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Abstract

We propose a Bayesian panel model for mixed frequency data whose parameters can

change over time according to a Markov process. Our model allows for both structural

instability and random effects. We develop a proper Markov Chain Monte Carlo algorithm for

sampling from the joint posterior distribution of the model parameters and test its properties

in simulation experiments. We use the model to study the effects of macroeconomic

uncertainty and financial uncertainty on a set of variables in a multi-country context

including the US, several European countries and Japan. We find that for most of the

variables financial uncertainty dominates macroeconomic uncertainty. Furthermore, we show

that uncertainty coefficients differ if the economy is in a contraction regime or in an expansion

regime.
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1 Introduction

The role of uncertainty as a driver of macroeconomic fluctuations has been at the center of

attention especially since the beginning of the Great Recession in 2007. Most of the literature

has so far focused on measuring uncertainty and its effects in the U.S. economy. Hence, there is

a clear need to study whether the results for the U.S. also hold for other countries, which differ

for the structure of their goods, labour and financial markets, degree of openness, conduct of

fiscal and monetary policy, and other institutional characteristics.

Therefore, in this paper we take a multi-country perspective and assess the effects of

uncertainty on different macroeconomic variables in various countries: U.S., Canada, Japan,

Euro area as a whole and its main member States, U.K., Switzerland, Norway, Sweden.1 To

properly address this question, we take a panel approach, as an unrestricted model for many

variables and countries would be too large. We also want to allow for different effects of

uncertainty over time, and in particular in expansionary and recessionary times. Finally, we

want to exploit the presence of mixed frequency data to improve estimation efficiency and

reduce identification problems, see e.g. Foroni and Marcellino (2014).2

Our main contribution is therefore methodological. We develop a multi-country panel

Markov-Switching unrestricted mixed-data sampling regression (panel MS-UMIDAS from now

on). This framework allows us to model a large panel of countries and several variables for each

country. At the same time, it allows us to use an endogenous time-varying transition mechanism

and include nonlinearity in the model. Finally, it makes possible to consider variables at mixed

frequencies.

The model is at the crossing of different strands of literature. Markov-switching dynamic

panel models have been introduced by Kaufmann (2010) and extended first by Kaufmann (2015)

with the introduction of endogenous transition, and second by Billio et al. (2016b) to a VAR

context allowing for multiple series per unit. Our model builds on Kaufmann (2010) and

Kaufmann (2015) and extends her model in two directions. First, we introduce unit-specific

and variable-specific random effects which allow us to obtain heteroskedastic effects with time-

variation in the error variance (that is, we do not need to include a Markov-switching mechanism

in the variance once it is present in the random effects). Second, we allow the Markov-switching

panel model to use data at different frequencies.

There is an increasing literature on mixed frequency data. Here, we focus on one of the

main strands of the literature, mixed-data sampling (MIDAS) models. MIDAS regressions in

their original specification, as introduced by Ghysels et al. (2005), are tightly parameterized

reduced form equations, which use distributed lag polynomials to parsimoniously incorporate

high frequency information into models for low-frequency variables. While initially applied to

financial data, Clements and Galvao (2008) show that MIDAS regressions can lead to forecasting

1We chose to focus on the countries for which we have many macroeconomic series available and for which we
can construct a measure of uncertainty based on the Consensus Economic Forecasts.

2A multi-country study on uncertainty has been recently proposed by Baker et al. (2015). However, the main
focus of their work is to develop a new index of economic policy uncertainty (EPU) and the focus on a panel of
countries is limited.

2



gains also for macroeconomic variables. Foroni et al. (2015a) show that an unrestricted variant

of MIDAS which does not resort to functional distributed lag polynomials and preserves linearity

of the model (UMIDAS) is particularly suited when the frequency mismatch is not too big, as

in the case of macroeconomic data that are typically available either at monthly or quarterly

frequencies. As we are interested in modelling macroeconomic variables and due to the simplicity

of the UMIDAS approach, we adopt it in our panel MS context.3

Our paper relates also to other contributions in the mixed-frequency literature. In particular,

Guérin and Marcellino (2013) introduce Markov-switching MIDAS and apply this model to

the prediction of the U.S. economic activity. Further, Khalaf et al. (2013) have extended the

MIDAS approach to the panel regression models suitable for analysis with GMM methods. As

we already stated, we extend both these papers because we introduce here a Markov-switching

panel MIDAS.

The estimation of our model is conducted in a Bayesian framework, in order to deal with

the large number of parameters, which nevertheless makes our approach very flexible. In order

to avoid overparameterization issues and overfitting problems we follow a hierarchical strategy

in the specification of the prior as suggested in the Bayesian dynamic panel modeling literature

(e.g., Canova and Ciccarelli (2004), Canova and Ciccarelli (2009), Kaufmann (2010), and Bassetti

et al. (2014)). The hierarchical prior can be used to incorporate cross-equation interdependencies

and various degrees of information pooling across units (e.g., see Chib and Greenberg (1995)

and Min and Zellner (1993)). Also, the hierarchical prior as a part of the model allows us to

naturally introduce random effects into the panel model. It is worth noticing that, although the

MIDAS models have been typically used in a classical estimation context, recently the literature

has expanded into the Bayesian estimation of this class of models (see e.g. Pettenuzzo et al.

(2014), Rodriguez and Puggioni (2010) and Foroni et al. (2015b)).

In simulation studies, we show that our proposed MCMC method for the posterior

approximation is efficient and reaches convergence to the true parameters. In particular, both

time instability via Markov switching regimes, and the random effects are precisely estimated.

Next we apply our model to study the effects of uncertainty shocks on different sectors and

variables across a panel of countries. We aim at shedding light on the effects of uncertainty in

a panel framework, including data at different frequencies and at the same time allowing for

different regimes.

In our analysis, we consider different measures of uncertainty available in the literature: a

measure of forecast disagreement (as in Dovern et al. (2012)) and the VIX, as proposed by Bloom

(2009) in his seminal paper. We use the former as proxy for macroeconomic uncertainty, and

the latter as proxy of financial uncertainty.4 We assume that monthly uncertainty is exogenous

3We highlight that the use of different MIDAS parameterizations, such as the Almon lag polynomials (e.g.,
see Pettenuzzo et al. (2014)), the exponential Almon lag (e.g., see Ghysels et al. (2005)), the normalized beta
function (e.g., see Ghysels et al. (2007)), or the stepwise weights (e.g., see Ghysels et al. (2007)), is allowed within
our framework and does not pose any additional conceptual difficulty. It would imply though an enlargement of
the parameter space and the addition of a step in the estimation algorithm. The choice of a different polynomial
requires a Metropolis Hastings step in the Gibbs sampler and the choice of a good proposal distribution.

4In the Appendix, we repeat the exercise using the Financial Uncertainty Index developed in Ludvigson et al.
(2015) for the US economy. Moreover, in the spirit of Gourio (2012) and in order to analyse the effects of large

3



to quarterly macroeconomic variables. The identification scheme relies on the release time of

the uncertainty-related and macroeconomic variables, with the former generally released earlier

and in higher frequency and the latter released with some delay and in low frequency. Mumtaz

and Theodoridis (2016) find substantial changes over time in the transmission of uncertainty

shocks in the US; Caggiano et al. (2014) show that the relevance of uncertainty shocks is larger

in recession regimes; and Alessandri and Mumtaz (2014) document that uncertainty shocks have

radically different implications depending on the state financial markets are in when they occur.

Our Markov switching specification can capture this type of parameter time variation. It also

partially protects from omitted variable bias, as potential unmodelled variables which affect both

macroeconomic variables and uncertainty are captured by the regime switching mechanism.

Our empirical results can be summarized as follows. There are large differences in the effects

of the uncertainty shocks in the contraction regime and the expansion regime. The use of

mixed frequency data rather than quarterly uncertainty variables amplifies the relevance of the

asymmetry.

Moreover, financial uncertainty shocks play a more important role than macroeconomic

uncertainty shocks. Their effects are stronger in the contraction regime than in the expansion

regime, in particular this is more evident for real variables. The effects of financial uncertainty

shocks are also more homogeneous across variables and countries than those of macroeconomic

uncertainty.

Finally, when financial uncertainty is removed, the role of macroeconomic uncertainty

increases, capturing part of the financial uncertainty shock and highlighting the need of jointly

considering both types of uncertainty to avoid biased results, in line with the results in Jurado

et al. (2015) and Carriero et al. (2016).

The remainder of the paper is organized as follows. Section 2 presents our Bayesian panel

Markov-switching MIDAS model. Section 3 discusses the Bayesian inference framework. Section

4 presents our simulation results to confirm efficiency and convergence of our estimation method.

Section 5 presents empirical results on the effects of financial and macroeconomic uncertainty

on macroeconomic variables. Finally, Section 6 concludes. Proofs of the results and additional

details are presented in a set of appendices.

2 A panel Markov-switching MIDAS model

We assume the sampling frequency for the ith variable of the g-th unit of the panel, yigt,

is t = m, 2m, . . . ,mTq, with m integer and larger than or equal to one, for i = 1, . . . , ng,

g = 1, . . . , G, and that for the covariates xigjt, j = 1, . . . , N , is t = 1, 2, 3, . . . ,mTq. The

following model is evaluated at t = m, 2m, 3m, . . . ,mTq

cig(L
m, sgt)yigt = µig(sgt) +

N∑
j=1

δigj(L, sgt)xigjt + εigt (1)

financial shocks, we also consider a financial uncertainty measure based on systemic risk and proposed in Billio
et al. (2016a) for the EU financial market.
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∀i, g, where εigt ∼ N (0, σ2
ig) i.i.d. for all t, and

cig(L
m, sgt) = 1−

c∑
l=1

Lmlcigl(sgt) (2)

δigj(L, sgt) =
v∑
l=0

δigjl(sgt)L
l (3)

with Lm the lag operator defined as Lmyigt = yigt−m, and sgt, t = m, . . . ,mTq is a unit-specific

Markov chain process with transition probability P (sgt = k|sgt−m = l) = pglk, l, k = 1, . . . ,K.

The model presented above is quite general since it assumes the dependent variables are

observed at the same (m = 1) or lower (m > 1) frequency then the independent variables. In

bridge models, the independent variables are temporally aggregated and a dynamic model is

then specified for the aggregated variables. We take here a more flexible modelling approach, as

the independent variables can be aggregated with estimated rather than fixed weights.

The modelling framework is quite general, since in principle it allows, through the

specification of country- and variable-specific covariates, xigjt, for dynamic interaction effects

between the variables of each country and also between variables of different countries.

Unfortunately, the interaction effects would lead to a larger number of parameters to estimate

and to a potential overfitting problem. Therefore, we leave the modelling of these effects for

further research.

The switching coefficients of the model are defined as

µig(sgt) =
K∑
k=1

ξgktµigk, (4)

cigl(sgt) =
K∑
k=1

ξgktciglk, (5)

δijlg(sgt) =
K∑
k=1

ξgktδijlgk, (6)

for i = 1, . . . , ng, where ξgkt = I{k}(sit).
We assume a hierarchical prior on the switching coefficients, designed in a way that the

regime-specific coefficients of the different time series are shrinked toward unit-specific and

regime-specific common means, that is

µigk = µk + ζµ,gk + ηµ,igk, ζµ,gk ∼ N (0, rµ,k), ηµ,igk ∼ N (0, qµ,gk) (7)

ciglk = clk + ζc,glk + ηc,iglk, ζc,glk ∼ N (0, rc,k), ηc,iglk ∼ N (0, qc,gk) (8)

δigjlk = δjlk + ζδ,gjlk + ηδ,igjlk, ζδ,gjlk ∼ N (0, rδ,k), ηδ,igjlk∼ N (0, qδ,gk) (9)

with Cov(ηµ,igk, ηc,i′g′lk′) = 0, Cov(ηµ,igk, ηδ,i′g′jlk′) = 0, and Cov(ηc,iglk, ηδ,i′g′jlk′) = 0, for all

i, i′, g, g′, j, l, k, k′. The unit- and regime-specific random effects are ζµ,gk, ζc,glk and ζδ,gjlk.
5

5An alternative modelling strategy is to shrink the coefficients towards a variable-specific mean, ζµ,ik, instead
of a unit-specific mean, ζµ,gk. This can be obtained by setting µigk = µk + ζµ,ik + ηµ,igk, ηµ,igk ∼ N (0, qµ,gk),
ζµ,ik ∼ N (0, rµ,k). A similar model can be used for ciglk and δigjlk. The choice of the hierarchical prior distribution
depends mainly on the application. In our empirical exercise we believe the impact of uncertainty shocks might
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The hierarchical prior specification is particularly suited in this context where the number

of parameters to estimate is large also due to the Markov switching mechanism. While the

estimation of all the model parameters can lead to overfitting problems, the use of restrictions,

such as parameter pooling, can be a strong assumption leading to misleading results and bad

forecasting performance. The hierarchical specification allows instead for different degrees of

information pooling across units and series, by assuming conditional independence across units

and series and by introducing panel- and country-specific common factors (e.g., see Canova and

Ciccarelli (2004, 2009), Bassetti et al. (2014), Billio et al. (2016b)). Also, this motivates the use

of panel models with random effects instead of using pooling or equation-by-equation estimation.

In order to complete the elicitation of the hierarchical prior distribution, we assume a

truncated normal prior distribution for the common intercepts µ = (µ1, . . . , µK)′

µ ∼ NK(0K , s
2
0IK)IAµ(µ) (10)

where 0k is the k-dimensional null vector, Ik the k-dimensional identity matrix, and Aµ is the set

of all possible values of µ which satisfy some identification constrains, such as µ1 < . . . < µK . See

Frühwirth-Schnatter (2006), ch. 3-4 for an introduction to the problems of regime identification

and label switching and Billio et al. (2016b) and Billio et al. (2012) for the use of such constrains

in business cycle analysis. We shall notice that alternative identification constrains can be used.

E.g., if one expects the durations of the states are different, then constraints on the transition

matrix can be employed to effectively identify the regimes.

We assume cross-regime independent normal prior distributions for common coefficients

ck = (c1k, . . . , cck)
′ and δk = (δ10k, . . . , δ1pk, . . . , δν0k, . . . , δνpk)

′

ck ∼ Nc(0c, r2
0Ic) (11)

δk ∼ NN(ν+1)(0N(ν+1), r
2
0IN(ν+1)) (12)

i.i.d. over k = 1, . . . ,K. We assume cross-regime independent inverse gamma prior distributions

for the two sets of scale hyper-parameters qµ,gk, qc,gk, qδ,gk and rµ,k, rc,k, rδ,k of the panel

coefficients

qµ,gk, qc,gk, qδ,gk
i.i.d.∼ IG(n0, s0) (13)

rµ,k, rc,k, rδ,k
i.i.d.∼ IG(n0, s0) (14)

i.i.d. over k = 1, . . . ,K, g = 1, . . . , G, where IG(n, s) denotes the inverse gamma distribution

with shape parameters n and s and density function given in Appendix B.6.

As regards the scale parameter of the error term in Eq. 1, we apply the same strategy

substantial differ across countries (units), but variables in the same country will respond similarly with a larger
negative effect in the contraction regime than in the expansion regime. This motives our choice for unit- and
regime-specific random effects.
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followed in the specification of the coefficients prior, that is

σ2
ig = σ2λ−1

ig χ
−1
g (15)

for g = 1, . . . , G, i = 1, . . . , ng, where σ2 is a common scaling factor, and χg is a unit-specific

factor which captures the potential cross-unit variance heterogeneity, and λig is a variable-specific

scale factor.

The following inverted gamma and gamma hierarchical prior distributions are usually

assumed for the scale parameters in multi country panel models (see, e.g., Bassetti et al. (2014)

and references therein)

σ2 ∼ IG(a0, b0) (16)

λig ∼ Ga(c10, d10) (17)

χg ∼ Ga(c20, d20), (18)

i.i.d. over g = 1, . . . , G, i = 1, . . . , ng, where Ga(n, s) denotes the gamma distribution with shape

parameters n and s and density function given in Appendix B.7.

Finally, we assume independent hierarchical Dirichlet prior distributions for the rows of the

unit-specific transition probabilities. Let pgl = (pg,l1, . . . , pg,lK)′ and νl = (νl1, . . . , νlK)′, then

our prior distribution is

pgl ∼ Dir(φν1, . . . , φνK) (19)

νl ∼ Dir(1/K, . . . , 1/K) (20)

i.i.d. over l = 1, . . . ,K and g = 1, . . . , G, where φ =
∑K

k=1 νK .

Note that under the hierarchical prior assumption, the dynamic panel model can be re-

interpreted as a random effect model with unit-specific and regime-specific effects for intercepts,

regression coefficients and scale parameters. In fact, by replacing the coefficients in Eq. 1 with

the switching representation in Eq. 4-6 and the hierarchical prior structure in Eq. 7-9, and

rearranging terms one obtains the following model

yigt =

K∑
k=1

ξgkt

(
(µk + ζµ,gk + ηµ,igk) +

c∑
l=1

yigt−ml(clk + ζc,glk (21)

+ηc,iglk) +
N∑
j=1

ν∑
l=0

xigjt−l(δjlk + ζδ,gjlk + ηδ,igjlk)
)

+ εigt

for t = m, 2m, . . . , Tqm, which can be regarded as the Markov-switching extension of a panel

MIDAS model such as the one discussed in Khalaf et al. (2013).

The expanded representation of our Bayesian panel MS-UMIDAS model can be useful in

order to understand how the random effects enter into the model, but it can result uneasy for

presentation of the inference procedure. Nevertheless, conditionally on the allocation variables,
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and combining the compact MIDAS representation (see, e.g., Pettenuzzo et al. (2014)) with a

compact switching regression representation (see, e.g., Billio et al. (2016b)), the model given

above can still be written in a compact form. Let us define the allocation variable vector

ξgt = (ξg1t, . . . , ξgKt)
′, the autoregressive component vector vigt = (yigt−m, . . . , yigt−mc)

′

and the vector xig,jt = (xig,jt, . . . , xig,jt−ν)′ of the j-th exogenous variable, j = 1, . . . , N ,

contemporaneous and at different lags. Also, define the parameter vectors µ = (µ1, . . . , µK)′,

cl = (cl1, . . . , clK)′, δjl = (δjl1, . . . , δjlK)′, ζµ,g = (ζµ,g1, . . . , ζµ,gK)′, ζc,gl = (ζc,gl1, . . . , ζc,glK)′,

ζδ,gjl = (ζδ,gjl1, . . . , ζδ,gjlK)′, ηµ,ig = (ηµ,ig1, . . . , ηµ,igK)′, ηc,igl = (ηc,igl1, . . . , ηc,iglK)′, and

ηδ,igjl = (ηδ,igjl1, . . . , ηδ,igjlK)′. Then the following result holds.

Proposition 1. The model in Eq. 21 can be written as

yigt = z′igt(β + ζg + ηig) + εigt (22)

with β = (µ, c1, . . . , cc, δ10, . . . , δNν)′ the parameter vector, zigt = (ξ′gt,v
′
igt ⊗ ξ′gt,x′ig,1t ⊗

ξ′gt, . . . ,x
′
ig,Nt ⊗ ξ′gt)′ the covariate vector of dimension K(1 + c + N(ν + 1)) × 1, ηig = (ηµ,ig,

ηc,ig1, . . . ,ηc,igc,ηδ,ig10, . . . ,ηδ,igNν)′, the variable-specific random effects vector and ζg = (ζµg,

ζc,g1, . . . , ζc,gc, ζδ,g10, . . . , ζδ,gNν)′ the unit-specific random effects vector.

Proof. See Appendix A.

3 Posterior approximation

Let y = (y′m(c+1), . . . , y′mTq)
′ be the observation vector, with yt = (y′1t, . . . , y′Gt)

′,

ygt = (y1gt, . . . , ynggt)
′, ξ = (ξ′1, . . . , ξ

′
G)′ the allocation variable vector, with ξg =

(ξ′g,m(c+1), . . . , ξ
′
g,mTq

)′, ηigk = (ηµ,igk, ηc,igk, ηδ,igk)
′, ζ = (ζ′1, . . . , ζ

′
G)′, η = (η′11, . . . , η

′
nGG

)′,

then the complete likelihood of the model in Eq. 22 is

L(y, ξ|θ, ζ,η) =
∏
t∈T

G∏
g=1

ng∏
i=1

(2πσ2
ig)
−1/2 exp

{
−
ε2
igt

2σ2
ig

}
K∏
l=1

K∏
k=1

p
ξglt−1ξgkt
glk (23)

where εigt = yigt − z′igt(β + ζg + ηig), zigt is defined in Proposition 1, T = {m(c + 1),mc +

2m, . . . ,mTq}, and θ = (β, σ2,λ,χ, q, p) is the parameter vector, with λ = (λ11, . . . , λnGG)′,

χ = (χ1, . . . , χG)′, q = (q′11, . . . ,q
′
GK)′, r = (r′1, . . . , r

′
K)′, qgk = diagrv{Qgk}, rk = diagrv{Rk},

and p = (vec{P1}, . . . , vec{PG}).
The joint posterior distribution is

π(ξ, ζ,η,θ|y) ∝ L(y, ξ|θ, ζ,η)π(σ2)

K∏
k=1

π(µk)π(ck)π(δk)π(Rk)π(νk) (24)

G∏
g=1

π(χg)π(ζgk)π(Qgk)π(pgk)

ng∏
i=1

π(λig)π(ηigk)

which is not analytically tractable. Thus a Gibbs sampler is applied, which iterates over the

8



following steps:

i) Draw ζ,η, ξ,β, P1, . . . , PG,ν from p(ζ,η, ξ,β,p,ν|σ2,λ,χ,q, r,y).

ii) Draw σ2, λ, χ, q, r from p(σ2,λ,χ,q, r|β,p,ν, ζ,η, ξ,y).

We consider a blocked and collapsed multi-move Gibbs sampler (e.g., see Liu (1994), Roberts

and Sahu (1997)). As regard the collapsed part, we apply the following result.

Proposition 2. Marginalizing out the random effects in the right-hand side of Eq. 22 one

obtains

yigt = z′igtβ + ε̃igt, ε̃igt ∼ N (0, σ2
igt) (25)

t = m(c+ 1), 2m, . . . ,mTq, with σ2
igt = σ2λ−1

ig χ
−1
g + z′igt(R+Qg)zigt.

Proof. See Appendix A.

The model in Eq. 25 naturally exhibits heteroskedastic effects, with time-variation in the

error variance driven by the Markov-switching process, and is still linear in the parameter β,

conditionally to the hidden Markov chain. This motivates the use of a collapsed Gibbs (see

Kaufmann (2010)) for the Step i)

i.1) Draw β, P1, . . . , PG,ν, ξ from p(β,p,ν, ξ|σ2,λ,χ,q, r,y).

i.2) Draw ζ,η from p(ζ,η|β,p,ν, σ2,λ,χ,q, r, ξ,y).

In the derivation of the full conditional distribution in the step i.1) we use the complete data

likelihood of the model in Eq. 25. Each step of the Gibbs sampler is blocked further. The details

of the derivation of the full conditional distributions and the sampling methods used are given

in Appendix B.

4 Simulation Study

In this section, we study the efficiency of the proposed MCMC procedure for posterior

approximation.

4.1 Setting

We consider the following model for the unit-specific exogenous variable

zgt = 0.9zgt−1 + 0.5κgt, κgt
i.i.d.∼ N (0, 1) (26)

g = 1, . . . , 13, with sampling frequency, t = 1, 2, 3, . . . , 1200. For the endogenous variables, we

assume

yigt = µig(sgt) + 0.2yigt−3 + x′igtδig(sgt) + εigt, εigt
i.i.d.∼ N (0, 0.12) (27)

i = 1, . . . , 5, with a sampling frequency t = 3, 6, 9, . . . , 1200 which is lower than the frequency

of the exogenous variables. δig(sgt) = (δig1(sgt), δig2(sgt), δig3(sgt))
′ is the vector of exogenous
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Table 1: Results on convergence and efficiency

Panel (a)

ACF(1) ACF(5) ACF(10) MSE(20) MSE(100)

Parameters (θ) 0.049 0.036 0.021 8.2 · 10−4 9.4 · 10−5

States (sgt, ∀g, t) 0.833 0.252 0.048 4.7 · 10−3 1.1 · 10−3

Panel (b)

ACF(1) ACF(5) ACF(10) MSE(20) MSE(100)

Parameters (θ) 0.029 0.021 0.019 1.3 · 10−5 2.0 · 10−5

States (sgt, ∀g, t) 0.311 0.012 0.031 0.16 · 10−5 0.93 · 10−5

Note: Panel (a): persistent regimes (pgii = 0.95, ∀i, g). Panel (b): strongly persistent regimes (pgii = 0.99, ∀i, g).

In all panels: cross-parameter (first row) and cross-state (second row) maximum empirical autocorrelation at the

lag k (ACF(k)) and average mean square error at the j-th iteration of the MCMC chain (MSE(j)).

coefficients and xigt = (xig1t, xig2t, xig3t)
′ is a vector of covariates. In the above equation, sgt

is a unit-specific hidden Markov chain process with values in {1, 2}. We consider two cases for

the transition probabilities: persistent regimes, i.e. pg11 = 0.95, pg22 = 0.95, ∀g and strongly

persistent regimes, i.e. pg11 = 0.99, pg22 = 0.99, ∀g.

The unit-specific exogenous variable zgt is common to all series of the i-th unit and is included

in the model with its current value and with two lags, i.e. xig1t = zgt, xig2t = zgt−1 and

xig3t = zgt−2, ∀i, ∀t.
For the coefficients in the first regime, we assume

δig1(1)
i.i.d.∼ N (1, 0.12), δig2(1)

i.i.d.∼ N (−0.1, 0.12), δig3(1)
i.i.d.∼ N (0.5, 0.12),

i = 1, . . . , 5. For the second regime we set:

δig1(2)
i.i.d.∼ N (1, 0.12), δig2(1)

i.i.d.∼ N (−0.1, 0.12), δig3(1)
i.i.d.∼ N (−0.5, 0.12)

An example of time series generated from the model in Eq. 27 is given in Figure C.1, Appendix

C.

4.2 MCMC convergence and efficiency

We fit the model given in Eq. 1, on the simulated dataset, assuming c = 3 and ν = 1. Figure

C.2 in Appendix C shows the MCMC raw output, the MCMC progressive averages and the

MCMC chain empirical autocorrelation function (ACF). From a graphical inspection of the

MCMC raw output one can see that the mixing of the MCMC chain is good, resulting in a low

autocorrelation level. As documented in Table 1, panel (a), in the case of persistent regimes the

maximum ACF at the 10th lag is 0.021 for the parameters and 0.048 for the hidden states (see

also the ACF plots in Figure C.2).

The progressive averages in Figure C.2 show that the MCMC chain is converging. The
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posterior estimates for the coefficients δijgk, obtained after removing an initial burn-in sample

of 1,000 MCMC iterations, are given in Fig C.2. The mean values of the coefficients δijlk in the

two regimes is recovered.

The overall average MSE for the parameter estimates is documented in Table 1. The MSE

decreases rapidly over the MCMC iterations and at the 100th iteration it is equal to 9.4 · 10−5

which suggests convergence to the true parameter values (see also Figure C.4 in Appendix C).

As regards the latent variables, the good mixing of the MCMC chain and its convergence

in the latent space is clear from the allocation maps in Figure 1. In each plot we report the

unit-specific allocation variables Ik(s
(j)
gt ), for each unit, i.e. g = 1, . . . , 13 (vertical axis), over

the first 20 MCMC iterations, i.e. j = 1, . . . , 20 (horizontal axis). The average MSE across the

hidden Markov processes in the panel is decreasing over the MCMC iterations and at the 100th

iteration it is equal to 1.1 · 10−3 (see Table 1, panel (a)), which indicates convergence of the

MCMC chain to the true values of the hidden states (see Figure C.4 in Appendix C). The MSE

and MCMC mixing improve for both parameter and hidden state in the strong persistent case

(see Table 1, panel (b)).

5 Economic Uncertainty in a Panel of Countries

In this section, we apply our model to study the effects of uncertainty shocks on different sectors

and variables across a panel of countries. After a brief overview on the main contributions in the

uncertainty literature, we describe the dataset and the measures of uncertainty that we consider,

comment on the main empirical results, and present some robustness analysis.

5.1 Uncertainty and macroeconomic effects

The interest in uncertainty has grown enormously over the recent years. Since the seminal paper

of Bloom (2009), research has focused on creating new approaches to measure uncertainty and its

effects. Bloom (2009) himself defines his measure of uncertainty as the unconditional volatility

of stock market returns. Baker et al. (2015) develop an index of economic policy uncertainty

which reflects the frequency of uncertainty-related words in the articles of leading newspapers.

Scotti (2013) proposes an uncertainty index which aims at capturing how uncertain agents are

about the current real economic activity, using surprises from Bloomberg forecasts. Rossi and

Sekhposyan (2015) create a macroeconomic uncertainty index based on comparing the realized

forecast error of the real GDP growth with the historical forecast error distribution of the same

variable. Jurado et al. (2015) and Carriero et al. (2016) provide a measure of uncertainty based

on whether a large set of macroeconomic and financial variables become more or less predictable.

Despite different measures of uncertainty have been proposed, the evidence on the effects

of uncertainty on the macroeconomic activity is pretty homogeneous, and different studies

agree that macroeconomic uncertainty is countercyclical. Here we sketch only some of the

contributions to a voluminous and expanding literature. For a more extensive review see Bloom

(2014). An increase in uncertainty is typically associated with large declines in real activity.
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Figure 1: Allocation maps for the simulated study
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Note: the figure shows the unit-specific (one for each plot) allocation variables (Ik(s
(j)
gt )) over time (vertical axis,

t = 1, . . . , 196) and over the first 20 MCMC iterations (horizontal axis, j = 1, . . . , 20).
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Caggiano et al. (2014) show that the impact of an uncertainty shock on unemployment in the U.S.

is much larger during recessions, suggesting a different behavior depending on the state of the

economy. A new study by Carriero et al. (2016) proposes an econometric framework for jointly

measuring uncertainty and capturing its impact on the economy. The authors find sizeable

effects of uncertainty on key macroeconomic variables. Ferrara and Guerin (2015) analyze the

role of uncertainty for the U.S. in a mixed-frequency set up and find that credit and labor

market variables react the most to uncertainty shocks, showing a prolonged negative response.

Ludvigson et al. (2015) address the question on whether uncertainty and real economic activity

could affect one another contemporaneously. They find that higher uncertainty in recessions is

endogenous to business cycle fluctuations.

Our empirical analysis enters as a contribution to compare the effects of two different types of

uncertainty, precisely macroeconomic uncertainty and financial uncertainty, on macroeconomic

variables and it does this by extending the analysis in previous literature to a panel of countries,

allowing for the possibility of switching in the effects, and to data at different frequencies.

5.2 Dataset

In our analysis, we consider a panel of G = 13 countries, that are: United States (US), Europe

(EU), Japan (JP), Germany (DE), France(FR), United Kingdom (UK), Italy (IT), Canada

(CA), the Netherlands (NE), Norway (NW), Spain (SP), Sweden (SW) and Switzerland (CH).

The choice of the countries is based on the availability of data from the Consensus Economics,

from which we construct our measure of macroeconomic uncertainty.

Our macroeconomic uncertainty measure is based on the disagreement about the projections

for the real GDP growth among the professional forecasters participating to the Consensus

economic polls. In particular, we take the standard deviations of the projections as our

uncertainty measure. A further clarification on how we compute the measure is needed. The

respondents to the survey are asked to give their expectations on the current and next calendar

year. Following Dovern et al. (2012), we construct our measure of disagreement on one-year-

ahead forecasts. Ferrara and Guérin (2015) also use the same approach for US data. Therefore,

as in their papers, we need first to transform fixed-event forecasts into fixed-horizon forecasts,

by taking the average of the forecasts for the current and next calendar year weighted by their

share in the forecasting horizon:

xet =
k

12
xt+k|t +

12− k
12

xt+12+k|t, (28)

where xet is the one-year-ahead expectation, xt+k|t is the current-year expectation, xt+12+k|t is

the next-year expectation and k are the months to the end of the current year at the moment the

survey is made. The standard deviation is then computed on this one-year-ahead expectation.

As a measure of financial uncertainty we consider the U.S. VIX, as in Bloom (2009). We

consider the U.S. measure also when looking at the uncertainty in other countries because it

is the longest series available. Further, we computed the correlation of the U.S. VIX with the

series of VIX available for other countries (e.g. UK, Canada, Italy) and the correlation is high.
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6 In Appendix E, we nevertheless repeat the exercise using the Financial Uncertainty Index

developed in Ludvigson et al. (2015) for the US economy and a financial uncertainty measure

based on systemic risk and proposed in Billio et al. (2016a) for the EU financial market.

The macroeconomic variables we consider for each country in the panel are the following: real

GDP (labelled GDP in tables) and industrial production growth rates (IPI), employment growth

rate (Emp), consumption growth (Con), inflation (Inf), nominal earnings growth (Ner), real

earnings growth (Rer), working hours growth (Hours), nominal interest rates (IR), stock market

index growth (Stock) and monetary M2 aggregate growth (M2). All variables are sampled at a

quarterly frequency from 1997 to 2014. The availability of the data for each country, the sample

period and the source are given in Appendix D. Figures D.1-D.2 show the dependent variables

in the panel. Figure D.3 shows the exogenous variables (i.e. forecast disagreement and VIX).

All the variables are standardized to have comparable scales for the coefficients.7

The uncertainty variables are collected at monthly frequency and the other macroeconomic

variables at quarterly frequency. The model uses four lags for the quarterly variables and two

lags (contemporaneous and 1-quarter lag) for the monthly variables, and two regimes. The first

regime requires that the common intercepts µ are non-positive. We define it as contraction

regime. In the second regime, the common intercepts are equal to zero or positive. We define

it as expansion regime.8 As mentioned, the use of different regimes and of data at different

frequencies attenuates possible endogeneity problems of uncertainty.

5.3 Results

Following the notation outlined in the previous sections, we first look at the country- and

series-specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two regimes. Given that we consider

the information in the contemporaneous and previous quarter, we end up with six months of

information and correspondingly six coefficients. In Table 2 we therefore provide a summary

representation of them by reporting the median of the sum of the six coefficients, monthly

contemporaneous and lagged variables, that have 90% of the mass different from zero for the

two regimes. This allows us to take into account the parameter uncertainty in the results, since

we sum the full distributions of the coefficients and we drop those that include zero in the 90%

highest posterior density (HDP). The table reports results only for the VIX because the HDP

of coefficients associated to macroeconomic uncertainty includes in all cases zero, confirming

the marginal role of macroeconomic uncertainty with respect to financial uncertainty 9. In all

cases the sum of coefficients is larger in absolute value in regime 1 than in regime 2, supporting

6In Figure D.4 in Appendix E, we report the 3-year rolling correlation of the U.S. VIX with the VIX for the
other countries we have available. In Figure D.5 we show the correlation of the VIX with the macroeconomic
uncertainty measures for each country. The three monthly series are kept seperately in this graph.

7See figures E.3-E.5 in Appendix E for the impact of uncertainty on the different variables in the original
variable-specific scale.

8Economic theory supports that the variable M2 can both grow or decrease in contraction periods. We notice
that in all the countries in our dataset M2 mostly increases during recessions, therefore we take minus its growth
rate and apply the described restriction.

9While the sum of the effects of macroeconomic uncertainty is insignificant, as we will see some of the monthly
effects are instead significant.
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evidence in Caggiano et al. (2014), Alessandri and Mumtaz (2014) and Ludvigson et al. (2015).

Moreover, the sum of coefficients is significant for both regimes for almost all countries for the

variables GDP, Industrial production, real earnings, stock markets, M2, whereas it sometimes

includes zero in the HDP for employment, consumption, inflation, nominal earnings and hours,

in particular for the second regime. Also, the effect of financial uncertainty shocks on interest

rate is homogeneous across 10 countries, but it differs for Japan (not significant on both regimes),

Canada and Switzerland (not significant in expansion). The Abenomics for Japan, the stronger

expansion of Canada in periods of high US financial uncertainty, and the Switzerland exchange

rate interventions are possible explanations for this finding.

We now move to look at the disaggregated results in more detail. Figures 2-4 show the

impact of uncertainty shocks on the variables of different countries (GDP and IPI growth rates,

employment, consumption, Nominal ER, Real ER, Inflation, Hours, IR, Stock and M2) at

different months, j = 1, 2, 3, lags, l = 0, 1 and regimes k = 1, 2. The left column plots the

impact of the forecast disagreement and the right column plots the impact of VIX. The regimes

extracted for each country are reported in Figures E.1-E.2 in section E.

In each plot, the circles represent the common impact δjlk in the two regimes, i.e. (δjl1, δjl2),

for the pair shock lag l and variable j labelled with (l, j) in the plot. Thus the uncertainty

coefficients at the first, second and third month of the contemporaneous quarter are labelled

with (0, 1), (0, 2), (0, 3) for the forecast disagreement and with (0, 4), (0, 5), (0, 6) for the VIX.

The uncertainty coefficients at the first, second and third month of the previous quarter are

labelled with (1, 1), (1, 2), (1, 3) and with (1, 4), (1, 5), (1, 6) for the forecast disagreement and

the VIX respectively.

The dots represent country- and series-specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the

two regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. The dots for each lag are indicated

in a different color.

The first clear result is that for all variables, in all countries and both measures of uncertainty,

all the estimates (mean of the posterior distributions) are not on the 45 degree line. This

means that there is an asymmetric effect of the uncertainty shocks across regimes. For the

macroeconomic uncertainty, measured as forecast disagreement, in the contraction regime,

contemporaneous shocks in the first and third months (labelled (0, 1) and (0, 3)) have negative

impact on GDP, IPI and consumption, whereas at one quarter lag (labelled (1, 1) and (1, 3))

have positive impact on GDP, IPI and consumption. This seems to confirm the drop, rebound

and overshoot dynamics described in Bloom (2009). For the same variables, in the expansion

regime the coefficients (0, 1), (1, 1) and (1, 3) are negative whereas (0, 2), and (1, 2) are positive.

So, the effects are different in the two regimes, confirming the asymmetric evidence in Caggiano

et al. (2014).

The same results apply to the VIX: in the contraction regime the first and third month effects

(i.e. label (0, 4) and (0, 6) in the plots) are negative on GDP, IPI and consumption, whereas at

one quarter lag the first and second months (labelled (1, 5) and (1, 4)) have a positive impact

on GDP, IPI and consumption. In the expansion regime, the coefficients (0, 4), (1, 4) and (1, 5)

are negative whereas (0, 5), (0, 6) and (1, 6) are positive.
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The outcome is similar for other macroeconomic variables, even if some of the coefficients

are closer to zero, in particular for the effect of macroeconomic uncertainty. For example, the

coefficients for forecast disagreement of the third month in the first regime (0, 3) for the variables

employment, nominal and real exchange rates, inflation, hours, interest rate, stock returns and

M2 are basically zero for all countries. Such pattern is less evident for the VIX coefficients (0, 6)

where only in few occasions the coefficient is zero.

The second important finding is that the coefficients of financial uncertainty are in almost all

cases larger than those of macroeconomic uncertainty. For example, a 1% increase in financial

uncertainty in the first month of the quarter results in the first regime in a reduction of quarterly

GDP higher than 0.2% for all countries, and in the second regime in a reduction of quarterly

GDP around 0.15% for all countries. Similar evidence are found for other variables, confirming

numbers in Caggiano et al. (2014) that just focus on unemployment. On the contrary, a 1%

increase in macroeconomic uncertainty in the first month of the quarter results in the first regime

in a reduction of GDP around 0.05%, and in the second regime in a reduction of GDP bigger

than 0.05%. Similar evidence is found for the other variables. Interesting, financial uncertainty

shocks cause larger drops in the contraction regime, whereas macroeconomic uncertainty shocks

in the expansion regime.

The plots also show that the effects of the VIX are more homogeneous across countries, with

most of the coefficients close to the common impacts; on the contrary, more heterogeneity exists

for the forecast disagreement. The result can be explained by the fact that we use the same US

VIX variable for all countries, as it is highly correlated to the VIX of the countries for which it

is available, even if for a shorter sample. Forecast disagreement is different across countries, also

suggesting that financial uncertainty shocks are rather uniform across countries in our sample

whereas macroeconomic uncertainty shocks depend more on domestic economic conditions.

5.4 Robustness

We now investigate the robustness of our results to a set of different hypotheses. First, we remove

the contemporaneous effect of financial and macroeconomic uncertainty and only consider the

three months of the one-quarter lag. This choice shall remove any possible remaining effects of

endogeneity of the uncertainty variables that the Markov-Switching mixed frequency approach

cannot capture. Second, we include in our panel MIDAS model only VIX. Third, we include in

our panel MIDAS model only the forecast disagreement. For both the second and third cases, we

study a model with uncertainty used at higher frequency, but also as quarterly average, to provide

evidence on the usefulness of mixed frequency data. Fourth, we investigate different measures of

financial uncertainty, addressing the concern that VIX might not be the best measure to account

for such uncertainty, see for example Jurado et al. (2015). We apply the Financial Uncertainty

Index developed in Ludvigson et al. (2015) and the Financial Entropy Index proposed in Billio

et al. (2016a). The former index is built on a large set of financial variables using a new

methodology called iterative projection IV. The indicator is only available for the US. The

latter index captures the level of systemic risk and measures the entropy of the loss cascades
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Figure 2: Impact of uncertainty shocks on different macroeconomic variables
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Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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Figure 3: Impact of uncertainty shocks on different macroeconomic variables
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Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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Figure 4: Impact of uncertainty shocks on different macroeconomic variables
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Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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on the financial market. It detects loss cascades by ∆CoVaR, which represents the value at

risk (VaR) of the financial system conditional on institutions being under distress. The entropy

indicator for the EU is built on a dataset of daily closing price series for the European firms

(active and dead) of the financial sector from January 1990 to December 2014. In both cases,

we follow the same assumption applied to the VIX and use it for all countries. All the results of

the robustness analysis are reported in section E and here we only briefly summarize the main

findings.

First and interestingly, the evidence is qualitatively similar when the model only allows for a

one-quarter lag effect of uncertainty. Financial uncertainty is still dominant on macroeconomic

uncertainty and differences across regimes clearly emerge.

When dropping the VIX from the model, coefficients of forecast disagreement become larger

in absolute value, probably capturing part of the effects that our model assigns to financial

uncertainty. When we use quarterly uncertainty measures, the heterogeneity across countries

for both VIX and forecast disagreement increases substantially, and for several variables the

total effect of uncertainty is less pronounced, especially for the second regime, confirming the

usefulness of mixed frequency data.

Finally, when using different measures of financial uncertainty, the main results are also

confirmed. Both the Financial Uncertainty Index of Ludvigson et al. (2015) and the Financial

Entropy Index of (Billio et al., 2016a) yield a negative impact (mainly) during the recession

regime, thus supporting evidence of asymmetric effects of uncertainty in different phases of the

economic activity.10

6 Conclusions

This paper develops a Bayesian multi-country panel Markov-Switching unrestricted mixed-data

sampling model. This framework allows to model a large panel of countries and several variables

for each country. At the same time, it allows to use an endogenous time-varying transition

mechanism, to include nonlinearity in the model, and to consider variables sampled at mixed

frequencies.

In order to avoid overparameterization issues and overfitting problems, we implement a

hierarchical strategy in the specification of the prior. The hierarchical prior allows to naturally

introduce random effects into the panel model without specifying a Markov-Switching mechanism

in the variance of the errors. We develop a proper MCMC algorithm for sampling from the joint

posterior distribution of the model parameters and test its properties in a simulation experiment.

We use the model to study the effects of macroeconomic uncertainty, measured as forecast

disagreement, and financial uncertainty, measured as stock market volatility, on a set of variables

in a multi-country context including the US, several European countries and Japan. We find

10We also investigate an example where US forecast disagreement is used as measure of macroeconomic
uncertainty for all the countries, therefore similarly to the application of US VIX as measure of financial
uncertainty for all the countries. The correlation of US forecast disagreement with other country measures is
lower than the case of financial uncertainty. The role of financial uncertainty is amplified with respect to the
benchmark example. Results are available upon request.
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that for most of the variables financial uncertainty dominates macroeconomic uncertainty.

Furthermore, we show that uncertainty coefficients differ if the economy is in a contraction

regime or in an expansion regime.
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A Proofs of the propositions of the paper

Proof. (Proposition 1) Let us define C = (c1, . . . , cc), Zc,g = (ζc,g1, . . . , ζc,gc), Ec,ig =

(ηc,ig1, . . . ,ηc,igc) three K×c-matrices, and Dj = (δj1, . . . , δj(ν+1)), Zd,gj = (ζδ,gj1, . . . , ζδ,gjν+1),

Ed,ig = (ηδ,igj1, . . . ,ηδ,igjν+1) three K × (ν + 1)-dimensional matrices, then Eq. 21 can be re-

written as

yigt = (µ+ ζµ,g + ηµ,ig)
′ξgt + v′igt(C + Zc,g + Ec,ig)

′ξgt (A.1)

+

N∑
j=1

x′ig,jt(Dj + Zd,gj + Ed,igj)
′ξgt + εigt

with εigt ∼ N (0, σ2
ig), where σ2

ig is defined in Eq. 15.

Let us define the covariate vector wit = (1,v′igt,x
′
igt)
′, where xigt = (x′ig,1t, . . . ,x

′
ig,Nt)

′, and

the K × (1 + c+N(ν + 1))-matrices B = (µ, C,D1, . . . , DN ), Zg = (ζµ,g, Zc,g, Zd,g1, . . . , Zd,gN )

and Eig = (ηµ,ig, Ec,igEd,ig1, . . . , Ed,igN ). Then Eq. A.1 becomes

yigt = w′it(B + Zg + Eig)
′ξgt + εigt (A.2)

Then by applying the vec operator, its properties and the properties of the Kronecker’s product,

⊗, (see Magnus and Neudecker (1999)) we obtain the result

vec(yigt) = vec(ξ′gt(B + Zg + Eig)wit + εigt) (A.3)

= (w′it ⊗ ξ′gt)vec((B + Zg + Eig)) + εigt

= z′it(β + ζg + ηig) + εigt

where z′it = w′it⊗ξ′it = (ξ′it,v
′
igt⊗ξ′it,x′igt⊗ξ′it), β = vecB, ζg = vec(Zg) and ηig = vec(Eig).

Proof. (Proposition 2) From the representation given in Proposition 1 it follows that β has

distribution Nd(0d, S) with d = K(1 + c + N(ν + 1)) and S = diag{(s2
0ι
′
K , r

2
0ι
′
K(c+N(ν+1)))}

a diagonal covariance matrix and ιq the q-dimensional unit vector. ζg has distribution

Nd(0d, R) with R = diag{((rµ,1, . . . , rµ,K), ι′c ⊗ (rc,1, . . . , rc,K), ι′N(ν+1) ⊗ (rδ,1, . . . , rδ,K))′},
and ηig has distribution Nd(0d, Qg) where Qg = diag{((qµ,g1, . . . , qµ,gK), ι′c ⊗ (qc,g1, . . . , qc,gK),

ι′N(ν+1) ⊗ (qδ,g1, . . . , qδ,gK))}.
Let f(yigt|β, ζg,ηig) be the pdf of the dependent variable in Eq. 21 which is the pdf of a

normal with mean z′igt(β + ζg + ηig) and variance σ2
ig. We consider the marginal distribution

f(y|β) of the observable obtained by integrating out the random effects. Let us consider the
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m.g.f. ∫
exp{θy}f(y|β)dy =

∫
exp{θy}f(y|β, ζg,ηig)f(ζg)f(ηig)dζgdηigdy

=

∫
exp

(
θz′igt(β + ζg + ηig) +

σ2
ig

2
θ2

)
f(ζg)f(ηig)dζgdηig

= exp
(
θz′igtβ

)
exp

(
θ2z′igtRzigt + θ2z′igtQgzigt +

σ2
ig

2
θ2

)
(A.4)

which is the m.g.f. of a normal with mean z′igtβ and variance σ2
ig + z′igt(R+Qg)zigt

B Computational details

The proposed Gibbs sampler (see Section 3) iterates over the following steps

i) Draw ζ,η, ξ,β, P1, . . . , PG,ν from p(ζ,η, ξ,β,p,ν|σ2,λ,χ,q, r,y).

i.1) Draw β, P1, . . . , PG,ν, ξ from p(β,p,ν, ξ|σ2,λ,χ,q, r,y).

i.2) Draw ζ,η from p(ζ,η|β,p,ν, σ2,λ,χ,q, r, ξ,y).

ii) Draw σ2, λ, χ, q, r from p(σ2,λ,χ,q, r|β,p,ν, ζ,η, ξ,y)

Steps i.1) and ii) of the Gibbs sampler are blocked further. Let µ = (µ′1, . . . ,µ
′
K),

c = (c′1, . . . , c
′
K)′, δ = (δ′1, . . . , δ

′
K), and ν = (ν ′1, . . . ,ν

′
K)′, then draws from

p(β,p, ξ,ν|σ2,λ,χ,q, r,y) at step i.1) are obtained by iterating over the following steps

i.1.1) Draw µk from p(µk|µ−k, c, δ, σ2,λ,p,ν,χ,q, r, ξ,y), k = 1, . . . ,K.

i.1.2) Draw ck from p(ck|µ, c−k, δ, σ2,λ,p,ν,χ,q, r, ξ,y), k = 1, . . . ,K.

i.1.3) Draw δk from p(δk|µ, c, δ−k, δ, σ2,λ,p,ν,χ,q, r, ξ,y), k = 1, . . . ,K.

i.1.4) Draw (pl,νl) from p(pl,νl|µ, c, δ, σ2,λ,p−l,ν−l,χ,q, r, ξ,y), l = 1, . . . ,K.

i.1.5) Draw ξ from p(ξ|µ, c, δ, σ2,λ,p,ν,χ,q, r,y).

In the derivation of the full conditional distributions in the step i.1.1) we use the complete data

likelihood of the model in Eq. 25, that is

L(y, ξ|θ) =
∏
t∈T

G∏
g=1

ng∏
i=1

1

(2πσ2
igt)

1/2
exp

{
−
ε̃2
igt

2σ2
igt

}
K∏
l=1

K∏
k=1

p
ξglt−1ξgkt
glk (B.1)

where ε̃igt = yigt − z′igtβ.

As regards the scaling factors in Step ii) the following blocks are considered:

ii.1) Draw σ2 from p(σ2|β,λ,χ,p,ν,q, r, ζ,η, ξ,y).

ii.2) Draw λig from p(λig|β, σ2,λ−ig,χ,p,ν, r,q, ζ,η, ξ,y), i = 1, . . . , n.
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ii.3) Draw χg from p(χg|β, σ2,λ,χ−q,p,ν, r,q, ζ,η, ξ,y), i = 1, . . . , n.

ii.4) Draw q from p(q|β, σ2,λ,χ,p,ν, r, ζ,η, ξ,y).

ii.5) Draw r from p(r|β, σ2,λ,χ,p,ν,q, ζ,η, ξ,y).

The full conditional distributions and the sampling method are discussed in the following.

B.1 Sampling µ

Following the collapsed Gibbs sampling strategy described in Section 3, we consider the

likelihood function in Eq. B.1 to find the full conditional distribution of µk

p(µk|µ−k, c, δ, σ2,λ,χ,p,ν,q, r, ξ,y) ∝ (B.2)

∝ exp

{
− 1

2s2
0

µ2
k

} G∏
g=1

ng∏
i=1

∏
t∈Tgk

exp

{
− 1

2σ̃2
igkt

(yigt − z′igktβ)2

}

∝ exp

−1

2

µ2
k

s−2
0 +

G∑
g=1

ng∑
i=1

∑
t∈Tgk

σ−2
igkt


−2µk

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

eµ,igktσ̃
−2
igkt


∝ N (mµ,k, υµ,k) IAµ(µk)

that is a truncated normal distribution with parameters

υµ,k =

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

σ̃−2
igkt + s−2

0

−1

(B.3)

mk = υµ,k

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

eµ,igktσ̃
−2
igkt

 (B.4)

with

eµ,igkt = yigt −
c∑
l=1

clkyigt−l −
N∑
j=1

ν∑
l=0

δjlkxigjt−l

σ̃2
igkt = σ2λ−1

ig χ
−1
g + z′igkt(Qg +R)zigkt

where Qg and R have been defined in the proof of Proposition 1, Appendix A, zigkt = (e′k,

e′kyigt−m, . . ., e′kyigt−mc, e
′
kxig1t, . . ., e

′
kxig1t−p, . . ., e

′
kxigNt, . . ., e

′
kxigNt−p)

′, ek being the k-th

element of the K-dimensional standard orthonormal basis, and Tgk = {t ∈ T : ξgkt = 1}.
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B.2 Sampling c

The full conditional distribution of ck is the truncated normal distribution

p(ck|µ, c−k, δ, σ2,λ,χ,p,ν,q, r, ξ,y) ∝ (B.5)

∝ exp

{
− 1

2r2
0

c′kck

} G∏
g=1

ng∏
i=1

∏
t∈Tgk

exp

{
− 1

2σ̃2
igkt

(yigt − z′igktβ)2

}

∝ exp

−1

2

c′k
r−2

0 Ic +

G∑
g=1

ng∑
i=1

∑
t∈Tgk

vigtv
′
igtσ̃

−2
igkt

 ck
−2c′k

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

vigtec,igktσ̃
−2
igkt


∝ Nc (mc,k,Υc,k) IAc(ck) (B.6)

with

Υc,k =

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

vigtv
′
igtσ̃

−2
igkt + r−2

0 Ic

−1

(B.7)

mc,k = Υc,k

 G∑
g=1

nG∑
i=1

∑
t∈Tgk

vigtσ̃
−2
igktec,igkt

 (B.8)

where vigt = (yigt−m, . . . , yigt−mc)
′,

ec,igkt = yigt − µk −
N∑
j=1

ν∑
l=1

δjlkxigjt−l,

and σ̃2
igkt defined in B.1, and Tgk = {t ∈ T : ξgkt = 1}.

B.3 Sampling δ

The full conditional distribution of δk is the normal distribution

p(δk|µ, c, δ−k, δ, σ2,λ,χ,p,ν,q, r, ξ,y) ∝ (B.9)

∝ exp

{
− 1

2r2
0

δ′kδk

} G∏
g=1

ng∏
i=1

∏
t∈Tgk

exp

{
− 1

2σ̃2
igkt

(yigt − z′igktβ)2

}

∝ exp

−1

2

δ′k
r−2

0 IN (p+ 1) +

G∑
g=1

ng∑
i=1

∑
t∈Tgk

xigtx
′
igtσ̃

−2
igkt

 δk
−2c′k

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

xigteδ,igktσ̃
−2
igkt


∝ NN(p+1) (mδ,k,Υδ,k)
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where

Υδ,k =

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

xigkx
′
igkσ̃

−2
igk + r−2

0 IN(p+1)

−1

(B.10)

mδ,k = Υδ,k

 G∑
g=1

ng∑
i=1

∑
t∈Tgk

xigkσ̃
−2
igkeδ,igk

 (B.11)

with xigt = (x′ig,1t, . . . ,x
′
ig,Nt)

′,

eδ,igkt = yigt − µk −
c∑
l=1

clkyigt−l

and σ̃2
igkt defined in B.1, and Tgk = {t ∈ T : ξgkt = 1}.

B.4 Sampling pl,νl

We apply a collapsed Gibbs step and sample

first νl from the marginal distribution p(νl|µ, c, δ, σ2,λ,p,ν−l, ζ,η,q, r, ξ,y) and then from

the conditional pl from p(pl|µ, c, δ, σ2,λ,χ,p−l,ν, ζ,η,q, r, ξ,y).

The marginal distribution writes as

p(νl|µ, c, δ, σ2,λ,χ,p,ν−l, ζ,η,q, r, ξ,y) ∝ p(νl|p, ξ) (B.12)

∝
∫

∆m
[0,1]K

G∏
g=1

∏
t∈T

K∏
k=1

p
ξglt−1ξgkt
g,lk pφνlk−1

g,lk

Γ(φ)

Γ(φνlk)
dp1,l1 · · · dpG,lKπ(νl)

∝
∫

∆G
[0,1]K

G∏
g=1

K∏
k=1

p
ng,lk+φνlk−1
g,lk

Γ(φ)

Γ(φνlk)
dp1,l1 · · · dpG,lKπ(νl)

∝

(
K∏
k=1

ν
1/K−1
lk

)
G∏
g=1

K∏
k=1

Γ(φ)

Γ(φνlk)

Γ(φνlk + ng,lk)

Γ(φ+ ng,l)

where

ng,lk =
∑
t∈T

ξgl,t−1ξgkt

By using the properties of the gamma function it is possible to write

Γ(φνlk + ng,lk) =

ng,lk∏
r=1

(φνlk + r − 1)Γ(φνlk)

Γ(φ+ ng,l) =

ng,l∏
r=1

(φ+ r − 1)Γ(φ)
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thus it follows

p(νl|ξ) ∝
K∏
k=1

ν
1/K+mlk−1
lk g(νl) (B.13)

∝ Dir(1/K +ml1, . . . , 1/K +mlK)g(νl)

where

g(νl) =

(ngl∏
r=1

(φ+ r − 1)

)−1 K∏
k=1

G∏
g=1

ng,lk∏
r=2

(φνlk + r − 1)

and mlk = Card(Mlk), with Mlk = {g = 1, . . . , G|ng,lk > 0}. We generate draws

from this distribution by a Metropolis-Hastings step with independent proposal distribution

Dir(1/K+ml1, . . . , 1/K+mlK), which allows us to obtain the following acceptance probability

%(ν∗l ,ν
(j−1)
l ) = min

{
1,

g(ν∗l )

g(ν
(j−1)
l )

}
(B.14)

where ν∗l is the candidate value and ν
(j−1)
l is the previous iteration value of the M.-H. chain.

It is easy to show that the conditional distribution of pl is a product of conditionally

independent Dirichlet distributions, that is

p(pl|µ, c, δ, σ2,λ,χ,p−l,ν, ζ,η,q, r, ξ,y) ∝ p(pl|νl, ξ) (B.15)

∝
G∏
g=1

Dir(φνl1 + ng,l1, . . . , φνlK + ng,lK).

See Frühwirth-Schnatter (2006), ch. 11.

B.5 Sampling ξ

As regards to the draws from p(ξ|β, σ2,λ,χ,p,ν,q, r,y), we follow a blocking strategy and

draws in one block ξg from p(ξg|β, σ2,λ,p,ν,q,y), where ξg = (ξ′g1, . . . , ξ
′
gT )′. We apply a

standard forward filtering backward sampling strategy (FFBS, see Frühwirth-Schnatter (2006),

ch. 11-13, for further details), with predictive and filtered probabilities

p(ξgt = ek|yg,m:t−m) =

K∑
l=1

pglkp(ξg,t−m = ιl|yg,m:t−m) (B.16)

p(ξg,t = ek|yg,m:t) ∝ p(ξg,t = ek|yg,m:t−m)p(ygt|yg,t−m−cm:t−m, ek) (B.17)

t, t = m, . . . ,mTq, and smoothed probabilities

p(ξgt = ek|yg,1:T ) ∝
m∑
l=1

p(ξg,t = ek|ξg,t+1 = el,yg,1:t)p(ξg,t+1 = el|yg,1:T ), (B.18)
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t = mTq,mTq −m, . . . ,m, where ygt = (y1gt, . . . , ynggt)
′ is the observation vector for the g-th

unit and p(ygt|yg,t−mc−m:t−m, ξgt) is its distribution which is a normal with mean vector Z ′itβ,

where Zgt = (z1gt, . . . , znggt) and covariance matrix diag{(σ2
1gt, . . . , σ

2
nggt)}.

B.6 Sampling σ2

The prior distribution for σ2 is an IG(a0, b0) with density function

p(σ2) =
1

Γ(a0/2)
(b0/2)a0/2 exp

{
−b0

1

2σ2

}
(σ2)−a0/2−1 (B.19)

σ2 > 0, which is conditionally conjugate. Thus, the full conditional distribution of σ2 is the

inverse gamma

p(σ2|µ, c, δ,λ,χ,p,ν, ζ,η,q, r, ξ,y) ∝

∝ (σ2)−a0/2−1 exp{−b0
1

2σ2
}
∏
t∈T

G∏
g=1

ng∏
i=1

(σ2)−1/2 exp

{
−λigχg

2σ2
e2
igt

}
∝ IG(a1, b1) (B.20)

with

a1 = a0 + nTq (B.21)

b1 = b0 +
∑
t∈T

G∑
g=1

ng∑
i=1

λigχge
2
igt (B.22)

where n =
∑G

g=1 ng and eigt = yigt − zigt
′(β + ζg + ηig).

B.7 Sampling λ

The prior distribution for λig is a Ga(c10, d10) with density function

p(λig) =
1

Γ(c10/2)
(d10/2)c10/2λ

c10/2−1
ig exp

{
−d10

2
λig

}
(B.23)

λig > 0, which is conditionally conjugate. Thus, the full conditional distribution of λig is the

gamma distribution

p(λig|µ, c, δ, σ2,λ−ig,χ,p,ν, ζ,η,q, r, ξ,y) ∝

∝ λc10/2−1
ig exp

{
−d10

2
λig

}∏
t∈T

λ
1/2
ig exp

{
−λig

χg
2σ2

e2
igt

}
∝ Ga(c1ig, d1ig) (B.24)
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with

c1ig = c10 + Tq (B.25)

d1ig = d10 +
χg
σ2

∑
t∈T

e2
igt (B.26)

and eigt = yigt − zigt
′(β + ζg + ηig).

B.8 Sampling χ

The prior distribution for χg is a Ga(c20, d20) with density function

p(χg) =
1

Γ(c20/2)
(d20/2)c20/2χc20/2−1

g exp

{
−d20

2
χg

}
(B.27)

χg > 0, which is conditionally conjugate. Thus, the full conditional distribution of χg is the

gamma distribution

p(χg|µ, c, δ, σ2,λ,χ−g,p,ν, ζ,η,q, r, ξ,y) ∝

∝ χc20/2−1
g exp

{
−d20

2
χg

}∏
t∈T

ng∏
i=1

χ1/2
g exp

{
−χg

λig
2σ2

e2
igt

}
∝ Ga(c2g, d2g) (B.28)

with

c2g = c20 + Tqng (B.29)

d2g = d20 +
∑
t∈T

ng∑
i=1

λig
σ2
e2
igt (B.30)

and eigt = yigt − zigt
′(β + ζg + ηig).

B.9 Sampling qgk

The full conditional distribution of qgk = (qµ,gk, qc,gk, qδ,gk) is

p(qgk|µ, c, δ, σ2,λ,χ,p,ν, ζ,η,q−gk, r, ξ,y) ∝

∝ p(qµ,gk|ηµ,gk)p(qc,gk|ηc,gk)p(qδ,gk|ηδ,gk) (B.31)

where ηµ,gk = (ηµ,1gk, . . . , ηµ,nggk)
′, ηc,gk = (ηc,1g1k, . . . , ηc,nggck)

′,

ηδ,gk = (ηδ,1g11k, . . . , ηδ,nggNν+1k)
′, and

p(qµ,gk|ηµ,gk) ∝ IG(nµ,gk, sµ,gk) (B.32)

p(qc,gk|ηc,gk) ∝ IG(nc,gk, sc,gk) (B.33)

p(qδ,gk|ηδ,gk) ∝ IG(nδ,gk, sδ,gk) (B.34)
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independent for g = 1, . . . , G and k = 1, . . . ,K with

nµ,gk = n0 + ng, sµ,gk = s0 +

ng∑
i=1

η2
µ,igk,

nc,gk = n0 + ngc, sc,gk = s0 +

ng∑
i=1

c∑
l=1

η2
c,iglk,

nδ,gk = n0 + ngN(ν + 1), sδ,gk = s0 +

ng∑
i=1

N∑
j=1

ν∑
l=0

η2
δ,igjlk.

B.10 Sampling rk

The full conditional distribution of rk = (rµ,k, rc,k, rδ,k) is

p(rk|µ, c, δ, σ2,λ,χ,p,ν, ζ,η,q, r−k, ξ,y) ∝

∝ p(rµ,k|ζµ,k)p(rc,k|ζc,k)p(rδ,k|ζδ,k) (B.35)

where ζµ,k = (ζµ,1k, . . . , ζµ,Ggk)
′, ζc,k = (ζc,11k, . . . , ζc,Gck)

′, ζδ,gk = (ζδ,111k, . . . , ζδ,GNν+1k)
′, and

p(rµ,k|ζµ,k) ∝ IG(nµ,k, sµ,k) (B.36)

p(rc,k|ζc,k) ∝ IG(nc,k, sc,k) (B.37)

p(rδ,k|ζδ,k) ∝ IG(nδ,k, sδ,k) (B.38)

independent for k = 1, . . . ,K with

nµ,k = n0 +G, sµ,k = s0 +
G∑
g=1

ζ2
µ,gk,

nc,k = n0 +Gc, sc,k = s0 +
G∑
g=1

c∑
l=1

ζ2
c,glk,

nδ,k = n0 +GN(ν + 1), sδ,k = s0 +

G∑
g=1

N∑
j=1

ν∑
l=0

ζ2
δ,gjlk.

B.11 Sampling ζ

The full conditional distribution of ζgk is

p(ζgk|β, σ2,λ,χ,p,ν, ζ−gk,η,q, r, ξ,y) ∝

∝ exp
{
− 1

2
ζ
′
gkR

−1
k ζgk −

1

2σ2
ig

∑
t∈Tgk

ng∑
i=1

(ζ
′
gkzigktz

′
igktζgk (B.39)

−2z
′
igktζgk(yigt − z

′
igkt(β + ηig))

}
∝ Nm (mζ,gk,Υζ,gk) (B.40)
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where m = c+N(ν + 1) + 1 and

Υζ,gk =

(
R−1
k +

ng∑
i=1

σ−2
ig Z

′
igkZigk

)−1

(B.41)

mζ,gk = Υζ,gk

ng∑
i=1

σ−2
ig Z

′
igkeigk (B.42)

and eigk = (eigk1, . . . , eigkTgk)′ with eigkt = yigt − z
′
igkt(β + ηig). We recall that z′igkt =

(1,v′igt,x
′
ig,1t, . . . ,x

′
ig,Nt) ⊗ e′k is a vector of dimension K(1 + c + N(ν + 1)) × 1, and σ2

ig is

defined in Eq. 15.

B.12 Sampling η

The full conditional distribution of ηigk is

p(ηigk|β, σ2,λ,χ,p,ν, ζ,η−igk,q, r, ξ,y) ∝

∝ exp
{
− 1

2
η
′
igkQ

−1
gk ηigk −

1

2σ2
ig

∑
t∈Tgk

(η
′
igkzigktz

′
igktηigk −

2z
′
igktηigk(yigt − z

′
igkt(β + ζg)))

}
∝ Nm (mη,igk,Υη,igk) (B.43)

where m = c+N(ν + 1) + 1 and

Υη,igk =
(
Q−1
gk + σ−2

ig Z
′
igkZigk

)−1
(B.44)

mη,igk = Υη,igkσ
−2
ig

(
Z
′
igkeigk

)
(B.45)

and eigk = (eigk1, . . . , eigkTgk)′ with eigkt = yigt − z
′
igkt(β + ζg).
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Supplementary materials

The supplementary materials contains additional results. In particular, Appendix C presents

the results of a simulation-based efficiency analysis of the MCMC algorithm proposed in this

paper. Appendices D and E detail the results of the empirical analysis.
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C Further simulation results

This section provides further results on the efficiency and convergence analysis of the MCMC

procedure used in this paper. Figure C.1 shows an example of simulated panel of time series.

Figures C.2 presents the MCMC raw values, progressive averages and autocorrelation function.

Figure C.3 the coefficient posterior mean. Figure C.4 shows the means square error for the

parameters and hidden states over the MCMC iterations.

Figure C.1: Example of a simulated panel
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Note: Top panel: simulated panel of time series (gray lines) and a series of the first country in the panel (red

line). Middle panel: simulated exogenous time series (gray lines) and three exogenous for the the first country

of the panel (red line). Bottom panel: regime switching process (horizontal axis) for the different units (vertical

axes).
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Figure C.2: Further results on convergence and efficiency
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Note: MCMC raw output (first row), progressive averages (second row) and ACF (third row), based on 10,000

MCMC iterations, for the coefficients δigjk, ∀i, ∀g, ∀j, and for k = 1, 2.
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Figure C.3: Further results on convergence and efficiency
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Figure C.4: Further results on convergence and efficiency
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Note: Parameters (left) and hidden states (right) mean square error (MSE) over the first 20 MCMC iterations.
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D Data description

We considered the following dependent variables:

1. Gross Domestic Product (GDP)

2. Industrial Productin Index (IPI) growth rates

3. Employment (Emp)

4. Consumption (Con)

5. Nominal Earnings (Ner)

6. Real Earnings (Rer)

7. Inflation (Inf): changes in the PCE deflator

8. Hours (Hou)

9. Interest Rates (IR)

10. Stock Market (Sto)

11. Money (M2)

sampled at a quarterly frequency. The availability of the time series for each country is given in

Tab. D.1. In the same table the mean value of the variable is given. The sources of the complete

list of variable is given in Table D.2. Figures D.1-D.2 show all series after standardization.

As measures of uncertainty we consider

1. forecast disagreement

2. VIX
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Table D.2: Data Sources
Variable Source

GDP
United States OECD Economic Outlook
Euro area OECD Economic Outlook
Japan OECD Economic Outlook
Germany OECD Economic Outlook
France OECD Economic Outlook
United Kingdom OECD Economic Outlook
Italy OECD Economic Outlook
Canada OECD Economic Outlook
Netherlands OECD Economic Outlook
Norway OECD Economic Outlook
Spain OECD Economic Outlook
Sweden OECD Economic Outlook
Switzerland OECD Economic Outlook

Industrial production
United States OECD Monthly Economic Indicators
Euro area OECD Monthly Economic Indicators
Japan OECD Monthly Economic Indicators
Germany OECD Monthly Economic Indicators
France OECD Monthly Economic Indicators
United Kingdom OECD Monthly Economic Indicators
Italy OECD Monthly Economic Indicators
Canada OECD Monthly Economic Indicators
Netherlands IMF
Norway IMF
Spain IMF

Employment
United States OECD Economic Outlook
Euro area OECD Economic Outlook
Japan OECD Economic Outlook
Germany OECD Economic Outlook
France OECD Economic Outlook
United Kingdom OECD Economic Outlook
Italy OECD Economic Outlook
Canada OECD Economic Outlook

Consumption
United States OECD Economic Outlook
Euro area OECD Economic Outlook
Japan OECD Economic Outlook
Germany OECD Economic Outlook
France OECD Economic Outlook
United Kingdom OECD Economic Outlook
Italy OECD Economic Outlook
Canada OECD Economic Outlook
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Table D.2: Data Sources (Continued)
Variable Source
Inflation
United States OECD Economic Outlook
Euro area OECD Economic Outlook
Japan OECD Economic Outlook
Germany OECD Economic Outlook
France OECD Economic Outlook
United Kingdom OECD Economic Outlook
Italy OECD Economic Outlook
Canada OECD Economic Outlook
Netherlands OECD Economic Outlook
Norway OECD Economic Outlook
Spain OECD Economic Outlook
Sweden OECD Economic Outlook
Switzerland OECD Economic Outlook

Nominal earnings
United States OECD Monthly Economic Indicators
Japan OECD Monthly Economic Indicators
Germany OECD Monthly Economic Indicators
France OECD Monthly Economic Indicators
United Kingdom OECD Monthly Economic Indicators
Italy OECD Monthly Economic Indicators
Canada OECD Monthly Economic Indicators
Netherlands OECD Monthly Economic Indicators
Norway OECD Monthly Economic Indicators
Spain OECD Monthly Economic Indicators
Sweden OECD Monthly Economic Indicators

Real earnings
United States Nominal earnings deflated by inflation
Japan Nominal earnings deflated by inflation
Germany Nominal earnings deflated by inflation
France Nominal earnings deflated by inflation
United Kingdom Nominal earnings deflated by inflation
Italy Nominal earnings deflated by inflation
Canada Nominal earnings deflated by inflation
Netherlands Nominal earnings deflated by inflation
Norway Nominal earnings deflated by inflation
Spain Nominal earnings deflated by inflation
Sweden Nominal earnings deflated by inflation

Hours worked
United States OECD Economic Outlook
Japan OECD Economic Outlook
Germany OECD Economic Outlook
France OECD Economic Outlook
United Kingdom OECD Economic Outlook
Canada OECD Economic Outlook
Netherlands OECD Economic Outlook
Spain OECD Economic Outlook
Sweden OECD Economic Outlook
Switzerland OECD Economic Outlook
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Table D.2: Data Sources (Continued)
Variable Source
Interest rate/bank rate
United States Datastream
Euro area Datastream
Japan Datastream
Germany Datastream
France Datastream
United Kingdom Datastream
Italy Datastream
Canada Datastream
Netherlands Datastream
Norway Norges Bank
Spain Datastream
Sweden IMF
Switzerland IMF

Stock returns
United States OECD Monthly Economic Indicators
Euro area OECD Monthly Economic Indicators
Japan OECD Monthly Economic Indicators
Germany OECD Monthly Economic Indicators
France OECD Monthly Economic Indicators
United Kingdom OECD Monthly Economic Indicators
Italy OECD Monthly Economic Indicators
Canada OECD Monthly Economic Indicators
Netherlands OECD Monthly Economic Indicators
Norway OECD Monthly Economic Indicators
Spain OECD Monthly Economic Indicators
Sweden OECD Monthly Economic Indicators
Switzerland OECD Monthly Economic Indicators

M2
United States Datastream
Euro area Datastream
Japan Datastream
Germany Datastream
United Kingdom Datastream
Italy Datastream
Canada Datastream
Norway Statistics Norway
Sweden IMF
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Figure D.1: Dependent variable series in the panel by type.
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Figure D.2: Dependent variable series in the panel by type.
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Figure D.3: Independent variable series by type.
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Figure D.5: Correlations between different measures of uncertainty
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E Further empirical results

Figures E.1-E.2 report the MAP estimates of the hidden states (blue stepwise line) and the

posterior probability of the second regime (solid red line) for the different units (countries) in

the panel.

Figures E.3-E.5 show the effects of uncertainty shocks (Forecast Disagreement and VIX) on

the original variables scale for different variables, i = 1, . . . , ng, g = 1, . . . , G, different lags,

l = 0, 1 and regimes k = 1, 2.

The following figures and tables report results of several robustness analysis. First, Figures

E.6-E.8 exhibit the lagged effects of the uncertainty in a restricted version of our model, where

contemporaneous disagreement and VIX uncertainty measures are excluded to avoid the problem

of potential endogeneity of the contemporaneous uncertainty shocks. In this model only the first

lag of the uncertainty shocks is considered, i.e. l = 1. The main results are confirmed.

Next, we report the results of our panel MIDAS model when only VIX is included:

1. Effects of the monthly uncertainty, contemporaneous and one lag (Fig. E.9-E.10)

2. Effects of the average quarterly uncertainty, contemporaneous and one lag (Fig. E.11-E.12)

Finally, we report the results of our panel MIDAS model when only forecast disagreement is

included:

1. Effects of the monthly uncertainty, contemporaneous and one lag (Fig. E.13-E.14)

2. Effects of the average quarterly uncertainty, contemporaneous and one lag (Fig. E.15-E.16)

Table E.1 and Table E.2 report the median of the sum of the six coefficients, monthly

contemporaneous and lagged variables, that have 90% of the mass different from zero for the

two regimes for the Financial Uncertainty Index and the macroeconomic disagreement. The

effect of financial uncertainty are substantially larger relative to the benchmark VIX case.

Results are confirmed when the Financial Entropy Index is used, see Tables E.3 and E.4.
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Figure E.1: Country-specific posterior probability of being in regime 2 and hidden state
estimates.
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Note: the red line represents the posterior probability of being in regime 2 and the blue line the hidden state

estimates.
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Figure E.2: Country-specific posterior probability of being in regime 2 and hidden state
estimates.
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Figure E.3: Effects of uncertainty shock on macroeconomic variables.
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Note: Impact coefficient δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk of uncertainty shocks on different variables, i = 1, . . . , ng,

g = 1, . . . , G, reported on the original variables scale at different lags, l = 0, 1 and regimes k = 1, 2. The black

color refers to the first regime; the red color to the second regime.
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Figure E.4: Effects of uncertainty shock on macroeconomic variables.
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g = 1, . . . , G, reported on the original variables scale at different lags, l = 0, 1 and regimes k = 1, 2. The black

color refers to the first regime; the red color to the second regime.
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Figure E.5: Effects of uncertainty shock on macroeconomic variables.
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g = 1, . . . , G, reported on the original variables scale at different lags, l = 0, 1 and regimes k = 1, 2. The black

color refers to the first regime; the red color to the second regime.
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Figure E.6: Effects of monthly uncertainty, when only one lag (i.e. l = 1) for both
macroeconomic and financial uncertainty is considered.
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Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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Figure E.7: Effects of monthly uncertainty, when only one lag (i.e. l = 1) for both
macroeconomic and financial uncertainty is considered

Nominal ER-Dis Nominal ER-VIX

Regime 1

-0.1 -0.05 0 0.05 0.1

R
e

g
im

e
 2

-0.1

-0.05

0

0.05

0.1

(1,1)

(1,2)

(1,3)

Regime 1

-1 -0.5 0 0.5 1

R
eg

im
e 

2

-0.2

-0.1

0

0.1

0.2

(1,4)

(1,5)(1,6)

Real ER-Dis Real ER-VIX

Regime 1

-0.1 -0.05 0 0.05 0.1

R
e

g
im

e
 2

-0.1

-0.05

0

0.05

0.1

(1,1)

(1,2)

(1,3)

Regime 1

-1 -0.5 0 0.5 1

R
eg

im
e 

2

-0.2

-0.1

0

0.1

0.2

(1,4)

(1,5)(1,6)

Inflation-Dis Inflation-VIX

Regime 1

-0.1 -0.05 0 0.05 0.1

R
e

g
im

e
 2

-0.1

-0.05

0

0.05

0.1

(1,1)

(1,2)

(1,3)

Regime 1

-1 -0.5 0 0.5 1

R
eg

im
e 

2

-0.2

-0.1

0

0.1

0.2

(1,4)

(1,5)(1,6)

Hours-Dis Hours-VIX

Regime 1

-0.1 -0.05 0 0.05 0.1

R
e

g
im

e
 2

-0.1

-0.05

0

0.05

0.1

(1,1)

(1,2)

(1,3)

Regime 1

-1 -0.5 0 0.5 1

R
eg

im
e 

2

-0.2

-0.1

0

0.1

0.2

(1,4)

(1,5)(1,6)

Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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Figure E.8: Effects of monthly uncertainty, when only one lag (i.e. l = 1) for both
macroeconomic and financial uncertainty is considered
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Note: the figure reports the impact of uncertainty on different variables (i = 1, . . . , ng, g = 1, . . . , G), at lag

l = 0, 1 in regime k = 1, 2. The circles indicate the common impact δjlk for the pair lag l and shock j, denoted

with (l, j). The dots indicate country- and series- specific impact δijlgk = δjlk+ζδ,gjlk+ηδ,igjlk in the two regimes.

The dashed line indicates the 45◦ line. Different shades of color indicate the dots referred to a specific lag.
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Figure E.9: Effects of monthly uncertainty, when only financial uncertainty is considered
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Note: Impact of uncertainty shocks on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at different months,

j = 1, 2, 3, lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.10: Effects of monthly uncertainty, when only financial uncertainty is considered
Inflation Hours
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Note: Impact of uncertainty shocks on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at different months,

j = 1, 2, 3, lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.11: Effects of quarterly averaged uncertainty, when only financial uncertainty is
considered
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Note: Impact of the average uncertainty shocks (j = 1) on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at

different lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.12: Effects of quarterly averaged uncertainty, when only financial uncertainty is
considered
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Note: Impact of the average uncertainty shocks (j = 1) on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at

different lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.13: Effects of monthly uncertainty, when only macroeconomic uncertainty is considered.
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Note: Impact of uncertainty shocks on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at different months,

j = 1, 2, 3, lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.14: Effects of monthly uncertainty, when only macroeconomic uncertainty is considered.
Inflation Hours
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Note: Impact of uncertainty shocks on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at different months,

j = 1, 2, 3, lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.15: Effects of quarterly averaged uncertainty, when only macroeconomic uncertainty
is considered.
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Note: Impact of the average uncertainty shocks (j = 1) on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at

different lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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Figure E.16: Effects of quarterly averaged uncertainty, when only macroeconomic uncertainty
is considered
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Note: Impact of the average uncertainty shocks (j = 1) on the different variables (i = 1, . . . , ng, g = 1, . . . , G), at

different lags, l = 0, 1 and regimes k = 1, 2. Circles: common impact δjlk in the two regimes, i.e. (δjl1, δjl2), for

the pair lag and shock (l, j). Dots: country- and series- specific impact δijlgk = δjlk + ζδ,gjlk + ηδ,igjlk in the two

regimes, i.e. (δijlg1, δijlg2) for all countries, g = 1, . . . , G. Dashed line: 45◦ line.
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