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Abstract 
 

In organized energy markets that use locational pricing, power generators and 
energy suppliers use Financial Transmission Rights (FTRs) to hedge against grid 
congestion charges, while third party speculators attempt to capture a return with 
these contracts.  FTRs are defined between two locations on the power transmission 
grid, known as a path.  These financial instruments accrue their value based on the 
energy price differential at two ends of a path.  Having the only organized energy 
market in the Western Interconnection, California has also implemented a version 
of FTRs, officially known as Congestion Revenue Rights (CRRs).  This paper 
investigates the performance of the CRR markets by estimating and analyzing the 
systematic risk and presence of abnormal returns among these financial 
instruments.  Our analysis identifies the paths with abnormal CRR returns with the 
majority of them being positive.  
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1 INTRODUCTION 

The deregulated electricity markets in the United States serve hundreds of millions of 

consumers every day.  Consisting of a complex grid of generators, transmission lines and system 

operators, this market is becoming strained as demand for electricity rises while the underlying 

infrastructure of the grid ages.  Though innovations in technology may allow us to tap into new 

energy reserves in the future and investment in new infrastructure may help to ease this burden, 

the grid will still have to facilitate an ever increasing flow of energy.  The challenge of 

accommodating sometimes unpredictable renewable energy power flows and linking distant 

renewable energy sources to the grid will be a primary factor leading to this system-wide increase 

in the power flow.  As a result, energy suppliers will face ever increasing exposure to the risks of 

transmission grid failure and congestion that, if not managed properly, could lead to higher costs, 

lower profits and even large losses. 

In many power markets, energy is traded at points on the power grid known as nodes.  Each 

node has a price called the Locational Marginal Price (LMP).  One may think of this price as the 

sum of the price of energy, the price of congestion and the price of transmission losses at a 

particular location.  The price of energy is constant at all nodes within a given market.  Differences 

between LMPs are due to the congestion and loss components.  As demand for energy rises at a 

given location, power lines servicing the area approach their rated capacity and as a result, the 

price of congestion at the associated node rises.  Consequently, this causes the respective LMP to 

rise as well.  While the transmission losses will vary by location, generally the largest driver of the 

variation in LMPs is congestion.  This paper examines the use of a financial instrument known as 

a Financial Transmission Right obligation – hereafter FTR - to avoid potentially extreme 

congestion charges. We particularly focus on the California’s markets for FTRs, which officially 

are known as Congestion Revenue Rights or simply CRRs.   
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To better grasp the concept of an FTR, imagine the following example.  An energy supplier 

must transport energy from a generator at point A to consumers located at point B.  The energy 

supplier is locked into a contract and must supply energy to point B even if it would mean taking 

loss.  A loss would arise due to a difference in the LMPs resulting from congestion between points 

A and B.  On a really hot day, consumers at point B would require more power as a result of the 

increased air conditioning usage.  As the demand for power at point B rises and the flow of energy 

reaches the capacity of the transmission lines leading to point B, congestion charges begin to 

accumulate.  If the demand is high enough, these congestion charges could be extreme.  To hedge 

against such a situation, an energy supplier could acquire an FTR from point A to point B in a 

monthly, quarterly or annual auction and be paid an amount that would counter these congestion 

charges as energy is delivered from point A to point B. That is because the value of an FTR is 

equal to the difference between the associated congestion charges and its market clearing price, 

which is set in an auction.  While these financial instruments may allow one to hedge against 

volatile congestion charges, they can also result in very significant losses.  The losses from FTR 

positions can be significant if the power flow unexpectedly changes its usual direction between 

the locations of interest.  This normally happens due to changing physical conditions on the grid 

(e.g., temporarily down power lines, power plant outages, unexpected weather patterns, etc.).  

Therefore, a model that properly assesses the risk associated with an FTR and accounts for the 

dynamic nature of the grid is needed when deciding on bidding strategies for various FTR 

positions. 

The objective of this paper is to build an analytical framework for assessing the 

performance levels of FTR markets and applying the methodology to California’s CRR market. 

To do this, we build on the capital asset pricing model (CAPM) approach of Sharpe (1964) and 
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Lintner (1965). This model is then estimated using a generalized autoregressive conditional 

heteroskedastic (GARCH) process that accounts for the dynamic nature of the power grid.   

For our purposes we used publically available data to examine all CRRs acquired in annual 

and monthly auctions4 in the California Independent System Operator (CAISO) region. Both On-

Peak and Off-Peak contracts were included in this analysis.5  

“CAISO” is used to refer to the footprint of the regional grid operator in California.  It 

oversees a unique market in that it is the only organized wholesale energy market in the Western 

Interconnection and it does not border any other regional transmission organization (RTO) or 

independent system operator (ISO).  This regional isolation means that California’s options to 

trade electricity competitively with the neighboring states are less developed and contributes to 

higher price volatility relative to the interconnected regional markets.  In our study, we find that 

CRR profitability in California appears unusually persistent.   

In the section that follows we review relevant literature.  In Section 3, we build a framework 

for evaluating the performance of a FTR/CRR.  Section 4 applies our analytical framework to the 

CRR markets in CAISO.  Section 5 reports the empirical findings.  Section 6 concludes our paper. 

2 RELATED LITERATURE 

 Since the proposal of FTR formulation (Hogan 1992), little research has been conducted 

to study returns in FTR markets.  However, academic research has explored other related topics.  

Initially, researchers were concerned with the potential use of FTRs to exert market power (Oren 

et al. (1995); Stoft (1999); Bushnell (1999)).  Joskow & Tirole (2000) investigated the use of FTRs 

                                                           
4 A large number of CRRs is also distributed to certain market participants such as Load Serving Entities (LSEs), 
i.e., utilities that provide power to the final consumer, at no cost. The intention is to provide means for hedging 
against unpredictable grid congestion in energy spot markets.  
5 On-Peak hours are from 6 am to 10 pm Mon-Sat while Off-Peak hours are from 10pm to 6am Mon-Sat and 24 
hours on Sunday and Holidays. 
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and physical transmission rights (PTRs) and argued that both reduce overall welfare by enhancing 

market power in firms that already control a large part of the market.  Kench (2004) conducted 

laboratory economic experiments to compare FTRs to PTRs and concluded that PTRs are suited 

better for regulating market power via reallocation of rights.  More recently, Henze, Noussair & 

Willems (2012) studied regulation alternatives for network infrastructure investments in a 

laboratory setting where one of the treatments employed long term FTRs.  The authors concluded 

that FTRs failed to improve upon simple price-cap regulation and caused relatively lower 

investment.   

When PJM – one of the largest organized energy markets in the world – implemented an 

auction-based market for FTRs (Ma, Sun & Ott (2002)), the auction design came under intense 

scrutiny.  Studies suggested that FTR auction markets were inefficient.  Even after controlling for 

lagged information and risk aversion among bidders, the unexplained differences in FTR prices 

remained (Adamson & Englander (2005)).  Deng, Oren & Meliopoulos (2010) argued that those 

differences could partially be explained by the number of bids in a sale implying that the limits on 

the number of bids could yield even greater inefficiencies in market outcomes.  Jullien et al. (2012) 

examined different types of transmission capacity auctions, but none performed well enough to 

relieve the network economy of inefficiency.  Theoretically, an auction-based market can become 

efficient.  However, as Alomoush & Shahidehpour (2000) pointed out, a more liquid secondary 

market and greater availability of FTRs to all market participants might be needed. 

 Although the auction-based FTR markets were criticized for being inefficient, their ability 

to provide financial services, i.e., hedges against potential losses, in restructured energy markets 

have had more positive reviews.  Mendez & Rudnick (2004) argued that a hedging mechanism 

was needed in markets that employ LMPs because of potentially large financial obligations.  They 
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found FTRs to be the best available hedge in restructured organized markets.  This was supported 

by Kristiansen (2004) who viewed FTRs as a way to increase efficiency in the market by adding 

incentive for less efficient users to sell their FTRs to more efficient ones.  Problems, however, 

emerge when high transaction costs in the market lowers liquidity, resulting in an excessively high 

risk premium paid by investors and making market correction unprofitable (Siddiqui et al. (2005)).   

Mount & Ju (2014) proposed an econometric framework for evaluating the efficiency of a 

market for FTRs and applied it to three Transmission Congestion Contracts (TCC), which are FTR 

equivalents in the state of New York. Their approach relied on the comparison of the ex-ante 

expected returns and the paid market prices. They concluded the lack of evidence for consistent 

TCC under-pricing, but acknowledged the limitations of their study as they looked at only one 

TCC auction from 2006 summer.  

Given that FTR markets have been around for quite some time now, it is surprising that 

technical approaches to value highly volatile FTR returns are still largely underexplored. The main 

focus of the aforementioned studies with an exception of Mount & Ju (2014) is to explore how 

firms may use FTRs to maximize their profits under various institutional arrangements.  The 

insights from the observations are then used to offer various policy prescriptions.  These studies 

do not look directly at the return profile that firms face in FTR markets.  Our paper focuses 

precisely on studying FTR returns. More specifically, it evaluates the systematic risk of CRRs and 

identifies paths with abnormal returns.  

3 AN FTR VALUATION MODEL 

3.1 Measuring an FTR return 

 Let’s look at an example to better understand how FTRs/CRRs work. Consider a 

hypothetical path between two points, Node A and Node B.  In Figure 1, if Node A has a congestion 
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price of $15 and Node B has a congestion price of $30 then the FTR is worth $15 per megawatt 

hour (MWh).  Since the energy in this example flows from Node A to Node B and the FTR path 

is from source A to sink B, i.e., in the same direction as the energy flow, this FTR is typically 

called a prevailing flow position.  For a prevailing flow FTR, the market clearing price, which 

represents the cost of acquiring an FTR in an auction, tends to be positive.  However, an FTR may 

have a negative market clearing price when the FTR path is in the opposite direction of the usual 

energy flow.  This is often called a counter flow position.  It means that the bidder will receive a 

credit for taking on the risk of the counter flow position in the FTR auction.  In this case, the FTR 

will have positive returns if this initial credit is greater than the sum of congestion charges paid 

out by the market participant.  If the amount paid out as congestion charges is greater than the 

value of the original credit, then the FTR owner will experience a net loss on the position. 

FIGURE 1 An FTR example. 

 

 The presence of negative as well as positive FTR market clearing prices creates an 

interesting dilemma when attempting to calculate the return of the path.  If an FTR has a positive 

market clearing price, then the return of a prevailing flow FTR can be computed as: 

𝑅𝑅𝑖𝑖 = 𝜋𝜋𝑖𝑖
𝑃𝑃𝑖𝑖

× 100% (1) 
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where iπ  is an accumulated profit or loss per MW from holding the FTR over path i and iP  is the 

market clearing price ($/MW) of the FTR. 

For a path with a positive FTR market clearing price, computing returns is straightforward.  

However, if the market clearing price is negative, then the above equation provides an inaccurate 

picture of the actual return.  For example, in a prevailing flow position, if the final profit is $10 

and the market clearing price is $20, the rate of return for the month is 50 percent.  But imagine a 

counter flow position with the final profit of $10 and the market clearing price of -$20.  The 

negative market clearing price indicates a credit of $20.  This means that, if we calculated the 

return of the counter flow position in the same manner as the prevailing flow, the return would be 

$10 divided by negative $20, which would misleadingly appear as a negative return (i.e., -50%), 

when, in fact, the return was positive.  This can be easily resolved if one thinks of the absolute 

value of the market clearing price as a benchmark for measuring returns.  The method for 

calculating both prevailing flow and counter flow FTR returns is shown in Equation 2: 

𝑅𝑅𝑖𝑖 = 𝜋𝜋𝑖𝑖
|𝑃𝑃𝑖𝑖|

× 100% (2) 

When profit is divided by the absolute value of the FTR’s market clearing price, the rate 

of return of a counter flow position is computed with respect to the funds spent by the auctioneer.  

The calculation of the rate of return is not altered by this modification for a prevailing flow 

position.   

3.2 Measuring abnormal return of an FTR 

The CAPM framework, detailed below, provides grounds for analyzing the returns of 

traded financial assets.  This approach could be a reasonable starting point for investigating FTR 

returns as well.  CAPM was first developed by William Sharpe (1964) and Lintner (1965).  The 
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model assumes that investors are risk averse and that they choose “mean-variance-efficient” 

portfolios.  This means that the individual investor tries to minimize the return volatility given the 

expected return and attempts to maximize the expected return given the volatility of returns.  The 

original Sharpe-Lintner CAPM equation can be represented as:  

( ) [ ( ) ]i f i M fE R R E R Rβ= + −  (3) 

where the assets are indexed by i=1,…,N.  The model makes two major assumptions: 1) complete 

agreement among investors about the joint distribution of the asset returns from time 1t −  to time 

t  and 2) both borrowing and lending can take place at a risk free rate.  Note that the model does 

not require the assets to generate their returns in perfectly competitive markets.  That certainly 

would not be the case for many FTRs as some previous literature suggests.  The equation above 

simply states that the expected return ( )iE R  on any asset i  will be equal to the risk free interest 

rate, fR , plus a risk premium, iβ , relative to the expected excess market return, ( )M fE R R− .  Beta 

can be interpreted as the sensitivity of the asset return to fluctuations in the overall market and 

therefore represents the systematic risk inherent in the asset.   

 Jensen (1968) argued that the Sharpe-Lintner equation could naturally be estimated using 

a time-series regression.  He noted that the CAPM above assumes that an asset’s excess return, 

( )i fE R R− , can be completely explained by the average value of the market’s excess return, 

( )M fE R R− .  This implies that in a time series regression an intercept term would have to equal 

zero for each asset.  This intercept term became known as “Jensen’s alpha” or αi.  Equation 3 can 

be transformed into a time-series regression model shown in Equation 4:  

[ ]it ft i i Mt ft itR R R Rα β µ− = + − +  (4) 
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where the assets are indexed by i=1,…,N and itµ  represents an error term that satisfies ( ) 0itE µ =  

and is serially independent.   

As noted by Jensen, under the Sharpe-Lintner assumptions the intercept point, alpha, 

should equal zero.  Thus, a cross-sectional regression should yield an estimate of the intercept that 

would not be statistically different from zero.  But early empirical tests of the model, conducted 

by Douglas (1968), Miller & Scholes (1972), Blume & Friend (1973), Jensen et al. (1972), Fama 

& MacBeth (1973) and Fama & French (1992), provided evidence that intercept terms for many 

financial assets were statistically greater than zero.  The cross-sectional regression test by Fama & 

Macbeth (1973) and time series tests by Gibbons (1982) and Stambaugh (1982) have provided 

support for rejecting the theory that the excess return per unit of beta is the expected return of the 

market portfolio minus the risk free rate.  Since then, the non-zero Jensen’s alpha has been 

interpreted as the abnormal return of an asset.  Given that we are interested in capturing the 

presence of abnormal returns of FTRs, a modified Sharpe-Lintner CAPM equation, which we 

name Financial Transmission Right Pricing Model (FTRPM), would provide us with alpha, αi, as 

an indicator for the existence of abnormal returns.  

3.3 Estimating the model 

 The physical nature of the transmission grid creates a challenge for econometric modeling 

of FTR returns.  Over time, power markets evolve as a result of new transmission lines being added 

and old ones being taken down.  Other factors such as temporarily down lines, power plant outages 

and seasonal weather patterns also have dramatic impacts on grid conditions.  These factors 

influence congestion patterns on the grid that can persist for weeks, months and even years.  

Therefore, when modeling FTR returns, an estimation process must account for conditional non-

constant variance.   
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Given these requirements, a type of autoregressive conditional heteroskedastic (ARCH) 

process for the estimation of the model’s parameters is advantageous over the ordinary least 

squares (OLS) estimation, which assumes constant variance.  The ARCH process was first 

introduced by Engle (1982) as a means to account for the non-constant variance of returns as well 

as for movement between periods of high and low volatilities in financial markets.  Bollerslev 

(1986) built on Engle’s work with the introduction of a generalized version of ARCH known as a 

generalized autoregressive conditional heteroskedastic (GARCH) process, which we employ to 

estimate our proposed regression models.   

Since the GARCH process aims to account for conditional non-constant variance, the 

remaining residuals of a well fitted GARCH model should be independent.  The Brock-Deschert-

Scheinkman (BDS) test, described in Brock et al. (1996), gives an indication of the adequacy of 

the GARCH model by testing the null hypothesis of independent and identically distributed 

standardized residuals. We use the BDS tests with embedding dimensions two through five and a 

radius of one standard deviation (using 99 percent confidence level) to filter the converged 

regressions before further analysis. 

3.4 Hypotheses and Treatments 

Abnormal returns of CRR contracts 

In a competitive financial market, abnormally high returns should not persist from month 

to month because participants are able to respond to persistent market signals and adjust positions 

and bidding behavior over time.  CRR paths with abnormally large returns (positive alphas) should 

attract more demand in consecutive monthly auctions.  Because CAISO limits the amount of 

megawatts available on any given path, participants must outbid each other to win awards.  This 

would cause the clearing price of a CRR to rise leading to a decrease in the CRR return.  Likewise, 
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CRR paths with abnormally negative returns should experience lower participation making them 

cheaper to obtain and thus eliminating persistent negative returns.  Over time, persistent gains or 

losses should diminish.  Therefore, in a competitive market, one would expect that abnormal 

returns would not be present.   

Actual Costs versus Prompt-Month Price as a Marker for the CRR Cost 

Since a market participant could potentially buy a long dated contract on a given path at an 

annual auction and then sell it back at a monthly auction to other market participants or even back 

to the ISO itself, we use the actual volume-weighted CRR prices when measuring the monthly 

path returns and estimating our FTRPM regressions.  However, one may argue that a more fitting 

way to capture the market value of a CRR would be to use the latest available market price, i.e., 

the CRR price from a prompt-month auction.  A seasonal contract that is acquired long time before 

the month of interest will be priced with a larger uncertainty in mind.  As the month of interest 

approaches, conditions that create congestion are easier to predict and therefore value. Therefore, 

as a robustness check for our findings, we also conducted the same FTRPM estimations by using 

prompt-month prices rather than the actual costs for each held CRRs.  We refer to this estimation 

treatment hereafter as FTRPM-M.  A prompt-month price should reflect not only more available 

information relative to an annual auction price but potentially more competition too.  Participants 

who cannot lock their financial capital for extended periods of time such as arbitrageurs or short 

term hedgers may see value in joining a monthly CRR auction.  Therefore, one would expect fewer 

(if any at all) CRRs with abnormal returns when using the FTRPM-M estimation relative to the 

original FTRPM approach.  

 

 



13 
 

Risk of On-Peak versus Off-Peak CRRs 

The CRRs accrue value by the hour as congestion prices fluctuate at each node. The On-

Peak CRR positions accrue value during On-Peak hours, which are from 6AM to 10PM Monday-

Saturday in the CAISO region. Alternatively, the Off-Peak CRRs accrue value during the Off-

Peak hours, i.e., 10PM to 6AM Monday-Saturday and 24 hours on Sundays and Holidays. 

Since On-Peak hours are during the time of the day, when energy demand is highest, On-

Peak CRR returns should be more volatile than their Off-Peak counterparts. When energy demand 

is high, the volatility of congestion charges is higher too, since more energy must be transported 

across the grid increasing the likelihood of congestion. As the grid approaches its transmission 

capacity constraints, the congestion prices become positive. Therefore, On-Peak CRR returns 

should face more uncertainty than the Off-Peak positions when many congestion prices are simply 

equal to zero. Due to this higher congestion volatility during the On-Peak hours, we expect the 

On-Peak CRRs to have higher betas than their Off-Peak counterparts and a wider distribution of 

betas relative to the Off-Peak CRRs. 

4 CAISO’S CRR MARKET 

The CAISO CRR market is one of the smaller markets for congestion contracts in the U.S. 

and has historically exhibited an unusual returns profile relative to other markets for congestion 

contracts.  Also, where some markets have over a hundred participants, CAISO has a consistently 

smaller participant pool, though the number has been growing in recent years (Table 1). 

TABLE 1 The number of market participants that purchased CRRs overtime. 

Year 2009 2010 2011 2012 2013 2014 2015 
Participants 43 41 47 46 56 57 69 
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To study the patterns of abnormal returns in this market, we acquired data produced by 

CAISO that includes information on CRR market clearing prices and accumulated monthly 

revenues.  Our data for all CRR holdings spans from April 2009 to December 2015, which provides 

us with 81 monthly periods, 2,285,947 CRR contracts and a total of 852,636 monthly observations 

across 199,866 paths.  1,110,926 of these contracts were awarded at monthly auctions while 

1,175,021 were awarded at seasonal auctions. We converted these seasonal contracts to individual 

monthly positions for the purposes of our study.  1,209,521 of the CRRs were contracts that 

covered On-Peak hours of the day while 1,076,426 covered Off-Peak hours.  Additionally, while 

some contracts were written to benefit holders when congestion exists in the prevailing direction 

of electricity flow, 1,088,779 contracts in our analysis were counter flow contracts.  Finally, 

1,095,843 contracts across 30,247 paths were not auctioned and were instead given to LSEs to 

hedge the consumer against price volatility.  Since these particular contracts were not awarded via 

markets, they were excluded from our analysis.  To estimate the regressions, we further limited 

our dataset only to those paths where CRR contracts were successfully auctioned for at least 30 

months during the period of the study.   

 In order to estimate our proposed model, represented by Equation 4, we calculate 

individual CRR returns, assume a monthly risk free rate of return, and calculate market portfolio 

returns for each month in the study.  For the risk free rate, fR , the monthly return of One-Month 

Constant Maturity Treasury Bill is used.6  The risk free rate is subtracted from the individual CRR 

returns to obtain the excess CRR returns, which are used as the dependent variable in the individual 

CRR regressions. 

                                                           
6 Source: the Federal Reserve Bank of St.  Louis 
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 Equation 6 shows the calculation of a CRR return for a given path and month, i.e., unique 

combination of source, sink, peak type (Off-Peak or On-Peak) and month.  It follows the general 

FTRPM framework described above and represents Equation 2:  

𝑅𝑅𝑖𝑖 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 −� 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖

𝑀𝑀
𝑗𝑗=1

�� 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖
𝑀𝑀
𝑗𝑗=1 �

 × 100%  (6) 

where Ri is the CRRi return for the path across all market participants who held the CRR exposure 

during the relevant month.  The different market participants (j=1,…,M) have their individual costs 

(Costij) and held quantities (HeldMWij), which are multiplied individually and then summed to find 

the total cost of the CRR across all participants.  Revenuei is the day-ahead congestion charges 

($/MW) that were collected by the CRR holders for that path-month. TotalMWi is the sum of held 

megawatts across all the market participants, given by Equation 7: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = �𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖

𝑀𝑀

𝑗𝑗=1

 (7) 

 One adjustment that was made in calculating CRR return Ri was that if the total cost of 

contracts for a given path were found to equal $0.00, we replaced it with $0.01.  Because a cost of 

a penny is usually very small compared to a profit/loss of thousands of dollars, this alteration 

maintained the large returns in those instances while preventing indeterminate values that would 

have resulted from the division by zero. 

In the spirit of CAPM theoretical framework, we treat CRR financial market as an isolated 

economic system7 and proceed with the calculation of the Market Portfolio return (RM) for a given 

month using Equation 8: 

                                                           
7 Note that CAISO does not auction CRR options, though some entities may be allocated free longer term CRR 
options to account for particular transmission ownership or contract situations.  
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𝑅𝑅𝑀𝑀 = ��𝑅𝑅𝑖𝑖 ×
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀
�

𝑁𝑁

𝑖𝑖=1

 (8) 

where TotalMWi, as above, is the sum of all held megawatts across the market participants for a 

given path and TotalMWM, given by Equation 9 below, is the sum of all held megawatts for a 

month across every path (i=1,…,N): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀 = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (9) 

 The summary statistics of the returns of CRRs, Market Portfolio and One-Month 

Constant Maturity T-Bill are presented in Table 2.  Table 2 shows high kurtosis and large standard 

deviations of the CRR returns.  These numbers point to significant volatility and fat tails in the 

aggregate distribution of the CRR returns.  These are a result of sudden and large congestion 

charges that accrue during periods of constrained grid conditions.  The largest positive return of a 

CRR in our dataset is 179,908,576% - an extraordinary return for any financial market.  The largest 

loss observed in our dataset, -141,153,700%, is as impressive. 

A histogram of One-Month Constant Maturity T-Bill returns is presented in Figure 2 and 

a histogram of the excess return of the Market Portfolio is shown in Figure 3.  A truncated 

distribution of individual CRR excess returns is depicted in Figure 4.  Note that many CRRs have 

rates of return equal to 100% or -100%.  These represent the contracts that were auctioned but did 

not experience congestion in a given month.  Therefore, as Revenuei is equal to 0, Equation 6 will 

yield Ri=-100% for prevailing flow paths and Ri=100% for counter flow paths. 
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TABLE 2 The summary statistics for the monthly returns of Market Portfolio, One-Month 
Constant Maturity T-Bill and auctioned CRRs. 

Monthly Return 
(100%) Paths Obs Mean Median Min Max Std.  Dev Kurtosis 

         

Market Portfolio  81 35528 10453 -64834 267178 60967 4 
One-Month 

Constant 
Maturity T-Bill 

 81 0.058 0.040 0 0.180 0.052 -0.410 

         

All CRRs 199866 852636 8352 3.5 -141153700 179908576 561946 20656 
On-Peak 106893 439411 12686 -4.2 -141153700 90198044 683571 6890 
Off-Peak 92973 413225 3744 16.5 -36984165 179908576 393265 110816 

         

30+ obs CRRs 3834 174199 16586 -77.9 -141153700 179908576 884452 15553 
On-Peak 1911 86597 22460 -59.1 -141153700 90198044 1008935 6337 
Off-Peak 1923 87602 10779 -91.5 -13673436 179908576 741084 41231 

         

30+ obs CRRs 
(excess return) 3834 174199 16586 -77.9 -141153700 179908576 884452 15553 

Market Portfolio 
(excess return) 

 81 35528 10453 -64834 267178 60778 3 

 

FIGURE 2 A histogram of One-Month Constant Maturity T-Bill returns (%). 
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FIGURE 3 A histogram of the Market Portfolio excess returns (%). 

 

 

FIGURE 4 A histogram of all CRR excess returns truncated at -1000% and 1000%.  
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5 EMPIRICAL RESULTS 

Overall, our GARCH regression results achieved a high convergence rate.  3,678 of 3,834 

FTRPM regressions converged, yielding a convergence rate of 96%.  We then eliminated the paths 

with estimated regressions that violated error independence leaving us with 2,829 paths (77% of 

the converged regressions) for our further analysis.  Table 3 presents the number of paths where 

the BDS test failed to reject the null hypothesis of error term independence with embedding 

dimensions M=2,…,5 and a radius of one standard deviation at 99 percent confidence level.8 

TABLE 3 Summary of BDS test results for the FTRPM regressions. 

BDS Tests CRRs Passing BDS tests (as % of 
3678 Converged Regressions) 

M = 2 3,215 (87.4%) 
M = 3 3,166 (86.1%) 
M = 4 2,986 (81.2%) 
M = 5 3,059 (83.2%) 
M = 2, 3, 4, and 5 2,829 (76.9%) 

 

FINDING 1  The significance of the Market Portfolio excess return (RM-Rf) in the 

FTRPM regressions is widespread.  

The FTRPM estimated 2,290 paths with statistically significant (p-value ≤ 0.1) beta 

coefficients for Market Portfolio excess return, which represents about 81% of regressions in the 

analysis. This suggests that, for the majority of paths, the FTRPM is justified in using RM to explain 

an individual CRR’s return volatility.  Figure 5 graphs these betas, the measure of systematic risk 

for each path, against the average CRR return for the market. The majority of paths have betas that 

fall within the interval of zero and one. The fitted trend line represents an empirical security market 

                                                           
8 Very similarly, the BDS tests failed to reject the null hypothesis of error term independence for 71% of the 
converged regressions in the FTRPM-M treatment with the convergence rate being 98%. 
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line for the estimated CRRs. As CAPM theory would suggest, the trade-off between risk and return 

is positive. 

The number of regressions with significant (p-value ≤ 0.1) betas was 1,701 paths (64% of 

analyzed regressions) in FTRPM-M. 

These results reaffirm our use of the CAPM framework to study CRR returns. 

FIGURE 5 An empirical security market line for the FTRPM estimated CRRs.   

 

FINDING 2  The FTRPM identifies paths that exhibit abnormal returns (non-zero 

alphas) with the majority of them being positive.   

Recall that the FTRPM predicts that the alphas in a competitive market should be zero.  

The FTRPM regressions identified 1,398 paths that had statistically significant (p-value ≤ 0.1) 



21 
 

abnormal returns, which represents about 49% of analyzed regressions.  Figures 6 & 7 presents 

the distributions of these abnormal returns estimated with the FTRPM approach.  The two figures 

are identical except Figure 7 truncates the data for a more granular view.  The vast majority of 

significantly different from zero alphas are positive.  FTRPM estimates 990 paths with positive 

and 408 with negative abnormal returns.  The positive skewness of abnormal returns is also 

independent of the size (MW) of the auctioned CRR paths. 

FTRPM-M treatment reveals similar patterns. The results identify 530 paths with abnormal 

returns, which represents about 14% of the converged regressions and 20% of the analyzed 

regressions. 371 of those abnormal returns are positive while 159 are negative.  These estimates 

are further discussed in Finding 3. 

FIGURE 6 A histogram of the estimated FTRPM abnormal returns (%). 
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FIGURE 7 A histogram of the estimated FTRPM abnormal returns (%) truncated at -10,000% 
and 10,000. 

 

FINDING 3 Using prompt-month prices rather than actual CRR procurement costs in CRR 

return calculations significantly reduces the number of paths with abnormal returns. 

A comparison of results from FTRPM and FTRPM-M estimations shows a dramatic 

reduction in the percentage of statistically significant alphas – from 49.4% to 20.0%.  The statistics 

from each treatment are summarized in Table 4: 

TABLE 4 Number of paths with estimated abnormal returns, i.e. non-zero alphas. 

Treatment Converged 
Regressions 

Analyzed 
Regressions 

Non-Zero 
Alphas 

% of Non-Zero 
Alphas 

FTRPM 3678 2829 1398 49.40% 
FTRPM-M 3744 2648 530 20.00% 

 

This finding suggests that a large percentage of abnormal returns are the result of contracts 

bought far in advance of the relevant month.  The high uncertainty and smaller competition of 

long-term auctions allow market participants to discount CRR contracts and collect higher returns. 



23 
 

FINDING 4  The above results are not dependent on the CRR peak type, i.e., Off-Peak 

and On-Peak.   

For the FTRPM, both On-Peak and Off-Peak paths have abnormal returns that skew 

positive: On-Peak has 487 paths with positive alphas and 192 with negative alphas, while Off-

Peak has 503 paths with positive alphas and 216 with negative alphas.  257 paths (22.5% of 1,141 

unique paths with non-zero alphas) exhibit abnormal returns in both the Off-Peak and On-Peak 

versions of their contracts.  

Similarly, results for both On- and Off-Peak CRRs skew positive in the FTRPM-M 

treatment. It estimates 172 paths with positive alphas and 73 with negative alphas among On-Peak 

contracts, while regressions on Off-Peak contracts point to 199 paths with positive alphas and 86 

with negative alphas.   

The patterns of the FTRPM estimated betas for On-Peak versus Off-Peak CRRs also appear 

to be similar. 95% of On-Peak betas fall within the interval of zero and one in comparison to 96% 

of Off-Peak betas. Figure 8 contrasts the distributions of Off-Peak and On-Peak betas at a more 

granular scale. 

FIGURE 8 Histograms of the FTRPM beta estimates for Off-Peak and On-Peak CRRs 
(truncated at -1 and 2) 
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6 CONCLUSION 

 Given the size of all the FTR markets (> $3billion annually) as well as their function 

providing hedging options and scarcity signals regarding grid resources, it is important to ensure 

efficient operation of these markets.  Having a clear and complete understanding of how FTR 

markets are organized and operate in different ISOs/RTOs is key to the effective surveillance and 

advancement of these markets.  This paper focused on the CAISO region and examined the patterns 

of CRR returns. 

The main finding of this project is the existence of abnormal returns in the CAISO CRR 

markets and the consistent skew of those returns in the positive direction for both Off-Peak and 

On-Peak contracts.  This finding compliments a recent CAISO report (2016) that presented 

widespread and persistent underpricing of CRRs.  The noted inefficiencies of CRR markets begs 

for further studies to uncover their causes and gain insights on potential fixes. 

Additionally, the widespread statistical significance of the Market Portfolio excess return 

throughout our empirical treatments confirms that the theoretical CAPM framework has substance 

in suggesting that the return of a CRR has a systematic relation to the return of the market portfolio.  

The analysis also suggests that the risk profile of the estimated CRRs is very similar during both 

Off-Peak and On-Peak periods. 

Validation and testing of these findings with the data from other FTR markets could be a 

useful direction for future research, which could yield valuable market design prescriptions for 

improving efficiency, competitiveness and transparency in these markets. 
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