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Abstract

The U.S. banking sector has become substantially more concentrated since the

1990s, raising questions about both the causes and implications of this consolidation.

We address these questions using nonparametric empirical methods that characterize

dynamic power law distributions in terms of two shaping factors—the reversion rates

(a measure of cross-sectional mean reversion) and idiosyncratic volatilities of assets for

different size-ranked banks. Using quarterly data for subsidiary commercial banks and

thrifts and their parent bank-holding companies, we show that the greater concentra-

tion of U.S. bank-holding company assets is a result of lower mean reversion, a result

consistent with policy changes such as interstate branching deregulation and the repeal

of Glass-Steagall. In contrast, the greater concentration of both U.S. commercial bank

and thrift assets is a result of higher idiosyncratic volatility, yet, idiosyncratic volatility

of parent bank-holding company assets fell. This contrast suggests that diversification

through non-banking activities has reduced the idiosyncratic asset volatilities of the

largest bank-holding companies and affected systemic risk.
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1 Introduction

The U.S. banking sector has undergone a tremendous transformation over the last half cen-

tury. A small group of the largest banks holds more assets than ever before, a trend that

accelerated after large-scale bank deregulation in the late 1990s (Kroszner and Strahan, 1999,

2014).1 Indeed, the ten largest bank-holding companies (BHCs) controlled about 70 percent

of total banking assets by 2010 (Figure 1). The Great Recession and Financial Crisis, char-

acterized by the spectacular failures of large financial institutions such as Lehman Brothers

and Bear Stearns, raise a number of concerns about this rise in bank asset concentration.

First, greater asset concentration may reflect fundamental changes in the nature of bank-

ing activities, such as a shift away from traditional banking towards non-banking activities

within the largest financial institutions (DeYoung and Torna, 2013). This shift may con-

tribute to added risk within financial intermediaries and hence within the banking system

as a whole. Second, greater asset concentration could alter the network structure of the

financial system, leading to more financial instability through greater exposure to shocks

affecting large and systemically important financial institutions (Sarin and Summers, 2016).

A growing literature has emphasized the potential for idiosyncratic, firm-level shocks to

have significant macroeconomic consequences (Gabaix, 2011), especially in industries such

as banking where interlinkages and contagion between entities are common (Acemoglu et al.,

2012; Caballero and Simsek, 2013).

We explore the causes and implications of rising U.S. bank asset concentration using

nonparametric empirical methods to describe the dynamics of the distribution of banking

assets for U.S. BHCs, commercial banks, and thrifts (Figures 1 - 3). Our general methods,

which are new to economics but are well-established in statistics, characterize the stationary

distribution of bank assets in terms of only two econometric factors—the reversion rates (a

measure of the rate of cross-sectional mean reversion) and idiosyncratic volatilities of bank

assets.2 In particular, our new techniques yield an asymptotic statistical identity in which

1Greenwood and Scharfstein (2013) and Philippon (2015) provide detailed analyses of the growth and
evolution of the U.S. financial sector more broadly.

2Fernholz (2016a) presents the methodology in detail. For an application to the U.S. wealth distribution,
see Fernholz (2016b).
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the distribution of bank assets is described by the relationship

bank asset concentration =
idiosyncratic volatility of bank assets

reversion rates of bank assets
. (1.1)

This identity, which obtains under minimal assumptions, shows that bank asset concentration

is decreasing in reversion rates and increasing in idiosyncratic volatility. We are thus able to

simultaneously investigate changes in both idiosyncratic bank asset volatility and the power

law structure of the bank size distribution in a unified and robust econometric framework.

How do we interpret these two shaping econometric factors? The reversion rates of

bank assets measure the growth rates of different size-ranked banks relative to the growth

rate of all banks. These encompass economic mechanisms such as mergers and acquisitions

and regulatory and competition policy in the banking sector (Kroszner and Strahan, 1999,

2014), as well as the preferences, constraints, and strategic choices that drive asset growth

for different sized banks (Corbae and D’Erasmo, 2013). The idiosyncratic asset volatilities

measure the intensity of firm-specific shocks. These include unanticipated changes to bank

liabilities and defaults on bank assets caused by shocks to borrowers’ production technologies

(Corbae and D’Erasmo, 2013). One of our novel contributions is to measure the changing

magnitude of these shocks for both BHCs and their subsidiary commercial banks and thrifts.

This exercise reveals the changing nature of diversification through non-banking activities

for the largest U.S. financial institutions. It also reveals changes in one important potential

source of contagion and systemic risk—idiosyncratic volatility (Acemoglu et al., 2012).

Using quarterly data on the assets of commercial banks, thrifts, and their parent BHCs,

we estimate reversion rates and idiosyncratic volatilities of bank assets over a period during

which the size distribution of these three categories of financial intermediaries became more

concentrated. Our estimates reveal that the cause of higher concentration among both

U.S. commercial banks and thrifts after the mid-1990s is an increase in idiosyncratic asset

volatility, especially for the largest banks and thrifts. In contrast, we find that the primary

driver of higher concentration among BHCs during this same time period is a fall in cross-

sectional mean reversion as measured by the reversion rates of bank assets—the idiosyncratic

volatilities of BHCs’ total asset holdings actually decreased after the mid-1990s.

The fall in the idiosyncratic asset volatilities for BHCs is surprising given the observed
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rise in idiosyncratic asset volatilities for commercial banks and thrifts, many of which are

subsidiaries of BHCs. This contrast suggests that diversification through non-banking ac-

tivities has more than offset the higher volatilities of BHCs’ traditional banking assets. The

fall in idiosyncratic BHC asset volatility also reveals the surprising result that even as one

source of potential contagion—concentration—has intensified, another important source—

idiosyncratic volatility—has diminished. In other words, bigger banks are not necessarily

riskier banks.

From 1975 to 2015, commercial bank assets as a share of GDP increased by about 70

percent. Not only did the U.S. banking system grow in size relative to the economy as a

whole, but its composition and concentration also drastically changed starting in the 1990s

(Janicki and Prescott, 2006). Over the last three decades, for example, the number of U.S.

commercial banks has fallen from more than 14,000 to less than 6,000 while the average

size of commercial banks has simultaneously increased five-fold in terms of real total assets.

Several explanations for these changes have been proposed, including the gradual removal

of interstate branching restrictions combined with increasing returns to scale (Hughes et al.,

2001; Wheelock and Wilson, 2012) and the repeal of the Glass-Steagall Act through the

passage of the Gramm-Leach-Bliley Act in 1999 (Lucas, 2013). Our findings regarding the

decrease in the reversion rates of BHC assets are consistent with these structural and policy

changes, since these changes are the very economic factors that affect asset growth rates for

the largest financial institutions.

One of this paper’s central contributions is to connect and extend three different and dis-

parate literatures—power laws, bank size distributions, and the importance of idiosyncratic

shocks for aggregate economic outcomes. This is accomplished using nonparametric empiri-

cal methods for dynamic power law distributions that characterize the role of idiosyncratic

shocks as a shaping force of the bank size distribution.

Our rank-based empirical methods are new to economics, but are well-established and

the subject of active research in statistics.3 These empirical techniques are flexible and

allow us to estimate and quantify the distributional effect of idiosyncratic volatilities across

every rank in the bank size distribution. In this way, our approach nests and extends

3See, for example, Banner et al. (2005), Pal and Pitman (2008), Ichiba et al. (2011), and Shkolnikov
(2011).
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earlier analyses based on Gibrat’s law (1931). Figure 4 clearly demonstrates why this extra

flexibility is essential. The figure presents log-log plots of the average share of total assets

held by the 500 largest BHCs versus their rank, for 1986 Q2 - 1997 Q4—before the increase

in concentration shown in Figure 1. The top panel shows the asset shares predicted using

our general nonparametric techniques. In contrast, the bottom panel shows the asset shares

predicted when imposing Gibrat’s law. The improved fit of the data is undeniable.

Another advantage of our methods is their robustness. These methods avoid model

misspecification issues since they allow for asset growth rates and volatilities that vary across

different bank characteristics including rank. Indeed, it is variation in reversion rates—which

are based on asset growth rates—and idiosyncratic volatilities that allows us to match the

data so much better than Gibrat’s law in Figure 4.

Idiosyncratic volatility is a root cause of contagion and systemic risk emanating from

networks and also a contributing factor for aggregate volatility. A recent literature empha-

sizes the potential for entity-specific volatility to affect aggregate volatility both in closed

(Carvalho and Grassi, 2015) and open economy environments (Di Giovanni and Levchenko,

2012). Gabaix (2011), for example, estimates that approximately one-third of U.S. out-

put volatility can be explained by idiosyncratic shocks to the 100 largest domestic firms.

Similarly, Carvalho and Gabaix (2013) show that “fundamental volatility”—volatility only

derived from microeconomic shocks—may be an important contributor to aggregate volatil-

ity and its evolution over time. They also point to the growth of the financial sector as

the chief cause of the recent rise of macroeconomic volatility that put an end to the Great

Moderation (Stock and Watson, 2003).

By any measure of importance, the banking sector includes some of the largest and most

interconnected U.S. corporates. In fact, over the last 15 years about a quarter of corporate

profits accrued to the financial sector, peaking at a 40 percent share in 2002.4 Acemoglu

et al. (2012) analyze how interconnections across industries allow for the possibility of cas-

cade effects in which microeconomic, idiosyncratic shocks lead to aggregate fluctuations.

The central role of the financial sector as a hub of the payment and credit system makes

the analysis of idiosyncratic volatilities in the banking sector all the more important. Fur-

4National Income and Product Accounts (NIPA) table 6.16
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thermore, the combination of complexity and opacity among financial intermediaries gives

idiosyncratic volatilities in that sector an added significance (Caballero and Simsek, 2013).

Indeed, the failure of financial institutions like Lehman Brothers or Bear Stearns often lead

to greater dislocation than failures in other industries. We contribute to this literature

by providing empirical estimates of idiosyncratic asset volatilities for different ranked U.S.

financial intermediaries and describing the changes in these volatilities since the 1990s.

Many researchers have identified the special relevance of the size distribution of the

banking sector. Kashyap and Stein (2000) and Ghossoub and Reed (2015), for example,

analyze how the bank size distribution influences the propagation of monetary policy. Gray

and Malone (2008) discuss the implications of different bank size distributions for large scale

private-public risk transfers. Beck et al. (2006) examine the relationship between the bank

size distribution and banking crises. Blank et al. (2009) analyze the impact of shocks at large

banks on the probability of distress at smaller banks, while Buch and Neugebauer (2011)

explore the real economic effects of idiosyncratic shocks to loan growth at large banks.

The rest of this paper is organized as follows. Section 2 discusses the panel data we use

for BHCs, commercial banks, and thrifts. Section 3 presents our nonparametric empirical

methods for dynamic power law distributions and uses those methods to characterize the

U.S. bank size distribution in terms of two econometric factors. This section also describes

how to estimate these two shaping factors using panel data. Section 4 summarizes our main

empirical results and discusses their statistical significance. Section 5 concludes.

2 Data

We analyze three different sets of U.S. depositories separately: (i) bank-holding companies,

(ii) commercial banks, and (iii) thrifts. These institutions have to file quarterly balance

sheets (“report on conditions”) and income statements (“report on income”) with their

regulator. BHCs are regulated by the Federal Reserve, and commercial banks and thrifts

are regulated by the Federal Reserve, the Office of the Comptroller of the Currency (OCC),

and the Federal Deposit Insurance Company (FDIC). Note that thrifts were supervised by
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the Office of Thrift Supervision (OTS) until 2011.

These quarterly balance sheets are publicly available from the Federal Financial Institu-

tions Examination Council (FFIEC) and from the Federal Reserve Bank of Chicago. Since

this paper focuses on the factors that shape the size distribution, the only variable we use is

total institution assets, which is variable mnemonic bhck2170 for BHCs, rcon2170 for com-

mercial banks, and svgl2170 for thrifts. In order to enable an in kind comparison of mean

reversion and idiosyncratic volatilities, we aggregate bank and thrift assets within a single

bank-holding company via the regulatory high-holder variable rssd9248 (REG HH 1 ID).

For example, one of the largest U.S. multi-bank-holding companies Citicorp (RSSD ID:

3375370) holds two commercial banks Citibank, N.A. (RSSD ID: 476810) and Department

Stores National Bank (RSSD ID: 3382547) as well as hundreds of non-bank entities.

We extract regulatory data from the so-called “call” reports. This is a repeated N × T

cross-section where N is the number of depository entities in the cross-section and T is the

quarter. Within our sample, the maximum number of BHCs per quarter is 2,338 (2005

Q2), the maximum number of commercial banks per quarter is 15,273 (1977 Q2), and the

maximum number of thrifts per quarter is 4,025 (1979 Q4). The sampling of quarterly reports

varies over time, with size thresholds in reporting changing the number of reporting entities.

The minimum number of reporting entities is 966 BHCs (2007 Q4), 6,570 commercial banks

(2014 Q4), and 638 thrifts (2011 Q4). Since our empirical approach requires a fixed number

of ranks over time, we size-rank all depositories within reporting quarter and restrict our

analysis to the largest 500 BHCs, the largest 3,000 commercial banks, and the largest 400

thrift institutions each quarter.

Data for commercial banks go back further in time than data for thrifts and BHCs. The

available data start in 1986 Q4 for BHCs, 1960 Q4 for commercial banks, and 1984 Q1 for

thrifts. Data is available until the most recent quarter for BHCs and commercial banks, and

until 2011 Q4 for thrifts. Because we follow these categories of financial intermediaries over

multiple decades, entry and exit as well as other factors constantly change the individual

institutions that occupy the top ranks. In other words, we do not follow a fixed panel of

BHCs, commercial banks, or thrifts every quarter, but instead a changing set of the largest

depositories in each quarter.
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If we consider all BHCs together, we find that the annualized average growth rate of total

assets was 7.3% during the 1986 Q4 – 2014 Q4 time period. Similarly, for all commercial

banks together and all thrifts together, we find that the annualized average growth rates of

total assets were 7.5% and 1.0% during the 1960 Q4 – 2014 Q4 and 1984 Q1 – 2011 Q4 time

periods, respectively.

3 A Nonparametric Approach to the Bank Size Distri-

bution

We use the nonparametric empirical methods for dynamic power law distributions detailed

by Fernholz (2016a) to characterize the U.S. distribution of bank assets.5 These methods are

well-established in statistics, and yield an asymptotic identity that describes the distribution

of bank assets according to the relationship

bank asset concentration =
idiosyncratic volatility of bank assets

reversion rates of bank assets
. (3.1)

This econometric identity motivates our empirical strategy. In particular, equation 3.1 im-

plies that any increase in bank asset concentration must be caused, in an econometric sense,

by either an increase in idiosyncratic asset volatility or a decrease in reversion rates.

3.1 Setup and Results

Bank Asset Dynamics

Consider a banking economy that consists of N > 1 banks. Time is continuous and denoted

by t ∈ [ 0,∞), and uncertainty in this economy is represented by a filtered probability space

(Ω,F ,Ft, P ). Let B(t) = (B1(t), . . . , BM(t)), t ∈ [0,∞), be an M -dimensional Brownian

motion defined on the probability space, with M ≥ N . We assume that all stochastic

processes are adapted to {Ft; t ∈ [0,∞)}, the augmented filtration generated by B.

5For brevity, we refer directly to Fernholz (2016a) on several occasions and thus leave out certain technical
details and proofs.
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The total assets of each bank i = 1, . . . , N in this economy are given by the process ai.

Each of these asset processes evolves according to the stochastic differential equation

d log ai(t) = µi(t) dt+
M∑
z=1

δiz(t) dBz(t), (3.2)

where µi and δiz, z = 1, . . . ,M , are measurable and adapted processes. The growth rates

and volatilities µi and δiz are general and essentially unrestricted, having only to satisfy

a few basic regularity conditions.6 Indeed, equation (3.2) together with these regularity

conditions implies that the asset processes for the banks in the economy are continuous

semimartingales, which represent a broad class of stochastic processes.7 According to the

martingale representation theorem (Nielsen, 1999), any plausible continuous process for asset

holdings can be written in the nonparametric form of equation (3.2).

The flexibility of bank asset dynamics permitted by equation (3.2) gives our framework

more generality than any previous analysis of dynamic power law distributions in economics.

Indeed, the M ≥ N sources of volatility in this equation allow for a rich structure of time-

varying idiosyncratic, correlated, and aggregate shocks to bank assets that need not conform

to any particular distribution. In addition to time variation, equation (3.2) also allows for

asset growth rates and volatilities that vary across any bank characteristics, including size

and location.

It is useful to consider the popular special case of Gibrat’s law in the context of our

framework. The most common form of Gibrat’s law imposes both equal asset growth rates

and equal asset volatilities across all banks (Gabaix, 1999, 2009). In terms of equation (3.2),

this is equivalent to imposing µ1(t) = · · · = µN(t) = µ at all times t, where µ is the common

asset growth rate for all banks, as well as δiz = 0 for all i ̸= z and δ211 = · · · = δ2NN = δ2

at all times t, where δ2 is the common asset volatility for all banks.8 Clearly, then, we see

that Gibrat’s law is only one special case of our more general nonparametric framework.

6These conditions ensure basic integrability of equation (3.2) and require that no two banks’ assets are
perfectly correlated over time. See Appendix A of Fernholz (2016a) for details.

7Continuous semimartingales are more general than Itô processes, which are common in the continuous-
time finance literature (Nielsen, 1999). For a detailed discussion, see Karatzas and Shreve (1991).

8In fact, the assets of all banks cannot grow at the same rate indefinitely, since this yields an asymptoti-
cally degenerate bank size distribution (Fernholz and Fernholz, 2014). Instead, a friction such as a reflecting
barrier at some minimum level of assets is necessary to ensure stationarity (Gabaix, 1999).
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Because we document economically and statistically significant deviations from Gibrat’s law

for U.S. bank assets, the extra flexibility of our general continuous semimartingale approach

is essential to accurately describing the bank size distribution.

It is useful to describe the dynamics of total assets for all banks in the economy, which

we denote by a(t) = a1(t)+ · · ·+aN(t). In order to do so, we first characterize the covariance

of assets across different banks over time. For all i, j = 1, . . . , N , let the covariance process

ρij be given by

ρij(t) =
M∑
z=1

δiz(t)δjz(t). (3.3)

Applying Itô’s Lemma to equation (3.2), it is not hard to show that the dynamics of the

process for total assets in the economy a are given by

d log a(t) = µ(t) dt+
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t), a.s., (3.4)

where

µ(t) =
N∑
i=1

θi(t)µi(t) +
1

2

(
N∑
i=1

θi(t)ρii(t)−
N∑

i,j=1

θi(t)θj(t)ρij(t)

)
, (3.5)

and, for all i = 1, . . . , N , θi(t) is the share of total assets held by bank i at time t,

θi(t) =
ai(t)

a(t)
. (3.6)

Rank-Based Bank Asset Dynamics

In order to characterize the distribution of bank assets in this setting, it is necessary to

consider the dynamics of bank assets by rank. To accomplish this, we introduce notation for

bank rank based on total asset holdings. For k = 1, . . . , N , let a(k)(t) represent the assets

held by the bank with the k-th most assets of all the banks in the economy at time t, so that

max(a1(t), . . . , aN(t)) = a(1)(t) ≥ a(2)(t) ≥ · · · ≥ a(N)(t) = min(a1(t), . . . , aN(t)). (3.7)
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Next, let θ(k)(t) be the share of total assets held by the k-th largest bank at time t, so that

θ(k)(t) =
a(k)(t)

a(t)
, (3.8)

for k = 1, . . . , N . Figures 1 - 3 show the changing assets shares of the top 10 and top 11-100

largest banks. In terms of the asset shares defined in equation (3.8), these figures plot the

evolution of θ(1)(t)+ · · ·+ θ(10)(t) and θ(11)(t)+ · · ·+ θ(100)(t) over time. In fact, our methods

allow us to describe the asset shares of every single size-ranked bank θ(k), which represents

the entire distribution of U.S. banking assets.

The next step is to describe the dynamics of the ranked bank asset processes a(k) and

ranked asset share processes θ(k), k = 1, . . . , N . We introduce the notion of a local time in

order to describe these dynamics. This is necessary as we cannot simply apply Itô’s Lemma

in this setting since the rank function is not differentiable.

For any continuous process x, the local time at 0 for x is the process Λx defined by

Λx(t) =
1

2

(
|x(t)| − |x(0)| −

∫ t

0

sgn(x(s)) dx(s)

)
. (3.9)

As detailed by Karatzas and Shreve (1991), the local time for x measures the amount of time

the process x spends near zero. As we demonstrate below, local times are closely related to

the rate at which the asset holdings of different banks cross-sectionally revert to the mean.

To be able to link bank rank (denoted by k) to bank index (denoted by i), let pt be the

random permutation of {1, . . . , N} such that for 1 ≤ i, k ≤ N ,

pt(k) = i if a(k)(t) = ai(t). (3.10)

This definition implies that pt(k) = i whenever bank i is the k-th largest bank in the economy.

It is not difficult to show that for all k = 1, . . . , N , the dynamics of the ranked bank asset
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processes a(k) and ranked asset share processes θ(k) are given by9,10

d log a(k)(t) = d log apt(k)(t) +
1

2
dΛlog a(k)−log a(k+1)

(t)− 1

2
dΛlog a(k−1)−log a(k)(t), a.s., (3.11)

and

d log θ(k)(t) = d log θpt(k)(t) +
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t), a.s. (3.12)

To understand equation (3.11), note that the local time terms in this equation only contribute

to a(k)(t) if the k-th largest bank’s assets either fall to the level of the (k+1)-th largest bank’s

assets (this corresponds to Λlog a(k)−log a(k+1)
) or rise to the level of the (k−1)-th largest bank’s

assets (this corresponds to Λlog a(k−1)−log a(k)). In the former case, the positive local time term

ensures that the asset holdings of the k-th largest bank are always larger than those of the

(k + 1)-th largest bank. Conversely, in the latter case, the negative local time term ensures

that the k-th largest bank is always smaller than the (k− 1)-th largest bank. A similar logic

applies to equation (3.12) for the ranked asset share processes θ(k).

Using the definition of the asset shares θi(t) from equation (3.6), if we subtract equation

(3.4) from equation (3.2), then we have that for all i = 1, . . . , N ,

d log θi(t) = µi(t) dt+
M∑
z=1

δiz(t) dBz(t)− µ(t) dt−
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t). (3.13)

Because equation (3.12) describes the dynamics of the ranked asset share processes θ(k) in

terms of the dynamics of the asset share processes θi, we can substitute equation (3.13) into

equation (3.12) to get that

d log θ(k)(t) =
(
µpt(k)(t)− µ(t)

)
dt+

M∑
z=1

δpt(k)z(t) dBz(t)−
N∑
i=1

M∑
z=1

θi(t)δiz(t) dBz(t)

+
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t),

(3.14)

9Throughout this paper, we shall use the convention that Λlog a(0)−log a(1)
(t) = Λlog a(N)−log a(N+1)

(t) = 0.

We shall also write dxpt(k)(t) to refer to the process
∑N

i=1 1{i=pt(k)}dxi(t).
10A formal derivation of these equations is provided by Fernholz (2016a).
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a.s., for all k = 1, . . . , N . Equation (3.14), in turn, implies that the process log θ(k)−log θ(k+1)

satisfies, a.s., for all k = 1, . . . , N − 1,

d
(
log θ(k)(t)− log θ(k+1)(t)

)
=
(
µpt(k)(t)− µpt(k+1)(t)

)
dt+ dΛlog θ(k)−log θ(k+1)

(t)

− 1

2
dΛlog θ(k−1)−log θ(k)(t)−

1

2
dΛlog θ(k+1)−log θ(k+2)

(t)

+
M∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)
dBz(t).

(3.15)

Reversion Rates

Let αk equal the time-averaged limit of the expected growth rate of assets for the k-th

largest bank at time t, µpt(k), relative to the expected growth rate of assets for all banks in

the economy, µ, so that

αk = lim
T→∞

1

T

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt, (3.16)

for k = 1, . . . , N . It is worth emphasizing that the growth rates µpt(k) in equation (3.16) can

vary over time and across any bank characteristics. The key insight is that by averaging

these different and changing growth rates over time for each rank k, we obtain rank-based

relative growth rates αk that allow us to characterize the distribution of bank assets, as we

shall demonstrate below.

The relative growth rates αk are a measure of the rate at which bank assets revert to

the mean. We shall refer to the −αk as reversion rates, since lower values of αk (and hence

higher values of −αk) imply faster cross-sectional mean reversion.

For all k = 1, . . . , N , let κk equal the time-averaged limit of the local time process

Λlog θ(k)−log θ(k+1)
, so that

κk = lim
T→∞

1

T
Λlog θ(k)−log θ(k+1)

(T ). (3.17)

Let κ0 = 0, as well. The parameters αk and κk are related by αk−αk+1 =
1
2
κk−1−κk+

1
2
κk+1,

for all k = 1, . . . , N − 1. This relationship between reversion rates and local times is useful

for estimating the reversion rates.
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Idiosyncratic Volatilities

In a similar manner, we wish to define the time-averaged limit of the volatility of the process

log θ(k) − log θ(k+1), which measures the relative asset holdings of adjacent banks in the

distribution of bank assets. For all k = 1, . . . , N − 1, let σk be given by

σ2
k = lim

T→∞

1

T

∫ T

0

M∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)2
dt. (3.18)

As with the growth rates in equation (3.16), the asset volatilities implied by the parameters

δpt(k)z in equation (3.18) can vary over time and across any bank characteristics. These

different and changing volatilities are averaged over time for each rank k, and this yields

rank-based volatilities σk that, together with the reversion rates −αk, entirely determine the

shape of the distribution of bank assets.

Each volatility parameter σk measures the standard deviation of the process log θ(k) −
log θ(k+1). In the presence of both idiosyncratic, bank-specific shocks and aggregate shocks,

these volatility parameters will measure only the intensity of idiosyncratic shocks since ag-

gregate shocks that affect all banks have no impact on the relative asset holdings of adjacent

banks in the distribution.

Note, however, that the volatility parameters σk measure the idiosyncratic asset volatili-

ties of both the k-th and (k+1)-th largest banks together (because they measure the volatility

of log θ(k) − log θ(k+1) rather than log θ(k)). As a consequence, in order to obtain values that

correspond to idiosyncratic asset volatilities for one single ranked bank, it is necessary to

appropriately adjust the estimated values of σk reported in Table 1 and Figures 5 to 7 below.

In particular, these estimated values must be divided by the square root of two.

The Distribution of Bank Assets

The stable version of the process log θ(k)− log θ(k+1) is the process log θ̂(k)− log θ̂(k+1) defined

by

d
(
log θ̂(k)(t)− log θ̂(k+1)(t)

)
= −κk dt+ dΛlog θ̂(k)−log θ̂(k+1)

(t) + σk dB(t), (3.19)
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for all k = 1, . . . , N − 1.11 The stable version of log θ(k) − log θ(k+1) replaces all of the

processes from the right-hand side of equation (3.15) with their time-averaged limits, with

the exception of the local time process Λlog θ(k)−log θ(k+1)
. As long as the relative growth rates,

volatilities, and local times that we take limits of in equations (3.16)-(3.18) do not change

drastically and frequently over time, then the distribution of the stable versions of θ(k) will

accurately reflect the distribution of the true versions of these ranked asset share processes.

Throughout this paper, we shall assume that these limits do in fact exist.12

Theorem 3.1. There is a stationary distribution of bank assets in this economy if and only

if α1 + · · ·+ αk < 0, for k = 1, . . . , N − 1. Furthermore, if there is a stationary distribution

of bank assets, then for k = 1, . . . , N − 1, this distribution satisfies

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (3.20)

Theorem 3.1 provides an analytic rank-by-rank characterization of the entire distribution

of bank assets that matches the intuitive form of equation (3.1).13 This characterization is

achieved despite minimal assumptions on the processes that describe the dynamics of bank

assets over time. The theorem yields a system of N − 1 equations which together with the

identity θ(1)+· · ·+θ(N) = 1 can be solved to yield the asset shares held by every single ranked

bank θ(k). The statement that the k-th largest bank holds θ(k) assets is equivalent to the

statement that k banks hold more than θ(k) assets, and this in turn yields the probability of

observing bank assets greater than θ(k). Thus, the asset shares θ(k) describe the cumulative

distribution function (CDF) of the distribution of bank assets. In other words, Theorem 3.1

characterizes the full distribution of bank assets.

This characterization is quite different from what is standard for power laws in economics

and finance. Usually, a single stochastic differential equation is solved and this solution yields

a parametric distribution that represents a continuum of economic agents (Gabaix, 2009).

Here, we solve a discrete system of multiple stochastic differential equations that imposes

11For each k = 1, . . . , N − 1, equation (3.19) implicitly defines another Brownian motion B(t), t ∈ [0,∞).
These Brownian motions can covary in any way across different k.

12Note that the existence of the limits in equations (3.16)-(3.18) is a weaker assumption than the existence
of a stationary distribution of bank assets (Banner et al., 2005).

13We refer the reader to Fernholz (2016a) for a proof of the theorem.
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no distributional assumptions and yields predictions for the assets held by each individual

ranked bank. This granularity is essential for real-world applications, since there is never a

continuum of economic agents in the data.

According to Theorem 3.1, two factors shape the bank size distribution. The first fac-

tor is the reversion rates of bank assets, measured by −αk, and the second factor is the

idiosyncratic volatility of bank assets, σk. Both factors vary across different ranks in the

distribution, thus going beyond simpler formulations based on the equal growth rates and

volatilities imposed by Gibrat’s law. The theorem shows that an increase in reversion rates

lowers the concentration of bank assets, while an increase in idiosyncratic volatility raises

the concentration of bank assets.14 Any change in the bank size distribution is caused by a

corresponding change in at least one of these two factors that shape the distribution.

Central to our empirical approach is the implication of Theorem 3.1 that only two factors

shape the distribution of bank assets. Our goal is to measure these two shaping factors and

investigate how they changed over time. This analysis allows us to determine the cause, in

an econometric sense, of the large increase in the concentration of U.S. bank assets observed

in the last few decades.

3.2 Gibrat’s Law, Power Laws, and Pareto Distributions

It is useful to see how our rank-based, nonparametric approach nests many common examples

of random growth processes from other literatures as special cases. We shall focus on the

influential example of Gibrat’s law, and also describe the conditions that are necessary for

Gibrat’s law to give rise to Zipf’s law.

The distribution of bank assets follows a power law if the relationship between log asset

shares and log rank is linear, at least for the highest ranks.15 According to equation (3.20)

from Theorem 3.1, for all k = 1, . . . , N − 1, the slope of a log asset shares versus log rank

plot is given by

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
log k − log k + 1

≈ −(k + 0.5)σ2
k

−4(α1 + · · ·+ αk)
, (3.21)

14Note that this latter result is consistent with the results of Gabaix (2009) and Benhabib et al. (2011).
15See the discussions in Newman (2005) and Gabaix (2009).
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where we use the asymptotic approximation (log k − log k + 1)−1 ≈ −(k + 0.5). Equation

(3.21) characterizes a power law distribution for bank assets in that it imposes piecewise

linearity—a different linear relationship between ranks 1 and 2, 2 and 3, and so on up to

ranks N − 1 and N . As the reversion rates −αk and idiosyncratic volatilities σk vary across

different ranks in the distribution, equation (3.21) shows that the slope of the log asset shares

versus log rank plot varies correspondingly. This means that our general methods allow for

a power law relationship that can vary across every single rank in the distribution of bank

assets, as shown in the top panel of Figure 4. To our knowledge, our approach is the first in

economics or finance to achieve such generality.

According to Gabaix (2009), the strongest form of Gibrat’s law for banks imposes asset

growth rates and volatilities that do not vary across different sized banks. In terms of

the reversion rates −αk (which measure relative asset growth rates for different size-ranked

banks) and idiosyncratic volatilities σk, this requirement is equivalent to there existing some

common α < 0 and σ > 0 such that

α = α1 = · · · = αN−1, (3.22)

and

σ = σ1 = · · · = σN−1. (3.23)

In terms of equation (3.21), then, Gibrat’s law yields asset shares that satisfy

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
log k − log k + 1

≈ −(k + 0.5)σ2
k

−4(α1 + · · ·+ αk)
=

−(k + 0.5)σ2

−4kα
=

σ2

4α
+

σ2

8kα
(3.24)

for all k = 1, . . . , N − 1.

The distribution of bank assets follows a Pareto distribution if a plot of log asset shares

versus log rank appears as a straight line (Newman, 2005; Gabaix, 2009). Furthermore, if

the slope of such a straight line plot is -1, then bank asset shares obey Zipf’s law (Gabaix,

1999). Equation (3.24) shows that Gibrat’s law yields a Pareto distribution in which, for

large k, the log-log plot of asset shares versus rank has slope σ2/4α < 0, which is equivalent
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to the Pareto distribution having parameter −4α/σ2 > 0.16 Furthermore, we see that bank

asset shares obey Zipf’s law only if σ2 = −4α, in which case the log-log plot has slope -1,

for large k.

Theorem 3.1 thus demonstrates that Gibrat’s law and Zipf’s law are special cases of

general power law distributions in which asset growth rates and volatilities potentially vary

across different ranks in the distribution. Indeed, equations (3.20) and (3.21) imply that

any power law exponent can obtain in any part of the distribution curve. This flexibility is

essential, as the contrasting goodness of fit shown in the top and bottom panels of Figure

4 clearly demonstrates that Gibrat’s law fails to accurately describe the distribution of U.S.

BHC assets. Furthermore, as we show in Section 4, asset growth rates and volatilities for

all categories of financial intermediaries that we examine differ across ranks in a statistically

significant and economically meaningful way.

3.3 Estimation

Perhaps the most important implication of Theorem 3.1 is that an understanding of rank-

based bank asset dynamics is sufficient to describe the entire distribution of U.S. bank

assets. According to the theorem, it is not necessary to directly model and estimate bank

asset dynamics by name, denoted by index i. Instead, if we can estimate the time-averaged

rank-based relative growth rates, αk, and the time-averaged rank-based volatilities, σk, then

we can describe the full distribution of bank assets using equation (3.20).

Using our detailed panel data for U.S. bank assets, we can estimate these rank-based pa-

rameters directly. This is accomplished using discrete-time approximations of the continuous

processes that yielded Theorem 3.1.

For the estimation of the volatility parameters σk, we use the discrete-time approximation

of equation (3.18) above. In particular, these estimates are given by

σ2
k =

1

T − 1

T−1∑
t=1

[(
log θpt(k)(t+ 1)− log θpt(k+1)(t+ 1)

)
−
(
log θpt(k)(t)− log θpt(k+1)(t)

)]2
,

(3.25)

16Note that the steeper slope at lower values of k implied by equation (3.24) exactly corresponds to the
small-sample bias for size-rank power law estimation detailed by Gabaix and Ibragimov (2011).
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for all k = 1, . . . , N − 1. Note that T is the total number of quarters in the time period

over which we estimate these parameters. Equation (3.25) shows that the parameters σk

are estimated by measuring the standard deviations of changes over time in the log asset

shares of the k-th largest bank relative to the (k + 1)-th largest bank (changes over time in

log θpt(k)(t)− log θpt(k+1)(t)) for all ranks k = 1, . . . , N − 1.

We also wish to estimate the rank-based relative growth rates αk. In order to accomplish

this, we first estimate the local time parameters κk and then use the relationship that exists

between these local times and the αk parameters.

Lemma 3.2. The relative growth rate parameters αk and the local time parameters κk satisfy

αk =
1

2
κk−1 −

1

2
κk, (3.26)

for all k = 1, . . . , N − 1, and αN = −(α1 + · · ·+ αN−1).

Lemma 3.3. The ranked asset share processes θ(k) satisfy the stochastic differential equation

d log
(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
= d log

(
θ(1)(t) + · · ·+ θ(k)(t)

)
−

θ(k)(t)

2(θ(1)(t) + · · ·+ θ(k)(t))
dΛlog θ(k)−log θ(k+1)

(t), a.s.,

(3.27)

for all k = 1, . . . , N .

Lemmas 3.2 and 3.3 together allow us to generate estimates of the rank-based relative

growth rates αk.
17 In order to accomplish this, we first estimate the local time processes

Λlog θ(k)−log θ(k+1)
using the discrete-time approximation of equation (3.27). This discrete-time

approximation implies that for all k = 1, . . . , N ,

log
(
θpt(1)(t+ 1) + · · ·+ θpt(k)(t+ 1)

)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
=

log
(
θpt+1(1)(t+ 1) + · · ·+ θpt+1(k)(t+ 1)

)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
−

θpt(k)(t)

2
(
θpt(1)(t) + · · ·+ θpt(k)(t)

) (Λlog θ(k)−log θ(k+1)
(t+ 1)− Λlog θ(k)−log θ(k+1)

(t)
)
,

(3.28)

17We refer the reader to Fernholz (2016a) for the simple proofs of Lemmas 3.2 and 3.3.
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which, after simplification and rearrangement, yields18

Λlog θ(k)−log θ(k+1)
(t+ 1)− Λlog θ(k)−log θ(k+1)

(t) =

[
log
(
θpt+1(1)(t+ 1) + · · ·+ θpt+1(k)(t+ 1)

)
− log

(
θpt(1)(t+ 1) + · · ·+ θpt(k)(t+ 1)

) ]2 (θpt(1)(t) + · · ·+ θpt(k)(t)
)

θpt(k)(t)
.

(3.29)

As with our estimates of the volatility parameters σk, we estimate the values of the local

times in equation (3.29) for t = 1, . . . , T − 1, where T is the total number of quarters in

the time period over which we are estimating. We also set Λlog θ(k)−log θ(k+1)
(1) = 0, for all

k = 1, . . . , N .

Equation (3.29) states that the change in the local time process Λlog θ(k)−log θ(k+1)
is in-

creasing in the difference between the time t + 1 asset holdings of the largest k banks at

time t+ 1 and the time t+ 1 asset holdings of the largest k banks at time t, a nonnegative

number.19 Of course, this difference measures the intensity of cross-sectional mean reversion,

since a large difference implies that the largest k banks at time t have seen their assets grow

substantially slower than some other subset of banks that had smaller total asset holdings

at time t and are now themselves the largest banks in the economy.

After estimating the local times in equation (3.29), we then use equation (3.17) to gen-

erate estimates of κk according to

κk =
1

T
Λlog θ(k)−log θ(k+1)

(T ), (3.30)

for all k = 1, . . . , N . Finally, we can use the relationship between the parameters αk and κk

established by Lemma 3.2. This is accomplished via equation (3.26), which yields estimates of

each αk using our estimates of the parameters κk from equation (3.30). Note that according

to Lemma 3.2, the reversion rates −αk, which measure the rate of cross-sectional mean

reversion, are increasing in the local time parameters κk. This is not surprising given our

18Note that θpt(k)(t+ 1) denotes the assets at time t+ 1 of the bank that is k-th largest at time t, while
θpt+1(k)(t+ 1) denotes the assets at time t+ 1 of the bank that is k-th largest at time t+ 1.

19Because of entry and exit, there are banks that appear in our data set at time t but not at time t+ 1,
and vice versa. The calculations in equations (3.25) and (3.29), however, require that banks stay in the data
set for two consecutive quarters. It is thus necessary to restrict our calculations at each time t to only those
banks that are in the data set at time t and time t+ 1.
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observation from equation (3.29) that the estimated local time processes Λlog θ(k)−log θ(k+1)
are

measuring the intensity of mean reversion.

After estimating the parameters αk and σk for each rank k = 1, . . . , N , we smooth these

estimates across different ranks using a standard Gaussian kernel smoother. Using these

smoothed estimates, we calculate the sum of the absolute values of the difference between

the observed asset shares θ(k) and those predicted by our estimates according to equation

(3.20) from Theorem 3.1. Next, we smooth the estimated parameters αk and σk a second

time and again calculate the absolute deviation between the observed asset shares and those

predicted by equation (3.20). This process of smoothing the estimated parameters and

then calculating the absolute deviation between prediction and data is repeated until this

deviation is minimized.20

One of the principle motivations of this paper is the changes in the bank size distribution

that have occurred in the last few decades. Figures 1 to 3 show these substantial changes over

time for bank-holding companies, commercial banks, and thrifts. According to the figures,

the U.S. bank size distribution began to transition from one distribution to another at some

point in the 1990s. In the context of our empirical approach, this transition implies that

a long-run change in reversion rates −αk and idiosyncratic volatilities σk occurred at this

same point in time. It is necessary, then, to estimate the quarter in which this transition

began as well as two sets of reversion rates and volatilities—one before the transition, and

one after it.

In order to estimate these objects, we use a procedure similar to the smoothing procedure

that minimizes the absolute deviation between prediction and data as described above. First,

we select a quarter as the start date for the transition from one distribution to another. Next,

we estimate two sets of reversion rates −αk and idiosyncratic volatilities σk using data before

and after our transition start date (this follows the procedure described above). Finally, we

calculate the sum of the absolute values of the difference between the observed asset shares

θ(k) and those predicted by our estimated reversion rates and volatilities according to equation

(3.20). Note that the predicted asset shares are different before and after the transition start

20More precisely, we calculate the absolute deviation between prediction and data by smoothing the
parameters αk and σk between 1 and 100 times and then choosing the number of smoothings that achieves
the lowest total absolute deviation within this range.
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date, since the estimated factors differ for these two periods as well. We repeat this procedure

over a set of plausible start dates for the transition from one distribution to another and

then choose the transition start date that minimizes the sum of absolute deviations between

prediction and data.21

4 Empirical Results

The intuitive version of our statistical identity in equation (3.1) motivates our empirical

strategy in this paper. By estimating reversion rates −αk and idiosyncratic volatilities σk

for U.S. bank-holding companies, commercial banks, and thrifts, we can examine how these

two shaping factors changed over time. According to Theorem 3.1, this analysis offers an

econometric explanation of the increased concentration in banking assets observed after the

mid-1990s for all three categories of banking institutions (Figures 1 to 3). Furthermore, as

emphasized by Acemoglu et al. (2012), measures of changing idiosyncratic volatilities yield

information about changing U.S. financial stability.

4.1 Point Estimates

Idiosyncratic Volatilities

One of this paper’s main contributions is to analytically characterize the role of idiosyncratic

volatility as a shaping force of the bank size distribution. We first examine the idiosyncratic

volatilities σk across the size distribution of bank-holding companies, commercial banks, and

thrifts, recalling that commercial banks and thrifts are often subsidiaries of BHCs.

Section 3 provides a procedure for estimating idiosyncratic volatilities across different

ranks using panel data. In Figures 5, 6, and 7, we plot, respectively, the estimated standard

deviations of the idiosyncratic volatilities of asset holdings for different ranked U.S. BHCs,

commercial banks, and thrifts. These values of σk, averaged across quartiles, are also reported

21These plausible start dates range from the early 1990s through 2000. Start dates outside this range
yield substantially higher deviations between prediction and data.
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in the first two columns of Table 1.

Figure 5 plots the idiosyncratic asset volatilities for the 500 largest U.S. BHCs from 1986

Q2 – 1997 Q4 and then from 1998 Q1 – 2014 Q4. According to Figure 5, the idiosyncratic

asset volatilities for BHCs decreased after 1997 Q4, with the largest decreases occurring

for medium-sized BHCs. In section 4.2, we confirm that these changes are in fact most

statistically significant for medium-sized BHCs. Similarly, Figure 6 plots the idiosyncratic

asset volatilities for the 3,000 largest U.S. commercial banks from 1960 Q4 – 1998 Q1 and

then from 1998 Q2 – 2014 Q4. In contrast to BHCs, this figure shows that, especially for

the largest commercial banks, idiosyncratic volatilities increased after 1998 Q1. The other

common subsidiary of BHCs, thrifts, also experienced a similar increase in idiosyncratic asset

volatilities. Figure 7 plots the idiosyncratic volatilities for the 400 largest U.S. thrifts from

1984 Q1 – 1998 Q1 and then from 1998 Q2 – 2011 Q4 and shows this increase in the later

period. Importantly, the measured decrease in the idiosyncratic asset volatilities of BHCs

over time shown in Figure 5 is in stark contrast to the measured increase in the idiosyncratic

asset volatilities of commercial banks and thrifts.

Our paper is the first to reveal this surprising contrast in the changes in idiosyncratic

volatilities of BHC assets as compared to commercial bank and thrift assets. This estimated

divergence is notable because we group commercial banks (thrifts) that are owned by the

same parent BHC together into one single commercial bank (thrift) entity. After all, it would

be natural to expect an increase in the idiosyncratic asset volatilities of subsidiary commercial

banks and thrifts to coincide with an increase in the idiosyncratic asset volatilities of their

parent BHCs. Figures 5 to 7, however, clearly refute this simple view.

A full analysis of the possible underlying economic causes of the opposing changes in

asset volatilities of BHCs in contrast to commercial banks and thrifts is beyond the scope

of this paper and likely a promising direction for future research. There are many potential

causes of these changes—an exogenous structural change in the economic environment, a

change in policy or incentives related to corporate governance, or an endogenous response to

the removal of interstate branching restrictions (Kroszner and Strahan, 1999). Our empirical

analysis in this paper only measures the distributional effect of these changes in volatility.

However, by documenting these changes we are also able to draw conclusions about changing
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U.S. financial stability, even if the precise structural cause of these changes remains an open

question.

Reversion Rates

The observed increase in the concentration of bank-holding company, commercial bank, and

thrift assets in Figures 1 to 3 must be caused by either an increase in idiosyncratic volatilities

σk, a decrease in reversion rates −αk, or both. Indeed, equation (3.20) from Theorem 3.1

states that

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (4.1)

Given the observed decrease in idiosyncratic asset volatilities of BHCs (σk) observed in Figure

5, then, it must be that cross-sectional mean reversion (−αk) decreased in 1998 Q1 – 2014

Q4 relative to 1986 Q2 – 1997 Q4. Figure 8 confirms that this is in fact the case—the fall

in mean reversion of BHC assets more than offset the fall in the idiosyncratic volatility and

led to the rise in BHC asset concentration.

Similar to BHCs, commercial bank and thrift assets also grew more concentrated after

1997, but this concentration occurs at the same time as the idiosyncratic volatilities of

commercial bank and thrift assets, as measured by the parameters σk, rose. Consequently,

our empirical approach does not have a clear prediction about the direction of change of the

reversion rates of commercial bank and thrift assets, as measured by the parameters −αk.

Figures 9 to 10 reveal that these reversion rates actually increased for the largest commercial

banks and thrifts after 1997, with the magnitude of this change larger for thrifts than for

commercial banks.22 In both cases, however, these increases in cross-sectional mean reversion

are of a smaller magnitude than the decrease in mean reversion for BHC assets shown in

Figure 8. For commercial banks and thrifts, then, both mean reversion and idiosyncratic

volatility rose, but the rise in idiosyncratic volatility ruled and led to the rise in commercial

bank and thrift asset concentration.

A number of potential economic explanations can account for these observed changes in

mean reversion rates. In particular, legislative changes in the mid-1990s such as the repeal

of the Glass-Steagall Act that separated commercial and investment banking (Lucas, 2013)

22The last two columns of Table 1 also report changing values of αk averaged across quartiles.
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are consistent with relatively faster asset growth for the largest BHCs and hence less mean

reversion. Further effects may stem from persistent effects of the liberalization of inter-state

branching restrictions discussed in Kroszner and Strahan (1999, 2013) or changes in the

scale economies of the banking industry discussed in Wheelock and Wilson (2012, 2015).

Finally, to the extent that the underlying size distribution of business firms is determined

by the distribution of managerial talent, it is possible that these changes in the bank size

distribution are being driven by a change in managerial talent (Lucas, 1978). While it is

beyond the scope of this paper, future empirical work that attempts to link these changes

in the economic environment to the changes in cross-sectional mean reversion we document

in this paper should yield useful insight.

What do we learn from the idiosyncratic volatilities and reversion rates?

We can draw three more conclusions from our findings. First, the naive view that a more

concentrated banking sector is always a riskier banking sector need not hold. A growing

literature emphasizes the potential for idiosyncratic, firm-level shocks to affect aggregate

macroeconomic outcomes. Within this literature, both Acemoglu et al. (2012) and Ca-

ballero and Simsek (2013) show that such contagion is likely most pernicious in industries

with complex and opaque interlinkages. Given the complex interlinkages of the banking

and finance industries, there are reasons to worry about both concentration of assets and

idiosyncratic asset volatility. Indeed, as Gabaix (2011) shows, firm-level shocks are most

likely to lead to aggregate volatility in concentrated industries that are dominated by a few

large firms.

We find that U.S. bank-holding company assets have grown more concentrated since the

1990s while the idiosyncratic volatility of BHC assets has decreased over this same time

period. Therefore, to the extent that idiosyncratic shocks might be a source of aggregate

risk for the financial sector, our results show that this source of risk has decreased over the

last few decades. This is true despite the increase in concentration of BHC assets. Of course,

we do not directly measure systemic risk or complexity in the financial sector, so we cannot

conclude that the overall threat of contagion in this sector has decreased. Instead, we show

that one important source of potential contagion—idiosyncratic volatility—has diminished,
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even as another more obvious source—concentration—has intensified.

Second, the contrasting changes in asset volatilities for different categories of banking

institutions yield insight into asset diversification. Compare Figure 5 to Figures 6 and 7.

There is a rise in the idiosyncratic asset volatilities of subsidiary commercial banks and thrifts

after the 1990s combined with a simultaneous fall in the idiosyncratic asset volatilities of

their parent BHCs. This contrasting result suggests that the non-banking activities of BHCs

have strengthened intra-institutional risk-sharing and increased diversification, changes that

have more than offset the rise in the idiosyncratic volatility of BHCs’ commercial banking

activities. This has led to a fall in the idiosyncratic volatility of their total assets. As a

consequence, idiosyncratic asset volatilities—an important source of potential contagion—

for the largest U.S. financial institutions have actually declined since the 1990s. To our

knowledge, this paper is the first to uncover this surprising finding.

Our results regarding the declining idiosyncratic volatility of BHC assets is related to

Sarin and Summers (2016), who examine market volatility and risk measures for large finan-

cial institutions before and after the 2008 Financial Crisis. In contrast, we directly measure

changes in idiosyncratic balance sheet volatility before and after the rise of big banks in the

1990s. We link these changes structurally to the rise in bank asset concentration among a

few large and systemically important institutions of concern to policymakers, and also show

how intra-institutional risk sharing has changed over this period.

Finally, we can see from Figures 5 to 10 that the shaping parameters αk and σk vary across

different ranks in our data sets. Such variation in growth rates and idiosyncratic volatilities

across different ranks is inconsistent with Gibrat’s law (Gibrat, 1931), the special case of

our general approach discussed in Section 3.2. In this sense, our nonparametric empirical

framework extends previous studies based on the equal growth rates and volatilities imposed

by Gibrat’s law in a way that allows us to better match the empirical bank size distribution.

This added empirical flexibility and realism allows us to observe contrasting changes in

idiosyncratic volatility for parent and subsidiary financial institutions. Because this revealed

divergence has intriguing implications, the value added from our empirical framework is

likely to yield similar economic and policy insight when applied to other economic questions.
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Goodness of Fit

It is useful to examine how well our rank-based empirical approach matches the data. Fig-

ure 11 shows the average share of total assets held by different ranked U.S. bank-holding

companies from 1986 Q2 – 1997 Q4 together with the shares predicted for these BHCs using

equation (3.20) from Theorem 3.1 estimated over this same time period.23 This figure also

displays the minimum and maximum shares held by different ranked BHCs during these

same years. Figure 12 shows these same quantities for different ranked U.S. BHCs from 1998

Q1 – 2014 Q4. In addition to displaying the minimum and maximum shares held by different

ranked BHCs during these years, this figure also displays the size distribution at the end of

the sample period (the dot-dashed blue line).

Figures 11 and 12 are constructed using the cross-sectional mean reversion and idiosyn-

cratic volatility parameters from Figures 5 and 8. Together with equation (3.20) from The-

orem 3.1, these parameter values yield stationary distribution values for each rank asset

share θ(k), k = 1, . . . , N .24 As the two figures demonstrate, equation (3.20) estimated over

these two different time periods is able to approximately match the observed U.S. BHC size

distribution. Furthermore, the predicted shares also generate an increased concentration in

BHC assets for the 1998 Q1 – 2014 Q4 time period. As detailed above (Figures 5 and 8),

this increased concentration is a result of a decrease in mean reversion of asset holdings for

the largest BHCs.

Figures 13 and 14 show the average share of total assets held by different ranked U.S.

commercial banks for 1960 Q4 – 1998 Q1 and 1998 Q2 – 2014 Q4, respectively. These

figures also report the asset shares predicted using estimates of αk and σk over these same

time periods. The fit of equation (3.20) is slightly better for commercial banks than for

BHCs, but crucially, our empirical approach yields increased predicted asset concentration

for both BHCs and commercial banks for the 1998 Q1 – 2014 Q4 and 1998 Q2 – 2014 Q4

time periods, respectively. These predictions are, of course, consistent with the data and

23The figure displays asset shares as a function of rank, using log scales for both axes. As discussed in
Section 3.2, if asset shares follow a Pareto distribution, then such a figure will appear as a straight line
(Newman, 2005; Gabaix, 2009).

24Note that we apply the same procedure to generate predicted asset shares for commercial banks and
thrifts.
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hence offer an econometric explanation for one of the central questions behind this paper.

Similarly, Figures 15 and 16 show the average share of total assets held by different

ranked U.S. thrifts from 1984 Q1 – 1998 Q1 and 1998 Q2 – 2011 Q4, respectively, together

with the shares predicted using our methods of estimation over these same time periods. As

in the case of BHCs and commercial banks, these figures demonstrate the reasonably good

fit of equation (3.20) from Theorem 3.1 to the observed size distribution for U.S. thrifts.

Finally, Figures 12, 14, and 16 show that the size distributions predicted by equation

(3.20) for BHCs, commercial banks, and thrifts are similar to the size distributions observed

at the end of the sample periods (represented by the dot-dashed blue lines in the figures).

This suggests that the transition from one bank asset distribution to a more concentrated

distribution starting in the 1990s appears to be complete. In the absence of any further

changes in the U.S. banking environment, our results do not point to any further increases

in the concentration of banking assets over the coming years.

4.2 Confidence Intervals and Statistical Significance

It is not possible to generate confidence intervals and p-values using classical techniques in

this setting because the empirical distribution of the reversion rates −αk and idiosyncratic

volatilities σk is unknown. However, using bootstrap resampling, it is possible to generate

confidence intervals and determine the statistical significance of our results in Figures 5 to

10. Because our most interesting results relate to the changes in the idiosyncratic volatilities

σk observed across different time periods, for brevity we shall focus only on the statistical

significance of these changes in this section. It is straightforward to perform a similar analysis

for the reversion rates −αk confirming that the most substantial changes observed in Figures

8 to 10 are statistically significant.

In Figures 17 to 22, we report point estimates and 95% confidence intervals based on the

results of 10,000 bootstrap resample estimates of the idiosyncratic volatilities σk for different

ranked U.S. bank-holding companies, commercial banks, and thrifts, across different time

periods as in Figures 5 to 7.25 Figures 17 and 18 show that the average σk for medium-sized

25More precisely, the size of the confidence intervals are generated by the bootstrap resample estimates
and then these intervals are centered around our point estimates from Figures 5 to 7.
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BHCs for each time period is outside of the other time period’s confidence interval, a result

that strongly suggests that these estimates are different from each other in a statistically

significant way. We confirm that this is in fact the case below. In a similar manner, Figures

19 to 22 suggest a statistically significant difference between our estimates for the largest

commercial banks’ and thrifts’ idiosyncratic volatilities across different time periods.

Fortunately, questions of statistical significance are easily addressed using this same

method of bootstrap resampling. Figure 23 shows the probability that the idiosyncratic

volatilities σk for different ranked U.S. BHCs from 1986 Q2 – 1997 Q4 are less than or equal

to the σk from 1998 Q1 – 2014 Q4. The figure also shows the probability that the σk for

different ranked U.S. commercial banks from 1960 Q4 – 1998 Q1 are greater than or equal

to the σk from 1998 Q2 – 2014 Q4 as well as the probability that the σk for different ranked

U.S. thrifts from 1984 Q1 – 1998 Q1 are greater than or equal to the σk from 1998 Q2 –

2011 Q4.

Like the confidence intervals displayed in Figures 17 to 22, these probabilities are based

on the results of 10,000 bootstrap resample estimates of the idiosyncratic volatilities σk.

More specifically, these probabilities are generated by randomly choosing quarters from each

time period and each data set (BHCs, commercial banks, and thrifts) with replacement,

and then recalculating the idiosyncratic volatilities σk for each time period as in equation

(3.25).26 This process is repeated 10,000 times. Finally, we generate the probabilities in

Figure 23 by examining the number of resampled data sets in which the estimated σk in

time period one is greater than (less than) or equal to the estimated σk in time period two

for commercial banks and thrifts (BHCs). This procedure is repeated for every rank in the

size distribution of BHCs, commercial banks, and thrifts.

The computed probabilities shown in Figure 23 are essentially sets of p-values for the

hypotheses that there were no decreases in the idiosyncratic asset volatilities for U.S. BHCs

after 1997 Q4, and that there were no increases in the idiosyncratic asset volatilities for U.S.

commercial banks and thrifts after 1998 Q1. As we see from the figure, then, one of the most

important results discussed in this section—the rise in the idiosyncratic asset volatilities of

the largest subsidiary commercial banks and thrifts after 1998 Q1—is statistically significant

26As before, these recalculated σk are centered around our point estimates from Figures 5 to 7.
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at the 1% level. The figure also shows that the fall in the idiosyncratic asset volatilities of

medium-sized BHCs after 1997 Q4 is statistically significant at either the 1% or 5% levels,

and that this fall is nearly significant at the 10% level for the largest BHCs.

5 Conclusion

This paper explores the implications and causes of the growing concentration of U.S. bank-

ing assets in recent decades. In order to accomplish this, we use a nonparametric empirical

approach to dynamic power law distributions in which the distribution of banking assets

is characterized in terms of two econometric factors—the reversion rates and idiosyncratic

volatilities of assets for different size-ranked banks. We describe how to estimate these two

factors using panel data and then perform such an estimation using data on the asset hold-

ings of subsidiary commercial banks and thrifts and their parent bank-holding companies

from 1960 to the present. This paper is the first, to our knowledge, to estimate these factors

and show that the greater concentration of U.S. commercial bank and thrift assets after the

1990s is a result of increased idiosyncratic asset volatility while the increased concentration

of BHC assets over this same period is a result of decreased cross-sectional mean reversion

(as measured by the reversion rates). Surprisingly, the idiosyncratic volatility of BHC assets

actually decreased after the 1990s. Using bootstrap resampling, we show that most of these

changes in volatility over time are statistically significant. Given that our empirical tech-

niques are valid for essentially any dynamic power law distribution, a promising direction

for future research may be to investigate whether changes similar to those we document in

the banking and finance industries have occurred in other industries.

While our results answer questions about the cause, in an econometric sense, of the

growing concentration of U.S. banking assets, they also raise a number of questions. The

contrast between the increase in the idiosyncratic asset volatilities of commercial banks and

thrifts and the decrease in the idiosyncratic asset volatilities of their parent BHCs is of par-

ticular interest. Because commercial banks and thrifts are subsidiaries of BHCs, this result

suggests that diversification through non-banking activities has reduced the idiosyncratic
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volatility of BHC assets. The details as to how this diversification occurred and why there

is a larger decrease for medium-sized BHCs than for large or small BHCs, however, remain

open questions for future research. There also remains an open question as to why the id-

iosyncratic asset volatilities of commercial banks and thrifts—which are typically modeled

as exogenous—increased after the mid-1990s. The decline in cross-sectional mean reversion

of BHC assets is consistent with legislative changes in the mid-1990s, such as the repeal of

the Glass-Steagall Act (Lucas, 2013), that allowed large BHCs to grow even larger, as well as

documented changes in the scale economies of the banking industry (Wheelock and Wilson,

2012). However, the relative impact of these different factors on the rate of cross-sectional

mean reversion (the reversion rates) of BHC assets is an open question for future research.

Following the nonparametric approach described by Fernholz (2016a), this paper is the

first to rigorously characterize the role of idiosyncratic asset volatility as a shaping force of

the bank-size distribution. A growing literature emphasizes the potential for idiosyncratic,

firm-level shocks to affect aggregate macroeconomic outcomes, especially in concentrated,

complex, and interconnected industries such as banking and finance (Gabaix, 2011; Acemoglu

et al., 2012; Caballero and Simsek, 2013). In this sense, our results for U.S. BHCs show that

even as one obvious source of potential contagion—concentration—has intensified, another

important source—idiosyncratic volatility—has diminished. Of course, we do not directly

measure systemic risk in the financial sector and hence cannot conclude that the overall

threat of contagion in this sector has either increased or decreased. Future research that

attempts to measure these contrasting effects on the threat of contagion is likely to yield

useful insight and information.
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Tables and Figures

Rank σk αk

Bank-Holding Companies

1986 Q1-1997 Q4 1998 Q1-2014 Q4 1986 Q1-1997 Q4 1998 Q1-2014 Q4

Top 25% 24.1% 22.8% -2.33% -1.08%

25%-50% 22.0% 20.1% -1.44% -0.97%

50%-75% 32.0% 20.2% 1.39% -0.17%

75%-100% 19.2% 16.7% -0.74% -0.37%

Commercial Banks

1960 Q4-1998 Q1 1998 Q2-2014 Q4 1960 Q4-1998 Q1 1998 Q2-2014 Q4

Top 25% 21.1% 23.5% -1.40% -1.70%

25%-50% 18.3% 18.7% -0.83% -0.35%

50%-75% 16.1% 16.4% -0.58% -0.36%

75%-100% 15.7% 16.3% -0.34% -0.40%

Thrifts

1984 Q1-1998 Q1 1998 Q2-2011 Q4 1984 Q1-1998 Q1 1998 Q2-2011 Q4

Top 25% 25.0% 29.9% -1.93% -3.37%

25%-50% 24.2% 29.7% -0.83% -0.37%

50%-75% 20.9% 19.4% -0.51% -0.78%

75%-100% 19.9% 21.6% -0.16% 1.34%

Table 1: Idiosyncratic volatilities σk and minus the reversion rates αk averaged by quartiles
for U.S. BHCs, commercial banks, and thrifts.
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Figure 1: Share of total assets held by the largest U.S. bank-holding companies for 1986 –
2014.
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Figure 2: Share of total assets held by the largest U.S. commercial banks for 1960 – 2014.
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Figure 3: Share of total assets held by the largest U.S. thrifts for 1984 – 2011.
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Figure 4: Top panel: Shares of total assets held by the 500 largest U.S. bank-holding
companies for 1986 Q2 – 1997 Q4 as compared to the predicted shares using nonparametric
dynamic power law methods. Bottom panel: Shares of total assets held by the 500 largest
U.S. bank-holding companies for 1986 Q2 – 1997 Q4 as compared to the predicted shares
when imposing Gibrat’s law.
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Figure 5: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S.
bank-holding companies.
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Figure 6: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S.
commercial banks.
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Figure 7: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S.
thrifts.

0 100 200 300 400 500

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Rank

A
lp

ha
 (%

)

1986 Q2 - 1997 Q4
1998 Q1 - 2014 Q4

More Mean Reversion

Figure 8: Minus the reversion rates (αk) for different ranked U.S. bank-holding companies.
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Figure 9: Minus the reversion rates (αk) for different ranked U.S. commercial banks.
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Figure 10: Minus the reversion rates (αk) for different ranked U.S. thrifts.

41



1 2 5 10 20 50 100 200 500

Rank

S
ha

re
 o

f T
ot

al
 A

ss
et

s 
(%

)

0.001

0.01

0.1

1

10

Predicted
Average for 1986 Q2 - 1997 Q4
Maximum/Minimum for 1986 Q2 - 1997 Q4

Figure 11: Shares of total assets held by the 500 largest U.S. bank-holding companies for
1986 Q2 – 1997 Q4 as compared to the predicted shares.
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Figure 12: Shares of total assets held by the 500 largest U.S. bank-holding companies for
1998 Q1 – 2014 Q4 as compared to the predicted shares.
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Figure 13: Shares of total assets held by the 3,000 largest U.S. commercial banks for 1960
Q4 – 1998 Q1 as compared to the predicted shares.
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Figure 14: Shares of total assets held by the 3,000 largest U.S. commercial banks for 1998
Q2 – 2014 Q4 as compared to the predicted shares.
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Figure 15: Shares of total assets held by the 400 largest U.S. thrifts for 1984 Q1 – 1998 Q1
as compared to the predicted shares.
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Figure 16: Shares of total assets held by the 400 largest U.S. thrifts for 1998 Q2 – 2011 Q4
as compared to the predicted shares.
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Figure 17: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. bank-holding companies.
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Figure 18: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. bank-holding companies.
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Figure 19: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. commercial banks.
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Figure 20: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. commercial banks.
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Figure 21: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. thrifts.
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Figure 22: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. thrifts.
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Figure 23: Probability that σk in time period 1 is greater (less) than or equal to σk in time
period 2 for different ranked U.S. commercial banks and thrifts (bank-holding companies).
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