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Abstract

We show that a sizable equity premium is compatible with risk sharing between
an optimistic and a pessimistic Epstein-Zin investor in a model featuring jumps
in expected consumption growth. Our model generates a positive correlation be-
tween return volatility and trading volume as in the data. It reproduces the styl-
ized facts of a positive link between disagreement and expected returns, volatil-
ities, and trading volume. We analyze the impact of preferences, fundamental
dynamics, and market incompleteness in detail and highlight their respective
importance for our results.
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I. Introduction

One prominent idea to explain the equity premium puzzle, originally put forward by
Rietz (1988) and later taken up by Barro (2006, 2009), is that rare, but large negative jumps
in the consumption process (‘consumption disasters’) make the stock market, i.e., the claim
on levered aggregate consumption, very risky, so that a high premium is required to make

the representative agent hold this asset in equilibrium.

However, as for example shown by Julliard and Ghosh (2012), the ability of these
models to match the equity premium together with other stylized facts is limited. Moreover,
in the long time series of US consumption growth analyzed by Beeler and Campbell (2012),
the largest negative rate of consumption growth is —7.7% during the Great Depression. This
makes the jump sizes usually assumed in the disaster literature look rather extreme, and

consequently these parameter choices raise doubts expressed, e.g., by Constantinides (2008).

An alternative approach are long-run risk models with downward jumps in the expected
growth rate of aggregate consumption instead of consumption disasters. For example, Ben-

zoni et al. (2011) show that such a model is able to match the equity premium.!

An obvious but open question in this context is whether these explanations for the
equity premium are robust to the introduction of heterogeneous investors who can trade
with each other to share risks. A natural source of heterogeneity are the investors’ beliefs
about the probability of a consumption disaster or a jump in the expected growth rate,

because they are rare by definition so that their probability is hard to estimate.

In a long-run risk model with jumps in expected consumption growth and recursive
preferences we show that a substantial equity premium is indeed compatible with pronounced
risk sharing between an optimist (with a low subjective disaster probability) and a pessimist

(with a high subjective disaster probability).

This is not a trivial result. In models with consumption disasters and constant relative
risk aversion (CRRA) preferences Dieckmann (2011), assuming log utility, finds that varia-
tions in the potential degree of risk sharing have little impact on the equity premium, while
Chen et al. (2012) show that for the general CRRA case the equity premium more or less
vanishes once moderate risk sharing is possible. Figure 1 presents these results graphically,

it shows the equity premium as a function of the pessimistic investor’s consumption share

!To understand why these models work, consider a simple Gordon growth model with an interest rate
of 5%. Here a permanent change in the dividend growth rate from, e.g., 3% down to 0% would make price-
dividend ratio decrease from 50 to 20, so the effect would be even more drastic than those of a —40% shock
to dividends.



for the models suggested by Chen et al. (2012), Dieckmann (2011), and our model.?

Since risk sharing occurs through trading, it is natural to ask how the investors’ ability
to trade certain risks with each other impacts equilibrium. Technically speaking, this is the
issue of market completeness or incompleteness. It is often argued that the availability of
options puts investors into a position where they can comfortably insure against disastrous
risks. Bates (2008) though shows that the market for insurance against ‘large’ risks suffers
from substantial under-capitalization, i.e., there are not enough insurers willing to offer the
necessary contracts (like deep-out-of-the-money put options) to actually make the market
complete. We therefore do not restrict ourselves to the complete market, but explicitly take

market incompleteness into account.

In our analysis we consider the equity premium as just one target moment for equilib-
rium models. We therefore look at a number of additional stylized facts, which can serve in a
sense as ‘over-identifying restrictions’, and show that the incomplete markets version of our
model is able to reproduce these as well. As documented empirically in a recent paper by
Carlin et al. (2014), there is a positive relation between the amount of disagreement in the
economy and expected returns, return volatility, and trading volume in the data. Further-
more, Karpoff (1987) documents a positive association between return volatility and trading
volume in the data. While this positive correlation between volatility and trading volume
has been rationalized in an equilibrium model by, e.g., Li (2007), we match this stylized fact
and the empirical results in Carlin et al. (2014). A key result of our analysis is that market
incompleteness is crucial when it comes to generating a positive link between disagreement
and expected returns. Table 1 provides an overview of different models and their ability to

match the properties of the data.

All of the central features (preferences, dynamics, incompleteness) of our model are
important for our key results. With respect to the properties of the equity risk premium it
is mostly the presence of jumps in expected consumption growth combined with recursive
utility which makes a high equity premium compatible with substantial risk sharing between
investors. In a model with CRRA preferences and consumption disasters the main reason for
the tension between the equity premium and risk sharing is the fact that jump risk represents

a large share of total equity market risk and can be easily traded by investors.

With regard to the positive link between return volatility and trading volume, recursive
preferences are the main feature responsible for the ability of the model to match the data.

The key reason is that with disagreement about jump intensities and recursive preferences

2Risk sharing is maximal when both investors are of roughly the same size (w ~ 0.5) and obviously zero
in a one-investor economy (w =0 or w = 1).



the return volatility is highest when the optimist and the pessimist are of roughly the same
size, while for CRRA the opposite is true. Trading volume behaves almost the same in the

two models.

When we vary the amount of disagreement between the two equally large investors,
market incompleteness is necessary to match the reaction of expected return, return volatility,
and trading volume. On the incomplete market the decrease in the expected excess return
for increasing disagreement is overcompensated by the increase in the risk-free rate, leading

to an expected return, which is increasing in disagreement.

To get a feeling for the impact of market incompleteness, we look at the equity premium
and the risk-free rate as the two key asset pricing quantities in four models from the literature.
Our general finding with respect to the risk-free rate is that there is hardly a difference
between the complete and the incomplete market case. With respect to the equity premium,
however, we observe that the risk structure of the economy (in the sense of the relative
importance of jump and diffusive risks) is the key determinant for potential differences
between complete and incomplete markets. More precisely, when there is a dominant source
of risk (like consumption jump risk in the model by Chen et al. (2012)) then incompleteness
hardly matters as long as this risk source remains tradable via the consumption claim which
loads heavily on jump risk. On the other hand, when the different types of risk are of roughly
equal importance, as it is the case in our model with jumps in the expected growth rate of
consumption, incompleteness matters more.

Finally, in a model with heterogeneous investors, long-run investor survival is an issue.?

With CRRA preferences, the simultaneous survival of both investors is a knife-edge case,
and, with identical preferences, it is always the investor with the less biased beliefs who
survives in the long run. For the case of EZ preferences Borovicka (2015) shows that this
is not necessarily true. Instead, there can be many parameter combinations for which both

investor types or even the investor with the worse bias survives.

A Monte Carlo simulation shows that for our parametrization, it is the pessimistic
investor with (by assumption) correct beliefs, who vanishes in the long run. The pessimist
is right, but she is right only concerning very rare events, occurring on average once every
50 years. In the other periods, the pessimist has to pay the insurance premium to the
optimist. Furthermore, anticipating relatively more disasters than the optimist in the future,
she consumes more and saves less than the optimist. So being right does not pay off for her

over the long term.

Whether the market is complete or incomplete does not change the overall results on

3See, e.g., Dumas et al. (2009), Yan (2008), and Kogan et al. (2006, 2009).



survival, but has a significant impact on the speed of extinction. Starting from a share of
50%, the pessimist’s consumption decreases to about 35% of total output after 50 years on a
complete and to 25% on an incomplete market. This is because the pessimist benefits less (in
terms of her wealth) from jumps and suffers more from diffusive shocks than on the complete

market.

We would like to mention that the solution method we use in this paper is innovative
in a number of ways. First, we do not apply a social planner approach, but rather solve
the individual investors’ optimization problems, which are linked through market clearing
conditions. Technically, this amounts to solving a system of coupled partial differential equa-
tions for the individual investors’ wealth-consumption ratios. We then extend this approach
to the incomplete market case, where the model solution has to satisfy additional partial
differential equations and constraints related to the investors’ individual exposures to the
risk factors in the economy as well as their subjective price-consumption ratios. Compared
to, e.g., the technique suggested by Collin-Dufresne et al. (2013, 2016), our approach is more
flexible, since it can be applied to problems featuring incomplete market problems. Further-
more an advantage relative to the solution method developed by Dumas and Lyasoff (2012)
is that our method is applicable also in the infinite horizon case and does not require the

discretization of continuous-time stochastic processes.

II. Model Setup

We consider two investors with identical EZ preferences.* Investor i’s (i = 1,2) indi-

vidual value function at time ¢ is given as
S = Eu| [ 5(Cusn) as| 1)
t

where f;(Cy, J;) is her normalized aggregator function with

1
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B is the subjective time preference rate, 7y is the coefficient of relative risk aversion, ¢/ denotes

1—
1 .
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the intertemporal elasticity of substitution (IES), and 6 = The well-known advantage

1See e.g. Epstein and Zin (1989) for the discrete-time setup and Duffie and Epstein (1992) for the
extension to continuous time.



of recursive utility over CRRA is that it allows to disentangle the relative risk aversion and
the IES, which in the CRRA case would be linked via v = 97!, implying § = 1. In the
following, we assume v > 1 and ¢ > 1, which implies v > i (and thus 6 < 0), so that both

investors exhibit a preference for early resolution of uncertainty.

Under the true probability measure P aggregate consumption C' and the stochastic

component of its expected growth rate X follow the system of stochastic differential equations

dc,
Ft = (ﬂc’ + Xt) dt + OJC th
t
dXt = —KRXx Xt dt + U,/)( th + LX dNt ()\) s

where W = (WY, WX)" is a two-dimensional standard Brownian motion, and N represents
a non-compensated Poisson process with constant intensity A. The jump size Lx < 0 is
also constant. With the exception of the jump component this is the classical long-run risk
setup from Bansal and Yaron (2004) written in continuous time. The volatility vectors are
specified as o, = (o,,0) and oy = (0, 0., so that consumption and the long-run growth rate
are locally uncorrelated. The key feature of this model is that there are jumps representing
disasters, which, however, do not occur in the consumption process itself, but in the state
variable X.

The investors agree on all parameters of the model except the intensity of the Poisson
process, i.e., roughly speaking they disagree about the likelihood of a disaster in the growth
process over the next time interval. This implies that under investor ¢’s subjective probability

measure P’ (i = 1,2) the stochastic growth rate evolves as
dXt = —KRX Xt dt + 0-3( th + LX dNt (/\z) .

Hence, the investors also disagree on the expectation %E;@ [dX;] = —kx X 4+ Lx \;. Since the
investors in our model do not learn about the unobservable intensity, they ‘agree to disagree’,

i.e., they observe the same information flow, but interpret it differently.’

Note that the expected growth rate X is assumed to be observable, while the jump
intensity A is not. The assumption of observable X is standard in the long-run risk literature
(see, e.g., Bansal and Yaron (2004) and Benzoni et al. (2011)). Nevertheless, even when X

®The ‘agree to disagree’ assumption is justified theoretically, e.g., in Acemoglu et al. (2007), who show
that when investors are simultaneously uncertain about a random variable and the informativeness of an
associated signal, even an infinite sequence of signals does not lead investors’ heterogeneous prior beliefs about
the random variable to converge. The reason is that investors have to update beliefs about two sources of
uncertainty (namely the latent random variable and the informativeness of the signal regarding this variable)
using one sequence of signals.



itself is observable, it seems reasonable to assume that the investors do not have perfect
knowledge about A. In fact, it would be very difficult or basically impossible for the agents
to infer the unknown intensity exactly from observations on X. Especially for low values
of the true intensity, as they are commonly used in the literature, the uncertainty around

estimates even from long samples would still be rather large.5

Since it is central to our analysis whether the market is complete or not, we have to fix
the set of traded assets. When the market is complete, the investors can trade the claim on
aggregate consumption, the money market account, and two ‘insurance products’ linked to
the Brownian motion and the jump component in X, respectively.” The consumption claim
is in unit net supply, while the other three assets are all in zero net supply. When we consider

the incomplete market case, the insurance products will not be available.®

II1I. Equilibrium

All the equilibrium quantities in our model will be functions of the investors’ relative
share in aggregate consumption as the endogenous and of the expected growth rate X as
the exogenous state variable. Investors differ with respect to their assessment of jump risk
in X. Let investor 1 be the pessimistic investor, and let w denote her share of aggregate

consumption, i.e., w = %.9 Its dynamics can be written as a jump-diffusion process

dw = py (w, X) dt + oy (w, X) dW + Ly, (w, X) dN (\y), (3)

where the coefficient functions pu,, (w, X), o, (w, X), and L, (w, X) will be determined in

equilibrium. The dynamics of investor 1’s and investor 2’s level of consumption then follow

In a situation with an unobservable parameter one could of course consider adding learning to the
model, but due to the fact that the investor’s current estimates of the jump intensity would then become
two additional state variables, this would make the analysis extremely complicated. Therefore we consider
this an extension, which is significantly beyond the scope of this paper.

"The two insurance products are characterized by their cash flows. We assume that the first insurance
claim has some (given) cash flow exposure to diffusion risk in X and no exposure to jumps, while it is the
other way around for the second. For details, see Appendix A.

80ne could of course also analyze the case of intermediate incompleteness, where only one of the insurance
products is available to the investors. The results we achieve in this setup typically lie between the two special
cases we analyze in Section IV.

9n what follows we suppress the time index to simplify notation.



from Ito’s lemma:

dC 1 1
— = {ﬂc+X+—uw+—a;o—c} dt
Cl w w
1 ' 1
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A key element of the solution will be the investors’ individual log wealth-consumption ratios

v; = v;(w, X). From Equation (1) we get
E;:[dJ; + f; (Ci, J;) dt] = 0. (6)

Motivated by Campbell et al. (2004) and Benzoni et al. (2011), we employ the following

guess for the individual value function J;:

01 ’
Ji = 50 ou (7)

where, as shown in these papers, v; is indeed investor 7’s log wealth-consumption ratio. An

application of Ito’s lemma to v; = v; (w, X) (i = 1,2) yields

dvi =

% +182Ui o o _%,{ +1 &u; o ox + v ol ox ¢ dt
Juw ' 3 gur 0 T ox XX T 3 gxE X X F g Twox
8vi c%i !
+ a—waw—i-a—XaX dW + {v; (w+ Ly, X + Lx) —v; (w, X)} dN (\;)
fho, dt 4 0y, AW + Ly, dN ();) . (8)

Plugging the guess in (7) into (6) results in the following partial differential equation (PDE)

for v;:

1 1 1
0 = e”i—ﬁ—l—(l—i) |:MC¢_§70/CZ-O—C{| +/’Lvi+§90—;iavi
1 _
+(1=7) 06,00 + 5 [(14 Le)" " P 1] A (9)



Following Duffie and Skiadas (1994), the pricing kernel &; of investor i at time ¢ is given as

& = e PI-01-0) Joe e ds G(0-1)vi cpe

with dynamics

s 1 1 1 , 1 ,
E = {B+¢u0i 5 (1+¢> Yo, oc; 5 (1-20) oy, Oy,
—(1-0) ag, 00, + (1 N é) [(1+ Ley)' ™ e = 1] A’} i

—{yoc, + (1= 0) o, } dW + {(1+ Lg,) 7 @V — 11 aN (N).  (10)

From this we obtain the investor-specific market prices of risk 7; as the exposures of the

pricing kernel to the different risk factors. For the diffusion risks this yields
nzW = 7Yog¢; + (1 - 9) Ou;- (11)

The first term is the standard market price of (individual) consumption risk, which would
also result in a CRRA economy, while the second term gives the extra market prices of
risk for the diffusive volatility of the (log) wealth-consumption ratio and thus for the state

variables w and X. Analogously, the individual market prices of jump risk 7 are given by
0 = (14 Le) " 0P 1, (12)

where the first term on the right-hand side is the product of the market price of consumption
jump risk with CRRA utility and an adjustment for jump risk in the individual wealth-

consumption ratios.

Finally, the subjective risk-free rate rzf equals the expected value of the pricing kernel,

ie.,
1 1 1 1
f / ! ’
f = B4 po—= (14~ o (1— - |
T 6] ¢ pe, g ( ¢> v0¢, ¢ ~ 5 (1—-0) 0, 00, — (1 =10) 0¢, 0,
1
- {HZN - (1 - 5) (14 Lo P =] | A (13)

where the terms have the usual interpretation as reflecting the impact of impatience, the

individual consumption growth rate, and precautionary savings.

The equilibrium is characterized by the fact that markets for the traded assets have

to clear and that the investors agree on their prices. The exact procedures to compute the



equilibria for the complete and the incomplete market economy are described in Appendix A.

IV. Quantitative Analysis of the Model

A. Parameters

The parameters used in the quantitative analysis of the model are given in Table 2.
They mostly represent standard values from the long-run risk literature.!® When a disaster
occurs, expected consumption growth drops by Lx = —0.03 which is about the same size as
in Benzoni et al. (2011).!! With ky = 0.1, shocks have a half-life of about 6.9 years.'*> The
key new element in the model is given by the agents’ heterogeneous beliefs with respect to
the intensity of jumps in X. The pessimistic investor assumes an intensity of A\; = 0.020, i.e.,
on average one X-jump every 50 years, while the optimist thinks there will be on average one
jump only every 1,000 years, i.e., Ao = 0.001. So the probabilities for rare events are about
the same size as in Chen et al. (2012). In what follows we will assume that the pessimist’s

belief represents the true model.

Equity is considered a claim on levered aggregate consumption with a leverage factor of
¢ = 1.3. When the market is complete the investor also has access to two insurance products,
which make the diffusive and the jump risk in X tradable.!® All the model results are shown
for the stochastic part of the expected growth rate of consumption at its long run mean of
—0.006.14

We present the quantitative analysis of our model in each of the following subsections
in two parts. In the first part we present the main findings with respect to the certain
aspect of the model, i.e., the equity premium, the link between trading volume and return

volatility, the implications of varying degrees of disagreement between investors, etc., while

10See, among others, Benzoni et al. (2011) or Bansal et al. (2012).

'When a jump occurs these parameter values lead to respective wealth losses of up to 37% and 7%
for the optimist and the pessimist on the complete market. Although aggregate consumption itself remains
unchanged, the value of levered aggregate consumption falls by up to 9%.

12\We have chosen this rather small value for xx mainly to match the equity premium. However, the
results presented in the following sections remain qualitatively unchanged when we follow Benzoni et al.
(2011) and set kx = 0.2785.

13The cash flows of these insurance products are given exogenously, but their price-to-cash flow ratios
are of course determined endogenously in equilibrium. See Appendix A.1 for details. Note that the cash flow
exposures of these assets to the risk factors in the model merely represent scaling factors, which do not have
an impact on the equilibrium. However, they do have an impact on the positions and the trading volume in
the insurance assets.

4The long-run mean is computed as the value of X, where the expected change in X is equal to zero.

This value is given by AKLXX , which is equal to —0.006 for our choice of parameters.




in the second we take a more detailed and somewhat more technical look at the mechanism

within the model, which actually generates the respective result.!?

B. Equity Risk Premium
B.1. Results

Figure 2 presents the equity risk premium and the expected excess returns on the
investors’ respective individual wealth as well as their components for a complete and an
incomplete market. From left to right the graphs show the parts of the equity premium
due to diffusive consumption risk, diffusive growth rate risk, and growth rate jump risk,
and finally the total equity risk premium. All these quantities are presented as observed
by an econometrician, i.e., under the true measure.'® The equity risk premium ERP is
determined as the wealth-weighted average of individual expected excess returns on wealth
EER; (i=1,2):

U1 1 v2
ERP = EER + =" pER, (14)
6’1} e’U
with
1 d‘/z —v; f 1 W Q
EER, = ¢ %E 7 +edt| —rl) = ¢oln + oLy A=A (15)

where \ and /\;Q =\ (1 + N ) are the jump intensities under the true and the risk-neutral
measure, respectively. The two summands on the right-hand side of (15) represent the usual

compensation for diffusive and jump risk.

On the complete market (upper row of graphs) the part of the premium due to con-
sumption risk is the same as in a CRRA economy, and it is furthermore equal for the two
investors. The investors also agree on the market price of risk for diffusive shocks to the
stochastic growth rate X, but the part of the equity premium due to this factor is neverthe-
less not exactly constant across w. The reason for the small variation is that the exposure

t.17

of the return on individual wealth to W¥ is higher for the pessimis Overall, with a value

15Here we also consider a new model, our so-called ‘extended’ Chen et al. (2012) model with recursive
preferences. Appendix F describes this model and explains how to solve for the equilibrium in this case.

16 Appendix E contains the results for all the basic equilibrium quantities, such as the wealth-consumption
ratio, the dynamics of consumption shares, the risk-free rate, the market prices of risk, the exposures of
individual and aggregate wealth to the risk factors in the model, and the expected excess return on individual
wealth. These results are not discussed here in detail, but delegated to Appendix E, since they only represent
preliminary steps for the analysis of our model in this section.

17See Appendix E.4 and the third graph from the left in the lower row of Figure 17.
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of around 3% the part of the equity premium due to the long-run risk factor X is sizable.

Since the two diffusive premia are basically independent of the investors’ consumption
shares, the variation in the equity premium as a function of w is almost exclusively caused by
the jump part. ERP increases in the pessimist’s consumption share and ranges from 3.8% to
5%. As Figure 1 shows our model generates a rather flat and close to linear relation between
the equity premium and the share of optimists. This shows that a sizable equity premium
can occur in equilibrium even when investors substantially share risk, i.e., when neither of

them is much larger than the other.

The incomplete market case is shown in the lower row of graphs in Figure 2. All the
curves for ERP are pretty similar to the complete market case. Of course, the two boundary
values for w = 0 and w = 1 coincide with the complete market case, so that also the range
of the premium remains the same. Like on the complete market it is also monotonically
increasing in w. The impact of market incompleteness on the premia on individual wealth is

much more pronounced.

B.2. Mechanism

To identify the main drivers for our results presented in Figure 1, we will now discuss
the impact of the key elements of our model (preferences, consumption dynamics, and market

incompleteness) on the equity premium.'®

First, we look at the role of the preference specification in models with consump-
tion jumps and complete markets. In these models the dominant component of the equity
premium is the compensation for jump risk, given by the second term of the sum in Equa-
tion (15). In the Dieckmann (2011) model with log utility the investors’ individual wealth-
consumption ratios do not vary with w, i.e., they are constant (and equal to %) Consequently,
the jump size in aggregate wealth is constant and therefore the linear increase of the equity
premium in w is exclusively driven by the risk-neutral jump intensity /\9 =\ (1 +nN )
(with v = 1 in the expression for 1Y in Equation (12)). In a general CRRA model like
Chen et al. (2012) with v > 1 the wealth-consumption ratios are no longer constant, but
the pessimist saves less when her consumption share is small than when it is large. As a
result, the risk-neutral jump intensity increases in w in a non-linear fashion due to v > 1
in Equation (12), and so does the equity premium. This creates the tension described above
between the size of the equity premium and the degree of risk sharing between investors.

To see whether the restrictions of CRRA utility (y = 4,1 = 411> are the key driver behind

18Tn terms of the market structure (complete vs. incomplete) this section focuses on our model. A general
analysis of the impact of incompleteness across a variety of models is provided in Section IV.E.

11



this result we solve our “extended version” of the Chen et al. (2012) model with recursive
preferences (v = 4,¢ = 1.5). This model generates the proper investor behavior (i.e., the
pessimist saves more when her consumption share is small), but it still does not solve the

bigger problem of a pronounced conflict between equity premium and risk sharing.

When it comes to the role of the dynamics of fundamentals, i.e., whether there are
jumps in consumption itself or in its expected growth rate, we compare the ‘EZ version’ of
Chen et al. (2012) (y = 4,4 = 1.5) with our model (7 = 10,¢ = 1.5) on a complete market.
In both cases, the risk-neutral jump intensities are rather similar. With consumption jumps,
however, the jump size in aggregate wealth is mainly caused by the jump in aggregate
consumption, and this large jump exposure, together with the non-linear shape of the jump
intensity, leads to a highly non-linear equity premium, which is almost exclusively due to

consumption jump risk.

With jumps in expected consumption growth, the picture is markedly different, since
there is an additional diffusive source of risk driving the expected growth rate of aggre-
gate consumption. Now the jump in aggregate wealth is caused by the jump of the wealth-
consumption ratio only. Thus the part of the equity premium for X-jump risk has a maximum
of around 1.3% for an all-pessimist economy, while the premia for diffusive growth rate risk
varies between 2.9% and 3.1% for w ~ 1 and w ~ 0, respectively. So having jumps in X
instead of C' is the key point needed to have a substantial equity premium and a pronounced

degree of risk sharing at the same time.

Finally, when the market is incomplete and investors can only trade the consumption
claim in our model, the pessimist will try to get rid of the associated risk, and individual and
aggregate exposures to all risk factors are almost linear in w. Furthermore, the non-linearity
in individual jump intensities is much less pronounced than on the complete market. This
ultimately results in a higher equity premium which also depends on w in a more linear

fashion.

So with respect to the relation between equity premium and the investors’ consumption
shares the decisive element of the model is whether there are jumps in consumption or in its

expected growth rate combined with recursive preferences.

12



C. Trading Volume and Return Volatility
C.1. Results

Trading volume is generated by changes in the investor’s asset holdings. So as a first
step we take a look at the investors’ portfolio compositions. The fractions of individual
wealth invested in the different assets on a complete market are shown in the upper row of
Figure 3. Both agents invest 100% of their respective wealth into the consumption claim.
To implement their desired exposures to the different risk sources they use the other three
assets. The investors disagree on the amount of jump risk, and sharing this risk is their
primary trading motive. The pessimist buys the jump insurance product I from the optimist
and thereby reduces her exposure to jump risk. Furthermore, she offsets most of the exposure
to diffusive X-risk by selling the diffusive insurance product Z, and finally she takes a long

position in the money market account.

To analyze trading volume in our model we follow Longstaff and Wang (2012) and
Xiong and Yan (2010), who measure trading volume by the absolute volatility of the number

of shares of an asset held by an investor. We generalize their measure to take into account
WAL

the fact that there are multiple sources of risk in our model. More precisely, let n]l = =5

denote the number of shares of asset j held by investor 1 with dynamics
dn| = p g dt+o , dW + L ;dN ()\),
1 ny 1

where the drift, volatility, and jump size are given in Appendix C. Then trading volume in

asset j is given as

2
TV, = \/J’j Tpq A (Ln{) , (16)
ni
where A is the jump intensity under the true measure.

Looking at the complete market case first, the trading volume for each of the two
insurance products shown in Figure 4 is inversely U-shaped in the pessimist’s consumption
share. This is also true for the consumption claim as shown in the middle graph in the upper
row of Figure 5. This may seem surprising, given that, as discussed above, both investors
hold 100% of their respective wealth in the consumption claim. However, when the investors’
wealth levels change, this implies that also the number of shares of the consumption claim

in their respective portfolios changes.

The volatility of the return on levered aggregate consumption claim, RV, is obtained
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as

RV = ¢ \/(O’c +0,) (o0 +0y) + A (ebv — 1) (17)

where v = log (we” + (1 — w) e”?) denotes the aggregate (log) wealth-consumption ratio. As
can be seen from the upper left graph, RV is around 5.2% and thus greater than consumption
volatility of around 2.8%, so there is excess volatility.!? Like trading volume, it is higher in

an heterogeneous investor economy than with only optimists or only pessimists.

When the insurance products are not available the pessimist reduces her jump exposure
by selling the consumption claim to the optimist and invests the proceeds in the money
market account (see the lower row in Figure 3). Consequently the trading volume in the
consumption claim is positive and inversely U-shaped in w, as shown in the middle graph in
the lower row of Figure 5.2° The return volatility of the consumption claim is determined as

before and looks similar to the one on a complete market.

Comparing our results for the complete and the incomplete market case, we find that
the return volatility on an incomplete market is higher than on a complete market. The worse
possibilities for risk sharing thus increase the overall risk of the only traded risky asset. This
is in contrast to the findings presented by Kiibler and Schmedders (2012) for an overlapping
generations framework featuring two log utility investors with heterogeneous beliefs on the

probability of exogenous i.i.d. shocks.

In the next step, we look at the relation between the trading volume in the consumption
claim and its return volatility. As Karpoff (1987) points out, the positive correlation between
these two quantities is one of the most robust patterns related to trading activity in equity
markets. It turns out that our model can match this pattern for both market structures. The
properties of trading volume and return volatility as functions of w imply a positive relation
between the two quantities as can be seen in the right graphs in the upper and lower rows

of Figure 5.

C.2. Mechanism

Like in the case of the equity premium we want to highlight the role of preferences (in

models with consumption jumps), dynamics (on a complete market with EZ preferences),

19Note that there would be excess volatility even without the leverage factor, since stock return volatility
is greater than 1.3 times consumption volatility.

20The fact that the trading volume on a complete market is larger than on an incomplete market is due
to the effect of jumps. The key thing to note is that the jump size L,, of the consumption share is much
larger on the complete than on the incomplete market.
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and market structure (in a model with X jumps and EZ preferences) for our results.

In all the models we discuss below trading volume is inversely u-shaped in w. To
explain the correlation between trading volume and return volatility we can focus on the
properties of return volatility which is mainly driven by the jump size (L,) of the aggregate

wealth-consumption ratio since investors only share jump risk.

The log utility specification in Dieckmann (2011) implies that the individual wealth-
consumption ratios do not vary with w, so the the jump size L, and consequently also
the volatility of equity returns are constant, automatically implying a zero correlation with
trading volume. With general CRRA as in Chen et al. (2012) (v > 1) the negative jump size
in the price of the consumption claim is larger in absolute value in an economy with only
optimists or pessimists than when both types of investors are present. The jump size in the
price is driven by the jump size in aggregate consumption and the jump size of the aggregate
wealth-consumption ratio.?! Since the former is constant, the effect has to be driven by the
latter, which in turn implies that L, has to be negative. Consequently, return volatility is
u-shaped in w, which generates a negative instead of a positive relation with trading volume
in the Chen et al. (2012) model as shown in Figure 6.

Generalizing the Chen et al. (2012) model from CRRA to EZ preferences as above still
does not generate diffusive risk sharing, but now the jump size in the price of the consumption
claim is “more negative” in the middle of the range for w than at the boundaries. This implies
L, > 0, so that return volatility is inversely u-shaped in w. Since trading volume exhibits
the same functional relationship with w, we find a positive relation for these two quantities
in Figure 6. Thus it is the more general EZ preferences, which are needed to reconcile this

correlation in the model with the one observed in the data.

The specification of consumption dynamics and the market structure (complete versus
incomplete) on the other hand are not crucial in getting the sign of the correlation between
volatility and volume right. For both consumption and expected growth rate jumps trading
volume and return volatility are inversely u-shaped in w, and so the two quantities are
positively related. Compared to the complete market investors share more diffusive, but
less jump risk on the incomplete market, but again return volatility and volume are both

inversely u-shaped in w, implying a positive correlation.

21See Equation (F.2) in Appendix F.
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D. Varying the Degree of Disagreement

D.1. Results

Disagreement increases in our model when the difference between the subjective jump
intensities becomes larger. The difference increases when the beliefs of one or both investors
become more extreme. In the following we will interpret an increase in disagreement as a
mean preserving spread. In doing so we follow Carlin et al. (2014) who investigate the link
between disagreement and asset prices empirically in a model-free fashion and thus provide
very robust results.?? Their key findings are that higher disagreement leads to higher expected

returns, higher return volatility, and higher trading volume.

To analyze the effect of varying disagreement we consider variations of the model, in
all of which the average of the subjective intensities remains constant at A = 0.02, the true
parameter value in our model. We start with the case in which the investors agree on the jump
intensity with A\; = Ay = 0.02 and increase the disagreement step-by-step up to a maximum

of Ay =0.038 and Ay = 0.002. The other parameters of the model remain unchanged.

Figure 7 presents the results for the complete and the incomplete market. On the
complete market higher disagreement leads to a lower expected return (again under the true
measure), a higher trading volume in the consumption claim, and a higher return volatility.
The lower expected return is mainly caused by the smaller compensation for jump risk,
which in turn is caused mainly by the increased risk sharing and thus the lower impact of
the pessimist on the jump risk premium. When the degree of disagreement increases, the
amount of diffusive growth rate and jump risk shared between the investors increases, leading
to a higher return volatility. So, in summary, on a complete market two of the three variables
are reacting to higher disagreement in the direction suggested by the empirical findings in
Carlin et al. (2014).

On the incomplete market higher disagreement leads to a higher expected return (under
the true measure), a higher return volatility, and a higher trading volume. To get why the
expected return increases in disagreement on the incomplete, but decreases on the complete
market, consider its two components, the expected excess return and the risk-free rate.
With increasing disagreement (and thus a more intensive risk sharing between investors),
the risk-free rate increases (due to less precautionary saving) on both markets. Note that
there is hardly a difference between the complete and incomplete market case for the risk-

free rate. Consequently, the expected excess return is the main driver behind the different

22Their disagreement index is based on the standard deviation of a normalized change in prepayment
forecasts across dealers in the mortgage backed security market.
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results for the expected return. The expected excess return decreases, but as we had already
seen in Section IV.B, the equity premium is higher on the incomplete than on the complete
market. Therefore, the expected excess return on the incomplete market also decreases more
slowly than on the complete market. In particular, this decrease is now slower than the
accompanying increase in the risk-free rate. When disagreement increases, the amount of
shared diffusion and jump risk increases and this leads to a higher return volatility as well
as to a higher trading volume. Overall, we find that our model with market incompleteness

matches all the stylized facts presented in Carlin et al. (2014) very well.

From their empirical findings Carlin et al. (2014) draw the conclusion that there is a
positive premium for disagreement. They do so, however, without explicitly showing that not
only expected returns but also expected excess returns exhibit the relevant characteristics,
i.e., they implicitly assume that the impact on the interest rate does not over-compensate the
effects on expected returns. In our general equilibrium model disagreement necessarily also
has an effect on the risk-free rate, and, as can be seen from Figure 7, higher disagreement
indeed leads to a higher risk-free rate on both complete and incomplete markets. On the
incomplete market this increase is actually larger than the increase in the expected return,
thus leading to a lower overall equity risk premium. Without putting too much emphasis on
this result, it may nevertheless be interpreted as an indication that the equilibrium effects

on all relevant quantities, including interest rates, should be taken into account.

It may be of interest to see whether the result of the expected return increasing with
disagreement holds across different values for the investors’ risk aversion and their elasticity
of intertemporal substitution.?> We consider two variations of our basecase parametrization,
one with a lower risk aversion (y = 4, = 1.5) and one with a lower EIS (v = 10,4 = 1.1).
Note that in both cases the EIS is greater than one, which is the common choice in the
finance literature to make sure that asset prices react in an intuitive way to changes in
state variables. Figure 8 shows the results for the first case, and we see that the results
remain qualitatively unchanged relative to our standard parametrization. When the EIS is
lowered relative to the basecase, we can see from Figure 9 that the expected return now
increases in disagreement on the complete market, since the decrease in the expected excess
return decreases is so slow that it is more than compensated by the increase in the risk-free
rate. However, in this scenario the equity premium generated by the model does not match
the data anymore. The results on the incomplete market remain qualitatively unchanged

compared to the basecase.?*

23We thank an anonymous referee for suggesting this exercise.
24In the Online Appendix we provide plots for a wide range of the pessimist’s subjective intensity and
the full range of the state variable X (see Figures A.1 to A.3).
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D.2. Mechanism

Like in the previous sections we want to identify those elements of our model, i.e., prefer-
ences, consumption dynamics, and market incompleteness, which drive the results concerning

the effect of varying degrees of disagreement between investors.

In other papers like Chen et al. (2012) and Dieckmann (2011) varying degrees of dis-
agreement are represented via more extreme beliefs on the part of one investor while the
other investor’s beliefs do not change. For the purpose of confronting these models with the
data from Carlin et al. (2014) in the same way as our own model we vary disagreement by

introducing a mean-preserving spread.

That higher disagreement leads to higher trading volume is true already in the Dieck-
mann (2011) model with log utility, since more pronounced disagreement generates more
pronounced risk sharing even in this simple setting with two myopic investors. Based on the
mechanism explained above for the link between return volatility and trading volume our
extended Chen et al. (2012) model with recursive utility will generate higher return volatil-
ity with higher disagreement, as can be seen in Figure 10. Thus neither jumps in X nor

incomplete markets are needed to generate this effect.

To obtain the result that higher disagreement leads to a higher expected return one
needs all the features of our most general model with recursive utility, X-jumps, and incom-
plete markets. With more pronounced disagreement the risk-free rate will go up, so to obtain
a higher expected return this increase must be larger than the decrease in the expected excess
return on equity. The main element needed for this is recursive utility, so that the desired
result is already obtained in our extended Chen et al. (2012) model, but quantitatively it
is close to negligible, as can be seen in Figure 10. The setup that finally gets it done is our
long-run risk model with equity represented by a levered consumption claim and incomplete
markets. According to Equation (14), the equity risk premium is the wealth-weighted aver-
age of individual expected excess returns on wealth. Via more intensive risk sharing and the
fact that investors can only trade the consumption claim higher disagreement leads to an
increase in the two diffusive premia in the optimist’s total risk premium, while the opposite
happens in the pessimist’s case. Overall, the diffusive premia in the aggregate equity pre-
mium increases, since the optimist’s wealth share increases, and it increases in a much more
pronounced fashion than on the complete market. So higher disagreement still decreases the
equity premium on the incomplete market due to the smaller jump risk premium, but to
a lesser degree than on the complete market. The decrease in the equity premium is small
enough to be more than compensated by the increase in the risk-free rate, which finally leads

to a higher expected return on equity.
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E. Market Incompleteness across Models

In the following we provide a detailed analysis of the impact of market incompleteness
across four different models.?> We regard the equity premium and the risk-free rate as the
two most important asset pricing moments, so that we focus our discussion on them. The
models we consider are those suggested by Dieckmann (2011) and Chen et al. (2012) as well
as our version of the Chen et al. (2012) model with recursive preferences and our own. The

results are presented in Figures 11 to 14.

Concerning the risk-free rate there is no unique sign for the difference between com-
plete and incomplete market across models. In two of the four models the rate is higher
on the incomplete market (Dieckmann (2011) and Chen et al. (2012) model with recursive
preferences), in the other two we observe the opposite. Overall, however, the differences are
rather small; so that in terms of the risk-free rate incompleteness does not seem to matter

so much.

This changes when we look at the equity risk premium. Our novel result is that the risk
structure of the economy in the sense of the relative importance of jump and diffusive risks
is highly relevant for the impact of incompleteness, while preferences only play a minor role.
As one can see from the figures, the difference between the equity premia on the incomplete
and the complete market is largest for our model, followed by Dieckmann (2011), while for
the two versions of the Chen et al. (2012) model with CRRA and recursive preferences it

does not matter so much whether the market is complete or not.

At first sight, the latter result may seem surprising. To get the intuition behind this
result, take the Chen et al. (2012) model (with either CRRA or EZ utility) as an example.
Its parametrization with a consumption jump size of about -40% and on average one jump
every 58 years makes jump risk vastly more important than diffusive consumption risk with
an annualized volatility of 2%. Even if jump risk cannot be traded separately via some sort
of insurance contract, as long as the consumption claim with its pronounced loading on jump
risk is available to investors they can still share risks almost perfectly. This can be seen from
a comparison of the left and the right graphs in the lower row of Figures 12 and 13. The
fact that risk sharing between investors is hardly affected by the market structure then also

implies very similar equity risk premia.

In contrast to this the importance of jump and diffusive risk in the expected growth is
much more similar in our model (diffusive consumption risk is less relevant), and consequently

it affects investor risk sharing much more when one or multiple sources of risk cannot be

25We thank an anonymous referee for motivating us to analyze alternative model specifications.
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traded anymore (see the lower row of graphs in Figure 14). The direct implication of this

decreasing quality of risk sharing is a higher equity premium on the incomplete market.

As indicated above, the analysis points towards the risk structure of the economy being
the most important determinant of the impact of market incompleteness, at least much more

important than investor preferences.

F. Investor Survival

F.1. Results

Our economy is populated by investors with different and agnostic beliefs, i.e., they
do not update their subjective estimate of the jump intensity given the realizations of con-
sumption growth. This might cause a divergence from a heterogeneous to a homogeneous
(one-)investor economy in the long run in the sense that only one of the two investors will

have a non-negligible consumption share.

There is a rich literature dealing with natural selection in financial markets,?® and it
can be shown analytically in a model with CRRA investors and i.i.d. consumption growth,
that the investor with the ‘worse’ model will lose all her consumption in the long run and
disappear from the economy. ‘Worse’ here means that when otherwise identical investors
disagree about one parameter in the model, the one whose assumed value is further away
from the true model will vanish in the long run. This is not necessarily true in models with
EZ investors. As shown by Borovicka (2015), two investors with identical EZ preferences,
who differ with respect to the expected growth rate of consumption, can both have non-zero
expected consumption shares in the long run despite the fact that the beliefs of only one
of them represent the true model. Furthermore, it may even happen that only the investor

with the worse model survives in the long run.

Under the given parametrization our model represents an example for this last case.
This becomes clear from Table 3, which shows the results of a Monte Carlo simulation of
the pessimist’s consumption share over a period of 50, 100, 200, 500, and 1,000 years. Over
time the pessimist’s expected consumption share becomes smaller and smaller. This survival
of the optimist in our model is thus another example for the special features of models with

recursive utility.

Figure 15 shows the density of the pessimist’s consumption share on the complete and

incomplete market. The speed of extinction is larger in the incomplete than in the complete

26 Among others, see Dumas et al. (2009), Yan (2008), and Kogan et al. (2006, 2009).
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market. On the incomplete market, the pessimist earns the lower expected excess return on
wealth (see Figure 2) and consumes more out of her wealth (see Figure 16). This also holds
true when she is close to extinction, and by earning a lower risk premium and consuming
more, she cannot escape extinction. On the complete market, she still consumes more when
she is small, but now earns a higher expected return on her wealth. However, the higher risk
premium is not large enough to compensate the larger propensity to consume, and again, it
is the pessimist who vanishes from the market in the long run. The pessimist is indeed right,
but she is right only concerning very rare events, occurring on average once every 50 years.

So being right does not pay off for her over the long term.

F.2. Mechanism

It is obvious that with respect to survival the preference specification is the most
important element of the model. As can be seen from Table 4, in the model proposed by
Chen et al. (2012) the pessimist’s expected consumption share increases over time and the
pessimist survives, while in our extension of their model with recursive preferences it is the

optimist who takes over the economy in the long run.

With both consumption and expected growth rate jumps the optimist’s wealth de-
creases after a jump, while the pessimist’s goes up. This effect is much stronger for jumps
in C' than for jumps in X, so that the pessimist benefits much more from a jump in con-
sumption than from a jump in the expected growth rate, so that her chances for survival are

much better under the former specification.

Investors can share risk only to a limited degree on the incomplete market, namely by
trading the consumption claim. Given that she wants to get rid of the bad jump risk the
pessimist will sell this asset to the optimist, thereby automatically reducing her exposure to
the diffusive sources of risk as well. In total the pessimist benefits less in terms of her wealth
from jumps and suffers more from diffusive shocks, so that she will lose consumption share

faster on the incomplete than on the complete market.

V. Conclusion

Long run risk models with downward jumps in the expected growth rate of aggregate
consumption, as proposed by, e.g., Benzoni et al. (2011), are one way to explain the equity
premium puzzle. An obvious and yet still open question is whether this explanation is robust

to the introduction of heterogeneous investors who can trade with each other to share risks.
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In this paper we propose and analyze a model featuring an optimistic and a pessimistic
investor with recursive preferences, who differ in their beliefs about the intensity of jumps in
expected consumption growth. Furthermore, we explicitly take market incompleteness into
account when solving the model. To the best of our knowledge we are the first to combine

all these features in one model.

We find a rather flat and almost linear relation between the equity risk premium and
the investors’ consumption shares. So even when the investors are about equally large and

can share risk to a substantial degree, we see a sizable equity risk premium.

We take the analysis one step further by considering not only moments of returns
like the equity premium and return volatilities, but also trading volumes and the relation
between all these quantities and the amount of disagreement in the economy. The empirical
findings concerning these quantities provided by Karpoff (1987) and Carlin et al. (2014)
represent important over-identifying restrictions for equilibrium asset pricing models. The
incomplete markets version of our model successfully reproduces the stylized facts described
in these papers, i.e., trading volume and return volatility are positively correlated, and higher
disagreement leads to higher expected returns, higher return volatility, and higher trading

volume.

We analyze the relevance of market incompleteness in great detail by comparing the
equity risk premium and the risk-free rate in four different models, namely the log utility
specification with consumption disasters in Dieckmann (2011), the original Chen et al. (2012)
model, our recursive utility version of their approach, and our own model. While the impact
of the market structure on the risk-free rate is basically negligible in all four models, the
key determinant for the impact of market incompleteness on the equity risk premium is the
risk structure of the economy (in the sense of the relative importance of jump and diffusive
risk), but not investor preferences. When there is a dominant source of risk (like jumps in
the models with consumption disasters and large jump sizes), incompleteness does not have
a major impact as long as this source of risk remains tradable, which is the case when the
consumption claim loading heavily on jump risk is available to the investors. In models where
the overall risk is more evenly distributed across diffusions and jumps, the equity premium

can exhibit very different behaviors on the complete and the incomplete market.

Finally, in a model with two otherwise identical investors, who differ in their beliefs
about a key parameter, survival becomes an important issue. In the usual diffusion-driven
models under CRRA preferences it will always be the investor whose beliefs are closer to the
true model (or even coincide with it) who survives. From the analysis in Borovicka (2015)

we know that under EZ preferences both investors or even the one with the worse beliefs can
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survive in such a case. In our setup, the pessimist has beliefs which coincide with the true
model, but nevertheless she is the one who loses all her consumption share in the long run.

The speed of extinction is faster on an incomplete than on a complete market.

The results of our analysis are also relevant for the interpretation of the results found
in other papers, like Backus et al. (2011) and Julliard and Ghosh (2012), where the authors
determine implied disaster probabilities assuming CRRA preferences. Backus et al. (2011)
point out explicitly that changes in investor preferences or the introduction of heterogeneity
could potentially also change their conclusions, and our results give a strong indication in
that direction. A generalization of their analysis with respect to recursive preferences and

heterogeneous beliefs is left for future research.
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Appendix
A. Solving for the Equilibrium

1. Complete Market

When the market is complete, the investors will in equilibrium agree on the risk-free
rate, the market prices of diffusion risk, and the risk-neutral jump intensity /\;Q =\ (1 + N )
We will use these restrictions to solve for the coefficients p,,, o,,, and L,, of the consumption

share process (3).

First, o, is obtained by equating the investors’ market prices of diffusion risk nV,

yielding
1—w) (1-0) [22 - %u
— w ( w) ( ) [8)(81;1 8X6}U2 ox. (A.l)
y+w (1-w) (1-0) [5 - 52]

The drift p,, follows from the condition that the investors must agree on the risk-free rate,
so that

— {név — <1 — %) (14 Ley)' ™7 e tee — 1}} AQ}. (A.2)

Finally, the jump size L, is found by using the condition that the investor-specific risk-

neutral jump intensities )\(Z-@ must be equal, implying

o [(0-1) (Lo, —Luy)+n 3L 1
L, = : (A.3)

i—FLe% [(0=1) (Luy—Luy)+1n 3]

The equilibrium solution is then found by simultaneously solving the two PDEs in (9) for v,

and vy using the above equations for pu,,, 0., and L,,.

Given these coefficients as well as the individual wealth-consumption ratios we can then

compute other equilibrium quantities. For example, the total return (including consumption)
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on investor ¢’s wealth follows the process

i 1
d“f +eVidt = { |:/~LCi + [y, + 5 0, 0w, + 0g, %1} + e_”l} dt + (o¢, + 0y,) dW
P10+ L) e 1] av ()
= (v, +e ) dt+ ol dW + Ly, dN (), (A.4)

where V; = Cje¥.

To find the agents’ portfolio weights one has to set the dynamics of individual wealth
component by component equal to the dynamics of a portfolio containing the set of tradable
assets, i.e., wealth changes and changes in the value of the portfolio have to have identical
exposures to each risk factor. In the complete market case the tradable assets are the claim
on aggregate consumption, the money market account, and the insurance products linked to

jump and diffusion risk in X, respectively.

We now specify the insurance products in more detail. To trade the diffusion risk in X

the agents can use a claim labeled Z with cash flow dynamics

dz

7 = Mzdt+U/ZdW

where the drift pz and the volatility o/, = (0,0,) are exogenous constants. Let ¢; denote
the log price-to-cash-flow ratio (; of this asset from investor i’s perspective. We write the
dynamics of (; as

d¢; = pi¢, dt + o, dW + L¢, dN (N;) .

The coefficients as well as the PDE satisfied by (; are presented in Appendix B. Since the
investors agree on the price of the instrument, (; = (s = (.

In an analogous fashion, the payoff from the jump-linked instrument is denoted by [

and evolves as

I
dT = Ur dt + L] dN(/\Z),

where the coefficients iy and L are again given exogenously. The log price-to-cash-flow ratio
w; follows the process

dw; = fio, dt + 0" AW + Lo, AN (N).

The coefficients and the PDE satisfied by w; are again shown in Appendix B. As for Z, the

investors must agree on the price of I, i.e., w) = wy = w.
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Finally, the aggregate log wealth-consumption ratio v = log (we** + (1 — w) €"?) has

dynamics

2 2 2
dvz{@ 1 0% ov 1 0%v 0%v }dt

ot s R e x 2V IV
guw T g2 Tw v T gx FX A T 5 gx2 IX X T G ax TwOX

ow " T ox
= p,dt+ o, dW + L,dN(\;). (A.5)

+{@ +ﬁax} AW + {v (w+ Ly, X + Lx) — v (w, X)} dN (\)

Investor i’s total wealth V; is equal to the value of her holdings (in units) Q; ¢, Qi v, @iz, and
Q;,r in the consumption claim, the money market account, and the two insurance products
with prices P¢, PM, PZ and P!, respectively. Let II; denote the value of this portfolio. With
o, Tim iz and m; 1 denoting the relative share of investor i’s wealth invested in the four

assets, the total return dR on her portfolio can be represented as

pr® dpP” dP’
dR;' = mc (F + B_Udt> + mip rdt + i 7 (ﬁ + e_cdt) + i (F + e_wdt)

1
= {Wz‘,c (MC+Xt+Mv+§ULUU+U,CUU+€_U) + MM

1
+7 7 ([LZ + e + 502 oc+ UIZ oc+ 6_4)

L, o
—|—7Ti’[ M1+Mw+§(7w(7w+€ dt
+{mic (occ+0v) + Tz (07 +0¢) +7ir o} dW

+{mic (" =1)+myz (e =1)+m [(L+ Ly) "= — 1]} dN(N).

The portfolio shares are determined by the condition that investor i’s wealth and her financ-
ing portfolio have to react in the same way to the shocks in the model. With respect to the

diffusions the condition is thus

oy, = o¢, + 0y, . mic (oc+0y) + iz (07 +0¢) +Tif 0, (A.6)

where the diffusion coefficients for investor i’s wealth were derived in (A.4).

Look at m; ¢ first. From Equations (4), (5), and (A.1) one can see that the first com-
ponent of the vector o¢, is equal to o, since the first component of o,, (a multiple of ox)
is equal to zero. Equation (8) furthermore shows that o,, is a multiple of ox, so that its
first component is also equal to zero. Overall, the first component of the vector o¢, + o,

is thus equal to o.. The same is true for the volatility vectors of investor ¢’s portfolio, as
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can be seen from the definitions of o and oz and from Equations (B.1), (B.2), and (A.5).
Taken together this implies m; c = 1 (i = 1,2). So both agents invest 100% of their respective
wealth into the claim on aggregate consumption, implying that the positions in the other

three assets add up to zero in value for each agent individually.

m;,z and 7; 1 follow from equating the reactions of wealth and the portfolio to Wx-shocks
and jumps. This gives two conditions, where the first one refers to the second components of
the vectors o¢, + 0., and (o¢ + 0,,) + 7z (07 + 0¢) + T 1 0, respectively. The second one
is obtained by matching the terms in front of d/N in the total return on wealth and on the

financing portfolio, using m; ¢ = 1. This implies
(1 + LC@) €L”i -1 = [GLU — 1} + Tz |:€L< — 1] + i1 [(1 + L]) GLW — 1] . (A7)

The resulting two equations can then be solved numerically for 7 z and 7 ;. The portfolio
weights for investor 2 are found via the aggregate supply condition for the insurance products,
which says that their total value in the economy has to equal zero, i.e., m z Vi + 73z Vo =0
and my ; Vi + mo ; Vo = 0. Finally, investor ¢’s position in the money market account is given

as

mivm = —(Tiz+ i) (A.8)

2. Incomplete Market

On the incomplete market the insurance products are no longer available to the in-
vestors, but they still have to agree on the prices of the claim on aggregate consumption and
the money market account. Let v; denote investor ¢’s subjective log price-dividend ratio of

the claim on aggregate consumption. Its dynamics are given as follows:

dVZ' =

oy, 1 0%y, , oy; X 1 0%; v,
Jw v T3 Gur w0 T ox XX T3 gxe Ox OX T g Twox &

8% 814 !
+{8—waw+a—XJX} dW +{vi(w+ Ly, X + Lx) — v (w, X)} dN (\;) .

Furthermore v; solves the following PDE

. 1
0 = e+ pg + pe + o, + 92 0:4 Oy, + Uéi oc+ Uéi oy + UIC Oy,

+ [(1 + LCi)_’Y e(efl)Lvi eL”i _ 1] )\i’ (A.9)
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d&iCe) and then using the fact that the

& Cevi
sum of expected price change and cash flow must be equal to zero, i.e., B [%] +e Vi =

which is obtained by first computing the differential

0. Since the investors agree on the price of the dividend claim, v; = vy = v.

Like before on the complete market the investor constructs her financing portfolio so
that its return equals the return on her individual wealth. The return on wealth is the same

as on a complete market, while the return on the financing portfolio is now given as
dpPf ,
dR{[ = TC (P—é +e Y dt> + 7TZ'7MTdt

1
= {77,-’0 [/lc + X + oy, + 5 al’,i o, + J’C oy, + e_”i] + T M 7’} dt

+ {mic (oc+0,,)} dW +{mc (e" — 1)} dAN(N).

Since the investors’ individual wealth and their financing portfolios have to have the same
exposure to the two diffusions and the jump component, the following conditions have to

hold for each investor:

Tic (0c+0v,0) = 0c,ct0uc (A.10)
TiCOp,X = 0CuX T Ou X (A.11)
mic (e —1) = (1+4Le,) e — 1, (A.12)

where 0. ¢ and 0. x refer to the first and second component of the respective volatility vector.

We want to solve for the following eight variables of interest: the two individual log
wealth-consumption ratios v, and vy, the log price-dividend ratio of the traded consumption
claim v, the drift u,,, the two elements of the volatility vector o,,, and the jump size L,, of the
consumption share process, and the portfolio weight for the claim on aggregate consumption
m1,c. The portfolio weight for investor 2 is determined via the market clearing condition
m,cCre” + meoCre” = Ce’, and the weight of the money market account is given by

Ti,M = 1— 5.C-

There are eight equations we can use to find these quantities: the two PDEs for the
individual log wealth-consumption ratios represented by Equation (9) for ¢ = 1,2, the two
PDEs for the individual log price-dividend ratios of the claim on aggregate consumption
given in (A.9) for i = 1,2, the equation obtained through the restriction that the individual
risk-free rates given in (13) have to be equal, and the three equations for the portfolio weights
(A.10) — (A.12).
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B. Pricing the Insurance Assets

Analogously to Equations (8) and (9) the dynamics of the log price-to-cash-flow ratio

(; of the insurance asset Z are given by

e 19°¢ G 1 0°G PG,
doi = {aw““’ 2 002 T T ox XA T gxa X OxX ¥ g gy dwox !
9G; ¢ /
+ {a—w Ow + a_XUX} dW +{¢; (w+ Ly, X + Lx) — G (w, X)} dN (\;)
= e dt+ 0l AW + Lo, AN (A), (B.1)

and (; solves the PDE

. 1
0 = e %+ g+ pz+ pe, + 3 0y, 0¢, + 0¢, 07 + 0p, 0¢, + 0750,

+[(1+ Le,) ™ e DB eba — 1] A,

The insurance product [ has a price-to-cash flow ratio denoted by w; with dynamics

dwi =

0@2- 1 327@- ’ 8@1 1 82wi ’ 327@- ’ d
Tw Moty ar Cwe T gy XX o Gz ox ox G dwox p dE

awi 8@1 !

fro, dt + o, dW + L, dN (). (B.2)

w; solves the PDE

, 1
0 = e ™+ M, + I+ fho; T+ E O-ilm O, + Uéi Ow;

+[(L+ Ly) (1+ L) ™7 @D v elmi — 1] A,
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C. Trading Volume

The number of shares of asset j held by the pessimistic investor 1 is given by n{ = %}/1

Its dynamics are

: on’

2,0 J
8nla,a Oy

!
2 Guz (vl T gy XA

19%n] Pnl
3 %2 oxox + I0X 0, 0x ¢ dt

ow 0X
= fydt+o,dW + L, dN(N),

o] o] < <
+4—=—"ow+—=aoxp dW+{n{(w+ Ly, X+ Lx) —n} (w, X)} dN (N

where Hngs Opds and Lnjl- denote the drift, the volatility, and jump size of n{

D. Numerical Implementation

We now briefly describe how we implemented the model in MATLAB, using the cor-
responding toolbox provided by the Numerical Algorithms Group (NAG).

We solve the model numerically on a two-dimensional grid for the pessimist’s consump-
tion share w and the long-run growth rate X. For w we use 41 points over the interval (0, 1),

while there are 39 points over the interval [—0.1560,0.1440] for X.?" The vectors of grid

points are given as follows:

2s—1)m 1
[w1, R ,W41] = |:COS (%) + 1:| 5

2t —1 144 1
[(X1,..., X = {COS (%) +1} 0 0;—0 o060 —0.1560

with s = [41,40,39,...,2,1] and ¢ = [39,38,37,...,2, 1].

1. Complete market

To obtain boundary conditions for the PDE in (9) we study the limiting cases w — 0

and w — 1. In either case we have one very large and one very small investor. This is based

2TTable B.1 in the Online Appendix shows that the interval we use for our numerical implementation
is actually larger than an interval ranging from the 0.0001% to the 99.9999% quantile of the long-run
distribution of X. Widening this interval has no impact on the results.
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on the assumption that the large investor sets the prices and risk premia, while the small

one takes these quantities as exogenous.

When w is very close to zero, we are basically in a one investor economy, so that ;= fi,
— 0, and L,, are zero as well. In this case the PDE (9) for the log Wealth—consumptlon
ratio of the large investor 2, using Equations (4), (5), and (8), simplifies to

1 1 ov 1 0%
- B+ (1_E) |:NC+Xt_§’70JcUC:| —8—;/@XX+56—X§03(0X

1 an ? ’ a 1 0 [v2(w, X+ L) —v2 (w,X¢)]
+§9 X oyox+(1—» )8XJCUX+0[6 A Al ] N

o
I

We use vy = —log [ﬁ — (1 — i) (ﬂc — %7 o UC)] , the solution for the wealth-consumption
ratio in a one-investor economy without a state variable, as starting value for our numerical

optimization.

For the small investor the fact that 1 — w is very close to one implies (based on
Equations (A.1), (A.2), and (A.3)) in the limit as w tends to 0 that

1 1 1 1
E,Uw = ¢ {5 <1 + E) v [UICI ocy — U/C’Q 002} + 5 (1 - 0) [0;1 Ov; — 01/)2 UUJ
+(1-0) [0’01 Tvy — O, O'UQ}
+ |:€(0—1) [v1(w,X+Lx)—v1(w,X)] 1— (1 . 1> [60 [vi(w,X+Lx)—v1(w,X)] 1}:| )\1
0

B |:6(9_1) [v2 (w, X +Lx)—v2(w,X)] _ 1 _ (1 . %) [66’ [v2(w,X+Lx)—v2(w,X)] _ 1}:| /\2}
1 1 81}2 8’01
oy = S(1—p) (L2_
7 5 (1=9) (aX ax) X

and that vy (w, X + Lyx) — v (w, X) = vy (w, X + Lx) — va (w, X) — 55 In (i—;) Thus the
PDE is given by

g

» 1\ [ 1 1 o
0 = e 1—5+<1——) {uc+Xt+Euw—§’y (abac—ﬁa;aw)}—a—);mx)(

(G
16 0 G, I
—l—Qa;(};ag(aX—F 8(8;) OS(JX+(1_7)8_§§<UC+EUU)) ox

+% |:69 [vz(w7X+Lw)*v2(w»Xt) 1 IH(A H ] Ag.

Again we rely on v; = —log [ﬁ — (1 — i) [/ZC — %70’0 UCH as starting value for our nu-
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merical optimization. The maximum errors in the solutions of the investor-specific partial

differential equations (9) are always less that 107°.

2. Incomplete market

On an incomplete market we also need starting values for the optimization problem
described in Section A.2. In addition to the complete market solution we use v = %vl + % Vg
and ¢ = 1 (for w < 0.5) resp. 7§’ = 1 (for w < 0.5). The maximum errors in the solutions for
the investor-specific partial differential equations (9) and (A.9), the equilibrium conditions
(13) and the conditions for the portfolio weights in Equations (A.10) to (A.12) are always

smaller than 10713,

E. Auxiliary Quantitative Results

1. Wealth-consumption ratios

Due to the recursive utility specification wealth-consumption ratios are key ingredients
to asset pricing. The aggregate and individual wealth-consumption ratios on a complete
market are shown in the upper row of Figure 16. Looking at the dependence on the pessimist’s
consumption share w first we see that when the optimist becomes small (i.e., when w tends
to 1), she consumes less and saves more. The analogous logic (now for w going to 0) applies to
the pessimist which is represented by the dotted line, although the pessimist reacts in a much
less extreme fashion than the optimist. The aggregate wealth-consumption ratio is downward
sloping in w, since the optimist would save more in the respective single investor economy
(left boundary) than the pessimist (right boundary). The right graph in the upper row
confirms the intuition that a higher long-run growth rate implies more attractive investment
opportunities which lead to less consumption and higher savings. The slope of all three curves
in this graph is about the same, so the optimist and the pessimist react in pretty much the

same relative fashion to changes in X, although the level is higher for the optimist.

In terms of the dependence on X the results for the incomplete market are very similar
(right graph in the lower row). Concerning the dependence on w, however, incompleteness
matters, at least for the pessimist. Her individual wealth-consumption ratio is now increasing
in w. Since the insurance products are not present anymore, saving becomes so unattractive
for the pessimist that, even in the face of extinction, she still prefers to consume more than
when she is large. Also the optimist is affected, but to a much lesser degree than the pessimist,

and also for the market as a whole the results are quite similar to the case of completeness.
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2. Consumption share dynamics

The upper row in Figure 17 shows (from left to right) the coefficients pu,, ow.cy Tw.x,
and L,, of the consumption share dynamics from Equation (3) on a complete market. The
curves for the optimist, the pessimist, and the aggregate market are all identical, so that
there is only one line in the graphs. Note that the boundary values for w = 0 and w = 1 are

equal to zero.

The graph for pu, shows that in times without jumps the pessimist’s consumption
share decreases on average due to the compensation for risk sharing. Since jumps increase
the pessimist’s consumption share due to the payoffs from the associated insurance contract,

the average compensation in times without jumps has to be negative.

As we can see from the graph for o, ¢, consumption risk is not shared, since the in-
vestors have identical beliefs with respect to this source of risk. So the investors’ consumption
shares remain unchanged following a consumption shock. Also the reaction of w to a diffusive
shock in X is not very pronounced, as we can see from the graph for o,, x. The small non-zero
values for larger w are due to the fact that the optimist reacts stronger to an increase in
the long-run growth rate than the pessimist as can be seen from the upper right graph in

Figure 16.

The picture is quite different for jumps in X. For w = 0.5 the reaction to jumps is in the
order of 10%. When a disaster strikes the long-run growth rate in the economy drops and due
to the less attractive investment opportunities, both investors save less and consume more.
With the pessimist’s reaction being much stronger than the optimist’s, the term L,, — L,,
in Equation (A.3) is negative, leading to the shape of the curve shown in the graph. So on

a complete market investors almost exclusively share jump risk.

The upper row of Figure 18 shows the results for the incomplete markets case. Com-
pared to the complete market the situation changes significantly. The reactions to the two
types of diffusion risk become much more pronounced, whereas the reaction to jumps be-
comes much smaller. The reason is that on an incomplete market the only risky asset which
the pessimist can use to reduce her jump exposure is the consumption claim. Reducing this
exposure by reducing the amount of wealth invested in the consumption claim automatically
implies a reduction in the diffusive exposure as well, so that in the end the investors mainly
share diffusive risk. Of course, as indicated by the first graph in this row, the pessimist still

accepts a decrease in her consumption share on average.

33



3. Risk-free rate and market prices of risk

On a complete market the investors have to agree on the risk-free rate, on the market
prices for the diffusion risks W¢ and W¥, and on the risk-neutral jump intensity, which are

shown from left to right in the upper row of Figure 19.

The graph for the risk-free rate from Equation (13) shows that precautionary savings
due to jump risk overcompensate the impact of the individual consumption growth rate for
the optimist (and vice versa for the pessimist). Overall the risk-free rate decreases slightly

in w and varies between 0.6% and 1.1%.

Next, the market price of risk for W is constant in w. Since X does not load on W¢
and the investors do not share consumption risk, we end up with the usual CRRA result

that the market price of risk is equal to v o¢ for both investors.

Also the market price of risk for W¥ is basically a constant. It decreases only very
slowly in w, and this is due to the fact that in the respective one-investor economies for
w = 0 and w = 1 there is also only a small difference between the respective market prices

of risk, since investors only disagree on the jump intensity.

While disagreement about the jump intensity has a negligible impact on the market
prices of diffusion risk, it has a dramatic effect on the risk-neutral jump intensity A2, which
ranges from below 1% in an all-optimist economy to almost 16% for w = 1. The investors’
subjective market prices for positive jump exposure can be determined by comparing the risk-
neutral with the subjective jump intensities, and here we see significant differences between
the optimist and the pessimist. While the optimist has a negative market price of risk
throughout, the sign switches for the pessimist, once she has reached a certain size in the

economy.

The lower row of graphs in Figure 19 presents the result for the incomplete markets
case. First, the risk-free rate on the incomplete market is basically indistinguishable from the
one on the complete market. Next, the market price of consumption risk, represented by the
first component of the vector shown in Equation (11), is mainly driven by the 'market price
of risk for relative size’, i.e., the influence of o, on individual consumption and on the log
wealth-consumption ratio, which is negative for the pessimist and positive for the optimist.
These terms are increasing in w, and so is the market price of consumption risk. Note that
now, on an incomplete market, the individual market prices of risk no longer coincide. The
story is basically the same for the market price of diffusive risk in X, only the numbers are
different.

Finally, the pronounced differences between the optimist’s and the pessimist’s risk-
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neutral jump intensities are mostly determined by the different physical jump intensities
assumed by the investors. In contrast to the complete markets case the market price of jump
risk is now negative for both investors across the full range of w (and more negative for the
pessimist). Both investors’ risk-neutral jump intensities are much closer to linear in w than

on the complete market and are increasing much less in w.

4. Wealth exposures

To analyze the properties of the return on individual and aggregate wealth we go back
to Figure 17 and look at the lower row of graphs, which show the drift and sensitivity of
these returns with respect to diffusive consumption risk, diffusive growth rate risk, and jump
risk (see Equation (A.4)).

The exposure of all the returns to consumption risk is constant and equal to o., again
since X does not load on W¢ and the investors do not share consumption risk. They do,
however, share the risk of diffusive shocks in the long-run growth rate, and this is why we
see in the third graph that the exposure of the optimist’s wealth is decreasing in w, and the
opposite is true for the pessimist. In the aggregate the exposure to diffusive growth rate risk

decreases slightly.

In terms of the jump exposure of individual and aggregate wealth we see that the
sensitivity of the optimist’s wealth to jumps in X is always negative, whereas the pessimist’s
is mostly positive, but also becomes negative when she is sufficiently large. Both exposures

decrease in w, whereas in the aggregate the jump sensitivity is more or less constant.

The graph at the very left of the lower panel of Figure 17 illustrates the average return
on wealth in times without jumps. We have already seen that on a complete market, investors
mainly share jump risk, so that the drift is mainly a compensation for diffusive growth rate

risk and jump risk.

The return on individual wealth and aggregate wealth on an incomplete market are
presented in the lower row of Figure 18. The second and third graph show the exposures
to consumption risk and to diffusive shocks in the long-run growth rate. The curves look
very similar due to the similar way in which the investors share these two sources of risk
by shifting exposures from the pessimist to the optimist. This is also true for jump risk.
Concerning the drift of the wealth process the pessimist has to compensate the optimist for
sharing mainly diffusion risks and a small amount of jump risk. Therefore, the optimist’s

wealth increases in times without jumps, whereas it decreases for the pessimist.

Whether the market is complete or not obviously only has a very small effect on the
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results for aggregate wealth. It does, however, matter for the properties of the investors’
individual wealth processes. On a complete market the investors mainly share mainly jump
risk, which shows up in the wide range of the jump sizes of individual wealth as a function

of w.

On an incomplete market the investors cannot adjust the exposures to the different
sources of risk separately because they only have access to the money market account and
the claim on aggregate consumption. So if the pessimist reduces her jump exposure this means
both diffusion exposures will decrease automatically. Since jump risk is only a small fraction
of the risk embedded in the aggregate consumption claim while it is mainly influenced by
diffusion risk, we see large differences in the diffusion coefficients of the return on individual

wealth.

5. Expected Excess Return on Individual Wealth

Besides the equity risk premium, Figure 2 also shows the expected excess returns on
individual wealth both on a complete (upper row) and an incomplete market (lower row).
From left to right, the graphs give the risk premia due to diffusive consumption risk, diffusive

growth rate risk, and growth rate jump risk, and finally the total expected excess return.

On the complete market the premium on diffusive consumption risk coincides with the

usual premium we would also obtain in a CRRA economy.

Since both investors agree on the market price of risk for diffusive shocks to X (which
is hardly varying with w), the small differences between the two premia are caused by the
corresponding small differences in exposures due to risk sharing. The overall size of this
premium is around 3.5% for both investors and thus accounts for a large part of the overall

expected excess return.

The premia for jump risk differ significantly between the two investors. The premium
earned by the optimist (under the true measure) is the larger the smaller her consumption
share, i.e., the more valuable the insurance against jump risk which she offers to the pessimist.
This premium is negative for small w, which may seem surprising. The reason is that the
premium is shown here under the true measure (i.e., the pessimist’s beliefs), while under the

optimist’s own beliefs it would of course be positive.

The premium for the pessimist is more involved. When she becomes larger, her exposure
to jump risk switches sign from positive to negative (for w ~ 0.25), and the market price

of jump risk also changes sign from positive to negative (for w ~ 0.8). This results in a
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U-shaped premium for jump risk, which is positive for rather small and large consumption

shares of the pessimist and negative in between.

On the incomplete market the premia on consumption risk and diffusive shocks in X
reflect the exposures to consumption risk and X-risk from Figure 18. They are increasing in

w and larger for the optimist (who provides insurance to the pessimist).

The premia on jump risk are shown in the third graph. The positive premium earned
by the pessimist is the smaller the smaller her consumption share, reflecting the fact that she
can reduce her exposure to jump risk best when her consumption share is small. As in the
complete market case, the premium on jump risk is negative for the optimist under the true
measure (but still positive under her subjective measure), since her subjective risk-neutral
jump intensity is less than the true jump intensity, but still greater than her subjective

physical jump intensity.

The total expected excess return (fourth graph) inherits the linear shape from its
components. The optimist’s excess return is always higher than the pessimist’s since investors

mainly share diffusion risk, on which the optimist earns the larger premium.

The impact of incompleteness on expected excess returns is small for the claim to
aggregate consumption, but can be rather large for individual wealth, in particular for when
the pessimist is small. When she has access to insurance products she is able to offer some
risk sharing to the optimist when the optimist is large. Since this is not possible on an
incomplete market the pessimist’s excess return is up to 40% smaller here than when the

market is complete.

F. The ‘extended’ Chen et al. (2012) model with recursive prefer-

ences

As in Section II we consider two investors with identical EZ preferences. Her indi-
vidual value function is given in Equation (1) and her normalized aggregator function in
Equation (2).

Under the true probability measure [P aggregate consumption follows

dc,

F - MCdt—I—O‘cht‘f'LCdNt (A)
t

where W is a one-dimensional standard Brownian motion and /N represents a Poisson process

with constant intensity A and constant jump size L. Both investors agree on all parameters
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of the model except the intensity of the Poisson process. This implies that under investor i’s

subjective probability measure P’ aggregate consumption evolves as

dC;

F —_ I[,Lcdt—i-O'Cth_'—Lcht (Al)
t

The investors can trade the claim on aggregate consumption, the money market ac-
count, and an ‘insurance product’ linked to the jump component. The consumption claim is

in unit net supply, while the other two assets are in zero net supply.

To solve for the equilibrium, we proceed in a similar way as in Section III. The dynamics

of the pessimistic investor’s consumption share are given by
dw = py (w) dt + oy (W) dW + Ly, (w) dN (A1), (F.1)

where all coefficients will be determined in equilibrium. The dynamics of investor 1’s and

investor 2’s level of consumption then follow from Ito’s lemma:

1 1 1 L., L.,
— = {,uc—l——,uw—i-—awac} dt + {ac—l——aw} dW+{—+LC (1+—>} dNy (A1)
C, w w w w w
= /Lcl dt—f—O'Cl dW+LCl dN ()\1)

dCy 1 1 1
— = HC— T — owoc p dt + 0 —
1—w 1—w 1—w

L., Ly,
— L 1— N
+{ 1—w+ C( 1—w)}d OQ)
= pe,dt+ oo, dW + Lo, dN (Xg) .

aw} dW

The dynamics of investor i’s log wealth-consumption ratio v; = v; (w) are given as

81)1‘ 1 82’01 @UZ‘
dUZ' = {a—wﬂw + 5 wO'wO'w} dt—|— {a—w O'w} dW"— {UZ' (w+Lw) — VU (’U])} dNt <)\z>

=y, dt + oy, dW + Ly, dN (N\;).

Following the other steps explained in Section III, leads to the same PDE for v; as in
Equation (9). The dynamics pricing kernel &; of investor i at time t coincide with those in
Equation (10), so that the investor-specific market prices of diffusion risk 7;, the market
prices of jump risk 7V, and the subjective risk-free rate r/ given in Equations (11)-(13)

coincide, too.

Both investors” market prices of diffusion risk coincide if o, = 0, i.e., investors share
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no diffusive risks.?® y,, follows from equating both investors’ risk-free rates and has the same
form as in Equation (A.2). L, is determined by equating the risk-neutral jump intensity
)\;Q = N\ (1 +nN ) for both investors and coincides with Equation (A.3). The equilibrium
solution is then found by simultaneously solving the two PDEs in (9) for v; and v, using the

equations for i, o,, and L,,.

Given these coefficients as well as the individual wealth-consumption ratios, we can
then compute other equilibrium quantities. As for example, the total return (including con-

sumption) on investor ¢’s wealth V; = C; e” follows the process shown in Equation (A.4).

While the formulas for the equity premium, the individual expected excess returns
on wealth, and the trading volume given in Equations (14) to (16) remain unchanged, the

number of shares of asset 7 held by investor 1 now follows

on’ 1 9°n]

, on] , ; j
dn] = {8_w'uw+§ e UZ,} dt + {8_wlaw} dW+{n]1 (w4 Ly) —m (w)} dN (X)

= oy dt+ 0, dW + Ly dN ())

The volatility of the return on the aggregate consumption, RV, also changes slightly to

2 2
RV = (oo +0.)+ A [(1+ Lo) ebo — 1] (F.2)
28An alternative condition which may lead to coinciding market prices of risk is 0 = ﬁ +
(1-0) [% — %]. Our numerical results show, however, that this does not hold for the parameterizations
we look at.
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Investor preferences

Relative risk aversion y 10
Elasticity intertemporal of substitution P 1.5
Subjective discount rate 6] 0.02
Aggregate consumption

Expected growth rate of aggregate consumption Jite; 0.02
Volatility of aggregate consumption oc 0.0252
Stochastic growth rate

Mean reversion speed Kx 0.1
Volatility o 0.0114
Jump size Lx -0.03
Jump intensity of the pessimistic investor 1 A1 0.020
Jump intensity of the optimistic investor 2 Ao 0.001
Further parameters

Leverage factor for dividends 10) 1.3
Drift of insurance product Z Wz -0.1
Volatility of insurance product Z oz 0.001
Drift of insurance product I 135 -0.1
Jump size of insurance product [ Ly 0.01

Table 2. Parameters
The table reports the basecase parametrization of our economy. These parameters are held constant

throughout the paper, except v and 1 for which we also look at different values in Section IV.D.
We assume that the pessimist’s belief represents the true model.
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Complete Incomplete

T (years) market market
50 0.349 0.250
100 0.260 0.111
200 0.161 0.019
500 0.056 0.000
1,000 0.013 0.000

Table 3. Investor survival

The table shows the pessimist’s expected consumption share E[wr] for T years into the future under
the true measure. The expectation is computed via a Monte Carlo simulation of the dynamics of
the consumption share shown in Equation (3) with a starting value of wy = 0.5. The coefficients
I, Ow, and L., are obtained by interpolating the grids for these quantities obtained as part of the
equilibrium solution. The parameters for our model are given in Table 2.

Chen et al. (2012)

T (years) CRRA EZ
50 0.588 0.3866
100 0.661 0.3287
200 0.777 0.2736
500 0.934 0.2248
1,000 0.992 0.2162

Table 4. Investor survival in Chen et al. (2012) and our recursive utility version
of their model

The table shows the pessimist’s expected consumption share Efwr] for T years into the future
under the true measure. The second (third) column gives the results in the model proposed by
Chen et al. (2012) and our ’extended’ version of their model in which CRRA utility (y = 4,¢ = 1)
has been replaced by recursive preferences (v = 4,9 = 1.5). The expectation is computed via a
Monte Carlo simulation of the dynamics of the consumption share shown in Equation (F.1) with a
starting value of wg = 0.5. The coefficients p,,, oy, and L., are obtained by interpolating the grids
for these quantities obtained as part of the equilibrium solution.

44



0.06 T T T T T T T T T

0.05

0.04

0.03

0.02

0.01

_0.0l 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Figure 1. Equity premium in different models

The figure shows the equity premium under the respective true probability measure (y-axis) for
different heterogeneous investor models as a function of the pessimist’s consumption share (x-axis).
The different lines in the picture represent the following models:

e original Chen et al. (2012) model with jumps in aggregate consumption and CRRA utility
(y=4,¢ = %) — black dotted line

e ‘extended’ Chen et al. (2012) model with jumps in aggregate consumption and recursive
preferences (7 = 4,1 = 1.5) — black dashed-dotted line

e Dieckmann (2011) model with jumps in aggregate consumption and log utility on complete
(incomplete) market — gray solid (dashed) line

e our model with jumps in expected growth rate of aggregate consumption and recursive pref-
erences (v = 10,7 = 1.5) on complete (incomplete) market — black solid (dashed) line
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Figure 4. Trading volume in the insurance assets

The figure shows the trading volume in the insurance products Z (on the left) and I (on the right)
as defined in Equation (16). All quantities are determined under the true measure and shown as
functions of the pessimist’s consumption share with the stochastic part of the expected growth rate
of consumption fixed at X = —0.0060. The parameters are given in Table 2.
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Figure 11. Expected excess return, risk-free rate, and risk sharing in Dieckmann
(2011)

The figure depicts in the upper row the expected excess return on aggregate wealth under the true
probability measure (on the left) and the risk-free rate (on the right) in the Dieckmann (2011)
model with jumps in aggregate consumption and log utility. The lower row shows the coefficients in
the dynamics of the pessimist’s consumption share, i.e., the coefficients for diffusive consumption
shocks (on the left) and jumps in aggregate consumption (on the right). The solid line represents
the results on a complete and the dashed line those on an incomplete market. All quantities are
shown as functions of the pessimist’s consumption share.
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Figure 12. Expected excess return, risk-free rate, and risk sharing in Chen et al.
(2012)

The figure depicts in the upper row the expected excess return on aggregate wealth under the true
probability measure (on the left) and the risk-free rate (on the right) in the original Chen et al.
(2012) model with jumps in aggregate consumption and CRRA utility (y = 4, ¢ = %) The lower
row shows the coefficients in the dynamics of the pessimist’s consumption share, i.e., the coefficients
for diffusive consumption shocks (on the left) and jumps in aggregate consumption (on the right).
The solid line represents the results on a complete and the dashed line those on an incomplete
market. All quantities are shown as functions of the pessimist’s consumption share.
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Figure 13. Expected excess return, risk-free rate, and risk sharing in the recursive
utility version of Chen et al. (2012)

The figure depicts in the upper row the expected excess return on aggregate wealth under the true
probability measure (on the left) and the risk-free rate (on the right) in the ‘extended’ Chen et al.
(2012) model with jumps in aggregate consumption and recursive preferences (v = 4, ¢ = 1.5).
The lower row shows the coefficients in the dynamics of the pessimist’s consumption share, i.e.,
the coefficients for diffusive consumption shocks (on the left) and jumps in aggregate consumption
(on the right). The solid line represents the results on a complete and the dashed line those on an
incomplete market. All quantities are shown as functions of the pessimist’s consumption share.
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Figure 14. Expected excess return, risk-free rate, and risk sharing in our model

The figure depicts in the upper row the expected excess return on aggregate wealth under the true
probability measure (on the left) and the risk-free rate (on the right) in our model with jumps in
the expected growth rate of aggregate consumption and recursive preferences (y = 10, ¢ = 1.5).
The lower row shows the coefficients in the dynamics of the pessimist’s consumption share, i.e.,
the coefficients for diffusive consumption shocks (black lines in left plot), diffusive expected growth
rate shocks (gray lines in left plot), and jumps in expected growth rate (on the right). The solid
line represents the results on a complete and the dashed line those on an incomplete market. All
quantities are shown as functions of the pessimist’s consumption share.
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Figure 15. Survival

The figure shows the kernel density estimates for the pessimist’s consumption share wr for T years
into the future under the respective true measure after 50 years (gray solid line), 100 years (gray
dashed line), 200 years (black solid line), 500 years (black dashed line) and 1,000 years (black
dotted line). The upper graph shows the results on a complete market, the lower one those on an
incomplete market. All quantities are determined by a Monte Carlo simulation of the dynamics of
the consumption share shown in Equation (3) over 10,000 paths with a starting value of wy = 0.5.
The coefficients p,,, 0y, and L,, are obtained by interpolating the grids for these quantities obtained
as part of the equilibrium solution. The parameters are given in Table 2.
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Figure 16. Wealth-consumption ratios

The figure shows the aggregate and individual wealth-consumption ratios, ie., v =
log (we* + (1 — w) €"?) and v;. The solid line represents the aggregate, the dotted (dashed) line
shows the pessimist’s (optimist’s) individual wealth-consumption ratio. The graphs in the up-
per (lower) row show the results for the complete (incomplete) market. The individual wealth-
consumption ratios are determined by solving for the equilibrium as explained in Appendix A. All
quantities are shown in the left column as functions of the pessimist’s consumption share with the
stochastic part of the expected growth rate of consumption fixed at X = —0.0060 and in the right
column as function of the long-run growth rate for w = 0.5. The parameters are given in Table 2.

60



"% OlqRI, Ul ULALS aIe siojowrered oy, "0900°0— = X 9© poxy uonduwnsuod Jo 9)el [IMoIs pajoadxe
oy} Jo 1red o19seYO0IS oY) UM oIeys uoljdwmsuod s jsturssod o) JO SUOIOUN] SB UMOYS PUR SINSBOWL 9NI} 9} IOPUN POUTULIOIOP oIe
sonyuenb [y A[eArjoodsol ‘ojel Yimois pojoadxo oy ul sdwmnl pue ‘Sy00Ys 9jel [IMOIS Pojoadxo SAISNPIP ‘SYo0Ys UOI3dwnsuod dAISNYIP
I0] SHULIOLO0D O} puR ‘PLIp oY) moys syders o) JysLr 0} 430 wodq *(ysturydo) jstuarssod o) I0J SHNSOI 9Y) SMOTS oUI| (PIYSepP) Poljop
o) pue ‘yireom ojedordde sjuosordor oul] prjos oy} sydeld Jo MmOl Iomo[ oY) U "josIewt 9jo[duwiod e Jo ased oY) I10] ‘(F'y) uolyenbr ur
pougep se ‘AWOu0d9 9Y} Ul [[I[edM [ENPIAIPULI PUR 9)LFIISFe U0 WINISI S} JO SOTWRUAD 9} Ul SJUSIOFS0D 9} MOI I9MO[ o) Ul pue
‘(¢) uoryenby ur pauyep se ‘areys uorydwnsuod s sturrssad oY) JO SOTWRUAD 9Y) Ul SJUSDIJR0d 3} mol toddn oy ur spordep 2Insy oy,

1o Iewr 91o[duod © U0 SOTWRUAP [I}[eam pue aaeys uorpdumsuo)) °.T 2an3rq

T S0 0 . T S0 0 T S0 0 T S0 o .
v'0- 0 0 200
BRI . : €00
.. 0o 100 oo |
Ssoo | e 00
— = N 200 200 |-
0 Tee Ll e S0'0
_________________________ STTE0'0 €00 . .
\\\\\\\ R4 90°0
“““““ fAl] . . ’
_ ¥0'0 v0'0 R4 L00
’
v'0 S0°0 S0°0 80°0
T S0 0. T S0 o .1 S0 o . T S0 0_ .
T0- 100~ 100~ 100~
50°0- 5000~ S00°0- S00°0-
0 ~N_ —0 0 0
500 5000 5000 5000

70 100 100 100

61



"z 9Iqe], Ul uaAld axe siojowrered oY [, ‘0900 0— = X 1€ Poxy uorydwnsuod
JO 9%el IMoI3 poajoadxa oty Jo jred o1iseyoo)s oy} Yiim areys uorpdwmsuod s jsturssod oY} JO SUOIJOUI] Se UMOYS PUe dINSedW Ol oY)}
Iopun pPouluLId}ep oIk serijuenb [y A(eArjoodsel ‘9rer Yimolrs pojoadxe o) ut sdwnl pue ‘SYo0ys 9jel [IMOIS Pajoodxe SAISNHIP ‘SYO0YS
uo1pdwnsuod dAISIYIP 0] SIUSIDIO0D o) Pue ‘LI oY) moys syderd oy 811 03 3301 wod *(3sturydo) gsturssod o1 I0] SYNSOT O} SMOT[S
aul[ (paysep) peljop aY) pue ‘Yj[eam 91e3e1dde sjuasardal aull pijos oY) syderd jo mor Iemo[ ayy uf *(ysturydo) gstuissed o1} I0J synsal
o[} SMOUS oUI[ (pPoYsep) PojIop oY) pue ‘Yjeem o)edarsdse sjuaserdar our prjos o) sydersd Jo mol I1omo[ oY) uJ “jes{Iewt ajo[dwoour ue
JO 9seD O} I0J AWOUO0I9 9} Ul Y)[eoM [BNPIAIPUI PUR 9)€30I33e UO WINJOI 97} JO SOITURUAD oY) Ul SJUSIOYJO0D 9} MOI IOMO] 9} Ul PUR
‘(¢) woryenbyy ur pougep se ‘oreys uorydwmsuod s jstuissod Y} JO SOTURUAD o1} Ul SHUSIDPo0d o) mol Ioddn oty ut sjordep om3y oy J,

joxewt 939[dWIOOUI Uk U0 SOTWRUAP [j[eom pue areys uorpdwinsuo)) QT 2an3g

[ S0 0 T S0 0 T S0 0 T S0 0
v'o- 0 0 200
: o e €00
20— oo wo |
PO E T TS N KPP ELL A S SEPRTA ¥0'0
e NI s o S 00 p e 00 L
0 e e — -7 S0°0
— ——€00 _--" €00 PR
.- .- e 90'0
Z0 - . It . -
.- ¥0°0 - v00 | - 100
¥'0 500 S0°0 800
I S0 0_ T S0 0 T S0 0 T S0 0
T0- T0'0- T0°0- T0°0-
S0°0- S00°0- S00°0— 500°0—
/l\\o >O >O ,
500 5000 5000 5000

T0 T0°0 100 100

62



"% OlqRI, Ul UeAIS aae siojowrerIed o[, ‘0900 0— = X I8 poxy uonduwnsuod Jo 9)el [jmorsd pajoadxs o)
30 gqxed or3seyD0Is o) HIm areys uonpdwnsuod s jsturssod oY) JO SUOIJOUNJ S8 UMOYS oIr sorrjuenb [y A ZS + Hv = @N,« oyt (gT) woy
ZS 8urdsnid Aq pourtogep aq ued Aysuojul dwmnl [e1Inou-ysui 1oy pue ‘(17) ut \SS SYSLI OAISIYIP 10} soorxd joxrewr 107 ‘(¢1) uotyenby ur
pougap st Mg 9)RI 93IJ-YSLI [RNPIAIPUIL S, 2 109s9Au] ‘Ayisuajul dum( aa1poalgns (s jsturydo) s gsturissad oY) SMOYs aUI[ (paysep) paljop Arid
o T, "mora (ssturydo) s gstuarssed o) sjuesexdal sul] Yor[q (pPoysep) pejjop oy} ‘esmmIsy)() ‘Ajjuenb oa1oedser o) UO 99I3e SIOISOAUT
[10q ey} SoJRIIPUI SUI[ R[] PIOS Y *(MOI Iomo[) jos{rewt ojoiduroout we pue (mol Ioddn) oje1durod e uo serjisusjul dwnl [erjnou-ysu pue
[SLI 99RI [)MOI3 SAISNPIP puR UOIdWNSUOD SAISIYIP 0] YSLI JO sootId jos[Iett o) ‘©Jel 991j-SLI oY) (JSLI 0} }J9] WOI) SMOTS 2IN3Y O T,

sorjisuojul dunl esinau-ysit pue ‘ysiLi Jo sod1ad joxrewr ‘9jed 99dJ-qs1y "6 2INSI g

I 50 0 1 G0 0 T G0 0 T 50 0
-0 0 0 0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 20
00 10 100
vo | e
90 e 20 200
TO | e
,,,,,,,,,,,,,,,,,,,,,,,,,, o .----780 P €0 €0°0
sto r° 1 .
. 0 700
L S0 0 1 S0 0] 1 S0 0 1 S0 0
0 0 0 0
20
500 10 /Ho.o
v'0
90 20 200
10
80 €0 €00
ST T

0 700

63



ONLINE APPENDIX

Optimists, Pessimists, and the Stock Market:
The Role of Preferences, Dynamics, and Market (In)Completeness

Nicole Branger* Patrick Konermann? Christian Schlag®

This version: October 31, 2016

Abstract

This Internet Appendix serves as a companion to our paper “Optimists, Pes-
simists, and the Stock Market: The Role of Preferences, Dynamics, and Market
(In)Completeness”. It provides additional results not reported in the main text

due to space constraints.

A. Varying Investor Preferences

This section provides additional results with respect to the analysis of disagreement in
Section IV.D of the main text. There we present the solution of our model for the different
disagreement scenarios for the point X = —0.060 (the long.run mean of X) and w = 0.5.
Figures A.1 to A.3 present plots of the results for different preference specifications and for

the full range of the pessimist’s consumption share.

*Finance Center Muenster, University of Muenster, Universitaetsstr. 14-16, 48143 Muenster, Germany.
E-mail: nicole.branger@wiwi.uni-muenster.de.

Department of Finance, BI Norwegian Business School, 0442 Oslo, Norway. E-mail:
patrick.konermann@bi.no.

$House of Finance, Goethe-University, Theodor-W.-Adorno-Platz 3, 60323 Frankfurt am Main, Germany.
E-mail: schlag@finance.uni-frankfurt.de.
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B. Range for the State Variable X

Quantiles X
0.0001% -0.1526
0.0010% -0.1342
0.0100% -0.1151
0.1000% -0.0948
1.0000% -0.0714

10.0000% -0.0409

50.0000% -0.0056

90.0000% 0.0285

99.0000% 0.0559

99.9000% 0.0760

99.9900% 0.0922

99.9990% 0.1061

99.9999% 0.1185

Table B.1. Quantiles

The table shows the quantiles of the long-run growth rate determined by a Monte Carlo simulation.
We simulate the X process daily and take the end of the month values over 10,000 paths of length
1,000 years each under the true measure. The parameters for our model are given in Table 2.



