government can obtain the socially

optimal outcome by inducing each agent to opt out if the maximum payoff under the criminal

network is dominated by the outside option.

Proposition 7. Let Bn = 0. If the detection budget B ∈ [B`+1, B`)
14 for ` ∈ {1, 2, ..., n−1},

the government can incentivize all agents to opt out if and only if 1−(B−B`+1)

2(1−`λ)2 < π0 with

the allocation of the detection budget given by βk = 0 for k ≤ `, β`+1 = B − B`+1, and

βk = 1−
(

1−(k−1)λ
1−(k−2)λ

)2
for k > `+ 1.

This proposition15 suggests that the government may achieve the first best even though

its detection budget is insufficient to keep each agent isolated in the equilibrium criminal

network. Compared with 1, the allocation of the detection budget looks quite similar. They

are actually two sides of the same coin. In the absence of the outside option, the government

focuses on the size of the equilibrium criminal network, formally, the maximizer of maxk∈N π
k;

in the presence of the outside option, the government also cares the individual payoff under

the equilibrium network, that is, the maximum of maxk∈N π
k. That is why two optimal

allocations share the same ingredient in spite of their different objectives.

5.3 Exogenous Linking Cost

We now introduce exogenous linking cost into the benchmark model. Denote the cost of

forming a link by c. The new payoff function can be written as

Π̃i(xxx(·), g;βββ, λ, d) ≡ πi(xxx(g(g)), g(g);βββ, λ, d)− ηi(g(g))c,

14Recall that BS ≡ n− S −
∑n
k=S+1

(
1−(k−1)λ
1−(k−2)λ

)2
for S ∈ {1, 2, ..., n− 1}.

15If B > B1, the optimal allocation rule needs to be solved recursively. It is entirely due to the fact that
the implicit constraint β1 ≤ β2 ≤ ... ≤ βn becomes binding. Discussion is omitted because it does not give
additional insight.
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where ηi(g(g)) is the number of links agent i has in the criminal network g(g). Under no

cascade of detection, the results in Hiller (2014) naturally carry over: when exogenous linking

cost is sufficiently low, a complete criminal network is formed in any PSNE; when exogenous

linking cost is sufficiently high, the unique PSNE network is empty; when exogenous linking

cost is in intermediate level, hierarchy may arise in a PSNE16 with more central agents

exerting higher effort levels. Under full cascade of detection, the results in Hiller (2014)

apply component-wisely to the criminal network in any PSNE. However, the model becomes

much less tractable under partial cascade of detection, because the cost of adding a new link

enters the payoff function both multiplicatively (increasing probability of being detected)

and additively (exogenous linking cost). This modification substantially complicates the

trade-off faced by each agent.

5.4 Timing Structure

In our model, partial cascade of detection is ex ante more desirable, or at least as desirable

as, full cascade of detection, while full cascade of detection is ex post optimal. On the other

hand, the asymmetric allocation of the detection budget also leaves the government room of

manipulation. These two channels of dynamic inconsistency echo earlier discussion in Bac-

cara and Bar-Isaac (2008). Without commitment technology, the government has incentive

to re-optimize their detection policy after criminal network formation. This re-optimization

motive could have significant impact on equilibrium network structures. However, similar

to Baccara and Bar-Isaac (2008), we argue that the system of law enforcement is relatively

rigid. The timing structure can be justified if individuals have expectation that the detec-

tion policy is not amenable to change in the short run and crackdowns are not frequently

implemented.

6 Conclusion

In this paper, we study the optimal detection policy in the presence of criminal network

from the ex ante point of view. Using the criminal network in the unique SSNE under full

cascade of detection as a benchmark, we have two main findings. The cascade of detection

is identified as an important channel through which the detection policy could shape the

16Formally, any equilibrium network is a nested split graph. For discussions about nested split graphs and
its applications in network economics, see König et al. (2014) and references therein.
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criminal network. We show that stronger cascade of detection could backfire. This reminds

policy makers of the importance of endogenous network formation among criminals. We

also derive the optimal allocation of the detection budget. In the presence of strategic

complementarities, the optimal budget allocation tends to be asymmetric across ex ante

identical agents.

We believe three directions of the future work are very promising. The cost structure of

criminal activity in our model is very simple. In our benchmark setting, there is no explicit

bilateral linking cost. It would be very interesting to extend our framework by incorporating

more flexible bilateral cost specification like Belhaj et al. (2015). Second, the police system

and criminal networks are evolving over time. Studying the optimal detection policy in

a dynamic model is technically challenging but of particular interest (Jackson and Zenou,

2014). Finally, it is important to have systematic understanding of how the detection policy

affects the criminal network in actual practice. We envisage that empirical investigation in

this line will be fruitful.

A Appendix

A.1 Proof of Proposition 1

Proof can be found in Ballester et al. (2006).

A.2 Proof of Proposition 2

Because detection is purely individual-based, connecting with other agents does not increase

probability of being detected. According to Ballester et al. (2006), (I− λg)−1 =
∑∞

k=0 λ
kgk

if λ ∈ (0, 1/(n− 1)). Therefore, the equilibrium effort level given by Proposition 1 increases

with the number of network walks. Since stage-game payoff is an increasing function of each

agent’s own effort level, each agent prefers to form as many links as possible so as to increase

network walks. In particular, agent i’s payoff strictly increases with the number of links he

forms if and only if βi < 1. Therefore, if βi < 1 for any i ∈ N , a unique complete criminal

network emerges.
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A.3 Proof of Lemma 1

The proof of this lemma closely follows the proof of Proposition 2. Recall that probability

of being detected remains unchanged when an agent forms a link with someone who is in

the same component. Because the equilibrium payoff of the stage game increases with the

number of network walks, each agent has incentive to be directly connected with everyone

who is in the same component. Therefore, the criminal network under any pairwise stable

Nash equilibrium has to be component-wise complete.

A.3.1 Proof of Lemma 2

To prove this lemma, we first prove the following claim.

Claim 1. In any strongly stable Nash equilibrium, if there exist three agents with βi < βk <

βj and agent i is connected with agent j (gij = gji = 1), then agent k must be connected with

agent i and j (gik = gki = gjk = gkj = 1).

We prove this claim by contraposition. Suppose there exist agent i, j, and k with

βi < βk < βj such that i and j are connected while k is not connected with either of

them. Denote the number of agents who are in the same component as agent i and j by m.

Because the equilibrium network must be component-wise complete, each agent who is in the

same component shares a common payoff. Denote agent i and j’s payoff by π. Now consider

that agent k joins i’s component by connecting with everyone in agent i’s component and

dropping all his existing links. Under this deviation, agent i’s payoff, which is equal to agent

k’s payoff, is given by

π⊕k =

(
1 +

λ

1−mλ

)2

(1− βk)π.

It is noticed that π⊕k > π, because otherwise each agent except j in agent i’s component

will be better off by excluding agent j, which can be seen more clearly by

π =

(
1 +

λ

1− (m− 1)λ

)2

(1− βj)π	j,

where π	j is the individual payoff in i’s component when agent j is excluded. Since βk < βj

implies that
(
1 + λ

1−mλ

)2
(1− βk) >

(
1 + λ

1−(m−1)λ

)2
(1− βj), π ≥ π	j implies π⊕k > π. The

remaining question is whether agent k is willing to join i’s component. Suppose he is not

willing to change his current linking choice. Therefore, his current payoff π′ ≥ π⊕k > π.

23



This implies that agent k cannot be isolated with no connections, because otherwise agent i

will be better off by dropping all his links. If agent k is connected with someone, the same

argument above applies here. That being said, everyone in agent k’s component must be

willing to connect with agent i because βi < βk. Given π′ > π, agent i will be strictly better

off by joining agent k’s component. It contradicts strong stability.

Next, we want to argue that agents with the same probability of being directly detected

must be connected with each other if they choose not be isolated. Again, we prove by

contraposition. Suppose there exist two agents i and j with βi = βj and they are not

connected with each other (gij = gji = 0). Without loss of generality, we assume agent i is

not isolated and he is also connected with agent k. Denote agent i’ payoff by πi and agent

j’s payoff by πj. The similar reasoning applies. Everyone in agent i’s component will be

willing to add agent j into their component. Therefore, it must be the case that agent j is

not willing to join i’s component. This implies πj > πi, which further implies agent j is not

isolated. Since πj > πi, agent i and everyone in j’s component will be better off by forming

a larger component together. Contradiction.

In sum, each component of the equilibrium network in a strongly stable Nash equilibrium

can only be one of the following two cases: (1) singleton; (2) Given any two agents i and

j from the same component (βi ≤ βj), any agent with detection probability within [βi, βj]

must also be in that component. This completes our proof of Lemma 2.

A.3.2 Proof of Proposition 3

We first show that in any strongly stable Nash equilibrium, the equilibrium partition can be

written as

{{1, 2, ..., n0}, {n0 + 1}, {n0 + 2}, ..., {n}}.

That being said, the equilibrium consists of at most one non-singleton component.

We prove by contraposition. Suppose there are two components each consisting of more

than one agents in a strongly stable Nash equilibrium. Denote the first component by

{i1, i2, ..., i`+1} and the second component by {j1, j2, ..., jm+1}. In that any equilibrium net-

work is component-wise complete, the individual payoff of the first component is given by

π =
1

2

(
1

1− `λ

)2

Π`+1
h=1(1− βih),
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while the individual payoff of the second component is given by

π′ =
1

2

(
1

1−mλ

)2

Πm+1
h=1 (1− βjh).

Without loss of generality, we assume that π ≥ π′. Suppose these two components are

regrouped into a larger component {i1, i2, ..., i`+1, j1, j2, ..., jm} and a singleton {jm+1}. Now

consider the individual payoff of the larger component, which is given by

π′′ =
1

2

(
1

1− (`+m)λ

)2

Π`+1
h=1(1− βih) · Πm

h=1(1− βjh)

>
1

2

(
1

1− `λ

)2

Π`+1
h=1(1− βih) ·

(
1

1−mλ

)2

Πm
h=1(1− βjh)

= π ·
(

1

1−mλ

)2

Πm
h=1(1− βjh)

The equilibrium condition implies that no one in the second component {j1, j2, ..., jm+1}
can be better off by being isolated, i.e., π′ ≥ (1 − βjh)/2 for any h = 1, 2, ...,m + 1. This

further implies that
(

1
1−mλ

)2
Πm
h=1(1− βjh) ≥ 1. According to the inequality above, we have

π′′ > π ≥ π′. Therefore, everyone in the new, larger component will be strictly better off,

contracting to strong stability.

Next we argue that agent 1 must be included in the largest component if that component

is not a singleton. Suppose this is not true. Given the conclusion above, agent 1 must

be isolated. Denote the greatest component by {n1 + 1, n1 + 2, ..., n1 + n0} with n1 > 1

and n0 > 1. Similarly, it can be shown that it is mutually beneficial to form a complete

component {1, n1+1, n1+2, ..., n1+n0−1} by including agent 1 and excluding agent (n1+n0).

The next step is to show that there indeed exists a strongly stable Nash equilibrium

with an equilibrium partition {{1, 2, ..., n0}, {n0 +1}, {n0 +2}, ..., {n}}. For a given partition

{{1, 2, ..., k}, {k + 1}, {k + 2}, ..., {n}}, the individual payoff of the size-k component is given

by

πk =
1

2

(
1

1− (k − 1)λ

)2

Πk
h=1(1− βh), k ∈ N. (A.3)

Let n0 be the maximal size of the largest component such that the individual payoff of the
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largest component is maximized

n0 = max

{
arg max

k∈N

1

2

(
1

1− (k − 1)λ

)2

Πk
h=1(1− βh)

}
≡ max{arg max

k∈N
πk}.

We need to show this partition {{1, 2, ..., n0}, {n0+1}, {n0+2}, ..., {n}} with n0 defined above

gives rise to a strongly stable Nash equilibrium. Arbitrarily pick an alternative criminal

network that is obtainable from the network implied by this partition via deviations by

S ⊂ N . There are three possible cases. (1) S ⊂ {1, 2, ..., n0}. By definition of n0, no agent

in S can be strictly better off under this alternative network. (2) S ⊂ {n0 + 1, n0 + 2, ..., n}.
Suppose agent i ∈ S becomes strictly better off. Denote the set of agents in his component

by {v1, v2, ..., vk0+1} with vk0+1 = i. According to the proof of Proposition 2, agent i’s payoff

under the alternative network is weakly less than

1

2

(
1

1− k0λ

)2

Πk0+1
h=1 (1− βvh),

which further implies (
1

1− k0λ

)2

Πk0
h=1(1− βvh) > 1.

If we allow {1, 2, ..., n0, v1, v2, ..., vk0} to form a complete component, the individual payoff of

this component is given by

1

2

(
1

1− (n0 + k0 − 1)λ

)2

Πn0
h=1(1− βh)Π

k0
h=1(1− βvh).

This yields a contradiction to the definition of n0 because

1

2

(
1

1− (n0 + k0 − 1)λ

)2

Πn0
h=1(1− βh)Π

k0
h=1(1− βvh)

>
1

2

(
1

1− (n0 − 1)λ

)2

Πn0
h=1(1− βh)

(
1

1− k0λ

)2

Πk0
h=1(1− βvh)

>
1

2

(
1

1− (n0 − 1)λ

)2

Πn0
h=1(1− βh).

(3) S ∩ {1, 2, ..., n0} 6= ∅ and S ∩ {n0 + 1, n0 + 2, ..., n} 6= ∅. If there is no new link created

between an agent in {1, 2, ..., n0} and an agent in {n0 + 1, n0 + 2, ..., n}, our argument in

Case (1) and (2) applies. If there exists a new link connecting an agent i in {1, 2, ..., n0} and
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an agent j in {n0 + 1, n0 + 2, ..., n}, we argue that agent i must be strictly worse off under

the alternative network. Denote the set of agents in agent i’s component by {w1, w2, ..., wk1}
with wk1 = i. Agent i’s payoff is weakly less than

1

2

(
1

1− (k1 − 1)λ

)2

Πk1
h=1(1− βwh

).

If k1 > n0, by definition of n0, we have

1

2

(
1

1− (k1 − 1)λ

)2

Πk1
h=1(1− βwh

) <
1

2

(
1

1− (n0 − 1)λ

)2

Πn0
h=1(1− βh).

If k1 ≤ n0, we have

1

2

(
1

1− (k1 − 1)λ

)2

Πk1
h=1(1− βwh

) <
1

2

(
1

1− (k1 − 1)λ

)2

Πk1
h=1(1− βh)

≤ 1

2

(
1

1− (n0 − 1)λ

)2

Πn0
h=1(1− βh),

where the first inequality holds because βj > βn0
17 for n0 ≥ 2.

The last step is to establish conditions that guarantee the uniqueness of a strongly stable

Nash equilibrium. Suppose there exist two equilibria with the following equilibrium parti-

tions: {{1, 2, ..., n1
0}, {n1

0 + 1}, {n1
0 + 2}, ..., {n}} and {{1, 2, ..., n2

0}, {n2
0 + 1}, {n2

0 + 2}, ..., {n}}
(n1

0 > n2
0 > 1). If the individual payoff of the component {1, 2, ..., n1

0} is strictly less than that

of the component {1, 2, ..., n2
0}, the first equilibrium is not stable because a subset of agents

from {1, 2, ..., n1
0} can increase their payoff by forming a complete component by themselves.

If the individual payoff of the component {1, 2, ..., n1
0} is weakly greater than that of the com-

ponent {1, 2, ..., n2
0}, the second equilibrium is not stable because it is mutually beneficial

for agents {1, 2, ..., n2
0} and isolated agents {n2

0 + 1, n2
0 + 2, ..., n1

0} to form a larger complete

component. Therefore, we have shown that there exist at most two strongly stable Nash

equilibria: one has the equilibrium partition {{1, 2, ..., n0}, {n0+1}, {n0+2}, ..., {n}} and the

other has an empty network. When n0 = 1, these two equilibria coincides. When n0 > 1, if

β1 < βn0 or 1−β1
2

< 1
2

(
1

1−(n0−1)λ

)2
Πn0
h=1(1−βh), agents {{1, 2, ..., n0} always have incentive to

deviate from the empty network by forming a complete component. Multiplicity of strongly

stable Nash equilibria arises only if n0 > 1, β1 = βn0 , and 1−β1
2

= 1
2

(
1

1−(n0−1)λ

)2
Πn0
h=1(1−βh).

17Recall j ∈ {n0 + 1, n0 + 2, ..., n}, so βj = βn0
yields a contradiction to the definition of n0.
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This completes the proof of Proposition 3.

A.3.3 Proof of Proposition 4

To establish this proposition, we proceed by first proving two claims.

Claim 2. For any g ∈ G, let L(g) ≡ maxi∈N
∑n

j=1 gij. We have

xi(g) ≤ 1

1− L(g)λ
, ∀i ∈ N, g ∈ G.

In words, if the most connected agent in a criminal network has L links, we claim that the

highest individual effort level is weakly less than that in a complete network of size L. If each

agent in a network g ∈ G has exactly L links, it can be easily verified that xi = 1/(1− Lλ).

Now we consider the general case in which each agent is connected to L agents at maximum.

We have

xxx(g)− 1

1− L(g)λ
1 =

[
(I − λg)−1 − (I − λL(g)I)−1

]
1

= λ(I − λg)−1(g − L(g)I)(I − λL(g)I)−11

=
λ

1− λL(g)
(I − λg)−1(g1− L(g)1)

By definition, L(g) ≥
∑n

j=1 gij for any i ∈ N , so each element in (g1−L(g)1) is non-positive.

Because (I − λg) is an M -matrix18 for λ < 1/(n − 1), (I − λg)−1 is a non-negative matrix

(Plemmons, 1977). Therefore, (I − λg)−1(g1 − L(g)1) is non-positive, which implies the

inequality in Claim 2

Consider an arbitrary network g ∈ G. Suppose agent i drops ` of his existing links with

agents j1, j2, ..., j` and denote by h ∈ G the new criminal network obtained. we can prove

the following inequality always holds.

Claim 3.
xi(h)

xi(g)
≥ 1− L(g)λ

1− (L(g)− `)λ
.

Denote by eij the Boolean matrix only taking value of one for elements (i, j) and (j, i).

18Definition of an M -matrix can be found in Plemmons (1977):“An n×n matrix A that can be expressed
in the form A = sI − B, where B = (bij) with bij ≥ 0, i ≤ i, j ≤ n, and s ≥ ρ(B), the maximum of the
moduli of the eigenvalues of B, is called an M -matrix.”
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To simplify notation, let xxx(g) ≡ x and xxx(h) = y. We have

x− y =
(

(I − λg)−1 −
(
I − λh

)−1) · 1
=

(I − λg)−1 −

(
I − λ

(
g −

∑̀
m=1

eijm

))−1 · 1
=

(
I − λ

(
g −

∑̀
m=1

eijm

))−1
·

(
λ
∑̀
m=1

eijm

)
· (I − λg)−1 · 1

= λ
(
I − λh

)−1 · ∑̀
m=1

eijm · x.

Let (I − λg)−1 ≡ {xij}n×n and (I − λh)−1 ≡ {yij}n×n. The equation above implies

xk − yk = λ
∑̀
m=1

(ykixjm + ykjmxi), ∀k ∈ N,

where xk =
∑n

i=1 xki and yk =
∑n

i=1 yki. Because (I−λh) is an M -matrix for λ < 1/(n− 1),

(I − λh)−1 is a non-negative matrix (Plemmons, 1977), i.e., yij ≥ 0 for any i, j. Combined

with the inequality in Claim 2, we have

xk − yk ≤
λ

1− L(g)λ

∑̀
m=1

(yki + ykjm)

≤ `λ

1− L(g)λ
yk, ∀k ∈ N.

Rearranging this inequality and picking k = i, we obtain the inequality in Claim 3. Intu-

itively, this inequality provides a lower bound of the effort level as well as the individual

payoff at the stage game when an agent decides to drop a subset of existing links.

Now we proceed to prove the proposition. Under full cascade of detection, Proposition 3

shows there is a unique strongly stable Nash equilibrium. Denote the set of agents who are

in the complete, largest component in that equilibrium by NC = {1, 2, ..., n0} and the set of

isolated agents by NI = {n0 + 1, n0 + 2, ..., n}. If n0 = n, the proposition trivially holds, so

we focus on the case that n0 < n.

Suppose there exists a pairwise stable Nash equilibrium in which an agent j ∈ NI is no

longer isolated under partial cascade of detection. Denote the equilibrium criminal network
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by g and define L(g) as before. Given j ∈ NI , Proposition 3 implies that(
1− (n0 − 1)λ

1− n0λ

)2

(1− βj) < 1.

If L(g) < n0, Claim 3 suggests that the agent who is connected with agent j has incentive

to drop that link, because by dropping that link, his payoff increases at least by the factor

of (
1− L(g)λ

1− (L(g)− 1)λ

)2
1

1− βj
>

(
1− L(g)λ

1− (L(g)− 1)λ

)2(
1− (n0 − 1)λ

1− n0λ

)2

> 1.

If L(g) ≥ n0, the most connected agent must be connected with at least (L(g) − n0 + 1)

agents in NI . Similarly, we can show that the most connected agent has incentive to drop

his links with (L(g)− n0 + 1) agents with the highest βi. Contradiction to the definition of

a pairwise stable Nash equilibrium.

A.3.4 Proof of Proposition 5

We first solve the minimization problem

min
βββ∈Rn

+

n∑
i=1

βi, s.t. πk(βββ) ≤ π1(βββ), k = 2, 3, ..., n.

The key step is to check if these weak inequalities have to be binding to attain the optimum.

First, the last weak inequality πn(βββ) ≤ π1(βββ) must be binding. We prove by contraposition.

Suppose πn(βββ) < π1(βββ), which implies βn > 0. If βn > βn−1, the government can always

save the detection resource by reducing βn by a small amount and maintain the order of βββ.

If βn = βn−1, we define i0 ≡ min{i ∈ N : βi = βn}. If i0 = 1, the government can reduce β1

to zero and still have every constraint satisfied. If i0 > 1, we need to further consider two

possible cases. If πi(βββ) < πn(βββ) for any i ∈ {i0, i0 + 1, ..., n}, the government can reduce

βi0 , βi0+1,..., and βn uniformly by a small amount and still maintain the order of βββ. If there

exists j ∈ {i0, i0 + 1, ..., n} such that πj(βββ) = πn(βββ), we then have πj−1(βββ) ≤ πn(βββ) = πj(βββ)

which implies 1− βn >
(

1−(j−1)λ
1−(j−2)λ

)2
. Therefore,

(1− βn)n−j >

(
1− (j − 1)λ

1− (j − 2)λ

)2(n−j)

>

(
1− (n− 1)λ

1− (n− 2)λ

)2(
1− (n− 2)λ

1− (n− 3)λ

)2

· · ·
(

1− jλ
1− (j − 1)λ

)2

=

(
1− (n− 1)λ

1− (j − 1)λ

)2

,
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which yields πn(βββ) > πj(βββ), a contradiction to our previous assumptions.

We prove other inequalities are binding by induction. Suppose there exists π`+1(βββ) =

π1(βββ) and π`(βββ) < π1(βββ) for ` ∈ 2, ..., n− 1. Consider an alternative detection resource

allocation β′β′β′ as follows

β′` = β` − ε, β′`+1 = β`+1 + ε,

β′k = βk, k ∈ N, k 6= `, k 6= `+ 1.

First of all, β` > 0, because otherwise π`(βββ) > π1(βββ). For sufficiently small ε, β′` is therefore

well-defined. We consider two scenarios.

1. Perturbation of βββ does not change ordering. Since two resource allocation differs only

in β` and β`+1, the first ` − 1 inequalities will not be affected, i.e., πk(β′β′β′) = πk(βββ) ≤
π1(βββ) = π1(β′β′β′) for k < `. If ε > 0 is sufficiently small, π`(β′β′β′) ≤ π1(β′β′β′) in that

π`(βββ) < π1(βββ). Moreover, for k > `, we have

πk(β′β′β′)

πk(βββ)
=

(1− β` + ε)(1− β`+1 − ε)
(1− β`)(1− β`+1)

= 1− ε(β`+1 − β`) + ε2

(1− β`)(1− β`+1)
< 1,

which implies πk(β′β′β′) < π1(β′β′β′) for k > `. In particular, πn(β′β′β′) < π1(β′β′β′), so the

government can further save their budget by applying the same argument as above.

2. Perturbation of βββ changes ordering. First, consider β` = β`−1. If β` = β1, it is

not optimal because β1 can be reduced to be zero. If β` > β1, again we can show

π`(βββ) < π1(βββ) implies πi(βββ) < π1(βββ) for any i such that βi = β`. Therefore, we

can pick a sufficiently small ε such that πi(β′β′β′) ∈ (πi(βββ), π1(βββ)) for any i such that

βi = β`. Then the argument in scenario 1 follows. Second, consider β`+1 = β`+2. An

ε-increase of β`+1 always leaves the first ` agents unchanged and the rest weakly worse

off (including someone strictly worse off), so the change of ordering will not affect our

results in scenario 1 as well.

In sum, we have shown that π`+1(βββ) = π1(βββ) implies π`(βββ) = π1(βββ) for ` ∈ 2, ..., n− 1.

Combined with πn(βββ) = π1(βββ), we have πk(βββ) = π1(βββ) for any k ∈ N . Using the definition

of πk(βββ), we have

1

2

(
1

1− (k − 1)λ

)2

Πk
h=1(1− βh) =

1− β1
2

, k ∈ N,
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which implies

βk = 1−
(

1− (k − 1)λ

1− (k − 2)λ

)2

, k = 2, 3, ..., n.

It can be easily verified that βk strictly increases with k and β1 ≤ β2 = 1 − (1 − λ)2.

Picking β1 = 0, we obtain the solution to this minimization problem. If B > B1 ≡ n− 1−∑n
k=2

(
1−(k−1)λ
1−(k−2)λ

)2
, the government can make above n−1 inequalities strict by having β1 = 0

and

βk = 1−
(

1− (k − 1)λ

1− (k − 2)λ

)2

+
B −B1

n− 1
, k = 2, 3, ..., n.

According to Proposition 3, this allocation of detection resource yields an empty criminal

network in the strongly stable Nash equilibrium under full cascade of detection.

A.3.5 Proof of Corollary 1

Consider the minimization problem

min
βββ∈Rn

+

n∑
i=1

βi, s.t. πi(βββ) ≤ πS(βββ), ∀i ∈ N.

Similar to the proof of Proposition 5, it can be shown that πk = πS for k > S. If B > BS,

the government can restrict the largest component of SSNE criminal network to be of size

S. The government achieves this by allocating the detection budget as follows: βk = 0 for

k ≤ S and βk = 1 −
(

1−(k−1)λ
1−(k−2)λ

)2
+ B−BS

n−S for k > S. Under this allocation, S is the unique

maximizer to maxk∈N π
k(βββ).

A.3.6 Proof of Proposition 6

Like the proof of Proposition 4, we first establish an inequality result regarding link deletion.

Pick an arbitrary network g ∈ G. Denote the set of agents in agent `’s component by

{`0, `1, ..., `L} with `0 = `. Denote by h the network in which agent ` severs all his links in

g.

Claim 4. The inequality
x`k(h)

x`k(g)
≥ 1− Lλ

1− (L− 1)λ

holds for any k = 1, 2, ..., L.
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Denote by hL the subgraph of h induced by {`1, `2, ..., `L}. Since agents in {`1, `2, ..., `L}
do not share any link with the rest of agents under h, their payoff (x`1(h), x`2(h), ..., x`L(h))′ =

(I − λhL)−11. We also define

(y`1 , y`2 , ..., y`L , y`0)
′ ≡

(
I − λ

(
hL 1L×1

11×L 0

))−1
1.

Using block matrix inversion, we have

(y`1 , y`2 , ..., y`L , y`0)
′ =

(
I − λhL −λ1L×1

−λ11×L 1

)−1
1

=

(
(I − λhL − λ21L×111×L)−1 (I−λhL)−1λ1L×1

1−λ211×L(I−λhL)−11L×1

λ11×L(I − λhL − λ21L×111×L)−1 (1− λ211×L(I − λhL)−11L×1)
−1

)
1

Let {xij}L×L ≡ (I − λhL)−1 and {zij}L×L ≡ (I − λhL − λ21L×111×L)−1. The equation

(I−λhL)−1−(I−λhL−λ21L×111×L)−1 = (I−λhL−λ21L×111×L)−1(−λ21L×111×L)(I−λhL)−1

implies

xij − zij = −λ2zix`j(h),

with zi =
∑L

m=1 zim and x`j(h) =
∑L

m=1 xim. Adding up equations with respect to j, we

have

zi =
x`i(h)

1− λ2
∑L

j=1 x`j(h)
.

According to the matrix equation above,

y`k = zk +
λx`k(h)

1− λ211×L(I − λhL)−11L×1

=
(1 + λ)x`k(h)

1− λ2
∑L

j=1 x`j(h)
,

for k = 1, 2, ..., L. Notice that y`k is the effort level exerted by agent `k if agent ` is directly

connected to everyone in his component under g, so y`k ≥ x`k(g), and as a result,

x`k(h)

x`k(g)
≥ x`k(h)

y`k
=

1− λ2
∑L

j=1 x`j(h)

1 + λ
≥ 1− λ2L/(1− (L− 1)λ)

1 + λ
=

1− Lλ
1− (L− 1)λ

.
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Denote the set of agents who are in the complete, largest component in the strongly

stable Nash equilibrium under full cascade of detection by NC = {1, 2, ..., n0} and the set of

isolated agents by NI = {n0 + 1, n0 + 2, ..., n}. If n0 = n, the proposition trivially holds, so

we focus on the case that n0 < n. Consider an arbitrarily given positive degree of cascade

d ∈ {1, 2, ..., n}. Suppose there exists a strongly stable Nash equilibrium in which agent

j ∈ NI is no longer isolated. Denote the equilibrium criminal network by g and the number

of agents who are directly or indirectly connected to agent j by L. Given j ∈ NI , Proposition

3 implies that (
1− (n0 − 1)λ

1− n0λ

)2

(1− βj) < 1.

If L < n0, Claim 4 suggests that agents who are directly connected with agent j have incentive

to simultaneously drop that link, because by dropping that link, each agent’s payoff increases

at least by the factor of(
1− Lλ

1− (L− 1)λ

)2
1

1− βj
>

(
1− Lλ

1− (L− 1)λ

)2(
1− (n0 − 1)λ

1− n0λ

)2

> 1.

If L ≥ n0, similarly, we can show that agents who are directly connected to (L − n0 + 1)

agents with the highest βi have the incentive to simultaneously drop their links with these

(L− n0 + 1) agents. Contradiction to the definition of a strongly stable Nash equilibrium.

A.3.7 Proof of Proposition 7

Consider the following minimax problem

min
βββ∈Rn

+

max
k∈N

πk(βββ) s.t.
∑
i∈N

βi ≤ B.

In words, the government tries to minimize the maximum individual payoff that can be

derived from an SSNE criminal network under full cascade of detection. If the solution to this

problem yields a payoff lower than the outside option, the government will be able to induce

all agents to opt out. Recall that BS ≡ n−S−
∑n

k=S+1

(
1−(k−1)λ
1−(k−2)λ

)2
for S ∈ {1, 2, ..., n− 1}.

We consider two possible cases.

Case I: B < Bn−1.

In this case, suggested by Corollary 1, the SSNE criminal network is always complete

regardless of the allocation of the detection budget. Therefore, maxk∈N π
k(βββ) = πn(βββ).

The minimax problem is simplified to minβββ∈Rn
+
πn(βββ) subject to

∑
i∈N βi ≤ B. The optimal
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allocation is simply obtained as βi = 0 for any i ∈ {1, 2, ..., n−1} and βn = B. The minimum

is given by 1−B
2(1−(n−1)λ)2 .

Case II: B ∈ [B`+1, B`) for ` ∈ {1, 2, ..., n− 2}.
We first prove the following claim

Claim 5. Let i0 = min{i ∈ N : βi > 0}. If βββ is the solution to the minimax problem,

πi0(βββ) = maxk∈N π
k(βββ).

Suppose the claim is not true. Let j0 = min{j ∈ N : πj(βββ) = maxk∈N π
k(βββ)}. We

first consider that j0 > i0. By definition, πj0(βββ) = maxk∈N π
k(βββ) > πi0(βββ). Consider an

alternative detection resource allocation β′β′β′: β′i0 = βi0 − ε, β′j0 = βj0 + ε, and β′k = βk, for

k ∈ N/{i0, j0}. If j0 = n, a sufficiently small ε guarantees the order of βββ will not be changed

under β′β′β′. If j0 < n, πj0(βββ) > πj0−1(βββ) and πj0(βββ) ≥ πj0+1(βββ) imply that βj0 < βj0+1. Again,

this guarantees the scrutiny ordering will be unchanged if ε is sufficiently small. We can

show that πk(β′β′β′) < πk(βββ) for k ≥ j0, π
k(β′β′β′) = πk(βββ) for k < i0, and given a sufficiently small

ε, πk(β′β′β′) ∈ (πk(βββ), πj0(βββ)) for i0 ≤ k < j0. This yields a contradiction to optimality of βββ.

We still need to consider the case that j0 < i0 if i0 > 1. As βk = 0 for k < i0,

j0 = i0 − 1. Using the same argument as above, we first eliminate other maximizers (if any)

of maxk∈N π
k(βββ)} which are greater than i0 without changing the maximum. Consider an

alternative allocation β′′β′′β′′: β′′i0 = βi0−ε, β′′i0−1 = βi0−1 +ε, and β′′k = βk, for k ∈ N/{i0, i0−1}.
We can show that πk(β′′β′′β′′) = πk(βββ) for k < i0−1, πi0−1(β′′β′′β′′) < πi0−1(βββ), and given a sufficiently

small ε, πk(β′′β′′β′′) ∈ (πk(βββ), πi0−1(βββ)) for k ≥ i0. Contradiction.

Claim 5 greatly simplifies our analysis. The minimax problem can be solved in two steps.

First, for a given i0 ∈ N and a set of compatible allocation rules, we solve the optimal

allocation. In each sub-problem, the government only needs to find the maximum βi0 that

is consistent with Claim 5 and follows the increasing order. Second, we pick i0 that attains

the minimum among all sub-problems. B < B`, so the detection budget is insufficient to

restrict the size of the largest component of the SSNE network to be `. In other words, there

is not enough detection budget to guarantee that π`(βββ) ≥ πk(βββ) for any k > `. It suggests

i0 must be greater than `. If i0 = ` + 1, we can show that the optimal allocation is given

by βk = 0 for k ≤ `, β`+1 = B − B`+1, and βk = 1 −
(

1−(k−1)λ
1−(k−2)λ

)2
for k > ` + 1, under

which minβββ:i0=`+1 maxk∈N π
k(βββ) = 1−(B−B`+1)

2(1−`λ)2 . If i0 > ` + 1, we know from Claim 5 that

πi0(βββ) = maxk∈N π
k(βββ) ≥ πi0−1(βββ). By definition, πi0−1(βββ) = 1

2(1−(i0−2)λ)2 >
1−(B−B`+1)

2(1−`λ)2 for

i0 > `+ 1. Therefore, i0 = `+ 1 yields the optimal allocation with the minimum 1−(B−B`+1)

2(1−`λ)2 .
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