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Abstract

This paper develops a theory of asset price dynamics during bubble-like market episodes.

In the model, noise trading breaks the winner’s curse and leads to systematic overpric-

ing. Over time, investors gradually learn and asset prices tend to fall toward the

fundamentals. Importantly, however, investors also update their expectations regard-

ing the average precision of new information. This mechanism works to drive prices

farther away from the intrinsic value. Finally, the model also allows for gradual en-

dogenous investor inflows that greatly amplify predicted price movements. Numerical

simulations show that the model can produce various price episodes.
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1 Introduction

Through history, asset prices have occasionally risen spectacularly and then fallen sharply

(and often dramatically). Existing literature on speculative bubbles usually attributes such

extreme price behavior to speculation by investors. However, while existing models focus on

specific aspects of these episodes, nearly all of them leave the description of the dynamics of

asset prices incomplete.1 Another notable phenomenon accompanying these market episodes

that has been largely ignored in the literature is a massive inflow of new investors.2

Understanding price dynamics during these episodes is undoubtedly important for further

policy analysis. Therefore, this paper seeks to fill these two gaps in the existing literature.

It shows how speculation by rational but imperfectly informed investors, together with an

endogenous influx of new investors, can lead to a period of rapid run-up in asset prices that

is then followed by either a crash or a prolonged downturn.

The model combines two novel features to explain the endogenous asset price dynamics.

First, in each period, the asset’s fundamental value is fully revealed with some unknown

probability, and investors learn about this resolution probability. Investors do not know

whether the uncertainty about fundamentals is going to be resolved soon, as it is in the

majority of earnings announcement events, or slowly as it was during the IT boom. As time

goes by, if the fundamental value is not fully revealed, investors expect the learning process

to take longer, and thus begin to speculate more. As a result, this layer of uncertainty

gradually pushes asset prices up in the beginning. The second novel feature in this paper

is the introduction of endogenous investor inflows that are linked to optimal entry decisions

by potential new investors. This endogenous increase in asset demand from new investors

is driven by the same uncertainty that drives up asset prices. I show that it can greatly

amplify the observed asset price fluctuations.

In equilibrium, both uncertainty and investor entry determine asset prices and the magnitude

1Examples include the following, Tirole (1985) generates price bubbles that grow indefinitely in an over-
lapping generations model; Allen and Gorton (1993) and Allen et al. (1993) focus only on how price bubbles
arise in a static framework; Scheinkman and Xiong (2003) studies a stationary economy with an infinite
horizon and relies on an exogenous change in parameter values to obtain realistic price dynamics; Abreu
and Brunnermeier (2003) assumes that the price grows exogenously over time; Allen et al. (2006) considers
a dynamic setting with a finite horizon but predicts declining prices during bubble episodes.

2For example, Singleton (2012) documents that positions of index investors increased dramatically during
the commodity boom in 2008 with a significant impact on crude-oil futures prices, and Haughwout et al.
(2011) finds that during the recent U.S. housing bubble, the share of purchases by investors with multiple
first-liens increased dramatically. In addition, Frazzini and Lamont (2008) offers an illustration of how
investors increased exposure to tech stocks right before the peak of the IT bubble.
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of price movements. Initially, learning about how long the speculation can last dominates,

there are gradual investor inflows, and asset prices are pushed up continuously—as long as

the fundamental value is not fully revealed. Meanwhile, however, investors are learning about

the fundamentals over time. As their beliefs gradually converge, asset prices eventually fall

back to their intrinsic value. If the fundamental value is fully revealed in the middle of this

learning process, the market crashes as asset prices collapse to their fundamentals.

The model can generate various patterns of price dynamics by adjusting the relative rates of

information flow. If learning about the resolution probability dominates for a longer time,

the equilibrium price exhibits a slow build-up before collapsing as it did during the IT boom;

otherwise, it has a long-lasting downturn after a surge, as was observed during the Japanese

real estate bubble of the late 1980s. In addition, investor inflows help us understand trading

frenzies. As the influx of new investors bids up asset prices, assets change hands from existing

investors to newcomers and trading volume skyrockets.

To demonstrate price formation before discussing price dynamics, I start the analysis with

a static benchmark framework in which a continuum of risk-neutral rational investors trade

competitively based on their own private information and public information such as price,

under short-sale constraints, limits on long positions, and unobservable random asset supply

(for instance, caused by noise traders). Within this setting, the equilibrium price reflecting

the marginal investor’s belief contains an overvaluation component. This is because the

equilibrium price is informative about the asset’s fundamental value and also about the

asset supply, so investors choosing to hold the asset, are on average optimistic about the

asset fundamentals, and perceives the asset supply to be very high such that the price is

pushed below the fundamentals. As a result, the equilibrium price reflecting the marginal

investor’s belief is on average higher than the fundamental value. These investors understand

that the asset is unconditionally expected to be overpriced, but it is profitable to hold the

asset because asset supply is negatively correlated with the price and thus the expected

profit is positive. Another way to understand this result is to think of it as a common-value

auction in which unobservable random asset supply breaks the winner’s curse.

Since this overpricing result is anticipated, the expected equilibrium price in a dynamic

setting is declining over time. The reason is that, in a given period, all the future overpricing

components are predicted and thus incorporated into the price, and additionally, under the

same argument as that in the static case, between the given period and its subsequent period,

a new overpricing component arises through the fundamental belief of the marginal investor

in the given period. This happens for every period and thus leads to a declining price path.
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I further show that when there is resolution risk in each period, if the probability is known,

even though the expected future over-valuation is only gradually incorporated into the price,

the equilibrium price on average still falls.

I then introduce uncertainty about the resolution probability and endogenous investor flows

and show that they can push up the asset price gradually before the price starts to fall.

Initially, investors are worried that the uncertainty will get resolved very soon. After one

period, if new information is not very informative, investors update their beliefs and their

perceived resolution risk becomes smaller. As a result, investors’ expected future overvalua-

tion, which was discounted by the resolution risk, now increases, so they are willing to pay

higher prices. Moreover, as perceived resolution risk decreases, investors expect speculation

to last longer and their total expected speculative profit increases. This leads to investor

inflows. Under the influence of these two forces, the equilibrium asset price goes up. In this

way, as speculation continues period after period, the asset price is pushed up higher and

higher. As time goes by, the change in the investors’ beliefs about the resolution probability

gets smaller and smaller, so eventually investor inflows stop and the price starts to fall.

Related Literature. This paper addresses the entire rise-and-fall price dynamics observed

during bubble-like episodes. Previous literature focuses on bursts of bubbles or market

crashes.3 For example, in Abreu and Brunnermeier (2003), the bubble grows exogenously.

Some papers have discussed the price evolution. Avery and Zemsky (1998) shows the possi-

bility of bubble-like price paths generated by herds. Fostel and Geanakoplos (2008) proposes

the theory of leverage cycle. Pástor and Veronesi (2009) explains the bubble-like stock

price behavior. In their paper, prices always reflect investors’ perceived fundamentals, and

their study is specific to technological revolutions. In Doblas-Madrid (2012), the price rises

because agents invest their exogenously growing endowments into the asset continuously.

Burnside et al. (2013) considers social dynamics, that is, better-informed agents are more

likely to convert others to their beliefs. In contrast with those papers, here it is two layers

of uncertainty and endogenous investor inflows that drive price dynamics.

The result on price formation is related to the discussion on whether bubbles are consis-

tent with rational behavior. Tirole (1985) shows how bubbles can be sustained to grow in

overlapping-generation models that have infinite trading opportunities, and Allen and Gor-

ton (1993) produces churning bubbles in which investors always expect resale options in the

future. Unlike them, Allen et al. (1993) and Allen et al. (2006) have explained bubbles with

3Examples include Grossman (1988), Gennotte and Leland (1990), Romer (1993), Caplin and Leahy
(1994), Lee (1998), Zeira (1999), Abreu and Brunnermeier (2003), Barlevy and Veronesi (2003), Hong and
Stein (2003) and Veldkamp (2006a).
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a finite number of trading opportunities using higher-order uncertainty. In line with their

papers on finite bubbles, I provide a different mechanism through short-sale constraints and

noise trading. Allen et al. (2006) also uses a dynamic noisy expectations framework, but

they emphasize higher-order uncertainty, and they predict that the price declines over time.

Another paper relevant to my paper is Albagli et al. (2015). The static setup in my model is

close to a specific example found in their paper, and we both emphasize that noise trading

under heterogeneous information can lead to systematic misvaluation. The difference is that,

in their paper, the price departure comes from asymmetric asset payoff risks, while in this

model, the payoff is symmetric, and the price wedge is driven by short-sale constraints and

limited asset supply which implies that the marginal investor in on average optimistic.

In light of this overpricing result, the static benchmark framework in this paper shares several

features with models of speculative bubbles that rely on heterogeneous beliefs and short-sale

constraints. However, while those papers attribute heterogenous beliefs to differences of

opinion (Harrison and Kreps (1978)), heterogenous priors (Morris (1996)), or overconfidence

(Scheinkman and Xiong (2003)), in this paper, the heterogeneity results from rationally

anticipated differential private information, and thus investors do not agree to disagree.

Moreover, this paper makes several other contributions. First, to my knowledge, this is

the first theoretical paper to emphasize the importance of investor flows (or capital flows in

general) to bubble episodes. Empirically, Singleton (2012) documents that investor flows had

a significant impact on crude-oil futures prices. Theoretically, Merton (1987) shows that a

larger investor base can reduce the risk premium and increase the asset value, but the paper

is not about bubbles or dynamics of investor flows. Second, in my model, the interaction

between the two layers of uncertainty leads to gradual investor inflows, which provides an

alternative explanation for the phenomenon of slow-moving capital (see Duffie (2010)).

Technically, my model fits within noisy rational expectations models.4 Based on a tractable

dynamic framework, I explore the roles of two novel features in this paper.

Structure. The rest of the paper is organized as follows. I introduce the setup of the

model in Section 2. Section 3 starts with the baseline model and then adds those two new

features to explain the mechanism of price dynamics. Section 4 discusses the definition of

bubbles and model assumptions, and explores further extensions and implications. Section

6 concludes.

4The seminal work on classical noisy rational expectations models is Grossman (1976), which was later
extended by Hellwig (1980) and Diamond and Verrecchia (1981). He and Wang (1995) provides tractable
characterization of dynamics.
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2 The Model

The model embeds uncertainty about the resolution probability and endogenous investor

flows into the context of a dynamic noisy rational expectations model in which investors have

differential private information and face short-sale constraints. The model demonstrates how

systematic overvaluation arises when there are a finite number of trading opportunities and

also highlights how the new features help to explain the mechanism of price dynamics.

The setup is as follows. Consider an economy in discrete time and with a finite horizon,

t = 0, . . . , T . It is populated by a continuum of long-lived risk-neutral investors with a time

discount rate ρ. For simplicity, assume ρ = 0.

There are two assets. One is riskless with infinitely elastic supply, yielding a return r = 0. I

take this asset to be the numeraire and normalize its price to one. The other is a risky asset

with a stochastic supply. In the last period T , each share of this asset pays Π, which is its

fundamental value.5

2.1 Information structure.

Assume the fundamental value Π is unobservable and drawn from a normal distribution

Π ∼ N(Π0, 1/ρ0). (1)

In each trading period, first, a public signal is released

Dt = Π + εD,t

εD,t ∼ N(0, 1/ρD,t). (2)

Assume the signal precision is stochastic. In each period, it can grow at a low rate η

with probability 1 − λ, or a high rate that I put to the extreme, ∞, which implies that

the fundamental value is fully revealed immediately and the uncertainty is resolved, with

probability λ. Specifically,

ρD,t =

{
eηtρD with probability 1− λ
+∞ with probability λ.

(3)

5In an earlier version of this paper, I model the fundamental value explicitly as the discounted value of
future dividends. The result is robust. Please see Chapter 1 of my PhD dissertation.
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The resolution probability λ measures the average learning speed or how long speculation

will last. With a lower λ, it is less likely that the fundamental value will be fully revealed

in each period, and thus investors expect the learning to be slower. The motivation behind

this setup is that investors learn about different events at different speeds. Some events, like

earnings announcements, allow for very fast learning, while others, like the IT boom, only

allow for very slow learning.

Here, I introduce the second layer of uncertainty, uncertainty about this resolution proba-

bility λ. Investors start from a common prior over λ following Beta(β, γ) with the prior

mean β/(β + γ). In each period, after observing ρD,t, they use Bayes’ rule to update their

beliefs. In period t, if the uncertainty is not resolved, investors’ perceived expected resolution

probability is

λt =
γ

β + γ + t+ 1
(4)

which is decreasing over time. The intuition is that, as time goes by, if not much new

information arrives, investors will become increasingly confident that the uncertainty will

not get resolved very soon.6

In the financial market, while some investors trade the risky asset, others do not.7 I call

the latter group potential investors. Assume there are unlimited potential investors. In each

period, after receiving the public signal, potential investors make entry decisions based on

the history of public information F et = {F0, Pτ , Dτ , ρD,τ , Dt, ρD,t : 0 ≤ τ ≤ t − 1}. If they

decide to enter and start to trade the risky asset, they need to pay an entry cost e. We can

think of it as a one-time information acquisition cost or the opportunity cost associated with

the portfolio adjustment. Right after entry, each new investor receives a private signal

Si = Π + εiS

εiS ∼ N(0, 1/ρS) (5)

where εiS is i.i.d across investors.8 Assume each investor initially endowed with the risky

6This intuition is also reflected in the conjugate prior I use. Two shape parameters β and γ represent
the number of historical realizations η and ∞ respectively, so the prior mean of the resolution probability is
γ/(β + γ). In the next period, if the uncertainty is not resolved, we add 1 to β and the posterior mean of
the resolution probability decreases to γ/(β + γ + 1).

7One justification is that mutual funds have different investment objectives. According to Wiesenberger,
Strategic Insight and Lipper Objective codes, mutual funds investing in domestic equity can be classified
by sector (e.g., technology or health), by capitalization (e.g., large or small capitalization), or by style (e.g.,
growth or income).

8We can also assume existing investors continue to receive private signals in each period. However, there
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asset also receives a private signal following the same distribution. Under this specification,

all the existing investors, no matter when they enter, have access to all the public infor-

mation and equally informative private information. Therefore, their beliefs have the same

precision.

Investors then make trading decisions based on their private information and also the public

information, which by rational expectations, includes the current equilibrium price.

The timeline for each period is summarized in Figure 1 below.

-

t receive a public signal entry, entrants receive

private signals
trade, determine price,

update beliefs

t+ 1

Figure 1: Timeline.

For any stochastic process {Zt}, define Zt ≡ {Z0, . . . , Zt} to be the history of Zt up to and

including t. Using this notation, I denote the total public information in period t as

F ct = {F0, P t, Dt, ρD,t}

and investors’ expectation and belief precision based on F ct as

Ec
t [ · ] = E[ · |F ct ], ρct = 1/var(Π|F ct ).

Similarly, denote the set of rational investors trading the risky asset in period t as It. The

total information available to investor i ∈ It is

F it = {F0, P t, Dt, ρD,t, S
i}

and the expectation and belief precision based on F it is

Ei
t [ · ] = E[ · |F it ], ρt = 1/var(Π|F it ).

By symmetry, all the existing investors have the same belief precision ρt.

is one mechanical issue with constant flows of private information. Under the common prior assumption, the
weight on the private information increases first, which leads to the increase in investors’ belief dispersion.
As a result, prices go up initially when there is only uncertainty about the fundamental value.
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Assume the structure of the economy is common knowledge. Thus, investors are only asym-

metrically informed about the fundamental value of the risky asset.

2.2 Investors’ decisions and asset demand.

Investors behave competitively. Given the initial wealth and asset prices, potential investors

make investment (xi) and entry (tie) decisions to maximize their expected wealth in the last

period T (W i
T ), i.e.,

max
xi,tie

E0[W i
T |F0]. (6)

Before entry, potential investors earn only the riskless interest rate which is 0, that is,

W i
t+1 = W i

t , for 0 ≤ t < tie.
9 When they decide to start trading the risky asset, they pay an

entry cost. After entry, the return on investors’ wealth consists of the zero riskless interest

rate and the excess returns from trading the risky asset. This is characterized as

W i
t+1 = W i

t + xit(Pt+1 − Pt)− 1{t=tie}e for t ≥ tie.

Some investors are initially endowed with the risky asset. They have the same problem

except that they do not need to make entry decisions.10 Specifically,

max
xi

E0[W i
T |F0]. (7)

s.t.

W i
t+1 = W i

t + xit(Pt+1 − Pt)

and the initial endowment W i
0 = W i

−1 + xi−1P0 is given.

Assume the position investors take on the risky asset xit is restricted to [0, 1]. The lower bound

is a short-sale constraint. I make this assumption for tractability. It can be relaxed to costly

short sales like stock borrowing costs.11 Since short-sale costs create an asymmetry between

buying and selling, it plays an important role in producing the systematic overvaluation

result which will be shown later. The upper position bound can be justified, for instance,

9Decisions are all conditional on the history which for simplicity I do not write out.
10The equilibrium price does not depend on the initial allocation of the risky asset in this model.
11Ofek and Richardson (2003) also documents costly derivatives trading to mimic short sales during the

dotcom mania.
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by assuming wealth constraints.

Risk-neutral investors therefore hold the risky asset as long as its expected excess return is

positive. Their trading strategy is characterized as for tie ≤ t ≤ T − 1,

xit =

{
1 if Ei

t [Pt+1] ≥ Pt

0 o.t.w.
(8)

2.3 Asset supply

The supply of this risky asset Qt(εq,t) is stochastic. For tractability, assume it has the

following functional form,

Qt(εq,t) = nt(1− Φ(qt − εq,t)) (9)

where qt = Φ−1(1 − 1
nt

) is an equivalent measure of nt, εq,t ∼ N(0, 1/ρq), and Φ(·) is the

CDF of a standard normal distribution.12 The basic feature assumed in this specification is

that, given εq,t, Qt(εq,t)/nt is decreasing in nt, or in other words, relative asset supply with

respect to the size of existing investor drops as more and more investors flow in to trade

this asset, which is intuitive. It is common in the literature to choose specific functional

forms to obtain tractability. If we let nt = 2, the functional form I have used becomes

Qt(εq,t) ∝ 1−Φ(−εq,t). This is the same as in Hellwig et al. (2006). With investor flows (nt

changes over time), I introduce qt to offset the scale effect caused by investor flows. To see

this, let εq,t = 0, the supply is then 1, which is independent of the measure of investors nt.

In addition, throughout this paper, I assume nt > 2, so the marginal investor holding the

asset is on average optimistic about the asset’s fundamentals.

2.4 Equilibrium

State variables in this economy are (Π, εD,t, εq,t, ρD,t, (ε
i
S)i∈It). Since the noise in investors’

private signals will be smoothed out in the aggregation, the equilibrium price only depends

on FPt = {Π, εD,t, εq,t, ρD,t}.
13

12A standard explanation for the stochastic supply is noise traders who trade because of liquidity or
hedging demands. Although several finance papers have rationalized the behavior of noise traders, since
this greatly complicates the model (see the discussion by Dow and Gorton (2006)), I choose a parsimonious
specification in this paper.

13Technical problems exist for the validity of the law of large numbers with a continuum of private signals
(see Judd (1985)). Several papers have discussed possible remedies (examples include Feldman and Gilles
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We define a rational expectations equilibrium as follows:

Definition A rational expectations equilibrium consists of asset prices {Pt}, the measure

of rational investors trading the risky asset {nt}; potential investors’ trading strategy {xit}
adapted to {F it}, and entry decision tie, which is an optimal stopping time of {F et }; originally

existing investors’ trading strategy {xit} adapted to {F it} for i ∈ I−1; and investors’ beliefs

about the fundamental value and the resolution probability, {Ec
t [Π], ρct , λt, (E

i
t [Π], ρt)i∈I}, s.t.

• Given {Pt} and {nt}, potential investors’ choice (xit, t
i
e)i∈I is the solution to their utility

maximization problem (6), and originally existing investors’ trading decision (xit)i∈I−1

solves their utility maximization problem (7).14

• Given {Pt} and {nt}, investors’ beliefs {Ec
t [Π], ρct , λt, (E

i
t [Π], ρt)i∈I} are updated ac-

cording to Bayesian rules.

• The asset market clears:15 ∫
i∈It

xitdi = Qt(εq,t). (10)

3 Price Dynamics

In this paper, I study the partially revealing rational expectations equilibrium.16 To help

understand the mechanism of price evolution, I start with a baseline model without the

new features and highlight that, under the assumptions of limited stochastic asset supply,

short-sale constraints and heterogeneous information, the asset is overpriced and the equi-

librium price is unconditionally expected to decline over time. Based on this result, I further

show that uncertainty about resolution probability and the induced continuous investor in-

flows can push up the asset price gradually before it starts falling back toward the asset’s

fundamentals.

(1985), Bewley (1986), Uhlig (1996) and Al-Najjar (2004)). Here, following Feldman and Gilles (1985), we
can relax the independence assumption of private signals across investors to get no aggregate uncertainty.

14I is the set of all the potential investors.
15Throughout this paper, I always mean almost surely.
16There is also a fully revealing equilibrium in which the equilibrium price equals the fundamental value

and investors are indifferent between buying and selling. However, it is hard to justify the incorporation of
the information into the price when investors’ demand schedules contain no information.
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3.1 Benchmark with known resolution probability

Consider simplifying the economy by assuming first that there is no uncertainty about the

resolution probability λ, and second that there are no investor flows, i.e., nt = n > 2 for

0 ≤ t ≤ T − 1 and thus qt = q > 0. I first show that the asset is on average overvalued in a

static model. After that, I extend the time horizon to two periods and further to multiple

periods, and show that the backward accumulation of anticipated overvaluation over time

implies a declining price path.

Static model. Let T = 1. Investors trade at t = 0 and the fundamental value is revealed

in the following period. To simplify without losing the intuition, I further assume that

there are no public signals D other than the price P . The setup is thus summarized as

follows: a continuum of risk-neutral investors with fixed measure n choose their own demand

schedule xi(P ) ∈ [0, 1], based on their private information and rational expectations about

the information contained in the price, F i = {F0, P, S
i}, then the equilibrium price is set

such that the aggregate asset demand equals the supply Q(εq).

An intuitive explanation of price formation in this static model is as follows. At t = 0,

knowing that the fundamentals will be revealed in the next period, investors are willing to

pay a price no higher than their perceived fundamentals. Since the heterogeneity in their

beliefs comes from dispersed private information, intuitively, investors that receive higher

private signals perceive higher fundamentals and thus they are willing to pay higher prices.

This suggests that there exists a threshold Ŝ such that the risky asset is held by investors

with their private signals higher than Ŝ. In equilibrium, this threshold is determined by the

market clearing condition. On the one hand, the private signal across investors follows a

normal distribution, so the aggregate demand of the risky asset is n(1 − Φ(
√
ρS(Ŝ − Π))),

where Φ(·) is the cumulative distribution function (CDF) of a standard normal distribution;

on the other hand, the asset supply is n(1 − Φ(q − εq)). By market clearing condition, the

demand equals the supply. Therefore,

Ŝ = Π + 1/
√
ρSq − 1/

√
ρSεq. (11)

In equilibrium, the marginal investor’s private signal is exactly at this threshold level. Given

εq, q, which is determined by the measure of existing investors, measures how optimistic the

marginal investor is. If n = 2, q = 0, the marginal investor is on average neutral. If n→∞,

q →∞, the marginal investor is extremely optimistic.

The equilibrium price reflecting the marginal investor’s belief about the asset fundamentals,
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which by Bayesian rule is a weighted average of the belief based on public information and

his private signal, is

P = (1− pΠ)Ec[Π] + pΠ(Π + 1/
√
ρSq − 1/

√
ρSεq)

where pΠ = ρS/(ρ0 + ρSρq + ρS). Since pΠ is the loading of the price on the private signal,

pΠ/
√
ρS is the standard deviation of price forecast across investors σ(P ). We then have the

next proposition for the unconditional price wedge.

Proposition 3.1. In a static economy with ρD = 0, λ = 0 and n > 2, the risky asset is

unconditionally expected to be overvalued,

E[P ]− E[Π] = σ(P )q > 0 (12)

where σ(P ) is the standard deviation of price forecast across investors.

Proof. See Appendix A.

This proposition shows that backward induction argument fails with a finite number of

trading opportunities. The reason is as follows. The equilibrium price is determined by both

fundamental value and asset supply. Investors with high private signals ascribe the seemingly

low price more to ample asset supply. This can be seen from each investor’s interpretation

of the current price,

P = (1− pΠ)Ec[Π] + pΠ(Ei[Π]− 1/
√
ρSE

i[εq]) + σ(P )q. (13)

The higher Ei[Π] is, the higher Ei[εq] becomes. Thus, investors choosing to hold the asset,

are on average optimistic about the asset fundamentals, and perceives the asset supply to be

very high such that the asset is not overvalued. As a result, the equilibrium price reflecting

the marginal investor’s belief is on average higher than the fundamental value. Even though

the price is unconditionally expected to decline, investors are making money from this trading

process because the existence of a high price when asset holders will lose money corresponds

to a low asset supply and vice versa. In other words, investors profit from random asset

supply or noise traders. It is in this sense that noise trading partially breaks the winner’s

curse in a common-value auction.

The proposition also shows that the size of overvaluation depends on two factors, the price

forecast dispersion among investors σ(P ) and the measure of investors q. Larger forecast
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dispersion resulting from higher fundamental uncertainty (1/ρ0, 1/ρS and 1/ρq) and more

investors trading this risky asset both imply that the marginal investor is more optimistic

and thus the asset is more overpriced.

This static benchmark setup is similar to the special risk-neutral normal model presented in

Albagli et al. (2015). We both emphasize that noise trading under heterogeneous information

leads to systematic misvaluation. However, in their paper, q = 0, and they focus on how

asymmetric asset payoff leads to a wedge between the price P and the perceived fundamental

value based on public information E[Π|F0, Ŝ]. In my model, the payoff is symmetric, the

wedge by their definition is driven by positive q which means limited asset supply such that

the marginal investor is on average optimistic, and I focus on a different wedge, that is, the

price deviates from the asset’s fundamentals systematically.

Dynamic model. It is straightforward to extend the above static model to multiple periods

using backward induction. In a dynamic setting, when making trading decisions, investors

are comparing their expected next-period price with the current price, so the anticipated

overvaluation accumulates backward period by period and thus the expected equilibrium

price is decreasing over time.

Let us study a two-period model to explain this result. The setup is the same as that of

the static model, except that it has two trading periods. From the static model, we know

that the equilibrium price in the last trading period reflects the fundamental belief of the

marginal investor,

P1 = (1− pΠ,1)Ec
1[Π] + pΠ,1(Π + 1/

√
ρSq − 1/

√
ρSεq,1) (14)

where pΠ,1 is the same as pΠ in the static case. The fundamental belief based on the public

information F c1 = {F0, P0, P1}, Ec
1[Π], can be further decomposed into the belief based on

F c0 = {F0, P0}, Ec
0[Π], and the information contained in P1, Π− 1/

√
ρSεq,1,

Ec
1[Π] = (1− γ1)Ec

0[Π] + γ1(Π− 1/
√
ρSεq,1)) (15)

where γ1 = (ρSρq)/(ρ0 + 2ρSρq).

It is clear from these results on P1 and Ec
1[Π] that in period 0, an individual investor’s

problem of price forecast, Ei
0[P1], reduces to belief formation on the asset fundamentals,

Ei
0[Π]. Therefore, similar to the static case, an additional overvaluation term arises between

periods 0 and 1. The equilibrium price in period 0, which equals the price forecast of the

marginal investor in that period, who for the same reason as shown before has a private
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signal Ŝ0 = Π + 1/
√
ρSq − 1/

√
ρSεq,0, is thus given by

P0 = (1− pΠ,0)Ec
0[Π] + pΠ,0(Π + 1/

√
ρSq − 1/

√
ρSεq,0) + pΠ,1/

√
ρSq (16)

where pΠ,0 = (1− pΠ,1)γ1 + pΠ,1.

Comparing prices P0 and P1, we have several findings. First, a new overvaluation component

arises in each period. This is because, the price in the first period reflects the forecast for the

next-period price by the marginal investor of the first period, and this price forecast reflects

this marginal investor’s fundamental belief which is on average optimistic. It is clear from the

price functions that, pΠ,0/
√
ρSq and pΠ,1/

√
ρSq are the new overvaluation components arising

in periods 0 and 1 respectively. Second, anticipated overvaluation components accumulate

backward period by period. In the first period, investors anticipate that the asset will

be overpriced in the next period. Since they have this resale opportunity, investors are

willing to pay the portion of the anticipated overvaluation contained in the next-period

price. Therefore, pΠ,1/
√
ρSq is also incorporated into the first-period price P0. Since pΠ,0 is

the loading of the price on the private signal in period 0, pΠ,0/
√
ρS is the standard deviation of

price forecast across investors σ0(P1). Thus, two overvaluation components can be rewritten

as σ0(P1)q and σ1(Π)q. The above two findings indicate that the price unconditionally

declines over time. The next proposition describes this result.

Proposition 3.2. In the two-period economy with ρD,t = 0, λt = λ = 0 and nt = n > 2 for

0 ≤ t ≤ 1, the equilibrium price is unconditionally expected to decline over time,

E[4P0] = E[P1]− E[P0] = −σ0(P1)q < 0 (17)

where σ0(P1) is the standard deviation of price forecast across investors in period 0.

Proof. See Appendix A.

Another finding by comparing P0 and P1 is, the size of the new overvaluation component aris-

ing in the first period is larger than that in the second period, since pΠ,0 > pΠ,1. The intuition

is as follows. As time goes by, price history becomes longer, and thus public information be-

comes more informative. Therefore, investors put less weight on their private signals when

forecasting the price of the subsequent period. As a result, the overvaluation component

coming from the bias in the marginal investor’s private signal becomes smaller.

By backward induction, the equilibrium price in each period has the same form and over-
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valuation components accumulate through the marginal investor’s forecast on the fundamen-

tal belief of the marginal investor in the subsequent period. Denote pΠ,t as the loading of

the price on the private signal in period t. Thus pΠ,t/
√
ρS is the standard deviation of price

forecast across investors σt(Pt+1). the overpricing component can be rewritten as σt(Pt+1)q.

Therefore, the equilibrium price has the following form:

Pt = (1− pΠ,t)E
c
t [Π] + pΠ,t(Π− 1/

√
ρSεq,t) +

T−1∑
m=t

σm(Pt+1)q. (18)

The next proposition describes this build-up process of overvaluation components.

Proposition 3.3. In the T -period economy with ρD,t = 0, λt = λ = 0 and nt = n > 2 for

0 ≤ t ≤ T − 1, the equilibrium price is unconditionally expected to decline over time,

E[4Pt] = E[Pt+1]− E[Pt] = −σt(Pt+1)q < 0 (19)

where σt(Pt+1) is the standard deviation of price forecast across investors in period t.

Proof. See Appendix A.

Based on this result, it is straightforward to consider public signals with known resolution

probability in the above multi-period model. Investors now take into account the possibility

that, the asset’s fundamental value will be fully revealed and consequently the price will fall

back to the fundamental value in any period, so their expected next-period price becomes

λEi
t [Π] + (1− λ)Ei

t [Pt+1]. Considering this, it is easy to show that if the fundamental value

is not fully revealed in period t, the equilibrium price is

Pt = (1− pΠ,t)E
c
t [Π] + pΠ,t(Π− 1/

√
ρSεq,t) +

T−1∑
m=t

(1− λ)T−1−mσm(Pt+1)q. (20)

For the same reason, overvaluation arises and builds up backward period by period in the

equilibrium. However, resolution probability has changed the result such that future over-

valuation terms are only gradually incorporated into the price over time. This is because

the equilibrium price reflects investors’ expected future overvaluation, which has been dis-

counted by the resolution risk. The proposition below shows that in spite of the resolution

risk, the equilibrium price on average still falls over time.
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Proposition 3.4. In the T -period economy with ρD,t > 0, λt = λ and nt = n > 2 for

0 ≤ t ≤ T −1, under the boundary condition (A5) stated in Appendix A.5, for 0 ≤ t ≤ T −3,

average price movement if the fundamental value is not fully revealed in period t+ 1 is

4P̄t = P̄t+1 − P̄t = λ
T−1∑
m=t+1

(1− λ)m−t−1σm(Pm+1)q︸ ︷︷ ︸
4n1,t>0

− σt(Pt+1)q︸ ︷︷ ︸
4n2,t<0

< 0. (21)

Proof. See Appendix A.

The proposition demonstrates that the average observed price movement is driven by two

forces. One is a negative term 4n2,t. It is the overvaluation arising in the current period.

The other is a positive term 4n1,t. It captures the change in the anticipated future over-

valuation. This term depends on two factors, investors’ forecast dispersion σt(Pt+1), which

decreases over time as learning proceeds, and the total change in the future resolution risk

λ
∑T−1

m=t+1(1− λ)m−t−1 which is always less than 1. Two factors together imply that the size

of the change in the expected future overvaluation terms 4n1,t is smaller than that of the

current-period overvaluation 4n2,t, and thus the price declines period after period.

3.2 Resolution probability learning effect and investor flows

In this subsection, we study the role of uncertainty about resolution probability and endoge-

nous investor flows. The problem becomes much more complicated, since there is higher-

order uncertainty not only about the asset fundamentals but also about future investor flows.

But fortunately equilibrium conditions turn out to be very simple. Next, I first characterize

the equilibrium and then discuss the implications of these new elements on the asset price

dynamics.

Equilibrium characterization. For tractability, I study the equilibrium in which prices

are linear in state variables and the equivalent measure of investors qt, given by

Pt = L(Π0, εD,t, εq,t) + pΠ,tΠ +
T−1∑
m=t

pq,tmqm − pε,tεq,t (22)

where all the coefficients are constant. The next proposition characterizes the equilib-

rium.
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Proposition 3.5. There exists one and only one linear partially revealing rational expecta-

tions equilibrium. In this equilibrium, if uncertainty is not resolved until period t,

(1) the price has the following form:

Pt = (1− pΠ,t)E
c
t [Π] + pΠ,t(Π− 1/

√
ρSεq,t) +

T−1∑
m=t

(
m−1∏
j=t

(1− λj))σm(Pm+1)qm (23)

where pΠ,t and {σt(Pt+1)}T−1
m=t are constants.

(2) under certain regularity conditions (A1)-(A3) stated in Appendix A.2, for 0 ≤ t ≤ T−3,

we obtain an influx of new investors which continues for some periods and then stops.

Proof. See Appendix A.

If we take the equilibrium investor flows as given, the mechanism of price formation is sim-

ilar to the benchmark case, with the difference that investors use their perceived resolution

probability to forecast prices. The equilibrium price reflects the marginal investor’s antici-

pation of future marginal investors’ price forecasts. Since marginal investors are on average

optimistic about the asset fundamentals, these overvaluation components in their forecasts

build up backward over time and are incorporated into the current-period price. Therefore,

the equilibrium price consists of two parts: a weighted average of the fundamental belief

based on public information and the marginal investor’s own private signal in the current

period, and expected future overvaluation components,

Pt = (1− pΠ,t)E
c
t [Π] + pΠ,t(Π + 1/

√
ρSqt − 1/

√
ρSεq,t) +

T−1∑
m=t+1

(
m−1∏
j=t

(1− λj))σm(Pm+1)qm.(24)

If the overvaluation term from the current marginal investor’s private signal pΠ,t/
√
ρSqt, or

equivalently σt(Pt+1)qt, is grouped into the expected future overvaluation terms, the price

function is the same as that displayed in the above proposition. As will be shown later,

the non-fundamental rise-and-fall price dynamics are driven by these overpricing compo-

nents.

Now we discuss potential investors’ entry decisions and characterize the equilibrium investor

flows. The extreme complexity of forecasting investor flows by heterogenous investors is

overcome by the following result: it is common knowledge that investors have the same

perfect foresight about future investor flows and investor flows in each period are determin-

istic. This is because, given the equilibrium price function, the expected excess return from
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holding is

Ei
t [Pt+1]− Pt = pΠ,tε

i
S − σt(Pt+1)(qt − εq,t), (25)

which only depends on the noise in the private signal and the asset supply. Since potential

investors only have access to public information before entry, their ex-ante expected excess

returns in each period are: first, identical across potential investors; second, unrelated to the

fundamental value, thus private information does not help existing investors forecast investor

flows, and all the investors, including existing and potential investors, have the same perfect

forecast; third, independent of the history of public information, so the equilibrium investor

flows in each period are deterministic.

Investors hold the asset if and only if their expected excess return is positive. Thus potential

investors’ expected excess return from trading in period t, denoted as vt, is

vt = E[max{Ei
t [Pt+1]− Pt, 0}|F et ]. (26)

As shown in Appendix A.3, we have a closed-form solution

vt = σt(Pt+1)(

√
1 +

1

ρq
φ(− qt√

1 + 1
ρq

)− qtΦ(− qt√
1 + 1

ρq

)) (27)

with σt(Pt+1) = pΠ,t/
√
ρS, and φ(·) and Φ(·) are the PDF and CDF of the standard normal

distribution, respectively. vt is increasing in investors’ forecast dispersion σt(Pt+1). This

is because investors profit from price fluctuations. With a larger forecast dispersion, the

asset price is more volatile in response to the asset supply change and thus the expected

speculative profit is higher. Besides, this flow payoff is decreasing in the current number of

investors qt. The reason is that, with more investors, the asset price is bid up higher, and

this squeezes out speculative profits in the current period.

The equilibrium investor flows are determined by two layers of uncertainty assumed in the

model. This can be seen from the indifference condition, that is, if there are continuous

investor inflows, potential investors must be indifferent between entering in the current period

and in the next period, given by

vt = λte. (28)

The left-hand side vt, the flow payoff from speculation, is the benefit from entering in the

current period. It equals the right-hand side λte, the entry cost that can be saved if the un-
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certainty gets resolved in the next period, which is the benefit from waiting. Mathematically,

(27) and (28) show that, if investors’ expected resolution probability for the next period λt

is decreasing faster than investors’ belief dispersion σt(Pt+1), qt will increase, which means

that there will be investor inflows. Intuitively, the equilibrium investor flows depend on the

relative speed at which investors learn about the two layers of uncertainty—the fundamen-

tal value and the resolution probability. On the one hand, if the fundamental value is not

fully revealed, investors will become increasingly confident that the uncertainty will not get

resolved very soon, speculation will last longer, and total expected speculative profits will

be higher. This creates an incentive for entry. On the other hand, as learning proceeds,

investors’ beliefs gradually converge. This reduces speculative profits, so investors have less

incentive to enter. These two forces work in opposite ways and the equilibrium investor flows

depend on which force is stronger.

Regularity conditions here are similar to a single-crossing condition. They guarantee that

learning about the resolution probability is faster initially and slower later, so there are

inflows of investors for some time in the equilibrium. One example satisfying these conditions

is, when private signals are very precise compared with the initial public signal but over time

public signals become more and more informative (η > 0). In this case, investors’ beliefs

converge very slowly at the beginning and thus investor inflows sustain for a very long time;

later their beliefs converge much faster as the flow of public information speeds up, so investor

inflows eventually stop.

For the equilibrium uniqueness, the basic idea is as follows. First, exogenous information

flows uniquely determine the coefficients in the equilibrium price function. Second, given

these price coefficients, since the two layers of uncertainty have opposite effects on entry

decisions, they uniquely determine the equilibrium investor flows. Lastly, the equilibrium

investor flows and price coefficients together determine the equilibrium price function.

Price dynamics. Given the equilibrium price function, price dynamics are described by

the proposition below:

Proposition 3.6. In the full model, if uncertainty is not resolved at t + 1, average price

movement is

4P̄t = P̄t+1 − P̄t = λt

T−1∑
m=t+1

(
m−1∏
j=t+1

(1− λj))σm(Pm+1)qm︸ ︷︷ ︸
4n1,t>0

− σt(Pt+1)qt︸ ︷︷ ︸
4n2,t<0

. (29)

Under regularity conditions (A1)-(A3) stated in Appendix A.3 and the boundary condition
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(A4) stated in Appendix A.3, there exists t̃ s.t. 0 ≤ t̃ < T − 3, 4P̄t ≥ 0 for 0 ≤ t < t̃ and

4P̄t < 0 for t̃ ≤ t ≤ T − 3.

Proof. See Appendix A.

The average observed price movement is driven by positive 4n1,t and negative 4n2,t. This

is similar to the benchmark case and the explanation is summarized as follows. 4n2,t is

the overvaluation introduced into the price between period t and t + 1. It is caused by

the noisy aggregation of private information, under the assumption of limited asset supply

and short-sale constraints. Specifically, since the equilibrium price is informative about the

asset’s fundamental value and also about the asset supply, investors holding the asset, who

are on average optimistic about the asset fundamentals, perceives the asset supply to be very

high, which suppresses the price to be below the mean path. As a result, the equilibrium

price reflecting the marginal investor’s belief contains an overvaluation component that is

captured by4n2,t. Since this overvaluation term is anticipated, the equilibrium price in each

period also incorporates investors’ expected future overvaluation which has been adjusted

by the resolution risk. As time goes by, if the fundamental value is not fully revealed, the

total resolution risk decreases and thus the expected future overvaluation increases. This

change is characterized by 4n1,t.

The proposition shows that instead of a declining price path, uncertainty about the resolution

probability and the induced investor inflows can gradually push up the asset price before

it begins to fall. Initially, investors are worried that the uncertainty will get resolved very

soon. After one period, if the asset’s fundamental value is not fully revealed, investors adjust

their beliefs and their perceived resolution probability becomes lower. Thus, their perceived

resolution risk decreases more than it does in the benchmark case with known resolution

probability. Therefore, it is possible that investors’ expected future overvaluation increases

by a large amount so that the asset price goes up. In this way, as speculation continues

period after period, the asset price is pushed up higher and higher. As time goes by, the

change in the investors’ belief about the resolution probability becomes smaller and smaller,

so investors’ expected future overvaluation increases by a smaller and smaller amount. Thus

after some point, this positive force 4n1,t becomes dominated by the negative force 4n2,t,

and the price falls. Furthermore, investor inflows amplify price movements, as can be seen

from the proposition that price movements are proportional to {qt}T−1
t=0 . The intuition is

that, with investor inflows, more optimistic investors are trading the risky asset, and they

push the price further away from the asset fundamentals.
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To demonstrate price dynamics, I conduct some numerical simulations. Table 1 lists the val-

ues of parameters, which will be used for all the numerical results unless otherwise specified.

Figure 2 illustrates the results for price dynamics. The horizontal line is the fundamen-

tal value. With uncertainty about the fundamentals and known resolution probability, the

price is declining over time, as shown by the red dashed line. However, when the reso-

lution probability is unknown and investors are learning about this probability, the price

path becomes hump-shaped, as displayed by the green dash-dot line. On top of this, with

endogenous investor inflows, price movements are dramatic and resemble a realistic bubble

episode.

Table 1. Baseline Parameter Values

Assigned parameters Value

precision of the prior ρc0 8

precision of private signals ρS 10

precision of asset supply ρq 0.01

precision of public signals: level ρD 1.6× 10−4

precision of public signals: growth rate η 0.3

mean of the prior about the fundamental value Π0 1

fundamental value Π 1

prior parameter I of the resolution probability β 0.1

prior parameter II of the resolution probability γ 9.9

entry cost e 0.72

number of speculative periods T 50

Comparative statics. Results for comparative statics are shown in Figure 3. Within the

parameters tested, I obtained the following intuitive findings:

If the prior precision ρ0 increases, price movements are less dramatic due to there being less

uncertainty and reduced investor inflows. In addition, the asset price grows for a longer time

because the convergence rate of investors’ beliefs in each period is lower.

If the asset supply is less noisy, i.e., ρq is higher, we have less striking price movements and

also an earlier price reversal. This is because prices are more informative and thus investors’

beliefs converge faster. Similar results hold for a higher precision of public signals η and

ρD.

Given a higher precision of private signals ρS, investors put more weight on their private
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Figure 2: The average observed price path. Normalized by the fundamental value.

information and thus their initial forecast dispersion is larger. This and the induced larger

influx of new investors push up prices to a larger extent. Meanwhile, investors’ beliefs

converge faster, so the price reversal comes earlier.

If the prior mean of the resolution probability is lower, investors are more aggressive in the

beginning, and this brings more investors. As a result, initial prices are higher and prices

continue to go up to a larger extent. This is shown by the case (β, γ) = (0.1, 9.9), compared

with (β, γ) = (5, 5). Here we also observe that the price reversal comes later. This is because

in each period the change in investors’ beliefs regarding the resolution probability is smaller.

For cases (β, γ) = (0.1, 9.9) and (β, γ) = (0.2, 19.8), the latter implies that investors are

more cautious and they change their beliefs by a smaller amount in each period. Thus, there

are less incoming investors, and price movements are less pronounced.

As we raise the entry cost e, we reduce investor inflows in each period. This leads to less

striking price movements and lower initial prices. Here for e = 0.82, there are no investor

inflows.

These results on the comparative statics have several cross-sectional implications on asset

prices. First, the results on the initial uncertainty indicate that growth stocks undergo more

dramatic price movements than income stocks on average. Second, according to the results

on the precision of public signals, it is more likely for us to observe striking price movements
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in stocks with scarce analyst coverage. Third, although not shown in Figure 3, it is easily

seen from the linearity property of equilibrium prices that, investor inflows have a larger

impact on prices of small firms and thus their price movements tend to be more pronounced.

Moreover, if we think of the entry cost as the downpayment for home purchases, the result

shows that intuitively, raising downpayment requirements helps curb speculation.

4 Discussions and Extensions

4.1 Price Formation: Bubbles?

In each period, the equilibrium price is on average above the fundamental value and this is

common knowledge among investors. Can we call the price a bubble?

Previous literature on speculative bubbles has defined it in two different ways. In the first,

all the investors are speculators and the price is above their perceived fundamental value.

(Examples include Harrison and Kreps (1978), Tirole (1982), Allen and Gorton (1993),

Allen et al. (1993), Morris (1996), and Scheinkman and Xiong (2003).) The other definition

requires only that some of the investors holding the asset are speculators. The rest of the

investors do not perceive bubbles for various reasons, such as that they are uninformed about

bubbles as in Abreu and Brunnermeier (2003) or they are extremely optimistic as in Allen

et al. (2006).

This model has the same property as that appears in Allen et al. (2006): since investors’

beliefs are unbounded, extremely optimistic investors always believe that the asset is under-

valued. Thus, my definition of bubbles is in line with the second way used in the existing

literature. Specifically, I define a speculative bubble to be the price path when the marginal

investor is on average willing to pay more than his perceived fundamental value Ei
t [Π].

By this definition, there are no bubbles in the last trading period. This result is also shown in

Allen et al. (1993). The intuition is that investors know that the asset price in the next period

is going to be the fundamental value and thus they are not willing to pay a price higher than

their perceived fundamentals. However, bubbles arise if we have one more trading period.

In period T − 2, investors have an opportunity to resell the asset to optimistic investors

in period T − 1. Thus the price acceptable to them is their perceived optimistic marginal

investor’s belief. This creates speculation and thus bubbles.

To check this definition of bubbles, I plot the fraction of speculators among asset holders
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Figure 4: The fraction of speculators. This figure shows the fraction of speculators
among asset holders.

in Figure 4. We obtain several findings. First, the plot shows that most investors are

speculators in each period. In addition, as discussed earlier, none of the investors holding

the risky asset in the last trading period T − 1 are speculators, thus there are no bubbles in

that period.

Another way to study this question is from the view of econometricians. They have access to

all the public information. From their point of view, the price can be decomposed into two

components: expected fundamental value based on public information, and an error term

containing a price bubble, denoted as bt,
17

Pt = Ec
t [Π] + bt where bt = −pΠ,t/

√
ρSE

c
t [εq,t] +

T−1∑
m=t

(
m−1∏
j=t

(1− λj))σm(Pm+1)qm. (30)

Based on the available public information, the fundamental value component Ec
t [Π] is a

martingale, that is, the revision in the fundamental expectation is unforecastable. In the

error term, the first part −pΠ,t+1/
√
ρSE

c
t+1[εq,t+1] is caused by random asset supply. Since

{εq,t} is i.i.d., this part is unpredictable. The second part
∑T−1

m=t(
∏m−1

j=t (1−λj))σm(Pm+1)qm,

by contrast, is the partially accumulated overvaluation and its change is predicted. Therefore,

17I used the result that, since Pt ⊆ Fc
t , Π− pΠ,t/

√
ρSεq,t = Ec

t [Π]− pΠ,t/
√
ρSE

c
t [εq,t].

26



this second part is a price bubble to econometricians. As shown in Proposition 3.5, the non-

fundamental rise and fall in the equilibrium price is driven by this component.

4.2 Various episodes

In the model, depending on the relative speed at which the investors learn the fundamentals

versus the resolution probability, price dynamics exhibit different patterns. If learning about

the resolution probability dominates for a long period of time, the price builds up slowly

before it plummets; otherwise, the price rapidly runs up and then enters a long-lasting

downturn. Figure 5 displays these two different cases. In this example, the slow build-up

pattern is initially driven by a lower level ρD and a higher growth rate η in the precision of

public signals. Intuitively, a lower ρD indicates slower convergence of investors’ beliefs and

thus the price goes up for a longer time, and a higher η means that at a later stage investors’

beliefs converge much faster so that the price falls more quickly. By contrast, the prolonged

downturn pattern occurs with a higher ρD and a lower η.18

In reality, price processes during various historical bubble episodes have distinct features.

As shown in Figure 5, the IT bubble belongs to the slow build-up category, which may have

been caused by high uncertainty and slow learning about the value of this revolutionary

technology. The Japanese real estate bubble in the late 1980s represents the prolonged

downturn pattern, for which one possible reason is the delayed policy response to reduce

non-performing loans after the land price turned around in 1991.

In addition, the model can produce exogenous market crashes. In each period, the funda-

mental value may get fully revealed with a certain probability. If this happens, the price

goes back to the fundamental value immediately, as shown in Figure 6. The key to the crash

is not the revelation of the fundamental value, but the precision of public information that

aligns investors’ beliefs. One example is, according to Neal (1990), during the peak of the

South Sea Bubble in August of 1720, the South Sea company used the Bubble Act which

prohibited any company from engaging in activities outside those authorized in its original

charter to fight against its competitors, which had switched their activities from building

waterworks to underwriting insurance. However, this strategy also affected the company’s

own banker which was only authorized to make sword blades. As a result, the credit market

became very tight. The growing credit shortage, called a “coordinating event” by Temin and

18The key is the relative rate of information flow. Thus, different patterns can also result from the difference
in (β, γ) which controls the investors’ learning speed with respect to the second layer of uncertainty.
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Figure 5: Bubbles of different shapes. The parameters that drive these two different
shapes are the level parameter ρD and the growth rate η of the precision of public signals. I
set ρD = 1.6× 10−4/2 and η = 0.35 for the slow build-up pattern, and ρD = 1.6× 10−4× 10
and η = 0.25 for the prolonged downturn pattern. In addition, I made the following two
adjustments to match the IT bubble and the Japanese real estate bubble: first, by comparing
prices in the initial and the last period, I set the fundamental value Π = 1.6 and its prior
mean Π0 = −8.4 for the IT bubble, and Π = 0.5 and Π0 = 2.09 for the Japanese real estate
bubble; second, to match the magnitude of price movements, I choose the initial uncertainty
ρ0 = 0.5 and the entry cost e = 1.3 accordingly for the IT bubble, and ρ0 = 4 and e = 0.92
correspondingly for the Japanese real estate bubble. In the data, the price index for the
IT bubble is the S&P 500 Index, and for the Japanese real estate bubble, it is the urban
land price of nationwide: commercial from the Japan Statistical Yearbook 2014, Statistics
Bureau, Ministry of Internal Affairs and Communications, Japan.
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Figure 6: Market crashes.

Voth (2004), signaled the end of speculation, and consequently the stock price of the South

Sea company dropped from 820 on August 24, 1720 to 370 on September 24, 1720.

4.3 Model specification

Limits to arbitrage. In general, market anomalies are explained by stating that mispricing

cannot be corrected because of limits to arbitrage (see the survey by Gromb and Vayanos

(2010)). Among the various types of costs faced by arbitrageurs that have been discussed in

the previous literature, short-sale constraints and limited holding positions are two assump-

tions that have also been made in this model. However, in the current context, investors

are able to bring the price back to the fundamental value with these two elements alone.

To see this, consider the static framework without noise traders. As argued in Diamond

and Verrecchia (1987), the information of pessimistic investors will be incorporated into the

equilibrium price, and thus investors can learn from the price and then take action. For the

limited holding positions, since the total measure of investors is sufficiently large, the equilib-

rium price can only be the fundamental value. Therefore in spite of these two assumptions,

the key to the overvaluation emphasized in this paper is noise trading.

Moreover, as shown in the static case, the assumption of entry costs is unrelated to the
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rise of overvaluation in the equilibrium. Investors are compensated by profiting from noise

traders.

Investor outflows. In the equilibrium, there are no investor outflows. To explore the impact

of exit, I consider a case of exogenous outflows in this subsection. In each period, assume 5%

of rational investors randomly choose to exit and stop trading the risky asset. From Figure

7, which plots the measure of rational investors in the risky asset sector, indicated by qt,

and the average observed price path, we can see that the main difference is that the price

starts to decline at an earlier date and then falls faster. The dramatic rise-and-fall pattern

is preserved for two reasons: first, instead of entry, expected speculation profits lead to net

entry; second, investor outflows in the distant future are only partially incorporated into

the current-period asset price, that is, the outflows are multiplied by the probability that

uncertainty is not resolved by then.

Another concern with investor outflows is that they reflect pessimistic investors’ beliefs and

thus contain information about the fundamental value. In general, we can treat investor

outflows as another noisy signal, like prices.19 There is no reason to believe that this will

change the model results, but technically it will be much more involved.

Information acquisition and aggregation. The model can be justified by an endoge-

nous information acquisition framework. Take the entry cost e as a one-time information

acquisition cost and assume an upper bound for the signal precision that can be acquired.

It is obvious that in equilibrium investors will choose this upper bound, which is equivalent

to exogenous information flows. The rest of the results carry over into this setup.

Admittedly, multi-equilibria might arise in a different endogenous information acquisition

setting. This has been discussed at length in the previous literature.20 In the current

framework, consider one example in which the information acquisition cost is increasing in

the precision of the signal to be acquired. With endogenous investor flows, we may get two

equilibria, one with a high signal precision and a small number of rational investors, and one

with a low signal precision and a large influx of new investors.

Moreover, the specification for random asset supply that has been assumed for tractability

introduces the independence between the informativeness of price and investor flows. If we

19Noises, for instance, may come from risky outside production possibilities, as in Wang (1990).
20Examples include the following, Grossman and Stiglitz (1980) obtains the uniqueness result through

information substitutability; Barlevy and Veronesi (2000) and Chamley (2008) provide a complementarity
example in which more information makes prices less informative by introducing the correlation between
fundamentals and the noise; and Veldkamp (2006a) generates strategic complementarities through fixed
information production costs.
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Figure 7: Exogenous investor outflows: flows and the average observed price
path. Assume 5% exogenous investor outflows in each period. The left panel displays the
measure of rational investors in the risky asset sector indicated by qt. The right panel shows
the average observed price path normalized by the fundamental value.

allow the correlation, the indifference condition should still hold and thus equilibrium investor

flows should be determined by the relative speed of learning about the fundamentals and the

resolution probability. But the flow size now depends on the direction of correlation. For

example, if the random asset supply itself follows a normal distribution, the equilibrium price

becomes more informative with investor inflows. This implies that the speculative profits

fall more and thus in equilibrium there are fewer new investors.

4.4 Trading volume

As standard noisy rational expectations models show, in contrast with the no-trade theorem

by Milgrom and Stokey (1982), stochastic asset supply not only by itself brings about trade

but also leads to speculative trade because the information in the price does not “swamp”

private information. To compute trading volume, we can keep track of the selling side. In

this model, trading volume is given by

TVt = nt−1Pr(E
i
t−1[Pt] ≥ Pt−1, E

i
t [Pt+1] < Pt) + (Q(εq,t−1)−Q(εq,t))

+. (31)
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Since trading volume is informative about both the amount of asset supply and fundamentals,

it can be treated as a noisy signal on the fundamental value, and there is no reason to believe

that including this signal will change the mechanism. Because of this and also because of

the computation complexity, following previous literature, I assume investors do not observe

trading volume in the model.

It can be shown that

TVt = nt−1|Φ(qt − εq,t)− Φ(qt−1 − εq,t−1)|+ (Q(εq,t−1)−Q(εq,t))
+. (32)

The first term captures speculative trading and the second term represents noise trading.

This paper focuses on the volume of speculative trading which is measured by the equilibrium

trading volume with εq,t = 0, ∀0 ≤ t ≤ T − 1.21

Proposition 4.1. In period t, if the uncertainty is not resolved, the equilibrium volume of

speculative trading is

TV t = 1− nt−1

nt
. (33)

It is increasing in the speed of investor inflows.

Proof. See Appendix A.

The intuition is as follows. Investor inflows bring more investors, especially optimistic in-

vestors, to the market. These new investors bid up asset prices and induce assets to change

hands from existing investors to newcomers. Therefore, the faster investor inflows are, the

higher the volume of speculative trading is.

This result helps understand trading frenzies. To explain this phenomenon, researchers have

discussed various ways to generate strategic complementarities in speculators’ information

acquisition behavior. Examples include complementarities that result from short trading

horizons as described in Froot et al. (1992), from the riskiness of positions as described in

Hirshleifer et al. (1994), from fixed information acquisition costs as described in Veldkamp

(2006a,b), from the extra dimension of supply information as described in Ganguli and Yang

(2009), from relative wealth concerns as described in Garćıa and Strobl (2011), and from

the feedback effect from financial markets to the real investment decision as described in

Goldstein et al. (2013). By contrast, this paper describes trading frenzies as resulting from

large investor inflows. Another explanation not depending on strategic complementarities is

21To be precise, it is the median path of the volume of speculative trading.
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provided in a recent paper by Biais et al. (2014). They show a different mechanism, that is,

higher trading volume comes from round-trip trades caused by preference uncertainty.

5 Conclusion

In this paper, I provide a mechanism of price dynamics to explain bubble-like market

episodes. The equilibrium price is informative about the asset’s fundamental value and also

about the asset supply. Thus in a static framework, investors choosing to hold the asset, are

on average optimistic about the asset fundamentals, and perceives the asset supply to be

very high such that the price is pushed below the fundamentals. As a result, the equilibrium

price reflecting the marginal investor’s belief contains an overvaluation component. Since

this overpricing component is anticipated, it accumulates backward period by period in a

dynamic setting. Therefore, the price tends to decline over time. I show, however, that un-

certainty regarding the probability with which the fundamental value is fully revealed in each

period and induced investors inflows can push the price up continuously at the beginning.

If the fundamental value is not fully revealed period after period, investors perceive lower

resolution risk and thus they are willing to pay more for the asset. Meanwhile, investors

become increasingly confident that speculation will last longer, their expected speculative

profits increase. This leads to gradual investor inflows. Because of these two forces, the price

can run up dramatically before it eventually falls. If the fundamental value is fully revealed

in the middle of this speculation process, the market crashes. Moreover, by adjusting the

relative speed of learning about the two layers of uncertainty, the model equilibrium can

produce various bubble-like episodes. The importance of uncertainty and also of investor

flows demonstrated in this paper sheds light on the future policy analysis of bubble-like

events.
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Appendix

Appendix A: Proofs

A.1 Proof of Proposition 3.1

Proof. By Milgrom (1981), since the density of the normal distribution φ has the property

that φ′/φ is decreasing and unbounded from above and below, investors’ posterior belief on

the asset’s fundamental value, Ei[Π], which is based on their information F i = {F0, S
i, P},

is increasing in their private signal Si, and there exists a unique solution Ŝ such that

Ei[Π|F0, Ŝ, P ] = P .

Since the payoff of holding the asset is the asset’s fundamental value, risk-neutral investors

choose to hold the asset if and only if Si > Ŝ. Investors’ private signal follows a normal

distribution, Si ∼ N(Π, 1/ρS), so the aggregate demand for the asset is n(1−Φ(
√
ρS(Ŝ−Π))).

By market clearing condition, demand equals supply,

n(1− Φ(
√
ρS(Ŝ − Π))) = n(1− Φ(q − εq))

This determines the threshold Ŝ,

Ŝ = Π + 1/
√
ρSq − 1/

√
ρSεq

As shown in Theorem 1 in Albagli et al. (2015), the equilibrium price reveals the marginal

investor’s private signal. After adjusting the price for the concern of the winner’s curse, the

information content in the price is ξ = Π− 1/
√
ρSεq.

Throughout the paper, we focus on the equilibrium in which the price only partially reveals

the fundamental value. Therefore, the equilibrium price reflecting the marginal investor’s

fundamental belief is,

P = Ei[Π|F0, Ŝ, P ] = (1− pΠ)Ec[Π] + pΠ(Π + 1/
√
ρSq − 1/

√
ρSεq)

where pΠ = ρS/(ρ0 + ρSρq + ρS) and Ec[Π] = E[Π|F0, P ].

Since pΠ is the loading of the price on the marginal investor’s private signal, pΠ/
√
ρS is the

standard deviation of price forecast across investors σ(P ). The unconditional wedge between
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the price and the fundamental value is thus

E[P ]− E[Π] = σ(P )q > 0

Another way to prove this proposition is to guess and verify.

A.2 Proof of Proposition 3.2 and 3.3

Proof. The result can be shown by backward induction. First I study a two-period economy,

then extend the result to a multi-period model.

In a two-period economy, given P1,

P1 = (1− pΠ,1)Ec
1[Π] + pΠ,1(Π + 1/

√
ρSq − 1/

√
ρSεq,1)

= (1− pΠ,1)Ec
1[Π] + pΠ,1Π + σ1(Π)(q − εq,1)

where σ1(Π) = pΠ,1/
√
ρS is the standard deviation of fundamental belief (or price forecast in

the last trading period) across investors, in period 0, an individual investor’s price forecast

is

Ei
0[P1] = (1− pΠ,1)Ei

0[Ec
1[Π]] + pΠ,1E

i
0[Π] + σ1(Π)(q − Ei

0[εq,1])

Since εq,1 ∼ N(0, 1/ρq), E
i
0[εq,1] = 0. In addition, by Bayes’ rule, the fundamental belief

based on the public information F c1 = {F0, P0, P1}, Ec
1[Π], can be further decomposed into

the belief based on F c0 = {F0, P0}, Ec
0[Π], and the information contained in P1, Π−1/

√
ρSεq,1,

Ec
1[Π] = (1− γ1)Ec

0[Π] + γ1(Π− 1/
√
ρSεq,1)

with γ1 = ρSρq/(ρ0 + 2ρSρq), and thus,

Ei
0[Ec

1[Π]] = (1− γ1)Ei
0[Ec

0[Π]] + γ1(Ei
0[Π]− 1/

√
ρSE

i
0[εq,1])

= (1− γ1)Ec
0[Π] + γ1E

i
0[Π]

where the first term uses the property that, F c0 ⊂ F i0, Ei
0[Ec

0[Π]] = Ec
0[Π].

Therefore, price forecast Ei
0[P1] is

Ei
0[P1] = (1− pΠ,1)((1− γ1)Ec

0[Π] + γ1E
i
0[Π]) + pΠ,1E

i
0[Π] + σ1(Π)q

= (1− pΠ,1)(1− γ1)Ec
0[Π] + ((1− pΠ,1)γ1 + pΠ,1)Ei

0[Π] + σ1(Π)q
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Since by Bayes’ rule,

Ei
0[Π] = (1− α0)Ec

0[Π] + α0S
i

with α0 = ρS/(ρ0 + ρSρq + ρS), follows a normal distribution, we have the price forecast

across investors follows a distribution N(Ē0[P1], σ2
0(P1)) with

Ē0[P1] = (1− pΠ,0)Ec
0[Π] + pΠ,0Π + σ1(Π)q

σ0(P1) = pΠ,0/
√
ρS

where pΠ,0 = ((1− pΠ,1)γ1 + pΠ,1)α0.

Since investors hold one unit of the risky asset iff Ei
0[P1] > P0, we have the following market-

clearing condition:

n(1− Φ(
P0 − Ē0[P1]

σ0(P1)
)) = Q(εq,0)

Plugging in the specification for asset supply Q(εq,0) = n(1− Φ(q − εq,0)), we get

P0 = Ē0[P1] + σ0(P1)(q − εq,0)

= (1− pΠ,0)Ec
0[Π] + pΠ,0Π + σ1(Π)q + σ0(P1)(q − εq,0)

Therefore, the unconditional price movement between periods 0 and 1 is

E[P1]− E[P0] = −σ0(P1)q < 0

The proof for the multi-period economy follows the same steps, except that the price coeffi-

cients are different,

pΠ,t = ((1− pΠ,t+1)γt+1 + pΠ,t+1)αt

where γt+1 = ρSρq/(ρ0 + (t+ 2)ρSρq) and αt = ρS/(ρ0 + (t+ 1)ρSρq + ρS).

A.3 Proof of Proposition 3.5

Proof. The proof consists of three steps. I first derive the functional form of the equilibrium

price given the measure of investors, next characterize the dynamics of equilibrium investor

flows, and lastly show the existence and uniqueness of the linear partially revealing rational

expectations equilibrium.

Step 1: price. We take the measure of rational investors trading the risky asset {nt} (and
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equivalently {qt}) as given. As will be shown in step 2, {qt} is common knowledge.

First, we derive the belief-updating rules. Given the following linear form for the price,

Pt = L(Π0, εD,t, εq,t) + pΠ,tΠ +
T−1∑
m=t

pq,tmqm − pε,tεq,t

where all the coefficients are constant, we have the information contained in the price to be

ξt = Π− µtεq,t

where

µt =
pε,t
pΠ,t

.

Notice that εq,t is i.i.d., which implies that signals {ξt} and {Dt} are independent and i.i.d..

Thus, instead of the standard Kalman filter, we can directly apply the Bayesian rule and get

the posterior belief on Π based on F ct to follow N(Ec
t [Π], 1/ρct) with

Ec
t [Π] =

ρct−1

ρct
Ec
t−1[Π] +

ρq/µ
2
t

ρct
ξt +

ρD,t
ρct

Dt

and

ρct = ρct−1 + ρD,t +
ρq
µ2
t

.

For the belief based on the total information available to investor i, i ∈ It, since private

signals are i.i.d. and also independent of other noise terms, we have the following Bayesian

updating rule:

Ei
t [Π] = (1− αt)Ec

t [Π] + αtS
i

where

αt =
ρS

ρct + ρS

and

ρt = ρt−1 + ρD,t +
ρq
µ2
t

+ ρS.

Given the belief-updating rules, now we show that the price function has the linear form as

given in the Proposition. The method we use here is backward induction.
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At t = T , uncertainty is fully resolved and thus PT = Π. Given this, at t = T − 1, if the

fundamental value is not fully revealed, we have

Ei
T−1[PT ] = Ei

T−1[Π] = (1− αT−1)Ec
T−1[Π] + αT−1S

i.

Across investors, the price forecast follows a distribution N(ĒT−1[PT ], σ2
T−1(PT )) with

ĒT−1[PT ] = (1− αT−1)Ec
T−1[Π] + αT−1Π

σT−1(PT ) = αT−1

√
1

ρS
.

Since investors hold one unit of the risky asset iff Ei
T−1[PT ] ≥ PT−1, we have the following

market-clearing condition:

nT−1(1− Φ(
PT−1 − ĒT−1[PT ]

σT−1(PT )
)) = Q(εq,T−1).

Plugging in the specification for asset supply, we get

PT−1 = ĒT−1[PT ] + σT−1(PT )(qT−1 − εq,T−1).

Using the result for the belief distribution, we have

PT−1 = (1− αT−1)Ec
T−1[Π] + αT−1(Π +

√
1

ρS
(qT−1 − εq,T−1)).

Matching the coefficients gives us

pΠ,T−1 = αT−1

pq,(T−1)(T−1) = pε,T−1 = αT−1

√
1

ρS
.

Thus, the equilibrium price at period T −1 has the functional form given in the proposition.

Now assume that the equilibrium price at period t + 1 has the linear form given in the

proposition, we want to show that it also holds for period t.

If uncertainty is not resolved at t, investors expect the resolution probability in the next
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period to be λt. Thus

Ei
t [Pt+1] = (1− λt)Ei

t [(1− pΠ,t+1)Ec
t+1[Π] + pΠ,t+1Π +

T−1∑
m=t+1

pn,(t+1)mqm − pε,t+1εq,t+1] + λtE
i
t [Π].

By the belief-updating rule for Ec
t+1[Π],

Ei
t [E

c
t+1[Π]] =

1

ρct+1

Ei
t [ρ

c
tE

c
t [Π] +

ρq
µ2
t+1

ξt+1 + ρD,t+1Dt+1]

=
ρct
ρct+1

Ec
t [Π] +

ρq/µ
2
t+1 + ρD,t+1

ρct+1

Ei
t [Π]

we have

Ei
t [Pt+1] = (1− At)Ec

t [Π] + AtE
i
t [Π] + (1− λt)

T−1∑
m=t+1

pq,(t+1)mqm

where

At = 1− (1− λt)(1− pΠ,t+1)
ρct
ρct+1

.

Using the belief-updating rule for Ei
t [Π], we further have

Ei
t [Pt+1] = (1− Atαt)Ec

t [Π] + AtαtS
i + (1− λt)

T−1∑
m=t+1

pq,(t+1)mqm. (34)

Across investors, it follows N(Ēt[Pt+1], σ2
t (Pt+1)) with

Ēt[Pt+1] = (1− Atαt)Ec
t [Π] + AtαtΠ + (1− λt)

T−1∑
m=t+1

pq,(t+1)mqm (35)

σt(Pt+1) = Atαt

√
1

ρS
.

This implies the market-clearing condition

nt(1− Φ(
Pt − Ēt[Pt+1]

σt(Pt+1)
)) = Q(εq,t)

from which we have

Pt = (1− Atαt)Ec
t [Π] + Atαt(Π +

√
1

ρS
(qt − εq,t)) + (1− λt)

T−1∑
m=t+1

pq,(t+1)mqm.
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This confirms our conjecture about the price function, and by matching the coefficients, we

have

pΠ,t = Atαt

pq,tm = (1− λt)pq,(t+1)m for t+ 1 ≤ m ≤ T − 1

pq,tt = pε,t = Atαt

√
1

ρS
.

If we reorganize the terms, we get the price function stated in the proposition. This completes

the proof.

Step 2: investor flows. The proof has two parts: I first characterize the properties of

equilibrium investor flows, and after that I provide regularity conditions to describe the

dynamics of investor flows.

We first show that the expected excess return from trading the risky asset at period t

if uncertainty is not resolved is the same conditional on the information set of potential

investors in any period before and including t, that is, any F em for 0 ≤ m ≤ t.

Notice that by the proof of step 1,

Pt = Ēt[Pt+1] + σt(Pt+1)(qt − εq,t)

we have

Ei
t [Pt+1]− Pt = Ei

t [Pt+1]− Ēt[Pt+1]− σt(Pt+1)(qt − εq,t) = pΠ,tε
i
S − σt(Pt+1)(qt − εq,t)

where the second equals sign uses (34) and (35).

Since εiS and εq,t are independent of any F em for 0 ≤ m ≤ t, we know that

(Ei
t [Pt+1]− Pt)|F em ∼ N(−σt(Pt+1)qt, σ

2
t (Pt+1)(1 +

1

ρq
))

so the expected excess return from trading the risky asset at period t is the same for any

F em, 0 ≤ m ≤ t, and can be denoted as vt. It is given by

vt = E[max{Ei
t [Pt+1]− Pt, 0}|F et ].
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Using the distribution we have derived above,

vt =

∫ ∞
0

xφ(
x+ σt(Pt+1)qt

σt(Pt+1)
√

1 + 1
ρq

)dx

which gives

vt = σt(Pt+1)(

√
1 +

1

ρq
φ(− qt√

1 + 1
ρq

)− qtΦ(− qt√
1 + 1

ρq

))

where φ(·) and Φ(·) are PDF and CDF of the standard normal distribution, respectively.

As a result, the total expected excess return discounted to period t from entering at t is

Vt =
T−1∑
m=t

(Πm−1
j=t (1− λj))vm.

Investors want to maximize their discounted expected wealth at period t. Thus, potential

investors will enter only if

Vt ≥ e.

Moreover, they also need to decide when to enter. Since potential investors make the same

entry decision, if there are new entrants at both period t and t+ 1, the following indifference

condition must hold:

Vt − e = Et[max{Vt+1 − e, 0}|F et ]

which implies

vt = λte

where λt = γ/(β + γ + t + 1) is investors’ expectation regarding the probability that the

uncertainty will be fully resolved in the next period, in which case they will not enter.

In addition, in this model, investors can always choose not to hold the risky asset, so it

is obvious that there are always positive expected gains for investors who trade the risky

asset before uncertainty gets resolved. Thus, investors will not exit, which implies that nt is

nondecreasing during those T periods.

Lastly, we show some properties of vt. Since

∂vt
∂qt

= −Φ(− qt√
1 + 1

ρq

) < 0
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vt is decreasing in qt (and thus in nt). This and the indifference condition indicate that if

λt/σt(Pt+1) is decreasing over time, we have gradual inflows of investors, as long as Vt ≥ e.

Now I provide regularity conditions. First, we introduce some notations:

Bt =
1

λt−1

(1− (1− λt−1)
ρct−1

ρct
)αt−1/(

1

λt
− 1

λt−1

(1− λt−1)
ρct−1

ρct
αt−1), Dt = Bt/λt

Ct = (Bt−1 − (1− (1− λt−1)
ρct−1

ρct
)αt−1)/((1− λt−1)

ρct−1

ρct
αt−1), Ot = σt(Pt+1)/λt.

Assume the following regularity conditions:

(A1) There exists t̃ such that 0 < t̃ ≤ T − 2, Dt−1 < Dt for 0 ≤ t < t̃, and Dt−1 > Dt for

t̃ ≤ t ≤ T − 2.

(A2) pΠ,T−2 = (1− (1− λT−2)(1− αT−1)
ρcT−2

ρcT−1
)αT−2 < BT−2.

(A3) e ≤ V0(qt = qn,−1, 0 ≥ t ≥ T )/(1− λ0).

Here Ot over time captures the convergence rate of investors’ beliefs about the fundamental

value relative to how fast investors become confident that uncertainty will not get resolved

very soon. Condition (A1) puts restrictions on the relative rates of information flow so that

investors’ beliefs about the resolution probability decrease faster than the convergence rate of

their beliefs about the fundamental value at the beginning but slower than the convergence

rate later. Conditions (A2) and (A3) are boundary conditions that guarantee investor inflows

during the first trading period and no flows at period T-2. Now we show that under those

regularity conditions, Ot increases first then decreases, and thus the indifference condition

(28) implies that investor inflows continue for some periods and then stop.

Using the results for σt(Pt+1) and pΠ,t, we have

Ot+1 −Ot =
σt+1(Pt+2)

λt+1

− σt(Pt+1)

λt
=
pΠ,t+1

√
1
ρS

λt+1

−
(1− (1− λt)(1− pΠ,t+1)

ρct
ρct+1

)αt
√

1
ρS

λt

and thus

sgn(Ot+1 −Ot) = sgn(pΠ,t+1 −Bt+1). (36)

Similarly,

sgn(Ot −Ot−1) = sgn(pΠ,t −Bt)
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plugging in

pΠ,t = (1− (1− λt)(1− pΠ,t+1)
ρct
ρct+1

)αt

we have

sgn(Ot −Ot−1) = sgn(pΠ,t+1 − Ct+1). (37)

Besides,

Bt+1 − Ct+1 =
1

(1− λt) ρct
ρct+1

αt
(((1− λt)

ρct
ρct+1

αtBt+1 + (1− (1− λt)
ρct
ρct+1

)αt)−Bt)

=
1

(1− λt) ρct
ρct+1

αt
(Bt+1

λt
λt+1

−Bt)

which gives

sgn(Bt+1 − Ct+1) = sgn(Dt+1 −Dt). (38)

Assumption (A2) and (36) imply OT−2 < OT−3. By Assumption (A1), DT−3 > DT−2, and

thus BT−2 < CT−2. This and Assumption (A2) indicate pΠ,T−2 < CT−2, and with (37), this

gives OT−3 < OT−4. By (36), we have pΠ,T−3 < BT−3. We can continue this process until

period t̃− 1, and we have Ot̃−2 > Ot̃−1 > . . . > OT−2.

For periods before t̃, there are two possibilities. One is pΠ,t < Ct for all 1 ≤ t ≤ t̃ − 1.

This and the assumption that Dt is increasing before t̃ imply that Ot is declining over time.

Together with Assumption (A3), this implies investor inflows only during the first period.

The other possibility is that there exists a t̃′ s.t. 1 < t̃′ ≤ t̃−1 and pΠ,t̃′ > Ct̃′ . Thus, we have

Ot̃′−2 < Ot̃′−1 and thus by (36), pΠ,t̃′−1 > Bt̃′−1. Since Dt is increasing before t̃ which implies

Bt̃′−1 > Ct̃′−1, pΠ,t̃′−1 > Ct̃′−1 and thus by (37), Ot̃′−3 < Ot̃′−2. Continuing this process until

period 0, we have O0 < . . . < Ot̃′−1. Therefore, Ot is increasing from period 0 to t̃′ − 1 and

decreasing afterwards. This means that there are gradual inflows of investors until period

t̃′ − 1 or earlier when Vt < e. This completes the proof.

Step 3: existence and uniqueness. The proof consists of two parts. We first show the

existence and uniqueness of the equilibrium price function, then for investor flows.

Recall step 1, we have

µt =
pε,t
pΠ,t

=

√
1

ρS
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thus,

ρct = ρct−1 + ρD,t +
ρq
µ2
t

= ρct−1 + ρD,t + ρSρq.

This gives

ρct = ρc0 +
t∑

m=0

ρD,m + (t+ 1)ρSρq.

By step 1, ρct uniquely determines {pΠ,t, {pq,tm}T−1
m=t, pε,t}. This suggests the existence and

uniqueness of the parameters in the price function.

The existence of the measure of rational investors trading the risky asset {nt} is obvious.

Now we show its uniqueness. Suppose not, then there exist two equilibria N1
t ≡ {n1

t} and

N2
t ≡ {n2

t} s.t. N1
t 6= N2

t .

There must exist 0 ≤ t̃ ≤ T − 1, s.t. n1
t̃
6= n2

t̃
and n1

t = n2
t for t̃ + 1 ≤ t ≤ T − 1. Without

loss of generality, assume n1
t̃
> n2

t̃
. Since n1

t = n2
t for t̃ + 1 ≤ t ≤ T − 1 and the flow payoff

vt is strictly decreasing in nt, we have

Vt̃(n
1
t̃ , n

1
t̃+1, . . . , n

1
T−1) < Vt̃(n

2
t̃ , n

2
t̃+1, . . . , n

2
T−1) ≤ e.

This and for any 0 ≤ t ≤ T − 1, Vt(nt, . . . , nT−1) ≤ e with “<” only if nt = nt−1 imply

n1
t̃ = n1

t̃−1.

Thus

n1
t̃−1 = n1

t̃ > n2
t̃ ≥ n2

t̃−1

Continuing this process, we will get

n1
0 > n2

0 ≥ n−1, V0(N1
t ) < V0(N2

t ) ≤ e.

From n1
0 > n2

0 ≥ n−1, we know that for {n1
t}, there are capital inflows at period 0. This

implies V0(N1
t ) = e, contradicting V0(N1

t ) < V0(N2
t ) ≤ e.

Therefore, {nt} must be unique.
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A.4 Proof of Proposition 3.6

Proof. Recall the proof of Proposition 3.5, we have for 0 ≤ t ≤ T − 2,

pΠ,t = (1− (1− λt)(1− pΠ,t+1)
ρct
ρct+1

)αt < αt.

However, since at period T , the fundamental value is certain to be fully revealed, i.e., λT = 1,

we have

pΠ,T−1 = αT−1.

Thus with finite trading periods, we have discontinuity in the dispersion of investors’ price

forecast σt(Pt+1) and the dispersion may have a sharp increase in the last trading period,

which is not appealing. To get rid of this boundary effect, I assume the following condition:

(A4) 4P̄T−3 = λT−3(σT−2(PT−1)qT−2 + (1− λT−2)σT−1(PT )qT−1)− σT−3(PT−2)qT−3 < 0.

Notice that if the number of trading periods T is large enough, αt → 0, λt → 0, and thus

the above condition is easily satisfied.

Under regularity conditions (A1)-(A3), from the proof of Proposition 3.5, we know that

Ot = σt(Pt+1)/λt is increasing first then decreasing. Thus for period t,

(1) If Ot+1 > Ot, assume 4P̄t < 0, with nondecreasing qm, we have

4P̄t+1 = 4n1,t+1 +4n2,t+1 =
λt+1

1− λt+1

(
4P̄t
λt
− (Ot+1qt+1 −Otqt)) < 0.

This implies that if 4P̄t < 0, 4P̄m < 0 for any t ≤ m ≤ T − 1.

(2) If Om is decreasing during t ≤ m ≤ T − 1, qm will not change at t ≤ m ≤ T − 1. Since

4P̄T−3 < 0, by

4P̄t = λt(
1− λt+1

λt+1

4P̄t+1 + (Ot+1qt+1 −Otqt))

we have 4P̄T−4 < 0 and by backward induction, 4P̄t < 0.

Therefore, there exists t̃ s.t. 0 ≤ t̃ < T − 3, 4P̄t ≥ 0 for 0 ≤ t < t̃ and 4P̄t < 0 for

t̃ < t ≤ T − 3.
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A.5 Proof of Proposition 3.4

Proof. By the same argument used in the proof of Proposition 3.5, to get rid of the boundary

effect, instead of (A2), I assume a slightly different condition below:

(A5) ρcT−2 < (ρSρq + ρD,T−2)(2ρSρq + 2ρD,T−1 + 3ρS)/(ρS + ρD,T−1 − ρD,T−2).

This guarantees pΠ,T−3 > pΠ,T−2, and it is easy to verify that pΠ,t and thus Ot = σt(Pt+1)/λ =

pΠ,t

√
1/ρS/λ is decreasing for 0 ≤ t ≤ T − 2. As a result, first, by the indifference condition

(28), there are no gradual investor inflows, that is, qt is constant and I denote it as q;

second, using a similar argument to that used in Proposition 3.5, we have 4P̄T−3 < 0 and

furthermore 4P̄t < 0 for 0 ≤ t ≤ T − 3. This completes the proof.

A.6 Proof of Proposition 5.1

Proof. From the proof of Proposition 3.5, we have

Ei
t−1[Pt]− Pt−1 = pΠ,t−1(Si − Π)− σt−1(Pt)(qt−1 − εq,t−1).

Thus, Ei
t−1[Pt] ≥ Pt−1 implies

√
ρS(Si − Π) ≥ √ρS

σt−1(Pt)

pΠ,t−1

(qt−1 − εq,t−1) = qt−1 − εq,t−1.

Here,
√
ρS(Si − Π) ∼ N(0, 1).

Similarly, Ei
t [Pt+1] < Pt implies

√
ρS(Si − Π) ≤ qt − εq,t.

Let εq,t = 0, ∀0 ≤ t ≤ T . At time t, the volume of speculative trading is

TV t = nt−1Pr(E
i
t−1[Pt] ≥ Pt−1, E

i
t [Pt+1] < Pt) = nt−1(Φ(qt)− Φ(qt−1)).

Using the specification for qt, we have

TV t = 1− nt−1

nt
.

This equals the speed of investor inflows (nt − nt−1)/nt−1.
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Appendix B: Computation

The computation procedure for solving the equilibrium is:

(1) Compute {λt} using Proposition 2.1.

(2) By Proposition 3.5, compute {ρct} first, then {pΠ,t, σt(Pt+1)}.

(3) Since the linear partially revealing equilibrium is unique, we can compute equilibrium

investor flows by construction. By Proposition 3.5, we have gradual inflows of ratio-

nal investors and they stop after a certain number of periods. Thus, first, using the

indifference condition (28), solve {nt} and find the period t1 after which nt starts to

decrease; next, compute the expected total payoff of entry Vt if investor inflows stop

at period t, find the first period t2 when Vt < e; t̃ = min{t1, t2}. This is the period

when investor inflows stop. Re-solve nt̃ s.t. Vt̃ = e. Thus, the equilibrium measure of

rational investors trading the risky asset is {n1, . . . , nt̃, . . . , nt̃}.
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