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Abstract

The evidence for the United States points to balanced growth despite falling investment-good prices

and a less-than-unitary elasticity of substitution between capital and labor. This is inconsistent with

the Uzawa Growth Theorem. We extend Uzawa�s theorem to show that the introduction of human

capital accumulation in the standard way does not resolve the puzzle. However, balanced growth is

possible if education is endogenous and capital is more complementary with schooling than with raw

labor. We present a class of aggregate production functions for which a neoclassical growth model with

capital-augmenting technological progress and endogenous schooling converges to a balanced growth

path.
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1 Introduction

Some key facts about economic growth have become common lore. Among those famously cited by

Kaldor (1961) are the observation that output per worker and capital per worker have grown steadily,

while the capital-output ratio, the real return on capital, and the shares of capital and labor in national

income have remained fairly constant. Jones (2015) updates these facts using the latest available data.

He reports that real per capita GDP in the United States has grown �at a remarkably steady average

rate of around two percent per year�for a period of nearly 150 years, while the ratio of physical capital

to output has remained nearly constant. The shares of capital and labor in total factor payments were

very stable from 1945 through about 2000.1

These facts suggest to many the relevance of a �balanced growth path�and thus the need for models

that predict sustained growth of output, consumption, and capital at constant rates. Indeed, neoclassical

growth theory was developed largely with this goal in mind. Apparently, it succeeded. As Jones and

Romer (2010, p.225) conclude: �There is no longer any interesting debate about the features that a model

must contain to explain [the Kaldor facts]. These features are embedded in one of the great successes of

growth theory in the 1950s and 1960s, the neoclassical growth model.�

Alas, �all is not well,�as Hamlet might say. Jones (2015) highlights yet another fact that was noted

earlier by Gordon (1990), Greenwood et al. (1997), and others: the relative price of capital equipment,

adjusted for quality, has been falling steadily and dramatically since at least 1960. Figure 1 reproduces

two series from the FRED database.2 In the period from 1947 to 2013, the relative price of investment

goods declined at a compounded average rate of 2.0 percent per annum. The relative price of equipment

declined at an even faster annual rate of 3.8 percent.

The observation of falling capital prices rests uncomfortably with features of the economy thought

to be needed for balanced growth. As Uzawa (1961) pointed out, and Schlicht (2006) and Jones and

Scrimgeour (2008) later clari�ed, a balanced growth path in the two-factor neoclassical growth model with

a constant and exogenous rate of population growth and a constant rate of labor-augmenting technological

progress requires either an aggregate production function with a unitary elasticity of substitution between

capital and labor or else an absence of capital-augmenting technological progress. The size of the elasticity

1As is well known from Piketty (2014) and others before him and since, the capital share in national income has been
rising, and that of labor falling, since around 2000; see, for example, Elsby et al. (2013), Karabarbounis and Neiman (2014),
and Lawrence (2015). It is not clear yet whether this is a temporary �uctuation around the longstanding division, part of
a transition to a new steady-state division, or perhaps (as Piketty asserts) a permanent departure from stable factor shares.

2The Federal Reserve Economic Data (FRED) are maintained by the Federal Reserve Bank of St. Louis. Their investment
and equipment prices are based on updates of Gordon�s (1990) series by Cummins and Violante (2002) and DiCecio (2009).
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Figure 1: U.S. Relative Price of Equipment, 1947-2013
Source: Federal Reserve Bank Economic Data (FRED), Series PIRIC and PERIC.

of substitution is much debated and still controversial; yet, a preponderance of the evidence suggests an

elasticity well below one.3 And the decline in quality-adjusted prices of investment goods (and especially

equipment) relative to �nal output suggests that capital-augmenting technological progress� embodied,

for example, in each new generation of equipment� has been occurring.4

The Uzawa Growth Theorem rests on the impossibility of getting an endogenous rate of capital

accumulation to line up with an exogenous growth rate of e¤ective labor in the presence of capital-

augmenting technological progress, unless the aggregate production function takes a Cobb-Douglas form.

The �problem,�it would seem, stems from the model�s assumption of an inelastic supply of e¤ective labor

that does not respond to capital deepening, even over time. If human capital could be accumulated via, for

example, investments in schooling, then perhaps e¤ective labor growth would fall into line with growth

in e¤ective capital, and a balanced growth path would be possible in a broader set of circumstances.

Seen in this light, another fact about the U.S. growth experience is encouraging. We reproduce� as did

Jones (2015)� a �gure from Goldin and Katz (2007). Figure 2 shows the average years of schooling

measured at age thirty for all cohorts of native American workers born between 1876 and 1982.5 Clearly,

educational attainment has been rising steadily for more than a century. Put di¤erently, there has been

3Chirinko (2008, p.671), for example, who surveyed and evaluated a large number of studies that attempted to measure
this elasticity, concluded that �the weight of the evidence suggests a value of [the elasticity of substitution] in the range of
0.4 to 0.6.�In research conducted since that survey, Karabarounis and Nieman (2014) estimate an elasticity of substitution
greater than one, but Chirinko et al. (2011), Ober�eld and Raval (2014), Chirinko and Mallick (2014), Herrendorf, et al.
(2015), and Lawrence (2015) all estimate elasticities below one.

4Motivated by Uzawa�s Growth Theorem, Acemo¼glu (2003) and Jones (2005) develop theories of directed technical change
in order to provide an explanation for the absence of capital-augmenting technical change. To be consistent with balanced
growth, both look for restrictions that would lead endogenous technical change to be entirely labor-augmenting. Neither
attempts to reconcile capital-augmenting technical change with balanced growth.

5We are grateful to Larry Katz for providing the unpublished data that allowed us to extend his earlier �gure.
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Figure 2: U.S. Education by Birth Cohort, 1876-1982
Source: Goldin and Katz (2007) and additional data from Lawrence Katz.

ongoing investment in �human capital.�Indeed, Uzawa (1965), Lucas (1988), and others have established

existence of balanced growth paths in neoclassical growth models that incorporate standard treatments

of human capital accumulation, albeit in settings that lack capital-augmenting technological progress.6

Unfortunately, the usual formulation of human capital does not do the trick. In the next section, we

prove an extended version of the Uzawa Growth Theorem that allows for education. We specify an ag-

gregate production function that has e¤ective capital (the product of physical capital and a productivity-

augmenting technology term) and �human capital�as arguments. Human capital can be any increasing

function of technology-augmented �raw labor�and a variable that measures cumulative investments in

schooling. In this setting, we show that balanced growth again requires either a unitary elasticity of

substitution between physical capital and human capital or an absence of capital-augmenting technolog-

ical progress. The intuition is similar to that provided by Jones and Scrimgeour for the original Uzawa

theorem. Along a balanced growth path, the value of physical capital that is produced from �nal goods

inherits the trend in output.7 But the growth rate of �nal output is a weighted average of the growth

rates of e¤ective capital and e¤ective labor, with factor shares as weights. If these shares are to remain

constant along a balanced growth path with an aggregate production function that is not Cobb-Douglas,

then e¤ective capital and e¤ective labor must grow at common rates. So, the growth rate of output also

6Uzawa (1965) studies a model with endogenous accumulation of human capital in which education augments �e¤ective
labor supply� so as to generate convergence to a steady state. Lucas (1988) incorporates an externality in his measure of
human capital, a possibility that we do not consider here. Acemo¼glu (2009, pp. 371-374) characterizes a balanced growth
path in a setting with overlapping generations.

7 If the price of investment goods relative to consumption can change� something Jones and Scrimgeour did not consider�
the analogous requirement is that the value of the capital stock inherits the growth rate of output.
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mirrors the growth rate of e¤ective capital. If the growth rate of output must be equal to both the growth

rate of physical capital and that of e¤ective capital, then there is no room for capital productivity to

improve or for the cost of investment goods to fall.

But our �ndings in Section 2 also suggest a resolution to the puzzle. Ongoing increases in educa-

tion potentially can reconcile the existence of a balanced growth path with a sustained rise in capital

or investment productivity and an elasticity of substitution between capital and labor less than unity,

provided that schooling enters the aggregate production function in a particular way. If the production

technology is such that investments in schooling o¤set the change in the capital share that results from

capital deepening, balanced growth can emerge. To be more precise, suppose that F (K;L; s; t) is the

output that can be produced with the technology available at time t by L units of �raw labor�and K

units of physical capital, when the economy has an education level summarized by the scalar measure s.

The measure might re�ect, for example, the average years of schooling in the workforce or the relative

supplies of skilled to unskilled hours. Suppose that F (�) has constant returns to scale in K and L and

that �KL < 1, where �KL � FLFK=FFLK is the elasticity of substitution between capital and labor,

holding schooling constant. We will show that a balanced growth path with constant factor shares, posi-

tive capital-augmenting technological progress, and a rising index of educational attainment can emerge

if and only if the ratio of the marginal product of schooling to the marginal product of labor rises as

the capital stock grows; i.e., @ (Fs=FL) =@K > 0. Clearly, this precludes a production function of the

form F (K;H; t), where H = G (L; s) is a standard measure of human capital, because then Fs=FL is

independent of K. A necessary condition for balanced growth in the presence of capital-augmenting

technological progress and a non-unitary elasticity of substitution is a su¢ cient degree of complemen-

tarity between capital and education. Of course, many researchers have noted the empirical relevance

of �capital-skill complementarity�(see, most prominently, Krusell, et al., 2000 and Autor, et al., 1998),

albeit with varying interpretations of the word �skill�and of the word �complementarity.�Our analysis

makes clear that the appropriate sense of complementarity is a relative one: growth in the capital stock

must raise the marginal product of schooling relatively more than it does the marginal product of raw

labor.

The fact that schooling gains can o¤set the e¤ects of capital-augmenting technological progress on the

capital share does not of course mean that they will do so in a reasonable model of education decisions.

We proceed in Section 3 to introduce optimizing behavior. We �rst solve a social planner�s problem that

incorporates a reduced-form speci�cation of the trade-o¤ between an index of an economy�s education
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level and its labor supply. A simplifying assumption is that an economy�s schooling can be represented

by a scalar measure that can jump from one moment to the next. Under this assumption, when the

aggregate production function belongs to a speci�ed class, the optimal growth trajectory converges to a

balanced-growth path with constant rates of growth of output, consumption and capital, and constant

factor shares. Following the presentation of the planner�s problem, we describe two distinct models in

which the market equilibrium shares the dynamic properties of the e¢ cient solution. In both models, the

economy is populated by a continuum of similar dynasties, each comprising a sequence of family members

who survive for only in�nitesimal lifespans. In the �time-in-school�model of Section 3.2, each individual

decides what fraction of her brief existence to devote to schooling, thereby determining her productivity

in her remaining time as a worker. Firms allocate capital to their various employees as a function of

their productivity levels and therefore their schooling. In the �manager-worker�model of Section 3.3,

individuals instead make a discrete educational choice. Those who spend a �xed fraction of their life in

school are trained to work as managers with their remaining time. Those who do not opt for management

training have their full lives to serve as production workers. In this case, our measure of the economy�s

education level is the ratio of manager hours to worker hours. We take the productivity of a production

unit (workers combined with equipment) as increasing in this ratio due to improved monitoring. In both

models the economy converges to a balanced-growth path for a speci�ed class of production functions,

all of whose members are characterized by stronger complementarity between capital and schooling than

between capital and raw labor.

The class of production functions that we describe in our Assumption 1 is not only su¢ cient for the

emergence of balanced growth, but (essentially) necessary as well.8 The endogenous gains in education

must not only counteract the decline in capital share that would otherwise result from capital-augmenting

technological progress with �KL < 1, but they must do so exactly. The requirements for balanced growth

remain strong, but they are not obviously at odds with the empirical evidence. Moreover, the restrictions

on technology are no stronger than those relating to preferences that are known to be needed for balanced

growth. Importantly, our simplifying assumptions about demographics and education are not essential

to the argument; we show in a companion paper (Grossman et al., 2016) that balanced growth can

emerge in an overlapping-generations model with �nite lives, wherein the economy�s educational state is

characterized by a distribution of schooling levels. The key assumption there is analogous to Assumption

1 and relates to how capital a¤ects the productivity of education relative to that of raw labor.
8More precisely, we show in the online appendix that balanced growth in the presense of ongoing capital-augmenting

technological progress requires that the technology has a representation with the form indicated in Assumption 1.
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In the concluding section, we discuss how our �ndings relate to the large and still-growing literature

on the long-run implications of investment-speci�c technological change.

2 The Extended Uzawa Growth Theorem and a Possible Way Out

In this section, we state and prove a version of the Uzawa Growth Theorem, using methods adapted from

Schlicht (2006) and Jones and Scrimgeour (2008). We extend the theorem to allow for falling investment-

good prices and the possible accumulation of human capital. We also show how investments in schooling

can loosen the straitjacket of the theorem, but only if capital accumulation boosts the marginal product

of education proportionally more than it does the marginal product of raw labor.

Let Yt = F (AtKt; BtLt; st) be a standard neoclassical production function with constant returns to

scale in its �rst two arguments, where, as usual, Yt is output, Kt is capital, Lt is labor, and where At and

Bt characterize the state of (disembodied) technology at time t, augmenting respectively physical capital

and raw labor.9 We take st to be some scalar measure of the prevailing education level in the economy

that is independent of the economy�s size. For example, st might be the average years of schooling

among workers, or the fraction of the labor force with a college degree, or the ratio of trained managers

to production-line workers. The labor force Lt grows at some constant rate, gL, that can be positive,

negative, or zero.

At time t, the economy can convert one unit of output into qt units of capital. Growth in qt represents

what Greenwood et al. (1997) have called �investment-speci�c technological change.�This is a form of

embodied technical change� familiar from the earlier work of Johansen (1959), Solow (1960) and others�

inasmuch as new capital goods require less foregone consumption than did prior vintages of capital. The

economy�s resource constraint can be written as

Yt = Ct + It=qt ,

where Ct is consumption and It is the number of newly-installed units of capital. Investment in new

capital augments the capital stock after replacing depreciation, which occurs at a �xed rate �; i.e.,

_Kt = It � �Kt .
9For ease of exposition and for comparability with the literature, we treat technology as a combination of components

that augment physical capital and raw labor. However, as we show in the online appendix, our Proposition 1 can readily be
extended to any constant-returns to scale production function with the form F (Kt; Lt; st; t). Indeed, Uzawa (1961) originally
proved his theorem (without the education variable st) in this more general form.
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We begin with a lemma that extends slightly the one proved by Jones and Scrimgeour (2008) so

as to allow for investment-speci�c technological progress. De�ne a balanced-growth path (BGP) as a

trajectory along which the economy experiences constant proportional rates of growth of Yt, Ct, and Kt.

Let gX = _X=X denote the growth rate of the variable X along a BGP. We have

Lemma 1 Suppose gq is constant. Then, along any BGP with 0 < Ct < Yt, gY = gC = gK � gq.

The proof, which closely follows Jones and Scrimgeour, is relegated to the online appendix. The lemma

states that the growth rates of consumption and capital mirror that of total output. However, with the

possibility of investment-speci�c technological progress, it is the value of the capital stock measured in

units of the �nal good (and the resources used in investment) that grows at the same rate as output.10

Now de�ne 
K � gA + gq. This can be viewed as the total rate of capital-augmenting technological

change, combining the rate of disembodied progress (gA) and the rate of embodied progress (gq). Also,

de�ne, as we did before, �KL � (FLFK) = (FLKF ) to be the elasticity of substitution between capital and

labor holding �xed the education index. In the online appendix we prove

Proposition 1 Suppose q grows at constant rate gq. If there exists a BGP along which factor shares are

constant and strictly positive when the factors are paid their marginal products, then

(1� �KL) 
K = �KL
FL
FK

@ (Fs=FL)

@K
_s . (1)

The proposition stipulates a relationship between the combined rate of capital-augmenting technological

progress and the change in the education index that is needed to keep factor shares constant as the value

of the capital stock and output grow at common rates.

We can now revisit the two cases that are familiar from the literature. First, suppose that there are

no opportunities for investment in schooling, so that s remains constant. This is the setting considered

by Uzawa (1961). Setting _s = 0 in (1) yields

Corollary 1 (Uzawa) Suppose that s is constant. Then a BGP with constant and strictly positive factor

shares can exist only if �KL = 1 or 
K = 0.

As is well known, balanced growth in a neoclassical economy with exogenous population growth and

no investments in human capital requires either a Cobb-Douglas production function or an absence of

10When capital goods are valued, their price pt in terms of �nal goods must equal the cost of new investment, i.e., pt = 1=qt.
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capital-augmenting technological progress.11

Second, suppose that (e¤ective) labor and schooling can be aggregated into an index of human cap-

ital, H (BL; s), such that net output can be written as a function of e¤ective physical capital and hu-

man capital, as in Uzawa (1965), Lucas (1988), or Acemo¼glu (2009). Denote this production function

by ~F [AK;H (BL; s)] � F (AK;BL; s). Then Fs=FL = Hs=HL, which is independent of K. Setting

@ (Fs=FL) =@K = 0 in (1) yields

Corollary 2 (Human Capital) Suppose that there exists a measure of human capital, H (BL; s), such

that F (AK;BL; s) � ~F [AK;H (BL; s)]. Then a BGP with constant and strictly positive factor shares

can exist only if �KL = 1 or 
K = 0.

In this case, ongoing accumulation of human capital cannot perpetually neutralize the e¤ects of capital

deepening on the factor shares.

However, Proposition 1 suggests that balanced growth with constant factor shares might be possible

despite a non-unitary elasticity of substitution between capital and labor and the presence of capital-

augmenting technological progress, so long as _s 6= 0 and @ (Fs=FL) =@K 6= 0. Suppose, for example,

that �KL < 1, as seems most consistent with the evidence. Suppose further that educational attainment

grows over time, again in line with observation. Then the existence of a BGP with constant factor shares

requires @ (Fs=FL) =@K > 0; i.e., an increase in the capital stock must raise the marginal product of

schooling by proportionally more than it does the marginal product of raw labor. In looser parlance, the

technology must be characterized by �capital-skill complementarity�.12

The results in this section use only resource constraints and the assumption that factors are paid their

marginal products. We have, as yet, provided no model of savings or of schooling decisions. Moreover, we

have shown that a BGP with constant factor shares might exist, but not that one does exist under some

reasonable set of assumptions about individual behavior and a reasonable speci�cation of the aggregate
11Our Proposition 1 is predicated on constant and interior factor shares. But, in the Uzawa case, log di¤erentiation of the

production function with to respect to time, holding s constant, implies

gY = �K (gA + gK) + (1� �K) (gB + gL)

where �K = KFK=Y is the capital share in national income. In a steady state in which Y and K grow at constant rates in
response to constant rates of growth of A;B;L and q, �K must be constant as well. Note that Jones and Scrimgeour do not
assume constant factor shares in their statement and proof of the Uzawa Growth Theorem.
12Some might ask why we interpret s as �schooling,� rather than some other variable that evolves over time and a¤ects

factor productivity. First, we need s to be endogenous, otherwise it could be subsumed into the technology. Second, we want
s to be something that econometricians have used as a control variable when estimating the elasticity of substitution, �KL,
inasmuch as we rely on those estimates when assuming �KL < 1. Most recent estimates of the elasticity of substitution use
quality-adjusted measures of labor and wages that control for schooling (e.g., Antras, 2004, Klump et al., 2007, Ober�eld
and Raval, 2014) or focus on cross-sectional variation across industries so that schooling choices do not vary (Chirinko et
al., 2011).
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production function. In the next section, we study a simple economy in which the level of education can

be summarized by a scalar variable that can jump discretely from one moment to the next. In Grossman

et al. (2016), we consider a more realistic setting in which individuals�education accumulates slowly over

time and the distribution of schooling levels in the economy evolves gradually.

3 Balanced Growth with Short Lifespans

We begin by posing a social planner�s problem that incorporates a reduced-form treatment of schooling

choice. In Section 3.1, the planner designs a time path for a scalar variable that summarizes the education

level in the workforce. The planner faces a trade-o¤ between the level of schooling and the labor available

for producing output. The economy experiences both labor-augmenting and capital-augmenting techno-

logical progress, and the elasticity of substitution between capital and labor in aggregate production is

less than one. Here we show that the planner�s allocation converges to a unique BGP for a speci�ed class

of production functions and under certain parameter restrictions. Moreover, if the e¢ cient allocation

can be characterized by balanced growth after some moment in time, then the technology must have a

representation with a production function in the speci�ed class. We derive the steady-state growth rate

of output for the planner�s solution and the associated (and constant) factor shares.

In the succeeding subsections, we develop a pair of models of individual behavior and aggregate

production that generate education functions that exhibit the form posited in Section 3.1. At the end

of the section, we discuss brie�y the results in Grossman et al. (2016) that can be derived from a more

realistic model of schooling choice with overlapping generations.13

3.1 A Planner�s Problem with a Reduced-Form Education Function

The economy comprises a continuum of identical family dynasties of measure one. Each family has a

continuum Nt of members alive at time t, where Nt grows at the exogenous rate n. Dynastic utility at

some time t0 is given by

u (t0) =

Z 1

t0

Nte
��(t�t0) c

1��
t � 1
1� � dt , (2)

where ct is consumption per family member at time t and � is the subjective discount rate.

Consider the problem facing a social planner who seeks to maximize utility for the representative

13 In our working paper, we also describe how the model can be extended to include directed technical change, in the manner
suggested by Acemo¼glu (2003). We show that the equilibirium of such a model generally exhibits both capital-augmenting
and labor-augmenting technical change.
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dynasty subject to a resource constraint, an evolving technology, and an ongoing trade-o¤ between some

measure of the economy�s education level and the contemporaneous labor supply. Write this trade-o¤

in reduced form as Lt = D (st)Nt, with D0 (st) < 0 for all st, where Lt measures the �raw labor� that

produces output at time t and st is a scalar index that summarizes the distribution of schooling levels

among those workers. The production function takes the form Yt = F (AtKt; BtLt; st), where At again

converts physical capital to �e¤ective capital�in view of the disembodied technology available at time t,

and similarly Bt converts raw labor to e¤ective labor. We assume that F (�) has constant returns to scale

in its �rst two arguments, i.e., that doubling the physical inputs doubles output for any education level

and any state of technology. The economy can convert one unit of the �nal good into qt units of capital

at time t. Capital depreciates at the constant rate � and labor-augmenting technological progress takes

place at the constant rate 
L � _Bt=Bt:

We assume that the technology can be represented by a member of a class of aggregate production

functions that take the following form.

Assumption 1 The production function can be written as F (AK;BL; s) = ~F
h
D (s)aAK;D (s)�bBL

i
,

with a; b > 0, where

(i) h (z) � ~F (z; 1) is strictly increasing, twice di¤erentiable, and strictly concave for all z; and

(ii) �KL � FLFK=FFLK < 1.

Assumption 1 immediately implies that @ (Fs=FL) =@K > 0.14 Therefore, the technology satis�es the

pre-requisites for the existence of a BGP, per Proposition 1, provided that the planner�s optimal choice

of schooling is rising over time.

We also impose some parameter restrictions. Let Eh(z) � zh0 (z) =h (z) be the elasticity of the h (�)

function. Note that Eh(z) is strictly decreasing under Assumption 1.15 We adopt

Assumption 2 (i) limz!0 Eh (z) < b
a+b ; (ii) limz!1 Eh (z) <

b�1
a+b�1 < limz!0 Eh (z); (iii) � > n +

(1� �)
�

L +

b�1
a 
K

�
.

Part (i) of Assumption 2 ensures that the marginal product of schooling is non-negative for all levels of

K;L; and s.16 Part (ii) guarantees that the optimal schooling choice is positive, as we will see below. It
14See the proof in the online appendix. We also prove that, under Assumption 1, �KL < 1 if and only if F (AK;BL; s) is

strictly log supermodular in K and s, which is another way of expressing capital-skill complementarity.
15To see this, note that d ln Eh (z) =d ln z = [1� Eh (z)] (�KL � 1) =�KL, which is negative when �KL < 1.
16Assumption 1 implies Fs (AK;BL; s) = [D0 (s) =D (s)] [aKFK (AK;BL; s)� bLFL (AK;BL; s)]. The assumption that

F (AK;BL; s) is constant returns to scale implies F (AK;BL; s) = KFK (AK;BL; s) + LFL (AK;BL; s). Combining these
two equations, we see that Fs > 0 for all AK; BL and s if and only if limz!0 Eh (z) < b= (a+ b).
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also implies, with Assumption 1 and Assumption 2(i), that b > 1.17 Part (iii) ensures that utility in (2)

is �nite.

The planner�s problem has two separable components, one static and one dynamic. The static problem

is to choose the education level and the labor force at every moment in time so as to maximize output Yt,

subject to the inverse relationship between the two. The dynamic problem is to allocate consumption over

time so as to maximize dynastic utility in (2), subject to the aggregate capital accumulation equation,

_Kt = qt (Yt �Ntct) � �Kt. The solution to the dynamic problem is standard and features the familiar

Euler equation. We provide the details in the online appendix. Here we focus on the static problem,

which captures how the planner�s choice of education, st, relates to the state of technology, as summarized

by fAt; Bt; qtg, and the momentary capital stock, Kt.

In the light of Assumption 1, the planner�s static problem boils down to choosing st and Lt at every

moment in time to maximize Yt = ~F
h
D (st)

aAtKt; D (st)
�bBtLt

i
, subject to the resource constraint,

Lt = D (st)Nt. Once we substitute the constraint into the maximand, we have

Yt = max
st

~F
h
D (st)

aAtKt; D (st)
1�bBtNt

i
= max

st
D (st)

1�bBtNt ~F

"
D (st)

a+b�1AtKt
BtNt

; 1

#
.

Now, make a change of variables, using zt � D (st)a+b�1AtKt=BtNt; and recall the de�nition of h (z) �
~F (z; 1). Then the static problem can be rewritten as

Yt = max
zt
(BtNt)

1�� (AtKt)
� z��t h (zt) , (3)

where � � (b� 1) = (a+ b� 1). The �rst-order condition for this problem implies

Eh (zt) = � for all t � t0. (4)

In other words, the planner chooses education so that zt � D (st)a+b�1AtKt=BtNt remains constant over

time; zt = z� = E�1h (�). In this sense, the planner o¤sets capital deepening with increased schooling.

Part (ii) of Assumption 2 ensures that there exists a strictly positive solution for z� and the fact that

17Assumption 1(i) implies limz!1 Eh (z) � 0. So, Assumption 2(ii) requires (b� 1) = (a+ b� 1) > 0. Thus, if a + b > 1,
then b > 1. Suppose a+ b < 1 and b < 1. Then Assumption 2(i) and Assumption 2(ii) imply b (a+ b� 1) < (a+ b) (b� 1)
or b < (b� 1), which cannot hold. Thus, we must have b > 1.
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Eh(z) is strictly decreasing implies that the solution is unique.18 Once zt is chosen optimally with zt =

z�, (3) implies that output is a Cobb-Douglas function of e¤ective capital and technology-augmented

population, with exponents � and 1� �, respectively.

We will not rehearse the details of the transition path; these are familiar from neoclassical growth

theory. In the appendix, we show that the planner chooses the initial per capita consumption level, ct0 ,

so as to put the economy on the unique saddle path that converges to a steady state. On the BGP,

consumption and output grow at constant rate gY and the capital stock grows at constant rate gK .

We can readily calculate the growth rates of output and consumption along the BGP. From zt �

D (st)
a+b�1AtKt=BtNt and the fact that zt = z� along an optimal trajectory, we have

(a+ b� 1) gD + gA + gK = 
L + n

for all t � t0. By setting zt = z� in (3) and then log di¤erentiating with respect to time, we also �nd that

(a+ b� 1) gY = a (
L + n) + (b� 1) (gA + gK)

along the optimal path. Finally, combining these two equations and using Lemma 1� which requires that

gY = gK � gq along any BGP� we can solve for gD and gY . Proposition 2 reports the results.

Proposition 2 Suppose there is a trade-o¤ between labor supply and a summary index of economy-wide

education given by Lt = D (st)Nt. Let Assumptions 1 and 2 hold. Then along the optimal trajectory

from any initial capital stock, Kt0, the economy converges to a BGP. On the BGP,

(i) aggregate output and aggregate consumption grow at the common rate gY = n+ 
L +
b�1
a 
K ;

(ii) the index of education grows according to _s = �
KD(s)
aD0(s) , so that gD = �


K
a .

The growth of per capita income is increasing in the rate of labor-augmenting technological progress,

just as in the neoclassical growth model without endogenous schooling. But now a BGP exists even

when there is ongoing capital-augmenting technological progress or when the price of investment-goods

is falling at a constant rate. The fact that b > 1 implies that the growth rate of per capita income also

is increasing in 
K , the combined rate of embodied and disembodied capital-augmenting progress.

18 In the online appendix, we show that the second-order condition is satis�ed at zt = z� under Assumption 1. Moreover,
we show that the second-order condition would be violated if the elasticity of substitution between capital and labor were
to exceed one.
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We have not as yet introduced any market decentralization, which we will do only for the speci�c

models described in Sections 3.2 and 3.3 below. However, in anticipation that capital will be paid its

marginal product in a competitive equilibrium, we can de�ne the capital share in national income at

time t as �Kt = (@Yt=@Kt)Kt=Yt. Using (3) with zt = z�, we see that �Kt = (b� 1) = (a+ b� 1) � � for

all t � t0. The labor share, which includes the return to education, equals 1 � �. That is, the planner

chooses the trajectories for the capital stock and schooling such that the factor shares remain constant,

both along the transition path and in the steady state. Notice that the growth rate and the capital share

both are increasing in b and decreasing in a; in this sense, fast growth and a high capital share go hand

in hand.

We o¤er some remarks about the role of Assumption 1 and the intuition for our BGP. With Yt =

~F
h
AtKtD (st)

a ; BtLtD (st)
�b
i
, the e¤ect of schooling on the relationship between inputs and output is

akin to that of factor-biased technical progress. Hicks (1932) described the bias in technical progress

according to its impact on relative factor demands at given relative factor prices. Technical progress is

�labor saving�(or, equivalently, �capital using�) if it causes an increased relative demand for capital at

the initial wage-to-rental ratio. In our setting, and under Assumption 1, added schooling does exactly

that; it tilts the unit isoquants in (K;L) space in such a way that the cost-minimizing technique shifts

toward capital.19 We can say, therefore, that the productivity gains associated with schooling are capital

using.

Capital-augmenting technological progress expands the relative supply of e¤ective capital. In our

model, it also induces investment in education. This increases the relative demand for capital. With

our functional form assumption, the extra demand just absorbs the excess supply. To see that this is so,

notice that D (st)
aAtqt is constant along the BGP. In short, the optimal schooling choice generates extra

demand for equipment that neutralizes the e¤ect of the capital-augmenting progress and the declining

investment-good prices on the growth of the e¤ective capital stock.20

E¤ectively, there is a horse race between the e¤ects of capital deepening and of education on the fac-

19Following Takayama (1974), de�ne $ (k; s; t) as the ratio of the marginal product of labor to the marginal product of
capital, where k � AK=BL. Under Assumption 1,

$ (k; s; t) =
Bk

A

24 1

Eh
�
D (s)a+b k

� � 1
35 .

Since D (s) is strictly decreasing in s and Eh (z) is strictly decreasing in z, it follows that $s < 0. This means that schooling
is Hicks labor-saving in Takayama�s terminology.
20Violante (2008) de�nes �skill-biased technical change" as a technology change that, ceterus paribus, raises the marginal

product of skilled labor relative to that of unskilled labor in the formation of an aggregate labor input. By analogy, we
might also say that education under our Assumption 1 is �capital biased�; growth in s raises FK=FL at a given input ratio.
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tor shares which, with the multiplicative way that D (s) interacts with the two inputs and the constant

elasticities on this variable, ends in a dead heat. As capital accumulates and becomes more produc-

tive due to technical progress, the less-than-unitary elasticity of substitution between capital and labor

exerts downward pressure on the capital share. Meanwhile, complementarity between e¤ective capital

and schooling means that capital accumulation raises the return to education. The planner responds

by investing more in schooling, which depresses the education-plus-technology augmented capital stock

relative to the education-plus-technology augmented labor force. This exerts upward pressure on the

capital share. With the functional form speci�ed in Assumption 1, the two forces just balance.

Needless to say, Assumption 1 describes a broad class of technologies. For concreteness, we o¤er one

example. Consider21

Yt = (BtLt)
a
a+b

n
(AtKt)

� +
h
D (st)

�(a+b)BtLt
i�o b=(a+b)

�
. (5)

Then output at time t can be expressed as a function ofD (st)
aAtKt andD (st)

�bBtLt. With a > 0; b > 1;

and � < 0, Assumptions 1 and 2 are both satis�ed. Here, the negative value of � generates the required

complementarity between capital and schooling.22

One might wonder whether we are able to dispense with the functional-form restriction of Assumption

1. The answer to this question is no. In the appendix, we prove that if Lt = D (st)Nt and if the solution

to the social planner�s problem exhibits balanced growth after some time T with increasing schooling and

a constant capital share �K 2 (0; 1), then either there is no capital-augmenting technological progress

(
K = 0) or else the technology can be represented along the equilibrium trajectory by a production

function with the form ~F
h
AtKD (s)

a ; BtLD (s)
�b
i
, with a > 0 and b = 1+ a�K= (1� �K) > 1. In other

words, Assumption 1 is not only su¢ cient for the existence of a BGP with 
K > 0 and �KL < 1, but it is

essentially necessary as well. As with any model that generates balanced growth, knife-edge restrictions

21Our example makes use of the fact (shown in the online appendix), that, whenever the marginal product of schooling is
positive, Assumption 1 is formally equivalent to assuming that F (AK;BL; s) can be written as

F (AK;BL; s) = (BL)
a

a+b G
�
AK;D (s)�(a+b)BL

� b
a+b

where G(�) is constant returns to scale, strictly increasing in both its arguments, G (z; 1) is twice di¤erentiable and strictly
concave for all z and �GKL � GKGL

GGKL
< 1. Written in this form, the basis for the complementarity between capital and

schooling is clear. The example in (5) is the special case of this formulation in which G (�) has a constant elasticity of
substitution between its two arguments.
22 It is possible to interpret (5) in terms of a two-task production process. Suppose each worker contributes a joint input

of educated and raw labor (�brains�and �brawn�). The �rm combines the educated labor (de�ned as D (st)
�(a+b) Lt) with

e¤ective capital to complete one task. In so doing, the two have a constant elasticity of substitution of 1= (1� �) < 1.
Meanwhile, the input of raw labor addresses the second task. Finally, the two tasks enter the overall production function in
Cobb-Douglas form.
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are required to maintain the balance; our model is no exception to this rule.

To demonstrate the �exibility of our approach, we next present two examples of market economies

that generate the reduced form described above. The discussion of the two models in the main text is

brief; details are in the online appendix.

3.2 Balanced Growth in a �Time-in-School�Model

As above, the representative family has a continuum Nt of members at time t. Each life is �eetingly brief;

an individual attends school for the �rst fraction of her momentary existence and then joins the workforce

for the remainder of her life. The variable st now represents the fraction of life that the representative

member of the generation alive at time t devotes to education; she spends the remaining fraction 1� st

working. In this case, D (s) = 1 � s, so that the family�s labor supply is Lt = Nt (1� st). Given

the brevity of life, there is no discounting of an individual�s wages relative to her time in school. But

dynasties do discount the earnings (and well being) of subsequent generations relative to those currently

alive. Every new cohort starts from scratch with no schooling.

Each individual chooses her consumption, savings, and schooling to maximize total dynastic utility,

which at time t0 is given by (2). Each individual supposes that other family members in her own and

subsequent generations will behave similarly. Savings are used to purchase units of physical capital, which

are passed on within the family from one generation to the next. The Nt members of the representative

dynasty collectively inherit Kt units of capital at time t, considering that the aggregate capital stock is

fully owned by the population and there is a unit continuum of dynasties in the economy.

Firms produce output using capital, labor, and the technology available to them at the time. Each

�rm rents capital on a competitive market and allocates it to its employees, taking into consideration

their levels of education. A �rm�s output is the sum of what is produced by its various workers. As usual,

the pro�t-maximizing choices for the �rm equate the marginal product of each unit of capital to the

competitive rental rate and the marginal product of each type of worker to her competitive wage. The

equilibrium determines a wage schedule, Wt (s), which gives the wage of a worker with schooling s at time

t. Even for those schooling options that are not actually chosen in equilibrium at time t, we can calculate

a worker�s marginal product and thus what the wage would be based on the prevailing technology and

the capital that a �rm would allocate to such a worker at the prevailing rental rate.

Schooling choices have no persistence for the family. Therefore, an individual alive at time t who seeks

to maximize dynastic utility should choose s to maximize her own wage income, (1� s)Wt (s). The �rst-
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order condition for this problem requires (1� st)W 0
t (st) = Wt (st). We show in the appendix that this

�rst�order condition for privately optimal schooling choice implies that in the competitive equilibrium

Eh
�
(1� st)a+b�1

AtKt
BtNt

�
=

b� 1
a+ b� 1 .

Evidently, the individual�s income-maximizing choice of schooling matches the planner�s path for st in

(4), once we recognize that D (s) = 1� s. Part (ii) of Proposition 2 then implies

_st = (1� st)

K
a
:

On a BGP, schooling rises over time, but at a declining rate; the complementary time spent working,

D (s) = 1� s, falls at a constant exponential rate, _D (s) =D (s) = �
K=a.

It comes as no surprise that the market equilibrium with perfect competition and complete markets

mimics the planner�s solution. The point we wish to emphasize is that the time-in-school model converges

to a BGP and that the wage scheduleWt (s) gives the family members the appropriate incentives to extend

their time in school from one generation to the next. The returns to schooling rise with the accumulation

of e¤ective capital, thanks to the assumed capital-schooling complementarity, and the extra schooling is

exactly what is needed to maintain balanced growth of the two inputs to production.

3.3 Balanced Growth in a �Manager-Worker�Model

Now, we present an entirely di¤erent model that yields a similar reduced form. We imagine teams that

combine �managers�and �production workers.�Firms allocate capital equipment to teams according to

their productivity. Only production workers are directly responsible for operating equipment and thus

for generating output. But the productivity of a team depends on the ratio of its managers to workers,

as in the hierarchical models of management proposed by Beckmann (1977), Rosen (1982), and others.

The family structure, demographics, and preferences are the same as before. Lifespans are short.

Each individual decides whether to devote a �xed fraction m of her potential working life to school. If

she opts to do so, she will acquire the skills needed to serve as a manager and she will have 1�m units

of time remaining to perform this function. Those who do not go for management training are employed

as production workers. They will use all of their available time to earn unskilled wages.

Let Lt be the time units supplied by production workers at time t and let Mt be the time units

supplied by managers. Since production workers devote all of their time to their jobs, Lt is also the
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number of production workers. Managers are in school a fraction m of their time, so the number of

managers is Mt= (1�m). The population divides between workers and managers, so

Lt +
Mt

1�m = Nt . (6)

This time, we take st = Mt=Lt to be our index of schooling. This is the ratio of manager hours to

worker hours (or of skilled to unskilled labor) and the inverse of the typical manager�s �span of control.�

With this de�nition, (6) implies Lt+Ltst= (1�m) = Nt, so that D (s) = [1 + s= (1�m)]�1 in this model.

Monitoring makes the workers and their equipment more productive. In particular, we suppose that

the production function at time t can be written as ~F
h
D (s)aAtK;D (s)

�bBtL
i
, with ~F (�) homogeneous

of degree one in its two arguments. With s = M=L, this implies that output is a constant-returns to

scale function of the three inputs, AtK;BtL and BtM .

In this model, the education decision for the representative individual born at time t is simple:

pursue schooling if lifetime earnings of a manager exceed those of a worker and not otherwise. In

an equilibrium with Mt > 0, every individual must be indi¤erent between the two occupations, so

that (1�m)WMt = WLt, where WMt and WLt are the wages per unit time of managers and workers,

respectively. Over time, accumulation of e¤ective capital exerts upward pressure on the skill premium,

because the functional form of Assumption 1 ensures that capital is more complementary with managers

than it is with production workers. This provides the incentive for a greater fraction of each new generation

to gain skills. The expanding relative supply of managers to workers restores the equality in earnings.

In the appendix, we show that equalization of lifetime earnings of workers and managers implies

Eh

 �
1 +

st
1�m

��(a+b) AtKt
BtLt

!
=

b� 1
a+ b� 1 .

This gives the same education index as in the planner�s solution (4). It follows that the economy converges

to a BGP, with a constant rate of output growth given by part (i) of Proposition 2, and with a constant

capital share and an ever increasing ratio of manager hours to worker hours.

3.4 Balanced Growth with Overlapping Generations

The models described in Sections 3.2 and 3.3 are rather stylized, because they assume that an economy�s

education can be described by a scalar variable that can jump from one moment to the next. In reality,

schooling investments take time and an economy�s distribution of education levels adjusts slowly. In a
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companion paper, Grossman et al. (2016), we develop an overlapping-generations (OLG) model that has

these features. Here, we describe brie�y the additional insights and predictions that emerge from that

analysis.

In the OLG model, individuals experience �nite but stochastic lifespans. Births and deaths occur

with constant hazard rates. An individual devotes the �rst part of her existence to school. She chooses

the target length of time to remain in school before entering the labor force. If the individual survives

to adulthood, she spends the second phase of life working, with a productivity that depends on her

educational attainment, her experience, and on technology at the time. Firms allocate capital to their

workers as a function of these characteristics, and a �rm�s total output is the sum of what is produced by

its various workers. Productivity rises with experience early in a worker�s career, but falls with experience

subsequently. If a worker survives until her productivity falls to zero, she retires.

Analogous to Assumption 1, we assume in the OLG model that if L workers with s years of schooling

and u years of experience are allocated K units of capital, they can produce ~F
�
e�asAtK; ebsBtL; u

�
units

of output at time t. In the equilibrium, every birth cohort chooses a di¤erent educational target. The

labor force comprises workers with di¤erent schooling levels and di¤erent years of experience who work

with di¤erent amounts of capital. Despite this richness, the economy-wide distributions of schooling and

experience evolve in a relatively simple way that permits aggregation.

Like the short-lifespan models of Sections 3.2 and 3.3, the OLG economy has a unique BGP. Along

the BGP, educational attainment increases linearly over time, much like the patterns depicted in Figure

2 for long stretches of U.S. history. The wage structure at every moment takes a Mincerian form (see

Mincer, 1974), with log wages that vary in the cross-section with schooling and experience. Finally, the

model predicts declining labor-force participation, consistent with the post-war evidence for men in the

United States.

One important di¤erence between the OLG model and the short-lifespan models is worth emphasizing.

In the OLG model of Grossman et al. (2016), factor shares are neither constant along the transition path

nor independent of the rates of technological progress in the long run. Our numerical analysis suggests that

a permanent slowdown in the rate of capital-augmenting technological progress will induce an increase in

the capital share. In fact, with plausible parameter values, a one percentage point decline in the annual

rate of investment-speci�c technical change� such as has been measured by the International Monetary

Fund (2014, p.89) for the period after 2000� might account for much or all of the rise in the capital share

in U.S. national income that has been witnessed in those years.
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4 Relationship to the Literature on Investment-Speci�c Technical Change

By way of concluding remarks, it might be useful for us to relate our results to the large literature that

has studied the long-run implications of investment-speci�c technological change. In his seminal paper

on embodied technical progress, Solow (1960) did not close his model to solve for a steady state, but

he indicated how this could be done. However, Solow employed a Cobb-Douglas production function

throughout this paper, and his discussion about closing the model relies on this assumption. Sheshinski

(1967) demonstrated convergence to a BGP in an extended version of the Johansen (1959) model with

both embodied and disembodied technological progress. Although he does not restrict attention to any

particular production function, he does insist that both forms of progress are Harrod-neutral, i.e., they

augment the productivity of labor. So, the technology gains in Sheshinski�s paper, while embodied

in vintages of capital, are nonetheless assumed to be labor-augmenting. These �ndings are echoed in

Greenwood et al. (1997), who resurrected the literature on technological improvements that are embodied

in new equipment. They studied an economy that has no opportunities for schooling in which two types

of capital (�equipment�and �structures�) and labor are combined to produce consumption goods. Unlike

Sheshinski, they do not assume that embodied progress is Harrod-neutral and, consequently, they are

led to conclude that a Cobb-Douglas production function is necessary to generate balanced growth, in

keeping with the dictates of the Uzawa Growth Theorem.

Krusell et al. (2000) posit a technology with capital-skill complementarity according to which output

is produced with equipment, structures and two types of labor (�skilled�and �unskilled�). Leaving aside

their distinction between equipment and structures, their model is one with capital and two types of

labor, much like our manager-worker model in Section 3.3 above. Although their production function

incorporates capital-skill complementarity, it does not satisfy the dictates of our Assumption 1. Nor

do they endogenously determine the supplies of skilled and unskilled workers. They, and much of the

substantial literature that has adopted their production function, do not address the prospects for bal-

anced growth with ongoing declines in investment-good prices and endogenous schooling, but instead

focus on the transition dynamics that result from a speci�ed sequence of relative price changes and of

factor supplies. Two recent papers do try to generate balanced growth in models of investment-speci�c

technological progress that is not Harrod-neutral. He and Liu (2008) introduce endogenous schooling

into the Krusell et al. model, so that the relative supplies of skilled and unskilled labor are determined

in the general equilibrium. They de�ne a BGP to be an equilibrium trajectory along which equipment,
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structures and output all grow at constant rates and the fraction of skilled workers converges to a con-

stant. With this de�nition, they conclude (see their Proposition 1) that balanced growth is consistent

with ongoing investment-speci�c technological change only when the aggregate production function takes

a Cobb-Douglas form. Maliar and Maliar (2011) study a similar environment, but assume instead that

the stocks of skilled and unskilled labor grow at constant and exogenous rates. They show that balanced

growth requires gA < 0 to o¤set the investment-speci�c technology gains, such that (in our notation)


K = 0. In contrast to these papers, we have shown that balanced growth is in fact compatible with a

falling relative price of capital, non-negative growth in capital productivity, and �KL 6= 1, provided that

capital and schooling are su¢ ciently complementary. Our result requires that the aggregate production

function falls into the class de�ned by Assumption 1 and that an appropriate index of the economy�s

educational outcome is rising over time.

The basic mechanism in our model is straightforward: over time, growing stocks of e¤ective capital

raise the returns to schooling, which induces individuals to spend more time in school. Inasmuch as capital

and labor are complements, capital accumulation tends to lower capital�s share in national income, but this

is o¤set by the subsequent rise in schooling, because capital and schooling are also complements. When

capital and schooling are more complementary than capital and labor, the second e¤ect can neutralize

the �rst. Although the presence of these o¤setting forces is natural enough, restrictions on how schooling

enters the production function are needed to maintain exact balance along an equilibrium trajectory.

The restrictions are in a sense analogous to those usually imposed on preferences in a dynamic model

in order to generate balanced growth. Speci�cally, while it may be natural to assume that income

and substitution e¤ects o¤set one another as wages rise, the intratemporal utility function must be

speci�ed in a particular away so as to maintain perfect balance along an equilibrium trajectory. Just as

balanced-growth preferences are consistent with a range of intertemporal elasticities of substitution and

labor-supply elasticities, so too are the restrictions we impose on the production function consistent with

a range of elasticities of substitution between capital and labor and between capital and schooling.
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Online Appendix for �Balanced Growth Despite Uzawa�

by

Gene M. Grossman, Elhanan Helpman, Ezra Ober�eld and Thomas Sampson

Proofs from Section 2

Proof of Lemma 1

By assumption Ct < Yt. Therefore, the resource constraint Yt = Ct+It=qt ensures It > 0. The capital accumulation

equation is _Kt = It � �Kt implying

gK =
_Kt

Kt
=
It
Kt

� �:

On a BGP gK is constant meaning that since It > 0 the growth rates of I and K must be the same. Thus, gI = gK .

Di¤erentiating the resource constraint and rearranging gives

(gC � gY )
Ct
Yt
+ (gI � gq � gY )

It=qt
Yt

= 0:

Substituting for It=qt
Yt

= 1� Ct
Yt
in this expression and using gI = gK we have

(gK � gq � gC)
Ct
Yt
= gK � gq � gY :

If both sides of this expression equals zero we immediately obtain gY = gC = gK � gq as claimed in the lemma.

Otherwise, since the growth rates are constant on a BGP it must be that C and Y grow at the same rate implying

gY = gC . But then the resource constraint implies
It=qt
Yt

= 1 � Ct
Yt
is constant and, since gI = gK , this ensures

gY = gK � gq. Therefore, the lemma holds.

Proof of Proposition 1

Since factors are paid their marginal products the capital share is �K = KtFK (AtKt; BtLt; st) =Yt. Note also that

because F has constant returns to scale in its �rst two arguments FK (AtKt; BtLt; st) = AtF1 (AtKt; BtLt; st) =

1



AtF1(kt; 1; st) where kt = AtKt=BtLt.23 Therefore, on a BGP where the capital share is positive and constant we

have24

0 =
_�K
�K

= gA + gK � gY +
d logF1 (kt; 1; st)

dt
= 
K +

d logF1 (kt; 1; st)

dt
;

where the �nal equality uses Lemma 1 and 
K = gA + gq.

Taking the derivative of F1 and using kF11 + F12 = 0 we have


K = �
F11 _kt + F1s _st

F1
=
F12
F1

_kt
kt
� F1s _st

F1
=

1

�KL

F2
F

_kt
kt
� F1s _st

F1
;

where the �nal equality uses �KL = (F1F2)=(FF12). Since 1� �K = F2=F this can be rearranged to give

�KL
K = (1� �K)
_kt
kt
� �KL

F1s _st
F1

: (7)

To simplify (7) it will be useful to derive an expression for F1s=F1. Note that

@

@K

�
Fs(AtKt; BtLt; st)

FL(AtKt; BtLt; st)

�
=
FKs
FL

� FLKFs
F 2L

=
FK
FL

�
FKs
FK

� 1

�KL

Fs
F

�
: (8)

Rearranging, we have F1s
F1
= FKs

FK
= FL

FK

@[Fs=FL]
@K + 1

�KL

Fs
F . Plugging this into (7) gives

�KL
K = (1� �K)
_kt
kt
� �KL

FL
FK

@ [Fs=FL]

@K
_st �

Fs _st
F
: (9)

Finally, di¤erentiating the production function Yt = F (AtKt; BtLt; st) yields

gY = �K (gA + gK) + (1� �K) (gB + gL) +
Fs _st
F
;

= gA + gK � (1� �K)
_kt
kt
+
Fs _st
F
:

23To avoid possible confusion, note that we use FK (�) and FL (�) to denote the partial derivatives of F (�) with respect
to K and L, respectively, while F1 (�) and F2 (�) denote the partial derivatives of F (�) with respect to its �rst and second
arguments, respectively.
24 Instead of assuming constant factor shares, this expression can also be obtained by assuming the rental price of capital

Rt declines at rate gq. To see this di¤erentiate Rt = AtF1 (kt; 1; st).
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Using Lemma 1 and 
K = gA + gq this implies


K = (1� �K)
_kt
kt
� Fs _st

F
:

Substituting this expression into (9) gives equation (1). This completes the proof.

Generalization of Proposition 1

Proposition 1 assumes technical change is factor augmenting, but we can generalize the proposition by relaxing

this restriction. Suppose the production function is Y = F̂ (K;L; s; t) where technical change is captured by the

dependence of F̂ on t. We can decompose technical change into a Harrod-neutral component and a non-Harrod-

neutral residual. Technical change is Harrod-neutral if, holding the capital-output ratio and schooling �xed, it

does not a¤ect the marginal product of capital (Uzawa 1961). Therefore, we can de�ne the non-Harrod-neutral

component of technical change as the change in the marginal product of capital for a given capital-output ratio

and schooling.

Let ' be the capital-output ratio and de�ne �̂ ('; s; t) by

' =
�̂ ('; s; t)

F̂ (�̂ ('; s; t) ; 1; s; t)
:

�̂('; s; t) is the capital-labor ratio that ensures the capital-output ratio equals ' given s and t. Di¤erentiating this

expression with respect to t while holding s and ' constant and using �K = �̂F̂1=F̂ implies

�̂t
�̂
=

1

1� �K
F̂t

F̂
: (10)

When technical change is Harrod-neutral d
dt log F̂1 (�̂ ('; s; t) ; 1; s; t) = �̂t

@
@�̂ log F̂1 +

@
@t log F̂1 = 0. Thus, we

de�ne the non-Harrod-neutral component of technical change 	 by

	 � ��KL
�
�̂t
@

@�̂
log F̂1 (�̂ ('; s; t) ; 1; s; t) +

@

@t
log F̂1 (�̂ ('; s; t) ; 1; s; t)

�
:

From this de�nition we have

3



	 = ��KL

 
F̂11�̂t

F̂1
+
F̂1t

F̂1

!
;

= ��KL

 
F̂11

F̂1

�̂

1� �K
F̂t

F̂
+
F̂1t

F̂1

!
;

=
F̂t

F̂
� �KL

F̂1t

F̂1
; (11)

where the second line follows from (10) and the third line uses �̂F̂11 = �F̂12, the de�nition of �KL and 1� �K =

F̂2=F̂ . Note that in the case where technical change is factor augmenting we have F̂ (K;L; s; t) = F (AtK;BtL; s)

which implies 	 = (1� �KL)gA.

Using the expression for 	 given in (11) we obtain the following generalization of Proposition 1.

Proposition 3 Suppose the production function is Y = F̂ (K;L; s; t) and that investment-speci�c technological

progress occurs at constant rate gq. If there exists a BGP along which the income shares of capital and labor are

constant and strictly positive when factors are paid their marginal products, then

(1� �KL) gq +	 = �KL
F̂L

F̂K

@
h
F̂s=F̂L

i
@K

_s:

To avoid repetition, we omit the proof of Proposition 3 since it follows the same series of steps used to prove

Proposition 1.

Suppose either s is constant as in Corollary 1 or the production function can be written in terms of a measure of

human capital H(L; s; t) implying
@[F̂s=F̂L]

@K = 0 as in Corollary 2. Then Proposition 3 implies a BGP with constant

and strictly positive factor shares can exist only if (1 � �KL)gq + 	 = 0. Thus, a BGP with �KL � 1, gq � 0

and 	 � 0 is possible only if technical change that a¤ects the production function is Harrod-neutral and either

the elasticity of substitution between capital and labor equals one or there is no investment-speci�c technological

change.

Proofs from Section 3

Implications of Assumption 1

Taking the partial derivative of the production function with respect to s gives

Fs = �
D0(s)

D(s)
[bLFL � aKFK ] ;

4



and from this we obtain

@

@K

�
Fs
FL

�
= �D

0(s)

D(s)
a

�
�FK
FL

� KFKK
FL

+
KFKFLK

F 2L

�
:

Since F exhibits constant returns to scale in K and L we have F = KFK + LFL and KFKK = �LFLK . Using

these results in the expression above we have

@

@K

�
Fs
FL

�
= �D

0(s)

D(s)
a
FFLK
F 2L

(1� �KL) ;

which is strictly positive under Assumption 1 since a > 0, �KL < 1 and D0(s) < 0.

F is strictly log supermodular in K and s if and only if FKsF � FKFs > 0. Using Assumption 1 to compute

these derivatives gives

FKsF � FKFs = �
D0(s)

D(s)
(a+ b)LFFLK (1� �KL) :

Since a+ b > 0 and D0(s) < 0 it follows that under the functional form restriction in Assumption 1 the production

function F is strictly log supermodular in K and s if and only if �KL < 1.

Second Order Condition of the Planner�s Problem

The planner chooses zt to maximize Yt which is equivalent to choosing zt to maximize z
��
t h(zt). The �rst order

condition is

��z���1t h(zt) + z
��
t h0(zt) = 0;

and the second order condition is

(z�)���1h(z�)
d

dz
Eh(z�) < 0:

Since Eh(z) is strictly decreasing in z if and only if �KL < 1 it follows that the second order condition is satis�ed

5



if and only if �KL < 1.

Transition Dynamics of the Planner�s Problem

After solving for optimal schooling we can write the planner�s problem as

max
fctg

Z 1

t0

Nte
��(t�t0) c

1��
t � 1
1� � dt

subject to

_Kt = qt [Yt(Kt)�Ntct]� �Kt:

where Yt(Kt) is given by (3) with zt= z�.

Solving this problem we �nd the planner chooses a consumption path that satis�es

_ct
ct
= ��+ � + gq

�
+
�qt
�

Yt(Kt)

Kt
: (12)

Now let ~Yt = e�gY (t�t0)Yt(Kt), ~Ct = e�gY (t�t0)Ntct and ~Kt = e�gK(t�t0)Kt where gY is given by part (i) of

Proposition 2 and gK = gY + gq. Using (12) and the capital accumulation equation together with the fact that qt,

At, Bt and Nt grow at constant rates gq, gA, 
L and n, respectively, we have

~Yt = ~Y
�
~Kt

�
= A�t0 (Bt0Nt0)

1��
(z�)

��
h (z�) ~K�

t ;

_~Ct =

"
�gY + n�

�+ � + gq
�

+
�qt0
�

~Y ( ~Kt)
~Kt

#
~Ct; (13)

_~Kt = �(gY + gq + �) ~Kt + qt0

h
~Y
�
~Kt

�
� ~Ct

i
: (14)

Since consumption and schooling can jump, Kt (or, equivalently ~Kt) is the economy�s only state variable. The pair

of di¤erential equations (13) and (14) govern the evolution of the economy from any initial condition Kt0 .

Figure 3 depicts a familiar phase diagram. The vertical line labeled CC has ~K = ~K� such that
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K~
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•
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C
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K
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Figure 3: Transitional dynamics and stability of the balanced growth path

~Y ( ~K�)
~K�

=
1

�qt0
[� (gY � n) + �+ � + gq] :

From (13), we see that _~Ct = 0 along this line. The curve labeled KK has ~C = ~Y ( ~K)� (gY + gq + �) ~K=qt0 . This

curve, which from (14) depicts combinations of ~C and ~K such that _~Kt = 0, can be upward sloping (as drawn) or

hump-shaped. In either case, the two curves intersect on the upward sloping part of KK.25 The intersection gives

the unique steady-state values of ~K = ~K� and ~C = ~C�, which in turn identify the unique BGP. As is clear from

the �gure, the BGP is reached by a unique equilibrium trajectory that is saddle-path stable.

Alternative Formulation of Assumption 1

Proposition 4 provides an alternative formulation of Assumption 1 that can be used whenever the marginal product

of schooling is positive as guaranteed by part (i) of Assumption 2.

Proposition 4 Assumption 1 holds with Fs(AK;BL; s) > 0 if and only if the production function can be written

as F (AK;BL; s) = (BL)
a

a+b G
�
AK;D(s)�(a+b)BL

� b
a+b with a; b > 0, where G(�) is constant returns to scale,

strictly increasing in both its arguments and

(i) G(z; 1) is twice di¤erentiable, and strictly concave for all z;

(ii) �GKL � GLGK=GGKL < 1.

25To see this, note that ~Y 0
�
~Kt

�
= �

~Y ( ~Kt)
~Kt

. Consequently, the slope of the KK curve is �
~Y ( ~Kt)
~Kt

� gY +gq+�

qt0
which is positive

when ~K = ~K� by part (iii) of Assumption 2.
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Proof. Suppose Assumption 1 holds with Fs > 0 and de�ne

G
h
AK;D(s)�(a+b)BL

i
=
h
D(s)�(a+b)BL

i�a
b ~F

h
AK;D(s)�(a+b)BL

i a+b
b

:

This de�nition implies G(�) is constant returns to scale and

F (AK;BL; s) = ~F
�
D(s)aAK;D(s)�bBL

�
= (BL)

a
a+b G

h
AK;D(s)�(a+b)BL

i b
a+b

:

Di¤erentiating G(�) yields

GK =
h
D(s)�(a+b)BL

i�a
b a+ b

b
~F
a
b ~FK > 0;

GL =
h
D(s)�(a+b)BL

i�a
b 1

bL
~F
a
b

h
(a+ b)L ~FL � a ~F

i
:

Fs > 0 implies bL ~FL � aK ~FK > 0. Using this result together with ~F = K ~FK + L ~FL gives GL > 0.

Next, observe that G(z; 1) = ~F (z; 1)
a+b
b . Therefore

Gzz(z; 1) =
a+ b

b
~F (z; 1)

a
b�1

h
~F (z; 1) ~Fzz(z; 1) +

a

b
~Fz(z; 1)

2
i
:

This expression is negative since z ~Fzz(z; 1) = � ~Fz2(z; 1); b ~F2(z; 1)� az ~Fz(z; 1) > 0 because Fs > 0 and �KL < 1.

It follows that G(z; 1) is twice di¤erentiable, and strictly concave for all z.

Finally, we have

GKL =
h
D(s)�(a+b)BL

i�a
b a+ b

b
~F
a
b

"
~FKL +

a

b

~FK ~FL
~F

� a
b

~FK
L

#
;

meaning

�GKL =
~FK ~FL +

a
b
~FK ~FL � a

b

~F ~FK
L

~F ~FKL +
a
b
~FK ~FL � a

b

~F ~FK
L

;
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which is less than one since �KL < 1.

The converse can be proved in the same manner after de�ning

~F
�
D(s)aAK;D(s)�bBL

�
=
�
D(s)�bBL

� a
a+b G

�
D(s)aAK;D(s)�bBL

� b
a+b :

Necessity of Functional Form

Consider an economy that satis�es the assumptions required for Lemma 1 to hold and has production function

F (K;L; s; t) which is constant returns to scale in its �rst two arguments. Suppose factors are paid their marginal

products and schooling is chosen to satisfy

st = argmax
s
F (Kt; Lt; s; t) subject to Lt = D (s)Nt:

We assume this optimization problem has a unique interior maximum.

Suppose the economy is on a BGP from time T onwards with a constant capital share �K 2 (0; 1) . With a

slight abuse of notation de�ne ~Fby

~F (K;L; s; t) = ~F
h
AtKD (s)

a
; BtLD (s)

�b
i
� F

h
AtKD (s)

a
; BtLD (s)

�b
; sT ;T

i
;

where b = 1 + a�K= (1� �K), while At and Bt are de�ned by

At � egY (t�T )D(st)�a
KT

Kt
;

Bt � egY (t�T )D(st)b
LT
Lt
:

Since a and b jointly satisfy a single restriction, ~F de�nes a one dimensional family of functions.

Di¤erentiating the de�nitions of At and Bt together with the constraint Lt = D(st)Nt and using Lemma 1 we

obtain

9




K �
_At
At
+ gq = a(n� gL);


L �
_Bt
Bt

= gY � n�
�K

1� �K

K :


K is the total rate of capital-augmenting technical change, while 
L is the rate of labor-augmenting technical

change. When both n and the labor force growth rate gL are constant then 
K and 
L are also constant. Also,

provided schooling is increasing over time n > gL implying that a > 0 if and only if 
K is strictly positive.

We can now prove the following proposition. Part (i) shows that on the BGP F has a one dimensional family

of representations of the form ~F
h
AtKD (s)

a
; BtLD (s)

�b
i
. From the expressions for 
K and 
L above we see

that each member of this family has a di¤erent combination of capital-augmenting and labor-augmenting technical

change. When we say the production function can be represented by ~F we mean that the equilibrium allocation

and the marginal products of capital, labor and schooling on the BGP are the same under ~F as under F . However,

this does not imply that counterfactual experiments using ~F will necessarily coincide with counterfactuals under

F . The �rst order impact of some policy changes (e.g., schooling subsidies, capital taxation) depends on �KL

and �Ks � (FKFs)=(FKsF ). Therefore, in part (ii) of the proposition we show that if �KL is constant on the

BGP then �KL = ~�KL � ( ~FK ~FL)=( ~FKL ~F ) and that ~�Ks � ( ~FK ~Fs)=( ~FKs ~F ) can be written as a function of

~�KL, a and b. Consequently, if �KL and �Ks are constant on the BGP then there exist unique values of a and

b such that ~�KL = �KL and ~�Ks = �Ks. Thus, knowing �KL and �Ks is su¢ cient to separate the roles played

by capital-augmenting and labor-augmenting technical change. Moreover, when a and b are chosen appropriately

counterfactual analysis using ~F instead of F will, to a �rst order, give accurate predictions.

Proposition 5 Suppose for all t � T the economy�s equilibrium trajectory fYt;Kt; Lt; stg is a BGP with constant

and strictly positive factor shares. On the BGP,

(i) The production function F can be represented by ~F in the sense that for all t � T

~F (Kt; Lt; st; t) = F (Kt; Lt; st; t) ;

~FK (Kt; Lt; st; t) = FK (Kt; Lt; st; t) ;

~FL (Kt; Lt; st; t) = FL (Kt; Lt; st; t) ;

~Fs (Kt; Lt; st; t) = Fs (Kt; Lt; st; t) ;

10



(ii) ~�KL and ~�Ks satisfy
1

~�Ks
� 1 = (a+ b)

�
1

~�KL
� 1
�
;

and if �KL is constant then ~�KL = �KL.

Proof. Without loss of generality let T = 0. Output at t � 0 is given by

F (Kt; Lt; st; t) = Yt = e
gY tY0 = e

gY tF (K0; L0; s0; 0) = F
�
egY tK0; e

gY tL0; s0; 0
�
;

= F
�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
;

= ~F (Kt; Lt; st; t) :

To show the marginal products of capital are equal, we use the facts that the capital share is constant over time

and capital is paid its marginal product. Therefore

KtFK (Kt; Lt; st; t)

Yt
= �K =

K0F1 (K0; L0; s0; 0)

Y0
=
egY tK0F1 (e

gY tK0; e
gY tL0; s0; 0)

egY tY0
;

=
AtKtD (st)

a
F1

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
Yt

;

=
Kt
~FK (Kt; Lt; st; t)

Yt
:

Dividing each side by Kt=Yt gives FK (Kt; Lt; st; t) = ~FK (Kt; Lt; st; t). Identical logic using the labor share gives

FL (Kt; Lt; st; t) = ~FL (Kt; Lt; st; t).

To complete the proof of part (i) we show equality of the marginal products of schooling. Optimal schooling

choice implies

D0 (st)Lt
D (st)

= � Fs (Kt; Lt; st; t)

FL (Kt; Lt; st; t)
:

This means the ratio of the marginal product of schooling to output can be written as

Fs (Kt; Lt; st; t)

Yt
= � (1� �K)

D0 (st)

D (st)
:
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We now show that same equation holds for ~F . Di¤erentiating ~F with respect to s and dividing by output gives

~Fs (Kt; Lt; st; t)

Yt
=

1

Yt

D0 (st)

D (st)

h
aAtKtD (st)

a
F1

�
AtKtD (st)

a
; BtLtD (s)

�b
; s0; 0

�
�bBtLtD (st)�b F2

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�i
;

= [a�K � b (1� �K)]
D0 (st)

D (st)
;

= �(1� �K)
D0 (st)

D (st)
:

To prove part (ii) we start by noting that when �KL is constant on the BGP, the homogeneity of F implies

�KL =
F1 (K0; L0; s0; 0)F2 (K0; L0; s0; 0)

F12 (K0; L0; s0; 0)F (K0; L0; s0; 0)
;

=
F1 (e

gY tK0; e
gY tL0; s0; 0)F2 (e

gY tK0; e
gY tL0; s0; 0)

F12 (egY tK0; egY tL0; s0; 0)F (egY tK0; egY tL0; s0; 0)
;

=
F1

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
F2

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
F12

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
F
�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

� ;
=
~FK (Kt; Lt; st; t) ~FL (Kt; Lt; st; t)
~FKL (Kt; Lt; st; t) ~F (Kt; Lt; st; t)

;

= ~�KL:

Next de�ne ĥ(z) � F (z; 1; s0; 0). Then we have

~F (K;L; s; t) = BtLD(s)
�bĥ

�
AtK

BtL
D(s)a+b

�
:

Taking derivatives of this expression implies

12



~�KL =
Eĥ
h
AtK
BtL

D(s)a+b
i
� 1

Eĥ0
h
AtK
BtL

D(s)a+b
i ;

~�Ks =

b
a+b � Eĥ

h
AtK
BtL

D(s)a+b
i

b
a+b � 1� Eĥ0

h
AtK
BtL

D(s)a+b
i :

On the BGP we also have

�K =
Kt
~FK (Kt; Lt; st; t)

Yt
= Eĥ

�
AtKt

BtLt
D(st)

a+b

�
:

Combining these expressions and using b = 1 + a�K= (1� �K) we have that on the BGP

1

~�Ks
� 1 = (a+ b)

�
1

~�KL
� 1
�
:

This completes the proof.

�Time-in-School�Model

A �rm that employs Kt units of physical capital and hires Lt time units from workers with schooling st at time

t produces F (AtKt; BtLt; st) = ~F
h
AtKt (1� st)a ; BtLt (1� st)�b

i
units of output. The production technology

satis�es Assumption 1 and the parameter restrictions in Assumption 2 also apply. Aggregate output is simply the

sum of the outputs produced by all �rms.

Since F (�) has constant returns to scale in its �rst two arguments we can de�ne the intensive form production

function by f(k; s) � F (k; 1; s) where f (�) is output per e¤ective unit of labor and k = AtK=BtL is the ratio of

e¤ective capital to e¤ective labor. Using Assumption 1 the intensive form production function can be written as

f(k; s) = (1� s)�bh
�
k(1� s)a+b

�
.

The competitive �rms take the rental rate per unit of capital, Rt, and the wage schedule per unit of time,Wt (s),

as given. A �rm that hires workers with education st chooses Lt and kt to maximize BtLt [f (kt; st)� rtkt � wt (st)],

where rt � Rt=At is the rental rate per e¤ective unit of capital and wt (st) � Wt (st) =Bt is the wage per e¤ective

unit of labor. Pro�t maximization implies, as usual, that

13



fk (kt; st) = rt (15)

and26

f (kt; st)� rtkt = wt (st) . (16)

We de�ne the functions � (s; r) and ! (s; r) such that fk [� (s; r) ; s] � r and ! (s; r) � f [� (s; r) ; s]�r� (s; r). Then,

in equilibrium, kt = � (st; rt) and wt (st) = ! (st; rt).

An individual alive at time t who seeks to maximize dynastic utility should choose s to maximize her own

wage income, Bt (1� s)! (s; rt), taking the rental rate per unit of e¤ective capital as given. The rental rate will

determine, via (15), how much capital the individual will be allocated by her employer as a re�ection of her schooling

choice. The individual�s education decision is separable from her choice of consumption. The �rst-order condition

for income maximization at time t requires

(1� st)!s (st; rt) = ! (st; rt) .

But using ! (s; rt) � f [� (s; rt) ; s] � rt� (s; rt) and noting (15), we have !s (st; rt) = fs [� (st; rt) ; st]. In other

words, the marginal e¤ect of schooling on the wage re�ects only the direct e¤ect of schooling on per capita output;

the extra output that comes from a greater capital allocation to more highly educated workers, fk�s, just o¤sets

the extra part of revenue that the �rm must pay for that capital, r�s. Consequently, we can rewrite the �rst-order

condition as

(1� st) fs [� (st; rt) ; st] = f [� (st; rt) ; s]� fk [� (st; rt) ; st]� (st; rt) .

Now replace f (k; s) by (1� s)�bh
�
k(1� s)a+b

�
and use this representation to calculate fs (�) and fk (�). After

rearranging terms, this yields

(b� 1)h
h
� (st; rt) (1� st)a+b

i
= (a+ b� 1)h0

h
� (st; rt) (1� st)a+b

i
� (st; rt) (1� st)a+b

26Equation (16) is the zero-pro�t condition, which is implied by the optimal choice of Lt in an equilibrium with positive
output.
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or

Eh
h
� (st; rt) (1� st)a+b

i
=

b� 1
a+ b� 1 .

Since �(st; rt) = kt = AtKt=BtLt and Lt = Nt(1 � st) this expression is identical to the �rst order condition for

optimal schooling choice given in the paper.

Dynasties� intertemporal optimization decisions yield the same consumption and savings choices as in the

planner�s problem. To see this, start from the no arbitrage condition �t = Rt=pt + gp � � where �t denotes the real

interest rate and pt = 1=qt is the equilibrium price of a unit of capital.27 Combining this with rt = Rt=At gives

rt =
1

qtAt
(�t + gq + �) : (17)

Individuals�optimal schooling choices imply �(st; rt)(1 � st)a+b = z� for all t � t0 where z� takes the same

value as in the planner�s problem. Therefore, aggregate output is given by (3) with zt = z�, just as in the planner�s

problem.

Using f (k; s) = (1� s)�bh
�
k(1� s)a+b

�
the �rst order condition for pro�t maximization (15) yields

rt = (1� st)ah0(z�):

Substituting this expression into the capital market clearing condition kt = �(st; rt) and using (17) implies the real

interest rate satis�es

�t = �gq � � + qtA�t
�
BtNt
Kt

z�
�1��

h0(z�):

Combining this equation with the representative dynasty�s Euler equation _ct=ct = (�t � �)=� and using Eh(z�) = �

and (3) gives

_ct
ct
= ��+ � + gq

�
+
�qt
�

Yt(Kt)

Kt
:

27The no-arbitrage condition states that the real interest rate on a short-term bond equals the dividend rate on a unit of
physical capital plus the rate of capital gain on capital equipment (positive or negative), minus depreciation.
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Noting that this equation is identical to equation (12) we see that consumption per capita satis�es the same

di¤erential equation as in the planner�s problem. Since the capital accumulation equation is also the same in both

cases we conclude that consumption and the aggregate capital stock follow the same equilibrium trajectory as in

the planner�s problem.

Schooling Choice in the �Manager-Worker�Model

Recall that the production function can be written as ~F
�
AtKD(s)

a; BtLD(s)
�b� = BtLD(s)�bh �kD(s)a+b� where

s =M=L, k = AtK=BtL and D(s) = [1 + s=(1�m)]�1. Since WMt = ~FM and WLt = ~FL, di¤erentiating yields

WMt = (a+ b)BtD(st)
�bD

0(st)

D(st)
h
�
ktD(st)

a+b
��
� b

a+ b
+ Eh

�
ktD(st)

a+b
��
;

WLt = BtD(st)
�bh

�
ktD(st)

a+b
��
1� Eh

�
ktD(st)

a+b
�
+ (a+ b)

stD
0(st)

D(st)

�
b

a+ b
� Eh

�
ktD(st)

a+b
���

:

Substituting these expressions into (1 � m)WMt = WLt and using D0(s) = �D(s)2=(1 � m) implies that, in

equilibrium,

Eh

"�
1 +

st
1�m

��(a+b)
kt

#
=

b� 1
a+ b� 1 :

The fact that Eh(z) is declining in z ensures stability of the equilibrium.
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