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ABSTRACT

Existing literature cannot provide economic and financial networks with a unified measure to es-

timate network spillovers for empirical studies. In this paper, we propose a novel time series

econometric method to measure high-dimensional directed and weighted market network struc-

tures. Direct and spillover effects at different horizons, between nodes and between groups, are

measured in a unified framework. We infer causality effects in the network through a causality

measure based on flexible VAR models specified by the LASSO approach. (Non-sparse) network

structures can be estimated from a sparse set of model parameters. To summarize complex esti-

mated network structures, we also proposed three connectedness measures that fully exploit the

flexibility of our network measurement method. We apply our approach to investigate the daily

implied volatility interconnections among the S&P 100 stocks over the period of 2000 - 2015 as

well as its subperiods. We find that 7 out of the 10 most influential firms in the S&P 100 belong to

the financial sector. Top investment banks (Morgan Stanley, Goldman Sachs and Bank of Amer-

ica) have the greatest influence in the financial sector. Market connectedness is especially strong

during the recent global financial crisis, and this is mainly due to the high connectedness within

the financial sector and the spillovers from the financial sector to other sectors.

Key words: Network; Multiple Horizon Causality Measures; LASSO; Financial Systemic Risk;

Network Connectedness; Implied Volatility.
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1. Introduction

Since the financial crisis of 2007-09, academic researchers and financial regulators have a grow-

ing interest in investigating interconnections in financial markets. Network models have become

increasingly popular to study economic interdependence by looking into the market architecture.

Allen and Babus (2008) provide a survey showing a wide range of applications of network analysis

in economics and finance. For example, bankruptcy contagion, volatility spillovers, risk propaga-

tion and amplification can all be studied in economic and financial network frameworks.1 As

Andersen, Bollerslev, Christoffersen and Diebold (2012) mention, modern network theory can

provide a unified framework for systemic risk measures.

In macroeconomics, theoretical literature usually takes market structures as given, and then

studies the roles of market architecture in the relationship between idiosyncratic risk and market-

wide risk. In finance, economic links between firms may serve as the channel of gradual infor-

mation diffusion. Individual firm’s returns, return volatilities and credit spreads can be predicted

via firms’ linkages, while these empirical studies require identification of the underlying network

structures, such as those from the Input-Output Surveys of the Bureau of Economic Analysis, the

reported consumer-supplier relationships by public business enterprises or the international trade

flows data from the International Monetary Fund (IMF) Direction of Trade Statistics.2 In fact,

many network structures are latent and not readily available in databases. For instance, the relation-

ships between entities (e.g., detailed information on intra-bank asset and liability exposures) in a

financial network are usually unknown. To empirically study a market network from financial data,

we need an econometric measurement framework to identify and quantify the underlying network

structure. A growing econometric literature is responding to this demand.3 Perhaps surprisingly,

however, very few of them are able to provide a satisfactory tool to measure high-dimensional

market networks for general empirical purposes.

In this paper, we propose a novel network econometric measurement framework to better

measure directed and weighted network structures using financial time series data in a high-

dimensional context. Direct and spillover effects, between nodes and between groups, are mea-

sured in a unified framework. Causality at different horizons in the network is measured through

a causality measure at different horizons. With this framework at hand, we provide estimated

market networks with new econometric connectedness measures. The market systemic risk that is

1See Buraschi and Porchia (2012), Elliott, Golub and Jackson (2014), Acemoglu, Ozdaglar and Tahbaz-Salehi

(2015a), Acemoglu, Akcigit and Kerr (2015) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015b) among others.
2See Cohen and Frazzini (2008),Hertzel, Li, Officer and Rodgers (2008), Menzly and Ozbas (2010), Aobdia,

Caskey and Ozel (2014), Gençay, Signori, Xue, Yu and Zhang (2015), Albuquerque, Ramadorai and Watugala (2015)

and Gençay, Yu and Zhang (2016) among others.
3See Billio, Getmansky, Lo and Pelizzon (2012), Hautsch, Schaumburg and Schienle (2014), Diebold and Yilmaz

(2014), Demirer, Diebold, Liu and Yilmaz (2015), Bianchi, Billio and Casarin (2015), Barigozzi and Brownlees (2016)

and Giudici and Spelta (2016) among others.
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quantified by our connectedness measures has an intrinsic network foundation.

More concretely, we apply the short run and long run Granger causality measures4 as the basic

econometric framework to quantify the strengths of directed edges in a market network. We go

beyond the simple Granger noncausality testing, i.e. whether an edge exists between two nodes,

but explicitly measure the degree of the multiple horizon causality to obtain the strength of inter-

connections between two sets of nodes. Following Dufour and Taamouti (2010), we estimate the

multiple horizon causality in the Vector Autoregressive model (VAR) settings. To overcome high-

dimensionality problems in estimation, we use and extend the Least Absolute Shrinkage and Selec-

tion Operator (LASSO) techniques in the VAR estimations, which are similar to those developed

by Barigozzi and Brownlees (2014) and Barigozzi and Brownlees (2016). Actually, (non-sparse)

network structures, which are measured by our causality measures table, can be estimated from a

sparse set of autoregressive coefficients and errors concentration matrices. Under mild conditions,

we prove the asymptotic consistency of the estimators of our directed and weighted edge measures.

Our network measurement method has the following 7 appealing features:

1. The network edges we measure are directed. Allowing directed network structures provides

us with important insights into the direction of network spillovers, since spillovers and rela-

tionships in economic and financial networks are generally asymmetric.

2. The network edges we measure are weighted. We do not merely identify the edges between

two sets of nodes, but explicitly quantify their economic strengths.

3. In contrast to correlation-based measures, the directed edges we measure have causality

implications. This is an important feature for theory verifications, model predictions and

policy making.

4. Spillovers at different horizons in an economic network can be identified and measured by

analyzing causality measures at different horizons. The multiple horizon causality measures

gauge the net effects while simultaneously taking direct and indirect effects into account.

5. Our network measurement method overcomes the high-dimensionality problems in estima-

tions. Note that economic and financial network theories usually study the cases in which

the size (number of nodes) of a network is large or even goes to infinity (see, e.g., Acemoglu,

Carvalho, Ozdaglar and Tahbaz-Salehi (2012), Elliott et al. (2014) and Acemoglu, Ozdaglar

and Tahbaz-Salehi (2015b)).

6. Our network measures provide underlying market network structures with clear graphical

representations. Eichler (2007) shows that the multiple horizon causality in Dufour and

Renault (1998), the base of the multiple horizon causality measures, is well matched to path

4See Dufour and Renault (1998), Dufour, Pelletier and Renault (2006) and Dufour and Taamouti (2010).
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diagrams in the multivariate time series context. Thus our network measurement framework

is also consistent with the network analysis in graph theory.

7. Point-wise edges, (i → j), as well as group-wise edges, ([i1, i2, ..., in]→ [ j1, j2, ..., jm]), can

be simultaneously analyzed by our unified network econometric framework. In empirical

applications, for example, we can not only measure the relationship between firms, but also

measure the relationship between sectors5 by the same data observations at firm level and

the same type of econometric measures.

We argue that a satisfactory econometric framework for studying market networks should at

least satisfy Features 1 - 5: the network measurement method should be able to estimate directed

and weighted network structures with causality implications, and it can be applied to study network

spillover effects in a high-dimensional context. Feature 6 and Feature 7 are the extra advantages of

our network measurement method. Moreover, Feature 7 provides us a new angle to study market

network connectedness. It is intuitive to decompose market connectedness by the interconnec-

tions between different sectors and the connectedness within each sector. This decomposition

is straightforward for economic and financial network analysis. However, the group-wise edges

measurement method for measuring sectors’ interconnections is missing in existing econometric

literature. Our network measurement method can exactly fill this blank with our Feature 7.

Considering the economy of interest, which is modelled by a market network, as a N-

dimensional Euclidean space, we use the causality measures table to provide the coordinates of

each firm’s location in the multi-dimensional economic space. The interconnectedness of a firm

to the network can be characterized by the firm’s location in the economic space. Total market

connectedness is measured by the mean of the interconnectedness measures of each firm to the

economic space. Similar to Billio et al. (2012) and Diebold and Yilmaz (2014), our market con-

nectedness measures are built on underlying market network structures, and thus the market sys-

temic risk quantified by these measures has a market network foundation. Since an economic

network can be viewed as a network connected by firms (firm-wise market), whose intercon-

nections are measured by our point-wise edges method (i → j), or a network connected by sec-

tors (sector-wise market), whose interconnections are measured by our group-wise edges method

([i1, i2, ..., in]→ [ j1, j2, ..., jm]), we have three types of connectedness measures to gauge network

interconnections: i) firm-wise connectedness, which measures the interconnectedness of a firm-

wise market; ii) firm-wise connectedness within a sector, which measures the interconnectedness

within a given sector in a firm-wise market; and iii) sector-wise connectedness, which measures

the interconnectedness of a sector-wise market. These three types of connectedness measures fully

take advantage of the flexibility of our network measurement method, so they can be applied to

study market network connectedness in more flexible ways than those connectedness measures

5A sector can be viewed as a group of firms.
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proposed by Billio et al. (2012) and Diebold and Yilmaz (2014).

Our network measurement methods have a wide range of applications and can be applied in

a variety of research areas, including identifying and quantifying economic relationships between

firms, between sectors and between areas; measuring market connectedness; predicting financial

risks; guiding asset allocations in large portfolios; etc. Note that many latent economic and fi-

nancial network structures can be estimated by our flexible network measurement method with

varieties of panel databases, and observing that explicit identified economic network centrality and

consumer-supplier linkage have been shown to be new risk factors in asset pricing and new de-

terminants to predict financial variables, e.g., stock return, return volatility, and credit spread6, we

expect more pricing factors and financial and macroeconomic variables drivers are to be discovered

by network econometric measurement methods.7

To illustrate the usefulness of our method in network analysis, we investigate the S&P 100

implied volatility network in the US stock market. Volatility network in financial markets has been

studied in Diebold and Yilmaz (2014), Demirer et al. (2015) and Barigozzi and Brownlees (2016),

but they mainly focus on realized volatility. For financial practitioners, the VIX index, calculated

from the implied volatilities of S&P 500 index option contracts, is the most popular volatility

measure to gauge market turbulences, and it is also known as a “market fear” index. Our implied

volatility network among the S&P 100 stocks8 can thus be naturally viewed as an “individual fear”

network. To the best of our knowledge, implied volatility network has not yet been studied in the

financial literature.

We first look at the static network with the full sample (2000 - 2015). We identify the most

influential firms in the firm-wise market network, the most influential firms in the financial sec-

tor, and the most influential sectors in the sector-wise market network. Using rolling subsamples,

we estimate the time-varying firm-wise market connectedness before, during and after the recent

financial crisis of 2007-09, and compare it with the dynamic patterns of the firm-wise connected-

ness within each sector and the sector-wise connectedness among different sectors. In particular,

we also examine the dynamic interconnections between the financial sector and other sectors.

We find that: i) 7 out of the 10 most influential firms in the S&P 100 belong to the financial

sector, and top investment banks (Morgan Stanley, Goldman Sachs and Bank of America) have

the greatest influence in the financial sector; ii) market connectedness was especially strong during

the recent global financial crisis; iii) the high market connectedness was mainly due to the high

connectedness within the financial sector and the spillovers from the financial sector to other sec-

tors; iv) the financial sector had the highest firm-wise connectedness from 2008 to 2010, while the

6See Cohen and Frazzini (2008), Hertzel et al. (2008), Menzly and Ozbas (2010), Ahern (2013), Aobdia et al.

(2014), Gençay et al. (2015) and Gençay et al. (2016).
7For example, Jian (2016) uses a Granger-type method to identify the illiqiudity network in stock markets and finds

centralities in illiquidity networks are priced in the cross-section of expected returns.
8To be included in the S&P 100, the companies should be among the larger and more stable companies in the S&P

500, and must have list options.
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connectedness of other sectors also reach relatively high level during this period; v) the causality

effects between the financial sector and other sectors were asymmetric and displayed consider-

able variation over time, which stresses the importance of directed and weighted edges settings in

market network analysis.

This paper is motivated by the econometric literatures on the analysis of financial networks and

contributes to different strands of literature. The topic of this paper is related to recent economet-

ric literature on financial networks (see Billio et al. (2012), Diebold and Yilmaz (2014), Demirer

et al. (2015), Bianchi et al. (2015), Barigozzi and Brownlees (2016), Hautsch et al. (2014), Aheleg-

bey, Billio and Casarin (2016), and Giudici and Spelta (2016) among others). We differ from the

social network econometrics literature, e.g., Bramoulle, Djebbari and Fortin (2009), in the sense

that the nodes in our network setting are represented by time series financial variables (e.g., return

and volatility). The most closely related econometric literature to this paper includes: Billio et al.

(2012), Diebold and Yilmaz (2014), Demirer et al. (2015) and Barigozzi and Brownlees (2016).

Billio et al. (2012) detect the edge of a pair of nodes via testing bilateral Granger noncausality

without taking into account other nodes in the network, and thus may find misleading “spurious”

causality edges and tend to overestimate the number of linkages. Diebold and Yilmaz (2014) and

Demirer et al. (2015) overcome the spurious relation problem. They measure the directed and

weighted network structure by generalized forecast error variance decompositions in a VAR rep-

resentation. The generalized forecast error variance decomposition technique is closely related to

our multiple horizon causality measures. Unfortunately, Diebold and Yilmaz (2014) neglect the

high-dimensionality problem in their study, Demirer et al. (2015) fail to provide the theoretical

validity for their estimations and they both require the joint Gaussian innovation assumption in the

econometrics model. These drawbacks inevitably limit their applications in market network anal-

ysis for general purposes. The time series network estimation settings in Barigozzi and Brownlees

(2016) are similar to what we apply in this paper. Yet, their network structure is assumed to be

sparse and their edges, measured by long run partial correlations, are basically undirected. Among

recent literature9, only the empirical model proposed in Demirer et al. (2015) is able to study a

high-dimensional directed and weighted network structure, and none of them is able to estimate

point-wise edges and group-wise edges in a unified framework.

We apply the short run and long run Granger causality measures as our basic network econo-

metric measurement framework. The concept of the noncausality testing introduced by Granger

(1969) and Sims (1972) has been widely used to study dynamic relationships between time series

in economics and finance. Dufour and Renault (1998) and Dufour et al. (2006) extend this no-

tion to multiple horizon cases to study indirect causality effects. Eichler (2007) connects the short

run and long run Granger causality with path diagram in multivariate time series analysis. Based

on Geweke (1982), Dufour and Renault (1998) and Dufour et al. (2006), Dufour and Taamouti

9Ahelegbey (2015) provides a recent review on the network econometrics in the context of time series analysis.
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(2010) propose the multiple causality measures to quantify the causality at any forecast horizon

h ≥ 1. Dufour, Garcia and Taamouti (2012) apply this tool in studying the relationship among re-

turns, realized volatility and implied volatility. Dufour and Zhang (2015) further study the multiple

horizons second-order causality. In this paper, we show that market networks, with directed and

weighted edges, can be modelled and measured by the well-developed econometrics framework of

the multiple horizon causality measures. Moreover, unlike Dufour and Taamouti (2010) and Du-

four et al. (2012) who only deal with low-dimensional situations, we estimate the multiple horizon

causality measures with the LASSO approach to better fit the multiple horizon causality measure

framework into high-dimensional network analysis.

One of the motivations of this paper, identifying and quantifying the degree of interconnections

between nodes and between groups in market networks, is to provide a new way to measure market-

based systemic risk. Similar to Billio et al. (2012) and Diebold and Yilmaz (2014), our market

connectedness measures are also built upon the underlying network structure and contribute to the

strand of literature on market-based systemic risk measurement (see Acharya, Pedersen, Philippon

and Richardson (2010), Brownlees and Engle (2015), Adrian and Brunnermeier (2011), Billio et al.

(2012), Diebold and Yilmaz (2014), Hautsch et al. (2014) and Demirer et al. (2015) among others).

Benoit, Colliard, Hurlin and Perignon (2015) provide a comprehensive survey on measurement

methods for systemic risk.

Our key contribution is that we propose a novel time series econometrics network measurement

framework, which can be applied to measure high-dimensional directed and weighted market net-

work structures, without sparsity assumptions on network structures or the Gaussian assumption

on econometric models. We successfully connect the causality literature with the LASSO approach

in application to network measurement. Moreover, to the best of our knowledge, our economet-

ric framework is the first one in the network econometric literature to explicitly allow point-wise

edges and group-wise edges to be measured in a unified framework.

The rest of this paper is organized as follows. In section 2, we provide a brief description of

general directed and weighted network structures and discuss the criteria of a satisfactory network

econometric framework in economic and financial network analysis. In section 3, we show that

directed and weighted network structures and network spillovers can be measured by the multiple

horizon causality measures table. In section 4, we estimate the causality table with the LASSO

approach in a high-dimensional context and provide asymptotic consistency results. In section 5,

we propose new market network connectedness measures for systemic measurement. In section

6, we investigate the static structure and the time-varying characteristics of the implied volatility

network in the US stock market. Finally, in section 7 we provide a short conclusion.
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2. General economic and financial network

A network is composed by two basic elements: nodes and edges. Financial institutions, for in-

stance, represented by different nodes, are linked through networks of different types of financial

contracts, such as derivatives, credits and securities. These contracts or business relationships,

between any pair of financial institutions, are represented by their edges in the financial network.

While nodes are given and known as they are always referred to some specific institutions, mod-

elling edges is always an elusive part in financial network analysis. Edges represent some implicit

economic relationships between nodes. The relationship among financial institutions in many cases

are unknown or difficult to be specified. When we study the systemic risk in a financial network,

edges could be the position of banks’ loans to each other in their balance sheets, or whether they

hold a large bilateral position of some securities (e.g., credit default swap (CDS)). Without a prior

specific definition of the systemic risk, which financial contract should be selected as the edge

to study a financial network is a difficult decision to make, since loan’s edges and CDS’s edges

are both theoretically important but their existences can be independent. Moreover, detail infor-

mation of the financial contracts that financial institutions are holding and their counterparties is

usually unavailable to public. Therefore, what we can measure for the edges from data is at most

a proxy of what we are interested in. This provides a board space for econometricians to develop

different statistical network measures for different research objectives. One of the main aspects

of research papers differing from each other in the financial econometrics network literature is in

their rationales of how to construct a statistical measure to quantify the edges in a network.

Despite of it, all networks have basic structures in common. A simple static network has a

mathematical notation: G = {V,E}, where V = {1,2, ...,N} is the set of nodes and E = {ei j :

(i, j) ∈V ×V} is the set of edges. Usually, the size of the network, N, is large. Any pair of nodes

in V , (i, j), may be linked by an edge in the edge set, E, with certain degree of strength ei j. When

ei j = e ji is assumed, the network is undirected; otherwise, the network is directed. If ei j is assumed

to be indexed by {0,1}, the network is unweighted; if ei j is continuous, the network is weighted.

The directed edges setting is crucial in economic and financial network analysis. Economic

relations are usually directed and the directed structures play an important role in network anal-

ysis. For instance, the presence of directed intersectoral input-output linkages can explain why

single idiosyncratic shocks may lead to market-wide aggregate fluctuations (see Acemoglu et al.

(2012)). Economic effects and information flows have directions. We use causal relationships to

describe such directed relationships in a economic network. Causality interpretations are required

for economic networks because it is the foundation for theory verifications, model predictions and

policy makings. Intuitively, if two firms have no business relationship, we do not expect there is a

causal relationship between them and vice versa. We notate the directed edges in our network with

arrows, (i → j), which indicates i causes j. Figure 1 shows four simple possible relations between

node A and node B in a unweighted setting. If the strength of the edges eAB = eBA = 0, we say

7



A B

(a)

A B

(b)

A B

(c)

A B

(d)

Figure 1. Directions between node A and node B

A B

(a)

A B

(b)

A B

(c)

Figure 2. Strengths of the edges from node A to node B

node A and node B are unlinked (fig. 1(a)); if they are linked, then either eAB = 1 or eBA = 1 or

eAB = eBA = 1 (fig. 1(b), fig. 1(c) and fig. 1(d)).

The weighted edges setting is also important. Effects in an economic network are weighted.

In social networks, knowing how well agents know each others is much more informative than

merely knowing whether they know each others, since the probability of information transmissions

is highly correlated with their familiarity. In financial networks, when we say a bank is “too big to

fail”, it implies that this bank has “big” impacts on others. When studying shock propagations or

risk amplifications in a market network, we would be especially interested in quantifying spillover

effects. Since spillovers may grow (or disappear) through edges in a network, unweighted edges

setting is not able to model the quantitative change in spillover processes. Figure 2 shows three

possible strengths of edge from node A to node B. The strength of the edge could be zero, which

implies there is no relation from node A to node B (see fig. 2(a)). The strength of the edge could

be small and it is represented by a light arrow (see fig. 2(b)); the strength of the edge could also

be large and it is represented by a thick arrow (see fig. 2(c)). The thickness of the edge (i → j) is

weighted scaled by ei j.

Economic and financial network literature usually reports some graphs of the network they

study. The graph representation of a static network does provide us a broad and concise picture
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of the underlying network structure. A static network, however, only tells us direct effects. The

indirect effects, a central part in risk spillover analysis, is nontrivial to be revealed from the direct

effects. For instance, suppose there are relations from node A to node B indirectly via two different

paths in an unweighted static network, we may naively say that the risk from node A could cascade

to node B. However, it is possible that node A has no effect on node B if the indirect effects

in those two paths are just cancelled out by each other. Hence, a network graph drew from a

static network structure may mislead us to a wrong implication about spillover effects in the true

economic network. Surprisingly, econometric literature on financial networks have not yet realized

this important issue. Most of them are just focus on estimating static network structures without

directly measure spillover effects.

In summary, the size of an economic network is usually large; nodes’ relationships in an eco-

nomic network should have causality interpretations; a directed and weighted edges setting is

required to uncover the effects in the underlying economic network structures; network spillover

effects need to be measured directly. Therefore, a satisfactory network econometric framework

should be able to estimate directed and weighted network structures with causality implications,

and it can be applied to study spillover effects in a high-dimensional context.

3. Multiple horizon causality and networks

In this section, we model a complex network structure by causality relations, and apply the short

run and long run Granger causality measures, introduced by Dufour and Taamouti (2010), to iden-

tify and quantify the edges between two sets of nodes in the underlying network structure. We

demonstrate that the multiple horizon causality measures satisfies the criteria of a satisfactory net-

work econometric framework. It is able to estimate directed and weighted network structures with

causality implications and can be applied to study spillover effects in a high-dimensional context

Moreover, our network measurement framework has some other important features.

Suppose we observe a data sample from a jointly strictly stationary process X =

{X1t ,X2t, ...,XNt}T
t=1. N is the number of nodes and T is the observable sample size. In con-

text of economic network analysis, the number of nodes, N, is large. The process of interest, X ,

can be divided by three sub-processes as X = {XW
t ,XY

t ,X
Z
t }T

t=1, such that XW
t = [X1t , ...,Xm1t ],

XY
t = [X(m1+1)t , ...,X(m1+m2)t ] and XZ

t = [X(m1+m2+1)t , ...,X(m1+m2+m3)t ], where m1,m2,m3 ≥ 0 and

m1 +m2 +m3 = N.

Definition 3.1 MEAN-SQUARE CAUSALITY MEASURE AT FORECAST HORIZON h RELATIVE

TO AN INFORMATION SET I.

For h ≥ 1, where by convention ln(0/0) = 0 and ln(x/0) = +∞ for x > 0,
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CL(X
W −→

h
XY |I) := ln

[

det{Σ [XY (t +h)|I(−W)(t)]}
det{Σ [XY (t +h)|I(t)]}

]

(3.1)

is the mean-square causality measure from XW to XY (Y = W is allowed) at horizon h, given

information set I. Since we only consider the mean-square measures in this paper, we will just call

it as short run and long run Granger causality measures or multiple horizon causality measures

hereafter. I denotes the full information set and I−W denotes the full information set without the

information generated by XW . If we further assume the full information set is generated only

by X itself, I and I−W can be denoted by IWY Z and IY Z respectively, where IWY Z(t) denotes the

information set generated by the process X = {XW ,XY ,XZ} up to time t, and IY Z(t) denotes the

information set generated by the sub-process {XY ,XZ} up to time t.

The multiple horizon causality measure, CL(X
W −→

h
XY |I), gauges the predictive power of

XW to XY conditional on I. We say XW causes XY at forecast horizon h if and only if XW helps

to predict XY at forecast horizon h. The value of CL(X
W −→

h
XY |I) measures the degree of the

causal effect from XW to XY at forecast horizon h. Consequently, the identified edge, (W → Y ),

has causality implications.

There are some important properties of this type of measures.

First, generally speaking, CL(X
W −→

h
XY |I) 6= CL(X

Y −→
h

XW |I). The effect from W to Y is

not presumed to be equal to the effect from Y to W . The edges between W and Y , (W → Y ) and

(Y →W ), are directed.

Second, CL(X
W −→

h
XY |I) is always nonnegative as I(−W )(t)⊆ I(t). CL(X

W −→
h

XY |I) = 0 if

and only if there is no causal effect from XW to XY at forecast horizon h. The value of CL(X
W −→

h

XY |I) is increasingly monotone to the the predictive power of XW to XY . Thus, the strength of the

edge, (W → Y ), measured by the value of CL(X
W −→

h
XY |I), is weighted.

Third, CL(X
W −→

h
XY |I) measures the indirect effect from W to Y at horizon h, while

CL(X
W −→

1
XY |I) measures the direct effect as there is only one step to be considered. For ex-

ample, suppose CL(X
W −→

1
XY |I) = 0 and CL(X

W −→
h

XY |I) > 0 for a h > 1, it implies there

is no direct effect from W to Y , but there is an indirect effect from W to Y via other node(s) in

the network. The spillover effect from W to Y at any step h can thus be directly measured by

CL(X
W −→

h
XY |I).

Fourth, the dimensions of XW and XY are arbitrary. To measure the edge from W to Y , we

only require the dimensions of the processes XW and XY , m1 and m2, such that m1,m2 ≥ 1 and

m1+m2 ≤ N. We can let W and Y represent a single node or a set of nodes. The point-wise edges,

where XW and XY are univariate variables (m1 =m2 = 1), and the group-wise edges, where XW and

XY are multivariate variables (m1,m2 > 1), can be analysed in this unified econometric framework.

10



For instance, we can not only measure the edges between firms (firm-wise edges), where XW and

XY represent firms, but also measure the edges between sectors (sector-wise edges), where XW and

XY represent sectors and m1 and m2 are the number of firms in the sectors. Therefore, we can use

the same data observations at firm’s level and the same type of econometric measures defined in

Definition 3.1 to study firm-wise edges and sector-wise edges in a unified framework. In the past,

weighted aggregation is usually required if we want to study the sector-wise spillover effect with

firm-wise data. However, it would inevitably come to a cost of losing information in firm-wise

interconnections. The econometrics approach proposed in this paper overcomes this limitation.

Remark 3.1 If XW and XY are univariate processes denoted by Xi and X j respectively, then for

h ≥ 1

CL(Xi −→
h

X j|I) := ln

[

σ2[X j(t +h)|I(−i)(t)]

σ 2[X j(t +h)|I(t)]

]

. (3.2)

The variances of the forecast errors of X j(t +h), σ2[X j(t +h)|I(−i)(t)] and σ 2[X j(t +h)|I(t)],
are both positive, and σ 2[X j(t+h)|I(−i)(t)]≥ σ 2[X j(t+h)|I(t)]. σ 2[X j(t+h)|I(−i)(t)] = σ 2[X j(t+

h)|I(t)] if the information generated by node i does not help to decrease the forecast error variance

of node j. CL(Xi −→
h

X j|I) measures the causality strength from node i to node j. For notation

convenience, we hereafter let Ch
i j :=CL(Xi −→

h
X j|I) and Ci j :=C1

i j.

For any given forecast horizon h ≥ 1, we have the multiple horizon causality measures for each

pair of nodes in a network as Table 1 shows. Point-wise edges in the network are measured by

the values of Ch
i j, i = 1, ...,N and j = 1, ...,N. Table 1 is exactly corresponding to a static network

structure. The ith row and jth column element in Table 1 is the strength of the directed edge from

node i to node j. Ci j measures the direct effect from node i to node j: S(i → j), where S(i → j)

denote the effect from node i to node j via the path (i→ j). For h> 1, Ch
i j measures the total indirect

effect from node i to node j via every possible path with length h: S(i → k1 → k2 → ...→ kh−1 →
j) for any ki ∈V, i = 1, ...,h−1, where S(i → k1 → k2 → ...→ kn−1 → j) denote the indirect effect

from node i to node j via the path (i → k1 → k2 → ...→ kn−1 → j). In other words, Ch
i j measures

the indirect effect from node i to node j with taking into account all the interconnections in the

network. Intuitively, the forecast horizon h can be interpreted as the effect-radius when considering

the effect between any pair of nodes. For example, when h = 1, we only measure the direct effect

(1-step effect); when h = 100, the effect between any pair of nodes could “walk” via as many as

99 different other nodes in the network. Another way to understand the difference between C1
i j

and Ch
i j (h > 1) is to consider the difference among standard network centrality measures (e.g.,

Degree, Closeness, Betweenness and Eigenvector). These centrality measures differ from each

others mainly in how to weight the importance of the nodes that a node connected to to measure

this node’s importance in the network. For instance, the degree centrality only calculate how

many nodes that a node directly connected to to characterize this node’s importance, while the
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Table 1. Causality table (given forecast horizon h)

nodes 1 2 · · · i · · · j · · · N

1 Ch
11 Ch

12 · · · Ch
1i · · · Ch

1 j · · · Ch
1N

2 Ch
21 Ch

22 · · · Ch
2i · · · Ch

2 j · · · Ch
2N

...

i Ch
i1 Ch

i2 · · · Ch
ii · · · Ch

i j · · · Ch
iN

...

j Ch
j1 Ch

j2 · · · Ch
ji · · · Ch

j j · · · Ch
jN

...

N Ch
N1 Ch

N2 · · · Ch
Ni · · · Ch

N j · · · Ch
NN

eigenvector centrality assigns relative scores to all nodes in the network based on the concept

that connections to high-scoring nodes contribute more to the score of the node in question than

equal connections to low-scoring nodes, thus the degree centrality is a “local” measure, and the

eigenvector centrality is a “global” measure. Similarly, C1
i j is 1-step locally measuring the direct

effect, and Ch
i j is h-steps globally measuring the indirect effect.

In terms of mathematical definitions, group-wise edges are the generalization of point-wise

edges. They are equivalent when the sizes of the groups equal 1. For any pair of nodes, i

and j, in a node set V , we say i 9
C,h

j if and only if Ch
i j = 0. For any pair of groups of nodes

(i1, ..., in1
) and ( j1, ..., jn2

), where (i1, ..., in1
) = ( j1, ..., jn2

) or (i1, ..., in1
) ∩ ( j1, ..., jn2

) = /0 for

(i1, ..., in1
),( j1, ..., jn2

) ⊂ V , we say (i1, ..., in1
) 9

C,h
( j1, ..., jn2

) if and only if Ch
WY = 0, where

W = (i1, ..., in1
) and Y = ( j1, ..., jn2

).

Remark 3.2 Let V1 = (i1, ..., in1
) and V2 = ( j1, ..., jn2

). For any i ∈ V1 and j ∈ V2, because of

I−V1
⊂ I−i, Ch

V1V2
= 0 [(i1, ..., in1

) 9
C,h

( j1, ..., jn2
)] implies Ch

iV2
= 0 [i 9

C,h
( j1, ..., jn2

)], and Ch
V1 j = 0

[(i1, ..., in1
)9

C,h
j] implies Ch

i j = 0 [i 9
C,h

j].

Remark 3.2 says if a set of node(s) has no effect on some other node(s), any element of this set

of node(s) also has no effect on those node(s). It is worth to emphasize here that Ch
i j = 0 [i 9

C,h
j] for

any i ∈V1 and for any j ∈V2 does NOT necessarily imply Ch
V1V2

= 0 [(i1, ..., in1
)9

C,h
( j1, ..., jn2

)]. In

other words, the strength of [(i, j)→
C,h

k] may be strong even if the strengths of [i →
C,h

k] and [ j →
C,h

k]

are weak. This circumstance is analogy to the difference between pairwise independence and

mutually independence. When Xi and X j are contemporaneously highly correlated, Xi’s marginal

effect on Xk, conditional on X j, will be very small since all relevant information in Xi that helps to

predict Xk has been captured by X j.
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In fact, studying the role of a group of nodes in a network is an important topic. In social

network literature, for instance, just as looking into who is the center node in a network, which

can be measured by standard centrality measures (see, e.g., Freeman (1978) and Jackson (2008)),

we also may want to find which group of nodes is center in a network, which can be measured

by the generalizations of the standard centrality measures (see Everett and Borgatti (1999)). From

measurement perspective, the importance of a group of node(s) has to base on the interconnections

of this group to other nodes in the network (and all other interconnections in the network). To the

best of our knowledge, surprisingly, measuring the effects of a group of nodes on other nodes in a

network is still missing in the network econometric literature. Our network measurement method

can exactly fill this blank. Moreover, our group-wise edges measurement method is compatible

with the classic network literature. Remark 3.2 suggests our generation of pair-wise edges by

group-wise edges is in line with the generation of the node centralities in Freeman (1978) by the

group centralities in Everett and Borgatti (1999).

From the discussion in this section, we have seen that the multiple horizon measures in Defini-

tion 3.1 have causality implications for the edges it measures. It is also very flexible to be applied

to study indirect effects in directed and weighted network structures. Properties of network anal-

ysis, which can be applied to study complex interconnections in an economic system, have been

studied in mathematics and computer science as graph theory. As Eichler (2007) shows, the multi-

ple horizon causality in Dufour and Renault (1998), the the base of the multiple horizon causality

measures, is also well matched to path diagrams in the multivariate time series context. Thus our

network measurement framework is also in line with the network analysis in graph theory. Lastly,

point-wise edges, (i → j), and group-wise edges, ([i1, i2, ..., in]→ [ j1, j2, ..., jm]), can be analysed

by our multiple horizon causality measures framework.

4. LASSO estimation of causality measure

In this section, we estimate the multiple horizon causality measures CL(X
W −→

h
XY |I) and

CL(X
W −→

h
XW |I) in a high-dimensional context. Given the network’s nodes processes X =

{X1t ,X2t, ...,XNt}T
t=1, following Dufour and Taamouti (2010) we use the VAR framework in our

econometric analysis. Network estimation under the VAR representation is desirable since the

VAR models are naturally developed to investigate the pairwise effect in a complex linear struc-

ture. Unlike Dufour and Taamouti (2010) only deal with low-dimensional situations, we estimate

the multiple horizon causality measures with the LASSO approach to better fit the multiple horizon

causality measures framework into high-dimensional network analysis.

Assumption 4.1 PROCESSES VAR REPRESENTATIONS.

The unrestricted process X = {XW
t ,XY

t ,X
Z
t }T

t=1 = {X1t,X2t , ...,XNt}T
t=1 is strictly stationary and
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has a VAR(∞) representation,

X(t) =
∞

∑
k=1

AkX(t− k)+u(t), (4.1)

where X(t) = [X1t ,X2t, ...,XNt]
′ is a N ×1 vector, Ak is N ×N matrix and u(t)∼ w.n.(0,Σu). Σu is

a N ×N positive definite matrix.

The restricted process X0 = {XY
t ,X

Z
t }T

t=1 is strictly stationary and has a VAR(∞) representa-

tion,

X0(t) =
∞

∑
k=1

ĀkX0(t − k)+ ε(t), (4.2)

where X0(t) = [XY
t ,X

Z
t ]

′ is a (N −m1)× 1 vector, Āk is (N −m1)× (N −m1) matrix and ε(t) ∼
w.n.(0,Σε). Σε is a (N −m1)× (N −m1) positive definite matrix.

The restricted process has the following expanded representation,

X(t) =
∞

∑
k=1

Ā
φ
k J2X(t − k)+ν(t) (4.3)

where Ā
φ
k =

[

ĀW
k

Āk

]

N×(N−m1)

, Āk is defined in (4.2) and ĀW
k is the expanded coefficients for XW .

J2 = [0(N−m1)×m1
, I(N−m1)×(N−m1)](N−m1)×N and ν(t)∼w.n.(0,Σν). Σν is a N×N positive definite

matrix.

Remark 4.1 Under the Assumption 4.1, the covariance matrix of the forecast error at horizon h

for the unrestricted model (4.1) is

Σ [X(t +h)|F (t)]≡
h−1

∑
q=0

ϕqΣuϕ ′
q, (4.4)

where ϕq = ∑
q
k=1 Akϕq−k and ϕ0 = IN . The covariance matrix of the forecast error at horizon h for

the restricted model (4.2) is

Σ [X0(t +h)|F−W (t)]≡
h−1

∑
q=0

ϕ̄qΣε ϕ̄ ′
q, (4.5)

where ϕ̄q = ∑
q
k=1 Ākϕ̄q−k and ϕ̄0 = IN−m1

.

Definition 4.1 Under the Assumption 4.1 and by the Remark 4.1, the multiple horizon causality
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measure, from W to Y , at forecast horizon h is

CL(X
W −→

h
XY |I) := ln

[

det{J0Σ [X0(t +h)|F−W (t)]J′0}
det{J1Σ [X(t +h)|F (t)]J′1}

]

(4.6)

where J0 = [Im2
, 0m2×m3

]m2×(N−m1)
and J1 = [0m2×m1

, Im2
, 0m2×m3

]m2×N . Σ [X(t + h)|F (t)] and

Σ [X0(t +h)|F−W (t)] are defined in (4.4) and (4.5) respectively.

Remark 4.2 Under the Assumption 4.1, it can be easy to observe that Σε = J2Σν J′2 and X0(t) =

J2X(t). Then the forecast error covariance of XW at horizon h, without its past information, is

ΣW [XW (t +h)|F−W (t)]≡ J3

(

h−1

∑
q=0

φ qΣν φ ′
q

)

J′3, (4.7)

where φ q = ∑
q
k=1 A

φ
k φ q−k, A

φ
k = Ā

φ
k J2, φ 0 = IN , J3 = [Im1×m1

, 0m1×(N−m1)]m1×N .

Definition 4.2 Under the Assumption 4.1 and by the Remark 4.2, the multiple horizon causality

measure, from W to W, at forecast horizon h is

CL(X
W −→

h
XW |I) := ln

[

det{ΣW [X0(t +h)|F−W (t)]}
det{J3Σ [X(t+h)|F (t)]J′3}

]

(4.8)

where ΣW [X0(t +h)|F−W (t)] and Σ [X(t +h)|F (t)] are defined in (4.7) and (4.4) respectively.

In order to obtain CL(X
W −→

h
XY |I) and CL(X

W −→
h

XW |I), we just need to know the autore-

gressive matrices, [A1,A2, ...,Ah−1] and [Ā
φ
1 , Ā

φ
2 , ..., Ā

φ
h−1], and the contemporaneous covariance

matrices, Σu and Σν . To estimate these parameters, we consider the truncated models of the unre-

stricted process (4.1) and the expanded restricted process (4.3) as

X(t) =
p

∑
k=1

A
p
k X(t − k)+up(t), (4.9)

X(t) =
p

∑
k=1

Ā
p
k
X0(t − k)+ν p(t). (4.10)

where up(t) ∼ w.n.(0,Σ p
u ) and ν p(t) ∼ w.n.(0,Σ p

ν ). A
p
k and Σ p

u are N by N matrices for k =

1,2, .., p. Ā
p
k is a N by N −m1 matrix and Σ

p
ν is a N by N matrix for k = 1,2, .., p.

While the dimensions for two groups in group-wise edge analysis, m1 and m2, are fixed, we

assume that the number of nodes, N, and the lag p can be functions of T (i.e., NT = O(T c1) and

pT = O(T c2) for constant c1,c2 > 0), but for notation simplicity we do not write the subscript

T explicitly. Under mild assumptions, the truncated bias is asymptotically negligible such that

||Ap
k − Ak||∞ = o(1) for k = 1,2, ..., p and ||Σ p

u − Σu||∞ = o(1) as T −→ ∞. We can therefore
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estimate the parameters of interest with the truncated models. Similar arguments can be applied

to the expanded restricted truncated model. The unrestricted model and the expanded restricted

model basically share the same estimation procedure.

The main estimation challenge in a network context is the high-dimensionality problem. We

have N ×N × p unknown parameters in the autoregressive matrices A
p
k
, k = 1, ..., p, as well as

N(N+1)
2

unknown parameters in the contemporaneous covariance matrix Σ
p
u , but we only have

N × T observations. For a market network, the number of nodes, N, can be large. Traditional

estimation methods are not reliable when N× p is closed to T or even infeasible when N× p > T .

One of the popular ways to solve the high-dimensional problem in statistics is by assuming sparsity

such that the effective dimension of the parameter space keeps tractable. The statistical intuition

is that we can set free of the limited observable data by assuming appropriate sparsity structures

to only estimate the nonzero parameters. One thing we need to emphasize here is that we do not

assume the network structure, measured by the multiple horizon causality measures table, is sparse.

Instead, we only need to assume the autoregressive matrices, and the error concentration matrix are

sparse. Since the multiple horizon causality measures are nonlinear functions of the autoregressive

matrices and the concentration matrices, the causality table is generally nonsparse. The estimation

technique in this section is called the Least Absolute Shrinkage and Selection Operator (LASSO)

(see, e.g., Tibshirani (1996)).

Under sparsity assumptions, the autoregressive coefficients and the error concentration matri-

ces could be estimated simultaneously (see Barigozzi and Brownlees (2016)). As the dimension of

the unknown parameter space is huge, however, this estimation procedure could be time intensive.

Note that the multiple horizon causality measures requires estimating as many as N + 1 models

(one unrestricted model and N restricted models) to quantify the effects from one to others. The

estimation efficiency, in terms of computational time, is also an important issue to be concerned

when N is large.

For empirical convenience, we apply a faster two-stage estimation procedure. At stage one,

we use the Adaptive LASSO regression (see, e.g., Zou (2006)) to estimate the autoregressive co-

efficients. At stage two, the error concentration matrix can be estimated by the residuals from

the stage one. It comes a cost that the rate of convergence of the estimator in the second stage

will depend on the estimator in the first stage (see Barigozzi and Brownlees (2014)), and thus this

method is theoretically less desirable than the joint estimation method in Barigozzi and Brownlees

(2016). Nonetheless, we believe this tradeoff for empirical convenience is worthwhile because

our network measurement method is designed for general empirical applications. Our estimation

procedure uses the results provided by Barigozzi and Brownlees (2014).

4.1. Autoregressive matrix estimation

Each of the N equation of the unrestricted VAR(p) model can be written as
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Xi(t) = α ′
iz(t)+u

p
i (t), (4.11)

where Xi(t) is the ith univariate time series in X(t). z(t) = (X ′(t − 1),X ′(t − 2), ...,X ′(t − p))′

is the N p× 1 vector of lagged observations. α i = (α1i1, ...,α1iN, ...,α pi1, ...,α piN)
′ is a N p× 1

parameter vector, such that vec(α ′
1, ...,α

′
N) = vec([Ap

1 ,A
p
2 , ...,A

p
p]
′). For each of the N equation of

the expanded restricted VAR(p) model, similarly,

Xi(t) = ᾱ ′
iz0(t)+ ε

p
i (t), (4.12)

the unknown autoregressive coefficient vector ᾱ i = (ᾱ1i1, ..., ᾱ1iN−m1
, ..., ᾱ pi1, ..., ᾱ piN−m1

)′ is a

(N −m1)p×1 vector, such that vec(ᾱ ′
1, ..., ᾱ

′
N) = vec([Āp

1 , Ā
p
2 , ..., Ā

p
p]
′). z0(t) = (X ′

0(t −1),X ′
0(t −

2), ...,X ′
0(t − p))′ is the (N −m1)p×1 vector of lagged observations.

The Adaptive LASSO estimators of α i and ᾱ i are defined respectively as

α̂Ti = argmin
α

1

T

T

∑
t=1

[Xi(t)−α′
iz(t)]

2+
λ T

T

N p

∑
j=1

wTi j|α i j| for i = 1, ...,N, (4.13)

ˆ̄αTi = argmin
ᾱ

1

T

T

∑
t=1

[Xi(t)− ᾱ′
iz0(t)]

2+
λ T

T

(N−m1)p

∑
j=1

w̄Ti j|ᾱ i j| for i = 1, ...,N (4.14)

where λ T is an appropriate pre-selected value controlling the overall estimated sparsity level in the

autoregressive models. If λ T equals 0, then the LASSO estimation is simply the OLS estimation

and every element in α i have to be estimated; if λ T −→ ∞, the estimates of the parameter α i are

all zeros, which means the estimated autoregressive coefficients are perfectly sparse. The choice

of λ T can be selected by the BIC criterion or by Cross-Validations. wTi j and w̄Ti j are pre-estimator

weighted penalties to the sparse structures of α i and ᾱ i. They help to separate zero coefficients

from nonzero coefficients when regressos are highly correlated. Here we use wTi j =
1

|α̂LASSO
i j | and

w̄Ti j =
1

| ˆ̄αLASSO
i j | as the weighted penalties to |α i j| and |ᾱ i j| respectively, where α̂LASSO

i j and ˆ̄αLASSO
i j

are the standard LASSO estimators: wTi j = 1 for α i j and w̄Ti j = 1 for ᾱ i j.

In order to estimate α i and ᾱ i in a high-dimensional context, sparsity assumptions are required.

We denote the sets of nonzero entries in α i and in ᾱ i as Ai, which has qA
Ti elements, and ¯Ai, which

has q
¯A

Ti elements. qA
Ti and q

¯A
Ti are function of T . Since the estimation of α i is similar to the

estimation of ᾱ i, we here only discuss the sparsity of α i. Following Barigozzi and Brownlees

(2014), the key assumptions on the number of nonzero entries in the autoregressive coefficients

and the pre-selected penalty constant controlling the overall estimated sparsity level are qA
Ti =

o
(√

T
logT

)

, λ T

T

√

qA
Ti = o(1), lim

T→∞

λ T

T

√

T
logT

= ∞,

√

qA
Ti logT

T
= o

(

λ T

T

)

and λ T

T 1−c1

√

qA
Ti = O(1) for

i = 1, ...,N. These assumptions provide the restrictions among the the underlying true sparsity
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level (qA
Ti ), pre-selected penalty constant controlling the overall estimated sparsity level (λ T ) and

rate of number of nodes N as T grows to infinity (c1). To identify the zero entries in α i, we also

need the following assumption on the signal strength: For all i = 1, ...,N, there exists a sequence

of positive real numbers {sA
Ti} such that |α i j|> sA

Ti and lim
T→∞

sA
Ti

λT
T

√
qA

Ti

= ∞ for all α i j ∈ Ai.

Proposition 4.1 Under the Assumption 1 - 6 in Appendix A.1, as T −→ ∞,

1. if α i j ∈ A C
i , Prob{α̂Ti j = 0}→ 1, i = 1, ...,N

2. if ᾱ i j ∈ ¯A C
i , Prob{ ˆ̄αTi j = 0}→ 1, i = 1, ...,N

3. α̂Ti
p−→ α i, and thus Â

p
T k

p−→ Ak for k = 1, ..., p

4. ˆ̄αTi
p−→ ᾱ i and thus ˆ̄A

p
T k

p−→ Ā
φ
k for k = 1, ..., p

PROOF. See in Appendix A.2.

Proposition 4.1 states that the Adaptive LASSO estimators in (4.13) and (4.14) correctly select

the nonzero coefficients asymptotically, and the estimators are consistent. Even if the dimension

of the network is large, this estimation procedure can still safely concentrate on estimating the

nonzero coefficients using the limited information from the observable sample, given the sparsity

assumption on the true coefficients vector.

4.2. Contemporaneous covariance matrix estimation

The contemporaneous covariance matrix can be estimated by the sparse concentration matrix via

the sparse errors partial correlations. We use the estimation strategy in Peng, Wang, Zhou and Zhu

(2009) and Barigozzi and Brownlees (2014). The errors partial correlations matrix ρ has generic

component ρ i j. The concentration matrix in the unrestricted model, S
p
u ≡ [Σ p

u ]
−1, and the concen-

tration matrix in the expanded restricted model, S
p
ν ≡ [Σ

p
ν ]

−1, have the following relationship with

their respective errors correlations:

ρu
i j ≡ Corr(up

i ,u
p
j ) =−

su
i j

√

su
iis

u
j j

(4.15)

ρν
i j ≡ Corr(ν p,ν p) =−

sν
i j

√

sν
iis

ν
j j

(4.16)

where su
i j is the (i, j) component of S

p
u and sν

i j is the (i, j) component of Sν
u . Moreover, the errors

correlations can be also expressed as the coefficients of the linear regressions (see Lemma 1 in

Peng et al. (2009)):
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u
p
ti =

N

∑
j 6=i

ρu
i j

√

su
ii

su
j j

u
p
t j +ηu

ti, i = 1, ...,N, t = 1, ...,T (4.17)

ν
p
ti =

N

∑
j 6=i

ρν
i j

√

sν
ii

sν
j j

ν
p
t j +ην

ti, i = 1, ...,N, t = 1, ...,T (4.18)

We assume the concentration matrices as well as the correlations matrices are sparse and denote

the set of nonzero entries in the unrestricted and restricted errors correlation matrices as Qu and

Qν respectively. The LASSO estimator of the errors partial correlations in the unrestricted model

(4.1) and the one in the restricted model (4.3) are defined respectively as

ρ̂u
T = argmin

ρu

1

T

T

∑
t=1

N

∑
i=1

(ûti −
N

∑
j 6=i

ρu
Ti j

√

ŝu
Tii

ŝu
T j j

ût j)
2 +

γT

T

N

∑
i=2

i−1

∑
j=1

|ρu
i j|, (4.19)

ρ̂ν
T = argmin

ρν

1

T

T

∑
t=1

N

∑
i=1

(ν̂ti −
N

∑
j 6=i

ρν
Ti j

√

ŝν
Tii

ŝν
T j j

ν̂t j)
2 +

γT

T

N

∑
i=2

i−1

∑
j=1

|ρν
i j| (4.20)

where ûti = Xi(t)− α̂ ′
iz(t) and ν̂ti = Xi(t)− ˆ̄α ′

iz0(t). γT is the tuning parameter controlling the

model sparsity level as λ T in (4.13) and in (4.14). The estimator of the unrestricted concentration

matrix S
p
u , denoted as Ŝu

T , and the the estimator of the expanded restricted concentration matrix S
p
ν ,

denoted as Ŝν
T , have entries ŝu

Ti j =−ρ̂u
Ti j

√

ŝu
Tiiŝ

u
T j j and ŝν

Ti j =−ρ̂ν
Ti j

√

ŝν
Tiiŝ

ν
T j j. The estimators ŝu

Tii

and ŝν
Tii are given respectively by

ŝu
Tii =

[

1

T −1

T

∑
t=1

(η̂u
ti)

2

]−1

, (4.21)

ŝν
Tii =

[

1

T −1

T

∑
t=1

(η̂ν
ti)

2

]−1

(4.22)

where η̂u
ti = ûti −∑N

j 6=i ρu
Ti j

√

ŝu
Tii

ŝu
T j j

ût j and η̂ν
ti = ν̂ti −∑N

j 6=i ρν
Ti j

√

ŝν
Tii

ŝν
T j j

ν̂t j

The estimator of the unrestricted errors concentration matrix, Ŝu
T , can be obtained by iterating

between (4.19) and (4.21). The estimator of the expanded restricted errors concentration matrix,

Ŝν
T , can be obtained by iterating between (4.20) and (4.22). For more discussions on the assump-

tions to estimate the correlation matrices, we refer readers to see Peng et al. (2009) and Barigozzi

and Brownlees (2014).

Proposition 4.2 Under the Assumption 1 - 9 in Appendix A.1, as T → ∞,

1. if ρu
i j ∈ QC

u , Prob{ρ̂u
Ti j = 0}→ 1, i, j = 1, ...,N
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2. if ρν
i j ∈ QC

ν , Prob{ρ̂ν
Ti j = 0}→ 1, i, j = 1, ...,N

3. ρ̂u
Ti j

p−→ ρu
i j, and thus Ŝu

T

p−→ Su ≡ Σ−1
u

4. ρ̂ν
Ti j

p−→ ρν
i j, and thus Ŝν

T

p−→ Sν ≡ Σ−1
ν

PROOF. See in Appendix A.3.

Proposition 4.2 states that the LASSO estimators in (4.19) and (4.20) correctly select the

nonzero coefficients in the errors correlation matrics asymptotically and the estimators are con-

sistent. By the relationships between errors correlations and the concentration matrix in (4.15) and

(4.16), we obtain the consistent estimators of the concentration matrices for the unrestricted model

(4.1) and the concentration matrices for the expanded unrestricted model (4.3).

4.3. Multiple horizons causality measures estimation

Note that the multiple horizon causality measures under the Assumption 4.1 is mainly composed

by two parts (see Definition 4.1 and Remark 4.1): i) autoregressive coefficients in the unrestricted

model (4.1) and in the expanded restricted model (4.3); ii) contemporaneous covariances in the

unrestricted model (4.1) and in the expanded restricted model (4.3). We have already obtained

their consistent estimators by Proposition 4.1 and Proposition 4.2.

Finally, the estimator of the multiple horizon causality measure, from XW to XW , is defined as

Ĉh
TWW := ln

[

det{Σ̂W [XW (t +h)|F−W (t)]}
det{J3Σ̂ [X(t+h)|F (t)]J′3}

]

, (4.23)

where

Σ̂ [X(t+h)|F (t)] =
h−1

∑
q=0

ϕ̂q(Ŝ
u
T )

−1ϕ̂ ′
q, (4.24)

Σ̂W [XW (t +h)|F−W (t)] = J3

[

h−1

∑
q=0

φ̂ q(Ŝ
ν
T )

−1φ̂
′
q

]

J′3, (4.25)

φ̂ q =
q

∑
k=1

( ˆ̄A
p
T kJ2)φ̂q−k, (4.26)

ϕ̂q =
q

∑
k=1

Â
p
T kϕ̂q−k, (4.27)

ϕ̂0 = IN, φ̂ 0 = IN. (4.28)
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The estimator of the multiple horizon causality measures, from XW to XY , is defined as

Ĉh
TWY := ln

[

det{J0Σ̂ [X0(t +h)|F−W (t)]J′0}
det{J1Σ̂ [X(t+h)|F (t)]J′1}

]

, (4.29)

where

Σ̂ [X(t+h)|F (t)] =
h−1

∑
q=0

ϕ̂q(Ŝ
u
T )

−1ϕ̂ ′
q, (4.30)

Σ̂ [X0(t +h)|F−W (t)] =
h−1

∑
q=0

ˆ̄ϕq(Ŝ
ε
T )

−1 ˆ̄ϕ ′
q, (4.31)

(Ŝε
T )

−1 = J2(Ŝ
ν
T )

−1J′2, (4.32)

ˆ̄ϕq =
q

∑
k=1

(J2
ˆ̄A

p
T k)

′ ˆ̄ϕq−k, (4.33)

ϕ̂q =
q

∑
k=1

Â
p
T kϕ̂q−k, (4.34)

ϕ̂0 = IN, ˆ̄ϕ0 = IN−m1
. (4.35)

Theorem 4.3 Under the Assumption 1 - 9 in Appendix A.1, for any given h, h = 1,2, ..., as T −→
∞,

1. Σ̂ [X(t+h)|F (t)]
p−→ Σ [X(t+h)|F (t)];

2. Σ̂ [X0(t +h)|F−W (t)
p−→ Σ [X0(t +h)|F−W (t)];

3. Σ̂W [XW (t +h)|F−W (t)
p−→ ΣW [XW (t +h)|F−W (t)];

4. Ĉh
TWY

p−→CL(X
W −→

h
XY |I);

5. Ĉh
TWW

p−→CL(X
W −→

h
XW |I).

PROOF. See in Appendix A.4.

Now, we have the consistent estimators of the multiple horizon causality measures for any

given networks. Measuring the point-wise edge strength, i →
C,h

j, and the group-wise edge strength,

(i1, ..., in1
) →

C,h
( j1, ..., jn2

), for arbitrary horizon h ≥ 1 shares the same estimation procedure sug-

gested in this section.
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5. Network connectedness measures

The world is not flat. While the relationships of entities in an economy can be modelled by 2-

dimensional network representations, the economy itself, however, is multi-dimensionally struc-

tured. Different firms play different roles. Some them are alike: insurances companies sell a wide

range of insurances; some of them are distinctive: restaurants serve cuisines and the Space X pro-

vides space transportation services. We do not assume we have the prior knowledge of their exact

roles, but we have their interconnection structures that can be measured by our causality table. If

we use one’s interconnection relationships to the others as a proxy of a firm’s role in an economy,

the causality table gives us the firms’ coordinates of their roles in the multi-dimensional econ-

omy. Once the coordinates in a multi-dimensional space are given, it is easy to define direction

and distance measures with middle school’s geometry. We consider an economy of interest as a

N-dimensional Euclidean space. The coordinate of a firm is corresponding to a vector in the multi-

dimensional space. The direction of a firm’s vector can be interpreted as “what the firm’s role is”:

firm i’s vector direction tends to point to the companies that firm i has more relationships to; the

norm of a firm’s vector can be interpreted as “how strong the firm’s role is”: the norm of firm i’s

vector measures the extent of the firm i’ relationships to all companies in the economy.

Following this logic, we define our new connectedness measures in the market network base on

the multi-dimensional economy setting. We hereafter take the estimated causality measures table

as given. Note that a network can be divided into several subgroups, the network can be viewed

as a combination of its sub-networks. In a stock market, for example, the market index can be

viewed as the weighted average of the prices of individual stocks as well as the weighted average

of different sector indices. Since an economic network can be viewed as a network among firms

(firm-wise market), whose interconnections are measured by our point-wise edges method (i → j),

as well as a network among sectors (sector-wise market), whose interconnections are measured

by group-wise edges method ([i1, i2, ..., in]→ [ j1, j2, ..., jm]), we have three types of connectedness

measures to gauge network interconnections: i) firm-wise market connectedness, which measures

the interconnectedness of a firm-wise market; ii) firm-wise connectedness within a sector, which

measures the interconnectedness within a given sector in a firm-wise market; and iii) sector-wise

market connectedness, which measures the interconnectedness of a sector-wise market. These

three types of connectedness measures fully take advantage of the flexibility of our network mea-

surement method, so they can be applied to study market network connectedness in more flexible

ways than Billio et al. (2012) and Diebold and Yilmaz (2014).

5.1. Firm-wise market connectedness measures

Market network connectedness can be decomposed by each firm’s connectedness to the market.

Firms’ roles in an economy determine the firms’ connectedness to the market network. As firm i’s
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Figure 3. Relative connectedness between i and network

vector direction represents firm i’s role in the economy, we will use firm i’s vector direction as the

foundation to measure the firm i’s connectedness to the market network.

The connectedness, in term of economic role, of firm i to the economy can be measured by the

angle of firm i’s vector to the subspace of the economy composed by all other firms. In Figure 3,

we use a simple 3-dimensional economy space to illustrate this idea. The economy has only three

firms: i, k1 and k2. We want to study firm i’s role connectedness to this market. From the causality

table, we choose the vector of i, (Cii,Cik1
,Cik2

). It measures the relationships from i to i, k1 and k2.

The direction of (Cii,Cik1
,Cik2

) in the 3-dimensional space determines firm i’s economic role in this

market. θ i is the angle of i’s vector to the subspace of the economy composed by k1 and k2. If we

take k1 and k2 as a unit, θ i exactly measures the tendency of firm i’s economic role to k1 and k2.

When θ i =
π
2

, i plays no role on k1 and k2; when θ i = 0, i has relationships only to k1 and k2.

Given forecast horizon h, in a the ith row of the causality table measures the directed and

weighted edges from the node i to all nodes in a N-dimensional market network, which has a

node set V = {1, ...,N}. Let OUT h
i = [Ch

i1,C
h
i2, ...,C

h
iN]

′, OUT h
i contains all the directed edges

information pointed from i. They are the “out” effects from i to all firms in the market. For

i = 1, ...,N ∈V , we define the “out” connectedness angle of the firm i to the economy as θ out
i,V (h),

θ out
i,V (h) = arcsin

Ch
ii

‖OUT h
i,V‖2

(5.1)

where we assume ‖OUT h
i,V‖2 > 0, which is equivalent to say there exists j ∈ {1, ...,N} such that

Ch
i j 6= 0. If ‖OUT h

i,V‖2 = 0, we let θ out
i,V (h) = 0 .

θ out
i,V (h) measures the “out” connectedness from firm i to the economy and is a relative connect-
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edness strength since it has been rescaled in [0,π/2]. The connectedness angle θ out
i,V (h) = π/2 if

and only if Ch
ii > 0 and Ch

i j = 0 for any j ∈ {1, ..., i−1, i+1, ...,N}, which implies firm i is isolated

with the economy in the sense that it has no impact on other companies. If Ch
ii = 0 and thus the

projection angle θ out
i,V (h) = 0, it implies all relationships from firm i to the economy are all from its

impacts to other firms in the economy.

The relative connectedness strength of firm i to the economy, measured by θ out
i,V (h), considers

the economic role of firm i to the economy. It is a direction measure, and it is more related to rela-

tively economic structures. The extent of how strong the economic roles, however, is not captured

by θ out
i,V (h). Besides the connectedness angle, we are also interested in the absolute connected-

ness strength. We denote a general formula of the absolute connectedness strength of firm i to the

economy as Kout

(

‖OUT h
i,V‖,θ out

i,V (h)
)

. Kout

(

‖OUT h
i,V‖,θ out

i,V (h)
)

is a function of firm i’s connected-

ness angle, θ out
i,V (h), and its causation strength to the economy, ‖OUT h

i,V‖. Kout

(

‖OUT h
i,V‖,θout

i,V (h)
)

should at least satisfy the following properties:

Kout

(

‖OUT h
i,V‖,

π

2

)

= 0 (5.2)

Kout

(

0,θ out
i,V (h)

)

= 0 (5.3)

∂Kout

(

‖OUT h
i,V‖,θ out

i,V (h)
)

∂‖OUT h
i,V‖

≥ 0 (5.4)

∂Kout

(

‖OUT h
i,V‖,θ out

i,V (h)
)

∂θ out
i,V (h)

≤ 0 (5.5)

The firm i has no connectedness to the economy if has no impact on all other firms in the

economy. The absolute connectedness strength between firm i to the economy, should be an non-

decreasing function of its causation strength to the economy and an nonincreasing function of its

connectedness angle to the economy.

A simple functional specification of the absolute connectedness strength of firm i to the econ-

omy we use in this paper is

Kout

(

‖OUT h
i,V‖,θ out

i,V (h)
)

= ‖OUT h
i,V‖cosθ out

i,V (h). (5.6)

This absolute connectedness strength can be easily decomposed by the causation strength,

‖OUT h
i,V‖, and the connectedness angle θ out

i,V (h). In geometric terms, Kout

(

‖OUT h
i,V‖,θout

i,V (h)
)

just measures the norm of the projection of OUT h
i,V on the subspace spanned by the all other firms

in the economy. We again use a simple 3-dimensional economy space to illustrate this idea. The

economy has only three firms: i, k1 and k2. The absolute connectedness strength of firm i to this
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Figure 4. Absolute connectedness between i and network

economy is the projection of the vector (Cii,Cik1
,Cik2

) on the subspace spanned by k1 and k2, which

is shown in Figure 4.

In summary, our absolute connectedness strength of firm i to the economy simultaneously

takes the firm i’s economic role structure and the economic role strength into account. In addition,

the absolute connectedness strength can be easily decomposed by these two parts. Moreover, it

has nice geometric interpretations in a N-dimensional economic space as illustrated by Figure 4.

Therefore, our market connectedness measures, the mean of all firms’ connectedness measures to

the economy, will also enjoy these features.

Definition 5.1 Given a market network with node set V = {1,2, ...,N}, the Firm-wise Market Net-

work Relative Connectedness Structure Measure of “out” effects at horizon h, MRCout
VC

(h), is de-

fined as following:

MRCout
VC

(h) =
1

N

N

∑
i=1

cosθ out
i,V (h) (5.7)

Definition 5.2 Given a market network with node set V = {1,2, ...,N}, the Firm wise Market

Network Absolute Connectedness Strength Measure of “out” effects at horizon h, MACout
VC

(h), is

defined as following:

MACout
VC

(h) =
1

N

N

∑
i=1

‖OUT h
i,V‖cosθ out

i,V (h) (5.8)

Remark 5.1 If the edges in a network are unweighted, the connection of node i to the network
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can be solely characterized by the connectedness angle, θ out
i,V (h), irrespective to its unweighted

absolute connectedness magnitude to the network, ‖OUT h
i,V‖. Therefore, the Firm-wise Market

Network Relative Connectedness Structure Measure is basically equivalent to the Firm-wise Mar-

ket Network Absolute Connectedness Strength Measure in the context of unweighted network.

Note that the edges in our network network are directed. Following similar procedures, we

can also define market connectedness measures at “in” direction. Given a forecast horizon h, the

ith column of the causality table measures the directed and weighted edges to the firm i from

all firms in the N-dimensional market network, which has node set V = {1, ...,N}. Let INh
i =

[Ch
1i,C

h
2i, ...,C

h
Ni]

′, INh
i contains all the directed edges information pointed from i. They are the “in”

effects to i from all firms in the market. For i = 1, ...,N ∈ V , the “in” connectedness angle of the

firm i to the economy, θ in
i,V (h), and the “in” absolute connectedness strength of the the firm i to the

economy, Kin

(

‖INh
i,V‖,θ in

i,V (h)
)

, are defined respectively as

θ in
i,V (h) = arcsin

Ch
ii

‖INh
i,V‖2

(5.9)

and

Kin

(

‖INh
i,V‖,θ in

i,V (h)
)

= ‖INh
i,V‖cosθ in

i,V (h) (5.10)

Definition 5.3 Given a market network with node set V = {1,2, ...,N}, the Firm-wise Market Net-

work Relative Connectedness Structure Measure of “in” effects at horizon h, MRCin
VC
(h), is defined

as following:

MRCin
VC
(h) =

1

N

N

∑
i=1

cosθ in
i,V (h) (5.11)

Definition 5.4 Given a market network with node set V = {1,2, ...,N}, the Firm-wise Market Net-

work Absolute Connectedness Strength Measure of “in” effects at horizon h, MACin
VC
(h), is defined

as following:

MACin
VC
(h) =

1

N

N

∑
i=1

‖INh
i,V‖cosθ in

i,V (h) (5.12)

5.2. Firm-wise sector connectedness measures

An economic market can be viewed as a network of sectors. Furthermore, there is also a sub-

network for each sector in an economy. In this section, we discuss the firm-wise connectedness

within each sector. Without loss of simplicity, we consider an economic network with node set

V composed by two sectors, V1 and V2, where V = {1, ...,N}, V1 = {i1, ..., in1
}, V2 = { j1, ..., jn2

},
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V1∩V2 = /0, V1∪V2 =V and n1+n2 =N. V1 and V2 are disjoint and complete sub-network elements

of V .

Within a sector Vz, z = 1 or 2, our sector connectedness measures are defined in a similar

manner as the firm-wise market connectedness measures in section 5.1.

Definition 5.5 Given a sector node set Vz, z = 1,2, the Firm-wise Sector Relative Connectedness

Structure Measure of “out” effects within sector z at horizon h, MRCout
Vz

(h), is defined as following:

MRCout
Vz

(h) =
1

nz

nz

∑
i=1

cosθ out
i,Vz

(h), (5.13)

where nz = |Vz| is the number of nodes in the sector node set Vz = {i1, ..., in1
} , i ∈ Vz, θ out

i,Vz
(h) =

arcsin
Ch

ii

‖OUT h
i,Vz

‖2
, and OUT h

i,Vz
= [Ch

ii1
,Ch

ii2
, ...,Ch

iin1
]′.

Definition 5.6 Given a sector node set Vz, z = 1,2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “out” effects within sector z at horizon h, MACout
Vz

(h), is defined as following:

MACout
Vz

(h) =
1

nz

nz

∑
i=1

‖OUT h
i,Vz

‖cosθ out
i,Vz

(h) (5.14)

where OUT h
i,Vz

and θ out
i,Vz

(h) are defined as above.

Definition 5.7 Given a sector node set Vz, z = 1,2, the Firm-wise Sector Relative Connectedness

Structure Measure of “in” effects within sector z at horizon h, MRCin
Vz
(h), is defined as following:

MRCin
Vz
(h) =

1

nz

nz

∑
i=1

cosθ in
i,Vz

(h) (5.15)

where nz = |Vz| is the number of nodes in the sector node set Vz = {i1, ..., in1
} , i ∈ Vz, θ in

i,Vz
(h) =

arcsin
Ch

ii

‖INh
i,Vz

‖2
, and INh

i,Vz
= [Ch

i1i,C
h
i2i, ...,C

h
in1

i]
′.

Definition 5.8 Given a sector node set Vz, z = 1,2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “in” effects within sector z at horizon h, MACin
Vz
(h), is defined as following:

MACin
Vz
(h) =

1

nz

nz

∑
i=1

‖INh
i,Vz

‖cosθ in
i,Vz

(h) (5.16)

where INh
i,Vz

and θ in
i,Vz

(h) are defined as above.

The sector connectedness measures are just the blocked firm-wise market network connected-

ness measures for each sector in a firm-wise market .

Remark 5.2 For any given h, if we have Ch
i j =Ch

ji = 0 for any i ∈V1 and any j ∈V2, then
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1. (n1 +n2)MRCout
VC

(h) = n1MRCout
V1

(h)+n2MRCout
V2

(h);

2. (n1 +n2)MACout
VC

(h) = n1MACout
V1

(h)+n2MACout
V2

(h);

3. (n1 +n2)MRCin
VC
(h) = n1MRCin

V1
(h)+n2MRCin

V2
(h);

4. (n1 +n2)MACin
VC
(h) = n1MACin

V1
(h)+n2MACin

V2
(h).

The market network connectedness can be obtained by the sector connectedness if the sectors

are the disjoint and complete decomposition elements of the market network and if there is no

point-wise edge between different sectors. Intuitively speaking, the market connectedness is sim-

ply the weighted sum of sectors’ connectedness when there is no causality edge between firms

across different sectors.

5.3. Sector-wise market connectedness measures

Similar to the firm-wise market connectedness measures, the sector-wise market connectedness

measures also measure market interconnectedness. But the sector-wise market connectedness mea-

sures gauge the interconnectedness among different sectors instead of different firms.

In a sector-wise market, nodes are groups of firms. We assume that any firm can only belong

an unique sector. Suppose we have M sectors: Vi for i = 1,2, ...,M. Then we have V =
⋃M

i=1Vi

and VS = {V1,V2, ...,VM}. In this case, the causality table is a M by M matrix. The i row of

the causality table, (CViV1
,CViV2

, ...,CViVM
), measures the effects from sector i to other sectors. The

sector-wise market connectedness measures are defined in a similar manner as the firm-wise market

connectedness measures in section 5.1.

Definition 5.9 The Sector-wise Market Relative Connectedness Structure Measure of “out” effects

at horizon h, MRCout
VS

(h), is defined as following:

MRCout
VS

(h) =
1

M

M

∑
i=1

cosθ out
Vi,VS

(h), (5.17)

where θ out
Vi,VS

(h) = arcsin
Ch

ViVi

‖OUT h
Vi,VS

‖2
, and OUT h

Vi,VS
= [Ch

ViV1
,Ch

ViV2
, ...,Ch

ViVM
]′.

Definition 5.10 The Sector-wise Market Absolute Connectedness Strength Measure of “out” ef-

fects at horizon h, MACout
VS

(h), is defined as following:

MACout
VS

(h) =
1

M

M

∑
i=1

‖OUT h
Vi,VS

‖cosθ out
Vi,VS

(h), (5.18)

where θ out
Vi,VS

(h) = arcsin
Ch

ViVi

‖OUT h
Vi,VS

‖2
, and OUT h

Vi,VS
= [Ch

ViV1
,Ch

ViV2
, ...,Ch

ViVM
]′.
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Definition 5.11 The Sector-wise Market Relative Connectedness Structure Measure of “in” effects

at horizon h, MRCin
VS
(h), is defined as following:

MRCin
VS
(h) =

1

M

M

∑
i=1

cosθ in
Vi,VS

(h), (5.19)

where θ in
Vi,VS

(h) = arcsin
Ch

ViVi

‖INh
Vi,VS

‖2
, and INh

Vi,VS
= [Ch

V1Vi
,Ch

V2Vi
, ...,Ch

VMVi
]′.

Definition 5.12 The Sector-wise Market Absolute Connectedness Strength Measure of “in” effects

at horizon h, MACin
VS
(h), is defined as following:

MACin
VS
(h) =

1

M

M

∑
i=1

‖INh
Vi,VS

‖cosθ in
Vi,VS

(h), (5.20)

where θ in
Vi,VS

(h) = arcsin
Ch

ViVi

‖INh
Vi,VS

‖2
, and INh

Vi,VS
= [Ch

V1Vi
,Ch

V2Vi
, ...,Ch

VMVi
]′.

6. Application to implied volatility network structures

In previous sections, we have proposed a flexible network econometric measurement framework,

a reliable estimation procedure designed for high-dimensional contexts and new market network

connectedness measures. In this section, we illustrate the wide range of applications of our market

network measurement methods by investigating a high-dimensional volatility network in the US

equity market. We would like to study how the volatility network is structured and how it changes

over time. Fruitful information extracted from the empirical exercises can be easily visualized by

our reporting figures.

More specifically, we study the static volatility network with the full sample from 2000 to 2015

to see how firms and sectors connect to each other. We investigate the dynamics of the network

structures to see how the interconnections among firms and the interconnections among sectors

varied in the past 15 years. The market connectedness measures proposed in this paper are de-

signed for measuring market systemic risk. It is a common wisdom that the systemic risk played

an important role in the 2007-2009 financial crisis. Thus we examine dynamic market connected-

ness with our measures, and compare it with market indices (i.e. VIX index) before, during and

after the crisis period. Our market connectedness measures are constructed based on the directed

and weighted edges in the market network, and the superiority of the “directed” and “weighted”

edges analysis against the “undirected” and “unweighted” edges analysis is demonstrated by the

asymmetric effects between the financial sector and other sectors in the volatility network.
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6.1. Data

Firms and sectors are connected with trade links or business relationships. It is an impossible

mission to collect all qualitative and quantitative business information at firm-level to reveal their

interconnections. As Diebold and Yilmaz (2014) argue, however, stock markets, which reflect

forward-looking assessments of many thousands of smart, strategic and often privately-informed

agents, provide us with feasible information that is close to the true business conditions and in-

terconnections. For instance, there are numerous investment opportunities in the world, and using

the S&P 500 index as a benchmark is almost a convention when evaluating excess returns in as-

set management. Therefore, we will study the crisis-sensitive volatility network in the US stock

market. In addition, we are also interested in examining whether our volatility connectedness mea-

sures can reflect the underlying market systemic risk that plays an important role in the recent

global financial crisis.

The volatility in stock markets is latent, so we need an volatility proxy. The well-known VIX,

which has been widely accepted as a market volatility index by financial practitioners, is calculated

from implied volatilities of the S&P 500 index options. It is sensitive to market turmoils. For each

firm, we also exploit the information in their respective option contracts. We use implied volatility

in our volatility network analysis, rather than using realized volatility estimated from stock intraday

prices (see Diebold and Yilmaz (2014) and Barigozzi and Brownlees (2016)), for the quantities we

are dealing with are more comparable to market indices (e.g., VIX). Similar to the VIX index

known as a “market fear” index, our implied volatility network connectedness can also be viewed

as “individual fear” connectedness. Volatility or implied volatility is sensitive to “terrifying news”

in financial markets. For instance, the 9/11 Attacks terrify people in the stock market and leads

implied volatilities to jump up rapidly. Although the 9/11 event had very minor impacts on most

firms’ real business conditions and their interconnections, its shocks would spill over from firms to

firms and from sectors to sectors in stock markets, just because of liquidation concerns and other

risk issues faced by investors. The stock implied volatilities are inevitably contaminated by shocks

in financial markets since risks are traded on markets. Nevertheless, implied volatility is still an

excellent proxy to study the high-dimensional market volatility network. We hope the underlying

market network structure can be at least partially uncovered by its implied volatility network.

We estimate the volatility network of the S&P 100 components stocks quoted on 06/30/2015.

Similar to the VIX index for the S&P 500 stock composite, in this paper the S&P 100 components10

implied volatilities are constructed with their respective at-the-money option contracts with 30-day

maturity. This implied volatility measures the expected volatility of the underlying stock over the

next 30 days. We hereafter only consider the option contracts with 30-day maturity. Generally

speaking, an at-the-money call (put) option usually has a delta at approximately 0.5 (-0.5). A

10To be included in the S&P 100, the companies should be among the larger and more stable companies in the S&P

500, and must have list options.
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simple way to get the at-the-money implied volatility is to take the simple arithmetic mean of

the interpolated implied volatility of the call option with delta 0.5 and the interpolated implied

volatility of the put option with delta -0.5:

IVi,t =
1

2
(IVC0.5

i,t + IV
P−0.5
i,t ). (6.21)

where IV
C0.5
i,t is firm i’s interpolated implied volatility of the call option with delta 0.5 at time

t, and IV
P−0.5
i,t is firm i’s interpolated implied volatility of the put option with delta -0.5 at time

t. The data information of the daily implied volatility with different delta levels are provided in

the OptionMetrics - Volatility Surface database. As the firms’ implied volatilities measure the

expected volatility of their stock prices over the next 30 days, the daily sequence of {IVi,t}t is a

highly persistent process. In other words, IVi,t−1 would have a strong predictive power to forecast

IVi,t . To deviate such self-effect that merely comes from the overlapping of measuring periods, we

analyze the innovation processes by taking daily first differences on each implied volatility series:

∆ IVi,t = IVi,t − IVi,t−1. (6.22)

This manipulation procedure is simple and easy to replicate 11. We will hereafter use ∆ IVi,t to

estimate our implied volatility network.

The date range of the database is from 01/01/1996 to 08/31/2015. The companies whose IPO

dates are after 01/01/2000 will be dropped off, such that we can examine the two most important

crises in the US stock market (i.e., the IT Bubble Burst and the Financial Crisis of 2007-09). The

remaining full sample is from 20/08/1999 to 31/08/2015. There are missing values on some dates

for some companies and we take linear interpolations to impute the missing values to get completed

time series processes for estimations. We have 90 companies in the final sample, N = 90. Appendix

B provides the ticker symbol list of nodes and their respective sectors in our implied volatility

network. The Industry Group classification for each node is from the North American Industry

Groups database from MorningStar, LLC.

As Diebold and Yilmaz (2014) point out, latent market network structures may vary with busi-

ness circles or may shift abruptly with market environment (e.g., crisis and noncrisis). Whether

and how much it varies is ultimately an empirical matter and there is no point to just simply assume

it is constant. Hence, we allow network structure to be time-varying, and thus the elements in the

causality measures table are also allowed to be time-varying.12 To capture time variations, we will

11Ang, Hodrick, Xing and Zhang (2006) use this manipulation approach to deal with the VIX index to test whether

the VIX index is market risk factor
12This assumption does not contradict the constant parameters setting we made in estimating the multiple horizon

causality measures. The “calendar time” for time-varying measures and the “sampling time” to estimate the measures

are conceptually different. We just require the processes to be estimated are locally stationary.
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estimate the dynamic implied volatility network structures with rolling samples.

Throughout the empirical exercise, We set the lag p = 1 and apply the VAR(1) model to ap-

proximate the unconstrained and the constrained models. Setting the same lag makes the condi-

tional covariance to be comparable in the unconstrained models and in the constrained models.

We will first estimate the static implied volatility network structure with full sample observations

(20/08/1999 - 31/08/2015). As mentioned before, market connectedness can be decomposed by

the connectedness within each sector and the interconnections among different sectors. Firm-wise

interconnections within each sector and sector-wise interconnections are certainly of interest. To

investigate the dynamic patterns of the volatility network structures, there is always a trade-off

between estimation accuracies and more current conditional estimates when choosing the width of

estimation windows. To examine market connectedness dynamics, we set the width of the moving

window to be 2 years and update measures every one month. For example, the estimates on De-

cember 2008 are estimated based on the data from January 2007 to December 2008. By moving

the estimation windows forward every month, we can obtain the dynamic pictures of the implied

volatility network.

In robustness check, we compare our results with those setting the lag p = 2 and those using

moving estimation windows of 1 year (T = 252), to see if our results are robust to different pre-

selected modelling settings.

6.2. Empirical results

Market network econometric analysis can be worked under two types of network representations:

i) firm-wise market structure (VC), under which the nodes in the market are the 90 companies; and

ii) sector-wise market structure (VS) under which the nodes in the market are the 8 sectors that the

90 companies belong to. We will apply the point-wise edge analysis technique in the firm-wise

market structure and apply the group-wise analysis technique in the sector-wise market structure.

6.2.1. Static implied volatility network structures

Firm-wise market network structures give us a broad picture of how firms connect to each other.

Sub-market network structures zoom in firms’ interconnections within specific sector. Sector-wise

market structures merge the firms in the same sector and give us a simple picture of how different

sectors connect to each other.

In Figure 5, we show the firm-wise S&P 100 implied volatility network structure. To examine

this big network (90 nodes and 902 edges), we only keep the directed and weighted edge (i → j)

if its strength is greater or equal to 90% percentile of the strengths of the edges (i → ·) and 90%

percentile of the strengths of the edges (· → j). In other words, we only keep an edge if and only

if this edge is important to the pair of nodes being connected by it. If i → j and j → i are both
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kept, we only plot the one with greater strength without confusions. At the first glance, edges are

denser around the firms in the financial sector. A majority of the edges being shown in the figure

comes from financial firms. Moreover, the financial firms have more interconnections due to the

recent financial crisis. It is also documented by Barigozzi and Brownlees (2016) in the S&P 100

realized volatility network. Interestingly, we observe that GE (a major industrial goods company)

and SLB (a major supplier to the oil and gas exploration and production industry) have relatively

strong interconnections with the financial firms. GE was almost bankrupt in 2009 and 2010. The

oil price is very volatile in the past ten years. Figure 5 has reflected some special market situations

in the US economy in the past 15 years.

We identify the 10 most influential firms in Table 2. In Table 2, we report the minimum value,

the maximum value, the mean value and the quantiles (25%, 50% and 75%) of the entries in each

firm’s “OUT” vector, [Ci1,Ci2, ...,CiN]. The mean for almost every firms is greater than their median

and is closed to the 75% quantile; the discrepancy within the first 25% quantile is very small, but

the discrepancy within the last 25% (75% - Max) is much larger. These are strong evidences

of the distribution of firms’ weighted edges in the “OUT” direction is right skewness. Jackson

(2008) also documents right skewness distributions in social networks. We select the median,

rather than the mean, to describe the central tendency of the distributions of firms’ edges13. We

sort the firms’ tickers by their medians. The most influential firm in the static network is the

BAC (Bank of America). BAC helps to increase the forecast precision of the next-day implied

volatility by 0.07% for more than a half of the firms in the S&P 100, and by at high as 5.33% for

the firm that it affects most. Seven financial firms (BAC, C, BK, AIG, MET, F, JPM and MS) are

listed in the top 10 influential firms at Table 2. In Figure 5, we have seen many prominent edges

are from financial firms. The firms in the financial sector have great influence in the S&P 100

network. On the other side, Table 3 reports the summary statistics of the entries in the “IN” vector,

[C1i,C2i, ...,CNi]. Among the top 10 sensitive firms, only the firm (C) belongs to the financial sector

and the other nine firms belong to the basic materials sector or from the Industrial goods sector.

Therefore, the influential firms in the S&P 100 network are not those who will easily be affected.

The “influential” and “sensitive” we mentioned so far are in the sense of direct effects, in which the

causality measures are at forecast horizon h= 1. In Table 4, we report the top 10 influential firms at

different forecast horizons, h= 1,2,3,4,5, to take spillover effects into account. The firms and their

orders in the list of top 10 influential firms are slightly different at different forecast horizons. For

instance, in the case of only taking direct effects into account (h = 1), the most influential financial

firm is BAC and 7 out of 10 most influential firms belong to the financial sector; in the case of

taking direct and indirect effects into account (h = 5), the most influential financial firm becomes

AIG and only 4 out of 10 most influential firms is from the financial sector. The technology

13The firm’s centrality described by our median measures is in alignment with the “Degree Centrality” in Freeman

(1978) and Jackson (2008)
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firms are actually influential. In the case of h = 5, 4 out 10 most influential firms belong to the

technology sector and the top 2 influential firms are from the technology sector, if the Apple Inc.

is considered as a technology firm. In short, measuring a static network that only characterizes

direct effects in an economic network is far from enough to fully understand all interconnections

and indirect effects. In contrast, directly measuring direct and indirect effects with the causality

tables at different forecast horizons can provide us “dynamic” pictures of interconnections in the

S&P 100 network with different effect-radius. In many cases, what is truly important is firm’s total

effect (direct effect and indirect effect) rather than just its direct effect.

Next, we zoom in the financial sector and investigate the interconnections within the financial

sector. The firm-wise S&P 100 implied volatility network within the financial sector can be visu-

alized by Figure 6. In this figure, we only keep the directed and weighted edges with the strength

greater or equal to the 50% percentile of the strengths of edges in this financial network. In other

words, only the “big” edges in this financial sector network will be kept. Again, if both i → j

and j → i are kept, we only show the one with greater strength. We find that the most influential

firms in the financial sector, in the sense of the out-degree (number of edges pointing from the

firms), are the top investment banks: Morgan Stanley (MS), Goldman Sachs (GS) and Bank of

America(BAC). In Table 2, Morgan Stanley and the Bank of America are both listed in the top

10 influential firms and Goldman Sachs is the 16th influential firm. The summary statistics of the

entries in the “OUT” vector in the financial network in Table 5 confirms their great influence in

the financial sector. Similar to the one in Table 2, the edges distributions in the financial sector are

also right skewness. We again use the median to describe the central tendency of these distribu-

tions. The top 3 influential firms in the financial sector are in order as: BAC (median = 0.42), MS

(median = 0.30) and GS (median = 0.25), compared with the 4th influential firms: BK (median =

0.06). Roughly speaking, we could say that the financial sector is actually controlled by the top

investment banks in the past 15 years. It is also interesting to look at who are the most sensitive

firms in this financial sector. In Table 6, we sort the firms by their sensitivities. The top 3 sensitive

financial firms are in order as: C (median = 0.33), ALL (median = 0.32) and BAC (median = 0.28).

C is the only financial firm that is listed in the top 10 sensitive firms in the S&P 100 network, and it

is also the most sensitive firms in the financial sector. BAC not only is the most influential firms in

the S&P 100 network, but also has strong interconnections with other firms in the financial sector

since it is the most influential firm as well as the 3rd most sensitive firm in the financial sector.

Lastly, Figure 7 shows the sector-wise S&P 100 implied volatility network structure. In this

network, the nodes are the sectors grouped by their respective firms as Vi. We only keep the directed

and weighted edges with the strength greater or equal to the 50% percentile of the strengths of

edges in this sector-wise network. In other words, only the “big” edges in this network will be

kept. Once again, if both Vi →Vj and Vj →Vi are kept, we only show the one with greater strength.

An important observation is that all sectors are strongly self-affected. It is in line with our common
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wisdom. Four most influential sectors, in the sense of the out-degree (number of edges pointing

from the sectors), are Technology, Consumer Goods, Industrial Goods and Financial. They are

also the key industries that support the growth of the US economy in these 15 years. In Table 7, we

sort the sectors by their influences and obtain the top 4 influential sectors: Technology (median =

3.27), Industrial Goods (median = 1.55), Consumer Goods (median = 0.90) and Financial (median

= 0.48). It is similar to what we have found in Figure 7. Moreover, Technology, Consumer Goods

and Financial are also on the list of four least sensitive sectors, as reported in Table 8. Overall,

the relationships among different sectors in the S&P 100 network are very asymmetric. There

are two groups in this network: the influential sectors (Technology, Industrial Goods, Consumer

Goods and Financial) and the sensitive sectors (Services, Basic Materials, Industrial Goods and

Healthcare). Interestingly, the most influential sector in the sector-wise network (see Table 7) is

the technology sector, rather than the financial sector that has the most influential firms in the

frim-wise S&P 100 network found in Table 2. Note that the causality we measure is based on the

marginal effect on prediction. When firms’ marginal effects are small, their total (sector) margin

effect is not necessarily small, especially if the component marginal effects are positive correlated.

Even though the technology firms, as single components, are not as influential as the financial

firms, the technology sector, as a whole, can be more influential than the financial sector. This

circumstance is also discussed theoretically in the Section 3. Therefore, the group-wise network

measurement technique is an important complementary for the point-wise network measurement

technique to help us understand underlying market network structures.

6.2.2. Connectedness dynamics in firm-wise market

In Figure 8, we show the dynamic patterns of the market relative connectedness structure mea-

sures and the market absolute connectedness strength measures in the firm-wise market structure,

at forecast horizon 1, h = 1, and at forecast horizon 10, h = 10. We only report the “out” connect-

edness measures as the “out” measures and their respective “in” measures are highly correlated.

This is not out of surprise, because one’s “out” causality measures are just someone’s “in” causality

measures, and thus their market connectedness measures will have a similar dynamic pattern.

If our market connectedness measures are truly able to measure the market systemic risk in the

US stock market, they will vary with market conditions that can be reflected by market indices like

the VIX index or the S&P 500 index. The market absolute connectedness strength measures indeed

have significant variations across different periods. Prior to 2007, the absolute connectedness

strength measures are close to zero, while the VIX index is relatively high before 2003 due to the

IT Bubble Burst. Starting from 2007, both the market connectedness strength and the VIX index

start to soar and become more fluctuated at relatively high levels until 2011. This is exactly period

of the recent global financial crisis. From 2011 to 2015, the market connectedness strength has a

new “normal” level that is lower than the level during the crisis but higher than the level before
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the crisis, while the VIX index decreases to the pre-crisis level. Overall, there is an apparent

synchronization between our market connectedness strength measures and the VIX index, expect

in the IT Bubble Burst period. It is actually in alignment with our common wisdom that the

major difference of the financial crisis of 2007-09 from other crises is the recent global financial

crisis is driven and amplified by the systemic risk in financial markets. Our absolute connectedness

strength measure (“individual fear connectedness”) looks to be positive correlated with the “market

fear” level (VIX), but our measures do concentrate more on the systemic risk that comes from the

connectedness in financial markets.

Unlike the absolute connectedness strength measure, the relative connectedness structure mea-

sure concerns more about the network connectedness structure instead of the connectedness

strength. We first look at the relative market connectedness structure at forecast horizon 1 and

discuss it in four periods (2000-2003, 2003-2006, 2006-2009, 2009-2015). During 2000-2003, the

level of the relative connectedness structure measure is relatively high (0.90-0.95) and the stock

market slides due to the IT Bubble Burst. The S&P 500 gets to a bottom in early 2003 and starts

to recover, and the VIX index also starts to decrease. In this period (2003-2006), the relative con-

nectedness structure goes down. During the pre-crisis and crisis period (2006-2009), the relative

connectedness structure climbs up rapidly, and touches a historical record (> 0.95) at the end of

2008 when is the also the most fearful moment in financial markets as shown by the VIX index

touching the historical peak and the S&P 500 touching the bottom. During 2009-2015, the VIX

index goes down to be normal and the S&P 500 has been fully recovered from the crisis. In-

terestingly, however, the relative connectedness structure measure still remains at the crisis level

(> 0.95). Our conjecture is that the financial market is still remaining at a “crisis zone” that can be

characterized by the high level of the market connectedness structure.

When comparing the relative connectedness at different forecast horizons, we find the market

relative connectedness structure measures at forecast horizon 10 are much closer to the upper

bound 1, than at forecast horizon 1. Note that longer forecast horizon allows every node in the

network has more steps of paths to connect each other, the relative connectedness structure measure

will thus be larger at greater forecast horizons. Hence, we do not expect to find big time variations

for the relative connectedness structure measure at long horizons (e.g., h = 10), while we still can

see the market connectedness structure measures at horizon 10 has a dynamic pattern similar to the

one at horizon 1.

In Figure 8, the market relative connectedness structure measures and the market absolute con-

nectedness strength measures have striking different dynamic patterns across our sample period.

Absolute connectedness strength measures can be decomposed by relative connectedness struc-

ture measures and causation strengths. The difference of the relative measures and the absolute

measures is totally accounted by the time-varying causation strengths. By comparing these two

types of measures at different periods, we find the causation strengths are relative large during the
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financial crisis. It again confirms our assertion that our causality measures can capture elements of

the market systemic risk.

Also, we provide the 90% bootstrap confidence intervals for the absolute market connectedness

strength measures on some specific dates14 (2004-01-20, 2005-01-20, 2006-01-20, 2007-01-20,

2008-01-20, 2009-01-20, 2010-01-20, 2011-01-20, 2012-01-20, 2013-01-20 and 2014-01-20) in

Figure 9. We use the bootstrapping procedure that is similar to the one described in Dufour and

Zhang (2015). The raise of the market absolute connectedness strength during the financial crisis

period is statically significant.

While our market connectedness measures do show dynamic patterns corresponding to dif-

ferent major market conditions (before crisis, during crisis, and after crisis), it still seems to be

counterintuitive that our dynamic connectedness measures are “too volatile”. For instance, one

may find the market connectedness strength measures jump up and down frequently15, but the un-

derlying market structures has no way to change at this rate even though the market structures may

change abruptly because of crisis. In fact, our estimated implied volatility network not only mea-

sures the underlying market structures, but also captures the market effects in the stock market and

in the option market. As we have discussed before, firm’s implied volatility is sensitive to special

events in financial markets. One of the regular important events in the equity market is the quarter

earnings announcements. Publicly-traded companies have to release their earning reports every

three months regarding their financial conditions, earning forecasts, etc. It means the firm’s detail

information is only renewed to the public every three months. This kind information is crucial for

firm’s credit grade and firm’s stock price target evaluated by equity analysts in the market. If an

earning report beat market expectations, the firm’s stock price could jump up overnight and vice

versa. As a result, option trading will become much more active during earnings seasons, and thus

the implied volatilities are usual more volatile during this period. Moreover, different firms could

release their earnings reports on different dates during a earnings season. Some investors would

bet on some companies base on others’ released performances, especially when these firms are

in the same sector where they face a similar business environment. The high leverage and large

possible payoffs of the option trading make a large proportion of active investors choose to bet on

the option market16. Therefore, it is very likely that the connectedness measures of the implied

volatility network would become more volatile during earnings seasons. It is mainly due to shocks

in the financial market, rather than changes in the underlying market structures. Thus, the dy-

namics of our implied volatility market connectedness measures can be decomposed by long-run

stable market connectedness changes and short-run financial fluctuations, and this is exactly what

14We do not report the confidence intervals every month in our sample period because the bootstrapping procedure

is time costly.
15From 2007 to 2011, for example, we find about 10 spikes in the figure.
16Donders, Kouwenberg, Vorst et al. (2000) find firm’s implied volatility increases before announcement days and

drops afterwards.
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we observe in Figure 8.

6.2.3. Connectedness dynamics within single sector in firm-wise market

Taking the diagonal block that contains companies in a sector in the firm-wise market causality

measures table, we have the sub-network structure for this sector. We do so for each sector, and

then obtain the sector connectedness measures within every single sector in the firm-wise market.

Figure 10 reports the absolute connectedness strength measures within each of the 7 sectors in

our implied volatility network17. As expected, the financial sector has the highest and the most

persistent absolute connectedness strengths during the financial crisis. Other sectors also have

higher connectedness strengths in this period, but they are very minor when compared with the

financial sector. During the crisis, investors would be more sensitive to news comings, so the im-

plied volatility connectedness could become more fluctuated. Since financial shocks (e.g., quarter

earnings releases) to implied volatilities are more easily to spill over within a sector, at most of the

times when there are major spikes in the market connectedness strengths in Figure 8, we can find

their corresponding ones in one of the sector connectedness strengths in Figure 10.

6.2.4. Connectedness dynamics in sector-wise market

As has been emphasized before, the econometric framework proposed in this paper provides the

first unified method to estimate point-wise effects and group-wise effects. The nodes in the sector-

wise network structure (VS) in this empirical exercise are the 8 sectors18 that the S&P 100 compo-

nents belong to.

In Figure 11, we report the dynamic patterns of the market absolute connectedness strengths

and the market relative connectedness structures in the sector-wise market network at forecast hori-

zon 1 (h = 1) and at forecast horizon 10 (h = 10). The sector-wise market absolute connectedness

strength measure at forecast horizon 1 has a sharp peak at the end of 2008. However, it does not

persistently remain at a high level compared with the absolute connectedness strength measures

in the company-wise market structure during the crisis period shown in Figure 8. In other words,

even if there is a high persistent market systemic risk during the financial crisis, it is not due to

the connectedness among different sectors. The relative connectedness structure measures and the

absolute connectedness strength measures are positively correlated before 2009, while again, the

market connectedness structure does not decrease with the market connectedness strength after the

crisis. The sector-wise absolute connectedness structure strengths in Figure 11 are generally lower

than the firm-wise strengths in Figure 8. It is because sector-wise nodes have weaker interconnec-

tions than firm-wise nodes in an economic network. Connected firms usually have closed business

relationships and they tend to be in the same sector.

17The “Utility” industry is not included as it only contains one company.
18Basic Materials, Consumer Goods, Financial, Healthcare, Industrial Goods, Services, Technology and Utilities
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6.2.5. Directed and weighted edges dynamics in sector-wise market

We now look at the sector-wise network interconnections in more details. In particular, we con-

centrate on the financial sector, which has the greatest influence on the US stock market in the past

10 years due to the global financial crisis, to see how the interconnections between the financial

sector and other sectors look like.

In Figure 12 and Figure 13, we report the time-varying direct effects from the financial sector

to other sectors and from other sectors to the financial sectors. As expected, the financial sector

have the strongest influence on itself during the financial crisis. At the end of 2008, the magnitude

of the financial sector affecting itself soars to a historical peak with the VIX index soaring, and it

keep at a relatively high level until 2011. We find the financial sector has an extremely strong effect

on itself from 2009 to 2011, which matches the crisis period of financial crisis of 2007-09 as our

estimates utilize 2 years rolling samples. The financial crisis is actually not yet over in the global

financial market after 2009. Fore instance, the US financial crisis triggers the European debt crisis

in early 2010. From 2011 to 2013, the financial sector still has a relative strong effect on itself.

The effect from the financial sector on other sectors also increase at the beginning of the crisis,

while the raise only lasts for a few months. In contrast, all other sectors only have negligible effects

on the financial sector, compared with the striking magnitude of the financial sector affecting to

itself. The effects between the financial sector and other sectors are quite asymmetric: the financial

sector has a strong effect on others but the reverse is not. The asymmetry and the time variations

in effects between the financial sector and other sectors confirm the importance of directed and

weighted edges setting in economic network analysis.

6.3. Robustness check

Finally, we conclude this section with checking the robustness of our market connectedness results

to the choice of lags p in the VAR(p) approximation to the causality estimation models and to

the width of the estimation sample windows. In fact, different lags, p, correspond to different

information sets using in causality estimations; different widths of estimation windows correspond

to different sample market conditions. The estimates of a given edges will change with different

choices of them. Therefore, we do not expect our estimated connectedness measures would be

invariant to different lags and to different widths of estimation windows. Instead, if the underlying

market systemic risk in the volatility network can truly be measured by our market connectedness

measures, the measures, under different pre-selected model settings, should have similar dynamic

patterns over time, following the changes in the underlying market systemic risk.

In particular, we compare our estimated results with those estimated with VAR(2) models and

with those estimated with 1-year estimation windows. Figure 14 reports the market absolute con-

nectedness strength measures under three different model settings: i) VAR(1) and 2-year estimation
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windows (Benchmark); ii) VAR(2) and 2-year estimation windows; and iii) VAR(1) and 1-year es-

timation windows. They are estimated at forecast horizon 1 and at forecast horizon 10 in the

firm-wise market network. They all have a similar dynamic pattern (low before 2007, soar up from

2008, resume pre-crisis level in 2011 and has a mild increasing trend from 2012 to present). Fig-

ure 15 shows the robustness of the relative connectedness structure measures with the same model

settings comparison. All of the three relative connectedness structure measures at forecast horizon

1 have a similar dynamic pattern (relatively high from 2001 to 2003, decline from 2003 to 2006,

soar up from 2006 to 2009 and remain at the financial crisis level from 2009 to present). For the

connectedness structure measures at forecast horizon 10, they keep at a high level all the time.

To summarize, our robustness check shows that the time-varying characteristics of our market

connectedness measures are robust to the choices of p in the VAR(p) approximation, and also

robust to the choices of the widths of the estimation windows.

7. Conclusion

Economic and financial network analysis requires a well developed time series econometric frame-

work for empirical studies. Less restrictions on network settings, less assumptions on the time

series identification models and more empirical flexibility of the measurement framework would

be favoured. In this paper, we propose a novel time series econometric method to measure high-

dimensional directed and weighted market network structures. Direct and spillover effects at mul-

tiple horizons, between nodes and between groups, are measured in a unified framework. We argue

that a satisfactory network econometric framework to study market networks should be able to es-

timate directed and weighted network structures with causality implications, and it can be applied

to study network spillover effects in a high-dimensional context. Indeed, our network estimation

method not only satisfies all these criteria, but also enjoys other appealing features.

We measure causality at different horizons in a network through the multiple horizon causality

measures based on flexible VAR models specified by the LASSO approach. (Non-sparse) network

structures can be estimated from a sparse set of autoregressive coefficients and concentration matri-

ces. Asymptotic consistency results of the estimators of our directed and weighted edges measures

are also provided in this paper. We do not require sparsity assumptions on network structures or the

Gaussian assumption on econometric models. We successfully connect the causality literature with

the LASSO approach in application to economic and financial network measurement. Moreover, to

the best of our knowledge, our econometric framework is the first one, in the network econometric

literature, to explicitly allow point-wise edges (relationships between firms) and group-wise edges

(relationships between sectors) to be measured in a unified framework.

With this framework at hand, we also provide the estimated market network with new connect-

edness measures that are built upon the underlying network structures. Since an economic network
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can be viewed as a network among firms as well as a network among sectors, we propose three

types of connectedness measures to gauge network interconnections. These types of connected-

ness measures fully take advantage of the flexibility of our network measurement method, so they

can be applied to study market network connectedness in flexible ways

Our network measurement methods have a wide range of applications and can be applied in

a variety of research areas, including identifying and quantifying economic relationships between

firms, between sectors and between areas; measuring market connectedness; predicting financial

risks; guiding asset allocations in large portfolios; etc. Note that many latent economic and fi-

nancial network structures can be estimated by our flexible network measurement method with

varieties of panel databases. Specifically, observing that explicit identified economic network cen-

trality and consumer-supplier linkage have been shown to be new risk factors in asset pricing and

new determinants to predict financial variables, we expect more pricing factors and financial and

macroeconomic variables drivers are to be discovered by our network econometric measurement

methods.

To illustrate the usefulness of our method in network analysis, we investigate the S&P 100

implied volatility network in the US stock market, which can be viewed as a “individual fear”

network and has not yet been studied in existing literature. We find that: i) 7 out of the 10 most

influential firms in the S&P 100 belong to the financial sector, and top investment banks (Morgan

Stanley, Goldman Sachs and Bank of America) have the greatest influence in the financial sector;

ii) market connectedness was especially strong during the recent global financial crisis; iii) the

high market connectedness was mainly due to the high connectedness within the financial sector

and the spillovers from the financial sector to other sectors; iv) the financial sector had the highest

firm-wise connectedness from 2008 to 2010, while the connectedness of other sectors also reach

relatively high level during this period; v) the causality effects between the financial sector and

other sectors were asymmetric and displayed considerable variation over time, which stresses the

importance of directed and weighted edges settings in market network analysis.
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Appendix

A. Proofs

We apply an assumptions set that is similar to the one using in Barigozzi and Brownlees (2014).

The proofs of the Proposition 4.1 and the Proposition 4.2 can thus follow their results. The proof

of Theorem 4.3 is based on Proposition 4.1 and Proposition 4.2.

A.1. Assumptions

1. The N-dimensional random vector process X(t) is non-deterministic, has zero mean, and is

covariance stationary. Moreover,

(a) here exist constants M1 and M2 such that for each N, 0< M1 < µmin(ΓX)≤ µmax(ΓX)<

M2 < ∞, where ΓX is the covariance matrix of X and µmin(·) and µmax(·) are the small-

est and the largest eigenvalues operators respectively.

(b) there exists constants M3(ω) and M4(ω) such that, for each N and for any ω ∈ [−π ,π],

we have 0 < M3(ω)≤ µmin(sX(ω))≤ µmax(sX(ω))≤ M4(ω)< ∞, where sX(ω) is the

spectral density matrix of (4.1).

(c) define β = sup{c : ∑∞
h=1 hc supi, j |E[X(t)iX(t −h) j]|}, then β > 0.

(d) the process has three representation forms (4.1), (4.2) and (4.3) as stated in Assumption

4.1.

2. There exist constants c1 > 0 and c2 > 0 such that N = O(T c1) and p = O(T c2). β > 4c1

c2
. The

dimension of the two parties W and Y of analysis, m1 and m2, is fixed.

3. (a) The set of nonzero entries in α i, Ai, has qA
Ti elements, and qA

Ti satisfies the following

conditions:

qA
Ti = o

(√

T
logT

)

, λ T

T

√

qA
Ti = o(1), lim

T→∞

λ T

T

√

T
logT

= ∞,

√

qA
Ti logT

T
= o

(

λ T

T

)

and

λ T

T 1−c1

√

qA
Ti = O(1) for i = 1, ...,N.

(b) The set of nonzero entries in ᾱ i, ¯Ai, has q
¯A

Ti elements, and q
¯A

Ti satisfies the following

conditions:

q
¯A

Ti = o
(√

T
logT

)

, λ T

T

√

q
¯A

Ti = o(1), lim
T→∞

λ T

T

√

T
logT

= ∞,

√

q
¯A

Ti logT

T
= o

(

λ T

T

)

and

λ T

T 1−c1

√

q
¯A

Ti = O(1) for i = 1, ...,N−m1.

4. (a) For all i = 1, ...,N, there exists a sequence of positive real numbers {sA
Ti} such that

|α i j|> sA
Ti and lim

T→∞

sA
Ti

λT
T

√
qA

Ti

= ∞ for all α i j ∈ Ai.
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(b) For all i = 1, ...,N −m1, there exists a sequence of positive real numbers {s
¯A

Ti} such

that |α i j|> s
¯A

Ti and lim
T→∞

s
¯A

Ti

λT
T

√

q
¯A

Ti

= ∞ for all ᾱ i j ∈ ¯Ai.

5. (a) For each i = 1, ...,N, |α̂LASSO
Ti j −α i j|= Op(T

−θ ) with θ ∈ [1
4
, 1

2
] for any j = 1, ...,N.

(b) For each i = 1, ...,N, | ˆ̄αLASSO
Ti j − ᾱ i j|= Op(T

−θ ) with θ ∈ [1
4
, 1

2
] for any j = 1, ...,N.

6. (a) The set of nonzero entries in ρu, Qu, has q
Qu

T elements, and q
Qu

T satisfies the following

conditions:

q
Qu

T = o
(√

T
logT

)

,
γT

T

√

q
Qu

T = o(1), lim
T→∞

γT

T

√

T
logT

= ∞ and

√

q
Qu
T logT

T
= o

( γT

T

)

.

(b) The set of nonzero entries in ρν , Qν , has q
Qν
T elements, and q

Qν
T satisfies the following

conditions:

q
Qν
T = o

(√

T
logT

)

,
γT

T

√

q
Qν
T = o(1), lim

T→∞

γT

T

√

T
logT

= ∞ and

√

q
Qν
T logT

T
= o

( γT

T

)

.

7. (a) For all ρu
i j ∈ Qu, there exists a sequence of positive real numbers {s

Qu

T } such that

|ρu
i j|> s

Qu

T and lim
T→∞

s
Qu
T

γT
T

√

q
Qu
T

= ∞.

(b) For all ρν
i j ∈ Qν , there exists a sequence of positive real numbers {s

Qν
T } such that

|ρν
i j|> s

Qν
T and lim

T→∞

s
Qν
T

γT
T

√

q
Qν
T

= ∞.

8. (a) Let Du
t be a

N(N−1)
2

× 1 vector such that it has generic component du
ti j =

√

ŝu
Tii

ŝu
T j j

ûti

and let ΓD = E[(Du
t )

′Du
t ], then there exists a constant Mu < 1 such that for

any ρu
i j ∈ QC

u , |Γ ′′
Di jQu

(ρu)[Γ ′′
DQuQu

(ρu)]−1sign(ρu
Qu

))| < Mu, where Γ ′′
Di jsq(ρ

u) :=
∂ 2ΓD

∂du
ti j∂du

tsq
|du

ti j=ρu
i j,d

u
tsq=ρu

sq
.

(b) Let Dν
t be a

N(N−1)
2

× 1 vector such that it has generic component dν
ti j =

√

ŝν
Tii

ŝν
T j j

ν̂ti

and let ΓD = E[(Dν
t )

′Dν
t ], then there exists a constant Mν < 1 such that for

any ρu
i j ∈ QC

ν , |Γ ′′
Di jQν

(ρν)[Γ ′′
DQνQν

(ρν)]−1sign(ρν
Qν

))| < Mu, where Γ ′′
Di jsq(ρ

ν) :=
∂ 2ΓD

∂dν
ti j∂dν

tsq
|dν

ti j=ρν
i j,d

ν
tsq=ρν

sq
.

9. (a) For any δ > 0, there exists a constant K such that for T large enough, we have

P

(

max
1≤i≤NT

|ŝu
Tii − su

ii| ≤ K

√

logT
T

)

≥ 1−O(T−δ ).

(b) For any δ > 0, there exists a constant K such that for T large enough, we have

P

(

max
1≤i≤NT

|ŝν
Tii − sν

ii| ≤ K

√

logT
T

)

≥ 1−O(T−δ ).
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A.2. Proof of the Proposition 4.1

Under assumption 5a, the weighted penalty wTi j =
1

|α̂LASSO
Ti j | in (4.13) satisfies the condition 1

for the pre-estimator in Barigozzi and Brownlees (2014). Then under assumptions 1, 2, 3a, 4a and

5a, using the result in the Theorem 1 in Barigozzi and Brownlees (2014), we have

1. for T large enough and for any δ > 0, α̂Ti = 0 for α i ∈ A C
i with at least probability 1−

O(T−δ ), where α̂Ti is defined in (4.13), and

2. for T large enough and for any δ > 0, there exist a constant κu such that ‖α̂Ti −α i‖2 ≤
κu

λ T

T

√

qA
Ti with at least probability 1−O(T−δ ).

From assumption 3a, we know λ T

T

√

qA
Ti = o(1). Thus we have Prob{α̂Ti j = 0 if α i j ∈A C

i }→ 1

and α̂Ti
p−→ α i for i = 1, ...,N. Note also that vec(α ′

1, ...,α
′
N) = vec([A

p
1 ,A

p
2 , ...,A

p
p]
′), and by the

Lemma 2 in Barigozzi and Brownlees (2014) the truncated bias
∥

∥A
p
k −Ak

∥

∥

∞
= o(1). Therefore,

Â
p
T k

p−→ Ak for k = 1, ..., p .

Similarly, for the expanded restricted process, under the assumptions 1, 2, 3b, 4b and 5b,

we have Prob{ ˆ̄αTi j = 0 if ᾱ i j ∈ ¯A C
i } → 1, ˆ̄αTi

p−→ ᾱ i for i = 1, ...,N and thus ˆ̄A
p
T k

p−→ Ā
φ
k for

k = 1, ..., p.

A.3. Proof of the Proposition 4.2

For the ρ̂u
T considered in (4.19), under the assumptions 1, 2, 3a, 4a, 5a, 6a, 7a, 8a and 9a, using

the result in Theorem 2 in Barigozzi and Brownlees (2014), we have

1. for T large enough and for any δ > 0, ρ̂u
Ti j = 0 for ρu

i j ∈ QC
u with at least probability 1−

O(T−δ ), and

2. for T large enough and for any δ > 0, there exists a constant κq such that ‖ρ̂u
T −ρu‖2 ≤

κq
γT

T

√

q
Qu

T , or equivalently,
∥

∥Ŝu
T −Su

∥

∥≤ κq
γT

T

√

q
Qu

T with at least probability 1−O(T−δ )

For assumption 6a, we know
γT

T

√

q
Qu

T = o(1). Then we have Prob{ρ̂u
Ti j = 0 if ρu

i j ∈QC
u } → 1

and ρ̂u
Ti j

p−→ ρu
i j for i, j = 1, ...,N. Therefore, we also have Ŝu

T

p−→ Su ≡ Σ−1
u .

Similarly, for the ρ̂ν
T considered in (4.20), under the assumptions 1, 2, 3b, 4b, 5b, 6b, 7b, 8b

and 9b, we have Prob{ρ̂ν
Ti j = 0 if ρν

i j ∈ QC
ν } → 1 and ρ̂ν

Ti j

p−→ ρν
i j for i, j = 1, ...,N. Therefore,

we also have Ŝν
T

p−→ Sν ≡ Σ−1
ν .
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A.4. Proof of the Theorem 4.3

Under the assumptions 1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b, 8a, 8b, 9a, and 9b, which have

been used in Proposition 4.1 and 4.2, and by these propositions, we have the consistent estimators,

Â
p
T k, ˆ̄A

p
T k, Ŝu

T , Ŝν
T for Ak, Ā

φ
k , Su, Sν respectively.

Note that from the Remark 4.1 and from the Remark 4.2, we have

1. The covariance matrix of the forecast error at horizon h for the unrestricted model is

Σ [X(t +h)|F (t)] =
h−1

∑
q=0

ϕqΣuϕ ′
q, (A.1)

where ϕq = ∑
q
k=1 Akϕq−k and ϕ0 = IN .

2. The covariance matrix of the forecast error at horizon h for the restricted model is

Σ [X0(t +h)|F−W (t)] =
h−1

∑
q=0

ϕ̄qΣε ϕ̄ ′
q, (A.2)

where ϕ̄q = ∑
q
k=1 Ākϕ̄q−k and ϕ̄0 = IN−m1

3. The forecast error covariance of XW , without its past information, at horizon h is

ΣW [XW (t +h)|F−W (t)] = J3

(

h−1

∑
q=0

φ qΣν φ ′
q

)

J′3, (A.3)

where φ q = ∑
q
k=1 A

φ
k φ q−k, A

φ
k = Ā

φ
k J2, φ 0 = IN , J3 = [Im1×m1

, 0m1×(N−m1)]m1×N .

4. Σε = J2Σν J′2 and Āk = (J2Ā
φ
k )

′, where J2 = [0(N−m1)×m1
, I(N−m1)×(N−m1)](N−m1)×N

As Â
p
T k

p−→ Ak and (Ŝu
T )

−1 p−→ (Su)−1 = Σu, ϕ̂q is iteratively defined as ϕ̂q = ∑
q
k=1 Â

p
T kϕ̂q−k

for q = 1, ...,h−1, then ϕ̂q

p−→ ϕq and thus

Σ̂ [X(t +h)|F−W (t)]
p−→ Σ [X(t+h)|F−W (t)], (A.4)

where Σ̂ [X(t +h)|F−W (t)] := ∑h−1
q=0 ϕ̂q(Ŝ

u
T )

−1ϕ̂ ′
q and ϕ̂0 = IN .

As ˆ̄A
p
T k

p−→ Ā
φ
k and (Ŝν

T )
−1 p−→ (Sν)−1 = Σν , φ̂ q is iteratively defined as φ̂ q =

∑
q
k=1(

ˆ̄A
p
T kJ2)φ̂ q−k for q = 1, ...,h−1, then φ̂ q

p−→ φ q = ∑
q
k=1(Ā

φ
k J2)φ q−k, and thus

Σ̂W [XW (t +h)|F−W (t)]
p−→ ΣW [XW (t +h)|F−W (t)], (A.5)

where Σ̂W [XW (t +h)|F−W (t)] := J3

(

∑h−1
q=0 φ̂ q(Ŝ

ν
T )

−1φ̂
′
q

)

J′3 and φ̂ 0 = IN .
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As ˆ̄A
p
T k

p−→ Ā
φ
k , (Ŝν

T )
−1 p−→ (Sν)−1 = Σν , Σε = J2Σν J′2 and Āk = (J2Ā

φ
k )

′, then Σ̂ε
p−→ Σε

and (J2
ˆ̄A

p
T k)

′ p−→ (J2Ā
φ
k )

′, where Σ̂ε = J2(Ŝ
ν
T )

−1J′2. Also ˆ̄ϕq is iteratively defined as ˆ̄ϕq =

∑
q
k=1(J2

ˆ̄A
p
T k)

′ ˆ̄ϕq−k, then ˆ̄ϕq

p−→ ϕ̄q = ∑
q
k=1 Ākϕ̄q−k, and thus

Σ̂ [X0(t +h)|F−W (t)]
p−→ Σ [X0(t +h)|F−W (t)], (A.6)

where Σ̂ [X0(t +h)|F−W (t)] := ∑h−1
q=0

ˆ̄ϕqΣ̂ε ˆ̄ϕ ′
q and ˆ̄ϕ0 = IN−m1

.

Finally, we have

Ĉh
TWY = ln

[

det{J0Σ̂ [X0(t +h)|F−W (t)]J′0}
det{J1Σ̂ [X(t+h)|F (t)]J′1}

]

p−→ ln

[

det{J0Σ [X0(t +h)|F−W (t)]J′0}
det{J1Σ [X(t +h)|F (t)]J′1}

]

and

Ĉh
TWW = ln

[

det{Σ̂W [XW (t +h)|F−W (t)]}
det{J1Σ̂ [X(t+h)|F (t)]J′1}

]

p−→ ln

[

det{ΣW [XW (t +h)|F−W (t)]}
det{J1Σ [X(t +h)|F (t)]J′1}

]

.

Therefore,

Ĉh
TWY

p−→CL(X
W −→

h
XY |I), (A.7)

Ĉh
TWW

p−→CL(X
W −→

h
XW |I), (A.8)
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B. S&P 100 components (selected)

Ticker Company Sector Ticker Company Sector

AAPL Apple Inc. Consumer Goods HPQ Hewlett-Packard Co Technology

ABT Abbott Laboratories Healthcare IBM Intl Business Machines Corp Technology

ACN Accenture plc Technology INTC Intel Corp Technology

AGN Allergan plc Healthcare JNJ Johnson & Johnson Healthcare

AIG American Intl Group Inc Financial JPM JP Morgan Chase & Co Financial

ALL Allstate Corp Financial KO Coca-Cola Co Consumer Goods

AMGN Amgen Inc Healthcare LLY Lilly Eli & Co Healthcare

AMZN Amazon.com Inc Services LMT Lockheed Martin Industrial Goods

APC Anadarko Petroleum Corp Basic Materials LOW Lowe’s Cos Inc Services

AXP American Express Co Financial MCD McDonald’s Corp Services

BA Boeing Co Industrial Goods MDT Medtronic plc Healthcare

BAC Bank of America Corp Financial MET Metlife Inc Financial

BAX Baxter Intl Inc Healthcare MMM 3M Co Industrial Goods

BIIB Biogen Inc Healthcare MO Altria Group Inc Consumer Goods

BK The Bank of New York Mellon Corp Financial MON Monsanto Co. Basic Materials

BMY Bristol-Myers Squibb Healthcare MRK Merck & Co Inc Healthcare

C Citigroup Inc Financial MS Morgan Stanley Financial

CAT Caterpillar Inc Industrial Goods MSFT Microsoft Corp Technology

CELG Celgene Corp Healthcare NKE NIKE Inc B Consumer Goods

CL Colgate-Palmolive Co Consumer Goods NSC Norfolk Southern Corp Services

CMCSA Comcast Corp Services ORCL Oracle Corp Technology

COF Capital One Financial Financial OXY Occidental Petroleum Basic Materials

COP ConocoPhillips Basic Materials PEP PepsiCo Inc Consumer Goods

COST Costco Wholesale Corp Services PFE Pfizer Inc Healthcare

CSCO Cisco Systems Inc Technology PG Procter & Gamble Consumer Goods

CVS CVS Health Corporation Healthcare QCOM QUALCOMM Inc Technology

CVX Chevron Corp Basic Materials RTN Raytheon Co Industrial Goods

DD E. I. du Pont de Nemours and Company Basic Materials SBUX Starbucks Corp Services

DIS Walt Disney Co Services SLB Schlumberger Ltd Basic Materials

DOW Dow Chemical Basic Materials SO Southern Co Utilities

DVN Devon Energy Corp Basic Materials SPG Simon Property Group Financial

EBAY eBay Inc. Services T AT&T Inc Technology

EMC EMC Corp Technology TGT Target Corp Services

EMR Emerson Electric Co Industrial Goods TWX Time Warner Inc Services

EXC Exelon Corp Utilities TXN Texas Instruments Inc Technology

F Ford Motor Co Consumer Goods UNH Unitedhealth Group Inc Healthcare

FDX FedEx Corp Services UNP Union Pacific Corp Services

FOXA Twenty-First Century Fox, Inc Services USB US Bancorp Financial

GD General Dynamics Industrial Goods UTX United Technologies Corp Industrial Goods

GE General Electric Co Industrial Goods V Visa Inc Services

GILD Gilead Sciences Inc Healthcare VZ Verizon Communications Inc Technology

GS Goldman Sachs Group Inc Financial WBA Walgreens Boots Alliance Inc Services

HAL Halliburton Co Basic Materials WFC Wells Fargo & Co Financial

HD Home Depot Inc Services WMT Wal-Mart Stores Services

HON Honeywell Intl Inc Industrial Goods XOM Exxon Mobil Corp Basic Materials
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Table 2. Summary statistics of causality measures from each firm to other firms. This table reports

the summary statistics of each row of the firm-wise causality table [Ci→·]. The causality table is

estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P

100 components. For each firm i, we report the minimum value, the maximum value, the mean

value and the quantiles (25%, 50% (median) and 75%) of the entries in its “OUT” vector. The

reported values are 100 times of the raw values, and are kept with two digits. We sort the tickers

by their median values and identify the top 10 influential firms.

Sector∗ Ticker Median Mean Min 25% 75% Max Sector∗ Ticker Median Mean Min 25% 75% Max

F BAC 0.07 0.43 0.00 0.00 0.51 5.33 I LMT 0.00 0.03 0.00 0.00 0.01 1.80

C AAPL 0.07 0.16 0.00 0.02 0.20 1.03 C KO 0.00 0.02 0.00 0.00 0.00 1.34

T CSCO 0.07 0.27 0.00 0.00 0.31 2.63 H AGN 0.00 0.03 0.00 0.00 0.01 2.27

F C 0.07 0.20 0.00 0.00 0.21 2.77 B CVX 0.00 0.04 0.00 0.00 0.01 1.59

F BK 0.06 0.33 0.00 0.00 0.33 5.75 T HPQ 0.00 0.00 0.00 0.00 0.00 0.16

F AIG 0.03 0.15 0.00 0.00 0.15 2.28 B OXY 0.00 0.08 0.00 0.00 0.02 3.81

F MET 0.03 0.11 0.00 0.00 0.07 1.32 H BAX 0.00 0.10 0.00 0.00 0.02 4.88

C F 0.03 0.12 0.00 0.00 0.10 4.04 B DVN 0.00 0.01 0.00 0.00 0.00 0.10

F JPM 0.03 0.11 0.00 0.00 0.08 0.83 H BMY 0.00 0.01 0.00 0.00 0.02 0.08

F MS 0.02 0.38 0.00 0.00 0.17 4.83 S CMCSA 0.00 0.30 0.00 0.00 0.14 6.38

H GILD 0.02 0.09 0.00 0.00 0.10 1.39 F ALL 0.00 0.20 0.00 0.00 0.07 4.67

I GE 0.02 0.17 0.00 0.00 0.08 3.63 F USB 0.00 0.16 0.00 0.00 0.04 2.62

F WFC 0.02 0.15 0.00 0.00 0.12 3.96 B SLB 0.00 0.09 0.00 0.00 0.00 3.28

S TGT 0.02 0.06 0.00 0.00 0.05 0.37 T TXN 0.00 0.09 0.00 0.00 0.01 4.93

T IBM 0.02 0.07 0.00 0.00 0.06 1.02 S SBUX 0.00 0.07 0.00 0.00 0.01 6.14

F GS 0.02 0.12 0.00 0.00 0.08 1.70 T MSFT 0.00 0.06 0.00 0.00 0.02 2.96

T VZ 0.02 0.07 0.00 0.00 0.03 4.11 S DIS 0.00 0.06 0.00 0.00 0.01 5.11

F SPG 0.02 0.14 0.00 0.00 0.07 5.63 T ACN 0.00 0.06 0.00 0.00 0.01 3.49

S TWX 0.01 0.07 0.00 0.00 0.05 2.47 H UNH 0.00 0.06 0.00 0.00 0.01 2.78

B DOW 0.01 0.09 0.00 0.00 0.03 2.52 U EXC 0.00 0.06 0.00 0.00 0.01 4.19

I BA 0.01 0.11 0.00 0.00 0.03 7.36 H CVS 0.00 0.05 0.00 0.00 0.01 2.97

T EMC 0.01 0.04 0.00 0.00 0.03 0.78 S AMZN 0.00 0.05 0.00 0.00 0.03 0.97

F AXP 0.01 0.16 0.00 0.00 0.07 2.78 H LLY 0.00 0.05 0.00 0.00 0.01 3.86

T ORCL 0.01 0.05 0.00 0.00 0.02 3.26 H ABT 0.00 0.04 0.00 0.00 0.00 3.48

H PFE 0.00 0.06 0.00 0.00 0.03 2.51 B APC 0.00 0.04 0.00 0.00 0.00 1.71

S COST 0.00 0.02 0.00 0.00 0.02 0.98 T QCOM 0.00 0.03 0.00 0.00 0.01 0.74

H CELG 0.00 0.03 0.00 0.00 0.01 1.14 B XOM 0.00 0.02 0.00 0.00 0.00 0.86

T INTC 0.00 0.04 0.00 0.00 0.03 0.68 I HON 0.00 0.01 0.00 0.00 0.00 0.29

U SO 0.00 0.09 0.00 0.00 0.01 7.63 S WMT 0.00 0.01 0.00 0.00 0.00 0.37

F COF 0.00 0.10 0.00 0.00 0.04 4.63 H BIIB 0.00 0.01 0.00 0.00 0.01 0.13

S UNP 0.00 0.04 0.00 0.00 0.01 1.93 C NKE 0.00 0.01 0.00 0.00 0.00 0.31

S MCD 0.00 0.08 0.00 0.00 0.01 6.30 S HD 0.00 0.01 0.00 0.00 0.00 0.14

B HAL 0.00 0.10 0.00 0.00 0.02 6.68 B MON 0.00 0.00 0.00 0.00 0.00 0.11

T T 0.00 0.05 0.00 0.00 0.02 3.70 C CL 0.00 0.00 0.00 0.00 0.00 0.20

H MRK 0.00 0.02 0.00 0.00 0.01 0.69 I GD 0.00 0.00 0.00 0.00 0.00 0.10

S FOXA 0.00 0.10 0.00 0.00 0.01 6.94 H AMGN 0.00 0.00 0.00 0.00 0.00 0.13

I CAT 0.00 0.01 0.00 0.00 0.01 0.45 I UTX 0.00 0.00 0.00 0.00 0.00 0.03

S V 0.00 0.11 0.00 0.00 0.04 7.98 B COP 0.00 0.00 0.00 0.00 0.00 0.01

I EMR 0.00 0.01 0.00 0.00 0.00 0.27 B DD 0.00 0.00 0.00 0.00 0.00 0.01

S EBAY 0.00 0.17 0.00 0.00 0.08 3.26 S FDX 0.00 0.00 0.00 0.00 0.00 0.01

S WBA 0.00 0.02 0.00 0.00 0.01 0.70 C MO 0.00 0.00 0.00 0.00 0.00 0.01

I MMM 0.00 0.03 0.00 0.00 0.03 0.44 S LOW 0.00 0.00 0.00 0.00 0.00 0.01

H JNJ 0.00 0.07 0.00 0.00 0.01 4.87 H MDT 0.00 0.00 0.00 0.00 0.00 0.01

I RTN 0.00 0.07 0.00 0.00 0.01 5.79 C PEP 0.00 0.00 0.00 0.00 0.00 0.01

S NSC 0.00 0.12 0.00 0.00 0.01 8.78 C PG 0.00 0.00 0.00 0.00 0.00 0.01

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 3. Summary statistics of causality measures to each firm from others firms. This table reports

the summary statistics of each column of the firm-wise causality table [C·→i]. The causality table

is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected

S&P 100 components. For each firm i, we report the minimum value, the maximum value, the

mean value and the quantiles (25%, 50% (median) and 75%) of the entries in its “IN” vector. The

reported values are 100 times of the raw values, and are kept with two digits. We sort the tickers

by their median values and identidy the top 10 sensitive firms.

Sector∗ Ticker Median Mean Min 25% 75% Max Sector∗ Ticker Median Mean Min 25% 75% Max

B OXY 0.02 0.19 0.00 0.00 0.17 3.81 H BIIB 0.00 0.01 0.00 0.00 0.01 0.04

I RTN 0.02 0.09 0.00 0.01 0.03 5.79 S WMT 0.00 0.01 0.00 0.00 0.01 0.11

I LMT 0.01 0.02 0.00 0.00 0.02 0.22 U SO 0.00 0.09 0.00 0.00 0.01 7.63

B SLB 0.01 0.25 0.00 0.00 0.10 3.26 H JNJ 0.00 0.20 0.00 0.00 0.01 4.88

I GD 0.01 0.05 0.00 0.00 0.05 0.59 C NKE 0.00 0.02 0.00 0.00 0.03 0.25

F C 0.01 0.18 0.00 0.00 0.07 3.34 S EBAY 0.00 0.04 0.00 0.00 0.02 1.14

S DIS 0.01 0.17 0.00 0.00 0.03 5.11 S AMZN 0.00 0.10 0.00 0.00 0.01 4.93

F WFC 0.01 0.15 0.00 0.00 0.07 3.52 H CELG 0.00 0.02 0.00 0.00 0.00 1.14

B COP 0.00 0.09 0.00 0.00 0.09 1.32 B HAL 0.00 0.11 0.00 0.00 0.02 6.68

I EMR 0.00 0.04 0.00 0.00 0.04 0.51 F BK 0.00 0.17 0.00 0.00 0.01 5.75

I GE 0.00 0.18 0.00 0.00 0.04 2.13 S FOXA 0.00 0.15 0.00 0.00 0.01 6.94

F ALL 0.00 0.26 0.00 0.00 0.07 3.96 S UNP 0.00 0.15 0.00 0.00 0.02 2.87

B DD 0.00 0.05 0.00 0.00 0.03 0.98 S CMCSA 0.00 0.13 0.00 0.00 0.01 6.38

I BA 0.00 0.14 0.00 0.00 0.04 7.36 S NSC 0.00 0.13 0.00 0.00 0.02 8.78

T T 0.00 0.10 0.00 0.00 0.03 3.70 F BAC 0.00 0.13 0.00 0.00 0.04 5.33

F MET 0.00 0.09 0.00 0.00 0.03 1.52 C F 0.00 0.11 0.00 0.00 0.01 4.04

H MDT 0.00 0.02 0.00 0.00 0.02 0.18 B CVX 0.00 0.11 0.00 0.00 0.08 1.06

S WBA 0.00 0.02 0.00 0.00 0.02 0.20 B DVN 0.00 0.09 0.00 0.00 0.05 1.84

I HON 0.00 0.02 0.00 0.00 0.01 0.40 S V 0.00 0.09 0.00 0.00 0.00 7.98

F SPG 0.00 0.15 0.00 0.00 0.03 5.63 S MCD 0.00 0.09 0.00 0.00 0.01 6.30

F COF 0.00 0.08 0.00 0.00 0.01 4.63 C KO 0.00 0.09 0.00 0.00 0.01 3.36

H UNH 0.00 0.12 0.00 0.00 0.03 4.22 H PFE 0.00 0.07 0.00 0.00 0.02 2.63

B APC 0.00 0.11 0.00 0.00 0.07 1.71 S TWX 0.00 0.07 0.00 0.00 0.02 1.11

T MSFT 0.00 0.07 0.00 0.00 0.02 2.96 B XOM 0.00 0.05 0.00 0.00 0.04 0.62

F AXP 0.00 0.12 0.00 0.00 0.04 2.75 B MON 0.00 0.05 0.00 0.00 0.01 0.70

H ABT 0.00 0.02 0.00 0.00 0.02 0.30 T EMC 0.00 0.05 0.00 0.00 0.00 2.17

H CVS 0.00 0.06 0.00 0.00 0.01 2.97 T ORCL 0.00 0.05 0.00 0.00 0.01 3.26

F USB 0.00 0.08 0.00 0.00 0.02 2.23 S HD 0.00 0.05 0.00 0.00 0.04 0.63

B DOW 0.00 0.05 0.00 0.00 0.01 2.52 T ACN 0.00 0.04 0.00 0.00 0.00 3.49

F GS 0.00 0.08 0.00 0.00 0.02 1.70 I CAT 0.00 0.04 0.00 0.00 0.01 0.76

S SBUX 0.00 0.17 0.00 0.00 0.04 6.14 S TGT 0.00 0.04 0.00 0.00 0.04 0.41

C CL 0.00 0.02 0.00 0.00 0.02 0.39 S LOW 0.00 0.04 0.00 0.00 0.02 0.50

S FDX 0.00 0.03 0.00 0.00 0.03 0.46 F JPM 0.00 0.03 0.00 0.00 0.00 1.21

F MS 0.00 0.17 0.00 0.00 0.05 3.63 H AGN 0.00 0.03 0.00 0.00 0.00 2.27

T QCOM 0.00 0.04 0.00 0.00 0.02 0.93 F AIG 0.00 0.03 0.00 0.00 0.00 1.86

U EXC 0.00 0.13 0.00 0.00 0.02 4.19 T VZ 0.00 0.03 0.00 0.00 0.00 0.96

S COST 0.00 0.13 0.00 0.00 0.03 2.59 C PEP 0.00 0.02 0.00 0.00 0.01 0.64

I MMM 0.00 0.03 0.00 0.00 0.02 0.59 H MRK 0.00 0.02 0.00 0.00 0.01 0.28

H AMGN 0.00 0.03 0.00 0.00 0.02 0.66 I UTX 0.00 0.02 0.00 0.00 0.01 0.45

C AAPL 0.00 0.02 0.00 0.00 0.01 0.20 T HPQ 0.00 0.02 0.00 0.00 0.02 0.18

T INTC 0.00 0.01 0.00 0.00 0.01 0.15 T TXN 0.00 0.02 0.00 0.00 0.02 0.24

H BAX 0.00 0.09 0.00 0.00 0.01 3.48 T CSCO 0.00 0.01 0.00 0.00 0.01 0.20

H BMY 0.00 0.01 0.00 0.00 0.01 0.09 C PG 0.00 0.01 0.00 0.00 0.00 0.29

H LLY 0.00 0.08 0.00 0.00 0.02 3.86 H GILD 0.00 0.01 0.00 0.00 0.01 0.13

T IBM 0.00 0.03 0.00 0.00 0.02 1.17 C MO 0.00 0.01 0.00 0.00 0.00 0.08

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 4. Top 10 influential firms at different forecast horizons. This table reports the top 10

influential firms and their respective sector at different forecast horizons, h = 1,2,3,4,5. Given the

forecast horizon h, we obtain the summary statistics of each row of the firm-wise causality table

[Ch
i→·]. The causality table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes

are the firms of selected S&P 100 components. For each firm i, we have the median value of the

entries in its “OUT” vector. For each given forecast horizon h, we sort the tickers by their median

values and identify the top 10 influential firms.

h=1 h=2 h=3 h=4 h=5

Rank Sector∗ Ticker Sector∗ Ticker Sector∗ Ticker Sector∗ Ticker Sector∗ Ticker

1 F BAC T CSCO T CSCO T CSCO T CSCO

2 C AAPL C AAPL C AAPL C AAPL C AAPL

3 T CSCO F C F AIG F AIG F AIG

4 F C F AIG F C F C F C

5 F BK F GS F GS F GS F GS

6 F AIG I GE I GE I GE I GE

7 F MET F MS F JPM F JPM F JPM

8 C F F JPM C F C F C F

9 F JPM F MET T IBM T IBM T IBM

10 F MS C F F MET T EMC T EMC

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 5. Summary statistics of causality measures from each financial Firm to other financial

Firms. This table reports the summary statistics of the firm-wise causality table blocked by the

financial sector [Ci→ j], where i, j ∈ Financial Sector. The causality table is estimated by the full

data sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. For

each financial firm i, we report the minimum value, the maximum value, the mean value and the

quantiles (25%, 50% (median) and 75%) of the entries in its “OUT” vector truncated within the

financial sector. The reported values are 100 times of the raw values, and are kept with two digits.

We sort the tickers by their median values and identify the top 3 influencial firms in the financial

sector.

Ticker Median Mean Min 25% 75% Max

BAC 0.42 1.21 0.00 0.04 1.66 5.33

MS 0.30 1.19 0.00 0.04 2.21 4.83

GS 0.25 0.43 0.00 0.00 0.82 1.70

BK 0.06 0.91 0.00 0.00 0.98 5.75

WFC 0.03 0.49 0.00 0.00 0.38 3.96

ALL 0.01 0.30 0.00 0.00 0.37 1.46

SPG 0.01 0.54 0.00 0.00 0.08 5.63

AXP 0.00 0.43 0.00 0.00 0.24 2.78

C 0.00 0.42 0.00 0.00 0.53 2.77

AIG 0.00 0.14 0.00 0.00 0.12 0.74

COF 0.00 0.39 0.00 0.00 0.12 4.63

JPM 0.00 0.10 0.00 0.00 0.15 0.51

MET 0.00 0.31 0.00 0.00 0.58 1.32

USB 0.00 0.11 0.00 0.00 0.03 0.55
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Table 6. Summary statistics of causality measures to each financial firm from other financial firms.

This table reports the summary statistics of the firm-wise causality table blocked by the financial

sector [C j→i], where i, j ∈ Financial Sector. The causality table is estimated by the full data sample

(20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. For each firm

i, we report the minimum value, the maximum value, the mean value and the quantiles (25%,

50% (median) and 75%) of the entries in its “IN” vector truncated within the financial sector. The

reported values are 100 times of the raw values, and are kept with two digits. We sort the tickers

by their median values and identify the top 3 sensitive firms in the financial sector.

Ticker Median Mean Min 25% 75% Max

C 0.33 0.65 0.00 0.03 0.94 3.34

ALL 0.32 1.02 0.00 0.02 2.21 3.96

BAC 0.28 0.64 0.00 0.00 0.63 5.33

SPG 0.22 0.85 0.00 0.13 0.64 5.63

MET 0.07 0.36 0.00 0.00 0.49 1.52

MS 0.01 0.38 0.00 0.00 0.62 1.75

WFC 0.01 0.66 0.00 0.00 1.00 3.52

BK 0.00 0.96 0.00 0.00 0.75 5.75

AXP 0.00 0.44 0.00 0.00 0.31 2.75

AIG 0.00 0.04 0.00 0.00 0.01 0.30

COF 0.00 0.46 0.00 0.00 0.18 4.63

GS 0.00 0.23 0.00 0.00 0.24 1.70

JPM 0.00 0.06 0.00 0.00 0.01 0.47

USB 0.00 0.23 0.00 0.00 0.00 2.23
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Table 7. Summary statistics of causality measures from each sector to other sectors. This table

reports the summary statistics of each row of the sector-wise causality table [CVi→V·]. The causality

table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the sectors whose

firms are selected in the S&P 100 components. For each sector Vi, we report the minimum value,

the maximum value, the mean value and the quantiles (25%, 50% (median) and 75%) of the entries

in its “OUT” vector. The reported values are 100 times of the raw values, and are kept with two

digits. We sort the sectors by their median values and identify the top 4 influential sectors in the

economy.

Sector Median Mean Min 25% 75% Max

Technology 3.27 5.75 0.00 0.00 7.40 18.84

Industrial Goods 1.55 3.28 0.00 0.01 3.16 15.04

Consumer Goods 0.90 1.07 0.00 0.43 1.47 3.02

Financial 0.48 9.61 0.00 0.05 5.46 57.89

Utilities 0.08 1.59 0.00 0.00 0.27 11.83

Services 0.00 7.74 0.00 0.00 2.67 52.77

Healthcare 0.00 3.15 0.00 0.00 0.25 24.58

Basic Materials 0.00 3.07 0.00 0.00 0.43 22.82

Table 8. Summary statistics of causality measures to each sector from other sectors. This table

reports each column of the summary statistics of the sector-wise causality table [CV·→Vi
]. The

causality table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the

sectors whose firms are selected in the S&P 100 components. For each sector Vi, we report the

minimum value, the maximum value, the mean value and the quantiles (25%, 50% (median) and

75%) of the entries in its “IN” vector. The reported values are 100 times of the raw values, and

are kept with two digits. We sort the sectors by their median values and identify the top 4 sensitive

sectors in the economy.

Sector Median Mean Min 25% 75% Max

Services 1.12 10.91 0.00 0.00 16.09 52.77

Basic Materials 1.11 4.43 0.00 0.00 3.63 22.82

Industrial Goods 0.69 2.72 0.00 0.06 2.28 15.04

Healthcare 0.57 3.79 0.00 0.00 1.84 24.58

Technology 0.36 2.64 0.00 0.00 0.77 18.84

Consumer Goods 0.09 0.73 0.00 0.00 0.84 3.02

Utilities 0.06 2.08 0.00 0.00 1.25 11.83

Financial 0.00 7.96 0.00 0.00 1.45 57.89
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Figure 5. Firm-wise S&P 100 implied volatility network. This is a direct effect network corre-

sponding to the causality table, [C1
i j]. The causality measures table is estimated by the full data

sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. Differ-

ent colors of the nodes correspond to different sectors that the nodes belong to (skyblue: financial;

lawn green: healthcare; pink: industrial goods; purple: services; blue: technology; plum: utilities;

orange: basic materials forest green: consumer goods). We only keep the directed and weighted

edges (i → j) if Ci j is greater or equal to the 90% percentile element in OUT 1
i (Ci·) and the 90%

percentile element in IN1
j (C· j). When i → j and j → i are both kept, only the edge with greater

strength will be shown in this figure. The colors of the edges correspond to the colors of the source

nodes. The thickness of the edges are weight rescaled.
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Figure 6. Firm-wise S&P 100 implied volatility network within financial sector. This is a direct

effect network corresponding to the blocked causality table, [C1
i j] where i, j ∈ Financial (both node

i and node j are the firms that selected from S&P 100 components and belong the financial sector).

The causality measures table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes

are the firms that selected from S&P 100 components and belong to the financial sector. We only

keep the directed and weighted edges (i→ j) if Ci j is greater or equal to the 50% percentile element

in the blocked causality measures table, [C1
i j] where i, j ∈ Financial. The darkness of the nodes

corresponds to the out-degree of the nodes in this filtered network (e.g., MS, BAC and GS have

higher out-degree). When i → j and j → i are both kept, only the edge with greater strength will

be shown in this figure. The thickness of the edges are weight rescaled.
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Figure 7. Sector-wise S&P 100 implied volatility network. This is a direct effect network corre-

sponding to the causality table, [C1
ViV j

]. The causality table is estimated by the full data sample

(20/08/1999 - 31/08/2015). Nodes are the sectors of the firms selected from S&P 100 components.

We only keep the directed and weighted edges (Vi → Vj) if CViV j
is greater or equal to the 50%

percentile element in the causality measures table, [C1
ViV j

]. The darkness of the nodes corresponds

to the out-degree of the nodes in this filtered network (e.g., Consumer Goods, Financial, Industrial

Goods and Technology have higher out-degree). When Vi → Vj and Vj → Vi are both kept, only

the edge with greater strength will be shown in this figure. The thickness of the edges are weight

rescaled.
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Figure 8. Firm-wise market connectedness “out” measures and the VIX index. The blue solid lines are our “out” connectedness measures

(relative connectedness structure: upper row; absolute connectedness strength: bottom row) and the green dash lines are the VIX index.

The reported connectedness measures are estimated at forecast horizon 1 (left column) and at forecast horizon 10 (right column). All

measures are estimated every 1 month by the VAR(1) models with 2-year rolling estimation windows. The nodes of the underlying

market are the companies that selected from the S&P 100 components.
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Figure 9. 90% bootstapping confidence intervals of market absolute connectedness strength “out” measures. For each date (20/01/2004,

20/01/2005, 20/01/2006, 20/01/2007, 20/01/2008, 20/01/2009, 20/01/2010, 20/01/2011, 20/01/2012, 20/01/2013, 20/01/2014), we con-

struct a simple resampling bootstrap confidence interval of the market absolute connectedness strength “OUT” measure. The confidence

level is set to be 90%. All measures are estimated by the VAR(1) models with 2-year rolling estimation windows. The nodes of the

underlying market are the companies selected from the S&P 100 components.
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Figure 10. Sector connectedness “out” measures and the VIX index. The sector connectedness measures are defined as the connectedness

measures within each of the 7 sectors (Financial, Technology, Basic Materials, Healthcare, Consumer Goods, Industrial Goods and

Services). The solid blue lines are our absolute sector connectedness “out” strength measures and the green dash lines are the VIX

index. All measures are estimated every 1 month by the VAR(1) models with 2-year rolling estimation windows. The nodes of the

underlying market are the companies selected from the S&P 100 components.
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Figure 11. Sector-wise market connectedness “out” measures and the VIX index. The blue solid lines are our “out” connectedness

measures (relative connectedness structure: upper row; absolute connectedness strength: bottom row) and the green dash lines are the

VIX index. The reported connectedness measures are estimated at forecast horizon 1 (left column) and at forecast horizon 10 (right

column). All measures are estimated every 1 month by the VAR(1) models with 2-year rolling estimation windows. The nodes of the

underlying market are the sectors whose companies are selected from the S&P 100 components.
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Figure 12. Sector-wise causality measures from the financial sector to other sectors. The blue solid line is our causality measures and

the green dash line is the VIX index. This figure reports the direct effects from the financial sector on other sectors. The measures

are estimated at forecast horizon h = 1 (C1
Fin→·). All measures are estimated every 1 month by the VAR(1) models with 2-year rolling

estimation windows. The nodes of the underlying market are the sectors whose companies are selected from the S&P 100 components.
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Figure 13. Sector-wise causality measures to the financial sector from other sectors. The blue solid line is our causality measures and

the green dash line is the VIX index. This figure reports the direct effects from other sectors to the financial sector. The measures are

estimated at forecast horizon h = 1 (C1
·→Fin

). All measures are estimated every 1 month by the VAR(1) models with 2-year rolling

estimation windows. The nodes of the underlying market are the sectors whose companies are selected from the S&P 100 components.
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Figure 14. Robustness of firm-wise absolute market connectedness strength “out” measures. The blue solid lines are our absolute market

connectedness strength “out” measures and the green dash lines are the VIX index. All measures are estimated every 1 month. The nodes

of the underlying market are the companies selected from the S&P 100 components. The upper row reports the measures estimated with

the VAR(1) model (p=1) and with 2-year rolling estimation windows (year=2). The middle row reports the measures estimated with the

VAR(2) model (p=2) and with 2-year rolling estimation windows (year=2). The bottom row reports the measures estimated with the

VAR(1) model (p=1) and with 1-year rolling estimation windows (year=1). The left column reports the measures estimated at forecast

horizon 1 (h=1) and the right column reports the measures estimated at forecast horizon 10 (h=10).
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Figure 15. Robustness of firm-wise relative market connectedness structure “out” measures. The blue solid lines are our firm-wise

relative market connectedness structure “out” measures and the green dash lines are the VIX index. All measures are estimated every

1 month. The nodes of the underlying market are the companies selected from the S&P 100 components. The upper row reports the

measures estimated with the VAR(1) model (p=1) and with 2-year rolling estimation windows (year=2). The middle row reports the

measures estimated with the VAR(2) model (p=2) and with 2-year rolling estimation windows (year=2). The bottom row reports the

measures estimated with the VAR(1) model (p=1) and with 1-year rolling estimation windows (year=1). The left column reports the

measures estimated at forecast horizon 1 (h=1) and the right column reports the measures estimated at forecast horizon 10 (h=10).
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