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Abstract

This paper analyzes the dynamic spatial equilibrium of taxicabs and shows how common taxi
regulations lead to substantial inefficiencies. Taxis compete for passengers by driving to different
locations around the city. Search costs ensure that optimal search behavior will still result in
equilibrium frictions in the form of waiting times and spatial mismatch. Medallion limit regu-
lations and fixed fare structures exacerbate these frictions by preventing markets from clearing
on prices, leaving empty taxis in some areas, and excess demand in other areas. To analyze the
role of regulation on frictions and efficiency, I pose a dynamic model of search and matching
between taxis and passengers under regulation. Using a comprehensive dataset of New York
City yellow medallion taxis, I use this model to compute the equilibrium spatial distribution
of vacant taxis and estimate intraday demand. My estimates show that search frictions reduce
welfare by $422M per year, or 62%. Counterfactual analysis reveals that existing regulations
attain only 11% of the efficiency implied by a social planner’s solution, while the adoption of
optimized two-part tariff pricing would lead to 89% efficiency, or a welfare gain on the order of
$2.1B per year. The addition of directed matching technology to an optimized regime would
increase welfare even further, by approximately $2.4B per year.
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1 Introduction

Since the pioneering work of Diamond (1981, 1982a,b), Mortensen (1982a,b) and Pissarides (1984,

1985), the search and matching literature has focused on understanding the role of search frictions in

impeding the efficient clearing of markets. Search and matching literature examines many markets

where central or standardized exchange is not possible, including labor markets (e.g., Shimer and

Wright (2005)), marriage markets (e.g., Mortensen (1988)), and financial markets (e.g., Duffie,

Gârleanu, and Pedersen (2002, 2005)). In each case, market outcomes differ from the canonical,

Walrasian ideal of perfectly frictionless trade and competition, as prices and quantities fail to reflect

the intersection of supply and demand. As illustrated by these examples, search markets comprise

some of the most important areas of the economy, so it is essential to understand the nature of

frictions in different environments and their impact on market function and welfare. In this paper,

I study spatial search and matching in the taxicab industry. This industry offers a uniquely well-

suited environment to study the search process at a very granular level as well as the ability of

regulation to mitigate the cost of search frictions.

The taxicab industry is a critical component of the transportation infrastructure in large ur-

ban areas. Approximately 700 million passengers are transported annually in the United States,

generating $16.0 billion in revenues.1 Urban taxi markets are distinguished from most other public

transit options by a lack of centralized control; taxis do not service established routes or coordinate

search behavior. Instead, individual drivers decide where to provide service. The supply of taxis

in any area is determined by the aggregation of these choices. Vacant taxis and customers do not

know each others’ locations, so in expectation, empty cabs and waiting customers will coexist while

search is conducted. This paper analyzes these frictions and the extent to which they are driven by

the search behavior of vacant taxis. How and where drivers decide to search for passengers directly

affects the availability of taxi service across the city. From a driver’s perspective, location decisions

have important economic tradeoffs. Taxis are drawn to search in the most concentrated pedestrian

areas, but competitive pressure (i.e., the threat of losing fares to other taxis) incentivizes drivers

to spread search among a broader set of locations. The confluence of these incentives gives rise to

equilibrium search behavior that can leave some areas with little to no service while in other areas,

empty taxis will wait in long queues for passengers.

A second defining characteristic of the U.S. taxi market is that both prices and quantities are

typically regulated by municipal authorities. Although the scope and magnitude of regulations

vary across cities, nearly all local regulators implement the same pair of instruments: two-part

tariff pricing and entry restrictions. The two-part tariff price structure consists of a one-time

fixed fare and a distance-based fare (e.g., $2.50 per-ride plus $2.50 per-mile, as in New York

1See technical report Brennan (2014) for more information.
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City). Entry restrictions strictly limit the number of taxis that are licensed to provide service (e.g.,

13,500 total permits to operate a taxi service in a city). Although local taxi regulations might be

aimed at mitigating several potential externalities, fixed prices and quantities prevent traditional

market mechanisms from efficiently rationing supply and demand, so taxi drivers will not be fully

incentivized to focus their search in the highest-demand areas. Fixed prices directly influence the

spatial search behavior of taxis by differentially rewarding search for, say, a long ride versus a short

ride. Thus the type of two-part tariff used - a high distance fee and low fixed fee, or vice-versa, will

lead to different equilibrium spatial distributions of service. In this way, the spatial sorting of taxis

is endogenously determined by fare regulations. The overall level of service is further dependent

on entry regulations. If local authorities ignore the spatial effects of regulation, there is a risk of

adding unnecessary and wasteful costs to the search process between supply and demand.

In this paper, I model taxi drivers’ location choices as a dynamic spatial oligopoly game in

which vacant drivers choose where to provide service given the locations of their competition and

profitability of different search locations. I show how regulations impact taxi drivers’ search be-

havior, which in turn influences the equilibrium spatial distribution of taxi service. To empirically

analyze this model, I use data from the New York City Taxi and Limousine Commission (TLC),

which provides trip details including the time, location and fare paid for all 350 million taxi rides

in New York from January, 2011 to December, 2012.2 Using TLC data together with a model of

taxi search and matching, I estimate the spatial, inter-temporal distribution of supply and demand

in equilibrium. Importantly, the data only reveal matches made between taxis and customers as a

consequence of search activity, but do not show underlying supply or demand; I do not observe a

measure of vacant taxis or the number of customers who want a ride. Because these objects are

necessary to measure search frictions and welfare in the market, I present an identification strategy

using the spatial equilibrium model together with a microfounded matching specification. Identi-

fication is obtained by first mapping the observed spatial distribution of matches in each period

across the day to corresponding time-location levels of supply and demand via an aggregate match-

ing function and then finding both supply and demand via the structural restrictions imposed by

the spatial equilibrium model. The most common methods for estimating dynamic oligopoly games

involve solving for equilibrium policies for each type of agent at each point in time. These methods

are infeasible here due to the extremely high-dimensional state space. Instead, I model and solve

for an equilibrium where taxis play against the distribution of competitors instead of individuals.

I use this model to evaluate welfare in this market as well as the welfare effects associated

with several potential policy alternatives. Baseline estimates of welfare indicate that the New York

taxi industry generates $257 million is annual consumer surplus and $1.6 billion in taxi profits.

2New York’s taxi industry is approximately 25% of the U.S. taxi market, the largest in the United States. Source:
my own calculation based on 2013 data from the NYC Taxi and Limousine Commission and Brennan (2014)
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Approximately $422 million is lost annually as a result of search frictions due to both unmatched

supply and demand as well as matches occurring for some customers who have lower valuations

than others. By simulating market outcomes over a grid of potential two-part tariffs, I am able to

solve for an optimal fare structure and show that one with no fixed fee, based on distance pricing

alone, leads to $289 million in annual consumer welfare, a gain of 12.5%. With this pricing result,

I derive a social planner’s solution to the taxi allocation problem when the planner is constrained

by current medallion levels. Results suggest that a social planner could generate $2.6 billion in

consumer welfare, a gain of 821%, through a combination of lower prices, which reduce the rents

accruing to medallion stakeholders, and spatial reallocation. Finally, I measure the value added by

eliminating matching frictions, a reflection of technology used by popular new taxi market entrants

such as Uber and Lyft; I show that a combined policy of optimal tariffs, marginal-cost pricing, and

on-demand matching technology would generate $2.6 in consumer welfare each year in the New

York market, slightly exceeding the welfare induced by a social planner in the presence of search

and matching frictions.

Related Literature

This paper integrates ideas from the search and matching literature, spatial economics and em-

pirical studies of industry dynamics. My model is built around the aggregate matching function

concept of canonical search-theoretic models.3 Traditionally, matching functions directly built in

frictions as a functional form assumption, but some recent literature has derived matching functions

under explicit microfoundations. Notably, Lagos (2000) studies endogenous search frictions using

a stylized environment of taxi search and competition. I draw elements from the Lagos search

model, but make several changes to reflect the real-world search and matching process. Specifi-

cally, I add non-stationary dynamics, a more realistic and flexible spatial structure, stochastic and

price-sensitive demand, fuel costs, and regulation in the form of two-part tariff pricing and fixed

quantities. Further, to facilitate estimation of this model, I also allow for drivers’ location choices

to be influenced by unobservable factors (e.g., it might be easier to continue travel in the same di-

rection the cab is facing than to turn around). To model search and matching across spatial areas

(as opposed to single points, as in the Lagos model), I pose an aggregate matching function with

microfoundations well-suited to a spatial search process, and to the taxi industry in particular; this

function assumes perfect matching at each point, but areas that are made up of several points (for

example, a set of street intersections). Similar functions have been used in advertising literature

(Butters (1977)) as well as the search literature (Burdett, Shi, and Wright (2001)). As with the

3A starting point for the implementation of these models in studying labor markets can be found in surveys of
search-theoretic literature by Mortensen (1986) and Mortensen and Pissarides (1999) and Shimer and Wright (2005).
Blanchard and Diamond (1991) introduces the aggregate matching function concept.
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latter study, my specification generate endogenous frictions within each search area as a function

of the number of buyers and sellers.

I integrate the search and matching framework with a dynamic oligopoly model in the tradition

of Hopenhayn (1992) and Ericson and Pakes (1995), which characterize Markov-perfect equilibria

in entry, exit and investment choices given some uncertainty in the evolution of the states of firms

and their competitors. Instead of these choices, however, I model taxi drivers’ problem as a series

of location choices made throughout the day whenever cabs fail to find passengers. Given the

non-stationary environment, this problem generates a particularly high-dimensional state space, so

I use numerical approximate dynamic programming methods to mitigate computational burden.

My approach exploits the large number of agents (taxi drivers) in the system by assuming that

state transitions are perfectly forecastable by drivers. This assumption not only permits solving

for equilibrium search policies of taxis, but also reflects a more realistic behavioral model: here,

an agent’s strategic location game involves a play against the expected distribution of competitors

throughout the day, rather than all possible realizations of competitors’ states. This approach has

precedent in literature on non-stationary firm dynamics (e.g., Weintraub, Benkard, Jeziorski, and

Van Roy (2008), Melitz and James (2007)) as well in auction models with many bidders (e.g., Hong

and Shum (2010)).

This paper also contributes to literature on spatial economics by modeling the spatial dispersion

of firms as an equilibrium outcome of the search process. While there is no unifying theory of spatial

economics, there is a long history of literature tracing the interactions between space and economic

activity.4 My model underscores some common themes in the spatial equilibrium literature. Classic

migration models of Rosen (1979), Roback (1988), and more recent work (e.g. Diamond (2012),

Allen and Arkolakis (2014)), highlight equilibrium tradeoffs between city characteristics, wages

and migration. My spatial model reveals a conceptually similar no-arbitrage equilibrium that

demonstrates tradeoffs between competition, profitability of locations, and the movement of vacant

taxis over space.

Finally, this paper contributes to our understanding of the taxi industry by analyzing driver

search behavior and the effects of regulation. To my knowledge, this is the first empirical analysis

of the spatial search dynamics of taxis. The most closely related study is Frechette, Lizzeri, and

Salz (2015) [hereafter, FLS], which models the labor supply dynamics of taxis to ask how customer

waiting times and welfare are impacted by medallion regulations and matching technology. As with

my paper, FLS study the effect of regulations on search frictions and welfare. The key difference

4For a history of spatial economics, see Ohta and Thisse (1993) For a review of modern spatial economics, see
Fujita, Krugman, and Venables (1999). Important early literature capturing these effects appear in The Isolated State
(von Thünen (1966)), Von Thünen’s 1826 treatise showing how spatial sorting and agglomeration patterns develop
purely through competition and market-determined land prices, as well as Hotelling (1929), a workhorse model that
predicts the spatial locations of competitive firms as an equilibrium outcome.
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is that they focus on the labor supply decision rather than the spatial location decision.5 As a

result they model the dynamic equilibrium effects of regulation on aggregate (i.e., city-wide) levels

of service and demand, whereas I model the dynamic equilibrium effects of regulation on spatial

distributions of supply and demand. My identification relies on a fixed labor supply, however, which

is only valid when medallion limits are binding in the busiest hours. Though these approaches differ

substantially, they lead to similar predictions when comparing similar counterfactuals.6

A diverse set of literature exists to address whether taxi regulation is necessary at all. Among

this literature, both the theoretical and empirical findings offer mixed evidence. These studies point

to successful regulation’s function to reduce transaction costs (Gallick and Sisk (1987)), prevent

localized monopolies (Cairns and Liston-Heyes (1996)), correct for negative externalities (Schrieber

(1975)), and establish efficient quantities of vacant cabs (Flath (2006)). Other authors assert that

regulation has lead to restricted quantities and higher prices (Winston and Shirley (1998)) and that

low sunk and fixed costs in this industry are sufficient to support competition (Häckner and Nyberg

(1995)). My paper contributes to this debate by showing where regulation can help taxi markets

by incentivizing more efficient spatial allocations of supply, and also showing where regulations

contribute to high prices and cartel-like profits which accrue to a small class of stakeholders.

This paper is organized as follows. Section 2 details taxi industry characteristics relating to

search, regulation and spatial sorting, as well as a description of the data. Section 3 presents

the behavioral model of taxi search and matching. Section 4 discusses the empirical strategy for

computing equilibrium and estimating parameters with the data. Results are presented in section

5, with an analysis of counterfactual policies in section 6. Section 7 concludes.

2 The Taxi Industry

2.1 Industry Characteristics

Fragmented Firms

In the U.S., taxi service is highly fragmented. The market share of the largest firm is less than

1%, and the largest four firms make up less than 3% of the overall market. There are many

individual firms, some consisting of a single owner-operator. While there is increased concentration

at the local level in which taxis operate, most non-owner drivers lease taxis from owners. The

5There is an additional body of literature on taxi drivers’ labor supply choices, including Camerer, Babcock,
Loewenstein, and Thaler (1997), Farber (2005), Farber (2008) and Crawford and Meng (2011). These studies inves-
tigate the labor-leisure tradeoff for drivers, and ask how taxi drivers’ labor supply is influenced by daily wage targets
and other factors.

6There is also a growing literature in empirical industrial organization which studies the welfare impacts and
allocative distortions induced by search frictions in different industries. This includes work on airline parts (Gavazza
(2011) and mortgages (Allen, Clark, and Houde (2014)).
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typical lease arrangement has drivers paying a fixed leasing cost, paying for their own gas and

insurance, and collecting all residual revenue as profit. Given these arrangements, drivers do

not centrally coordinate their search behavior. Instead, each driver independently searches for

passengers, competing with other drivers for the same demand.

It is important to note that some cities permit taxis to operate both a street-hail service, where

passengers are acquired via driving and searching, as well as a for-hire-vehicle (FHV) service, which

pre-arrange rides with customers via telephone or internet. In other cities, including New York City,

these two services are treated as separate markets by regulation. Yellow medallion taxis are only

permitted to operate a street-hail service, and as such may not pre-arrange rides with customers.

New York’s FHVs are separately licensed for pre-arranged rides, and are likewise not permitted to

operate a street-hail service.

In recent years, several firms including Uber, Lyft, Curb and Sidecar have entered the taxi in-

dustry, all of which take advantage of mobile technology to match customers with cabs, and thereby

greatly reduce frictions associated with taxi search and availability. The precipitous expansion and

success of these firms is suggestive of the enormous benefits associated with reduced search costs

compared with traditional taxi markets. At the moment, these companies also enjoy relatively

little regulation, though this environment is changing rapidly as local regulators revise taxi laws to

address the new platforms. My analysis, which focuses on the traditional, street-hail taxi markets

that still dominate service in the largest cities, will reveal the extent of spatial frictions induced

by regulation as well as those induced by a random versus directed search mechanism (i.e. sorting

customers by willingness-to-pay).

Regulation

The U.S. taxi market is highly regulated by local municipalities. The most common regulatory

scheme is the combination of a fixed two-part tariff fare pricing structure and entry restrictions.

The two-part tariff fare structure should be familiar to taxi customers; it consists of a one-time

fixed fee and a distance-based fee. The other most common form of regulation is entry restriction.

Most U.S. cities limit the number of legal taxis by requiring them to hold a permit or medallion,

the supply of which are capped.7,8 Entry restrictions are often controversial; critics argue that they

are a product of regulatory capture, and serve to enrich medallion owners by limiting competition.

Proponents of regulation highlight several market failures that arise in an unregulated environment:

congestion externalities, localized market power in remote locations, and potentially high bargaining

costs.9

7For a survey of entry restrictions across forty U.S. cities, see Schaller (2007).
8These licenses are also tradable, and the mere fact that they tend to have positive value, sometimes in excess of

one million dollars, implies that this quantity cap is binding and below that of an unrestricted equilibrium.
9See the discussion of regulation papers above.
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Across the U.S. and elsewhere around the world, taxi regulations are at odds with the new wave

of technology-centered entrants in the taxi industry. Often these companies implement different

pricing regimes and much looser entry restrictions than those imposed by regulatory authorities,

leading to a variety legal disputes as stakeholders in the traditional taxi business suffer losses and

as policy makers argue that safety and worker-rights regulations have been undermined.10 These

ongoing policy questions highlight the need for an analysis of the effects of these new entrants, a

central question of this paper.

The Spatial Dimension

The spatial availability of taxis is of evident concern to municipal regulators around the country:

policies of various types have been enacted in different cities to control the spatial dimension of

service. For example, in the wake of criticism over the availability of taxis in certain areas, New

York City issued licenses for 6,000 additional medallion taxis in 2013 with special restrictions on the

spatial areas they may service.11 Specifically, these green-painted “Boro Taxis” are only permitted

to pick up passengers in the boroughs outside of Manhattan.12 Though the city’s traditional

“yellow taxis” have always been able to operate in these areas, it’s apparent that service was

scarce enough relative to demand that city regulators intervened by creating the Boro Taxi service.

This intervention highlights the potential discord between regulated prices and the location choices

made by taxi drivers. This paper aims to characterize both the location incentives faced by taxis

and equilibrium spatial distribution of supply, and to analyze the role of regulations on market

outcomes.

2.2 Data Overview

New York City is the largest taxi market in the United States, with 236 million passenger trips

in 2014, or about 34% of all U.S. service. In 2009, The Taxi and Limousine Commission of New

York City (TLC) initiated the Taxi Passenger Enhancement Project, which mandated the use of

upgraded metering and information technology in all New York medallion cabs. The technology

includes the automated data collection of taxi trip and fare information. I use TLC trip data from

all New York City medallion cab rides given from August 1, 2012 to September 30, 2012. An

observation consists of information related to a single cab ride. Data include the exact time and

date of pickup and drop-offs, GPS coordinates of pickup and drop-off, trip distance, and trip time

10See, e.g.,
forbes.com/sites/ellenhuet/2015/06/19/could-a-legal-ruling-instantly-wipe-out-uber-not-so-fast/.

11See, e.g., cityroom.blogs.nytimes.com/2013/11/14/new-york-today-cabs-of-a-different-color/
12A map of the Boro taxi service area is available at www.nyc.gov/html/tlc/images/features/map_service_

area.png
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Table 1: Taxi Trip and Fare Summary Statistics

Rate Type Variable Obs. 10%ile Mean 90%ile S.D.

Standard
Fares

Total Fare ($) 24,075,211 4.50 9.51 16.00 5.57
Dist. Fare (imputed, $) 24,044,354 1.22 4.55 9.50 3.36
Flag Fare (imputed, $) 24,044,354 2.5 2.82 3.50 0.37
Distance (mi.) 24,075,239 0.78 2.26 4.17 2.10
Trip Time (min.) 24,075,239 4.0 11.1 20.2 7.3

JFK Fares

Total Fare ($) 381,270 45 48.35 52 3.52
Distance (mi.) 381,270 5.00 16.60 20.67 4.72
Trip Time (min.) 381,270 24.0 40.1 60.1 17.0

Taxi trip and fare data come from New York Taxi and Limousine Commission (TLC). This table provides statistics
related to individual taxi trips taken in New York City between August 1, 2012 to September 30, 2012 for two fare
types. The first is the standard metered fare (TLC rate code 1), in which standard fares apply, representing 98.1% of
the data. The second is a trip to or from JFK airport (TLC rate code 2). Total Fare and Distance data are reported
for each ride in the dataset. The two main fare components are a distance-based fare and a flag-drop fare. I predict
these constituent parts of total fare using the prevailing fare structure on the day of travel and the distance travelled.
Flag fare calculations include the presence of time-of-day surcharges. Any remaining fare is due to a charge for idling
time. Units are reported in parentheses.

length for approximately 28 million rides.13 New York cabs typically operate in two separate shifts

of 9-12 hours each, with a mandatory shift change between 4-5pm. I focus on the “day-shift” period

of 6am until 4pm, after which I assume all drivers stop working.

A unique feature of New York taxi regulation is that medallion cabs may only be hailed from the

street, and are not authorized to conduct pre-arranged pick-ups, which are the exclusive domain of

licensed livery cars. As a result, the TLC data only record rides originating from street-hails. This

provides an ideal setting for analyzing taxi search behavior, since all observed rides are obtained

through search. Table (1) provides summary facts for this data set.

Most of the time, New York taxis operate in Manhattan. When not providing rides within Man-

hattan, the most common origins and destinations are to New York’s two city airports, LaGuardia

(LGA) and John F. Kennedy (JFK). Instead of conducting a search for passengers, taxis form

queues and wait in line for next available passengers. The costly waiting times and travel distances

is offset by larger fares, however. Table (2) below provides statistics related to the frequency and

revenue share of trips between Manhattan, the two city airports and elsewhere.

13Using this information together with geocoded coordinates, we might learn for example that cab medallion 1602
(a sample cab medallion, as the TLC data are anonymized) picks up a passenger at the corner of Bowery and Canal
at 2:17pm of August 3rd, 2012, and then drives that passenger for 2.9 miles and drops her off at Park Ave and W.
42nd St. at 2:39pm, with a fare of $9.63, flat tax of $0.50, and no time-of-day surcharge or tolls, for a total cost of
$10.13. Cab 1602 does not show up again in the data until his next passenger is contacted
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Table 2: Taxi Trips and Revenues by Area

Time Place Obs. Mean Fare Trip Share Rev. Share

All Times

Intra-Manhattan Trips 23,360,688 $8.94 83% 65%
Airport Trips 1,579,264 $33.51 6% 16%
Other Trips 3,233,128 $18.60 11% 19%

Weekdays,
Day-shift

Intra-Manhattan Trips 7,238,867 $9.12 87% 70%
Airport Trips 536,108 $33.24 6% 19%
Other Trips 509,293 $18.44 6% 11%

Taxi trip and fare data come from New York Taxi and Limousine Commission (TLC). This table provides statistics
related to the locations of taxi trips taken in New York City between August 1, 2012 to September 30, 2012. Intra-
Manhattan denotes trips which begin and end within Manhattan, Airport Trips are trips with either an origin or
destination at either LaGuardia or JFK airport, and Other Trips captures all other origins and destinations within
New York City. Statistics are reported for all times as well as the day-shift period of a weekday, from 6am until 4pm.
The latter category is the focus of my analysis.

3 Model

I begin with a city of L locations connected by a network of routes and a discrete, finite time

horizon t = {1, ..., T}, where t can be thought of as intra-day times such as minutes. At time t = 1

the work day begins; at t = T it ends. A location can be thought of as a spatial area within the

city.14 In the empirical analysis below, I explicitly define locations by dividing a map into areas.

Vacant taxi drivers search for passengers within a location. When taxis find passengers, they drive

them from some origin location to a destination location.

The distance between each location is given by δij where i ∈ {1, ..., L} represents the trip origin

and j ∈ {1, ..., L} represents the destination. Similarly, the mean travel time between each location

is given by τij . In each location i at time t, the number of people wish to move to a new location

(taxi customers) is random and given by uti where uti is drawn from a Poisson distribution with

parameter λi. I assume that taxi drivers know the distribution of demand at every location and

time. Taxis only receive fare revenue from passengers, and earning revenue net of fuel costs is

assumed to be the single objective faced by working drivers.

There are two types of locations, searching locations and airports. Searching locations comprise

most a city; they are locations in which cabs drive around in search for passengers, with no guarantee

that they will find one. Airport locations require taxi queueing. Taxis wait in queue for a guaranteed

passenger ride once they reach the front of the queue.15 The following subsections detail the

dynamics of searching and matching in these two location types.

14e.g., a series of blocks bounded by busy thoroughfares, different neighborhoods, etc.
15Airport rides comprise roughly 5% of all taxi trips, and 16% of revenues.
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Figure 1: Flow of demand, matches and vacancies in location i

passengers arrive at
Poisson rate λti

vacant taxis + taxis

dropping off passengers

# vacant cabs = vti

# customers = uti ∼ F (λti)

matches: mi = m(uti, v
t
i)

pti =
E[mi(·,·)]

vti

taxis w/ passengers

(remaining customers wait
5-minutes and disappear)

vacant taxis

Prob(match;uti, v
t
i))

This illustration depicts the sources of taxi arrivals and departures in location i and time t. At the beginning of
a period, all taxis conducting search in location i are either dropping off passengers or vacant and searching from
previous periods. Matches are then made according to the matching function m(ui, vi). At the end of the period,
newly employed taxis leave for various destinations and vacant taxis continue searching.

3.1 Searching Locations

At the start of each five-minute period, taxis search for passengers. The number of taxis in each

location at the start of the period is given by the sum of vacant taxis who have to location i to

search, and previously employed taxis who have dropped off a passenger in location i, denoted as vi.

Matches can only occur among cabs and customers within the same location. I assume that once

a cab meets a mover, a match is made and the cab is obliged to go wherever the passenger wants

within the city. A cab may not refuse a ride after contact is made.16 The meetings are random

and the number of matches made in location i, time t is given by mt
i. The exact specification of

the matching function is explained in detail below.

A taxi driver’s behavior is dependent on the probability that he will match with a customer.

Within a location, m(vi, ui) matches are randomly assigned between supply and demand. As such,

the ex-ante probability that a cab will find a mover in location i at time t in a given period is

pti =
E
ut
i
[m(uti,v

t
i)|λti]

vti
. The matching between taxis and passengers within a location is illustrated in

Figure 1.

The Spatial Matching Function To model how many customers are observed by all vacant

cabs in a location, I begin with the following observation: in a location with very a small area,

say a single intersection of streets, all taxis will see all customers, so that matches will be given

16In New York, the TLC prohibits refusals, c.f. www.nyc.gov/html/tlc/html/rules/rules.shtml
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by a simple min function, i.e. mi = min{ui, vi}, as used in Lagos (2000). In larger areas, say

a collection of city blocks, the matching function should capture the possibility that some taxis

within a larger area will not necessarily encounter any customers within the same area. This means

that even though taxi drivers may choose to search in a neighborhood with some demand for taxi

rides, it’s possible that some drivers and customers never meet. This type of intra-location search

friction is a consequence of limited visibility, mobility and information on the part of taxi drivers

and customers.

To model intra-location search frictions, I use a simple aggregate matching function, given by

equation (1). This function is derived from a simple urn-ball matching problem first formulated in

Butters (1977), where u balls are randomly placed in v urns, and a “match” only occurs for the

first ball placed in any urn. An equilibrium matching function based on this problem is derived in

Burdett, Shi, and Wright (2001), where u represents buyers and v represents firms selling a single

unit of some good. This basic premise has appealing analogs to the taxi market. To motivate

its use in this study, I make the following assumptions about search activity within a period: (1)

customers and drivers can only match if they are in the same neighborhood, (2) taxis are spread

across different street blocks, (3) customers, without knowing exactly where vacant taxis are, but

choose a street block to search on, (4) each taxi can provide only one ride. It is therefore possible

that some customers search on the same block and only the ones who first see cabs are matched,

while elsewhere within the neighborhood, some cabs encounter no passengers.

In a location i with u customers and v taxis, aggregate matches are given by

m(vi, ui) = vi

(
1−

(
1− 1

αvi

)ui)
. (1)

This function exhibits several important properties for use in the context of taxi search. First,

if locations were defined to be very small areas such as a single street intersection, we would expect

levels of inputs u and v to also shrink, and for any available cab and customer to find each other

with little effort. For small u and v, this matching function becomes frictionless: it is bounded

below by min{u, v}. Second, this function exhibits constant returns to scale for larger values of

inputs. If locations are drawn large enough, so as to encompass a large number of vacant taxis and

searching customers, the number of expected matches will be proportional to the number of taxis

and customers. This ensures that intra-location frictions are invariant to how I choose to draw

locations, as long as locations are drawn large enough.17 I denote α as an efficiency parameter; all

else equal, larger values of alpha generate fewer matches.

This matching function is also invertible, a critical property for identification of its inputs (i.e.,

supply and demand) from data which reflect its output (i.e., observed matches). Once I solve for

17For example, when u = v, the match rate for both supply and demand will be approximately 65% for u, v around
10, 63.4% for u, v around 100, and converging towards around 63.2% as u, v →∞.

12



the equilibrium distribution of supply, I invert the matching function to find the distribution of

customer arrival-rates that rationalize the observed spatial pattern of matches. There is a one-

to-one relationship between the matching function and its demand inputs, which allows for an

inversion necessary to identify demand inputs as a function of matching data, as discussed further

in section 4.3.

3.2 Queueing Locations

At airports, taxis pull into a queue and wait for passengers to match with cabs at the front of the

queue. Demand in each location i is governed by a Poisson arrival rate λi, and there is an additional

processing time ωi which reflects how, once a unit of demand has arrived, it takes a very short time

until that passenger is in the front taxi and the taxi has exited the cab-stand to make way for the

next taxi. The expected total time for each taxi to be matched with a passenger once he is at the

front of the line is therefore given by ωi + λ−1
i . Thus, the flow of matches out of queueing location

i is given by mi = (ωi + λ−1
i )−1. The units of ωi are fractional-periods, the same as λi, so that mi

is in units of matches per period. The expected waiting time experienced by a taxi at the back of

a queue of length vi is given by vi · (ωi + λ−1
i ). Figure 2 illustrates this process.

Figure 2: Flow of demand, matches and vacancies in queueing location i

Taxis line up here

queue length: vi

ω

processing time, ωi

waiting time, λ−1
i

matches:

mi = (ωi + λ−1
i )−1

Passengers arrive at Poisson rate λi

This figure depicts the sources of taxi arrivals and departures at an airport location i. All taxis

searching for a customer at the airport are vacant, and must arrive to a queue. The queue waiting

time endogenously depends on how many taxis are in it, and on the arrival rate of passengers at the

airport. After waiting, taxis are matched with customers with probability 1, after which time they

leave for various destinations. To understand how queues fit into observed data on matches, note

that all taxi customers at the airport eventually get a ride, and all queued taxi drivers eventually

get a passenger. Thus matches are taken to be equal to the minimum between the number of

customers and the number of taxis who can service the queue in one period, given by ω−1
i for

airport location i.
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3.3 Revenue and Costs

Taxis earn revenue from giving rides. At the end of each ride, the taxi driver is paid according to

the fare structure. The fare structure is defined as follows: b is the one-time flag-drop fare and π

is the distance-based fare, with the distance δij denoting the distance between i and j. Thus the

fare revenue earned by providing a ride from i to j is b+ πδij .

At the same time, taxis spend time and money in pursuit of passengers. When a driver departs

from location i to location j, with or without a passenger, he will arrive τij periods later. Since

there is a finite amount of time in a day, the cost of time is the opportunity cost of earning other

revenue while in-transit; taxis may spend time to drive to more profitable locations. Taxis also pay

a cost of fuel when traveling, given by cij .

Thus the net revenue of any passenger ride is given by

Πij = b+ πδij − cij . (2)

This profit function sums the total fare revenue earned net of fuel costs in providing a trip from

location i to j.

3.4 Taxi Drivers’ States, Actions and Payoffs

Taxi drivers compete with each other for rides, and the total number of taxis in the city is fixed

by regulation. One more vacant taxi on the road implies a lower probability that any taxi driver

finds a passenger at any moment. This competition is also spatially relevant: an additional vacant

taxi searching in a neighborhood imposes lower match probabilities for other taxis in the same

neighborhood than it does for taxis on the other side of town.

More formally, a taxi driver’s behavior is dependent on the state of the world, S. S describes,

for any driver, his own location and a measure of taxis across all locations including those in transit

between locations. A driver’s own location at time t is given by `ta ∈ {1, ..., L}, where a indexes the

driver. The industry state at time t is a count of vacant taxis vti in each location i, and a count of

employed taxis vte,k actively in-transit between locations, where all “in-between” states are indexed

by k ∈ {1, ...,K}.18 Thus the relevant taxi-specific state at time t can be described by

Sta = {`ta, {vti}i∈{1,...,L}, {vte,k}k∈{1,...,K}}. (3)

18Though at any moment employed taxis are not directly competing with vacant taxis for passengers, accounting
for the number and location employed taxis is an important component of the state variable because the eventual
arrival of employed taxis and subsequent transition to vacancy is payoff-relevant for the dynamic decision-making
problem of currently vacant taxis.

14



Denote S = {Sta}∀a,t so that S reflects the entire spatial and intertemporal distribution of

vacant and employed taxis. At the beginning of each five-minute period, taxi drivers make a

conjecture about the current-period state and transition probabilities into the next period. Given

this conjecture, they assign value Vi to each location i ∈ {1, ..., L}.
I define the drivers’ ex-ante (i.e., before observing any shocks and before any uncertainty in

passenger arrivals is resolved) value as

V t
i (S) = Epi|λi,St

[
pi(u

t
i, v

t
i)

Exp. Value of Fare︷ ︸︸ ︷(∑
j

M t
ij · (Πij + V

t+τij
j )

)
+

(1− pi(uti, vti)) · Eεt+1
a,j

[
max
j∈A(i)

{
V
t+τij
j + I[j=i]γ − cij + εa,j

}] ∣∣∣∣λti]︸ ︷︷ ︸
Exp. Value of Vacancy

]
. (4)

This expression can be decomposed as follows: Drivers in i expect to contact a passenger with

probability pi. I assume matches are randomly determined within a location, so pi is computed as

the expected number of matches in location i divided by the total number of taxis searching in that

same location,

pi(λ
t
i, v

t
i) =

Euti [mi(u
t
i, v

t
i)|λti]

vti
, (5)

where the number of customers uti is drawn from a Poisson(λti) distribution and the number of

taxis vti is an element of the spatial distribution of taxis St. Conditional on a passenger contact,

drivers expect to receive mean profits, given by the probability of a trip to each location j (denoted

by the transition probability matrix M t), multiplied by the current profit associated with each

possible ride plus the continuation value of being in location j in τij periods.19

∑
j

M t
ij · (Πij + V

t+τij
j ) (6)

A search for passengers occurs within the period. At the end of the period, any cabs which

remain vacant can choose to relocate or stay put to begin a search for passengers in the next period.

Relocation over longer distances requires more time. Vacant drivers choose to search next period

19Note that M t has superscript t because preferences of passengers change throughout the day.
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in the adjacent location that maximizes the net present value of profits,

Eεt+1
a,j

[
max
j∈A(i)

{
V
t+τij
j + I[j=i]γ − cij + εa,j

}]
, (7)

where εaj is an idiosyncratic shock to the perceived value of search in each alternative loca-

tion j. This shock accounts for unobservable reasons that individual drivers may assign a slightly

greater value to one location over another. For example, traffic conditions and a taxi’s direction of

travel within a location may make it inconvenient to search anywhere but further along the road

in the same direction.20 The parameter γ represents an extra payoff associated with choosing to

stay put: when taxis continue search where they are currently located, they will receive extra value

associated with time and effort savings.21 The set A(i) reflects the set of locations available to

vacant taxis. I assume that A(i) is the entire set of locations in the city, except when the day is

almost over, then A(i) reflects the locations that are attainable within the amount of time left in

the day.

Thus V t
i is the expected value of a search, evaluated prior to realizing a draw from the distri-

bution of arriving customers (which affects the match probabilities pi by influencing the number

of matches experienced in each location), and before realizing the draw of valuation shocks εi.

Taxi drivers have beliefs over the policy function of vacant cabs governing state transitions in each

period, denoted σ̃t. Because time ends at period T , all continuation values beyond period T are

set to zero: V t
i = 0 ∀t > T,∀i.

3.5 Drivers’ Choice Problem

To form a strategy, taxi drivers compare the expected present values to search in each alternative

location and account for the costs associated with traveling, both in terms of fuel expense and the

opportunity costs of time. The strategy dictates where a taxi will search next for passengers if he

fails to find a passenger in the current period.

Equation (7) gives the continuation value associated with ending up vacant, from the perspective

of the beginning of the period. At the end of each period, vacant drivers must decide where to

search for passengers in the next period by choosing the location with the highest present value net

20The terms εaj further ensure that equilibrium will be in pure strategies, as drivers’ will have best responses even
among otherwise identical locations. Further, it ensures that vacant taxis leaving one location will mix among several
alternative locations rather than moving to the same location, a feature broadly corroborated by data.

21In other words, the total continuation value of staying put in time t is neither equal to V ti nor is it equal to the
same value a full period later, V t+1

i but rather somewhere in between.
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of transportation costs. Drivers in location i move to location j∗ according to:

j∗ = arg max
j
{V t+τij

j + I[j=i]γ − cij + εja}. (8)

To compute the firm’s strategies, I define the ex-ante choice-specific value function asWi(ja,St, λt),
which represents the net present value of payoffs conditional on taking action ja while in location

i, before εtai is observed:

W t
i (ja,St) = ESt+τija

[
V
t+τija
ja

(St+τija , ·, ·)− cija
]
. (9)

Defining W t
i separately from V t

i permits a simple expression of taxi drivers’ conditional choice

probabilities: the probability that a driver in i will choose j ∈ A(i) conditional on observing state

St, but before observing εtia, is given by the multinomial logit formula:

Pi[ja|St] =
exp(W (ja,St)/σε)∑

k∈A(i) exp(W (jk,St)/σε)
. (10)

This expression defines drivers’ policy functions σti in each location i and time t as the probability

of optimal transition from an origin i to all destinations j conditional on future-period continuation

values. The collection of these policy functions form a transition probability matrix from any origin

to any destination, which I denote as {σti}. Note that only vacant taxis transition according to

these policies. Employed taxis will transition according to passenger transition probabilities given

by M t
i .

3.6 Intraday timing

At time t = 1, taxis have an initial spatial distribution, which I denote as S0 and take as exoge-

nous. I choose an exogenous distribution in two steps. First, I begin with the time zero empirical

distribution of matches, then solve for a candidate spatial equilibrium of taxis in each period. Next,

I take the candidate equilibrium distribution of vacant taxis at 12pm and take this as a new time

zero distribution of all taxis. So distributed, nature decides which taxis match with passengers

and which ones are left vacant. The employed taxis leave the market while employed and accept a

payoff Πij + V
t+τij
j . The vacant taxis realize a profit of 0 in t = 1 and an average present value of

his own state is given by equation (7). Equation (8) defines which locations the vacant taxis will

search in next period. In period t = 2, locations of vacant taxis are updated, the employed taxis

who are still in-transit are noted, and nature again decides which vacant taxis find passengers.

Timing
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1. Taxis are distributed according to S1.

2. Draws are taken from arrival rates λ1
1, ..., λ

1
L, leading to u1, ..., uL customers.

3. Nature randomly assigns mi matches in each location according to matching function.

4. Employed taxis leave for destinations.

5. Remaining customers disappear.

6. Remaining vacant taxis choose a location to search in during the next period.22

7. Vacant taxis arrive in new locations and some previously hired taxis arrive, forming new

distribution S2.23

8. Repeat until reaching ST .

3.7 Equilibrium

Taxi drivers’ policy functions depend on the current state, beliefs about the policies of competitors,

as well as an information set which includes the fixed price schedule, the arrival rates of demand

conditional on time and weather conditions, and the geography of routes and distances. The current

state is unobservable; taxi drivers do not see where other taxis are, but rather have beliefs about

the distribution and policy functions of their competitors.24 Beliefs over competitors’ policies,

conditional on the distribution of all vacant cabs, allow taxis to infer how the state will update

in future periods. This implied transition of the current state as a function of the policies of

competitors is denote as Q̃ti. A driver is assumed to have already “learned” the arrival rates of

demand, so that any observed deviation from the expected number of people hailing a taxi in a given

location is taken as a draw from the known Poisson distribution. The optimization problem facing

taxis is the choice of where to locate when vacant. Since the time t state and transition beliefs

summarize all relevant information about the competition, taxis condition only on the current-

period, so that an optimal location choices at time t can be made using time t − 1 information.

This Markovian structure permits a definition of equilibrium as follows:

22Regarding item 6, if a vacant taxi perceives some far-away location j0 as best, he may either choose to move
directly to that far-away location over the course of several periods, in which case he is not available to give rides
until arriving in that location, or else he may move in the direction of that far away location by moving to, say, an
adjacent location j1 and continuing to search along the way to j0. Which choice is made depends which destination
j0, or j1, solves equation (8).

23Regarding item 7, “some hired taxis arrive”: many hired taxis are in-transit for more than one period. Suppose
hired taxis providing service from location i to j will take 3 periods to complete the trip. Then only the taxis who
were 1 period away at time t− 1 will arrive in j in period t.

24Of course drivers will see other taxis while driving around, but since other taxis may be vacant or employed,
and on- or off-duty, I assume drivers do not update beliefs based on this noisy measure of competition within a
neighborhood.

18



Definition Equilibrium is a sequence of states
{
Sti
}

, transition beliefs {Q̃ti} and policy functions{
σti
}

over each location i = {1, ..., L}, and an initial state
{
S0
i

}
∀i such that:

(a) In each location i ∈ {1, ..., L}, at the start of each period, matches are made according to

equation (1) and are routed to new locations according to transition matrix M t. The aggregate

movement generates the employed taxi transition kernel ν(vt+1
e |vte,M t,mt) where vte is the

distribution of employed taxis across locations in period t and mt is the distribution of matches

across locations.

(b) In each location i ∈ {1, ..., L}, at the end of each period, each vacant taxi driver a follows

a policy function σti,a(S
t, Q̃ti) that (a) solves equation (8) and (b) derives expectations under

the assumption that the state transition is determined by transition kernel Q̃ti. The aggre-

gate movement generates the vacant taxi transition kernel µ(vt+1
v |vtv, σ̃t,St) where vtv is the

distribution of vacant taxis in period t.

(c) State transitions are defined by the combined movement of vacant taxis and employed taxis,

defined by Q(St+1|S̃t) = ν(vt+1
e |vte,M t,mt) + µ(vt+1

v |vtv, S̃t).

(d) Agent’s expectations are rational, so that transition beliefs are self-fulfilling given optimizing

behavior: Q̃ti = Qti for all i and t.

Existence of this equilibrium is a direct consequence of the finite horizon and finite action-space

(e.g., Maskin and Tirole (2001)). Uniqueness can be established by a simple backward induction

argument, presented in Appendix A3.

4 Empirical Strategy

4.1 Discretizing time and space

The spatial equilibrium model is one of discrete times and locations. To connect these features

with data, I fix a period length and define a set of locations on a map of New York. I focus on a

period length of five minutes. Taxis form expectations of the state, location profitability, transition

probabilities, demand arrivals and policy functions for every five-minute period of a weekday and

month, so that, for example, on all weekdays in June from 1:00pm to 1:05pm, taxis will be playing

the exact same strategy. In this sense, t is taken to be a {5-minute interval, Weekday Y/N, Month}
combination.

I use data from 6am-4pm on Weekdays from August to September, 2012. This time range

corresponds to a typical day-shift among New York taxi drivers and it represents a period in which

nearly all medallions are utilized. Figure (3) illustrates this by computing an approximation of
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the number of active taxis by hour. To compute this, I first calculate the hours in which a taxi

is on a shift by using the shift definitions from Frechette, Lizzeri, and Salz (2015), which specify

that a driver is on a shift when he shows up in the data (i.e., a ride is give by the driver) and

remains on shift until a gap of five or more hours between observed rides occurs. Next, I count

how many taxis are working a shift in each hour, and plot this count by hour. Note that levels

shown will be smaller than the total medallion count, 13,237. This happens for a couple of reasons:

medallions will not appear when taxis enter the shift but there is a delay is finding passengers

(e.g., unsuccessful search, waiting in queue), so there is a potentially significant downward bias in

the mornings. Some amount of this discrepancy is also attributable to out-of-service cabs due to

maintenance work, and lost observations from cleaning inaccurate data.25 For estimation, I assume

that 12,500 cabs are operating between Manhattan and the two airports between 6am-4pm. The

August-September period of 2012 was selected because it straddles a change in regulated tariff

prices, which I will use in part to estimate customers’ demand elasticities.

Figure 3: Total medallion activity by hour
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This figure is derived from TLC trip data. It approximates the total number of taxis working during the day shift,
by hour, averaged across each day in the data set. Note that morning hours will be systematically downward biased
because drivers who begin a shift are not counted as working until finding their first passenger.

Locations are set by associating taxi rides’ GPS points of origin with one of 48 locations.26

These locations, shown in Figure (4), are created via clustering census tracts. While there is some

arbitrariness involved in their exact specification, the number of locations used is a compromise

25See Appendix (A.1) for more details on data cleaning procedures.
26This association is achieved via the point-in-polygon matching procedure outlined in Brophy (2013). Thanks to

Tim Brophy for the code.
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between tradeoffs; more locations give a richer map of spatial densities and choice behavior, but

impose greater requirements on both the dataset and computational resources. Further, approxi-

mately 94% of all taxi rides originate in Manhattan or one of New York’s two airports. Because of

the sparsity of data in the other boroughs, I focus on the set of locations falling within Manhattan

below 125th street and the two New York City airports, Laguardia and J.F.K. Figure 4 depicts

these locations on the map of New York.

Figure 4: 48-location Map of New York City

Each divided section of Manhattan depicts a location i. Locations are created by aggregating census-tract boundaries,
which broadly follow major thoroughfare divisions. The expected travel time and distance between these locations
is computed separately for each origin and destination pair as the average of all observations within each origin and
destination.

Four important features of the model are identified directly off the data. First is M t
ij , the

transition probability of employed taxis in each period and location. In each period, I record the

probability of transition from each origin to each destination conditional on a taxi matching with a

passenger. The mean of these probabilities over each month form the transition probabilities M t
ij .

The second and third directly identified features are travel times and distances between locations.

To find the travel time, τij , and distance, δij , between each origin and destination, I take the

average time and distance of taxi rides between each possible pair of locations within a month.

Aggregating days over a month affords reasonable approximations of travel times and distances
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between each possible origin and destination, especially for origin-destination pairs less frequently

traveled by taxis. However, allowing these features to change with each month permits the equi-

librium to change as roads and location features change over time. The fourth feature is the cost

of fuel per mile c, taken as the average fuel price in New York City in 2012, divided by the average

fuel economy in the New York taxi fleet, 29 mpg.27 Using c I compute the cost of traveling between

any origin and destination as cij = c · δij
After I record the distances between each origin and destination, I can derive Πij , the expected

profits associated with each possible trip. Recall from equation (2) that Πij = b+ πδij − cij , where

the regulated fare structure is given by the set {b, π}.
The spatial equilibrium model identifies the equilibrium spatial distribution of taxis given taxis’

knowledge of the arrival rates of passengers across space and time. TLC data do not contain any

information regarding the arrival rates of passengers, so these parameters will be estimated.

4.2 Equilibrium Computation

Solving the full dynamic programming problem with large state spaces is burdened by the curse

of dimensionality. Under the assumption that taxi drivers are symmetric, atomistic agents, whose

actions do not measurably impact the payoffs of competitors, the model reduces to a single-agent

problem. As such, there is only one policy function to solve for at any location and time period.

However, the total number of taxis still contributes to the computational burden because it affects

number of states over which continuation values must be computed.28

I implement an approximation method that takes advantage of the large number of agents in my

empirical application: I assume that the 13,237 active taxis in my data form a continuum of agents.

When there is a continuum of agents facing state transitions, any probability transition matrices

become deterministic transition matrices.29 In the taxi model, state transitions are composed of

the combined transitions of vacant and employed taxis. Under the continuum assumption, these

transitions are therefore also deterministic.

The advantage of this assumption is that instead of computing policy and value functions for

all possible states, I only need to compute a single, deterministic equilibrium path for the state

{St}Tt=0.30

27Data come from the New York City Taxi and Limousine Commission 2012 Fact Book. The high fuel economy
rating is due to the medallion taxi fleet being made up of approximately 60% hybrid vehicles

28Specifically, when there are N taxis, L locations, and T time periods, continuation values and (symmet-
ric) policy functions must be computed for every point in the state space, which numbers T times NPL, or:
number of states (T,N,L) = T · N !

(N−L)!L!
. Storing and solving for policy functions and value functions in this

setting would be infeasible.
29This insight appears in firm dynamics literature where continuums of firms are modeled, such as Hopenhayn

(1992), as well as in literature which views this approach as an approximation, as in Weintraub et al. (2008).
30Using traditional computational methods in a non-stationary, finite-time environment, continuation values can
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Table 3: Parameter List

Parameter No. Elements Description
λti 5,760 Demand arrival rates
σε 1 Variance of εti shocks
γ 1 Extra value to staying-put
α 1 Matching efficiency

This table describes the full set of parameters to be estimated. Refer to section 3 for model details.

The algorithm I use to compute equilibrium requires an initial, exogenous state S0. Using this,

I solve for continuation values backwards from the last period T and use forward simulation to

find optimal transition paths given continuation values. Given some state St, remaining period

continuation values {V t+1, V t+2, ..., V T }, I solve for optimal policies at time t which, given the

deterministic transitions approximation, results in an equilibrium path from St to St+1. The job of

the computational algorithm is to find equilibrium transition paths and value functions which are

mutually consistent. This method reduces the total number of equilibrium continuation values and

policy functions that I need to search for to T ·L, offering a drastic improvement in computational

burden. Hereafter, I refer to this algorithm as the Taxi Equilibrium Algorithm (TEA). The details

of TEA can be found in Appendix (A.2).

4.3 Model Estimation

Estimation of this model requires solving for several thousand demand parameters as well as the

variance parameter for the logit shocks, the matching-efficiency parameter, and a parameter re-

flecting the extra value to taxis of choosing to search in the same location as last period. Table (3)

outlines the set of parameters to be estimated. The next two subsections describe this process in

more detail.

4.3.1 Estimation and Identification of Demand Parameters

The method described in the above section finds equilibrium states, transitions and policies for

taxis given knowledge of the arrival rates of passengers. These arrival rates, described by the set of

Poisson parameters {λti} (hereafter denoted as λ), are the primary parameters to be estimated. In

brief, the strategy is to estimate the distribution λ by finding values of the parameter which, given

be computed by evaluating the probability of transitioning into each possible state next period multiplied by the
value function computed at each state. Policy functions are also computed from every possible state to determine
transitions. By implementing the continuum assumption, continuation values in every period are computed by
evaluating only one point in the state space: next period’s known, deterministic state. Similarly, if the current
period’s state is known, the policy function need only be computed from that state.
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the matching function, generate an equilibrium distribution of taxis that rationalize the observed

number of taxi-passenger matches. In the above section I described a computational method to

map λ to an equilibrium distribution of taxis. The next step is to show that this mapping is

invertible, so that given observed matches and the equilibrium distribution of taxi service, I can

uniquely infer the distribution of demand given by λ.

Proposition 4.1. The expected number of matches E[m(vti , λ
t
i)|vti ] is one-to-one in λti.

Proof. See Appendix (A.4)

This result shows that the number of matches given the equilibrium state can be inverted back

into the demand parameter. Let Γ be an operator which maps the spatial distribution of demand λ

into the corresponding equilibrium distribution of taxis v, and let Ψ map {m,v} into λ according to

the inversion described above. By using empirically observed expected matches m0, the parameters

λ can therefore be obtained by imposing the structural restriction λ = Ψ(Γ(λ),m0).

Figure 5: Identification of Supply and Demand from Matches
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This identification argument is illustrated in figure (5). It shows the matching function depicted

as a series of iso-match contours as functions of supply and demand. The solution to the spatial

equilibrium model can be represented as an equilibrium state S = {vti}∀i,t given the set of customer

arrival rates λ. This defines a set of equilibrium market tightness measures (i.e. supply-to-demand

ratios) for each location-time. The intersection of these equilibrium ratios with the iso-match

contours, where the contour-level is the observed number of matches in the data, identifies the
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levels of both supply and demand. Appendix (A.3) outlines how the nested fixed point procedure

is used in conjunction with the Taxi Equilibrium Algorithm.

4.3.2 Estimation of Remaining Parameters

The remaining parameters to be estimated are the scale parameter σε, the same-location bonus

value γ, and the matching efficiency α. To identify these three parameters, I use a standard MSM

estimator designed to rationalize several moments in the data: drivers’ total time spent employed

and unemployed, total distance travelled while employed, and the probability of the next ride being

given from location i conditional on the last dropoff being in location i. To link the MSM estimator

with the NFP algorithm, I run the NFP over a three-dimensional grid of parameter values, and

identify the point (σ∗ε , γ
∗, α∗) which minimizes the GMM criterion function. Details are given in

Appendix (A.5).

4.4 Demand Curve Estimation

I assume that taxi drivers face a constant-elasticity demand curve of the form:

ln(Qtij) =
∑

k={r1,r2,...,rK}

I[k≤dij<k′]
(
α0,k +

∑
s

Is,i
(
α1,k,sln(Pij) + α2,k,sXi

))
+ δt (11)

This equation can be broken down as follows: Qtij reflects the willingness-to-pay for taxi service

from i to j given some price P tij , other characteristics Xi of location i, and a time-of-day fixed

effect δt. Is is an indicator representing the number of public transit stations present in location

i. The three s-groups are 0, 1-2, and 3+ transit stations. I[k≤dij<k′] is an indicator representing

rides of different lengths. I chose {r0, r1, r2, r3} = {0mi., 2mi., 4mi., 6mi.} so there will be four

ride-length categories, rides under 2 miles in length, rides between 2 and 4 miles, rides between

4 and 6 miles, and for rides greater than 6 miles. Price elasticities α1,k,s are different for each

s-type of location, and each ride-length category. Separating elasticities by ride-lengths reflects

the idea that different types of customers demand different types of rides. Separating elasticities

by transit-station access reflects the idea that the outside option is different in different locations.

Control coefficients α2,k are also estimated separately for rides of different lengths. I cannot view

information about individual customers, but allowing parameters to differ by ride length will permit

some differentiation that is especially useful for considering spatial effects. Finally, Xi is a matrix

of observable covariates including demographic information and location-characteristics.

In the previous section I describe the estimation of λ = {λti}∀i,∀t. The elements of λ are the

Poisson parameters describing the per-period arrival rates of customers in each location and time.
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Recall that the travel preferences of customers are observed in the data and given by the transition

matrix M t
ij . Thus, the arrival rate of passengers in i who wish to move to j at time t is given by:

λtij = λti ·M t
ij . (12)

Note that the origin-destination arrivals of passengers will therefore be Poisson distributed with

parameter λtij , and therefore the mean arrivals per-period will be equal to λtij . The estimates λtij
can then be regarded as the expectation of points on the demand curve, Eλ(Qtij |Pij , Xi, δ

t).31

I re-write equation (11) to relate these arrival rates to the price of taxi rides conditional on

observable features of the market across time and locations. The demand specification is thus

given by

ln(λtij) =
∑

k={r1,r2,...,rK}

I[k≤dij<k′]
(
α0,k +

∑
s

Is,i
(
α1,k,sln(Pij) + α2,k,sXi

))
+ δt + εi,j,t, (13)

where prices P tij are computed directly from the fare structure (i.e., flag fare + dist. fare · dij).
In this demand system, all customers of a given type have the same price elasticities, and variation

comes from two sources: the variation in prices for trips between different origins and destinations,

and the variation in prices before and after the September, 2012 fare change. I also condition

on demographic information within each location. Xi contains location-specific data: log mean

income, log mean commute times, log public transit travel times between each pair of locations,

whether the origin is in midtown and whether the destination is an airport. “Midtown” here refers

to the four locations which include or sit between Penn Station and Grand Central Station, and

is an indicator because many customers arrive into these locations from trains, and the observed

matches are much higher in this region.32 Because airport customers are potentially very different

from other taxi customers, and because most of the relevant elasticities and controls don’t apply

(e.g. mean incomes of residents, ride-lengths of 0-2 miles or 2-4 miles, etc.), I specify airport

demand slightly differently, according to the following specification:

ln(λtij) = β0 + β1ln(Pij) + β2dij + εi,j,t, (14)

where dij is the distance between the airport and the destination j.

To estimate parameters, I conduct an OLS procedure on the log-linear model as in equation (13)

for all trips originating in Manhattan, and in equation (14) for trips originating at each airport.

31Note that this expectation is with respect to the arrival of passengers conditional on some exact set of circum-
stances. This is not the same as the expectation of the econometric model ln(Qtij) = f(Pij , Xi, δ

t) + εtij in which ε
reflects a source of variation orthogonal to the covariates.

32This effect is evident in figure (7), a map of mean demand estimates in each location.
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Table 4: Results Summary

Panel A: Parameter Estimates Summary

Estimated Number of Point
Mean/Min/Max

Parameter Estimates Estimate

{λti} 5,760 See Fig. (6) 72.71 / 0.04 / 2346
σε 1 12.5 n.a.
γ 1 0.5 periods n.a.
α 1 1.3 n.a.

. . .

Panel B: Equilibrium Summary

Estimated Number of Computed
Mean/Min/Max

Object Elements Value

{Sti} 5,760 See Fig. (6) 110.39 / 0 / 896.08

This table presents a summary of estimation results and equilibrium solutions.

Recall that since prices are fixed within a location and time period, this specification does not suffer

from simultaneity bias as would traditional non-instrumented demand models.

5 Empirical Results

This section presents estimation results of the spatial equilibrium model. To begin, Table (4) shows

a summary of the estimated parameters and the corresponding equilibrium spatial supply of taxis.

Panel A shows estimation results for the per-period Poisson arrival rates of customers λti across time

and locations, as well as point estimates for three scalar parameters: the variance of unobservable

shocks, σε, the matching efficiency parameter α, and the extra value to cabs for choosing to remain

in the same location to search next period. Note that the parameter γ is computed and expressed

as a fraction of value functions between period t and period t+ 1. Thus the value 0.5 means there

is a bonus equal to 0.5 · (V t
i − V

t+1
i ), implying the choice is worth an additional 1/2 of a period of

search value over moving to any adjacent location.

Figure (6) shows the distribution of estimated levels of vacant taxis and customers across all

locations and all times of day. The subsections thereafter discuss the dynamic feature of these

estimates in more detail.
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Figure 6: Supply and Demand Estimates

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

Vacant Taxis

Taxis (per−location, per−period)

F
re

q
u
e
n
c
y
 (

L
o
g
−

s
c
a
le

)

0 500 1000 1500 2000 2500
10

0

10
2

10
4

Customer Arrivals

Customers (per−location, per−period)

F
re

q
u
e
n
c
y
 (

L
o
g
−

s
c
a
le

)

This table shows the distribution of parameter estimates and equilibrium vacant taxis. Frequency is depicted on a
log-scale to accommodate large differences in taxi and customer populations across space and time.

5.1 Equilibrium Supply and Demand Estimation

Denote the spatial equilibrium of taxis conditional on the fare structure and the intertemporal

spatial distribution of demand as S(λ, b, π). S(λ, b, π) is given by a T × L matrix, as it specifies

the equilibrium path of the state over time. Note that λ is also a T × L matrix. I run the TEA

algorithm, nested within the NFP Algorithm for each month of data under the assumption that

the distribution of demand is the same within the same month during weekdays. When the outer

NFP algorithm concludes, I have identified both S and λ.

5.1.1 Supply and Demand Results

Figure (7) depicts supply and demand for taxi rides across all locations, averaged across all periods

of the day. It depicts how both taxis and passenger demand is most highly concentrated in the

central part of Manhattan. We see that, in general, the number of vacant taxis is sufficient to

meet demand in the absence of search frictions. Because this view aggregates across time, I also

present time-of-day results below for two selected locations to illustrate how matches are formed

from supply and demand dynamics within a location.

Figures (8) and (9) show results for two busy locations, representing areas around West Village

and Midtown, respectively. Both graphs depict the equilibrium supply of vacant taxis, estimated
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Figure 7: Map of Estimated Supply and Demand

1. Demand 2. Supply

This figure maps supply and demand estimates for September, 2012. The left panel shows the mean number of
demand arrivals in each location from 6a-4p, and the right panel shows the mean number of vacant taxis in each
location from 6a-4p.

arrival rates of customers looking for a taxi, the equilibrium number of matches, and the model’s fit

against the observed number of matches in the data. Each series is shown from 6a-4p, in 5-minute

increments. Figure (8) shows that there are periods of relative oversupply and undersupply (relative

to demand) of taxis at different times of day. Figure (9) shows an oversupply of taxis at the same

moment there is an undersupply shown in figure (8). This illustrates spatial misallocation as an

equilibrium outcome.33

With these estimates in hand, I exploit price variation across different origin-destination pairs,

as well as variation stemming from a regulated fare increase, to estimate how demand responds to

price changes.

5.2 Demand Curve Estimation

Table (5) provides results of the demand estimation of equation (13). As outlined in section 4,

an observation is a location-time within a weekday from 6a-4p. The dependent variable is the

expected passenger arrivals (λti) in each 5-minute time interval and price variation comes from

differences in expected customer fares paid for rides originating in each location. Table (5) identifies

price elasticities of passenger arrivals between 0.02 at the airport to 1.3 for inter-Manhattan trips

33Results for more locations are available in Appendix (A.6).
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Figure 8: Intra-Location Dynamics: Undersupply
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This figure shows the supply of taxis and the arrival of passengers from 6am to 4pm, compared with the expected
number of matches. Each point depicts the over- or under-supply of taxis relative to demand in each 5-minute
interval. This location reveals a substantial under-supply of taxis from 7am until 10am.

Figure 9: Intra-Location Dynamics: Oversupply
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This figure shows the supply of taxis and the arrival of passengers from 6am to 4pm, compared with the expected
number of matches. Each point depicts the over- or under-supply of taxis relative to demand in each 5-minute
interval. This location reveals an over-supply of taxis in the morning and early afternoon, but under-supply during
the afternoon rush-hour periods.
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longer than 4 miles. These estimates are used to define the demand curve in each location. Very

low price elasticity at LaGuardia in part reflects both an abundance of business travel (for which

transportation costs are often paid by one’s firm) as well as a lack of good alternative travel options

to Manhattan.34

5.3 Frictions and Welfare

With demand functions estimated, I directly compute estimates of consumer and producer surplus

by integrating under the demand function in each location-time and summing across all times and

locations.35

Importantly, the log-linear demand specification is problematic for integration, as it implies

that there will always be some small number of customers at any price. Absent any further extrap-

olation to estimate the lowest price for which demand equals zero, the integral of these demand

curves grows arbitrarily large as the lower integrand approaches zero. I follow Hausman (1999)

by computing a lower bound estimate of consumer surplus by computing the area beneath the

supporting hyperplane tangent to the estimated elasticities at current prices.

Consumer surplus in matching markets is illustrated in figure (10). Panel I depicts frictions

when customers are sorted by their valuations. The full triangle A ∪B reflects the entire available

surplus in this market at price pti, and the area B is the lost surplus due to not all demand being

matched. This is a kind of “best-case scenario” of welfare loss due to frictions, because only

low-valuation demand gets left out.

Panel II depicts frictions under random matching, the matching mechanism faced by taxis.

Again, C ∪ D reflects the total available surplus. Customers are matched randomly, so the lost

surplus due to matching frictions is represented as area D. There is a combination of low-valuation

and high-valuation customers being matched, and so realized surplus is reduced by the fraction
mti
Qd

of total available surplus. Note that D > B, so realized surplus C is strictly lower than A.

Table (6) shows that there is a lower bound consumer welfare of $281,100 per day for New

York taxi service during weekdays from 6a-4p in September, 2012. Producer profits in each shift

are $1.76M, or $140 per driver.36 A crude approximation of annual welfare, then, is obtained

by multiplying this number by 2.5 to estimate welfare from 4p-6a, and again by 365 days. This

calculation yields $257 million in consumer surplus and $1.6 billion in producer profits. Using these

welfare numbers as a baseline, I analyze the welfare effects of counterfactual prices and regulations

in section 6.

34There is no subway service to LaGuardia as there is for JFK Airport.
35Explicit formulas used to compute these measures are provided in the Appendix.
36I use the term “producer profits” to denote revenues net of fuel costs.
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Table 5: Estimation results: Log Arrivals-per-location per-period

Variable From Manhattan From LGA From JFK
0-2 Miles 2-4 Miles 4-6 Miles 6+ Miles

log price
Zero MTA stations -1.865 -1.075 -2.41 -0.212 -0.978

(0.594) (0.426) (0.476) (0.632) (0.126)
1-2 MTA stations -0.987 -0.924 -1.611 -0.637 -0.927

(0.542) (0.666) (0.726) (0.534) (0.105)
3+ MTA stations -0.645 -1.101 -1.527 -1.636

(0.417) (0.799) (0.886) (0.672)
log transit time

Zero MTA stations -0.138 -0.490 -1.156 -1.361
(0.181) (.312) (0.561) (0.570)

1-2 MTA stations -0.372 -0.448 -2.268 -1.246
(0.228) (0.339) (0.713) (0.465)

3+ MTA stations -0.701 -0.785 -1.183 -0.548
(0.204) (0.353) (0.501) (0.376)

log commute time
Zero MTA stations -7.060 -4.973 -3.338 -4.323

(1.000) (0.808) (1.422) (1.115)
1-2 MTA stations -2.840 -2.469 -0.491 -2.263

(1.628) (1.393) (1.411) (0.921)
3+ MTA stations -3.399 -1.339 -2.445 -2.999

(0.956) (0.887) (1.690) (0.677)
log location income

Zero MTA stations 2.392 1.438 1.094 1.140
(0.422) (0.488) (0.422) (0.337)

1-2 MTA stations 1.073 0.627 0.779 0.791
(0.204) (0.208) (0.220) (0.142)

3+ MTA stations 1.380 0.590 0.652 0.869
(0.319) (0.245) (0.381) (0.160)

origin in midtown 2.258 1.396 0.557 2.302
(0.266) (0.228) (0.377) (0.258)

destination is airport 3.181
(0.347)

distance to destination 0.200 -0.033
(0.015) (0.010)

Intercept 0.659 5.018 11.901 5.937 1.003 2.707
(6.108) (5.892) (7.582) (5.003) (0.349) (0.297)

Time Fixed Effects Y Y Y Y N N
N 293760 323520 220800 221760 11520 11520
R2 .6122 .4071 .3891 .5601 .0217 .0390

Demand data come from model estimates. Dependent variable is log(demand), where demand is the arrival rate
of customers per five minutes. Observations are mean customer arrivals and prices for an origin-destination pair,
time-of-day, month and year. For example, one observation is the estimated mean customer arrivals in location
23 (Penn Station area) with destination location 28 (Central Park), from 2:00p-2:05p on any weekday in August,
2012. Specification includes time-of-day fixed effects. Remaining data come from the following sources: prices (TLC
data), transit times (Google Maps), transit stations (NYC OpenData), location commute times and incomes (Census
Bureau). Standard errors are clustered at the level of origin-location.

Beyond the baseline welfare estimates, table (6) also depicts two more cases: the first of which

is where matching frictions exist but customers are sorted by valuation, so that only those with the

highest willingness to pay are matched with taxis. This case generates $447.9 thousand in consumer

welfare, or $409 million annually. The second case is where matching was perfectly frictionless; in
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Figure 10: Consumer Surplus with Frictions
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This figure depicts sources of welfare loss generated under different types of frictions. Panel I depicts frictions when
customers are sorted by their valuations. Panel II depicts frictions under random matching.

this case the New York taxi market would attain $743.6 thousand in welfare per shift, or $679

million annually. These two cases highlight the welfare cost associated with search frictions: the

current market attains only 62% of the frictionless ideal. Decomposing this lost welfare, about one

third can be attributed to the lack of customer sorting, and the remaining two thirds is due to lost

trades from market participants not finding each other.
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Table 6: Estimated Results: Daily, Single-Shift Welfare Measures

Welfare Measure
Consumer Surplus

Producer Profits
(lower bound)

Current Market:
Frictions w/o sorting (C)

$281.1K $1.76M

Sorting Market:
Frictions w/ sorting (A)

$447.9K $1.76M

Ideal Frictionless:
(A ∪B) or (C ∪D)

$743.6K $3.16M

This table depicts welfare measures with references to Figure (10). Consumer surplus is computed via the Hausman
(1999) approach, which provides a lower-bound measure. Producer profits derive directly from estimated matches
multiplied by prices for each origin, destination and time-of-day. Profits reflect daily, single-shift revenues net of fuel
costs. These profit measures do not include drivers’ or medallion-holders’ opportunity costs, as such they may be
thought of as net-revenues.

6 Policy Experiments

In this section, I examine the effect of alternative pricing policies on equilibrium frictions and

welfare. I hold fixed the basic institutional details of the New York City taxi market: two-part

tariff pricing, medallion limits, and medallion rental prices. Throughout, I will take each of these

as policy variables, and study the change in each while holding some others fixed. I also compute a

social planner’s solution under these constraints. Doing this will allow me to disentangle the costs

and consequences of each regulatory constraint and the cost of frictions associated with each. I

take the New York City locations and distances as primitives, so specific policy results should be

interpreted as relevant only to this market.

6.1 Optimal Tariff Pricing Under Medallion Limits

Why should the two-part tariff be used in the taxi market? In contrast to the ubiquity of fixed-

plus-distance fare structure, it is not clear that this tariff configuration is the right one. One reason

is that the fixed-fee component of the tariff doesn’t necessarily serve to recoup any fixed costs,

which for a typical taxi ride are arguably negligible.37 Fixed costs may plausibly arise from the

time spent initially stating one’s destination, or from the transaction time at the end of a ride,

but these costs are likely to be quite small relative to the time taken to drive a single mile. Thus

37The two-part tariff structure can be seen in historical photos of taximeters going back to the 1940’s in the US,
and I have found earlier photos advertising strictly fixed-fare rides in some cities.
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from the perspective of this model, fixed costs of taxi rides are assumed to be zero. Given this

assumption, and given the existence of a fixed “flag-drop” fare, the service price for a very short

trip might greatly exceed marginal cost. It is therefore tempting to conclude that charging a fixed

fee here is inefficient, but this question is slightly more complicated; The fixed fee also influences

taxis’ search behavior and therefore the spatial distribution of service. Existence of this fee may

incentivize vacant cabs to distribute themselves spatially into more efficient allocations than they

would under a pure distance-based fee.

A second reason that the two-part tariff could be problematic is that it imposes a uniform price

schedule across time and locations. Given changing demand patterns and taxi opportunity costs

spatially and across time, a fixed price schedule is bound to be inefficient in at least some places

and times. Given these potential distortions, I ask what type and level of tariff schedule is optimal.

The spatial equilibrium model can be used to answer this question.

This section proceeds in two steps. First, I discuss the optimal balance between distance and

fixed fees in the current regime; that is, one in which medallion limits are held fixed at 13,500 and

taxi drivers pay a portion of their revenues towards renting the taxi medallion for a shift. Second,

I discuss the role of marginal cost pricing by addressing some implications of existing medallion

rental costs and the extent to which they reflect rents accruing to medallion owners. Finally, I

derive two-part tariff prices that are optimal in the sense that they simultaneously reflect an ideal

balance between each tariff while also being set to recover, on average, the marginal cost of service.

6.1.1 Optimal Tariffs in the Current Regime

The first question of this section is to ask which combination of distance-based and fixed fees

are optimal from a consumer welfare perspective. To answer this, I hold fixed the medallion

constraint and compute counterfactual equilibria across a grid of one hundred possible two-part

tariffs, recording the effects on consumer welfare and producer profits.38 To ensure an equivalent

comparison, I fix taxi revenues at their prevailing level in September, 2012 at a fare structure of

$2.50 plus $2.50/mi. and search for the alternative fare structure that yields the highest consumer

surplus subject to the constraint that firm profits remaining fixed.

Figure (11) depicts a surface of consumers’ equilibrium iso-welfare curves across a grid of coun-

terfactual fare structures. It also depicts the equilibrium iso-profit curve for taxis against the same

grid: holding fixed profits earned under September, 2012 fares. It shows that, subject to firms

being equally well-off as they are currently, consumer welfare is maximized when the fare structure

is $4.20 per mile and zero fixed fee. Though this result is intuitive, it is far from obvious given

38Thus each point on the grid reflects an updated set of spatial-intertemporal demand given the demand system
estimates, as well as the new dynamic spatial equilibrium of vacant taxis given updated search and matching behavior
based on both updated consumer demand as well as updated search incentives coming from new prices.
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Figure 11: Welfare of counterfactual fare-structures
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This figure depicts consumers’ equilibrium iso-welfare curves, from low-levels (blue) to high levels (red) evaluated
within the space of counterfactual two-part tariffs. In aggregate, consumers are equally well-off with fare-structures
along a given curve. Also depicted is a single equilibrium iso-profit curve on the firm-side, evaluated at existing profits
as of September, 2012. Taxis will be indifferent to fare-structures that sit along this curve.

the complex and subtle underlying shifts in equilibrium search behavior. Consumers in this model

receive no fixed benefit to finding a cab, just as cabs do not face any fixed cost of providing an

additional ride. The fixed fee introduces a wedge between the cost of providing a very short ride

and its corresponding price.

Moving to the tariff of $4.20 per mile and zero fixed fee generates $289 million in annual welfare,

a 12.5% gain over current levels. Note that taxi profits remain fixed by construction. Changing

the tariff structure to a distance-only fee will have spatial consequences, however.39 An optimized

tariff based only off distance can be viewed as a simple, consumer welfare-enhancing improvement

in the fare structure, and one that should be acceptable to drivers. A spatial view tells us that it

nevertheless cannot be regarded as a Pareto improvement, as some customers who demand longer

rides would pay more under these prices.

39See Appendix B; Figure (B4) maps how an increase in the distance tariff disproportionally affects customers in
more distant locations, as they tend to demand longer average travel distances.
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6.1.2 Optimal Tariffs in a Zero-Profit Regime

In the last 15 years, the price for a New York taxi medallion has increased by approximately

500%, peaking around $1.3 Million in 2012.40 These sales prices reflect the lack of free entry, and,

correspondingly, prices which surpass marginal costs.41 Binding medallion restrictions limit supply

below that of a competitive market, leading to cartel-like rents that accrue directly to medallion

owners through high leasing prices paid by taxi drivers to rent medallion-equipped cars. Though

rental rates in part fund the capital costs of providing cars, typical day-shift rates clearly exceed

the cost of car ownership. Specifically, the New York TLC regulates lease prices to be no greater

than $105 for a 12-hour day-shift and between $115-129 per 12-hour evening shift, so that medallion

owners will earn more than $220 per day.42

In this section, I ask how medallion rental costs pass through to consumer prices. There are two

components to this question: first, what portion of current taxi fares go towards paying medallion

owners? This question regards the wedge between prices paid by customers and revenues earned

by drivers. Second, if there were no medallion rental cost, and all fare dollars were retained by taxi

drivers, how low could fares be and still support taxi drivers’ wages at today’s levels? The second

question addresses the fact that lower prices to consumers would increase demand and thereby

increase the match rate for taxis, allowing for prices which are even lower than those implied by

the answer to the first question.

To address both questions, I will make the following assumptions: I first assume that medallion

holders charge the full $105 rental rate. Second, because my model does not predict revenues from

waiting-time fees or tips, I assume that these extra revenue sources are a fixed percentage of the base

fare, and I compute this percentage by dividing the mean empirically observable total fare (a value

which includes revenue from waiting fees and tips) by the model’s predicted base fare (i.e, the flag

fare plus distance fare). This calculation produces a value of 1.9992, or almost exactly a doubling

of revenue from these additional sources. Third, I assume that in the absence of outside medallion

owners, drivers must pay depreciation costs of ownership on top of fuel prices, an additional cost

which may influence spatial choices. The Internal Revenue Service provides an estimate of $0.23.43

Finally, I assume that there are no additional costs of ownership (e.g., financing costs of a vehicle,

storage costs, etc).

40Medallion sales data come from the NY Taxi and Limousine Commission. Though prices have since declined
significantly in the wake of competitive pressure from new services, they remain above $500,000 as of 2015.

41Positive medallion values directly imply a binding entry limit; the right to drive a taxi in this market is valued
much higher than the wages earned by a driver. Free entry would allow taxis to enter the market until this value was
driven to zero.

42For hybrid cars, the lease cap is $108 for the day-shift, and $118-132 for the evening-shift. TLC lease cap rules
can be accessed at: www.nyc.gov/html/tlc/downloads/pdf/fleet_drivers_rights_poster.pdf

43See additional details at www.irs.gov/uac/IRS-Announces-2012-Standard-Mileage-Rates,

-Most-Rates-Are-the-Same-as-in-July
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Figure 12: Welfare under zero-profit condition

dist fare

fl
a

g
 f

a
re

 

 

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50
Consumer Iso−welfare

Producer Iso−revenue (Existing)

Producer Iso−revenue (No Rental Fee)

(2.50,2.50)

This figure depicts consumers’ equilibrium iso-welfare curves, from low-levels (blue) to high levels (red) evaluated
within the space of counterfactual two-part tariffs. In aggregate, consumers are equally well-off with fare-structures
along a given curve. Also depicted is the equilibrium iso-profit curves of taxis, evaluated at two points: current
revenues and equivalent revenues when leasing costs are zero. Taxis will be indifferent to fare-structures that sit
along these curves.

What portion of current taxi fares pass through to medallion owners? I note that driver incomes

average $275 per day in my sample.44 A rental price of $105 is 38.1% of daily revenues. This directly

implies that this fraction of the fare can be thought of as a transfer to medallion owners: $0.95

fixed fee plus $0.95/mi. In September, 2012 the average fare amount (not counting tips, taxes or

tolls) was $12.39. Thus, an average of $4.72 per trip is paid by customers to medallion owners. But

these measures only reflect a transfer from consumers to medallion owners, not the true economic

costs of rent seeking. The economic costs come from the price wedge; markets do not fully clear

when some customers are priced out at current fare levels. The next counterfactual considers the

case in which medallion owners were not allowed to collect rent payments. This is alternatively

thought of as a regime in which we tax the entire rental cost and subsidize customer taxi rides.

To estimate what prices could be supported if a zero-profit condition were imposed on medallion

44Cash tips are generally not reported in this data, but credit card tips are. I assume that the average cash tip is
equal to the average credit card tip in the day shift, about 21%, and compute total daily revenues accordingly.
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Table 7: Estimated Welfare Change: All rents transferred to lower prices

Tariff
Consumer Surplus

Matches
(lower bound)

Baseline, 9/12 Prices $281.1K 123K
($1/mi., $0 flag) $2,297.0K 324K

Change +717% +163%

This table shows the change in daily, single-shift welfare measures from adopting a policy in which medallion owners
may not earn rents (above and beyond costs of depreciation and credit card processing). Instead, these lost profits
are transferred to consumers through lower prices. The prevailing price is one in which taxi drivers earn the same
net revenues before and after the policy change.

owners, I search for fare prices that would allow drivers to earn the same take-home wages if the

leasing costs were zero, but capital costs (i.e., depreciation of the taxi) were charged to drivers.

Note that drivers currently take home the difference between total revenues and leasing costs, fuel

costs, and credit card costs.45 At this wage level, drivers are willing to supply labor at existing

levels.

In figure (12), I compute equilibrium for a variety of possible fare-structures and find the point

at which revenues are equal to the current mean daily revenues $275 minus medallion leasing costs

of $105, so that take-home wages are equal to the same levels as they are currently, $170. It shows

that for fixed taxi driver revenues, consumer surplus remains maximized when the flag-fare is set

to zero, and the fare is computed only off of distance. If medallion rents are set to zero but drivers

pay for depreciation and other costs, then a fare of $1.00 per mile is sufficient to generate the same

income. This result implies that up to a 64% fare reduction would be possible in the absence of

rent-seeking, much more than the naive estimate of 38% as described above.

Table (7) shows the aggregate welfare benefit induced by this change. There are immense

benefits to reducing prices by such a large amount. Consumer welfare increases by 717% and

matches increase by 163%. Taxi driver revenues are unchanged by construction, but medallion

owners lose all of their surplus, as would be expected under a free-entry policy.

6.2 Reducing Frictions through Matching Technology

In 2011, Uber began operating in New York City, and has quickly grown to be a substantial force

in the taxi market. An agreement with the New York TLC in 2013 permitted medallion taxis

to use Uber technology to facilitate matching between taxis and passengers.46 The rapid rise of

45Credit card costs are a flat-rate of $11 per-shift, as per www.nyc.gov/html/tlc/downloads/pdf/fleet_drivers_
rights_poster.pdf

46See newsroom.uber.com/2012/12/another-big-win-e-hail-coming-to-nyc/
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ride-sharing services has sparked intense debate over taxi regulation in New York and elsewhere, as

these new services often clash with existing regulations and incumbent stakeholders of medallion

rights. This section contributes to this discussion by considering the value of improved match-

ing technologies. In subsequent sections, I also consider the value of differential pricing, another

technology introduced by the new wave of taxi services.

I first exploit the separate estimates of passenger demand and equilibrium cab-passenger matches

to derive the costs of the search process inherent in the street-hail taxi market. This analysis es-

timates both the cost of allocative inefficiency stemming from random matching (where customers

are not differentiated by their valuation, or willingness-to-pay, for taxis), and the foregone surplus

of unserved passengers who fail to find a match.

Figure (10) illustrates how surplus is computed in the current taxi market as the area labeled C.

Suppose there is a hypothetical world in which all customers who demanded a taxi at a particular

price were matched with one. This scenario is made possible by a combination of a real-time

bilateral matching technology, and a supply of taxis sufficient to service all customers. The new

generation of ride-sharing services offer technologies to address both of these requirements. The

first is real-time matching between customers and cabs using a mobile application, and the second

is variable pricing to clear the market. Though I can not identify market clearing prices with

this model, I can estimate the cost of matching frictions at any price in the absence of supply

constraints. The area A ∪B ∪ C of figure (10) records this ideal level of surplus.

Figure (13) displays the results of table (6) in graphical form. It shows that at least $462,500

per shift is lost in consumer surplus, and approximately $1.4M in total revenues due to unserved

customers. Under the simple approximation that service in all shifts are equally valued by cabs

and customers, and over each day of the year, together this represents a lower-bound estimate of

annual costs of about $1.7 billion. This number is a lower bound due to the lower bound measure

on consumer surplus. Of these losses, about $166.7 million per shift is the loss to consumers is due

to random matching alone, which represents 36% of the total consumer welfare cost of unserved

matches. implying that even when there are not enough taxis to serve all customers, the ability to

simply sort by customers’ valuations would generate non-trivial efficiency gains.

6.2.1 Discussion on free-entry

The above sections provide some insight into the value of a free-entry policy. A free-entry policy

would eliminate rents by driving lease prices down until they equal the marginal cost of vehicle

ownership. Such a policy would enable these rents to be absorbed instead by market participants

and would generate additional value by eliminating the implicit price wedge. I do not, however,

predict how many taxis would be on the road under free entry.47 Using the counterfactuals above,

47Estimating these costs in the context of the spatial equilibrium model is a topic of future work.
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Figure 13: Consumer Surplus with Valuations
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This figure depicts two sources of welfare loss generated under random matching with frictions. Given values are
welfare measures associated with a single 6a-4p weekday shift.

I can predict some general effects of free entry: Since the current medallion supply is binding, for

at least most of the day, free entry would likely lead to an increase in supply (see Appendix B.1 for

an analysis of this dimension), and a fall in price towards marginal cost, as discussed in the above

subsection.

The success of modern web-based taxi hailing services is partially attributable to the enormous

value added by mixing free entry with matching technology, which together accounts for nearly all

sources of welfare-enhancing policies discussed in this paper. Notably, however, the these companies

still price service according to two-part tariffs, which is demonstrated in sections 6.1 and 6.3 to be

inefficient.48

6.3 Combining Optimal Tariffs and Matching Technology

Several of the above subsections highlight potential improvements to taxi regulation. Adjusting

the two-part tariff along drivers’ iso-profit curves to be solely distance-based generates welfare by

inducing better spatial allocations of supply and demand. A policy which lowers the overall price

level by imposing a zero-profit condition on medallion owners (implementation specifics aside) will

48For details on the fare structures of the two most popular ride-sharing services, see uberestimate.com/prices/,
and www.lyft.com/help/article/1515660
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directly generate large welfare gains. Improved matching technology can further be used to nearly

eliminate search frictions by ensuring that all passengers find a taxi. I model a matching technology

which perfectly matches taxis with customers who demand a ride within the same location.

Using the spatial equilibrium model and demand system estimates, I simulate the effects of a

regulatory regime that enacts all three policies simultaneously. Table (8) displays the consumer

welfare gains associated with a switch to these policies. It shows that consumer welfare increases to

$2.6 million per shift and matches increase to about 324,000 per shift. Note that these gains surpass

the constrained social planner’s optimal configuration for cabs, given the addition of frictionless

matching. This result underscores the importance of improved matching on consumer welfare in

this market. Given the benefits associated with these changes, the results provide insight into the

success of Uber, Lyft and other new firms which operate with an on-demand matching technology

combined with essentially free-entry.

Table 8: Estimated Welfare Change: optimal tariffs, no owner rents, on-demand matching

Policy
Consumer Surplus

Matches
(lower bound)

Baseline, 9/12 Prices $281.1K 123K
Combined Policy Change $2,599.0K 324K

Change +824% +163%

This table shows the change in daily, single-shift welfare measures from adopting (1) an optimal tariff policy, (2) a
zero-rental rate policy and reducing prices so that taxis earn equal amounts before and after, and (3) a technology
which perfectly matches customers with cabs who are in the same location.

6.4 A Social Planner’s Solution and Differentiated Pricing

Can competition generate an efficient spatial equilibrium? I can determine the efficient spatial

distribution of taxis by considering the problem of a constrained social planner whose goal is

arrange the supply of cabs so as to maximize consumer surplus such that total supply remains

fixed at 13,237. I assume that the planner can only move taxis around in space by influencing their

search behavior; taxis remain constrained by travel time and search frictions, but are endowed

with preferences which perfectly align with maximizing consumer welfare across the city. This

exercise will reveal that the distribution of taxis attained in competitive equilibrium under a uniform

pricing rule (e.g., the existing two-part tariff) is inefficient in the sense that taxis are systematically

providing service to some locations that value service less than others. For a given level of demand,

the difference in welfare attained between the two-part tariff regime and the constrained planner’s

regime reflects the cost of spatial frictions induced by uniform prices.
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To compute welfare under the constrained planner’s regime, I implement the following proce-

dure: First, I assume that the marginal cost of taxi service is equal to $1.00 per mile, and set the

tariff faced by consumers equal to this, a basic efficiency condition.49 Second, I endow taxi drivers

with the planner’s incentives. Recall that in the equilibrium model, taxis’ policy functions depend

on the (private) value of search in each location, represented by value functions. To solve the so-

cial planner’s problem, I replace period-profits in the value function specification with consumers’

demand curves in each location and time, evaluated at the expected number of matches.50 These

points on the demand curve represent the marginal surplus associated with adding a single cab

in each location and time. Finally, I solve the problem by running the modified TEA algorithm,

which, as before, begins with an initial distribution of taxis. When the algorithm runs, it identifies

policy functions that maximize consumer welfare by moving taxis around until there is no policy

which attains a higher surplus.

Overall results are shown in Table (9). Consumer surplus attained is equal to $2.6 million

and 333,000 matches per shift, or about $2.4 billion per year assuming equal surplus across the

entire day and each day of the year. Compared with the prevailing surplus in 2012, this reflects

a 821% increase in consumer welfare and a 170% increase in matches. Note, however, that most

of these gains are attributable to lower prices. Table (7) shows the outcome of a $0 flag + $1/mi.

tariff where taxis choose locations to maximize profits, which leads to a singles-shift surplus of $2.3

million and 257,000 matches per shift. This implies that a competitive equilibrium in which prices

reflect marginal costs, where the tariff is set to optimize the spatial distribution of supply, attains

89% of the social planner’s welfare outcome, whereas the current regime only reaches 11%. The

difference in the social planner’s welfare outcome versus the competitive outcome, about $300,000

per year, is due to differences in the spatial allocation of supply. Note that the planner’s solution

could be implemented by a set of origin-destination-time specific prices, entailing a matrix of nearly

6,000 individual prices.

These results once again highlight the value of technological innovations that can accommodate

flexible pricing according to place and time, such as mechanisms introduced by Uber, Lyft and

others.51 One lesson from this model, however, is that optimal prices are not just a function of

demand within a particular location and time. Prices must also account for the equilibrium effects

of the search process on the supply of taxis, as taxis face differential opportunity costs across a city.

49This marginal cost is only an approximation, based on the finding above that 2012 levels of service are supportable
under these prices if rental rates were zero.

50As above, I use the linear, lower-bound estimate of the demand curve.
51See Appendix B.2 for a discussion of how temporary demand shocks affect taxi service, and the role of ”surge

pricing” in this context.
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Table 9: Estimated Welfare Change: Constrained Social Planner’s Solution

Tariff
Consumer Surplus

Matches
(lower bound)

Baseline, 9/12 Prices $281.1K 123K
Social Planner (w/ frictions) $2.6M 333K

Change +821% +170%

This table shows the change in daily, single-shift welfare measures from enacting the social planner’s solution where
medallion levels are held fixed and the matching technology exhibits the same frictions as in the current regime. The
social planner induces taxi drivers to solve the optimal location choice problem so as to maximize consumer surplus
instead of profits.

7 Conclusion

Supply and demand in the taxi market is uniquely shaped by space. Regulation influences how taxis

and their customers search for one another and how often they find each other. This paper models

a dynamic spatial equilibrium in the search and matching process between taxis and passengers,

highlighting a unique mapping between passenger-cab matches and equilibrium supply and demand.

Using trip data from New York yellow taxis, I estimate this model to recover the unobservable

spatial and inter-temporal distribution of demand during the day-shift. Using variation in trip

prices, I specify and estimate demand curves for each time-of-day and in each of 48 New York

locations. With identified demand curves, a spatial equilibrium model of taxi supply permits

predictions of welfare outcomes under alternative regulatory and technological circumstances.

I show that welfare attained in the New York market is $257 million per year, a loss of $422

million per year compared to an environment with frictionless matching. I identify several welfare-

enhancing policy options: First, an improved fare structure would be strictly distance-based. It

leads to welfare gains through reducing search frictions and a better spatial allocation of taxis

relative to demand. Second, restricted quantity controls generate rents for medallion owners, but

these profits impose significant costs on consumers in the form of higher prices. I show that

scaling the optimal distance-only tariff to just recover marginal cost would generates 89% of the

surplus achieved by a social planner’s solution. Third, improved matching technologies, as seen in

popular ride-sharing services such as Uber and Lyft, generate substantial gains by nearly eliminating

search frictions. A policy which combines this directed matching technology with an optimal tariff

structure and marginal cost pricing would increase consumer welfare approximately eight-fold over

current levels, or by about $2.4 billion per year.
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A Appendix

A.1 Data Cleaning

Taxi trip and fare data are subject to some errors from usage or technology flaws. A quick analysis

of GPS points reveals that some taxi trips appear to originate or conclude in highly unlikely

locations (e.g., the state of Maine) or even impossible locations (e.g., the ocean). I first drop any

apparently erroneous observations. Next, I drop observations outside of the locations of interest,

Manhattan and the two airports. This section describes how data are cleaned and provides some

related statistics.

Data Cleaning Routine

1. Begin with merged trip and fare data from August, 2012 to September, 2012.

2. Drop observations outside of USA boundaries.

3. Drop observations outside of the New York area.

4. Drop duplicates in terms of taxi driver ID and date-time of pickup.

• Most of these appear to be erroneous.

5. Drop observations outside of Manhattan (bounded above by 125th st.), LaGuardia Airport

and JFK Airport.

• JFK and LGA airport areas are defined by their corresponding census tract.

6. Drop observations which cannot be mapped to any of the 48 locations summarized in Figure

(4).

• E.g., GPS point falls inside of manhattan boundaries, but in impossible location such as

the East River.

Table (A1) shows the incidence of each cleaning criterion.

A.2 Taxi Equilibrium Algorithm

The algorithm that I implement takes as inputs all model primitives, parameters, and a time zero

state, and returns the equilibrium state and policy functions for each location and each time period.

Equilibrium states constitute a L × T matrix (i.e., how many taxis are in each location in each

period), and equilibrium policy functions constitute a L×L×T matrix (i.e., the probability of vacant
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Table A1: Data Cleaning Summary

Procedure Criterion Applied Obs. Change

Drop Errors

1. Initial Data 28,927,944
2. obs. outside USA -749,623
3. obs. outside NYC -5,298
4. drop duplicates -57

Drop Unusable Data
5. keep manhattan + airports -3,622,803
6. un-mapped data -117,249

Final Data Set: 24,432,914 observations

This table summarizes the data cleaning routine for TLC data from 8/1/2012-9/30/2012.

taxi transition from any location i ∈ {1, ..., L} to any location j ∈ {1, ..., L} in each period). Broadly,

the algorithm uses backwards iteration to solve for continuation values and forward simulation to

generate transition paths. The algorithm moves in an alternating, asymmetric backwards and

forwards sequence through the current time step t ∈ {1, ..., T}, where backwards moves update

continuation values and forwards moves update transition paths. The algorithm terminates when

all transition paths and continuation values are self-fulling and consistent with equilibrium. Below

I provide an outline of the taxi equilibrium algorithm.

The Taxi Equilibrium Algorithm begins at time T . With a guess of the industry state ST0 , I can

determine a candidate continuation value V T (ST0 ). Next, the algorithm moves backwards to period

T − 1, again guessing the state ST−1
0 . With this guess and a given value of the parameter vector

λ, I compute expected number of matches and vacancies. The flow of matches between locations

is then estimated (see Appendix (A.2) for detail). Then, I conduct a policy function iteration to

determine the optimal policies for each taxi driver state (i.e., each location) given the candidate

continuation values next period. The policy functions define the transition of vacant cabs. This

information, together with the computed transitions of matched cabs, defines the transition kernel,

Q(S′|S). The algorithm updates the time T state via Q : ST−1
0 → ST1 , and then updates period T

continuation values to V T (ST1 ). Next, the algorithm moves backwards to period T − 2 and again

guesses ST−2
0 and now computes Q : ST−2

0 → ST−1
1 → ST2 as well as V T (ST2 ) and V T−1(ST−1

1 ).

This process repeats all the way back to time zero. Because the time zero state is never updated,

it remains an exogenous input.

At every period, including time zero, the initial guess St0 is derived by distributing taxis across

locations according to the distribution of matches. Though this state is unobserved, the distribution

of matches reasonably approximates the distribution of taxis.

50



Algorithm 1 Taxi Equilibrium Algorithm

1: Set parameters {λt}t∈{1,...,T} (where λt = {λti}i∈{1,...,L}).
2: Set counter k = 0
3: Guess ST0 and compute V T (ST0 , λT )
4: for τ = T − 1 to 1 do . Backwards Iteration
5: Guess St0 and compute V t(St0, λt)
6: for t = τ to T − 1 do . Fwd. Iteration to T for each step back
7: Compute matches mt

i := E[m(Stk|λt)]
8: Compute matched taxi transitions mt

ij = M t ·mt
i

9: Compute unmatched cabs at the end of period µtij
10: Find eq’m policy fcts. σtk(V

t+1
k ) to determine vacant taxi transitions

11: σt0 and mt
ij imply transition to S̃t+1

12: Update next period state St+1
k+1 ← S̃

t+1

13: Update next period continuation values as V t+1(St+1
k+1, λ

t)
14: k ← k + 1
15: end for
16: end for
17: Update S1

0 ← S
(T/2)
0 . A more informed guess of S1

0

18: repeat
19: Fix τ = 1
20: Iterate on steps 6 to 15
21: until |V t

k − V t
k−1| ≤ ε ∀t

A.2.1 Initial conditions

Recall that St0 is a state vector of the number of vacant taxis in each location at time t. The initial

guess of the state in each period, St0, is assigned by allocating the total number of taxis (12,500)

according to the empirical distribution of matches. As the TEA algorithm runs, each vector St0 for

t ≥ 2 is updated as t− 1 transitions are computed given the t− 1 initial state and value functions

for t, t+ 1, ..., T . Only one term, S1
0 remains exogenously chosen.

The TEA algorithm begins at time t = T and runs backwards to time t = 1. At each step

backwards, the algorithm updates policy functions and resulting transitions forward from the cur-

rent step t to the final step T . Once reaching time t = 1, the exogenous guess S1
0 is updated to

equal the equilibrium distribution of taxis at the middle of the day, t = 60 (i.e., 12pm). Following

this update, the TEA algorithm always begins at t = 1, with the exogenous state guess fixed, and

computes transitions through the end of the day, and at each period forward updates the value

functions. The algorithm repeatedly cycles forward through the day, updating transitions and value

functions, terminating only when transitions and value functions are mutually consistent.
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A.3 Fixed Point Algorithm

Below is an outline of the nested fixed point algorithm used, in conjunction with the Taxi Equilib-

rium Algorithm, to identify the Poisson arrival rates of taxi customers.

Algorithm 2 NFP Algorithm

1: Guess parameters λ0 = {λt}t∈{1,...,T}.
2: Run Taxi Equilibrium Algorithm (λ0) to produce equilibrium distribution of supply {vt}
3: Invert empirical matches given {vt} to infer demand λ̃
4: Check that |λ̃− λ0| < ε for some tolerance level ε.
5: If yes, done. If no, update guess to λ1 and repeat.

Algorithm (2) shows how this fixed point is computed in the context of the taxi supply equilib-

rium algorithm.The termination of the NFP algorithm identifies the spatial, intertemporal distri-

bution of Poisson parameters λ = {λti}∀i,∀t and also implies the termination of the TEA algorithm,

which identifies the equilibrium spatial, intertemporal distribution of vacant taxis, S(λ) = {vti}∀i,∀t.

A.4 Proofs

Proof of Proposition 4.1 The expected number of matches E[m(v, λ)|v] is one-to-one in λ.

Proof. First decompose E[m|v, λ] as follows:

E[m|v, λ] = v
∞∑
k=0

(
1−

(
1− 1

αv

)k)
fλ(k)

Let ρ =
(
1− 1

αv

)
. Then with some algebra we can write:

E[m|v, λ] = v − v
∞∑
k=0

ρkfλ(k)

= v − v
∞∑
k=0

ρkλke−λ

k!

= v − v e
−λ

e−ρλ

∞∑
k=0

(ρλ)ke−ρλ

k!

= v − v · e−λ(1−ρ)

= v(1− e−
λ
αv )
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Where the second step follows from the pmf of the Poisson distribution. It is straightforward to

show from this step that E[m(v, λ)|v] is strictly increasing in λ. Since a strictly increasing function

is one-to-one, {m(·, ·), v} ↔ λ is one-to-one.

Proof of Equilibrium Uniqueness

Proof. To show that there is a unique equilibrium to the dynamic oligopoly game, I need to show

that players’ best response curves intersect only once at every period in time. First note that since

any taxi driver plays against the expected distribution of his competitors, and since all transitions

are taken to be deterministic with respect to the taxi drivers’ decision problem, this game can be

viewed as a two-player game: the agent versus his competition. Further, all agents are atomistic, so

that no single individual’s action has any influence on competitors’ strategies. Thus I only need to

show that a drivers’ best response function (i.e., which location to search in given the distribution of

competitors) intersects his competitors’ action (i.e., the aggregated policy function) at one point.

To do this I will show that a taxi’s best response function is strictly decreasing in the level of

competition. Specifically, I want to show that for a taxi in location i, his best response curves

(given by policy function σi(ja|St) are strictly decreasing in vti , the payoff-relevant component of

the state (recall St also includes the in-transit status of all employed and vacant taxis who are not

actively searching in period t).

Recall that this policy function is given by:

σi(ja|St) =
exp(W t

i (ja,St)/σε∑
k exp(W t

i (jk,St)/σε)
.

It is straightforward to see that δσi(ja)
δvtja

< 0 ⇔ δWi(ja)
δvtja

< 0 ⇔ δVja
δvtja

< 0. I will therefore show

that value functions are strictly decreasing functions of the state variable. To do this, begin at the

last period, t = T . In this period, continuation values are all equal to zero, so that the only profit

may be earned from successful search within period T . The value function for location i in the

terminal period may be rewritten as:

V T
i (S) = Epi

[
pi(u

T
i , v

T
i )|λTi

]∑
j

MT
ij ·Πij

 .

The state of competition is summarized by the number of vacant cabs in location i, vTi . In

Appendix A.3, I prove that E[mt
i|vti , λti] = v · (1 − e−

λ
αv ). Thus, pi(v|λ) = (1 − e−

λ
αv ), a strictly

downward sloping function of v. Since the expected profits associated with a fare is independent
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of the state, this directly implies that V T
i (S) is downward sloping in the relevant component of the

state, vTi .

Now let’s turn our attention to a generic period t. The goal is to show that V t
i is decreasing in

vti as long as continuation values are also decreasing. Since this is true in period T , by induction

this will prove that V t
i is decreasing in vti for all t. To proceed, suppose V t

j (S) is decreasing in vkj
for all j and for all k > t. For clarity I display equation (4) below:

V t
i (S) = Epi|λi,St

[
pi(u

t
i, v

t
i)

Exp. Value of Fare︷ ︸︸ ︷(∑
j

M t
ij · (Πij + V

t+τij
j )

)
+

(1− pi(uti, vti)) · Eεt+1
a,j

[
max
j∈A(i)

{
V
t+τij
j + I[j=i]γ − cij + εa,j

}] ∣∣∣∣λti]︸ ︷︷ ︸
Exp. Value of Vacancy

]
. (15)

Since we have assumed that V
t+τij
j (S) is decreasing, it is easy to see that if the expected value

of a fare is greater than the expected value of a vacancy over the next period, then any decrease

in the probability of finding a fare will decrease V t
i . The assumption that taxis can opt to not

search in any location ensures this condition will always hold; taxis may always choose to exercise

the option to remain vacant and thereby forgo the opportunity to profit in any period.52 Thus an

increase in vti decreases the probability of matching, pi, which thereby decreases V t
i .

I showed above that value functions are decreasing in the level of competition. This directly

implies that policy functions are decreasing functions of the competitor’s state. Since competitors’

policies are independent of an atomistic taxi’s actions, best response curves will intersect only once.

Therefore equilibrium is unique.

A.5 Estimation and Simulated Moments

I identify σε, γ, and α by simulating individual taxi trip data and comparing simulation moments

with their empirical counterparts. The moments are as follows: (1) Mean total travel time of

employed cabs, (2) Mean total vacancy time, (3) Mean total distance of employed cabs, and (4)

the probability that a driver’s next match is in the same location as his most recent drop-off. Note

that these moments will depend at least in part on these parameters; σε reflects how much of a taxi

52For clarity, this option value is not written. Under this assumption, value functions are more precisely written
with an additional max operator in front, i.e. V ti (S) = max([Exp. Value of Vacancy], Ṽ ti (S)), where Ṽ is given by
equation (15), allowing drivers to choose vacancy with probability one instead of facing a probability of getting a
ride. In simulations, taxis very rarely exercise this option.
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Table A2: Data and Simulation Moments

Moment Data Average Simulation Average

Total Vacant Wait Time (min.) 372.93 480.13
Total Vacant Distance Travelled (mi.) 39.87 22.60
Total Employed Time (min.) 220.77 105.91
Pr(pickup in i | drop-off in i) .4483 .4386

This table summarizes the data and simulation moments used to estimate remaining model parameters.

driver’s location choice depends on observable features within the model. A high value of σε should

lead to behavior that appears random from the perspective of the model, including longer vacancy

periods, whereas a low value implies that the model is capturing incentives well, and thus behavior

should conform to the model’s valuation of locations. γ reflects the value of saved time when drivers

choose to stay in the same location next period as they ended up in last period. A low gamma

means that drivers are, all else equal, indifferent between searching in the current location and

adjacent ones. Thus, a lower probability of staying-put is expected. A high gamma likewise implies

a higher probability of staying put. Similarly, a low α (high matching efficiency) should imply lower

vacancy times, greater employment times, and higher probability of same-location matching. Table

(A2) displays each simulation moment compared with its observed value.

A.6 Aggregated Estimation Results

I present results that aggregate results over all 48 locations to six locations.For a map of corre-

sponding locations, see Figure (A4) below.

The results above demonstrate that the while taxi supply maintains some coverage across all

locations throughout the day, there are intra-day trends in spatial availability. The first-period

drop in supply reflects the beginning of the model, as all taxis are modeled as vacant in the initial

period. Spatial mismatch is immediately evident, in that Midtown service very thin while the

Uptown areas (Central Park East and West) are highly over-supplied relative to demand. One

contributing factor to this relative oversupply is that mean fares are about 15% higher in these

areas than in Midtown.
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Figure A1: Equilibrium Vacant Taxis: Weekdays 6a-4p, 9/2012 (Six-Loc. Aggregates)
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This figure depicts the equilibrium spatial distribution of taxis. Results across 48 locations are aggregated to six
locations. Results are depicted for the weekday taxi drivers’ day shift, from 6a-4p, under demand estimated over the
month of September, 2011.

Figure A2: λ estimates: Weekdays 6a-4p, 9/2012 (Six-Loc. Aggregates)
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This figure depicts the estimated arrival rates of demand for taxi service. Results across 48 locations are aggregated
to six locations. Estimates shown are for the month of September, 2011.
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Figure A3: Empirical Matches: Weekdays 6a-4p, 9/2012 (Six-Loc. Aggregates)
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This figure depicts the empirical distribution of matches during September, 2011, where each of the 48 locations are
aggregated to six locations. Demand estimates are identified off of these data given the taxis’ spatial equilibrium.

Figure A4: Reference Map for Six-Location Results (Note: JFK not shown)
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B Online Appendix

This section presents additional counterfactual experiments related to supply shocks (in the form

adding additional medallions), demand shocks, and the effects of the 2012 price change.

B.1 Supply Shocks: Effect of Green Cabs Initiative on Manhattan and Airport

Taxis

Approximately 6% of taxi trips involve service provided outside of Manhattan or above 125th street.

In 2013, a new class of taxis known as Boro Taxis or “green cabs” began operating in far north

Manhattan and in the outer boroughs. The green cabs initiative created approximately 6,000 new

special medallions, which authorized taxi service with the right to pick up passengers outside of

Manhattan (except above east 96th street and west 110th street) and outside of the two airports.

Green cabs may drop off passengers in restricted areas but may not search for new passengers

there. In the following section, I use my model to ask is what was the effect on Manhattan

of introducing green cabs into the market around Manhattan, a policy which would introduce

significant competition for yellow taxis in the outer boroughs, particularly in the western areas of

Brooklyn and Queens. I model this policy as causing a shift of search activity among all remaining

yellow taxis, approximately 1,000 cabs, into the interior Manhattan and airport locations. This

analysis also relates to recent proposals to increase the number of yellow medallion taxi licenses.53

To measure the effect of adding 1,000 taxis to the city, I assume that initially all 12,500 medal-

lions are on the road, and, following a policy change, 1,000 new medallions take to the road.54

Following the green cabs initiative, 1,000 yellow taxis begin searching in Manhattan and the two

airports instead of the outer boroughs. Table (B1) displays the results of this experiment. It shows

that consumer surplus increases by 4%, overall firm profits increase by 3.4% (as more rides are now

being given than before), while individual driver profits decrease by 4.1%, as the total profits are

now split among more drivers.

Figure (B1) shows the spatial distribution of welfare changes as a result of an increase of 1,000

taxis. It can be seen in this figure that consumers benefit the most in central, high-demand areas.

Note that prices have not changed, but the number of rides serviced has increased, so more customer

rides are being given. For taxis, the increase in passengers in these central areas offsets the negative

effects of an increase in the number of competitors. Conversely, in some peripheral locations to the

53Recent discussion by regulators of a proposed increase in New York can be found at www.nyc.gov/html/tlc/

downloads/pdf/statement_of_findings_11_04_2013.pdf
54There were 13,237 licensed cabs during this time. Because I eliminate the outer-boroughs from my analysis,

and because some medallion taxis will be taken off of the road for maintenance, I model the initial number of taxis
operating within the 48 locations as 12,500, consistent with the 96% trip share shown on Table (2) as well as figure
(3).
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Table B1: Estimated Welfare Change: Increase Total Cabs by 1,000

Total No. Cabs Consumer Surplus Producer Profits Producer Profits
(lower bound) (per-driver)

12,500 $281.1K $1.76M $140.4
13,500 $292.5K $1.82M $134.6
Change +4.0% +3.4% -4.1%

This table shows the daily, single-shift welfare measures in the present market with 13,237 total cabs, compared to that
of a counterfactual market in which there are 14,237 total cabs. Both cases take prices to be post-September, 2012
(i.e., $2.50 plus $2.50/mile). Note that estimated taxi profits do not include revenues attributable to waiting-time
fees or tips.

north-east and south-east, consumers end up with similar levels of service before and after, but an

increase in the number of taxis dilutes the profit share for individual drivers.55

B.2 Demand Shocks: effect of a transient, local demand shock

Next, I consider the effect of an expected, transient shock to demand in a single location. This

shock mimics the surge in demand for taxis at the end of an public event (e.g. a parade, ball

game, concert, etc), lasting for 30 minutes. In particular, I am interested in the effects on the taxi

supply over several spatial zones: within the shock location, adjacent locations, nearby non-adjacent

locations, and in non-nearby locations.

To conduct this experiment, I begin by predicting demand associated with the current fare

structure, $2.50 plus $2.50/mi. The shock is modeled as a percentage increase in demand over

predicted demand within a single location in each relevant period. I simulate the demand shock

occurring in the Union Square area beginning at 12:00p and lasting until 12:30p.56 This area is

relatively central, and has several adjacent locations in which I can analyze the effects of the shock.

Figure (B2) depicts the spatial taxi supply effects resulting from the local demand shock. It

shows that the supply of taxis does respond to the increase in demand from just before the surge

to just after, quickly equilibrating back to original levels. In the location of the shock, extra vacant

taxis flow into Union Square, increasing more than 7% from original levels. There is a corresponding

increase in empty cabs by almost 2% in the adjacent neighborhoods, and an increase of around

0.3% in the second ring of adjacent neighborhoods. Given that the total supply of taxis is fixed,

these supply increases draw down the supply elsewhere in the city, as farther locations experience

an average drop of up to 0.8% around 12:15pm.

55Note that the spatial distribution of per-capita profits for taxis only illustrates profits that are attributable to
different locations on average, as a typical driver spends the day in many locations.

56This location is the area bounded by 14th-27th St. and 3rd-8th Ave.
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Figure B1: Consumer welfare effect of a 1,000 taxi increase

This figure maps the welfare effects of a hypothetical increase in the medallion limits by 1,000 taxis, given prices
as of September 2012. It shows the mean percent change - across all time periods - in consumer surplus for each
location. Consumers at both airports are equally well off under both regimes because the model specifies that airport
customers always find a taxi.

Figure (B3) depicts the spatial extend of the counterfactual supply shifts at the peak of the

demand shock, from 12:00pm to 12:05pm. It shows that the increase in the supply of taxi service

is ”financed” by a deficit in both upper Manhattan, particularly the Upper East Side, as well as

from lower Manhattan. The shock location in Union Square has the highest increase, while nearby

locations experience an increase in supply due to proximity. This spatial spillover effect stems from

both an increase in taxi activity from providing extra service from the shock location to nearby

locations (e.g., more pick-ups in Union Square lead to increased drop-offs nearby), but also from

the increased value of search in adjacent locations (e.g., any pick-up in a nearby location will more

likely result in a drop-off in the higher-valued shock location).

These results suggest a role for policy to mitigate the negative externality generated away from

Union Square: the TLC could in this example tax rides in high-demand areas (i.e., a “surge” price
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Figure B2: Change in taxi supply due to a local demand shock

11:00a 11:30a 12:00p 12:30p 1:00p 1:30p
−1

0

1

2

3

4

5

6

7

8

Time of Day

C
h
a
n
g
e
 i
n
 V

a
c
a
n
t 
T

a
x
is

 (
%

)

 

 

Shock Location
Adjacent Ring

Second Ring
Outer Locations

Shock

This figure depicts the percentage change in the supply of vacant taxicabs resulting from a demand shock in the
Union Square neighborhood of five times normal demand from 12:00pm to 12:30pm. The adjacent ring refers to all
neighboring locations. The second ring refers to all locations which neighbor the adjacent ring. Outer locations refer
to all other locations.

that is not collected by cabs) and subsidize taxi trips in affected outlying areas to prevent service

shortfalls in locations away from the demand shock. Alternatively, or in tandem with a tax/subsidy

policy, the TLC could permit more taxis to be on the road during high-demand times, such that

equilibrium levels of service are not reduced anywhere. Importantly, this discussion only applies

to the case in which the demand spike was fully expected and internalized into the optimal search

patterns of taxis. In contrast, an unexpected shock to demand would not cause taxis to change

their search behavior precisely because their decisions are formed off the expectations of demand

in each period.

B.3 Pricing Effects: The 2012 Fare Hike

Another natural question to ask of this model, which is estimated before and after the time of a

regulated fare increase, is what was the effect of that price change? On September 4, 2012, the fare

structure increased from $2.50 plus $2.00/mile, to $2.50 plus $2.50/mile, and the flat-fare charged
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Figure B3: Mapping the change in taxi supply due to a local demand shock

This map depicts the percentage change in the supply of vacant taxicabs at 12:15pm, resulting from a demand shock
in the Union Square neighborhood of five times normal demand from 12:00pm to 12:30pm.

for rides between JFK and Manhattan increased from $45 to $52. Average fares increased by about

17%. The effect of this change is obtained by first inputting the original fare structure ($2.50,$2.00,

$45) into the demand estimation, which estimates the arrival rates of passengers across all locations

and times-of-day. Using these estimates, I then solve for the equilibrium distribution of taxi service

using the spatial model. Finally, I use the resulting supply and demand estimates for each location

and time to predict the number of matches made in equilibrium and the total surplus generated

from these matches. Results are shown in Table (B2).

This table shows that consumer surplus decreased by 4.7% as a result of the fare change, while

producer profits increased by 1.7%. Note that these welfare measures are aggregates of time- and

location-specific measures. The spatial model reveals a very detailed picture about the spatial

extent of the consumer welfare losses. Figure (B4) shows the change in welfare in each location as

a result of the fare change. This figure shows that more peripheral locations experienced greater

consumer surplus losses, an intuitive pattern given that consumers in these locations tend to demand
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Table B2: Estimated Welfare Change: 2012 fare increase

Price Input Consumer Surplus Producer Profits
(lower bound)

8/12 Prices $294.9K $1.76M
9/12 Prices $281.1K $1.79M

Change -4.7 % +1.7%

This table shows the change in daily, single-shift welfare measures from before and after the September, 2012 fare
change. On September 4, 2012, the fare structure increased from $2.50 plus $2.00/mile, to $2.50 plus $2.50/mile, and
the flat-fare charged for rides between JFK and Manhattan increased from $45 to $52.

longer-distance rides, so that an increase in the distance-fare will have a greater impact on the total

price paid. The loss in customers in these locations also impacts drivers, mitigating the increased

profitability of individual rides in these locations by reducing the probability of finding a match.

As a result, drivers shift search to less-affected areas.
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Figure B4: Consumer welfare effect of September, 2012 fare increase

This figure maps the welfare effects of the September, 2012 fare hike. The intensity of color in each location depicts
the degree of percentage loss in consumer welfare after the change.
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