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Abstract

Do individuals with demonstrably high ability need to attend college to further signal their
ability to potential employers? We examine the labor market entry decision for basketball
players deciding to enter or return to college versus entering the labor market for professional
basketball, specifically the National Basketball Association (NBA). Individuals in this market
have significant financial incentive to forgo further schooling in order to pursue their careers
immediately and therefore face a trade-off between possible immediate financial rewards and
the acquisition of additional skill-related human capital or improving the signals regarding own
productivity. We exploit variation in the strength of signals regarding own ability that players
receive while in high school from external ratings agencies, Rivals and Scout. Players deemed
to be of the highest ability in each high school graduating cohort receive both a continuous,
ordinal ranking as well as a categorical, “star” rating. After providing descriptive evidence
for a regression probability jump kink design (RPJK), we estimate the probability of collegiate
prospects entering into the professional labor market as a function of the strength of ability signal
that players receive while in high school. In our preferred specifications, a one-unit increase in
ranking for players receiving the highest “star” ranking is associated with a 3.8 percentage point
increase in the probability of entry for college freshman relative to comparable players at the
threshold that receive the next highest ranking, which is equivalent to an increase in one-fourth
of a standard deviation in the probability of entry. Our results suggest that, more generally, only
a very small fraction of the most able labor market participants would forgo schooling based on
the intensity of a signal of ability.
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1 Introduction

The classic labor market signaling model formulated by Spence (1973) [26] posits that high ability

individuals may pursue secondary education regardless of whether any human capital accumulation

takes place in order to signal high productivity to employers. Empirically, it is well established that

individuals may receive higher wages from credentials that may only be loosely related to human

capital accumulation and may solely wish to communicate high ability and future productivity (see

Hungerford and Solon (1987) [17]; Weiss (1995) [30]; Jaegar and Page (1996) [18]; Tyler, Murnane,

and Willett (2000)[29]; Flores-Lagunes and Light (2010) [11], among others). However, a majority

of labor market entrants do not possess publicly-observable signals of productivity before entering

college. Once the decision to attend college has been made, it is difficult to separately identify gains

from productivity-enhancing human capital and gains from additional signals of productivity. This

paper explores the decisions of individuals with observable signals of high productivity to pursue

additional years of schooling relative to entering the labor market.

We examine the schooling and labor market entry decisions of workers in a particular setting–

professional basketball–when publicly-available signals of productivity are generated in high school.

Players that wish to enter the basketball labor market must first enter a draft, where professional

teams take turns selecting new workers based on expected productivity. If a player believes that a

professional team will find him to be sufficiently productive to be selected, then he has little fiduciary

incentive to pursue more schooling, since the expected value of the initial contract exceeds the

option value from remaining in school. Using variation in the quantity and quality of productivity

signals across high school players, we estimate the probability of entry into the draft, the likelihood

of being selected in the draft, and the value of that selection to the player. We then exploit an

exogenous discontinuity in signal strength to determine the impact of information about expected

worker productivity on labor market outcomes.

It is well-known that the study of labor market outcomes can be confounded by the presence of

unobservable worker characteristics, such as soft skills, non-cognitive skills, personality traits, and

external connections, which can jointly influence workers’ entry decisions, firms’ hiring decisions,

and workers’ long-term wages (Bowles, Gintis, and Osborne, (2001) [7]; Nyhus and Pons, (2005)
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[25]; Borghans, ter Weel, and Weinberg, (2008)[6]. Although some of the skills relevant to the

professional basketball labor market remain unobservable, the majority of the most important

factors influencing both worker and firm actions are observable. We observe a wide variety of

performance metrics for college basketball players directly correlated with player performance in the

NBA. Coupling these metrics with external assessments of ability allows us to plausibly control for

most relevant determinants of a player’s selection. Moreover, the collectively-bargained provisions

governing both the length and salary structure of worker contracts and worker movements between

teams enables us to distinguish between alternative explanations for schooling choices, allowing the

decision to enter the NBA draft to be plausibly framed as an option value decision for enrollment,

as in Stange (2012) [27]. Finally, the economic importance of superstars in the NBA, identified by

Hausman and Leonard (1997) [15], creates incentives to identify these individuals at an early age

for teams, advertisers, as well as the players themselves.

For identification, we concentrate on the labor market entry decisions of players whose ob-

servable productivity characteristics are exchangeable, but whose external signals of ability vary

discontinuously. Utilizing a regression probability jump kink (RPJK) design, we estimate the

probability of collegiate prospects entering into the professional labor market as a function of the

strength of ability signal that players receive while in high school. In particular, we utilize the vari-

ation in signal strength regarding own ability from two different external ratings agencies–Scout,

and Rivals. Identification comes from the fact that both agencies offer two sets of rankings for

each player. The first is a granular, ordinal ranking in which the top 100 (Scout) and top 150

(Rivals) players are put in order based on perceptions of ability. The second set is an aggregated

ordinal ranking that groups players by “star” into “three-, four-, and five-star” categories, which

roughly correspond to a “good, better, best” assessment of ability. We examine the entry decisions

of players with adjacent granular rankings, but distinct aggregated rankings. Aside from a different

aggregate assessment of ability, these players are exchangeable.

We find that, conditional on being assigned into the highest ability group, players use the

information contained in the granular signal to enter the draft far more aggressively. Because one

is the best possible ranking a player can have, we find that a one-slot reduction in ranking (the
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player is closer to being considered the best) leads to between a 1.6 and 3.8 percent increase in the

probability of entering the draft, which is equivalent to one-fourth of a standard deviation of the

probability of entry within our sample. Players that are assigned into the next group do not exhibit

any such sensitivity to their granular ranking, and, in fact, enter the draft very infrequently.

We find that our results are more pronounced for new potential labor market entrants. In our

sample, the highest kink estimates are for freshmen, who possess relatively little information about

own productivity relative to players who have played multiple seasons in college. We interpret

these findings as being suggestive of the notion that initial signals of ability becomes less important

as more information about productivity becomes available; this mirrors traditional insights about

labor market productivity, in which college GPAs and degrees become less important as more

information about a worker’s productivity is released.

Our findings suggest that having the ability to signal productivity would not lead to appreciable

differences in the amount of education that individuals choose to pursue. Within our sample, only a

small fraction of ranked participants (less than seven percent) choose to enter the draft; furthermore,

of those individuals, a vast majority are the most highly ranked individuals in our sample. Even

among otherwise-exchangeable players, having an additional strong signal of productivity is an

essential component of the entry decision, and players who do not possess the signal are very

unlikely to enter the draft. In short, even among those deemed to be highly able, only those most

able labor market entrants make the decision to forgo schooling to pursue a professional career

immediately.

2 Background

2.1 Ability, Education, and Labor Market Outcomes

It is well known that individuals pursue education because of the pecuniary rewards associated with

doing so. This pursuit may occur regardless of whether any additional human capital accumulation

takes place, as described in the classic labor market signaling model formulated by Spence (1973).

Despite the pecuniary incentives for additional years of schooling, individuals face uncertainty
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about the set of outcomes that could arise both from starting college and from continuing college in

each subsequent year. Altonji (1993) [1] points out that there are large disparities between ex ante

and ex post returns to starting college, and that these disparities vary appreciably by ability, as

measured by SAT scores. Low-ability males are nearly twice as likely to drop out when compared

to high-ability males and the ex post returns of males who attend fewer than two years of college

are negative.

These findings indicate that labor market participants may be unaware of their own ability

when entering college. As a consequence, college can serve as a tool for individuals to learn about

their abilities and preferences from course grades, subject content, and information about future

opportunities. Arcidiacano (2004)[2] explores this in the context of major choice and ability sorting

and finds that a large fraction of sorting between majors occurs due to preferences for the subject

matter. High grades serve as positive signals of ability, which facilitate staying in school and

increase the likelihood of more math-intensive majors, such as those in natural science. Stange

(2012)[27] adopts a similar approach to estimate the option value of continuing with one’s college

education. He finds that the option value to remain in school accounts for roughly 14 percent of

the total value of enrollment, indicating that individuals benefit greatly from having the option to

enroll or drop out. As in Arcidiacano (2004)[2], Stange (2012)[27] also finds that individuals use

grades as barometers for whether to continue education. Trachter (2015)[28] extends this type of

structural analysis to the decision of whether or not to pursue a four-year degree after a two-year

degree. He finds that the ability to drop out of a two-year college explains 31 percent of the return

to enrolling in a two-year college and that the ability to transfer to a four-year college explains the

remaining 69 percent of returns; all of the returns are localized to learning about one’s ability.

We examine the schooling decisions of individuals who possess external ratings of ability in a

highly specialized labor market prior to pursuing college education. Employers (teams) are able to

perfectly observe these ratings prior to deciding whether or not to hire (draft) employees and are

willing to hire workers (players) that do not graduate from college based on their expected future

productivity. Therefore, we observe how employers would hire individuals that do not complete

college if they were able to observe credible signals of ability. More specifically, we examine the
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decisions that labor market participants make when their ability is already revealed to potential

employers.

Most labor market participants cannot credibly reveal ability to their employers prior to college,

and this problem at least partially drives their choices to pursue further education. Arcidiacono,

Bayer and Hizmo (2010) [3] find that college graduates realize the returns to their own ability (as

measured by AFQT scores) almost immediately upon entry into the labor force and that these

returns do not change appreciably over the first 12 years of their careers. By contrast, however,

they find that high school graduates who directly enter the labor force realize almost none of the

returns to their own ability. Only after extensive labor market experience do high school graduates

receive wages corresponding to their measures of ability. Fang (2006)[10] uses a structural model

of education choice to decompose the college wage premium into productivity enhancement and

ability signaling and finds that around one-third of the college wage premium could be attributed

to ability signaling.

Our empirical setting varies from traditional education choices because high- and moderate-

ability high school basketball players possess external ratings of own ability prior to entering college.

These players may nonetheless extract additional information from their college performance about

their abilities when deciding whether to leave college for the professional ranks. These additional

signals are informative since professional teams only employ a small fraction of college basketball

players, even if they are highly able, implying a considerable amount of uncertainty. Furthermore,

because previous draft outcomes of individuals with similar abilities are observable, the marginal

schooling decisions of these highly able labor market participants provide implicit information about

these individuals’ expected labor market outcomes associated with leaving or continuing in school.

In other words, individuals in our setting are simultaneously learning about their own ability and

the ability of other potential labor market entrants.

High school basketball players possess strong external signals of ability prior to entering col-

lege, but the decision of which college to attend is still important. Attending a college with better

coaching and a history of strong basketball graduates can enhance a player’s signal of ability to

professional teams. As an example, a player who attends the University of Kentucky, Duke Univer-

5



sity, or the University of Kansas may be selected highly because the strong signals associated with

being recruited by those universities convey ability to future employers. Analogously, researchers

have recently examined which components of college most precisely contribute to earnings growth,

specifically the extent to which where one attends college contributes to the college wage premium.

Using longitudinal data from Colombia, MacLeod, Riehl, Saavedra and Urquiola (2015)[21] find

that the reputation and identity of a college affect both initial earnings and the subsequent growth

paths of a graduate, even after controlling for ability from admissions tests. Hoekstra (2009)[16]

finds that males accepted to a state’s flagship university received nearly 20 percent earnings when

compared with similarly able males who were not admitted. Hastings, Neilson and Zimmerman

(2013)[14] use Chilean longitudinal data to examine how the joint major/college selection affects

lifetime earnings. Since students in Chile apply to a major and university simultaneously and are

matched to a degree/university pair, the authors are able to utilize the variation around the match

cutoffs to find large earnings effects for selective majors at the cutoff, averaging up to 9.1 percent

of sample earnings.

2.2 Asymmetric Information, Ability Signals, and the High School Basketball

There is a large information asymmetry between the amount of information a high school basketball

player may have (or believe that he has) about his own ability and the amount of information

about his ability that he can credibly convey to a third party based on his in-game performance

alone. Traditional measures of performance, such as the number of points that a player scores,

are noisy signals of ability due to large differences in opponent quality across players making

direct comparisons difficult. Basketball recruiting ratings agencies, such as Rivals or Scout, collect

an extensive amount of information on player ability, including in-game performances and external

assessments, in order to rate and rank high school basketball players. Of the 261 domestic basketball

players from the 2002-2012 high school cohorts that have been drafted into the NBA in the first

round between 2002 and 2015, only seven were not ranked by at least one of the recruiting agencies.

To overcome this paucity of reliable information, promising players take a number of measures

to improve the quality of information that is available for recruiters and for rating agencies. First,
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players may attempt to enroll in private high schools where appreciable resources are spent on both

fielding a high-quality basketball team and on seeking out similar high schools for games.1 Players

often participate in out-of-season camps to hone their skills and make themselves more noticeable

to colleges and universities.2 Evaluators from rating agencies can attend the camps and gather

information about how highly-skilled high school players perform against each other, and these

evaluators can combine information about the levels of competition within these camps with the

information of how these players perform in high school to form the ratings that are disseminated

to both subscribers and the public at large, which includes universities, NBA teams, and other

interested parties.

While high school players can take steps to more clearly signal their ability to rating agencies,

colleges and universities, and professional teams, they are unable to actually manipulate their

ratings for a few reasons. One reason is that player performance within camps and games is

observable. While direct comparisons between different levels of high school competition may be

difficult, it is appreciably less difficult to compare players playing directly against each other within

the same camp. Inaccurate representations of ability are not credible. Second, an offer of money

from a player to a third party would be an NCAA violation, and would both compromise the player’s

ability to play basketball in college and serve as a negative signal to professional teams. Finally,

ratings agencies profit directly from the quality of information that they provide to subscribers that

expect rating agencies to offer impartial, unbiased assessments of player quality such that there

is little incentive for an agency to compromise this notion for any particular player (Bricker and

Hanson, 2013) [8].

Rating agencies use the information that they gain from high school games and from basketball

camps to form two sets of ordinal rankings of all high school basketball players in the United

States. The first set of ordinal rankings is at the individual player level. Because it is prohibitive to

rank every single high school player in the country and because the differences in ability between

players of moderate ability level may be small, agencies only rank construct ordinal rankings for

1These high schools, such as Oak Hill Academy or IMG Academy, often command high tuition and their games
are routinely seen on cable television stations, such as ESPN, ESPN2, or ESPNU.

2Examples of these camps include the LeBron James Skills Academy, Five Star Basketball Camp, and Nike Sports
Camps, among others.
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the 100 (Scout) to 150 (Rivals) of high school players that they consider to be the highest ability

levels.These ordinal rankings, summarized in Table 1 for high school graduating cohorts between

2002 and 2012, differ by rating agency and do not take into account factors such as the position

that the player plays on the court.

The next set of ordinal rankings that rating agencies construct, also summarized by graduation

cohort in Table 1, is less granular and includes a larger number of players each year. This “star

rating” system classifies players according to the rating agencies’ perceptions of player ability into

different “star” categories. The most promising players are “five star” recruits and are considered

to be markedly better than those players who are grouped into the “four star” category, who, in

turn, are considered superior to “three star” or “two star” individuals. “Five star” recruits are

informally thought of as the most likely to be professional prospects and usually have their choice

of which university to attend. Table 1 illustrates that for both ratings agencies, this category

typically consists of the top 25 players from the more disaggregated ordinal ranking, but the exact

number of players considered to be “five star” varies from year to year.

“Four star” recruits are also considered to be very promising, and are thought to have the

potential to be professional prospects, but are considered to be less able than “five star” recruits.

“Four star” recruits often have their selection of many different universities to attend, albeit perhaps

not every university. There is more variation across ratings agencies in the number of players that

they consider to be “four stars” with Rivals averaging around 70 players each year and Scout

averaging around 100 players each year with the designation. Finally, “three star” and “two star”

players are considered to be lower ability relative to their “five star” and “four star” peers and

both agencies classify a larger number of players each year into these categories increasing the noise

in these signals. In summary, high school basketball players in our sample can receive up to four

ordinal rankings, two that are more granular and two that are aggregated into a “good, better,

best” type of ranking, depending upon whether they are ranked by one or both agencies. Our

empirical analysis exploits discontinuities in these rankings as individuals that are similarly ranked

at the granular level can be classified into different “star” categories at the threshold.

This asymmetric information problem faced by high school basketball players mirrors the prob-
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lem that high school students and parents face when trying to signal ability to various colleges or

universities. High school grade point averages may vary wildly between schools because of differing

curricula, and even the number of activities in which a student participates may not be suitably

comparable between schools. (For example, one could think that the requirements to be a par-

ticipating member of a club in a less-competitive high school are potentially less stringent than

those of a more-competitive high school or a high school with many more students). Because of

this, special emphasis is placed on performing well on standardized tests such as the PSAT, ACT,

or SAT, which are direct measures of performance that can be compared between students. As

an example, performance on the PSAT can lead to being recognized as a National Merit Scholar,

National Merit Finalist, or National Merit Semifinalist; these categories are analogous to star rat-

ings within high school basketball. Students who perform poorly on these tests may be rated more

poorly by admissions committees, regardless of their high school accomplishments.

2.3 The Professional Basketball Labor Market

Professional basketball is organized very similarly to other markets, such as medical residencies, in

which new entrants into the labor market cannot directly choose which employer they will work

for. A player that wants to play professional basketball in the NBA typically enters via the NBA

Draft3, which is a modified reverse-order entry draft in which the team that finished the previous

season with the worst record is most likely to have the first choice of new entrants in the upcoming

season.4 The NBA Draft consists of two rounds of selections, and, absent any trades, each of the

thirty teams is given one selection per round based on their record and the results of the weighted

lottery.5 Players that are interested in entering the NBA Draft can do so in one of two ways: either

exhaust all of their collegiate eligibility6 or forgo their remaining eligibility and formally declare

3Although the majority of NBA players (426 out of 572 non-foreign born players) enter the league via the NBA
draft, it is possible for undrafted players to obtain contracts as free agents. Players that are undrafted play in fewer
games, play fewer minutes per game, play fewer seasons, and earn less career earnings on average relative to their
drafted counterparts. Additionally, being drafted is no guarantee of making an NBA team as 67 out of 493 non-foreign
born draftees never play in an NBA game.

4To prevent teams from intentionally losing to obtain higher selections, the first fourteen slots are determined by
a weighted lottery, in which teams with poorer records have a greater chance of winning.

5Draft pick spots, as well as the rights to sign a player, are frequently traded between teams.
6Collegiate basketball players are eligible to play in college for four seasons with exceptions commonly being

granted to either develop additional skills, for medical reasons, or for transfers between schools.
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their intentions to enter the NBA Draft following the end of the collegiate basketball season in

April as “early entry” candidates.

Players that have exhausted their four years of eligibility are automatically eligible for the draft

without any additional entry requirements. Players that declare early entry for the NBA Draft can

withdraw their entry and retain their college eligibility if they do so by a well-defined deadline,

typically set about one month following the declaration deadline. A player that declares early

entry for the NBA Draft without withdrawing is not eligible to return to competitive collegiate

basketball, but is able to re-enroll to finish his degree or to compete professionally in a different

league. Early entry decisions, as well as draft outcomes, by graduation cohort and college class year

are summarized in Table 2. Because of the institutional features of the NBA Draft and the NCAA

policy which stipulates that a player who enters the draft may not continue to play in college, a

player’s choice to enter the draft is a specific decision to stop accumulating any more basketball-

specific human capital by playing in college and to instead become a professional. Unlike other

settings, a player cannot “go back” to college to pursue basketball-specific human capital once he

chooses to enter the draft.

Starting with the 1999 Collective Bargaining Agreement (CBA) between players and the league,

players that enter the NBA via the draft are only eligible to receive contracts that are guaranteed for

multiple seasons regardless of performance if they are selected in the first round (NBPA, 1999)[23].

All other players are eligible to sign shorter term contracts, for less money, at the team’s discretion.

This feature of the draft adds additional uncertainty for any player who wishes to become a profes-

sional as there is no guarantee that a player who is not selected sufficiently high will employed by

an NBA team in the upcoming season. Groothius, Hill, and Perri (2007) [13] identify that the 1999

CBA, which guaranteed that younger players would be kept on their lower salary, initial contract

for longer lengths of time, incentivized franchises to draft relatively younger players, ceteris parabis,

leading to a further unraveling of the matching market first identified in Li and Rosen (1998) [20].

Prior to the signing of the 2005 CBA, a high school basketball player could declare himself

eligible for the NBA Draft without any additional entry restrictions.7 Following the 2005 CBA

7Indeed, highly prominent players such as Kobe Bryant and LeBron James chose to bypass college attendance
entirely in order to play professionally.
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and first implemented for the 2006 NBA Draft, high school basketball players are required to be

at least one year removed from high school and at least 19 years of age prior to being eligible for

early entry (NBPA, 2005)[24]. Because of this change in policy, nearly every high school basketball

player that was ranked in the graduating cohorts between 2006 and 2012 choose to attend a college

or university for at least one year.

3 Data Description

The primary benefit of utilizing professional sports to examine labor markets is the amount and de-

tail of available information regarding worker, firm, and co-worker characteristics, job performance,

and labor market outcomes. We collect data from two separate ratings agencies–Rivals.com (Ri-

vals) associated with Yahoo! Sports and Scout.com (Scout) associated with FoxSports.com– that

rank high school basketball players based on perceived ability. In addition to the measures of abil-

ity, these agencies also include other observable characteristics such as player height and weight.

Although we focus exclusively on the final posted rankings, most of the top high school basketball

players are initially ranked as freshman or sophomores, with the ranking agencies updating their

information and their scouting reports as these players progress through high school. As summa-

rized in Table 1, we observe rankings data on the highest ability recruits for both agencies for all

graduating classes between 2003 and 2012 with the exception of Scout in 2004. We observe rankings

according to the star classification for both agencies for all graduating classes between 2002 and

2012.

The rankings data provide us with metrics of player ability prior to entering collegiate or profes-

sional basketball. We match these data with player performance statistics, at both the collegiate and

professional basketball level, available from Sports-Reference.com for the 2002-03 through 2014-15

basketball seasons. Our sample of collegiate basketball players consists of all players who graduated

high school between 2002 and 2012. The sample of professional basketball players consists of all

players who graduated high school between 2002 and 2012, regardless of whether they attended

college.8 The inclusion of collegiate-level performance data allows us to determine whether the

8We exclude foreign-born professional players even if their date of birth would place them in the same high school
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prospect rankings are sufficient signals of ability while controlling for observable, in-game measures

of performance in determining a player’s entry decision and draft position.

We consider traditional statistics, both total and per game, measuring player performance

including points, rebounds, assists, steals, blocks, field goal percentage, three-point field goal per-

centage, free throw percentage, games played, minutes played, personal fouls, and turnovers. Fur-

thermore, we also consider a handful of common advanced statistics designed to more accurately

capture player contributions towards winning including PER, usage rate, effective field goal per-

centage, true shooting percentage, win shares, and win shares per 48 minutes of playing time. Table

3 presents the summary statistics for the college data. Berri, Brook, and Fenn (2011)[5] find that

in addition to the performance metrics which impact draft position, height for position and team

performance in the college basketball playoffs are also correlated with draft outcomes. We also con-

trol for other publicly available signals of player ability provided by third parties; namely, whether

a player was selected as a McDonald’s All-American in high school or as an AP All-American in

college.

Our sample, summarized in Table 4, consists of 18,819 unique basketball players that were

either ranked in high school, played collegiate or professional basketball, or entered the NBA Draft

and were in high school graduating classes between 2002 and 2012. From this sample, 803 players

(4.27%) declared for early entry into the NBA Draft and 652 players (3.46%) were drafted. In our

empirical estimations, we drop 349 foreign-born players (1.85%) that declared for the NBA Draft

without being ranked in high school or playing collegiate basketball. Of the remaining players in

the sample, 7,028 players (38.05%) received a ranking in high school with the majority attending

college for at least one season. Less than one percent (101 players) of our remaining sample did

not attend college with 67 of those players being ranked in high school. All of the players that were

drafted into the NBA without collegiate experience were ranked in high school. The likelihood of

a collegiate basketball player being drafted into the NBA is small with only 2.55% (468 players)

of collegiate basketball players in our sample being drafted between 2002 and 2015. However, the

majority of collegiate players that entered the NBA Draft early (92.82%) or were drafted (94.23%)

cohorts.
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were ranked in high school despite these players constituting only 37.90% of all college basketball

players.

4 Empirical Justification

We begin by tracing out the choice faced by a player at time 0. The player does not know the exact

probability of being drafted, but he forms belief p(s) which corresponds to the probability of being

selected in draft slot s. His beliefs are a function of his observable rankings θ, his perceived ability

A, and his observable college productivity at time 0, X0. Should he be selected in slot s, he will

receive wage ws, which is the collectively-bargained outcome associated with slot s. A player holds

beliefs over all possible slots s ∈ S, such that
∑

s∈S p(s) ≤ 1. With the remaining probabilistic

belief the player will go undrafted and receive outside option w∗. Moreover, the player also receives

the discounted sum of future earnings from basketball, which are a function of his draft slot, beliefs

about ability, and signal of ability. To summarize, at time zero, a player believes that, if he enters

the draft, he will earn:

∑
s∈S

p(s|θ,A,X0)

[
ws,0 +

T∑
t=1

βtwt(θ,A, S)

]
+

(
1−

∑
s∈S

p(s|θ,A,X0)

)
T∑
t=0

βtw∗ (1)

If the player decides not to enter the draft, he will not be compensated at time 0; rather he will

play another year in college and have unknown productivity X1. The player does not know what

his productivity will be, so his belief about future productivity is captured by E(X1). The expected

value of waiting to enter until the next year is:

∑
s∈S

p(s|θ,A,E(X1), X0)

[
ws,1 +

T∑
t=2

βtwt(θ,A, S)

]
+

(
1−

∑
s∈S

p(s|θ,A,E(X1), X0)

)
T∑
t=1

βtw∗ (2)

In equilibrium, for a given set of beliefs p(), a player will enter the draft if (1) exceeds (2),

will not enter the draft if (2) exceeds (1), and will be indifferent between entry if (1) is equal to

(2). Furthermore, because ability A and future productivity X1 are unobserved at time 0, a player

must rely on θ, the external signal of ability, and X0, the observable productivity based on college
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performance at time 0 to form the beliefs needed to make the decision about whether or not to

enter the draft.

The key dynamics of the entry decision are as follows. First, since w(s) is decreasing in s, i.e.,

a player’s collectively-bargained wage goes up as their pick slot s goes down, (the player who is

selected second earns a higher salary than the player who is selected with pick 60), beliefs which

place high probability on low slots will induce entry into the draft. Next, if a player believes that

his college productivity in the next season, E(X1), will cause his expected slot to become worse,

i.e., p(s|θ,A,E(X1), X0) will increase for worse slots and will decrease for better slots, the player

will enter the draft at time 0. Finally, and most importantly for our design, for a fixed ability A

and productivity X0, higher signals of ability θ will cause beliefs p(s) to increase for better slots,

i.e., as s falls, ∂p(s)
∂θ > 0.

We capitalize on the notion that better signals will increase players’ beliefs that they will be

drafted highly and will induce entry. We concentrate our empirical design on a region in the

signal space where productivity is fixed, but signals of ability vary discontinuously. In particular,

players are exchangeable based on their productivity (they have similar college statistics) and

granular rankings of ability. However, some otherwise exchangeable players have appreciably better

aggregated signals of ability, as they are categorized into different star levels. We are thus able to

isolate the effect of an improved signal of ability on the decision to enter the labor market.

4.1 Descriptive Results

We examine the information content of the high school rankings via descriptive analysis of the draft

and labor market outcomes for the cross-section of players that were either ranked in high school,

played collegiate basketball, or both. Utilizing both the continuous relative ranking of ability

as well as the discrete categorical rankings, we explore the information content of each ranking

separately as well as the possibility of interactions between the different rankings. Following the

player cross-section analysis, we descriptively estimate both the probability of being drafted using

the player-college data for each collegiate class (i.e., Freshman, Sophomore, Junior, and Senior)

separately before proceeding to estimating Cox proportional hazard models, with and without
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time-varying covariates, for early entry.

The descriptive results from the linear probability estimates on the player cross-section are

summarized in Figure 1 for the probability that a player is drafted and in Figure 2 for the probability

of playing in the NBA. For each set of rankings, we estimate:

Pr(outcomei) = β0 + β1ratedi + β2rankingi + ∆stari + Γ(rankingi ∗ stari) + εi (3)

where outcomei is either being drafted or playing in the NBA, ratedi is an indicator variable

for whether the player was rated by the agency, rankingi corresponds to the numerical ranking

of the player, and stari is a vector of indicator variables corresponding to the “star” categories.

Figures 1 and 2 include both the fitted linear estimation as well as the raw average probabilities

for players rated within a five-unit range (i.e., players ranked 1 to 5 are included in the first bin,

players ranked 6 to 10 are included in the second bin, etc.). The fitted estimations assume that the

top 25 rated players also receive five stars and the 26th to 100th rated players receive four stars.

Regardless of the ranking agency or the outcome metric used, both figures suggest that the ranking

and star ratings convey information regarding player ability with higher-ranked players and players

with a higher star rating being more likely to both be drafted and to play in the NBA. Moreover,

the statistically significant coefficient on the interaction between the ranking and the star rating

imply that these different indicators may be either complementary or reinforcing.

We further explore the information content of high school rankings by examining the labor mar-

ket entry choices of collegiate players as a function of prior ratings. For each class year and each

ratings agency, we estimate the linear probability that a collegiate basketball player declares early

entry into the NBA draft according to equation (3). The results of these descriptive estimations,

reported in Table 5, reveal that players receiving a five- or four-star rating are significantly more

likely to declare early entry into the NBA draft relative to their three-star, two-star, and unranked

counterparts. The estimated magnitudes for five-star athletes remain relatively consistent across

class years whereas juniors are more likely to declare for early entry if they receive a four- or three-

star rating relative to sophomores who, in turn, are also more likely to declare relative to freshman

receiving the same ratings. This is consistent with relative lower ability individuals delaying entry
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into the labor market in order to acquire additional years of human capital. Moreover, the interac-

tion between the top ranking and a five-star rating is only significant for freshman players whereas

the interaction between the top ranking and a four-star rating increases (in absolute magnitude)

with each subsequent year of experience.

Our final descriptive empirical exercise is to further explore the potential dynamics underlying

the entry decision by estimating Cox proportional hazard models with and without allowing the

rankings variables to be time variant. The hazard rate h(l) is the likelihood that a player enters

the draft as a freshman, sophomore, or junior conditional on him not previously entering the draft.

The estimated model using only the high school ratings and rankings is:

h(l|ratedi, rankingi, stari, (rankingi × stari)) =

h0(l) exp (β0 + β1ratedi + β2rankingi + δstari + γ(rankingi × stari) + εi)

(4)

where the variables are as defined previously. The results from the proportional hazard models,

reported in Table 6, confirm the significant and positive correlation between receiving a higher

star rating and entering the NBA draft early. The time-varying estimates also confirm that the

information contained in the five-star rating becomes less relevant for entry decisions across time.

The results also support the complementarity between the receiving a five-star rating in addition to

the top 150 or top 100 ranking. The interaction remains significant and negative, suggesting that

individuals with more positive signals are more likely to enter early. However, the significant positive

coefficient on the interaction term in the time-varying estimations implies that this relationship is

strongest initially and weakening over time, a result consistent with the insignificant coefficient on

the interaction terms for Sophomores and Juniors in the linear probability model for early entry.

5 Methodology: Regression Probability Jump and Kink (RPJK)

Design

Our main analysis examines the change in the probability of entering the NBA draft around a

threshold of players ranked above or below the 25th-best player in the Scout and Rivals rankings.
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At this threshold, players have similar granular rankings, but differing star levels, as can be seen

in Table 1. In the Scout rankings, 7 of 11 years have 25 or fewer five-star players, while in the

Rivals rankings, 5 of 11 years have 25 or fewer five-star ratings. For this reason, we use 25 as the

threshold for belief treatment in our data. Put simply, players ranked 25 or below are much more

likely to be assigned five-star ratings, and players ranked higher than 25 are much more likely to

be assigned four-star ratings.

5.1 Graphical Evidence for the RPJK Design

Because of the imprecise assignment rule, we are unable to implement a sharp regression-discontinuity

design. In particular, for some years more than 25 players are ranked as “five-star,” while in other

years 25 or fewer players are ranked as “five-star.” Furthermore, as can be seen in Figures 3 through

6, there is little evidence of a jump in the probability of entry at the threshold, indicating that

we may not be able to achieve identification of a local average treatment effect solely from a fuzzy

regression discontinuity design.9 However, Figures 3 through 6 strongly suggest the presence of

a kink in the probability of NBA Draft entry based on crossing the threshold. Figures 3 and 4

provide graphical evidence of the kink in the probability of entry based on going from four-stars

to five stars for college freshmen. These players only have one year of collegiate productivity and,

relative to sophomores or juniors, may need to rely more heavily on the quality of the signal in

order to decide whether or not to enter the NBA draft. Figures 3 and 4 indicate that, prior to

crossing the threshold, freshmen are systematically more likely to enter the draft. However, as they

approach the threshold, the more granular signal becomes indicative of lower perceived ability, and

as such the probability entering the draft falls. After crossing the threshold, the less granular signal

becomes more likely to shift from five-star to four-star, and players after the threshold are unlikely

to enter the draft at all.

Figures 5 and 6 showcase a similar kink. These figures include the full sample of freshmen,

sophomores, and juniors. The slopes of entry probabilities below the threshold are less steep than

the slopes in Figures 3 and 4, possibly because sophomores and juniors have less noisy estimates of

9In fact, Figures 3 and 5 would seem to indicate a jump in entry when going from five-star to four-star, which is
inconsistent with the information content of such signals.
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the expected benefit for playing in future seasons. The probability that players above the threshold

enter the draft is larger than the probability for just freshmen, but is not appreciably higher than

zero.

5.2 Estimation Strategy

Figures 3 through 6 lead us to employ a fuzzy regression probability jump and kink design, as

described in Dong (2016) [9]. This is a flexible variant of the regression discontinuity design that

allows for the possibility of both a jump and a kink, and is useful in instances when a kink in

treatment is present, but the assignment rule is represented by a jump. We interpret our estimates

of the kink as a local average treatment effect of the effect of being given a favorable aggregate

ranking on the probability of entry. In particular, for a given player i with ranking xi, we model

the probability of obtaining a five-star rating 5∗i as:

Pr(5∗i = 1|xi) =


g1(xi) if xi > 25

g0(xi) if xi ≤ 25

(5)

where g1(xi) and g0(xi) are functions that guide the probability of a five-star ranking being assigned

to a player at the cutoff. Next, define an indicator function Ti which takes the value 1 if xi ≤ 25

and 0 otherwise to identify whether or not a player is above the ranking threshold, or at or below

the ranking threshold.

The running variable in our context is the player’s ranking in either the Scout 100 or Rivals

150, xi. We implement the fuzzy regression probability jump and kink design by using two-stage

least squares; first, we instrument for the player’s five-star status with the indicator function Ti by

estimating:

5̂∗i = δ0 + δ1(xi − 25) + δ2(xi − 25)× Ti + ρTi + ε1,i (6)

after using the estimates from the first stage, we next estimate the probability of entry E for

player i in the second stage:
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Ei = α+β1(xi−25)+β2(xi−25)×Ti+β3 {δ0 + δ1(xi − 25) + δ2(xi − 25)× Ti + ρTi + ε1,i}+ε2,i (7)

which is estimated via local linear regression. Following the recommendation of Gelman and

Imbens (2014) [12], we avoid the use of higher-order polynomials in fitting our model, and as such

report local linear results only. However, because players are unable to control their ranking and

because each player is given an ordinal ranking (there is only one player per granular ranking per

year), we are not concerned with manipulation of the running variable, as described in McCrary

(2008) [22], or “heaping,” in which a large number of players would be located immediately above

the cutoff, as described in Barreca et al. (2016) [4].

The coefficients of interest in the model are β2, which is the estimate of the kink in the slope

of the probability of entry based on the interaction of the treatment (being ranked 25 or lower)

with the distance to the threshold of 25, and β3, which represents the estimate of the jump in the

probability of entry when going from being a four-star to a five-star recruit. Players that are ranked

more favorably have lower rankings, and as such as (xi− 25) is more negative. A negative slope on

β2 indicates that players who are ranked more highly around the cutoff are more likely to enter the

draft, while a statistically significant coefficient on β3 indicates that the probability of entry jumps

when going from four-star to five-star. Based on the graphical evidence from Figures 3 through 6,

we expect β2 to be significant and negative, but do not expect to see a jump in the probability of

entry.

6 Empirical Results

6.1 Establishing Exchangeability

Our estimates of the kink are compromised if other characteristics that would lead to entry also

change at the discontinuity. Put simply, if players who are rated as being five-star have productivity

characteristics which would cause them to enter the draft that four-star players do not have, then

our estimates of the kink in productivity are biased upward and we do not achieve identification.
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To investigate this possibility, we examine the difference in means for eight key productivity

characteristics in our data: points per game, rebounds per game, steals per game, blocks per

game, assists per game, field goals per game, field goal percentage, and minutes played. Each of

these characteristics positively contribute to the perceived productivity of a player and would be

considered part of X0, the observable productivity of the player at the time the entry decision

is made. If players who receive the five-star treatment have higher values of these productivity

characteristics, they may be more inclined to enter the draft.

Tables 7 produces a balance table for Rivals rankings using our entire sample for two separate

bandwidths: players ranked between 11-40, and players ranked between 16-35. The first panel of

Table 7 shows the results for the wider bandwidth; the first column produces means and standard

deviations of the productivity characteristics for players ranked greater than 25, while the second

column produces means and standard deviations of those characteristics for those ranked 25 or

below. The third column contains results of a t-test of unequal variances regarding the difference

in means between the first and second columns. We find that there are large statistical differences

in many of the productivity characteristics, including points, rebounds, field goals, and minutes

per game, which as a whole indicates that these players should not be thought to be exchangeable.

Estimates of a kink within this bandwidth are likely to be biased. This finding is unsurprising since

the bandwidth is very large and players ranked very close to the top 10 are plausibly different from

those closer to 41-50.

The second panel of Table 7 shows the results for the smaller bandwidth, where players are

ranked between 16-35. We find much stronger evidence for balance within this particular band-

width. In particular, we only find statistical differences for field goal percentage (p < .05), and

rebounds per game at the ten-percent level (p < .1). Because field goal percentages may be based

on vastly different numbers of shots, we do not consider the difference in field goal percentage to

be especially troublesome, and we interpret the second panel as strong evidence of balance at the

discontinuity. We also consider the second panel to be our preferred set of estimates due to the fact

the players in this bandwidth should be considered exchangeable, while players in the first panel

Table 8 reproduces the balance table for the subsample of freshmen in our data set. Again, the

20



first panel considers the bandwidth from 11-40, while the second panel considers the bandwidth

from 16-35. The first panel demonstrates that the covariates do not achieve balance for the 11-

40 bandwidth, as there are statistical differences for nearly all of the productivity characteristics.

However, the second panel shows that, within the 16-35 bandwidth, productivity characteristics

are balanced.

Tables 9 and 10 produce similar balance tables for the Scout rankings. Within the Scout

rankings, we again see pronounced statistical differences in the 11-40 bandwidths for both the full

sample and the subsample of freshmen, indicating a lack of balance of covariates. Furthermore,

we see limited evidence for balance within the 16-35 bandwidth for the full sample, as there are

pronounced statistical differences in blocks and rebounds per game. However, we do have evidence

for balance within the subsample for freshmen.

As a consequence of our investigations of balance at the threshold, we note that our estimates

of the kink for the bandwidth of 16-35 are most likely to satisfy the assumptions required for the

RPJK design, and are most likely to do so for the Rivals subsample. While we report the estimates

for alternative bandwidths and for the Scout data, we recognize that the assumptions need for the

RPJK design may not hold. As such, our preferred estimates are for the bandwith of 16-35 and for

the Rivals rankings.

6.2 Results

Tables 11 and 12 produce the main results. Table 11 produces estimates of both the jump in the

probability of entry based on the movement from four-star to five-star, and the kink in the slope of

the entry decision for players marginally above the threshold. All models are estimated using local

linear specifications and are produced for two different samples (freshmen and the full sample) and

two different bandwidths (11-40 and 16-35).

Table 11 produces the results for rankings by Rivals. Column 1 presents local linear estimates

of the second stage regression for freshmen ranked between 11-40. We do not find evidence of a

jump, as the coefficient on five star is insignificant. However, we do find evidence of a kink in the

entry function. In particular, freshmen ranked between 11-25 are 2.8 percent more likely to enter
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the draft as their ranking approaches 1. We note that, within this sample, we did not find balance

of the covariates, so our estimate contains omitted variable bias, as described in Lee and Lemieux

(2010)[19]. Nonetheless, this is suggestive evidence of a kink in the entry function.

Column 2 presents estimates for the sample of freshmen ranked between 16-35. Recall that,

within this sample, we found balance of the covariates. As such, omitting the covariates from our

estimates does not lead to any omitted variable bias. Within this sample, we again do not find

evidence of a jump in the probability of entry if a player is ranked with five stars. However, we

find that a decrease in ranking by one slot for those treated as five stars increases the probability

of entry by 3.8 percent relative to players receiving only four star ratings.

Columns 3 and 4 reproduce the analysis for the full sample. For these players, the impact of the

signal on the decision to enter the draft may weaken as they have gained more information about

their productivity from their college performance. Indeed, in both Column 3 (players ranked 11-40)

and Column 4 (players ranked 16-35) we do not find any evidence of a jump in the probability of

entry for being ranked five stars. However, we continue to find evidence of a kink; in particular,

players ranked between 16-35 in the full sample exhibit a 2.7 percent higher chance of entering the

draft for a one-slot fall in ranking if they are ranked as a five-star recruit. 10

Our preferred estimates are in Columns 2 and 4, where we achieve balance around the thresh-

old. In these estimates, we find that players categorized as being of higher ability are much more

responsive to a marginal increase in their more granular signal of ability when compared to players

categorized as being slightly less able, despite being otherwise exchangeable. These results are

strongest for freshmen, who have little information on their own productivity from college perfor-

mance, but are still pronounced for upperclassmen, who have more information on own productivity

from playing additional seasons. More generally, our results suggest that only individuals with mul-

tiple strong external signals of ability make the decision to forgo additional schooling, even if the

other information that these individuals possess regarding their productivity is the same.

As illustrated in Tables 9 and 10, we do not achieve balance at the discontinuity for the Scout

10We point out that the constant is significant and positive for players in our full sample ranked between 11-40
(Column 3). We attribute this to the fact that our sample does not exhibit balance within this threshold, and as such
the constant includes the variation in entry for players that score more frequently, collect more rebounds, blocks, and
steals, and shoot a higher percentage. All of these attributes increase the probability of entry.
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data, and as such our estimates for the RPJK design are likely to lack identification. This can be

seen in Table 12, which again estimates the jump in the probability of entry based on the movement

from four-star to five-star and the kink in the slope of the entry decision for players marginally above

the threshold. All models are again estimated using local linear specifications and are produced

for two different samples (freshmen and the full sample) and two different bandwidths (11-40 and

16-35). We find evidence of a jump from five-star to four-star (which can be seen in Figures 3

and 5) and is inconsistent with the notion that players with stronger signals should enter more

often. However, the magnitude of the jump is mitigated in all specifications by the positive and

statistically significant constant, which captures the variation associated with the missing covariates

that are unbalanced in the threshold. As a consequence of this lack of balance, estimates of the

kink in entry are at best imprecise. We find limited evidence of a kink in Column 1 (Freshmen,

ranked 11-40), but have imprecise estimates of the kink in Columns 2-4.

7 Conclusion

The choice to pursue additional years of schooling is routinely framed in the context of making a

choice between signaling productivity and human capital accumulation. Because most prospective

labor market entrants cannot credibly signal ability before entering college, it is not possible to

consider what education choices they would have made had they possessed signals of ability. It is

thus unclear what education choices people would make if they could credibly communicate their

ability, nor is it clear how much ability they would have to convey in order to forgo additional

schooling.

In this paper we examine a specific labor market where individuals credibly possess external

signals of ability prior to making a schooling choice. In professional basketball, promising labor

market entrants are often rated using two ordinal scales–one that is more granular, and one in

the “good, better, best” style. We find that, conditional on observable productivity, possessing

a granular signal of ability does not induce most college players to forgo additional schooling in

order to enter the NBA Draft. However, players rated as having the best ability use the additional

information conveyed in the granular ranking to inform their decision about whether or not to enter
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the draft. In particular, we estimate that a one-slot reduction in ranking (going from the 25th- to

the 24th-best player, for example) increases the likelihood of entering the draft by anywhere from

1.6 to 3.8 percent per slot. These results are robust to both inexperienced and experienced college

players.

Our evidence suggests that possessing signals of ability may not impact the level of schooling for

all but the most able labor market participants. Indeed, within our sample, only 453 of the 7,000+

players enter the draft. However, among those players, players rated to be of the highest ability use

their relative status among other high-ability players to assist in making the determination about

whether or not to enter the draft even after knowing their productivity. Among the most able labor

market participants, small differences in ability assessment may lead to appreciable and significant

decreases in the amount of schooling pursued.
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Figure 1: Probability of Being Drafted Conditional on Rank

?//
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Figure 2: Probability of Playing in the NBA Conditional on Rank
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Figure 3: Entry Decisions of College Basketball Players, Freshmen Only, Scout Rankings
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Figure 4: Entry Decisions of College Basketball Players, Freshmen Only, Rivals Rankings
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Figure 5: Entry Decisions of College Basketball Players, All Underclassmen, Scout Rankings
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Figure 6: Entry Decisions of College Basketball Players, All Underclassmen, Rivals Rankings
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Table 1: Summary of High School Rankings
Rivals Rankings Scout Rankings

Year Observations Top 150 5∗ 4∗ 3∗ 2∗ or 1∗ Top 100 5∗ 4∗ 3∗ 2∗

2002 502 1 18 33 133 45 1 25 116 116 136
2003 509 138 25 46 214 38 91 17 90 90 201
2004 800 147 32 54 161 30 6 26 90 90 519
2005 775 135 24 69 170 79 92 24 87 87 419
2006 686 139 29 69 203 54 94 27 106 106 297
2007 817 144 28 77 255 241 97 26 88 173 413
2008 768 139 26 66 239 271 91 24 83 140 393
2009 672 144 25 77 254 119 98 25 82 128 353
2010 548 146 28 71 217 53 94 25 80 142 249
2011 497 140 28 78 234 38 98 26 80 147 177
2012 456 141 25 79 222 44 100 26 82 152 125
All Years 7042 1415 288 719 2302 1012 862 271 984 1172 3282

34



T
ab

le
2:

S
u

m
m

ar
y

of
C

ol
le

ge
P

ro
d

u
ct

iv
it

y
D

at
a

F
u

ll
S

a
m

p
le

P
la

ye
rs

R
a
n

ke
d

in
H

ig
h

S
ch

o
o
l

N
M

ea
n

S
D

M
in

M
a
x

N
M

ea
n

S
D

M
in

M
a
x

C
o
ll

e
g
e

P
ro

d
u

c
ti

v
it

y
V

a
ri

a
b

le
s

S
ea

so
n

s
P

la
ye

d
4
7
,1

7
2

3
.1

2
8

1
.0

9
4

0
6

2
1
,3

2
7

3
.4

6
6

0
.9

3
9

0
6

G
am

es
P

la
ye

d
4
7
,0

7
0

2
4
.3

9
1

9
.6

9
2

1
4
1

2
1
,2

5
1

2
7
.2

7
5

8
.1

45
1

4
1

M
in

u
te

s
P

la
ye

d
2
4
,1

1
7

5
2
2
.7

3
3

3
6
8
.5

0
8

0
1
5
4
4

1
0
,7

8
4

6
3
5
.2

7
4

3
5
1
.0

8
0

0
1
5
4
3

P
oi

n
ts

4
7
,0

7
0

1
6
6
.6

3
9

1
5
7
.7

3
9

0
1
0
6
8

2
1
,2

5
1

2
0
8
.5

8
8

1
6
4
.9

9
8

0
1
0
6
8

R
eb

ou
n

d
s

4
7
,0

7
0

7
6
.0

8
6

6
7
.8

9
0

0
5
0
8

2
1
,2

5
1

9
3
.7

1
2

7
0
.2

0
0

0
5
0
4

A
ss

is
ts

4
7
,0

7
0

3
1
.8

5
0

3
7
.2

4
0

0
3
5
1

2
1
,2

5
1

3
9
.4

3
2

4
0
.3

7
1

0
3
5
1

S
te

al
s

4
7
,0

7
0

1
6
.2

2
9

1
5
.6

7
7

0
1
2
5

2
1
,2

5
1

1
9
.6

1
4

1
6
.1

0
7

0
1
2
1

B
lo

ck
s

4
7
,0

7
0

8
.2

1
2

1
3
.4

0
6

0
1
9
6

2
1
,2

5
1

1
0
.7

0
0

1
5
.2

4
9

0
1
9
6

T
u

rn
ov

er
s

3
2
,1

8
9

3
3
.3

1
3

2
7
.1

8
8

0
1
6
0

1
4
,7

5
3

3
9
.7

4
0

2
7
.0

4
3

0
1
6
0

P
er

so
n

al
F

ou
ls

2
3
,6

0
3

4
6
.5

1
0

3
0
.8

0
8

0
1
3
9

1
0
,3

0
8

5
4
.8

9
3

2
8
.1

9
8

0
1
3
9

F
ie

ld
G

oa
l

P
er

ce
n
ta

ge
4
6
,9

4
1

0
.4

1
2

0
.1

4
6

0
1

2
1
,2

3
2

0
.4

3
1

0
.1

0
7

0
1

T
h

re
e-

p
oi

n
t

F
ie

ld
G

oa
l

P
er

ce
n
ta

ge
3
7
,5

0
3

0
.2

8
7

0
.1

7
4

0
1

1
7
,2

3
7

0
.3

0
0

0
.1

5
3

0
1

F
re

e
T

h
ro

w
P

er
ce

n
ta

ge
4
3
,3

7
1

0
.6

4
5

0
.1

8
3

0
1

2
0
,7

5
1

0
.6

5
8

0
.1

6
1

0
1

A
d

v
a
n

c
e
d

C
o
ll

e
g
e

P
ro

d
u

c
ti

v
it

y
V

a
ri

a
b

le
s

P
E

R
2
3
,5

6
8

1
2
.2

4
9

9
.6

7
2

-1
5
5
.4

4
0
7
.0

1
0
,2

9
5

1
4
.1

7
6

7
.9

39
-5

3
.5

4
0
7

U
sa

ge
R

at
e

2
3
,5

7
1

1
9
.0

7
8

6
.6

5
0

0
1
0
0

1
0
,2

9
6

1
9
.5

3
1

5
.5

35
0

1
0
0

E
ff

ec
ti

ve
F

ie
ld

G
oa

l
P

er
ce

n
ta

ge
4
6
,9

4
0

0
.4

6
1

0
.1

5
9

0
1
.5

2
1
,2

3
2

0
.4

7
9

0
.1

0
7

0
1
.5

T
ru

e
S

h
o
ot

in
g

P
er

ce
n
ta

ge
4
6
,9

5
9

0
.4

9
0

0
.1

4
7

0
1
.5

2
1
,2

3
6

0
.5

1
0

0
.0

9
9

0
1
.5

W
in

S
h

ar
e

4
7
,0

6
6

1
.2

6
9

1
.4

6
6

-2
.3

1
1
.3

2
1
,2

4
9

1
.6

9
2

1
.5

9
9

-1
.4

1
1
.3

P
la

y
e
r

C
h

a
ra

c
te

ri
st

ic
s

H
ei

gh
t

in
H

ig
h

S
ch

o
ol

2
0
,9

7
4

7
7
.0

1
4

3
.4

5
8

6
4

8
8

2
0
,9

2
5

7
7
.0

1
7

3
.4

58
6
4

8
8

W
ei

gh
t

in
H

ig
h

S
ch

o
ol

1
9
,4

9
1

1
9
6
.5

0
3

2
5
.2

1
6

1
1
2

3
4
5

1
9
,4

4
8

1
9
6
.5

1
9

2
5
.2

1
8

1
1
2

3
4
5

M
cD

on
al

d
’s

A
ll

-A
m

er
ic

an
4
7
,1

3
1

0
.1

4
5

0
.1

1
9

0
1

2
1
,3

1
9

0
.0

3
2

0
.1

7
5

0
1

A
P

A
ll

-A
m

er
ic

an
4
7
,0

6
4

0
.0

0
7

0
.1

2
7

0
3

2
1
,2

5
1

0
.0

1
4

0
.1

8
3

0
3

35



T
ab

le
3:

S
u

m
m

ar
y

of
E

ar
ly

E
n
tr

y
D

ec
is

io
n

s
Y

ea
r

D
ec

la
re

E
n
te

r
D

ra
ft

ed
D

ec
la

re
E

n
te

r
D

ra
ft

ed
D

ec
la

re
E

n
te

r
D

ra
ft

ed
D

ec
la

re
E

n
te

r
D

ra
ft

ed
D

ec
la

re
E

n
te

r
D

ra
ft

ed
2
00

2
1
3

7
5

3
3

1
-

-
-

-
-

-
-

-
-

20
0
3

4
5

26
2
3

6
5

5
7

4
2

-
-

-
-

-
-

20
0
4

6
3

27
2
0

13
9

8
5

3
3

3
1

1
-

-
-

20
0
5

1
09

5
7

35
11

9
7

4
2

1
13

9
7

4
1

2
1

10
2
00

6
9
3

46
3
2

1
-

-
5

3
2

13
1
0

9
3
7

1
9

13
2
00

7
8
5

37
3
2

-
-

-
9

8
8

8
5

5
3
7

1
6

14
2
00

8
9
0

44
3
4

-
-

-
1
3

13
1
2

15
1
0

9
3
2

1
4

8
2
00

9
1
06

5
1

32
-

-
-

8
8

4
15

1
1

9
4
7

2
0

13
2
01

0
1
13

7
2

33
-

-
-

1
5

10
9

20
1
5

10
4
8

3
1

11
2
01

1
8
8

47
3
4

-
-

-
8

7
6

11
9

7
4
1

2
0

14
2
01

2
6
8

57
3
5

-
-

-
1
0

10
1
0

16
1
6

13
2
1

2
0

8
2
01

3
8
0

62
3
8

-
-

-
7

7
7

13
1
3

9
2
2

2
2

11
2
01

4
5
8

42
2
4

-
-

-
-

-
-

15
1
5

11
1
8

1
7

8
2
01

5
4
1

24
1
2

-
-

-
-

-
-

-
-

-
1
9

1
7

8
A

ll
Y

ea
rs

1
,0

5
3

45
3

3
90

35
2
7

22
9
1

75
6
4

1
42

11
4

9
0

36
3

21
7

11
8

36



Table 4: Summary of Sample
Unique Players Full Sample Early NBA Entrants Drafted Played In NBA
Total 18,819 803 652 679
Foreign-born* 349 306 159 107
No College 101 79 25 28

Ranked in High School 67 48 25 25
Ranked by Rivals 52 41 24 24
Ranked by Scout 66 47 25 25

Played in College** 18,369 418 468 544
Ranked in High School 6,961 388 441 498
Ranked by Rivals 4,273 363 406 448
Ranked by Scout 6,252 378 437 486
1 Year Experience 4,775 89 67 67
2 Years Experience 4,674 121 100 115
3 Years Experience 2,997 195 125 130
4 Years Experience 5,670 13 171 228
5-6 Years Experience 253 0 5 4

*: classified as foreign in early entry or in NBA Draft data
**:

Table 5: Linear Probability Model (Early Entry)
Freshman Sophomore Junior

Rivals Scout Rivals Scout Rivals Scout

Rated by Agency? 0.002 0.001 0.001 0.004∗∗∗ 0.008 0.010∗∗∗

(0.002) (0.001) (0.002) (0.002) (0.005) (0.003)

Ranking 0.000∗∗∗ 0.000 0.000 0.000 0.000∗∗∗ -0.001∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

5 Star Rating Indicator 0.499∗∗∗ 0.437∗∗∗ 0.370∗∗∗ 0.371∗∗∗ 0.453∗∗∗ 0.503∗∗∗

(0.063) (0.051) (0.061) (0.059) (0.097) (0.072)

4 Star Rating Indicator 0.040∗∗ 0.024∗∗∗ 0.125∗∗∗ 0.052∗∗∗ 0.352∗∗∗ 0.172∗∗∗

(0.016) (0.007) (0.026) (0.012) (0.043) (0.020)

3 Star Rating Indicator 0.002 0.001 0.007∗∗ 0.003 0.027∗∗∗ 0.023∗∗∗

(0.002) (0.001) (0.003) (0.003) (0.007) (0.006)

Ranking × 5 Star -0.018∗∗∗ -0.015∗∗∗ -0.003 -0.003 -0.006 -0.008
(0.004) (0.003) (0.003) (0.003) (0.006) (0.004)

Ranking × 4 Star 0.000 ∗∗ -0.001∗∗∗ -0.004∗∗∗

(0.000) (0.000) (0.001)

Constant 0.000∗∗ 0.001∗∗ 0.001∗∗∗ 0.001∗∗ 0.009∗∗∗ 0.008∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

R-squared 0.267 0.234 0.164 0.156 0.117 0.108
N 12,777 12,777 11,184 11,184 13,099 13,099

Table 5 reports the linear probabilities of entry contingent on player ranking.
Robust standard errors in parentheses; ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table 6: Cox Proportional Hazards Model (Early Entry)
Time Invariant Estimates Time-Varying Estimates

Rivals Scout
Rivals Scout Main Time-Varying Main Time-Varying

Rated by Agency? 0.214 1.069∗∗∗ -0.945 0.430 0.492 0.209
(0.399) (0.218) (2.039) (0.743) (0.829) (0.324)

Ranking 0.003 -0.005∗∗ -0.004 0.003 -0.006 0.001
(0.002) (0.002) (0.007) (0.003) (0.007) (0.003)

5 Star Rating Indicator 5.306∗∗∗ 4.399∗∗∗ 8.669∗∗∗ -1.527∗∗ 7.123∗∗∗ -1.251∗∗∗

(0.403) (0.193) (2.014) (0.734) (0.655) (0.256)

4 Star Rating Indicator 4.022∗∗∗ 2.350∗∗∗ 4.191∗∗ -0.067 3.173∗∗∗ -0.333
(0.405) (0.193) (2.087) (0.537) (0.716) (0.268)

3 Star Rating Indicator 1.502∗∗∗ 0.802∗∗∗ 2.099 -0.228 0.936 -0.060
(0.398) (0.200) (2.049) (0.741) (0.748) (0.276)

Ranking × 5 Star -0.051∗∗∗ -0.030∗∗∗ -0.101∗∗∗ 0.028∗∗∗ -0.087∗∗∗ 0.029∗∗∗

(0.010) (0.009) (0.019) (0.008) (0.020) (0.009)

Ranking × 4 Star -0.021∗∗∗ - 0.004 -0.009∗∗

(0.003) (0.013) (0.005)

Wald (χ2(7)) 1390.22 1358.63 1509.91 1436.12
N 47,063 47,063 47,063 47,063

Table 6 reports the hazard rates associated with estimates of entry; ”Failure” as defined in our model is
when a player leaves college to enter the NBA draft.
Robust standard errors in parentheses; ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table 7: Balance of Covariates: Rivals Rankings
Bandwidth: Rank 11-40 Bandwidth: Rank 16-35

Variable Rank > 25 Rank ≤ 25 Difference Rank > 25 Rank ≤ 25 Difference

Points (per game) 9.359 10.565 -1.206∗∗∗ 9.893 9.945 -.052
(4.994) (4.636) [-3.71] (4.858) (4.580) [-0.13]

Rebounds (per game) 4.083 4.745 -.662∗∗∗ 4.286 4.615 -.329∗

(2.214) (2.246) [-4.38] (2.237) (2.208) [-1.83]
Assists (per game) 1.746 1.858 -.113 1.778 1.708 .070

(1.468) (1.431) [-1.15] (1.452) (1.345) [0.61]
Blocks (per game) .581 .649 -.068 .607 .630 -.023

(.665) (.614) [-1.57] (.649) (.585) [-0.47]
Steals (per game) .868 .911 -.043 .860 .856 .004

(.519) (.501) [-1.25] (.485) (.462) [0.10]
Field Goals (per game) 3.303 3.772 -.469∗∗∗ 3.492 3.592 -.100

(1.721) (1.617) [-4.15] (1.686) (1.639) [-0.74]
Field Goal Percentage .451 .469 -.018∗∗∗ .456 .470 -.014∗∗

(.088) (.075) [-3.20] (.077) (.080) [-2.18]
Minutes (per game) 24.841 26.301 -1.459∗∗ 25.320 25.259 .079

(8.612) (7.041) [-2.19] (8.341) (7.154) [0.03]

N 484 396 880 319 291 610

The first and second columns for each subsample contain means with standard deviations below.
The third column contains t-statistics from a t-test of unequal variances on a difference in means
in the covariates. Standard errors are in parentheses, while t-statistics are in brackets.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1
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Table 8: Balance of Covariates: Rivals Rankings, Freshmen Only
Bandwidth: Rank 11-40 Bandwidth: Rank 16-35

Variable Rank > 25 Rank ≤ 25 Difference Rank > 25 Rank ≤ 25 Difference

Points (per game) 6.751 8.899 -2.148∗∗∗ 7.330 7.957 -.627
(4.174) (4.316) [-4.24] (4.313) (3.938) [-1.05]

Rebounds (per game) 3.205 4.172 -.967∗∗∗ 3.429 3.840 -.411
(1.849) (2.074) [-4.12] (1.860) (1.51) [-1.83]

Assists (per game) 1.370 1.612 -.242 1.436 1.437 .001
(1.260) (1.394) [-1.52] (1.309) (1.321) [-0.01]

Blocks (per game) .466 .591 -.125∗ .491 .536 -.045
(.521) (.585) [-1.89] (.510) (.494) [-0.61]

Steals (per game) .690 .845 -.155∗∗∗ .714 .761 -.047
(.457) (.531) [-2.62] (.455) (.487) [-0.69]

Field Goals (per game) 2.411 3.171 -.760∗∗∗ 2.632 2.879 -.247
(1.443) (1.522) [-4.30] (1.499) (1.446) [-1.15]

Field Goal Percentage .435 .458 -.023∗∗ .439 .458 -.019
(.098) (.072) [-2.33] (.090) (.076) [-1.62]

Minutes (per game) 20.739 23.877 -3.138∗∗ 21.894 22.235 -.341
(9.222) (7.542) [-2.30] (8.571) (7.574) [-0.21]

N 146 136 282 98 92 190

The first and second columns for each subsample contain means with standard deviations below.
The third column contains t-statistics from a t-test of unequal variances on a difference in means
in the covariates. Standard errors are in parentheses, while t-statistics are in brackets.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1
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Table 9: Balance of Covariates: Scout Rankings
Bandwidth: Rank 11-40 Bandwidth: Rank 16-35

Variable Rank > 25 Rank ≤ 25 Difference Rank > 25 Rank ≤ 25 Difference

Points (per game) 9.266 10.799 -1.533∗∗∗ 9.567 10.261 -.696
(4.953) (4.777) [-4.43] (4.969) (4.986) [-1.61]

Rebounds (per game) 4.055 4.914 -.859∗∗∗ 4.197 4.719 -.522∗∗

(2.261) (2.394) [-5.17] (2.226) (2.475) [-2.55]
Assists (per game) 1.794 1.679 .115 1.848 1.563 .286∗∗

(1.501) 1.339 [1.14] (1.511) (1.327) [2.32]
Blocks (per game) .541 .707 -.167∗∗∗ .552 .666 -.114∗∗

(.646) (.669) [-3.55] (.606) (.651) [-2.09]
Steals (per game) .820 .907 -.0872∗∗ .831 .865 -.034

(.505) (.526) [-2.37] (.461) (.514) [-.81]
Field Goals (per game) 3.315 3.853 -.538∗∗∗ 3.438 3.655 -.217

(1.759) (1.653) [-4.44] (1.770) (1.711) [-1.44]
Field Goal Percentage .453 .472 -.019∗∗∗ .454 .470 -.016∗∗

(.083) (.079) [-3.22] (.077) (.083) [-2.41]
Minutes (per game) 24.981 25.759 -.779 25.576 24.537 1.039

(8.566) (7.572) [-1.09] (8.415) (7.963) [1.15]

N 421 371 792 274 256 530

The first and second columns for each subsample contain means with standard deviations below.
The third column contains t-statistics from a t-test of unequal variances on a difference in means
in the covariates. Standard errors are in parentheses, while t-statistics are in brackets.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1

41



Table 10: Balance of Covariates: Scout Rankings, Freshmen Only
Bandwidth: Rank 11-40 Bandwidth: Rank 16-35

Variable Rank > 25 Rank ≤ 25 Difference Rank > 25 Rank ≤ 25 Difference

Points (per game) 6.707 8.616 -1.909∗∗∗ 7.168 7.842 -.674
(4.066) (4.485) [-3.57] (4.237) (4.682) [-0.98]

Rebounds (per game) 3.132 4.078 -.946∗∗∗ 3.393 3.722 -.329
(1.817) (2.165) [-3.79] (1.859) (2.178) [-1.06]

Assists (per game) 1.432 1.429 .003 1.548 1.323 .225
(1.385) (1.341) [0.02] (1.479) (1.352) [1.04]

Blocks (per game) .424 .582 -.158∗∗ .444 .520 -.076
(.497) (.570) [-2.36] (.432) (.556) [-0.99]

Steals (per game) .652 .817 -.165∗∗∗ .677 .768 -.091
(.441) (.558) [- 2.62] (.414) (.557) [-1.20]

Field Goals (per game) 2.424 3.090 -.666∗∗∗ 2.596 2.779 -.183
(1.476) (1.572) [-3.493] (1.515) (1.600) [-0.77]

Field Goal Percentage .431 .459 -.028∗∗ .432 .450 -.018
(.100) (.078) [-2.51] (.091) (.079) [-1.40]

Minutes (per game) 20.117 21.817 -1.700 21.429 19.987 1.44
(9.269) (8.322) [-1.14] (9.168) (7.542) [0.77]

N 128 128 256 85 85 170

The first and second columns for each subsample contain means with standard deviations below.
The third column contains t-statistics from a t-test of unequal variances on a difference in means
in the covariates. Standard errors are in parentheses, while t-statistics are in brackets.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1

42



Table 11: Regression Probability Jump and Kink Estimates, Rivals Sample
Variable Freshmen Only Full Sample

11 - 40 16 -35 11 - 40 16 - 35

Five Star? (jump) -0.021 0.128 -0.104 0.038
(0.061) (0.093) (0.070) (0.106)

Five Star × (Ranking - 25) (kink) -0.028∗∗∗ -0.038∗∗∗ -0.016∗∗∗ -0.027∗∗

(0.006) (0.014) (0.006) (0.012)

Constant 0.002 -0.117 0.189∗∗∗ 0.071
(0.027) (0.071) (0.050) (0.080)

Wald χ2(3) 24.92 10.17 33.84 6.32
N 280 190 877 610
R-squared .117 .037 .048 .012

This table produces second-stage estimates of (7) for players ranked within the Rivals database.
All estimates are local linear and are produced for two different bandwidths, 11-40 and 16-35.
Standard errors are clustered on the difference between the ranking and the threshold.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1

Table 12: Regression Probability Jump and Kink Estimates, Scout Sample
Variable Freshmen Only Full Sample

11 - 40 16 -35 11 - 40 16 - 35

Five Star? (jump) -0.185∗∗ -0.275∗∗ -0.117 -0.209∗

(0.087) (0.128) (0.082) (0.120)

Five Star × (Ranking - 25) (kink) -0.013∗ -0.007 -0.003 0.014
(0.008) (0.013) (0.006) (0.011)

Constant 0.140∗∗ 0.196∗∗ 0.219∗∗∗ 0.304∗∗∗

(0.066) (0.094) (0.052) (0.077)

Wald χ2(3) 24.92 10.17 33.84 6.32
N 253 168 787 527
R-squared .078 .032 .032 .010

This table produces second-stage estimates of (7) for players ranked within the Scout database.
All estimates are local linear and are produced for two different bandwidths, 11-40 and 16-35.
Standard errors are clustered on the difference between the ranking and the threshold.
∗∗∗ : p < .01, ∗∗ : p < .05, ∗ : p < .1
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