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Abstract 

The United States has historically played a dominant role in the global trade, and therefore price 

formation, of major food, feed and fiber commodities. As the share of agricultural commodities 

exports produced by the US has recently declined, international supply and demand 

fundamentals likely play a larger role in setting even domestic commodity prices. Using wavelet 

coherence methods, this article examine the relationship between U.S. and international prices 

for corn, soybeans, and cotton. Our results reveal that integration between the markets of major 

exporters and importers of these commodities evolves over time: short-run (around 20 trading 

days) relationships between domestic and international prices are, in many cases, not stable, and 

even the long-run relationships between many price pairs is subject to distinct structural breaks. 

As the two major agricultural commodity exporters of corn and soybeans, the US and Brazil 

exhibit integration in the form of consistently significant long-run price relationships. In contrast, 

we show that Chinese agricultural commodity prices share little or no distinguishable relationship 

with the U.S., even though China is one of the biggest importers of U.S. products.  This is likely 

due to Chinese trade barriers and price support policies that, while insulating domestic prices 

from external shocks, kept its own prices substantially higher than other countries from 2009-

2016. 

Keywords: agricultural commodity price, cointegration, integration, price discovery, wavelet 

coherence analysis     

 

 

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the 

views of the Economic Research Service or the US Department of Agriculture. 



 

2 
 

Commodity prices in a given region are a reflection of local (current and expected) supply and 

demand fundamentals. Markets that are not insulated from international trade contribute to the 

evolution of common fundamentals that govern the path of export prices.  Prices in those 

regions, help shape—but in turn are shaped by—prices of other exports and importers.  

Anecdotally, shifting production and trading patterns for several major commodities have 

affected the degree to which U.S. prices inform global prices, and also the influence international 

production and demand shocks have over prices paid to farmers, domestically.   

Historically, the United States has played a dominant role in global agricultural commodity 

trading, and therefore price formation, for major food, feed and fiber commodities. Because the 

marginal commodity unit traded on the world market is no longer likely to originate in the US, 

international supply and demand fundamentals play a larger role in setting its price. Just as well, 

the role of international shocks in setting U.S. prices may have increased, and potentially shifted 

the seasonality of trading cycles and domestic marketing practices. Although efficient price 

transmission reduces price variability, price determination that is affected by overseas events 

carries welfare effects for both producers and consumers, who are more vulnerable to external 

shocks (Arnade and Hoffman 2015). 

We assess the role that the United States plays in price determination for agricultural 

commodities, by studying the integration between the U.S. and major international markets for 

several commodities, identifying any structural changes in the relationship over time, and 

searching for evidence of changes in the direction of fundamental shock transmission. We 

examine corn, soybeans and cotton, three important agricultural commodities in the US. Each of 
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these commodities has different export dynamics, and, potentially, transmission patterns: corn, 

where the US is the world’s largest exporter; soybeans, where it has a single major competitor 

(Brazil); and cotton, where the U.S. role is clearly shrinking in favor of other competitors such as 

Brazil and India.   

Traditionally, market integration is studied by focusing on cross-border price transmission.  To 

allow for temporary departures from the equilibrium and the study of adjustments to that long-

run relationship, economists routinely apply error-correction models.  But these models assume 

that under integration, prices follow a single, long-run linear relationship.  In addition to using 

these traditional time series methods, we apply the continuous wavelet framework--a model-

free approach to time series analysis--to analyze the price discovery process.  Compared to more 

traditional time series models, wavelets are more flexible to the presence of structural change—

of particular concern when studying the interaction of daily global prices.  We also include the 

traditional models, which are mostly based on Error correction models (ECM), that can be used 

as a robustness check for the wavelet analysis. 

We estimate the bivariate wavelet coherence between the U.S. and international corn, soybean, 

and cotton price series; our analysis reveals that the relationship between U.S. and international 

prices is in many cases not stable.  Daily shocks to U.S. and international prices bear no significant 

relationship: short-run dynamics are not highly correlated, while temporary medium-run 

relationships appear and disappear regularly.  Long-run relationships emerge in U.S. - Brazil and 

U.S. - Japan for corn; U.S. – Brazil, U.S. - India, and U.S.-South Africa for soybeans, and U.S. - India 

for cotton prices.  In addition, U.S. and Brazilian soybean cash prices do share a positive 
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relationship at higher frequencies from mid-2011 through the end of 2013 and then from mid-

2015 through the mid-2016.  One explanation for this is that the 2012/13 U.S. drought, short 

crop, and tight supplies may have made international soybean prices more responsive to 

common fundamentals.  Afterwards, the bumper 2013/14 crops in both countries may have had 

the reverse effect, allowing prices to drift further apart (in the medium-term).  Vacha et al. (2013) 

share a similar result in the biofuel complex: market uncertainty appears to have driven a greater 

co-movement in prices during the financial crisis; after the crisis lessens, commodity prices drift 

apart more easily at higher frequencies.   None of the commodities we studied exhibit a 

significant, consistent price relationship between the U.S. and China.  This is unsurprising, given 

the efforts Chinese policymakers have taken to insulate their markets from international price 

shocks (Gale, Arnade, and Cooke, 2016). 

Changing international trading patterns 

The United States plays an important role in the global trade of major food, feed and fiber 

commodities, exporting a large proportion of its agricultural production. As shown in figure 1, in 

the 1980s U.S. exports accounted for over 75 percent of corn and soybeans traded in the world, 

half of the wheat, and a quarter of the rice that crossed borders.  Since then, on average, the 

United States has lost more than 2 percent of the export market share annually, for each of these 

commodities; currently, it accounts for only about 40 percent of corn and soybean exports, 15 

percent of wheat exports, and less than 10 percent of traded rice. In between 1980 and 2010, 

U.S. cotton experienced a relative expansion in international trade, and reached around 45 
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percent market share. Since then, however, it has lost around 3 percent market share each year, 

on average, and currently accounts for around 30 percent of the world cotton export market.  

During the past few decades, the global trade for agricultural commodities has experienced 

several important structural and technological developments. For example, many countries are 

either entering the export markets for the first time, or playing a larger role. As shown in figure 

2, today Brazil accounts for more than 20 and 40 percent market share for corn and soybeans, 

respectively, growing from less than five percent for each commodity prior to the 1980s. Former 

Soviet Union (FSU) nations, mainly Russia and Ukraine, now make up more than 25 percent of 

the global wheat trade; these countries were barely involved in the international grain market as 

exporters before mid-1980s. Over the same timeframe, Asian countries--mainly India and 

Thailand--grew from 5 percent to 20 percent of the world rice trade. In recent years, exports from 

India have represented more than 15 percent of global cotton market share. As a result of trade 

liberalization and the expansion of agriculture into new producing regions, Brazil has also 

emerged as one of the world’s leading cotton producers and an important competitor of the 

United States (Kiawu, Valdes and MacDonald 2011). 

In terms of technological changes, rising shares of the U.S. corn crop devoted to ethanol 

production have weakened its participation in the export market. Currently, U.S. ethanol uses 

around one-third of domestic corn production, as shown in figure 3, compared to less than two 

percent in early-1980s. At the same time, the share of U.S. corn exported fell from around 22 

percent to about 10 percent. Expansion of U.S. exports for Distiller's Dried Grains with Solubles 

(DDGS), a by-product of grain ethanol, has partially compensated for a small amount of lost corn 
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and soybean exports market share, and domestic feed use.1 Despite these changes, U.S. exports 

are still expected to remain an important factor in grain price discovery, and exports from a 

number of countries are supposed to affect U.S. prices (Etienne, Irwin, and Garcia 2014). Hence, 

investigating price of discovery process based commodity prices in major exporting countries is 

both theoretically and empirically sound practices.  

Background 

Liquid commodity futures markets, where they exist, are commonly accepted as strong 

facilitators of the price discovery process (Figuerola-Ferretti and Gonzalo 2010; Carter and 

Mohapatra 2008). For storable commodities, futures and spot markets are intimately connected 

via arbitrage (Etienne, Irwin, and Garcia 2014).  But futures markets may have a comparative 

advantage at incorporating new fundamental information (Yan and Zivot 2010).2  This follows 

from the fact that well-functioning derivatives markets have higher liquidity, more transparency 

and lower transaction costs than most spot markets, so can react more quickly to new 

information (Working 1962; Black 1976; Adämmer, Bohl, and Gross 2015).   Several researchers 

have studied the price discovery process for internationally traded agricultural commodities.  

Boyd and Brorsen (1986) focused on the U.S. and European Community prices of corn gluten feed 

and Soybean meal markets. Goodwin and Schroeder (1991) studied the U.S., Canadian, Australian 

                                                           
1 Using 130 million metric tons of corn, U.S. produced around 15 billion gallons of ethanol and 37 million metric 
tons of DDGS in 2015. Around 37 percent of DDGS produced was exported to more than 50 countries (USDA/ERS, 
2016b).  
2 Some authors, for instance Kavussanos, Visvikis, and Alexakis (2008) argue that new information is 
simultaneously reflected in both spot and future prices in perfectly competitive markets (Chang and Lee, 2015). In 
addition, the advent of Internet marketing has led to quick information sharing and  to rapid price discovery (Just 
and Just 2006). 
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and Argentine roles in the wheat export market, and the Japanese and Rotterdam wheat import 

markets. Likewise, Bessler, Yang and Wongcharupan (2003) concentrated on the role of five 

major exporters in affecting international wheat price dynamics.   

Among the many features of agricultural commodities that theoretically affect the price 

discovery process are storability of the commodity, the volume of trade involved in the 

commodity market, and commodity’s price variability. The greater the cost associated with 

storing a commodity could, for instance, lead to a greater informational disparity between cash 

and futures prices (Covery and Bessler 1995). On the other hand, Yang, Bessler, and Leatham 

(2001) and Carter and Mohapatra (2008) found that asset storability may not affect the long-run 

relationship between cash and futures. Recently, Adämmer, Bohl, and Gross (2015) investigate 

the price discovery process of two thinly traded agricultural futures contracts traded at the 

European Exchange in Frankfurt. In their findings they confirm that the very low trading volume 

does not necessary restrict price discovery efficiency. In addition, for the U.S. soybeans and 

soybean meal, Arnade and Hoffman (2015) analyzed whether an exogenous measure of price 

variability influences the price discovery process and they found during 2005-13, when price 

variability was high, that the cash market played a more significant role in price discovery than in 

the 1999–2005 period. 

Baillie et al. (2002) indicated that the majority of price discovery studies are undertaken using 

some form of common factor or cointegration models, which were separately developed by 

Hasbrouck (1995) and Gonzalo and Granger (1995). Yan and Zivot (2010) analytically investigated 

the price discovery process using a vector error correction model (VECM) by isolating information 
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share (IS) and component share (CS) measures from the residuals of VECM. A relatively similar 

approach was applied by Figuerola-Ferretti and Gonzalo (2010) for investigating the price 

discovery process for five metals’ spot and futures prices. Lien and Shrestha (2014) also applied 

a modified IS approach to analyze the price discovery process in interrelated securities markets. 

Adding an exogenous measure of lagged price variability, Arnade and Hoffman (2015) used a- 

VECM for the cash and futures prices of soybeans and soybean meal.  

For international wheat market price dynamics, Goodwin and Schroeder (1991) used a vector 

autoregression model and found that the U.S. price had a significant effect on international 

wheat prices. Bessler, Yang, and Wongcharupan (2003) used VECM along with directed acyclic 

graphs to investigate price dynamics in five international wheat markets and found that Canada 

and the U.S. are leaders in the pricing of wheat in international markets. This was contrary to 

other previous research that failed to find evidence of significant price leadership role for the 

U.S. and Canada using a cointegration and error correction approach (Mohanty, Meyers, and 

Smith 1999).  Liu and An (2011) study the contribution of U.S. and Chinese futures markets to the 

discovery of soybean prices using an information share framework, and data from 2004-2009. 

Some of the potential limitations of the cointegration  models include: the analyses only work for 

testing the unbiasedness of the price discovery process (Yang , Bessler, and Leatham 2001), or 

that their findings only account for the immediate (one-period) responses of market prices to a 

linear long-run relationship, which may miss important price discovery dynamics (Yan and Zivot 

2010). Moreover, if a structural break occurs, models with fixed parameters yield flawed results 

(Vacha et al. 2013). 
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Strict assumptions used in constructing IS and CS measures could, for instance, provide different 

views of the price discovery process (Baillie et al. 2002; Adämmer, Bohl, and Gross 2015).  

Wavelet coherence analysis avoids the limitations of cointegration models, and is a good 

candidate to study periodic phenomena in time series (Rösch and Schmidbauer 2014), because 

it offers a model-free method of time series analysis that is highly flexible to structural changes 

(Vacha and Barunik 2012). In addition, wavelet analysis offers the ability to assign directionality 

to the relationship between two series, identifying statistically significant lead and lag 

relationships that characterize the price discovery process. Moreover, wavelet analysis is more 

flexible both in modeling and data requirements. For instance, it does not necessarily require 

global (strict) stationarity of the time series (Joseph, Sisodia, and Tiwari 2015). 

By decomposing a time series into the time - frequency domain, wavelet coherence reveals the 

evolving nature of the relationship between two price series, over a continuous range of 

frequencies (running from short, to medium, to long run).  This approach offers important 

advantages over traditional models for studying the price discovery process (Chang and Lee 

2015), and the integration of markets more generally. Indeed, avoiding the linear restrictions 

imposed by cointegration-based models affords wavelets more flexibility in modeling 

heterogeneity in financial and economic time series data, and studying price co-movement and 

the price discovery processes (Joseph, Sisodia, and Tiwari 2015). 



 

10 
 

Wavelet tools are relatively new to economics, and the study of financial data.3  Some of the first 

few related applications of such methods include studying macroeconomic variables (Aguiar-

Conraria, Azevedo and Soares 2008), measuring the business cycle (Yogo 2008), understanding 

co-movements in stock market returns (Rua and Nunes, 2009) and co-movements in energy 

prices (Vacha and Barunik 2012; Vacha et al. 2013). Recently, Chang and Lee (2015) applied 

wavelet coherence analysis to study price discovery in oil prices, and found that wavelet analysis 

is preferable in revealing the comovement and causal relationships between oil spot and futures 

prices than the VEC framework. Joseph, Sisodia, and Tiwari (2015) used wavelet analysis to study 

price discovery in the Indian markets for bullion, energy, metals and agriculture, and found that 

the futures market serves a powerful price discovery function in all of the selected commodities. 

Kristoufek, Janda, and Zilberman (2016) use wavelet coherence to study the relationships 

between ethanol and feedstock markets in Brazil and the U.S. Unlike earlier findings of no long-

run relationship using cointegration models among prices of ethanol, corn, and gasoline, they 

find that the price of feedstocks (corn in the U.S. and sugarcane in Brazil) lead the prices of 

ethanol.  

Data 

We obtain daily domestic and international futures prices for major grains and cotton from the 

premier derivatives market in each country under study for that particular commodity. In some 

cases, trading hours for these markets only partially overlap.  We use end-of-day prices to 

                                                           
3 Wavelet analysis has been used in geography, engineering, astronomy, medicine and other natural science 
disciplines, but it is recently used for economic and financial investigation (Ramsey 2002; Rösch and Schmidbauer 
2014). 
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calculate returns.4  The data cover the period 2009-present for corn, and 2011-present for 

soybeans and cotton.  Futures markets included in the analysis are the U.S. Chicago Mercantile 

Exchange (CME) for corn and soybeans and Intercontinental Exchange (ICE) for cotton; the Dalian 

Commodity Exchange for Chinese corn and soybeans, and the Zhengzhou Commodity Exchange 

for Chinese cotton; the Tokyo Commodity Exchange for Japanese corn and soybeans; the 

National Commodity & Derivatives Exchange for India’s soybeans, and the Multi Commodity 

Exchange for India’s cotton; and the South African Commodity Exchange. For commodity prices, 

we instead chose to use the daily cash price index collected by the Center for Advanced Studies 

on Applied Economics rather than futures prices from the BM&F due to low trading volume in 

that market,. To control for the influence of macroeconomic factors that affect exchange rates, 

we convert all prices into U.S. dollars using the daily exchange rate archived by the St. Louis 

Federal Reserve before analyzing market integration characteristics.   The U.S. and international 

prices in dollar per metric tons are shown in figure 4.   

Because futures prices across markets represent different delivery dates, we use the nearest-to-

deliver contract in every case, and generate daily returns by calculating the log changes for all 

series.5  Contracts are rolled over at termination.  One feature common to the commodity prices 

presented in figure 4 is a decline in commodity price by about 20-40 percent since the end of the 

2011/12 food price crisis to 2015. (Trostle et al. 2011; Plumer 2012). A notable exception is the 

Chinese corn price, however, which remained relatively flat for much of the observed period.  

                                                           
4 A negligible number of missing values (e.g., for holidays in one country but not another) are interpolated using 
the last traded value. 
5 Even though delivery dates do not often match up identically between domestic and international futures 
contracts, because storage ties together intertemporal prices, returns data should capture shock transmission 
accurately. 
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Since the beginning of 2016, however, commodity prices, especially Brazilian corn and cotton, 

have trended upwards. 

Methods 

Traditional Time Series Methods  

To verify stationarity conditions, we apply Augmented Dickey-Fuller (ADF) tests (Dickey and Fuller 

1979) to price series and their first difference to test against the null hypothesis of the presence 

of a unit root. As shown in Table 1, ADF tests fail to reject the null hypothesis for all the series in 

the levels. Nevertheless, ADF tests applied to the first differences reject all the null hypotheses.  

Our ADF test results indicate that all series are consistently integrated of order one, or I(1). Next, 

we test whether a linear combination of each set of paired prices is stationary using Johansen’s 

Cointegration test (Johansen 1995) and present the results in Table 2.  If the series are 

cointegrated, their markets are often interpreted as being integrated since their prices are shown 

to exhibit a long-run relationship. Using these tests, we find that the U.S. corn price is not 

cointegrated with price in Brazil, a major corn producer and exporter, and the price in China, a 

major corn importer. As one of the major corn and soybean suppliers to Japanese market, U.S. 

corn and soybean prices are cointegrated with those of Japan. Although the U.S. supplied more 

than 50 percent of Chinese soybean imports, prices in the two markets are not cointegrated. 

Johansen tests reveal that U.S. soybean prices are not cointegrated with those realized in Brazil, 

the other major exporter of global soybean products. On the other hand, U.S. cotton prices are 

cointegrated with those observed in the other major cotton import and export markets: China 

and India, respectively, as well as Brazil 
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These tests indicate the existence of a single cointegrating vector, 𝑟 = 1, between U.S. prices, 

𝑃𝑢𝑠𝑎, and of the price series observed for several international countries, 𝑃𝑗 , meaning that a 

linear combination of the series has a stable mean and variance. Engle and Granger (1987) proved 

that under that condition, the relationship between the two price series can be specified by an 

Error Correction Model (ECM)  

(1)   ∆𝑃𝑡
𝑢𝑠𝑎 = 𝛼𝑢𝑠𝑎 (𝑃𝑡−1

𝑢𝑠𝑎  –  𝛽𝑃𝑡−1
𝑗

+ 𝑐 ) + ∑ 𝜋11
𝑢𝑠𝑎𝑘

𝑖=1  ∆𝑃𝑡−𝑖
𝑢𝑠𝑎 +  ∑ 𝜋12

𝑗𝑘
𝑖=1 ∆𝑃𝑡−𝑖

𝑗
+ 𝛾𝑢𝑠𝑎 + 𝜀𝑡

𝑢𝑠𝑎               

∆𝑃𝑡
𝑗

=  𝛼𝑗  (𝑃𝑡−1
𝑢𝑠𝑎  –  𝛽𝑃𝑡−1

𝑗
+ 𝑐 ) +  ∑ 𝜋21

𝑢𝑠𝑎𝑘
𝑖=1  ∆𝑃𝑡−𝑖

𝑢𝑠𝑎  +  ∑ 𝜋22
𝑗𝑘

𝑖=1  ∆𝑃𝑡−𝑖
𝑗

+ 𝛾𝑗 +  𝜀𝑡
𝑗
 

where  ∆𝑃𝑡
𝑢𝑠𝑎 and ∆𝑃𝑡

𝑗
 represent the daily change in U.S. and  country 𝑗’s commodity prices 

(returns), respectively. The long-run relationship between the U.S. and country 𝑗’s commodity 

prices are captured by the long-run error term, 𝑢𝑡−1, which is equal to the expression 

(𝑃𝑡−1
𝑢𝑠𝑎 –  𝛽𝑃𝑡−1

𝑗
+ 𝑐 ). The coefficients on that residual in each equation, 𝛼𝑢𝑠𝑎 and 𝛼𝑗, represent 

adjustment  rates measuring the speed of the adjustment toward the long-run equilibrium in 

response to a short-run deviation of the system (Adämmer, Bohl, and Gross 2015), and can be 

used to estimate the price discovery weights, which are also known as factor weights.  If, for 

instance, 𝛼𝑗 is statistically significant, but 𝛼𝑢𝑠𝑎 is not, the results are supportive of a leading role 

of the U.S. market in the price discovery process, since only the prices in country 𝑗 adjust to 

shocks. In other words, if  𝛼𝑢𝑠𝑎 = 0  or close to zero, the price discovery occurs entirely or 

substantially in the U.S. market. The U.S. price discovery weight, 𝜔𝑢𝑠𝑎, can be calculated using  

𝜔𝑢𝑠𝑎 =  
𝛼𝑗

𝛼𝑗− 𝛼𝑢𝑠𝑎
 ; the weight for country 𝑗’s  price is calculated using a similar procedure (Yan 

and Zivot 2010).  The country with the larger price discovery weight is the leader in the system; 

its prices adjust less to short-run deviations. The cointegrating parameter is represented by 
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coefficient, 𝛽, which—if significant—indicates the existence of a long-run equilibrium 

relationship between prices in the U.S. and country 𝑗. 

Wavelet Framework 

A wavelet 𝜓(𝑡) is a continuous, real- or complex-valued square integrable function that is 

composed of scale 𝚜, which controls the frequency or length of the wavelet and time parameter 

𝜏, a proxy for the wavelet location (Vacha and Barunik 2012; Vacha et al. 2013; Rösch and 

Schmidbauer 2014). It is specified as 

(2) 𝜓𝜏,𝚜(𝑡) =  
𝜓(

𝑡−𝜏

𝚜
)

√𝚜
 .  

Once the assumptions about the wavelet function are met6, a time series  𝑥(𝑡) that undergoes a 

Morlet wavelet transformation can be represented using a function of two variables as 

(3)  𝑊𝑥(𝜏, 𝚜) =  ∫ 𝑥(𝑡)
1

√𝚜
𝜓∗(

𝑡−𝜏

𝚜
)𝑑𝑡

∞

−∞
,  

with * marking the complex conjugate operator so that there is no information loss by the 

transformation. The application of Morlet wavelets dates back to early-1980s and the 

decomposition of a signal into its frequency and phase contents as time evolves. Unlike the 

Fourier transformation, the Morlet wavelet provides a good balance between time and 

frequency localization (Kristoufek, Janda, and Zilberman 2016).7  

                                                           
6 Rua and Nunes (2009) states these conditions. For instance, wavelet has zero mean, integrates to unity, and has 
admissibility condition.  
7 This section heavily builds on the works of Vacha and Barunik (2012), Vacha et al. (2013) and Rösch and 
Schmidbauer (2014). 
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The scale parameter 𝚜 controls how the wavelet is stretched or compressed. For instance, if the 

scale is lower, the wavelet is more compressed and therefore detects higher frequencies, and 

vice versa.  We obtain the wavelet coefficient by first performing a continuous transformation on 

the time series data of finite length 𝑥(𝑡), 𝑡 = 1, … , 𝑁 using the Morlet method. This method helps 

to preserve the basic information of 𝑥(𝑡). Then, we obtain a matrix of wavelet coefficients with 

𝜏 = 1, … , 𝑁 rows, and 𝚜 = 1, … , 𝑘 columns, where 𝑘 is a maximum number of scales used for the 

wavelet decomposition. Each wavelet coefficient 𝑊𝑥(𝜏, 𝚜) represents local energy (variance) at 

a specific scale 𝚜 at position 𝜏.  

To study the relationship between domestic and international prices, we use a bivariate 

framework called wavelet coherence that requires cross-wavelet transformation. Coherence 

provides appropriate tools for comparing the frequency contents of two time series 𝑥(𝑡) and 

𝑦(𝑡). Their cross-wavelet transformation is defined as  

(4)  𝑊𝑥𝑦(𝜏, 𝚜) =  𝑊𝑥(𝜏, 𝚜)𝑊𝑦
∗(𝜏, 𝚜),  

where 𝑊𝑥(𝜏, 𝚜) and 𝑊𝑦(𝜏, 𝚜) are continuous wavelet transformations of 𝑥(𝑡) and 𝑦(𝑡), 

respectively. 

It is widely recognized that wavelet coherence can detect regions in the time-frequency space, 

where the examined time series co-move. On the other hand, the series do not necessarily have 

a common power. To overcome this challenge, we follow the approach of Torrence and Webster 

(1999) and define the squared wavelet coherence coefficient as  

(5)  𝑅2(𝜏, 𝚜) =  
|𝑆(𝚜−1𝑊𝑥𝑦(𝜏,𝚜)) |2

𝑆(𝚜−1|𝑊𝑥(𝜏,𝚜)|2) 𝑆(𝚜−1|𝑊𝑦(𝜏,𝚜)|2)
 , 
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where  𝑆 is a smoothing operator. The coefficient of the squared wavelet coherence is in the 

range of  0 ≤ 𝑅2 ≤ 1. Similar to the squared correlation coefficient in linear regression, the 

squared wavelet coherence coefficient measures the local linear correlation between two 

stationary time series at each scale, and can be efficiently represented in time-frequency space 

by a color map. Coefficient values close to zero indicate weak correlations and are represented 

by cooler (e.g., blue) colors, while strong correlations are represented by warmer (e.g., red) colors 

(Vacha and Barunik 2012).  The frequency, that is the “run” of a relationship, is depicted in the 

map along the vertical axis—lower locations equate to a lower frequency, or longer run; location 

along the horizontal axis indicates the time for which the relationship is represented.  We use 

Monte Carlo simulation methods to test the coefficients against the null hypothesis of 

autoregressive, AR(1), noise at the 5% level;  statistically significant relationships are shown as 

areas bordered by a black thick contour.  Because wavelet analysis is sensitive to boundary 

conditions, estimates at the beginning and end of the period of interest are less reliable 

(particularly at lower frequencies).  Therefore, we overlay the chart with a cone of influence to 

distinguish between reliable (bright) and less reliable (pale) regions (Kristoufek, Janda, and 

Zilberman 2016). 

The square coherence in Eq.(5) loses complex information about direction. To recover this 

information, we apply a wavelet coherence phase difference using the following specification 

(6)  𝜙𝑥𝑦(𝜏, 𝑠) =  𝑡𝑎𝑛−1(
ℑ{𝑆(𝚜−1𝑊𝑥𝑦(𝜏,𝚜))}

ℜ{𝑆(𝚜−1𝑊𝑥𝑦(𝜏,𝚜))}
)  𝜙𝑥𝑦  ⋲ [−𝜋, 𝜋], 
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where ℑ an imaginary and ℜ a real part operator. Phase is represented by arrows on the wavelet 

coherence plots. A zero phase difference means that the examined time series move together. 

The arrows points to the east (west) when times series are positively (negatively) correlated with 

no series as a leader. In addition, arrows pointing southward means that the first time series 

leads the second one by 
𝜋

2
, whereas northward pointing one shows the opposite. Combinations 

of these effects are depicted by arrow rotation: for instance, an arrow pointing up and to the 

right means the two series are positively correlated with the first time series following the second 

one.8 

Results and Discussion 

Error Correction Models 

In this subsection, we share the results of traditional time series methods that search for 

evidence of co-movement with respect to a linear long-run relationship.  According to corn’s ECM 

results in table 3, there is a statistically significant cointegration between U.S. and Japanese corn. 

Adjustment rates in the table indicate that Japanese prices adjust more quickly to disequilibrium 

than U.S. prices. The adjustment rates can also provide information about the price discovery 

weights, as empirically presented in Arnade and Hoffman (2015). It is estimated that the U.S. corn 

price is responsible for about 70 percent of the price discovery weight, hence it is considered as 

                                                           
8 A similar interpretation can be presented using the location where the value of 𝜙𝑥𝑦 falls within the domain. For 

instance, the time series are positively correlated (are said to be in phase) if 𝜙𝑥𝑦 ⋲ (0,
 1

𝜋
), with the first series 

leads the second (see Chang and Lee 2015).  
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a leader in corn price discovery process, compared with Japanese corn price that has only a 

discovery weight of around 30 percent.  

The cointegration parameters for U.S.-Japanese for soybean prices are also statistically 

significant, supporting the cointegration test shown in Table 2. The adjustment rates indicate that 

the U.S. soybean price does not respond to any change in the corresponding markets as shown 

in Table 3. On the other hand, average soybean prices in Japan quickly adjust toward U.S. levels. 

Furthermore, the U.S. soybean price carries a price discovery weight of more than 91 percent, 

and is therefore judged to be a leader in the price discovery process.  

The cointegration parameters for U.S.-Brazil, U.S.-Chinese and U.S.-Indian for cotton price pairs 

are likewise statistically significant, and match the results of cointegration tests in table 2. The 

adjustment rates indicate that when the U.S. cotton price is too high, it falls back to all the three 

cotton prices, but only the average cotton price in Brazil and India adjusts toward the U.S. price 

level. Although the Chinese cotton market shares a long-term relationship with the U.S. cotton 

market, its prices do not adjust to the change in the U.S. cotton prices. This is confirmed by 

evaluating the price discovery weight, where the U.S. cotton price is responsible for only 23 

percent of the cotton price discovery weight relative to the Chinese market, and, therefore, lags 

Chinese cotton market shocks. It is noticeable that even though China is the largest export market 

for U.S. cotton, on average importing 913 thousand metric tons of cotton and cotton products in 

2011-15 out of 2611 thousand metric tons of U.S. exports, Chinese cotton futures prices do not 

follow U.S. futures price dynamics (USDA/FAS 2016). This indicates that the Chinese domestic 

cotton policies insulate Chinese cotton prices from economic fundamentals transmitted by global 
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prices. On the other hand, U.S. cotton prices represent around 24 and 53 percent of the price 

discovery weight compared to Brazilian and Indian cotton prices, respectively, indicating that U.S. 

cotton prices are marginal leaders for that relationship. Most recently, both Brazil and India have 

become important competitors of the United States in Asian and European cotton markets 

(Kiawu, Valdes and MacDonald 2011). 

Wavelet Analysis 

Figures 5-7 show bivariate wavelet coherences between daily U.S. and international corn, 

soybeans, and cotton returns, respectively.  The most striking finding from these results is that 

the relationships between U.S. and international prices are, in many cases, not stable.  Quite 

distinct from the findings of our ECMs—which force domestic and international prices into a 

linear relationship, more flexible wavelet coherence shows that U.S. and international 

agricultural markets often appear to alternate between periods of integration and non-

integration.  In the short run (under one month= 20 trading days), U.S. and international prices 

bear no consistent, significant relationship for any commodity.  Temporary correlations, which 

may last for about season appear and disappear rapidly.  At longer horizons, though, the data do 

reveal some clearer correlations.   

Corn returns exhibit the greatest level of consistency for any commodity; its pairs in figure 5 for 

U.S.-Brazil (2-6 month level) and U.S.-Japan (1.5-12 month level) are significantly correlated at 

lower frequencies, indicating a longer-run relationship.  Moreover, phase arrows indicate that 

U.S. returns often lead those for Brazil, a major export competitor, and sometimes Japan, a major 

import market, at low frequencies (long run). On the other hand, at certain times—and at higher 
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frequencies—international corn market shocks lead those measured in Chicago, like during the 

US drought of 2012.  As a result of structural changes that have occurred in the last decade, Brazil 

has started boosting corn exports from September to January, months traditionally dominated 

by U.S. and other Northern Hemisphere exporters (Canada and the EU). Recently, Brazil currency 

has weakened relative to the U.S. dollar, and transportation costs have declined substantially due 

to lower global energy prices, boosting Brazil’s ability to compete with U.S. corn prices (Allen and 

Valdes, 2016).  

We find that corn prices between the U.S. and China bear no consistent long-run relationship 

from 2010-present, however.  This is unsurprising given the divergence between their price series 

displayed in figure 4.  Over the limited period they do display a coherence 2011-2013 (3-6 month 

frequency), phase arrows point upwards, indicating that Chinese corn shocks generated a 

response in U.S. prices for a time. Chinese corn trade policy fluctuates with little relationship to 

the country’s production, making China’s corn trade difficult to predict (USDA/ERS 2016c). 

In the case of soybeans, as shown in figure 6, wavelet coherences demonstrate that price 

relationships that had existed from the beginning of the sample in 2011 changed abruptly by the 

beginning of 2013.  This is clearest for U.S.-Brazil, U.S.-India, and U.S.-South Africa, which 

displayed significant correlations at a range of frequencies up to the close of 2012.  A similar 

finding is indicated by the U.S.-China pair.  The U.S.-Brazil and U.S.-India for soybean price pairs 

are found to follow a low frequency, long-run relationship over the entire period, but higher 

frequency correlations ceased following the U.S.-drought year of 2012.  Soybean prices in the 

U.S. and South Africa also exhibit a significant long-run relationship over the period of 
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observation, with some evidence of a temporary disconnect towards the end of 2014. Since 2015, 

South Africa has become a net exporter of soybeans in the global market and planted a record 

area to the crop (Mokhema 2015).  U.S.-China and U.S.-Japan price pairs do not demonstrate 

consistent relationships across the period of interest, at any frequency: their prices are not well-

integrated.  For U.S.-China, this contrasts with the findings of Liu and An (2011), who found a 

significant relationship between soybean futures prices in these two countries; but, their data 

series ended in 2009, before our data series begins.  The clearest demonstration of directionality 

is offered by the U.S.-South Africa pair, indicating that U.S. soybean market shocks lead changes 

in South African prices at low frequencies from 2012-2013.   

Taken together, some of the corn and soybeans charts do demonstrate relatively high frequency 

price correlations between the U.S. and international markets (Brazil and Japan for corn; Brazil, 

India, and South Africa for soybeans) during 2012.  One possible explanation for this is that the 

2012/13 U.S. drought, a short crop, and tight supplies made international prices more responsive 

to common fundamentals.   

As with corn and soybeans, our cotton results in figure 7 show no consistent relationship between 

U.S. and Chinese prices.  Price shocks between these countries do not translate at any level of 

frequency; their markets are not currently well-integrated. The same is true for U.S. and Brazilian 

cotton prices, which bear no consistent relationship.  On the other hand, U.S. and Indian cotton 

prices are found to exhibit a long-run relationship over the sample period, with temporary (2013 

and 2014) medium-run correlations.  India is becoming an export competitor for the U.S. markets 

after extensively adopting the Bt cotton variety over 90 percent of the area it plants to cotton. 
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Since 2013, both markets exhibited medium-run relationship (for 2-4 months) with alternating 

lead roles in the transmission of price shocks, matching our ECM results as shown in Table 3.  

For robustness, we display Johansen trace test results in table 4 for the same time series 

examined in table 2, alongside results for the time periods identified in the wavelets analysis as 

bearing no or weak relationships.  Results confirm that during those periods with no wavelet 

coherence, the futures price series in our study are also not cointegrated. Even though original 

Johansen statistics identified U.S.-Japan for soybeans, and U.S.-China for cotton, as price pairs 

that could be described by a VEC, the same tests fail to reject the null of no cointegration once 

the selected periods are considered.  These findings demonstrate the flexibility of wavelets to 

structural breaks, and their ability to identify them. 

In addition, Table 5 reaffirms the wavelet results in such as a way that correlations between the 

U.S. and trading partner’s commodity prices identified using wavelet methods can also be verified 

using cointegration tests, with the exception of U.S.-Brazil for soybean prices which experienced  

week cointegration. For instance, even though the U.S. and Brazilian corn prices do not have a 

long-run correlation from 2010-2015 according to table 2, a partial analysis for the period 2010-

13 (which was found to be significant according to our wavelet analysis) reveals a strong 

cointegration.  These two countries are the leading global producer and exporters of corn, and 

the VEC estimated in Table 5 finds that Brazil is responsible for more than 60 percent of the price 

discovery weights from 2011-2013, covering the 2012 drought and subsequent stocks drawdown 

in the U.S., and the 2012/13 global food crisis.  
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Conclusions  

We assess the role that the United States plays in price determination for important agricultural 

commodities using both traditional and model-free time series methods by studying the 

relationship between the U.S. and major international markets for corn, soybeans and cotton, 

three commodities with different trade dynamics.   

We identify structural changes to the integration of these markets, and the importance and 

direction of fundamental shock transmission.  Daily shocks to the U.S. and international prices 

bear no significant relationship: short-run dynamics are not highly correlated, while temporary 

medium- run relationships appear and disappear regularly. Several long-run relationships are 

present in the data, but are not consistently established for some price pairs that one might 

expect based on the literature (e.g., U.S. and Chinese soybeans, as in Liu and An, 2011). 

Both the wavelet and cointegration models indicate that the U.S. has a leading role in the 

Japanese corn and soybean markets, where the U.S. is the major supplier of Japanese feed 

imports. In addition, both analyses reveal that Chinese agricultural commodity markets are not 

well-integrated with their U.S. counterparts.  Even though China is the largest import market 

for U.S. cotton, for instance, Chinese cotton futures prices do not closely follow U.S. price 

dynamics. This indicates that Chinese domestic commodity policies successfully insulate 

Chinese prices from international shocks.  Figure 4 demonstrates that this insulation is 

accomplished at a cost: Chinese corn, soybean, and cotton prices were routinely higher—

sometimes quite a bit higher—than prices elsewhere from 2009-2016.  
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There may be a number of additional factors for having or not having a long-run relationship in 

commodity prices among major exporters and importers. Among them, the effect of exchange 

rates, declining transportation costs, generous government subsidies and structural changes in 

agricultural production in major producing countries reduce the U.S. export market share, and 

make the U.S. commodities less influential in setting international commodity prices (Allen and 

Valdes 2016; Cooke et al. 2016). Future research will investigate the effect of these additional 

factors on the price discovery process. 
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Table 1. Augment Dickey and Fuller (ADF) unit root tests for prices and their first difference 

Commodity Market Level First difference 
 

Corn    
 USA -2.06 (18) -10.24 (17) *** 
 Brazil -2.21 (8)   -9.80 (18) *** 
 China -1.75 (0) -14.80 (9)   *** 
 Japan -2.42 (4) -24.67 (3)   *** 
Soybeans    
 USA -2.31 (12) -10.57 (11) *** 
 Brazil -2.50 (20)   -7.88 (19) *** 
 China -1.79 (3)  -23.79 (2)   *** 
 Japan -0.71 (1) -36.51 (0)   *** 
 India -2.14 (0) -37.67 (0)   *** 
 South Africa -2.45 (8) -12.85 (7)   *** 
Cotton    
 USA -2.96 (1) -12.76 (9)  *** 
 Brazil -1.88 (21)  -7.53 (20) *** 
 China -1.77 (1)  -33.74 (0)  *** 
 India -2.40 (0) -26.25 (1)  *** 

Note: The null hypothesis that the price series, 𝑝, (in log form) has a unit root. ADF specification, ∆𝑝𝑡 =  𝛼𝑜 + 𝛼1𝑡 +

 𝛽𝑖 ∑ ∆𝑝𝑡−𝑖
𝑙
𝑖=1 , has trend and drift (intercept) where, 𝑙 (number in parentheses) is the lag order automatically 

selected on the basis of AIC, with Maximum lag = 24. *** denote rejection of the null hypothesis at the 0.01 level.  

Table 2. Johansen’s Cointegration test for U.S.-trading partners commodity prices 

commodity U.S.-trading partner 
combination 

Trace statistics 
(No. of Coinetgrating null 
hypothesis rejected) 

Corn   
 USA-Brazil    8.54 (Not cointegrated) 
 USA-China 13.38 (Not cointegrated) 
 USA-Japan  53.08 *** (None) 
Soybeans   
 USA-Brazil  12.98 (Not cointegrated) 
 USA-China 10.98 (Not cointegrated) 
 USA-Japan  30.73** (None) 
 USA-India  12.44 (Not cointegrated) 
 USA-South Africa  10.34 (Not cointegrated) 
Cotton   
 USA-Brazil 23.90 ** (None) 
 USA-China  17.70 *    (None) 
 USA-India 23.61***(None)# 

Note: *, **, and *** denote rejection of the null hypothesis at the 0.1, 0.05, and 0.01 level, respectively, based on 
Mackinnon, Haug and Michelis (1999) test. The cointegration test includes a linear deterministic trend (the level data 
have linear trends but the cointegrating equations have only intercepts) specified as  ∆𝑝𝑡 = 𝛼(𝛽𝑝𝑡−1 +  𝑐) +

 ∑ 𝜋𝑖
𝑙
𝑖=1  ∆𝑝𝑡−𝑖   +   𝛾 +  𝜖𝑡. # denotes that the Null is rejected at the 0.05 or 0.1 level and indicates the presence of 

2 cointegrating equations. 
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Table 3. ECM results 

Cointegrating parameter, β, for USA market with Adjustment rate, α, for USA market with 
  

Corn 
  Japan    Japan  

𝑈𝑆𝐴𝑡−1  
1.000  ∆ 𝑈𝑆𝐴𝑡−1 

 
-0.018* 

/79/ 
 

      (0.007)  
        

𝐽𝑎𝑝𝑎𝑛𝑡−1  -0.905***  ∆ 𝐽𝑎𝑝𝑎𝑛𝑡−1  0.064***  
  (0.031)    (0.010)  
        

Soybeans 
  Japan    Japan  

        

𝑈𝑆𝐴𝑡−1  1.000  ∆ 𝑈𝑆𝐴𝑡−1  -0.004  
      /91/  
      (0.003)  
        

𝐽𝑎𝑝𝑎𝑛𝑡−1  -0.945***  ∆ 𝐽𝑎𝑝𝑎𝑛𝑡−1  0.037***  
  (0.101)    (0.007)  
        

Cotton 
 Brazil China India  Brazil China India 

        

𝑈𝑆𝐴𝑡−1 

1.000 1.000 1.000 ∆ 𝑈𝑆𝐴𝑡−1 -0.024*** 
/24/ 

-0.019*** 
/23/ 

-0.014** 
/53/ 

     (0.006) (0.005) (0.006) 
        

𝐵𝑟𝑎𝑧𝑖𝑙𝑡 -0.790 ***   ∆ 𝐵𝑟𝑎𝑧𝑖𝑙𝑡−1 0.008*   
 (0.09)    (0.004)   
        

𝐶ℎ𝑖𝑛𝑎𝑡−1  -0.356***  ∆ 𝐶ℎ𝑖𝑛𝑎𝑡−1  0.006  
  (0.059)    (0.005)  
        

𝐼𝑛𝑑𝑖𝑎𝑡−1   -1.061*** ∆ 𝐼𝑛𝑑𝑖𝑎𝑡−1   0.016*** 
   (0.113)    (0.006) 
        

Note: Standard errors are given in parentheses.*, **, and *** indicate significance at 10, 5 and 1 percent levels, 
respectively. The number of lags, l=2 in our case, is determined using Akaike Information Criterion (AIC). // are 

percent of price discovery weights or common factor weights for the U.S. commodity,  𝜔𝑢𝑠𝑎 =  
𝛼𝑗

𝛼𝑗− 𝛼𝑢𝑠𝑎 . The 𝑗’s 

country commodity weight can be calculated as   1 − 𝜔𝑢𝑠𝑎. 
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Table 4. Johansen’s Cointegration test for no-relationship periods identified by wavelet 
coherences 

commodity U.S.-trading 
partner 
combination 

Trace statistics 
for the entire period 

Selected period of no 
cointegration identified 
using wavelet 

Trace statistic for 
selected period#  

Corn     
 USA-Brazil  8.54 2013-2014 8.88 (Not cointegrated) 
 USA-China 13.38 2009-2011 7.18 (Not cointegrated) 
 USA-Japan  53.08 ***  N/A N/A 
Soybeans     
 USA-Brazil  12.98 N/A N/A 
 USA-China 10.98 2013-2015 8.08 (Not cointegrated) 
 USA-Japan  30.73 ** 2014-2016 6.93 (Not cointegrated) 
 USA-India  12.44 N/A N/A 
 USA-South Africa  10.38 2013-2014 5.34 (Not cointegrated) 
Cotton     
 USA- Brazil 23.90 **  2013-2015 10.36 (Not cointegrated) 
 USA-China  17.70 *  2013-2015 7.72   (Not cointegrated) 
 USA-India 23.61 ** N/A N/A 

Note: *, **, and *** denote rejection of the null hypothesis at the 0.1, 0.05, and 0.01 level, respectively, based on 
Mackinnon-Haug-Michelis (1995). The cointegration test includes a linear deterministic trend. N/A refers not 
applicable that indicate wavelet identified no period of no relationship between the two prices. # 0.05 critical value 
for non-relationship for rejecting not cointegrated is 15.50. 

Table 5. Johansen’s Cointegration test for relationship periods identified by wavelet coherences 

commodity U.S.-trading 
partner 
combination 

Selected period 
when wavelet 

coherences exists 

Trace statistic for 
the selected period 

Price discovery 
weights in percent 

Corn     
 USA-Brazil  2010-11 17.60 ** 29 
 USA-China 2011-13 16.82 ** 60 
 USA-Japan # 2011-13 48.24 ** 79 
Soybeans     
 USA-Brazil # 2014-16& 15.61 ** 1 
 USA-China 2015-16           13.64 * 65 
 USA-Japan 2011-13   30.65 *** 89 
 USA-India # 2011-13     24.70 *** 13 
 USA-South Africa  2011-13  16.83 ** 70 
Cotton     
 USA-Brazil 2012-13           14.41 * 13 
 USA-China 2011-13           14.09 * 32 
 USA-India#   2012-14    27.97 *** 92 

     

Note: *, **, and *** denote rejection of the null hypothesis at the 0.1, 0.05, and 0.01 level, respectively, based on 
Mackinnon-Haug-Michelis (1995). The cointegration test includes a linear deterministic trend. # These are also 
cointegrated in whole period analysis as shown in Table 4.N/A not applied since they are not cointegrated. & Indicates 
cointegrating at most 1 at 10 percent level. 
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Figure 1. U.S. export market share in world trade, 1980-2015 

 

Source: USDA/ERS (2016a) 

 

Figure 2.  Export market share for selected commodities and countries, 1980-2015 

 

Source: USDA/ERS (2016a) 

Note: FSU* includes Russian, Ukraine and 10 other FSU countries. Asia** includes India, Thailand, Vietnam, 
Pakistan, Burma, and Cambodia.  
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Figure 3.  U.S. corn disappearance, 1980-2015 

 

Source: USDA/ERS (2016b) 
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Figure 4. U.S. and international corn, soybean and cotton prices in $ per metric ton 

 

 

 

Source: The US: the Chicago Mercantile Exchange for corn and soybeans, and the Intercontinental Exchange (ICE) 

for cotton; Brazil:, the Center for Advanced Studies on Applied Economics for corn, soybeans, and cotton; China:, 

the Dalian Commodity Exchange for corn and soybeans, and the Zhengzhou Commodity Exchange for cotton; for 

Japan, the Tokyo Commodity Exchange for corn and soybeans; India: the National Commodity & Derivatives 

Exchange for soybeans, and the Multi Commodity Exchange for cotton; South Africa:, the South African Commodity 

Exchange for soybeans. 
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Figure 5. Wavelets results for the U.S. and international corn markets integration, 2010-2015 

US-Brazil US-China US-Japan 

   

Note: The horizontal axis shows time in year, while the vertical axis shows the frequency in days. Weak correlations 
are represented by blue (cooler) colors, while strong correlations are represented by red (warmer) colors. A perfect 
positive (negative) correlation with no clear lead or lag relationship is represented by red (blue) color and right- (left) 
pointing arrows. Arrows pointing to downward directions indicate that the U.S. corn price leads the trading partner’s 
price.   
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Figure 6. Wavelets results for the U.S. and international soybean markets integration, 2011-2016 

US-Brazil US-China US-Japan 

   
 

US-India  US-South Africa 

 
 
 

 
 

 

Note: See Table 5. 
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Figure 7. Wavelets results for the U.S. and international cotton markets integration, 2010-2016 

Note: See Table 5. 
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